xref: /openbmc/linux/fs/buffer.c (revision afc98d90)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 static int sleep_on_buffer(void *word)
65 {
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84 
85 /*
86  * Returns if the page has dirty or writeback buffers. If all the buffers
87  * are unlocked and clean then the PageDirty information is stale. If
88  * any of the pages are locked, it is assumed they are locked for IO.
89  */
90 void buffer_check_dirty_writeback(struct page *page,
91 				     bool *dirty, bool *writeback)
92 {
93 	struct buffer_head *head, *bh;
94 	*dirty = false;
95 	*writeback = false;
96 
97 	BUG_ON(!PageLocked(page));
98 
99 	if (!page_has_buffers(page))
100 		return;
101 
102 	if (PageWriteback(page))
103 		*writeback = true;
104 
105 	head = page_buffers(page);
106 	bh = head;
107 	do {
108 		if (buffer_locked(bh))
109 			*writeback = true;
110 
111 		if (buffer_dirty(bh))
112 			*dirty = true;
113 
114 		bh = bh->b_this_page;
115 	} while (bh != head);
116 }
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
118 
119 /*
120  * Block until a buffer comes unlocked.  This doesn't stop it
121  * from becoming locked again - you have to lock it yourself
122  * if you want to preserve its state.
123  */
124 void __wait_on_buffer(struct buffer_head * bh)
125 {
126 	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
127 }
128 EXPORT_SYMBOL(__wait_on_buffer);
129 
130 static void
131 __clear_page_buffers(struct page *page)
132 {
133 	ClearPagePrivate(page);
134 	set_page_private(page, 0);
135 	page_cache_release(page);
136 }
137 
138 
139 static int quiet_error(struct buffer_head *bh)
140 {
141 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
142 		return 0;
143 	return 1;
144 }
145 
146 
147 static void buffer_io_error(struct buffer_head *bh)
148 {
149 	char b[BDEVNAME_SIZE];
150 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
151 			bdevname(bh->b_bdev, b),
152 			(unsigned long long)bh->b_blocknr);
153 }
154 
155 /*
156  * End-of-IO handler helper function which does not touch the bh after
157  * unlocking it.
158  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
159  * a race there is benign: unlock_buffer() only use the bh's address for
160  * hashing after unlocking the buffer, so it doesn't actually touch the bh
161  * itself.
162  */
163 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
164 {
165 	if (uptodate) {
166 		set_buffer_uptodate(bh);
167 	} else {
168 		/* This happens, due to failed READA attempts. */
169 		clear_buffer_uptodate(bh);
170 	}
171 	unlock_buffer(bh);
172 }
173 
174 /*
175  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
176  * unlock the buffer. This is what ll_rw_block uses too.
177  */
178 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
179 {
180 	__end_buffer_read_notouch(bh, uptodate);
181 	put_bh(bh);
182 }
183 EXPORT_SYMBOL(end_buffer_read_sync);
184 
185 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
186 {
187 	char b[BDEVNAME_SIZE];
188 
189 	if (uptodate) {
190 		set_buffer_uptodate(bh);
191 	} else {
192 		if (!quiet_error(bh)) {
193 			buffer_io_error(bh);
194 			printk(KERN_WARNING "lost page write due to "
195 					"I/O error on %s\n",
196 				       bdevname(bh->b_bdev, b));
197 		}
198 		set_buffer_write_io_error(bh);
199 		clear_buffer_uptodate(bh);
200 	}
201 	unlock_buffer(bh);
202 	put_bh(bh);
203 }
204 EXPORT_SYMBOL(end_buffer_write_sync);
205 
206 /*
207  * Various filesystems appear to want __find_get_block to be non-blocking.
208  * But it's the page lock which protects the buffers.  To get around this,
209  * we get exclusion from try_to_free_buffers with the blockdev mapping's
210  * private_lock.
211  *
212  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
213  * may be quite high.  This code could TryLock the page, and if that
214  * succeeds, there is no need to take private_lock. (But if
215  * private_lock is contended then so is mapping->tree_lock).
216  */
217 static struct buffer_head *
218 __find_get_block_slow(struct block_device *bdev, sector_t block)
219 {
220 	struct inode *bd_inode = bdev->bd_inode;
221 	struct address_space *bd_mapping = bd_inode->i_mapping;
222 	struct buffer_head *ret = NULL;
223 	pgoff_t index;
224 	struct buffer_head *bh;
225 	struct buffer_head *head;
226 	struct page *page;
227 	int all_mapped = 1;
228 
229 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
230 	page = find_get_page(bd_mapping, index);
231 	if (!page)
232 		goto out;
233 
234 	spin_lock(&bd_mapping->private_lock);
235 	if (!page_has_buffers(page))
236 		goto out_unlock;
237 	head = page_buffers(page);
238 	bh = head;
239 	do {
240 		if (!buffer_mapped(bh))
241 			all_mapped = 0;
242 		else if (bh->b_blocknr == block) {
243 			ret = bh;
244 			get_bh(bh);
245 			goto out_unlock;
246 		}
247 		bh = bh->b_this_page;
248 	} while (bh != head);
249 
250 	/* we might be here because some of the buffers on this page are
251 	 * not mapped.  This is due to various races between
252 	 * file io on the block device and getblk.  It gets dealt with
253 	 * elsewhere, don't buffer_error if we had some unmapped buffers
254 	 */
255 	if (all_mapped) {
256 		char b[BDEVNAME_SIZE];
257 
258 		printk("__find_get_block_slow() failed. "
259 			"block=%llu, b_blocknr=%llu\n",
260 			(unsigned long long)block,
261 			(unsigned long long)bh->b_blocknr);
262 		printk("b_state=0x%08lx, b_size=%zu\n",
263 			bh->b_state, bh->b_size);
264 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
265 			1 << bd_inode->i_blkbits);
266 	}
267 out_unlock:
268 	spin_unlock(&bd_mapping->private_lock);
269 	page_cache_release(page);
270 out:
271 	return ret;
272 }
273 
274 /*
275  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
276  */
277 static void free_more_memory(void)
278 {
279 	struct zone *zone;
280 	int nid;
281 
282 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
283 	yield();
284 
285 	for_each_online_node(nid) {
286 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
287 						gfp_zone(GFP_NOFS), NULL,
288 						&zone);
289 		if (zone)
290 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
291 						GFP_NOFS, NULL);
292 	}
293 }
294 
295 /*
296  * I/O completion handler for block_read_full_page() - pages
297  * which come unlocked at the end of I/O.
298  */
299 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
300 {
301 	unsigned long flags;
302 	struct buffer_head *first;
303 	struct buffer_head *tmp;
304 	struct page *page;
305 	int page_uptodate = 1;
306 
307 	BUG_ON(!buffer_async_read(bh));
308 
309 	page = bh->b_page;
310 	if (uptodate) {
311 		set_buffer_uptodate(bh);
312 	} else {
313 		clear_buffer_uptodate(bh);
314 		if (!quiet_error(bh))
315 			buffer_io_error(bh);
316 		SetPageError(page);
317 	}
318 
319 	/*
320 	 * Be _very_ careful from here on. Bad things can happen if
321 	 * two buffer heads end IO at almost the same time and both
322 	 * decide that the page is now completely done.
323 	 */
324 	first = page_buffers(page);
325 	local_irq_save(flags);
326 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
327 	clear_buffer_async_read(bh);
328 	unlock_buffer(bh);
329 	tmp = bh;
330 	do {
331 		if (!buffer_uptodate(tmp))
332 			page_uptodate = 0;
333 		if (buffer_async_read(tmp)) {
334 			BUG_ON(!buffer_locked(tmp));
335 			goto still_busy;
336 		}
337 		tmp = tmp->b_this_page;
338 	} while (tmp != bh);
339 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
340 	local_irq_restore(flags);
341 
342 	/*
343 	 * If none of the buffers had errors and they are all
344 	 * uptodate then we can set the page uptodate.
345 	 */
346 	if (page_uptodate && !PageError(page))
347 		SetPageUptodate(page);
348 	unlock_page(page);
349 	return;
350 
351 still_busy:
352 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 	local_irq_restore(flags);
354 	return;
355 }
356 
357 /*
358  * Completion handler for block_write_full_page() - pages which are unlocked
359  * during I/O, and which have PageWriteback cleared upon I/O completion.
360  */
361 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
362 {
363 	char b[BDEVNAME_SIZE];
364 	unsigned long flags;
365 	struct buffer_head *first;
366 	struct buffer_head *tmp;
367 	struct page *page;
368 
369 	BUG_ON(!buffer_async_write(bh));
370 
371 	page = bh->b_page;
372 	if (uptodate) {
373 		set_buffer_uptodate(bh);
374 	} else {
375 		if (!quiet_error(bh)) {
376 			buffer_io_error(bh);
377 			printk(KERN_WARNING "lost page write due to "
378 					"I/O error on %s\n",
379 			       bdevname(bh->b_bdev, b));
380 		}
381 		set_bit(AS_EIO, &page->mapping->flags);
382 		set_buffer_write_io_error(bh);
383 		clear_buffer_uptodate(bh);
384 		SetPageError(page);
385 	}
386 
387 	first = page_buffers(page);
388 	local_irq_save(flags);
389 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
390 
391 	clear_buffer_async_write(bh);
392 	unlock_buffer(bh);
393 	tmp = bh->b_this_page;
394 	while (tmp != bh) {
395 		if (buffer_async_write(tmp)) {
396 			BUG_ON(!buffer_locked(tmp));
397 			goto still_busy;
398 		}
399 		tmp = tmp->b_this_page;
400 	}
401 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
402 	local_irq_restore(flags);
403 	end_page_writeback(page);
404 	return;
405 
406 still_busy:
407 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 	local_irq_restore(flags);
409 	return;
410 }
411 EXPORT_SYMBOL(end_buffer_async_write);
412 
413 /*
414  * If a page's buffers are under async readin (end_buffer_async_read
415  * completion) then there is a possibility that another thread of
416  * control could lock one of the buffers after it has completed
417  * but while some of the other buffers have not completed.  This
418  * locked buffer would confuse end_buffer_async_read() into not unlocking
419  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
420  * that this buffer is not under async I/O.
421  *
422  * The page comes unlocked when it has no locked buffer_async buffers
423  * left.
424  *
425  * PageLocked prevents anyone starting new async I/O reads any of
426  * the buffers.
427  *
428  * PageWriteback is used to prevent simultaneous writeout of the same
429  * page.
430  *
431  * PageLocked prevents anyone from starting writeback of a page which is
432  * under read I/O (PageWriteback is only ever set against a locked page).
433  */
434 static void mark_buffer_async_read(struct buffer_head *bh)
435 {
436 	bh->b_end_io = end_buffer_async_read;
437 	set_buffer_async_read(bh);
438 }
439 
440 static void mark_buffer_async_write_endio(struct buffer_head *bh,
441 					  bh_end_io_t *handler)
442 {
443 	bh->b_end_io = handler;
444 	set_buffer_async_write(bh);
445 }
446 
447 void mark_buffer_async_write(struct buffer_head *bh)
448 {
449 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
450 }
451 EXPORT_SYMBOL(mark_buffer_async_write);
452 
453 
454 /*
455  * fs/buffer.c contains helper functions for buffer-backed address space's
456  * fsync functions.  A common requirement for buffer-based filesystems is
457  * that certain data from the backing blockdev needs to be written out for
458  * a successful fsync().  For example, ext2 indirect blocks need to be
459  * written back and waited upon before fsync() returns.
460  *
461  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
462  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
463  * management of a list of dependent buffers at ->i_mapping->private_list.
464  *
465  * Locking is a little subtle: try_to_free_buffers() will remove buffers
466  * from their controlling inode's queue when they are being freed.  But
467  * try_to_free_buffers() will be operating against the *blockdev* mapping
468  * at the time, not against the S_ISREG file which depends on those buffers.
469  * So the locking for private_list is via the private_lock in the address_space
470  * which backs the buffers.  Which is different from the address_space
471  * against which the buffers are listed.  So for a particular address_space,
472  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
473  * mapping->private_list will always be protected by the backing blockdev's
474  * ->private_lock.
475  *
476  * Which introduces a requirement: all buffers on an address_space's
477  * ->private_list must be from the same address_space: the blockdev's.
478  *
479  * address_spaces which do not place buffers at ->private_list via these
480  * utility functions are free to use private_lock and private_list for
481  * whatever they want.  The only requirement is that list_empty(private_list)
482  * be true at clear_inode() time.
483  *
484  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
485  * filesystems should do that.  invalidate_inode_buffers() should just go
486  * BUG_ON(!list_empty).
487  *
488  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
489  * take an address_space, not an inode.  And it should be called
490  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
491  * queued up.
492  *
493  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
494  * list if it is already on a list.  Because if the buffer is on a list,
495  * it *must* already be on the right one.  If not, the filesystem is being
496  * silly.  This will save a ton of locking.  But first we have to ensure
497  * that buffers are taken *off* the old inode's list when they are freed
498  * (presumably in truncate).  That requires careful auditing of all
499  * filesystems (do it inside bforget()).  It could also be done by bringing
500  * b_inode back.
501  */
502 
503 /*
504  * The buffer's backing address_space's private_lock must be held
505  */
506 static void __remove_assoc_queue(struct buffer_head *bh)
507 {
508 	list_del_init(&bh->b_assoc_buffers);
509 	WARN_ON(!bh->b_assoc_map);
510 	if (buffer_write_io_error(bh))
511 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
512 	bh->b_assoc_map = NULL;
513 }
514 
515 int inode_has_buffers(struct inode *inode)
516 {
517 	return !list_empty(&inode->i_data.private_list);
518 }
519 
520 /*
521  * osync is designed to support O_SYNC io.  It waits synchronously for
522  * all already-submitted IO to complete, but does not queue any new
523  * writes to the disk.
524  *
525  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
526  * you dirty the buffers, and then use osync_inode_buffers to wait for
527  * completion.  Any other dirty buffers which are not yet queued for
528  * write will not be flushed to disk by the osync.
529  */
530 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
531 {
532 	struct buffer_head *bh;
533 	struct list_head *p;
534 	int err = 0;
535 
536 	spin_lock(lock);
537 repeat:
538 	list_for_each_prev(p, list) {
539 		bh = BH_ENTRY(p);
540 		if (buffer_locked(bh)) {
541 			get_bh(bh);
542 			spin_unlock(lock);
543 			wait_on_buffer(bh);
544 			if (!buffer_uptodate(bh))
545 				err = -EIO;
546 			brelse(bh);
547 			spin_lock(lock);
548 			goto repeat;
549 		}
550 	}
551 	spin_unlock(lock);
552 	return err;
553 }
554 
555 static void do_thaw_one(struct super_block *sb, void *unused)
556 {
557 	char b[BDEVNAME_SIZE];
558 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
559 		printk(KERN_WARNING "Emergency Thaw on %s\n",
560 		       bdevname(sb->s_bdev, b));
561 }
562 
563 static void do_thaw_all(struct work_struct *work)
564 {
565 	iterate_supers(do_thaw_one, NULL);
566 	kfree(work);
567 	printk(KERN_WARNING "Emergency Thaw complete\n");
568 }
569 
570 /**
571  * emergency_thaw_all -- forcibly thaw every frozen filesystem
572  *
573  * Used for emergency unfreeze of all filesystems via SysRq
574  */
575 void emergency_thaw_all(void)
576 {
577 	struct work_struct *work;
578 
579 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
580 	if (work) {
581 		INIT_WORK(work, do_thaw_all);
582 		schedule_work(work);
583 	}
584 }
585 
586 /**
587  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
588  * @mapping: the mapping which wants those buffers written
589  *
590  * Starts I/O against the buffers at mapping->private_list, and waits upon
591  * that I/O.
592  *
593  * Basically, this is a convenience function for fsync().
594  * @mapping is a file or directory which needs those buffers to be written for
595  * a successful fsync().
596  */
597 int sync_mapping_buffers(struct address_space *mapping)
598 {
599 	struct address_space *buffer_mapping = mapping->private_data;
600 
601 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
602 		return 0;
603 
604 	return fsync_buffers_list(&buffer_mapping->private_lock,
605 					&mapping->private_list);
606 }
607 EXPORT_SYMBOL(sync_mapping_buffers);
608 
609 /*
610  * Called when we've recently written block `bblock', and it is known that
611  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
612  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
613  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
614  */
615 void write_boundary_block(struct block_device *bdev,
616 			sector_t bblock, unsigned blocksize)
617 {
618 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
619 	if (bh) {
620 		if (buffer_dirty(bh))
621 			ll_rw_block(WRITE, 1, &bh);
622 		put_bh(bh);
623 	}
624 }
625 
626 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
627 {
628 	struct address_space *mapping = inode->i_mapping;
629 	struct address_space *buffer_mapping = bh->b_page->mapping;
630 
631 	mark_buffer_dirty(bh);
632 	if (!mapping->private_data) {
633 		mapping->private_data = buffer_mapping;
634 	} else {
635 		BUG_ON(mapping->private_data != buffer_mapping);
636 	}
637 	if (!bh->b_assoc_map) {
638 		spin_lock(&buffer_mapping->private_lock);
639 		list_move_tail(&bh->b_assoc_buffers,
640 				&mapping->private_list);
641 		bh->b_assoc_map = mapping;
642 		spin_unlock(&buffer_mapping->private_lock);
643 	}
644 }
645 EXPORT_SYMBOL(mark_buffer_dirty_inode);
646 
647 /*
648  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
649  * dirty.
650  *
651  * If warn is true, then emit a warning if the page is not uptodate and has
652  * not been truncated.
653  */
654 static void __set_page_dirty(struct page *page,
655 		struct address_space *mapping, int warn)
656 {
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&mapping->tree_lock, flags);
660 	if (page->mapping) {	/* Race with truncate? */
661 		WARN_ON_ONCE(warn && !PageUptodate(page));
662 		account_page_dirtied(page, mapping);
663 		radix_tree_tag_set(&mapping->page_tree,
664 				page_index(page), PAGECACHE_TAG_DIRTY);
665 	}
666 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
667 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
668 }
669 
670 /*
671  * Add a page to the dirty page list.
672  *
673  * It is a sad fact of life that this function is called from several places
674  * deeply under spinlocking.  It may not sleep.
675  *
676  * If the page has buffers, the uptodate buffers are set dirty, to preserve
677  * dirty-state coherency between the page and the buffers.  It the page does
678  * not have buffers then when they are later attached they will all be set
679  * dirty.
680  *
681  * The buffers are dirtied before the page is dirtied.  There's a small race
682  * window in which a writepage caller may see the page cleanness but not the
683  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
684  * before the buffers, a concurrent writepage caller could clear the page dirty
685  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
686  * page on the dirty page list.
687  *
688  * We use private_lock to lock against try_to_free_buffers while using the
689  * page's buffer list.  Also use this to protect against clean buffers being
690  * added to the page after it was set dirty.
691  *
692  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
693  * address_space though.
694  */
695 int __set_page_dirty_buffers(struct page *page)
696 {
697 	int newly_dirty;
698 	struct address_space *mapping = page_mapping(page);
699 
700 	if (unlikely(!mapping))
701 		return !TestSetPageDirty(page);
702 
703 	spin_lock(&mapping->private_lock);
704 	if (page_has_buffers(page)) {
705 		struct buffer_head *head = page_buffers(page);
706 		struct buffer_head *bh = head;
707 
708 		do {
709 			set_buffer_dirty(bh);
710 			bh = bh->b_this_page;
711 		} while (bh != head);
712 	}
713 	newly_dirty = !TestSetPageDirty(page);
714 	spin_unlock(&mapping->private_lock);
715 
716 	if (newly_dirty)
717 		__set_page_dirty(page, mapping, 1);
718 	return newly_dirty;
719 }
720 EXPORT_SYMBOL(__set_page_dirty_buffers);
721 
722 /*
723  * Write out and wait upon a list of buffers.
724  *
725  * We have conflicting pressures: we want to make sure that all
726  * initially dirty buffers get waited on, but that any subsequently
727  * dirtied buffers don't.  After all, we don't want fsync to last
728  * forever if somebody is actively writing to the file.
729  *
730  * Do this in two main stages: first we copy dirty buffers to a
731  * temporary inode list, queueing the writes as we go.  Then we clean
732  * up, waiting for those writes to complete.
733  *
734  * During this second stage, any subsequent updates to the file may end
735  * up refiling the buffer on the original inode's dirty list again, so
736  * there is a chance we will end up with a buffer queued for write but
737  * not yet completed on that list.  So, as a final cleanup we go through
738  * the osync code to catch these locked, dirty buffers without requeuing
739  * any newly dirty buffers for write.
740  */
741 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
742 {
743 	struct buffer_head *bh;
744 	struct list_head tmp;
745 	struct address_space *mapping;
746 	int err = 0, err2;
747 	struct blk_plug plug;
748 
749 	INIT_LIST_HEAD(&tmp);
750 	blk_start_plug(&plug);
751 
752 	spin_lock(lock);
753 	while (!list_empty(list)) {
754 		bh = BH_ENTRY(list->next);
755 		mapping = bh->b_assoc_map;
756 		__remove_assoc_queue(bh);
757 		/* Avoid race with mark_buffer_dirty_inode() which does
758 		 * a lockless check and we rely on seeing the dirty bit */
759 		smp_mb();
760 		if (buffer_dirty(bh) || buffer_locked(bh)) {
761 			list_add(&bh->b_assoc_buffers, &tmp);
762 			bh->b_assoc_map = mapping;
763 			if (buffer_dirty(bh)) {
764 				get_bh(bh);
765 				spin_unlock(lock);
766 				/*
767 				 * Ensure any pending I/O completes so that
768 				 * write_dirty_buffer() actually writes the
769 				 * current contents - it is a noop if I/O is
770 				 * still in flight on potentially older
771 				 * contents.
772 				 */
773 				write_dirty_buffer(bh, WRITE_SYNC);
774 
775 				/*
776 				 * Kick off IO for the previous mapping. Note
777 				 * that we will not run the very last mapping,
778 				 * wait_on_buffer() will do that for us
779 				 * through sync_buffer().
780 				 */
781 				brelse(bh);
782 				spin_lock(lock);
783 			}
784 		}
785 	}
786 
787 	spin_unlock(lock);
788 	blk_finish_plug(&plug);
789 	spin_lock(lock);
790 
791 	while (!list_empty(&tmp)) {
792 		bh = BH_ENTRY(tmp.prev);
793 		get_bh(bh);
794 		mapping = bh->b_assoc_map;
795 		__remove_assoc_queue(bh);
796 		/* Avoid race with mark_buffer_dirty_inode() which does
797 		 * a lockless check and we rely on seeing the dirty bit */
798 		smp_mb();
799 		if (buffer_dirty(bh)) {
800 			list_add(&bh->b_assoc_buffers,
801 				 &mapping->private_list);
802 			bh->b_assoc_map = mapping;
803 		}
804 		spin_unlock(lock);
805 		wait_on_buffer(bh);
806 		if (!buffer_uptodate(bh))
807 			err = -EIO;
808 		brelse(bh);
809 		spin_lock(lock);
810 	}
811 
812 	spin_unlock(lock);
813 	err2 = osync_buffers_list(lock, list);
814 	if (err)
815 		return err;
816 	else
817 		return err2;
818 }
819 
820 /*
821  * Invalidate any and all dirty buffers on a given inode.  We are
822  * probably unmounting the fs, but that doesn't mean we have already
823  * done a sync().  Just drop the buffers from the inode list.
824  *
825  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
826  * assumes that all the buffers are against the blockdev.  Not true
827  * for reiserfs.
828  */
829 void invalidate_inode_buffers(struct inode *inode)
830 {
831 	if (inode_has_buffers(inode)) {
832 		struct address_space *mapping = &inode->i_data;
833 		struct list_head *list = &mapping->private_list;
834 		struct address_space *buffer_mapping = mapping->private_data;
835 
836 		spin_lock(&buffer_mapping->private_lock);
837 		while (!list_empty(list))
838 			__remove_assoc_queue(BH_ENTRY(list->next));
839 		spin_unlock(&buffer_mapping->private_lock);
840 	}
841 }
842 EXPORT_SYMBOL(invalidate_inode_buffers);
843 
844 /*
845  * Remove any clean buffers from the inode's buffer list.  This is called
846  * when we're trying to free the inode itself.  Those buffers can pin it.
847  *
848  * Returns true if all buffers were removed.
849  */
850 int remove_inode_buffers(struct inode *inode)
851 {
852 	int ret = 1;
853 
854 	if (inode_has_buffers(inode)) {
855 		struct address_space *mapping = &inode->i_data;
856 		struct list_head *list = &mapping->private_list;
857 		struct address_space *buffer_mapping = mapping->private_data;
858 
859 		spin_lock(&buffer_mapping->private_lock);
860 		while (!list_empty(list)) {
861 			struct buffer_head *bh = BH_ENTRY(list->next);
862 			if (buffer_dirty(bh)) {
863 				ret = 0;
864 				break;
865 			}
866 			__remove_assoc_queue(bh);
867 		}
868 		spin_unlock(&buffer_mapping->private_lock);
869 	}
870 	return ret;
871 }
872 
873 /*
874  * Create the appropriate buffers when given a page for data area and
875  * the size of each buffer.. Use the bh->b_this_page linked list to
876  * follow the buffers created.  Return NULL if unable to create more
877  * buffers.
878  *
879  * The retry flag is used to differentiate async IO (paging, swapping)
880  * which may not fail from ordinary buffer allocations.
881  */
882 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
883 		int retry)
884 {
885 	struct buffer_head *bh, *head;
886 	long offset;
887 
888 try_again:
889 	head = NULL;
890 	offset = PAGE_SIZE;
891 	while ((offset -= size) >= 0) {
892 		bh = alloc_buffer_head(GFP_NOFS);
893 		if (!bh)
894 			goto no_grow;
895 
896 		bh->b_this_page = head;
897 		bh->b_blocknr = -1;
898 		head = bh;
899 
900 		bh->b_size = size;
901 
902 		/* Link the buffer to its page */
903 		set_bh_page(bh, page, offset);
904 	}
905 	return head;
906 /*
907  * In case anything failed, we just free everything we got.
908  */
909 no_grow:
910 	if (head) {
911 		do {
912 			bh = head;
913 			head = head->b_this_page;
914 			free_buffer_head(bh);
915 		} while (head);
916 	}
917 
918 	/*
919 	 * Return failure for non-async IO requests.  Async IO requests
920 	 * are not allowed to fail, so we have to wait until buffer heads
921 	 * become available.  But we don't want tasks sleeping with
922 	 * partially complete buffers, so all were released above.
923 	 */
924 	if (!retry)
925 		return NULL;
926 
927 	/* We're _really_ low on memory. Now we just
928 	 * wait for old buffer heads to become free due to
929 	 * finishing IO.  Since this is an async request and
930 	 * the reserve list is empty, we're sure there are
931 	 * async buffer heads in use.
932 	 */
933 	free_more_memory();
934 	goto try_again;
935 }
936 EXPORT_SYMBOL_GPL(alloc_page_buffers);
937 
938 static inline void
939 link_dev_buffers(struct page *page, struct buffer_head *head)
940 {
941 	struct buffer_head *bh, *tail;
942 
943 	bh = head;
944 	do {
945 		tail = bh;
946 		bh = bh->b_this_page;
947 	} while (bh);
948 	tail->b_this_page = head;
949 	attach_page_buffers(page, head);
950 }
951 
952 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
953 {
954 	sector_t retval = ~((sector_t)0);
955 	loff_t sz = i_size_read(bdev->bd_inode);
956 
957 	if (sz) {
958 		unsigned int sizebits = blksize_bits(size);
959 		retval = (sz >> sizebits);
960 	}
961 	return retval;
962 }
963 
964 /*
965  * Initialise the state of a blockdev page's buffers.
966  */
967 static sector_t
968 init_page_buffers(struct page *page, struct block_device *bdev,
969 			sector_t block, int size)
970 {
971 	struct buffer_head *head = page_buffers(page);
972 	struct buffer_head *bh = head;
973 	int uptodate = PageUptodate(page);
974 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
975 
976 	do {
977 		if (!buffer_mapped(bh)) {
978 			init_buffer(bh, NULL, NULL);
979 			bh->b_bdev = bdev;
980 			bh->b_blocknr = block;
981 			if (uptodate)
982 				set_buffer_uptodate(bh);
983 			if (block < end_block)
984 				set_buffer_mapped(bh);
985 		}
986 		block++;
987 		bh = bh->b_this_page;
988 	} while (bh != head);
989 
990 	/*
991 	 * Caller needs to validate requested block against end of device.
992 	 */
993 	return end_block;
994 }
995 
996 /*
997  * Create the page-cache page that contains the requested block.
998  *
999  * This is used purely for blockdev mappings.
1000  */
1001 static int
1002 grow_dev_page(struct block_device *bdev, sector_t block,
1003 		pgoff_t index, int size, int sizebits)
1004 {
1005 	struct inode *inode = bdev->bd_inode;
1006 	struct page *page;
1007 	struct buffer_head *bh;
1008 	sector_t end_block;
1009 	int ret = 0;		/* Will call free_more_memory() */
1010 	gfp_t gfp_mask;
1011 
1012 	gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1013 	gfp_mask |= __GFP_MOVABLE;
1014 	/*
1015 	 * XXX: __getblk_slow() can not really deal with failure and
1016 	 * will endlessly loop on improvised global reclaim.  Prefer
1017 	 * looping in the allocator rather than here, at least that
1018 	 * code knows what it's doing.
1019 	 */
1020 	gfp_mask |= __GFP_NOFAIL;
1021 
1022 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1023 	if (!page)
1024 		return ret;
1025 
1026 	BUG_ON(!PageLocked(page));
1027 
1028 	if (page_has_buffers(page)) {
1029 		bh = page_buffers(page);
1030 		if (bh->b_size == size) {
1031 			end_block = init_page_buffers(page, bdev,
1032 						index << sizebits, size);
1033 			goto done;
1034 		}
1035 		if (!try_to_free_buffers(page))
1036 			goto failed;
1037 	}
1038 
1039 	/*
1040 	 * Allocate some buffers for this page
1041 	 */
1042 	bh = alloc_page_buffers(page, size, 0);
1043 	if (!bh)
1044 		goto failed;
1045 
1046 	/*
1047 	 * Link the page to the buffers and initialise them.  Take the
1048 	 * lock to be atomic wrt __find_get_block(), which does not
1049 	 * run under the page lock.
1050 	 */
1051 	spin_lock(&inode->i_mapping->private_lock);
1052 	link_dev_buffers(page, bh);
1053 	end_block = init_page_buffers(page, bdev, index << sizebits, size);
1054 	spin_unlock(&inode->i_mapping->private_lock);
1055 done:
1056 	ret = (block < end_block) ? 1 : -ENXIO;
1057 failed:
1058 	unlock_page(page);
1059 	page_cache_release(page);
1060 	return ret;
1061 }
1062 
1063 /*
1064  * Create buffers for the specified block device block's page.  If
1065  * that page was dirty, the buffers are set dirty also.
1066  */
1067 static int
1068 grow_buffers(struct block_device *bdev, sector_t block, int size)
1069 {
1070 	pgoff_t index;
1071 	int sizebits;
1072 
1073 	sizebits = -1;
1074 	do {
1075 		sizebits++;
1076 	} while ((size << sizebits) < PAGE_SIZE);
1077 
1078 	index = block >> sizebits;
1079 
1080 	/*
1081 	 * Check for a block which wants to lie outside our maximum possible
1082 	 * pagecache index.  (this comparison is done using sector_t types).
1083 	 */
1084 	if (unlikely(index != block >> sizebits)) {
1085 		char b[BDEVNAME_SIZE];
1086 
1087 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1088 			"device %s\n",
1089 			__func__, (unsigned long long)block,
1090 			bdevname(bdev, b));
1091 		return -EIO;
1092 	}
1093 
1094 	/* Create a page with the proper size buffers.. */
1095 	return grow_dev_page(bdev, block, index, size, sizebits);
1096 }
1097 
1098 static struct buffer_head *
1099 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1100 {
1101 	/* Size must be multiple of hard sectorsize */
1102 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1103 			(size < 512 || size > PAGE_SIZE))) {
1104 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1105 					size);
1106 		printk(KERN_ERR "logical block size: %d\n",
1107 					bdev_logical_block_size(bdev));
1108 
1109 		dump_stack();
1110 		return NULL;
1111 	}
1112 
1113 	for (;;) {
1114 		struct buffer_head *bh;
1115 		int ret;
1116 
1117 		bh = __find_get_block(bdev, block, size);
1118 		if (bh)
1119 			return bh;
1120 
1121 		ret = grow_buffers(bdev, block, size);
1122 		if (ret < 0)
1123 			return NULL;
1124 		if (ret == 0)
1125 			free_more_memory();
1126 	}
1127 }
1128 
1129 /*
1130  * The relationship between dirty buffers and dirty pages:
1131  *
1132  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1133  * the page is tagged dirty in its radix tree.
1134  *
1135  * At all times, the dirtiness of the buffers represents the dirtiness of
1136  * subsections of the page.  If the page has buffers, the page dirty bit is
1137  * merely a hint about the true dirty state.
1138  *
1139  * When a page is set dirty in its entirety, all its buffers are marked dirty
1140  * (if the page has buffers).
1141  *
1142  * When a buffer is marked dirty, its page is dirtied, but the page's other
1143  * buffers are not.
1144  *
1145  * Also.  When blockdev buffers are explicitly read with bread(), they
1146  * individually become uptodate.  But their backing page remains not
1147  * uptodate - even if all of its buffers are uptodate.  A subsequent
1148  * block_read_full_page() against that page will discover all the uptodate
1149  * buffers, will set the page uptodate and will perform no I/O.
1150  */
1151 
1152 /**
1153  * mark_buffer_dirty - mark a buffer_head as needing writeout
1154  * @bh: the buffer_head to mark dirty
1155  *
1156  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1157  * backing page dirty, then tag the page as dirty in its address_space's radix
1158  * tree and then attach the address_space's inode to its superblock's dirty
1159  * inode list.
1160  *
1161  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1162  * mapping->tree_lock and mapping->host->i_lock.
1163  */
1164 void mark_buffer_dirty(struct buffer_head *bh)
1165 {
1166 	WARN_ON_ONCE(!buffer_uptodate(bh));
1167 
1168 	trace_block_dirty_buffer(bh);
1169 
1170 	/*
1171 	 * Very *carefully* optimize the it-is-already-dirty case.
1172 	 *
1173 	 * Don't let the final "is it dirty" escape to before we
1174 	 * perhaps modified the buffer.
1175 	 */
1176 	if (buffer_dirty(bh)) {
1177 		smp_mb();
1178 		if (buffer_dirty(bh))
1179 			return;
1180 	}
1181 
1182 	if (!test_set_buffer_dirty(bh)) {
1183 		struct page *page = bh->b_page;
1184 		if (!TestSetPageDirty(page)) {
1185 			struct address_space *mapping = page_mapping(page);
1186 			if (mapping)
1187 				__set_page_dirty(page, mapping, 0);
1188 		}
1189 	}
1190 }
1191 EXPORT_SYMBOL(mark_buffer_dirty);
1192 
1193 /*
1194  * Decrement a buffer_head's reference count.  If all buffers against a page
1195  * have zero reference count, are clean and unlocked, and if the page is clean
1196  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1197  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1198  * a page but it ends up not being freed, and buffers may later be reattached).
1199  */
1200 void __brelse(struct buffer_head * buf)
1201 {
1202 	if (atomic_read(&buf->b_count)) {
1203 		put_bh(buf);
1204 		return;
1205 	}
1206 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1207 }
1208 EXPORT_SYMBOL(__brelse);
1209 
1210 /*
1211  * bforget() is like brelse(), except it discards any
1212  * potentially dirty data.
1213  */
1214 void __bforget(struct buffer_head *bh)
1215 {
1216 	clear_buffer_dirty(bh);
1217 	if (bh->b_assoc_map) {
1218 		struct address_space *buffer_mapping = bh->b_page->mapping;
1219 
1220 		spin_lock(&buffer_mapping->private_lock);
1221 		list_del_init(&bh->b_assoc_buffers);
1222 		bh->b_assoc_map = NULL;
1223 		spin_unlock(&buffer_mapping->private_lock);
1224 	}
1225 	__brelse(bh);
1226 }
1227 EXPORT_SYMBOL(__bforget);
1228 
1229 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1230 {
1231 	lock_buffer(bh);
1232 	if (buffer_uptodate(bh)) {
1233 		unlock_buffer(bh);
1234 		return bh;
1235 	} else {
1236 		get_bh(bh);
1237 		bh->b_end_io = end_buffer_read_sync;
1238 		submit_bh(READ, bh);
1239 		wait_on_buffer(bh);
1240 		if (buffer_uptodate(bh))
1241 			return bh;
1242 	}
1243 	brelse(bh);
1244 	return NULL;
1245 }
1246 
1247 /*
1248  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1249  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1250  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1251  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1252  * CPU's LRUs at the same time.
1253  *
1254  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1255  * sb_find_get_block().
1256  *
1257  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1258  * a local interrupt disable for that.
1259  */
1260 
1261 #define BH_LRU_SIZE	8
1262 
1263 struct bh_lru {
1264 	struct buffer_head *bhs[BH_LRU_SIZE];
1265 };
1266 
1267 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1268 
1269 #ifdef CONFIG_SMP
1270 #define bh_lru_lock()	local_irq_disable()
1271 #define bh_lru_unlock()	local_irq_enable()
1272 #else
1273 #define bh_lru_lock()	preempt_disable()
1274 #define bh_lru_unlock()	preempt_enable()
1275 #endif
1276 
1277 static inline void check_irqs_on(void)
1278 {
1279 #ifdef irqs_disabled
1280 	BUG_ON(irqs_disabled());
1281 #endif
1282 }
1283 
1284 /*
1285  * The LRU management algorithm is dopey-but-simple.  Sorry.
1286  */
1287 static void bh_lru_install(struct buffer_head *bh)
1288 {
1289 	struct buffer_head *evictee = NULL;
1290 
1291 	check_irqs_on();
1292 	bh_lru_lock();
1293 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1294 		struct buffer_head *bhs[BH_LRU_SIZE];
1295 		int in;
1296 		int out = 0;
1297 
1298 		get_bh(bh);
1299 		bhs[out++] = bh;
1300 		for (in = 0; in < BH_LRU_SIZE; in++) {
1301 			struct buffer_head *bh2 =
1302 				__this_cpu_read(bh_lrus.bhs[in]);
1303 
1304 			if (bh2 == bh) {
1305 				__brelse(bh2);
1306 			} else {
1307 				if (out >= BH_LRU_SIZE) {
1308 					BUG_ON(evictee != NULL);
1309 					evictee = bh2;
1310 				} else {
1311 					bhs[out++] = bh2;
1312 				}
1313 			}
1314 		}
1315 		while (out < BH_LRU_SIZE)
1316 			bhs[out++] = NULL;
1317 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1318 	}
1319 	bh_lru_unlock();
1320 
1321 	if (evictee)
1322 		__brelse(evictee);
1323 }
1324 
1325 /*
1326  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1327  */
1328 static struct buffer_head *
1329 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1330 {
1331 	struct buffer_head *ret = NULL;
1332 	unsigned int i;
1333 
1334 	check_irqs_on();
1335 	bh_lru_lock();
1336 	for (i = 0; i < BH_LRU_SIZE; i++) {
1337 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1338 
1339 		if (bh && bh->b_bdev == bdev &&
1340 				bh->b_blocknr == block && bh->b_size == size) {
1341 			if (i) {
1342 				while (i) {
1343 					__this_cpu_write(bh_lrus.bhs[i],
1344 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1345 					i--;
1346 				}
1347 				__this_cpu_write(bh_lrus.bhs[0], bh);
1348 			}
1349 			get_bh(bh);
1350 			ret = bh;
1351 			break;
1352 		}
1353 	}
1354 	bh_lru_unlock();
1355 	return ret;
1356 }
1357 
1358 /*
1359  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1360  * it in the LRU and mark it as accessed.  If it is not present then return
1361  * NULL
1362  */
1363 struct buffer_head *
1364 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1365 {
1366 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1367 
1368 	if (bh == NULL) {
1369 		bh = __find_get_block_slow(bdev, block);
1370 		if (bh)
1371 			bh_lru_install(bh);
1372 	}
1373 	if (bh)
1374 		touch_buffer(bh);
1375 	return bh;
1376 }
1377 EXPORT_SYMBOL(__find_get_block);
1378 
1379 /*
1380  * __getblk will locate (and, if necessary, create) the buffer_head
1381  * which corresponds to the passed block_device, block and size. The
1382  * returned buffer has its reference count incremented.
1383  *
1384  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1385  * attempt is failing.  FIXME, perhaps?
1386  */
1387 struct buffer_head *
1388 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1389 {
1390 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1391 
1392 	might_sleep();
1393 	if (bh == NULL)
1394 		bh = __getblk_slow(bdev, block, size);
1395 	return bh;
1396 }
1397 EXPORT_SYMBOL(__getblk);
1398 
1399 /*
1400  * Do async read-ahead on a buffer..
1401  */
1402 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1403 {
1404 	struct buffer_head *bh = __getblk(bdev, block, size);
1405 	if (likely(bh)) {
1406 		ll_rw_block(READA, 1, &bh);
1407 		brelse(bh);
1408 	}
1409 }
1410 EXPORT_SYMBOL(__breadahead);
1411 
1412 /**
1413  *  __bread() - reads a specified block and returns the bh
1414  *  @bdev: the block_device to read from
1415  *  @block: number of block
1416  *  @size: size (in bytes) to read
1417  *
1418  *  Reads a specified block, and returns buffer head that contains it.
1419  *  It returns NULL if the block was unreadable.
1420  */
1421 struct buffer_head *
1422 __bread(struct block_device *bdev, sector_t block, unsigned size)
1423 {
1424 	struct buffer_head *bh = __getblk(bdev, block, size);
1425 
1426 	if (likely(bh) && !buffer_uptodate(bh))
1427 		bh = __bread_slow(bh);
1428 	return bh;
1429 }
1430 EXPORT_SYMBOL(__bread);
1431 
1432 /*
1433  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1434  * This doesn't race because it runs in each cpu either in irq
1435  * or with preempt disabled.
1436  */
1437 static void invalidate_bh_lru(void *arg)
1438 {
1439 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1440 	int i;
1441 
1442 	for (i = 0; i < BH_LRU_SIZE; i++) {
1443 		brelse(b->bhs[i]);
1444 		b->bhs[i] = NULL;
1445 	}
1446 	put_cpu_var(bh_lrus);
1447 }
1448 
1449 static bool has_bh_in_lru(int cpu, void *dummy)
1450 {
1451 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1452 	int i;
1453 
1454 	for (i = 0; i < BH_LRU_SIZE; i++) {
1455 		if (b->bhs[i])
1456 			return 1;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 void invalidate_bh_lrus(void)
1463 {
1464 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1465 }
1466 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1467 
1468 void set_bh_page(struct buffer_head *bh,
1469 		struct page *page, unsigned long offset)
1470 {
1471 	bh->b_page = page;
1472 	BUG_ON(offset >= PAGE_SIZE);
1473 	if (PageHighMem(page))
1474 		/*
1475 		 * This catches illegal uses and preserves the offset:
1476 		 */
1477 		bh->b_data = (char *)(0 + offset);
1478 	else
1479 		bh->b_data = page_address(page) + offset;
1480 }
1481 EXPORT_SYMBOL(set_bh_page);
1482 
1483 /*
1484  * Called when truncating a buffer on a page completely.
1485  */
1486 static void discard_buffer(struct buffer_head * bh)
1487 {
1488 	lock_buffer(bh);
1489 	clear_buffer_dirty(bh);
1490 	bh->b_bdev = NULL;
1491 	clear_buffer_mapped(bh);
1492 	clear_buffer_req(bh);
1493 	clear_buffer_new(bh);
1494 	clear_buffer_delay(bh);
1495 	clear_buffer_unwritten(bh);
1496 	unlock_buffer(bh);
1497 }
1498 
1499 /**
1500  * block_invalidatepage - invalidate part or all of a buffer-backed page
1501  *
1502  * @page: the page which is affected
1503  * @offset: start of the range to invalidate
1504  * @length: length of the range to invalidate
1505  *
1506  * block_invalidatepage() is called when all or part of the page has become
1507  * invalidated by a truncate operation.
1508  *
1509  * block_invalidatepage() does not have to release all buffers, but it must
1510  * ensure that no dirty buffer is left outside @offset and that no I/O
1511  * is underway against any of the blocks which are outside the truncation
1512  * point.  Because the caller is about to free (and possibly reuse) those
1513  * blocks on-disk.
1514  */
1515 void block_invalidatepage(struct page *page, unsigned int offset,
1516 			  unsigned int length)
1517 {
1518 	struct buffer_head *head, *bh, *next;
1519 	unsigned int curr_off = 0;
1520 	unsigned int stop = length + offset;
1521 
1522 	BUG_ON(!PageLocked(page));
1523 	if (!page_has_buffers(page))
1524 		goto out;
1525 
1526 	/*
1527 	 * Check for overflow
1528 	 */
1529 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1530 
1531 	head = page_buffers(page);
1532 	bh = head;
1533 	do {
1534 		unsigned int next_off = curr_off + bh->b_size;
1535 		next = bh->b_this_page;
1536 
1537 		/*
1538 		 * Are we still fully in range ?
1539 		 */
1540 		if (next_off > stop)
1541 			goto out;
1542 
1543 		/*
1544 		 * is this block fully invalidated?
1545 		 */
1546 		if (offset <= curr_off)
1547 			discard_buffer(bh);
1548 		curr_off = next_off;
1549 		bh = next;
1550 	} while (bh != head);
1551 
1552 	/*
1553 	 * We release buffers only if the entire page is being invalidated.
1554 	 * The get_block cached value has been unconditionally invalidated,
1555 	 * so real IO is not possible anymore.
1556 	 */
1557 	if (offset == 0)
1558 		try_to_release_page(page, 0);
1559 out:
1560 	return;
1561 }
1562 EXPORT_SYMBOL(block_invalidatepage);
1563 
1564 
1565 /*
1566  * We attach and possibly dirty the buffers atomically wrt
1567  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1568  * is already excluded via the page lock.
1569  */
1570 void create_empty_buffers(struct page *page,
1571 			unsigned long blocksize, unsigned long b_state)
1572 {
1573 	struct buffer_head *bh, *head, *tail;
1574 
1575 	head = alloc_page_buffers(page, blocksize, 1);
1576 	bh = head;
1577 	do {
1578 		bh->b_state |= b_state;
1579 		tail = bh;
1580 		bh = bh->b_this_page;
1581 	} while (bh);
1582 	tail->b_this_page = head;
1583 
1584 	spin_lock(&page->mapping->private_lock);
1585 	if (PageUptodate(page) || PageDirty(page)) {
1586 		bh = head;
1587 		do {
1588 			if (PageDirty(page))
1589 				set_buffer_dirty(bh);
1590 			if (PageUptodate(page))
1591 				set_buffer_uptodate(bh);
1592 			bh = bh->b_this_page;
1593 		} while (bh != head);
1594 	}
1595 	attach_page_buffers(page, head);
1596 	spin_unlock(&page->mapping->private_lock);
1597 }
1598 EXPORT_SYMBOL(create_empty_buffers);
1599 
1600 /*
1601  * We are taking a block for data and we don't want any output from any
1602  * buffer-cache aliases starting from return from that function and
1603  * until the moment when something will explicitly mark the buffer
1604  * dirty (hopefully that will not happen until we will free that block ;-)
1605  * We don't even need to mark it not-uptodate - nobody can expect
1606  * anything from a newly allocated buffer anyway. We used to used
1607  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1608  * don't want to mark the alias unmapped, for example - it would confuse
1609  * anyone who might pick it with bread() afterwards...
1610  *
1611  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1612  * be writeout I/O going on against recently-freed buffers.  We don't
1613  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1614  * only if we really need to.  That happens here.
1615  */
1616 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1617 {
1618 	struct buffer_head *old_bh;
1619 
1620 	might_sleep();
1621 
1622 	old_bh = __find_get_block_slow(bdev, block);
1623 	if (old_bh) {
1624 		clear_buffer_dirty(old_bh);
1625 		wait_on_buffer(old_bh);
1626 		clear_buffer_req(old_bh);
1627 		__brelse(old_bh);
1628 	}
1629 }
1630 EXPORT_SYMBOL(unmap_underlying_metadata);
1631 
1632 /*
1633  * Size is a power-of-two in the range 512..PAGE_SIZE,
1634  * and the case we care about most is PAGE_SIZE.
1635  *
1636  * So this *could* possibly be written with those
1637  * constraints in mind (relevant mostly if some
1638  * architecture has a slow bit-scan instruction)
1639  */
1640 static inline int block_size_bits(unsigned int blocksize)
1641 {
1642 	return ilog2(blocksize);
1643 }
1644 
1645 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1646 {
1647 	BUG_ON(!PageLocked(page));
1648 
1649 	if (!page_has_buffers(page))
1650 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1651 	return page_buffers(page);
1652 }
1653 
1654 /*
1655  * NOTE! All mapped/uptodate combinations are valid:
1656  *
1657  *	Mapped	Uptodate	Meaning
1658  *
1659  *	No	No		"unknown" - must do get_block()
1660  *	No	Yes		"hole" - zero-filled
1661  *	Yes	No		"allocated" - allocated on disk, not read in
1662  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1663  *
1664  * "Dirty" is valid only with the last case (mapped+uptodate).
1665  */
1666 
1667 /*
1668  * While block_write_full_page is writing back the dirty buffers under
1669  * the page lock, whoever dirtied the buffers may decide to clean them
1670  * again at any time.  We handle that by only looking at the buffer
1671  * state inside lock_buffer().
1672  *
1673  * If block_write_full_page() is called for regular writeback
1674  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1675  * locked buffer.   This only can happen if someone has written the buffer
1676  * directly, with submit_bh().  At the address_space level PageWriteback
1677  * prevents this contention from occurring.
1678  *
1679  * If block_write_full_page() is called with wbc->sync_mode ==
1680  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1681  * causes the writes to be flagged as synchronous writes.
1682  */
1683 static int __block_write_full_page(struct inode *inode, struct page *page,
1684 			get_block_t *get_block, struct writeback_control *wbc,
1685 			bh_end_io_t *handler)
1686 {
1687 	int err;
1688 	sector_t block;
1689 	sector_t last_block;
1690 	struct buffer_head *bh, *head;
1691 	unsigned int blocksize, bbits;
1692 	int nr_underway = 0;
1693 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1694 			WRITE_SYNC : WRITE);
1695 
1696 	head = create_page_buffers(page, inode,
1697 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1698 
1699 	/*
1700 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1701 	 * here, and the (potentially unmapped) buffers may become dirty at
1702 	 * any time.  If a buffer becomes dirty here after we've inspected it
1703 	 * then we just miss that fact, and the page stays dirty.
1704 	 *
1705 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1706 	 * handle that here by just cleaning them.
1707 	 */
1708 
1709 	bh = head;
1710 	blocksize = bh->b_size;
1711 	bbits = block_size_bits(blocksize);
1712 
1713 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1714 	last_block = (i_size_read(inode) - 1) >> bbits;
1715 
1716 	/*
1717 	 * Get all the dirty buffers mapped to disk addresses and
1718 	 * handle any aliases from the underlying blockdev's mapping.
1719 	 */
1720 	do {
1721 		if (block > last_block) {
1722 			/*
1723 			 * mapped buffers outside i_size will occur, because
1724 			 * this page can be outside i_size when there is a
1725 			 * truncate in progress.
1726 			 */
1727 			/*
1728 			 * The buffer was zeroed by block_write_full_page()
1729 			 */
1730 			clear_buffer_dirty(bh);
1731 			set_buffer_uptodate(bh);
1732 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1733 			   buffer_dirty(bh)) {
1734 			WARN_ON(bh->b_size != blocksize);
1735 			err = get_block(inode, block, bh, 1);
1736 			if (err)
1737 				goto recover;
1738 			clear_buffer_delay(bh);
1739 			if (buffer_new(bh)) {
1740 				/* blockdev mappings never come here */
1741 				clear_buffer_new(bh);
1742 				unmap_underlying_metadata(bh->b_bdev,
1743 							bh->b_blocknr);
1744 			}
1745 		}
1746 		bh = bh->b_this_page;
1747 		block++;
1748 	} while (bh != head);
1749 
1750 	do {
1751 		if (!buffer_mapped(bh))
1752 			continue;
1753 		/*
1754 		 * If it's a fully non-blocking write attempt and we cannot
1755 		 * lock the buffer then redirty the page.  Note that this can
1756 		 * potentially cause a busy-wait loop from writeback threads
1757 		 * and kswapd activity, but those code paths have their own
1758 		 * higher-level throttling.
1759 		 */
1760 		if (wbc->sync_mode != WB_SYNC_NONE) {
1761 			lock_buffer(bh);
1762 		} else if (!trylock_buffer(bh)) {
1763 			redirty_page_for_writepage(wbc, page);
1764 			continue;
1765 		}
1766 		if (test_clear_buffer_dirty(bh)) {
1767 			mark_buffer_async_write_endio(bh, handler);
1768 		} else {
1769 			unlock_buffer(bh);
1770 		}
1771 	} while ((bh = bh->b_this_page) != head);
1772 
1773 	/*
1774 	 * The page and its buffers are protected by PageWriteback(), so we can
1775 	 * drop the bh refcounts early.
1776 	 */
1777 	BUG_ON(PageWriteback(page));
1778 	set_page_writeback(page);
1779 
1780 	do {
1781 		struct buffer_head *next = bh->b_this_page;
1782 		if (buffer_async_write(bh)) {
1783 			submit_bh(write_op, bh);
1784 			nr_underway++;
1785 		}
1786 		bh = next;
1787 	} while (bh != head);
1788 	unlock_page(page);
1789 
1790 	err = 0;
1791 done:
1792 	if (nr_underway == 0) {
1793 		/*
1794 		 * The page was marked dirty, but the buffers were
1795 		 * clean.  Someone wrote them back by hand with
1796 		 * ll_rw_block/submit_bh.  A rare case.
1797 		 */
1798 		end_page_writeback(page);
1799 
1800 		/*
1801 		 * The page and buffer_heads can be released at any time from
1802 		 * here on.
1803 		 */
1804 	}
1805 	return err;
1806 
1807 recover:
1808 	/*
1809 	 * ENOSPC, or some other error.  We may already have added some
1810 	 * blocks to the file, so we need to write these out to avoid
1811 	 * exposing stale data.
1812 	 * The page is currently locked and not marked for writeback
1813 	 */
1814 	bh = head;
1815 	/* Recovery: lock and submit the mapped buffers */
1816 	do {
1817 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1818 		    !buffer_delay(bh)) {
1819 			lock_buffer(bh);
1820 			mark_buffer_async_write_endio(bh, handler);
1821 		} else {
1822 			/*
1823 			 * The buffer may have been set dirty during
1824 			 * attachment to a dirty page.
1825 			 */
1826 			clear_buffer_dirty(bh);
1827 		}
1828 	} while ((bh = bh->b_this_page) != head);
1829 	SetPageError(page);
1830 	BUG_ON(PageWriteback(page));
1831 	mapping_set_error(page->mapping, err);
1832 	set_page_writeback(page);
1833 	do {
1834 		struct buffer_head *next = bh->b_this_page;
1835 		if (buffer_async_write(bh)) {
1836 			clear_buffer_dirty(bh);
1837 			submit_bh(write_op, bh);
1838 			nr_underway++;
1839 		}
1840 		bh = next;
1841 	} while (bh != head);
1842 	unlock_page(page);
1843 	goto done;
1844 }
1845 
1846 /*
1847  * If a page has any new buffers, zero them out here, and mark them uptodate
1848  * and dirty so they'll be written out (in order to prevent uninitialised
1849  * block data from leaking). And clear the new bit.
1850  */
1851 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1852 {
1853 	unsigned int block_start, block_end;
1854 	struct buffer_head *head, *bh;
1855 
1856 	BUG_ON(!PageLocked(page));
1857 	if (!page_has_buffers(page))
1858 		return;
1859 
1860 	bh = head = page_buffers(page);
1861 	block_start = 0;
1862 	do {
1863 		block_end = block_start + bh->b_size;
1864 
1865 		if (buffer_new(bh)) {
1866 			if (block_end > from && block_start < to) {
1867 				if (!PageUptodate(page)) {
1868 					unsigned start, size;
1869 
1870 					start = max(from, block_start);
1871 					size = min(to, block_end) - start;
1872 
1873 					zero_user(page, start, size);
1874 					set_buffer_uptodate(bh);
1875 				}
1876 
1877 				clear_buffer_new(bh);
1878 				mark_buffer_dirty(bh);
1879 			}
1880 		}
1881 
1882 		block_start = block_end;
1883 		bh = bh->b_this_page;
1884 	} while (bh != head);
1885 }
1886 EXPORT_SYMBOL(page_zero_new_buffers);
1887 
1888 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1889 		get_block_t *get_block)
1890 {
1891 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1892 	unsigned to = from + len;
1893 	struct inode *inode = page->mapping->host;
1894 	unsigned block_start, block_end;
1895 	sector_t block;
1896 	int err = 0;
1897 	unsigned blocksize, bbits;
1898 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1899 
1900 	BUG_ON(!PageLocked(page));
1901 	BUG_ON(from > PAGE_CACHE_SIZE);
1902 	BUG_ON(to > PAGE_CACHE_SIZE);
1903 	BUG_ON(from > to);
1904 
1905 	head = create_page_buffers(page, inode, 0);
1906 	blocksize = head->b_size;
1907 	bbits = block_size_bits(blocksize);
1908 
1909 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1910 
1911 	for(bh = head, block_start = 0; bh != head || !block_start;
1912 	    block++, block_start=block_end, bh = bh->b_this_page) {
1913 		block_end = block_start + blocksize;
1914 		if (block_end <= from || block_start >= to) {
1915 			if (PageUptodate(page)) {
1916 				if (!buffer_uptodate(bh))
1917 					set_buffer_uptodate(bh);
1918 			}
1919 			continue;
1920 		}
1921 		if (buffer_new(bh))
1922 			clear_buffer_new(bh);
1923 		if (!buffer_mapped(bh)) {
1924 			WARN_ON(bh->b_size != blocksize);
1925 			err = get_block(inode, block, bh, 1);
1926 			if (err)
1927 				break;
1928 			if (buffer_new(bh)) {
1929 				unmap_underlying_metadata(bh->b_bdev,
1930 							bh->b_blocknr);
1931 				if (PageUptodate(page)) {
1932 					clear_buffer_new(bh);
1933 					set_buffer_uptodate(bh);
1934 					mark_buffer_dirty(bh);
1935 					continue;
1936 				}
1937 				if (block_end > to || block_start < from)
1938 					zero_user_segments(page,
1939 						to, block_end,
1940 						block_start, from);
1941 				continue;
1942 			}
1943 		}
1944 		if (PageUptodate(page)) {
1945 			if (!buffer_uptodate(bh))
1946 				set_buffer_uptodate(bh);
1947 			continue;
1948 		}
1949 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1950 		    !buffer_unwritten(bh) &&
1951 		     (block_start < from || block_end > to)) {
1952 			ll_rw_block(READ, 1, &bh);
1953 			*wait_bh++=bh;
1954 		}
1955 	}
1956 	/*
1957 	 * If we issued read requests - let them complete.
1958 	 */
1959 	while(wait_bh > wait) {
1960 		wait_on_buffer(*--wait_bh);
1961 		if (!buffer_uptodate(*wait_bh))
1962 			err = -EIO;
1963 	}
1964 	if (unlikely(err))
1965 		page_zero_new_buffers(page, from, to);
1966 	return err;
1967 }
1968 EXPORT_SYMBOL(__block_write_begin);
1969 
1970 static int __block_commit_write(struct inode *inode, struct page *page,
1971 		unsigned from, unsigned to)
1972 {
1973 	unsigned block_start, block_end;
1974 	int partial = 0;
1975 	unsigned blocksize;
1976 	struct buffer_head *bh, *head;
1977 
1978 	bh = head = page_buffers(page);
1979 	blocksize = bh->b_size;
1980 
1981 	block_start = 0;
1982 	do {
1983 		block_end = block_start + blocksize;
1984 		if (block_end <= from || block_start >= to) {
1985 			if (!buffer_uptodate(bh))
1986 				partial = 1;
1987 		} else {
1988 			set_buffer_uptodate(bh);
1989 			mark_buffer_dirty(bh);
1990 		}
1991 		clear_buffer_new(bh);
1992 
1993 		block_start = block_end;
1994 		bh = bh->b_this_page;
1995 	} while (bh != head);
1996 
1997 	/*
1998 	 * If this is a partial write which happened to make all buffers
1999 	 * uptodate then we can optimize away a bogus readpage() for
2000 	 * the next read(). Here we 'discover' whether the page went
2001 	 * uptodate as a result of this (potentially partial) write.
2002 	 */
2003 	if (!partial)
2004 		SetPageUptodate(page);
2005 	return 0;
2006 }
2007 
2008 /*
2009  * block_write_begin takes care of the basic task of block allocation and
2010  * bringing partial write blocks uptodate first.
2011  *
2012  * The filesystem needs to handle block truncation upon failure.
2013  */
2014 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2015 		unsigned flags, struct page **pagep, get_block_t *get_block)
2016 {
2017 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2018 	struct page *page;
2019 	int status;
2020 
2021 	page = grab_cache_page_write_begin(mapping, index, flags);
2022 	if (!page)
2023 		return -ENOMEM;
2024 
2025 	status = __block_write_begin(page, pos, len, get_block);
2026 	if (unlikely(status)) {
2027 		unlock_page(page);
2028 		page_cache_release(page);
2029 		page = NULL;
2030 	}
2031 
2032 	*pagep = page;
2033 	return status;
2034 }
2035 EXPORT_SYMBOL(block_write_begin);
2036 
2037 int block_write_end(struct file *file, struct address_space *mapping,
2038 			loff_t pos, unsigned len, unsigned copied,
2039 			struct page *page, void *fsdata)
2040 {
2041 	struct inode *inode = mapping->host;
2042 	unsigned start;
2043 
2044 	start = pos & (PAGE_CACHE_SIZE - 1);
2045 
2046 	if (unlikely(copied < len)) {
2047 		/*
2048 		 * The buffers that were written will now be uptodate, so we
2049 		 * don't have to worry about a readpage reading them and
2050 		 * overwriting a partial write. However if we have encountered
2051 		 * a short write and only partially written into a buffer, it
2052 		 * will not be marked uptodate, so a readpage might come in and
2053 		 * destroy our partial write.
2054 		 *
2055 		 * Do the simplest thing, and just treat any short write to a
2056 		 * non uptodate page as a zero-length write, and force the
2057 		 * caller to redo the whole thing.
2058 		 */
2059 		if (!PageUptodate(page))
2060 			copied = 0;
2061 
2062 		page_zero_new_buffers(page, start+copied, start+len);
2063 	}
2064 	flush_dcache_page(page);
2065 
2066 	/* This could be a short (even 0-length) commit */
2067 	__block_commit_write(inode, page, start, start+copied);
2068 
2069 	return copied;
2070 }
2071 EXPORT_SYMBOL(block_write_end);
2072 
2073 int generic_write_end(struct file *file, struct address_space *mapping,
2074 			loff_t pos, unsigned len, unsigned copied,
2075 			struct page *page, void *fsdata)
2076 {
2077 	struct inode *inode = mapping->host;
2078 	int i_size_changed = 0;
2079 
2080 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2081 
2082 	/*
2083 	 * No need to use i_size_read() here, the i_size
2084 	 * cannot change under us because we hold i_mutex.
2085 	 *
2086 	 * But it's important to update i_size while still holding page lock:
2087 	 * page writeout could otherwise come in and zero beyond i_size.
2088 	 */
2089 	if (pos+copied > inode->i_size) {
2090 		i_size_write(inode, pos+copied);
2091 		i_size_changed = 1;
2092 	}
2093 
2094 	unlock_page(page);
2095 	page_cache_release(page);
2096 
2097 	/*
2098 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2099 	 * makes the holding time of page lock longer. Second, it forces lock
2100 	 * ordering of page lock and transaction start for journaling
2101 	 * filesystems.
2102 	 */
2103 	if (i_size_changed)
2104 		mark_inode_dirty(inode);
2105 
2106 	return copied;
2107 }
2108 EXPORT_SYMBOL(generic_write_end);
2109 
2110 /*
2111  * block_is_partially_uptodate checks whether buffers within a page are
2112  * uptodate or not.
2113  *
2114  * Returns true if all buffers which correspond to a file portion
2115  * we want to read are uptodate.
2116  */
2117 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2118 					unsigned long from)
2119 {
2120 	unsigned block_start, block_end, blocksize;
2121 	unsigned to;
2122 	struct buffer_head *bh, *head;
2123 	int ret = 1;
2124 
2125 	if (!page_has_buffers(page))
2126 		return 0;
2127 
2128 	head = page_buffers(page);
2129 	blocksize = head->b_size;
2130 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2131 	to = from + to;
2132 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2133 		return 0;
2134 
2135 	bh = head;
2136 	block_start = 0;
2137 	do {
2138 		block_end = block_start + blocksize;
2139 		if (block_end > from && block_start < to) {
2140 			if (!buffer_uptodate(bh)) {
2141 				ret = 0;
2142 				break;
2143 			}
2144 			if (block_end >= to)
2145 				break;
2146 		}
2147 		block_start = block_end;
2148 		bh = bh->b_this_page;
2149 	} while (bh != head);
2150 
2151 	return ret;
2152 }
2153 EXPORT_SYMBOL(block_is_partially_uptodate);
2154 
2155 /*
2156  * Generic "read page" function for block devices that have the normal
2157  * get_block functionality. This is most of the block device filesystems.
2158  * Reads the page asynchronously --- the unlock_buffer() and
2159  * set/clear_buffer_uptodate() functions propagate buffer state into the
2160  * page struct once IO has completed.
2161  */
2162 int block_read_full_page(struct page *page, get_block_t *get_block)
2163 {
2164 	struct inode *inode = page->mapping->host;
2165 	sector_t iblock, lblock;
2166 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2167 	unsigned int blocksize, bbits;
2168 	int nr, i;
2169 	int fully_mapped = 1;
2170 
2171 	head = create_page_buffers(page, inode, 0);
2172 	blocksize = head->b_size;
2173 	bbits = block_size_bits(blocksize);
2174 
2175 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2176 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2177 	bh = head;
2178 	nr = 0;
2179 	i = 0;
2180 
2181 	do {
2182 		if (buffer_uptodate(bh))
2183 			continue;
2184 
2185 		if (!buffer_mapped(bh)) {
2186 			int err = 0;
2187 
2188 			fully_mapped = 0;
2189 			if (iblock < lblock) {
2190 				WARN_ON(bh->b_size != blocksize);
2191 				err = get_block(inode, iblock, bh, 0);
2192 				if (err)
2193 					SetPageError(page);
2194 			}
2195 			if (!buffer_mapped(bh)) {
2196 				zero_user(page, i * blocksize, blocksize);
2197 				if (!err)
2198 					set_buffer_uptodate(bh);
2199 				continue;
2200 			}
2201 			/*
2202 			 * get_block() might have updated the buffer
2203 			 * synchronously
2204 			 */
2205 			if (buffer_uptodate(bh))
2206 				continue;
2207 		}
2208 		arr[nr++] = bh;
2209 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2210 
2211 	if (fully_mapped)
2212 		SetPageMappedToDisk(page);
2213 
2214 	if (!nr) {
2215 		/*
2216 		 * All buffers are uptodate - we can set the page uptodate
2217 		 * as well. But not if get_block() returned an error.
2218 		 */
2219 		if (!PageError(page))
2220 			SetPageUptodate(page);
2221 		unlock_page(page);
2222 		return 0;
2223 	}
2224 
2225 	/* Stage two: lock the buffers */
2226 	for (i = 0; i < nr; i++) {
2227 		bh = arr[i];
2228 		lock_buffer(bh);
2229 		mark_buffer_async_read(bh);
2230 	}
2231 
2232 	/*
2233 	 * Stage 3: start the IO.  Check for uptodateness
2234 	 * inside the buffer lock in case another process reading
2235 	 * the underlying blockdev brought it uptodate (the sct fix).
2236 	 */
2237 	for (i = 0; i < nr; i++) {
2238 		bh = arr[i];
2239 		if (buffer_uptodate(bh))
2240 			end_buffer_async_read(bh, 1);
2241 		else
2242 			submit_bh(READ, bh);
2243 	}
2244 	return 0;
2245 }
2246 EXPORT_SYMBOL(block_read_full_page);
2247 
2248 /* utility function for filesystems that need to do work on expanding
2249  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2250  * deal with the hole.
2251  */
2252 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2253 {
2254 	struct address_space *mapping = inode->i_mapping;
2255 	struct page *page;
2256 	void *fsdata;
2257 	int err;
2258 
2259 	err = inode_newsize_ok(inode, size);
2260 	if (err)
2261 		goto out;
2262 
2263 	err = pagecache_write_begin(NULL, mapping, size, 0,
2264 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2265 				&page, &fsdata);
2266 	if (err)
2267 		goto out;
2268 
2269 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2270 	BUG_ON(err > 0);
2271 
2272 out:
2273 	return err;
2274 }
2275 EXPORT_SYMBOL(generic_cont_expand_simple);
2276 
2277 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2278 			    loff_t pos, loff_t *bytes)
2279 {
2280 	struct inode *inode = mapping->host;
2281 	unsigned blocksize = 1 << inode->i_blkbits;
2282 	struct page *page;
2283 	void *fsdata;
2284 	pgoff_t index, curidx;
2285 	loff_t curpos;
2286 	unsigned zerofrom, offset, len;
2287 	int err = 0;
2288 
2289 	index = pos >> PAGE_CACHE_SHIFT;
2290 	offset = pos & ~PAGE_CACHE_MASK;
2291 
2292 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2293 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2294 		if (zerofrom & (blocksize-1)) {
2295 			*bytes |= (blocksize-1);
2296 			(*bytes)++;
2297 		}
2298 		len = PAGE_CACHE_SIZE - zerofrom;
2299 
2300 		err = pagecache_write_begin(file, mapping, curpos, len,
2301 						AOP_FLAG_UNINTERRUPTIBLE,
2302 						&page, &fsdata);
2303 		if (err)
2304 			goto out;
2305 		zero_user(page, zerofrom, len);
2306 		err = pagecache_write_end(file, mapping, curpos, len, len,
2307 						page, fsdata);
2308 		if (err < 0)
2309 			goto out;
2310 		BUG_ON(err != len);
2311 		err = 0;
2312 
2313 		balance_dirty_pages_ratelimited(mapping);
2314 	}
2315 
2316 	/* page covers the boundary, find the boundary offset */
2317 	if (index == curidx) {
2318 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2319 		/* if we will expand the thing last block will be filled */
2320 		if (offset <= zerofrom) {
2321 			goto out;
2322 		}
2323 		if (zerofrom & (blocksize-1)) {
2324 			*bytes |= (blocksize-1);
2325 			(*bytes)++;
2326 		}
2327 		len = offset - zerofrom;
2328 
2329 		err = pagecache_write_begin(file, mapping, curpos, len,
2330 						AOP_FLAG_UNINTERRUPTIBLE,
2331 						&page, &fsdata);
2332 		if (err)
2333 			goto out;
2334 		zero_user(page, zerofrom, len);
2335 		err = pagecache_write_end(file, mapping, curpos, len, len,
2336 						page, fsdata);
2337 		if (err < 0)
2338 			goto out;
2339 		BUG_ON(err != len);
2340 		err = 0;
2341 	}
2342 out:
2343 	return err;
2344 }
2345 
2346 /*
2347  * For moronic filesystems that do not allow holes in file.
2348  * We may have to extend the file.
2349  */
2350 int cont_write_begin(struct file *file, struct address_space *mapping,
2351 			loff_t pos, unsigned len, unsigned flags,
2352 			struct page **pagep, void **fsdata,
2353 			get_block_t *get_block, loff_t *bytes)
2354 {
2355 	struct inode *inode = mapping->host;
2356 	unsigned blocksize = 1 << inode->i_blkbits;
2357 	unsigned zerofrom;
2358 	int err;
2359 
2360 	err = cont_expand_zero(file, mapping, pos, bytes);
2361 	if (err)
2362 		return err;
2363 
2364 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2365 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2366 		*bytes |= (blocksize-1);
2367 		(*bytes)++;
2368 	}
2369 
2370 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2371 }
2372 EXPORT_SYMBOL(cont_write_begin);
2373 
2374 int block_commit_write(struct page *page, unsigned from, unsigned to)
2375 {
2376 	struct inode *inode = page->mapping->host;
2377 	__block_commit_write(inode,page,from,to);
2378 	return 0;
2379 }
2380 EXPORT_SYMBOL(block_commit_write);
2381 
2382 /*
2383  * block_page_mkwrite() is not allowed to change the file size as it gets
2384  * called from a page fault handler when a page is first dirtied. Hence we must
2385  * be careful to check for EOF conditions here. We set the page up correctly
2386  * for a written page which means we get ENOSPC checking when writing into
2387  * holes and correct delalloc and unwritten extent mapping on filesystems that
2388  * support these features.
2389  *
2390  * We are not allowed to take the i_mutex here so we have to play games to
2391  * protect against truncate races as the page could now be beyond EOF.  Because
2392  * truncate writes the inode size before removing pages, once we have the
2393  * page lock we can determine safely if the page is beyond EOF. If it is not
2394  * beyond EOF, then the page is guaranteed safe against truncation until we
2395  * unlock the page.
2396  *
2397  * Direct callers of this function should protect against filesystem freezing
2398  * using sb_start_write() - sb_end_write() functions.
2399  */
2400 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2401 			 get_block_t get_block)
2402 {
2403 	struct page *page = vmf->page;
2404 	struct inode *inode = file_inode(vma->vm_file);
2405 	unsigned long end;
2406 	loff_t size;
2407 	int ret;
2408 
2409 	lock_page(page);
2410 	size = i_size_read(inode);
2411 	if ((page->mapping != inode->i_mapping) ||
2412 	    (page_offset(page) > size)) {
2413 		/* We overload EFAULT to mean page got truncated */
2414 		ret = -EFAULT;
2415 		goto out_unlock;
2416 	}
2417 
2418 	/* page is wholly or partially inside EOF */
2419 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2420 		end = size & ~PAGE_CACHE_MASK;
2421 	else
2422 		end = PAGE_CACHE_SIZE;
2423 
2424 	ret = __block_write_begin(page, 0, end, get_block);
2425 	if (!ret)
2426 		ret = block_commit_write(page, 0, end);
2427 
2428 	if (unlikely(ret < 0))
2429 		goto out_unlock;
2430 	set_page_dirty(page);
2431 	wait_for_stable_page(page);
2432 	return 0;
2433 out_unlock:
2434 	unlock_page(page);
2435 	return ret;
2436 }
2437 EXPORT_SYMBOL(__block_page_mkwrite);
2438 
2439 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2440 		   get_block_t get_block)
2441 {
2442 	int ret;
2443 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2444 
2445 	sb_start_pagefault(sb);
2446 
2447 	/*
2448 	 * Update file times before taking page lock. We may end up failing the
2449 	 * fault so this update may be superfluous but who really cares...
2450 	 */
2451 	file_update_time(vma->vm_file);
2452 
2453 	ret = __block_page_mkwrite(vma, vmf, get_block);
2454 	sb_end_pagefault(sb);
2455 	return block_page_mkwrite_return(ret);
2456 }
2457 EXPORT_SYMBOL(block_page_mkwrite);
2458 
2459 /*
2460  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2461  * immediately, while under the page lock.  So it needs a special end_io
2462  * handler which does not touch the bh after unlocking it.
2463  */
2464 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2465 {
2466 	__end_buffer_read_notouch(bh, uptodate);
2467 }
2468 
2469 /*
2470  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2471  * the page (converting it to circular linked list and taking care of page
2472  * dirty races).
2473  */
2474 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2475 {
2476 	struct buffer_head *bh;
2477 
2478 	BUG_ON(!PageLocked(page));
2479 
2480 	spin_lock(&page->mapping->private_lock);
2481 	bh = head;
2482 	do {
2483 		if (PageDirty(page))
2484 			set_buffer_dirty(bh);
2485 		if (!bh->b_this_page)
2486 			bh->b_this_page = head;
2487 		bh = bh->b_this_page;
2488 	} while (bh != head);
2489 	attach_page_buffers(page, head);
2490 	spin_unlock(&page->mapping->private_lock);
2491 }
2492 
2493 /*
2494  * On entry, the page is fully not uptodate.
2495  * On exit the page is fully uptodate in the areas outside (from,to)
2496  * The filesystem needs to handle block truncation upon failure.
2497  */
2498 int nobh_write_begin(struct address_space *mapping,
2499 			loff_t pos, unsigned len, unsigned flags,
2500 			struct page **pagep, void **fsdata,
2501 			get_block_t *get_block)
2502 {
2503 	struct inode *inode = mapping->host;
2504 	const unsigned blkbits = inode->i_blkbits;
2505 	const unsigned blocksize = 1 << blkbits;
2506 	struct buffer_head *head, *bh;
2507 	struct page *page;
2508 	pgoff_t index;
2509 	unsigned from, to;
2510 	unsigned block_in_page;
2511 	unsigned block_start, block_end;
2512 	sector_t block_in_file;
2513 	int nr_reads = 0;
2514 	int ret = 0;
2515 	int is_mapped_to_disk = 1;
2516 
2517 	index = pos >> PAGE_CACHE_SHIFT;
2518 	from = pos & (PAGE_CACHE_SIZE - 1);
2519 	to = from + len;
2520 
2521 	page = grab_cache_page_write_begin(mapping, index, flags);
2522 	if (!page)
2523 		return -ENOMEM;
2524 	*pagep = page;
2525 	*fsdata = NULL;
2526 
2527 	if (page_has_buffers(page)) {
2528 		ret = __block_write_begin(page, pos, len, get_block);
2529 		if (unlikely(ret))
2530 			goto out_release;
2531 		return ret;
2532 	}
2533 
2534 	if (PageMappedToDisk(page))
2535 		return 0;
2536 
2537 	/*
2538 	 * Allocate buffers so that we can keep track of state, and potentially
2539 	 * attach them to the page if an error occurs. In the common case of
2540 	 * no error, they will just be freed again without ever being attached
2541 	 * to the page (which is all OK, because we're under the page lock).
2542 	 *
2543 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2544 	 * than the circular one we're used to.
2545 	 */
2546 	head = alloc_page_buffers(page, blocksize, 0);
2547 	if (!head) {
2548 		ret = -ENOMEM;
2549 		goto out_release;
2550 	}
2551 
2552 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2553 
2554 	/*
2555 	 * We loop across all blocks in the page, whether or not they are
2556 	 * part of the affected region.  This is so we can discover if the
2557 	 * page is fully mapped-to-disk.
2558 	 */
2559 	for (block_start = 0, block_in_page = 0, bh = head;
2560 		  block_start < PAGE_CACHE_SIZE;
2561 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2562 		int create;
2563 
2564 		block_end = block_start + blocksize;
2565 		bh->b_state = 0;
2566 		create = 1;
2567 		if (block_start >= to)
2568 			create = 0;
2569 		ret = get_block(inode, block_in_file + block_in_page,
2570 					bh, create);
2571 		if (ret)
2572 			goto failed;
2573 		if (!buffer_mapped(bh))
2574 			is_mapped_to_disk = 0;
2575 		if (buffer_new(bh))
2576 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2577 		if (PageUptodate(page)) {
2578 			set_buffer_uptodate(bh);
2579 			continue;
2580 		}
2581 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2582 			zero_user_segments(page, block_start, from,
2583 							to, block_end);
2584 			continue;
2585 		}
2586 		if (buffer_uptodate(bh))
2587 			continue;	/* reiserfs does this */
2588 		if (block_start < from || block_end > to) {
2589 			lock_buffer(bh);
2590 			bh->b_end_io = end_buffer_read_nobh;
2591 			submit_bh(READ, bh);
2592 			nr_reads++;
2593 		}
2594 	}
2595 
2596 	if (nr_reads) {
2597 		/*
2598 		 * The page is locked, so these buffers are protected from
2599 		 * any VM or truncate activity.  Hence we don't need to care
2600 		 * for the buffer_head refcounts.
2601 		 */
2602 		for (bh = head; bh; bh = bh->b_this_page) {
2603 			wait_on_buffer(bh);
2604 			if (!buffer_uptodate(bh))
2605 				ret = -EIO;
2606 		}
2607 		if (ret)
2608 			goto failed;
2609 	}
2610 
2611 	if (is_mapped_to_disk)
2612 		SetPageMappedToDisk(page);
2613 
2614 	*fsdata = head; /* to be released by nobh_write_end */
2615 
2616 	return 0;
2617 
2618 failed:
2619 	BUG_ON(!ret);
2620 	/*
2621 	 * Error recovery is a bit difficult. We need to zero out blocks that
2622 	 * were newly allocated, and dirty them to ensure they get written out.
2623 	 * Buffers need to be attached to the page at this point, otherwise
2624 	 * the handling of potential IO errors during writeout would be hard
2625 	 * (could try doing synchronous writeout, but what if that fails too?)
2626 	 */
2627 	attach_nobh_buffers(page, head);
2628 	page_zero_new_buffers(page, from, to);
2629 
2630 out_release:
2631 	unlock_page(page);
2632 	page_cache_release(page);
2633 	*pagep = NULL;
2634 
2635 	return ret;
2636 }
2637 EXPORT_SYMBOL(nobh_write_begin);
2638 
2639 int nobh_write_end(struct file *file, struct address_space *mapping,
2640 			loff_t pos, unsigned len, unsigned copied,
2641 			struct page *page, void *fsdata)
2642 {
2643 	struct inode *inode = page->mapping->host;
2644 	struct buffer_head *head = fsdata;
2645 	struct buffer_head *bh;
2646 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2647 
2648 	if (unlikely(copied < len) && head)
2649 		attach_nobh_buffers(page, head);
2650 	if (page_has_buffers(page))
2651 		return generic_write_end(file, mapping, pos, len,
2652 					copied, page, fsdata);
2653 
2654 	SetPageUptodate(page);
2655 	set_page_dirty(page);
2656 	if (pos+copied > inode->i_size) {
2657 		i_size_write(inode, pos+copied);
2658 		mark_inode_dirty(inode);
2659 	}
2660 
2661 	unlock_page(page);
2662 	page_cache_release(page);
2663 
2664 	while (head) {
2665 		bh = head;
2666 		head = head->b_this_page;
2667 		free_buffer_head(bh);
2668 	}
2669 
2670 	return copied;
2671 }
2672 EXPORT_SYMBOL(nobh_write_end);
2673 
2674 /*
2675  * nobh_writepage() - based on block_full_write_page() except
2676  * that it tries to operate without attaching bufferheads to
2677  * the page.
2678  */
2679 int nobh_writepage(struct page *page, get_block_t *get_block,
2680 			struct writeback_control *wbc)
2681 {
2682 	struct inode * const inode = page->mapping->host;
2683 	loff_t i_size = i_size_read(inode);
2684 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2685 	unsigned offset;
2686 	int ret;
2687 
2688 	/* Is the page fully inside i_size? */
2689 	if (page->index < end_index)
2690 		goto out;
2691 
2692 	/* Is the page fully outside i_size? (truncate in progress) */
2693 	offset = i_size & (PAGE_CACHE_SIZE-1);
2694 	if (page->index >= end_index+1 || !offset) {
2695 		/*
2696 		 * The page may have dirty, unmapped buffers.  For example,
2697 		 * they may have been added in ext3_writepage().  Make them
2698 		 * freeable here, so the page does not leak.
2699 		 */
2700 #if 0
2701 		/* Not really sure about this  - do we need this ? */
2702 		if (page->mapping->a_ops->invalidatepage)
2703 			page->mapping->a_ops->invalidatepage(page, offset);
2704 #endif
2705 		unlock_page(page);
2706 		return 0; /* don't care */
2707 	}
2708 
2709 	/*
2710 	 * The page straddles i_size.  It must be zeroed out on each and every
2711 	 * writepage invocation because it may be mmapped.  "A file is mapped
2712 	 * in multiples of the page size.  For a file that is not a multiple of
2713 	 * the  page size, the remaining memory is zeroed when mapped, and
2714 	 * writes to that region are not written out to the file."
2715 	 */
2716 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2717 out:
2718 	ret = mpage_writepage(page, get_block, wbc);
2719 	if (ret == -EAGAIN)
2720 		ret = __block_write_full_page(inode, page, get_block, wbc,
2721 					      end_buffer_async_write);
2722 	return ret;
2723 }
2724 EXPORT_SYMBOL(nobh_writepage);
2725 
2726 int nobh_truncate_page(struct address_space *mapping,
2727 			loff_t from, get_block_t *get_block)
2728 {
2729 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2730 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2731 	unsigned blocksize;
2732 	sector_t iblock;
2733 	unsigned length, pos;
2734 	struct inode *inode = mapping->host;
2735 	struct page *page;
2736 	struct buffer_head map_bh;
2737 	int err;
2738 
2739 	blocksize = 1 << inode->i_blkbits;
2740 	length = offset & (blocksize - 1);
2741 
2742 	/* Block boundary? Nothing to do */
2743 	if (!length)
2744 		return 0;
2745 
2746 	length = blocksize - length;
2747 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2748 
2749 	page = grab_cache_page(mapping, index);
2750 	err = -ENOMEM;
2751 	if (!page)
2752 		goto out;
2753 
2754 	if (page_has_buffers(page)) {
2755 has_buffers:
2756 		unlock_page(page);
2757 		page_cache_release(page);
2758 		return block_truncate_page(mapping, from, get_block);
2759 	}
2760 
2761 	/* Find the buffer that contains "offset" */
2762 	pos = blocksize;
2763 	while (offset >= pos) {
2764 		iblock++;
2765 		pos += blocksize;
2766 	}
2767 
2768 	map_bh.b_size = blocksize;
2769 	map_bh.b_state = 0;
2770 	err = get_block(inode, iblock, &map_bh, 0);
2771 	if (err)
2772 		goto unlock;
2773 	/* unmapped? It's a hole - nothing to do */
2774 	if (!buffer_mapped(&map_bh))
2775 		goto unlock;
2776 
2777 	/* Ok, it's mapped. Make sure it's up-to-date */
2778 	if (!PageUptodate(page)) {
2779 		err = mapping->a_ops->readpage(NULL, page);
2780 		if (err) {
2781 			page_cache_release(page);
2782 			goto out;
2783 		}
2784 		lock_page(page);
2785 		if (!PageUptodate(page)) {
2786 			err = -EIO;
2787 			goto unlock;
2788 		}
2789 		if (page_has_buffers(page))
2790 			goto has_buffers;
2791 	}
2792 	zero_user(page, offset, length);
2793 	set_page_dirty(page);
2794 	err = 0;
2795 
2796 unlock:
2797 	unlock_page(page);
2798 	page_cache_release(page);
2799 out:
2800 	return err;
2801 }
2802 EXPORT_SYMBOL(nobh_truncate_page);
2803 
2804 int block_truncate_page(struct address_space *mapping,
2805 			loff_t from, get_block_t *get_block)
2806 {
2807 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2808 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2809 	unsigned blocksize;
2810 	sector_t iblock;
2811 	unsigned length, pos;
2812 	struct inode *inode = mapping->host;
2813 	struct page *page;
2814 	struct buffer_head *bh;
2815 	int err;
2816 
2817 	blocksize = 1 << inode->i_blkbits;
2818 	length = offset & (blocksize - 1);
2819 
2820 	/* Block boundary? Nothing to do */
2821 	if (!length)
2822 		return 0;
2823 
2824 	length = blocksize - length;
2825 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2826 
2827 	page = grab_cache_page(mapping, index);
2828 	err = -ENOMEM;
2829 	if (!page)
2830 		goto out;
2831 
2832 	if (!page_has_buffers(page))
2833 		create_empty_buffers(page, blocksize, 0);
2834 
2835 	/* Find the buffer that contains "offset" */
2836 	bh = page_buffers(page);
2837 	pos = blocksize;
2838 	while (offset >= pos) {
2839 		bh = bh->b_this_page;
2840 		iblock++;
2841 		pos += blocksize;
2842 	}
2843 
2844 	err = 0;
2845 	if (!buffer_mapped(bh)) {
2846 		WARN_ON(bh->b_size != blocksize);
2847 		err = get_block(inode, iblock, bh, 0);
2848 		if (err)
2849 			goto unlock;
2850 		/* unmapped? It's a hole - nothing to do */
2851 		if (!buffer_mapped(bh))
2852 			goto unlock;
2853 	}
2854 
2855 	/* Ok, it's mapped. Make sure it's up-to-date */
2856 	if (PageUptodate(page))
2857 		set_buffer_uptodate(bh);
2858 
2859 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2860 		err = -EIO;
2861 		ll_rw_block(READ, 1, &bh);
2862 		wait_on_buffer(bh);
2863 		/* Uhhuh. Read error. Complain and punt. */
2864 		if (!buffer_uptodate(bh))
2865 			goto unlock;
2866 	}
2867 
2868 	zero_user(page, offset, length);
2869 	mark_buffer_dirty(bh);
2870 	err = 0;
2871 
2872 unlock:
2873 	unlock_page(page);
2874 	page_cache_release(page);
2875 out:
2876 	return err;
2877 }
2878 EXPORT_SYMBOL(block_truncate_page);
2879 
2880 /*
2881  * The generic ->writepage function for buffer-backed address_spaces
2882  * this form passes in the end_io handler used to finish the IO.
2883  */
2884 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2885 			struct writeback_control *wbc, bh_end_io_t *handler)
2886 {
2887 	struct inode * const inode = page->mapping->host;
2888 	loff_t i_size = i_size_read(inode);
2889 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2890 	unsigned offset;
2891 
2892 	/* Is the page fully inside i_size? */
2893 	if (page->index < end_index)
2894 		return __block_write_full_page(inode, page, get_block, wbc,
2895 					       handler);
2896 
2897 	/* Is the page fully outside i_size? (truncate in progress) */
2898 	offset = i_size & (PAGE_CACHE_SIZE-1);
2899 	if (page->index >= end_index+1 || !offset) {
2900 		/*
2901 		 * The page may have dirty, unmapped buffers.  For example,
2902 		 * they may have been added in ext3_writepage().  Make them
2903 		 * freeable here, so the page does not leak.
2904 		 */
2905 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2906 		unlock_page(page);
2907 		return 0; /* don't care */
2908 	}
2909 
2910 	/*
2911 	 * The page straddles i_size.  It must be zeroed out on each and every
2912 	 * writepage invocation because it may be mmapped.  "A file is mapped
2913 	 * in multiples of the page size.  For a file that is not a multiple of
2914 	 * the  page size, the remaining memory is zeroed when mapped, and
2915 	 * writes to that region are not written out to the file."
2916 	 */
2917 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2918 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2919 }
2920 EXPORT_SYMBOL(block_write_full_page_endio);
2921 
2922 /*
2923  * The generic ->writepage function for buffer-backed address_spaces
2924  */
2925 int block_write_full_page(struct page *page, get_block_t *get_block,
2926 			struct writeback_control *wbc)
2927 {
2928 	return block_write_full_page_endio(page, get_block, wbc,
2929 					   end_buffer_async_write);
2930 }
2931 EXPORT_SYMBOL(block_write_full_page);
2932 
2933 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2934 			    get_block_t *get_block)
2935 {
2936 	struct buffer_head tmp;
2937 	struct inode *inode = mapping->host;
2938 	tmp.b_state = 0;
2939 	tmp.b_blocknr = 0;
2940 	tmp.b_size = 1 << inode->i_blkbits;
2941 	get_block(inode, block, &tmp, 0);
2942 	return tmp.b_blocknr;
2943 }
2944 EXPORT_SYMBOL(generic_block_bmap);
2945 
2946 static void end_bio_bh_io_sync(struct bio *bio, int err)
2947 {
2948 	struct buffer_head *bh = bio->bi_private;
2949 
2950 	if (err == -EOPNOTSUPP) {
2951 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2952 	}
2953 
2954 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2955 		set_bit(BH_Quiet, &bh->b_state);
2956 
2957 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2958 	bio_put(bio);
2959 }
2960 
2961 /*
2962  * This allows us to do IO even on the odd last sectors
2963  * of a device, even if the bh block size is some multiple
2964  * of the physical sector size.
2965  *
2966  * We'll just truncate the bio to the size of the device,
2967  * and clear the end of the buffer head manually.
2968  *
2969  * Truly out-of-range accesses will turn into actual IO
2970  * errors, this only handles the "we need to be able to
2971  * do IO at the final sector" case.
2972  */
2973 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2974 {
2975 	sector_t maxsector;
2976 	unsigned bytes;
2977 
2978 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2979 	if (!maxsector)
2980 		return;
2981 
2982 	/*
2983 	 * If the *whole* IO is past the end of the device,
2984 	 * let it through, and the IO layer will turn it into
2985 	 * an EIO.
2986 	 */
2987 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2988 		return;
2989 
2990 	maxsector -= bio->bi_iter.bi_sector;
2991 	bytes = bio->bi_iter.bi_size;
2992 	if (likely((bytes >> 9) <= maxsector))
2993 		return;
2994 
2995 	/* Uhhuh. We've got a bh that straddles the device size! */
2996 	bytes = maxsector << 9;
2997 
2998 	/* Truncate the bio.. */
2999 	bio->bi_iter.bi_size = bytes;
3000 	bio->bi_io_vec[0].bv_len = bytes;
3001 
3002 	/* ..and clear the end of the buffer for reads */
3003 	if ((rw & RW_MASK) == READ) {
3004 		void *kaddr = kmap_atomic(bh->b_page);
3005 		memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3006 		kunmap_atomic(kaddr);
3007 		flush_dcache_page(bh->b_page);
3008 	}
3009 }
3010 
3011 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3012 {
3013 	struct bio *bio;
3014 	int ret = 0;
3015 
3016 	BUG_ON(!buffer_locked(bh));
3017 	BUG_ON(!buffer_mapped(bh));
3018 	BUG_ON(!bh->b_end_io);
3019 	BUG_ON(buffer_delay(bh));
3020 	BUG_ON(buffer_unwritten(bh));
3021 
3022 	/*
3023 	 * Only clear out a write error when rewriting
3024 	 */
3025 	if (test_set_buffer_req(bh) && (rw & WRITE))
3026 		clear_buffer_write_io_error(bh);
3027 
3028 	/*
3029 	 * from here on down, it's all bio -- do the initial mapping,
3030 	 * submit_bio -> generic_make_request may further map this bio around
3031 	 */
3032 	bio = bio_alloc(GFP_NOIO, 1);
3033 
3034 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3035 	bio->bi_bdev = bh->b_bdev;
3036 	bio->bi_io_vec[0].bv_page = bh->b_page;
3037 	bio->bi_io_vec[0].bv_len = bh->b_size;
3038 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3039 
3040 	bio->bi_vcnt = 1;
3041 	bio->bi_iter.bi_size = bh->b_size;
3042 
3043 	bio->bi_end_io = end_bio_bh_io_sync;
3044 	bio->bi_private = bh;
3045 	bio->bi_flags |= bio_flags;
3046 
3047 	/* Take care of bh's that straddle the end of the device */
3048 	guard_bh_eod(rw, bio, bh);
3049 
3050 	if (buffer_meta(bh))
3051 		rw |= REQ_META;
3052 	if (buffer_prio(bh))
3053 		rw |= REQ_PRIO;
3054 
3055 	bio_get(bio);
3056 	submit_bio(rw, bio);
3057 
3058 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3059 		ret = -EOPNOTSUPP;
3060 
3061 	bio_put(bio);
3062 	return ret;
3063 }
3064 EXPORT_SYMBOL_GPL(_submit_bh);
3065 
3066 int submit_bh(int rw, struct buffer_head *bh)
3067 {
3068 	return _submit_bh(rw, bh, 0);
3069 }
3070 EXPORT_SYMBOL(submit_bh);
3071 
3072 /**
3073  * ll_rw_block: low-level access to block devices (DEPRECATED)
3074  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3075  * @nr: number of &struct buffer_heads in the array
3076  * @bhs: array of pointers to &struct buffer_head
3077  *
3078  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3079  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3080  * %READA option is described in the documentation for generic_make_request()
3081  * which ll_rw_block() calls.
3082  *
3083  * This function drops any buffer that it cannot get a lock on (with the
3084  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3085  * request, and any buffer that appears to be up-to-date when doing read
3086  * request.  Further it marks as clean buffers that are processed for
3087  * writing (the buffer cache won't assume that they are actually clean
3088  * until the buffer gets unlocked).
3089  *
3090  * ll_rw_block sets b_end_io to simple completion handler that marks
3091  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3092  * any waiters.
3093  *
3094  * All of the buffers must be for the same device, and must also be a
3095  * multiple of the current approved size for the device.
3096  */
3097 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3098 {
3099 	int i;
3100 
3101 	for (i = 0; i < nr; i++) {
3102 		struct buffer_head *bh = bhs[i];
3103 
3104 		if (!trylock_buffer(bh))
3105 			continue;
3106 		if (rw == WRITE) {
3107 			if (test_clear_buffer_dirty(bh)) {
3108 				bh->b_end_io = end_buffer_write_sync;
3109 				get_bh(bh);
3110 				submit_bh(WRITE, bh);
3111 				continue;
3112 			}
3113 		} else {
3114 			if (!buffer_uptodate(bh)) {
3115 				bh->b_end_io = end_buffer_read_sync;
3116 				get_bh(bh);
3117 				submit_bh(rw, bh);
3118 				continue;
3119 			}
3120 		}
3121 		unlock_buffer(bh);
3122 	}
3123 }
3124 EXPORT_SYMBOL(ll_rw_block);
3125 
3126 void write_dirty_buffer(struct buffer_head *bh, int rw)
3127 {
3128 	lock_buffer(bh);
3129 	if (!test_clear_buffer_dirty(bh)) {
3130 		unlock_buffer(bh);
3131 		return;
3132 	}
3133 	bh->b_end_io = end_buffer_write_sync;
3134 	get_bh(bh);
3135 	submit_bh(rw, bh);
3136 }
3137 EXPORT_SYMBOL(write_dirty_buffer);
3138 
3139 /*
3140  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3141  * and then start new I/O and then wait upon it.  The caller must have a ref on
3142  * the buffer_head.
3143  */
3144 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3145 {
3146 	int ret = 0;
3147 
3148 	WARN_ON(atomic_read(&bh->b_count) < 1);
3149 	lock_buffer(bh);
3150 	if (test_clear_buffer_dirty(bh)) {
3151 		get_bh(bh);
3152 		bh->b_end_io = end_buffer_write_sync;
3153 		ret = submit_bh(rw, bh);
3154 		wait_on_buffer(bh);
3155 		if (!ret && !buffer_uptodate(bh))
3156 			ret = -EIO;
3157 	} else {
3158 		unlock_buffer(bh);
3159 	}
3160 	return ret;
3161 }
3162 EXPORT_SYMBOL(__sync_dirty_buffer);
3163 
3164 int sync_dirty_buffer(struct buffer_head *bh)
3165 {
3166 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3167 }
3168 EXPORT_SYMBOL(sync_dirty_buffer);
3169 
3170 /*
3171  * try_to_free_buffers() checks if all the buffers on this particular page
3172  * are unused, and releases them if so.
3173  *
3174  * Exclusion against try_to_free_buffers may be obtained by either
3175  * locking the page or by holding its mapping's private_lock.
3176  *
3177  * If the page is dirty but all the buffers are clean then we need to
3178  * be sure to mark the page clean as well.  This is because the page
3179  * may be against a block device, and a later reattachment of buffers
3180  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3181  * filesystem data on the same device.
3182  *
3183  * The same applies to regular filesystem pages: if all the buffers are
3184  * clean then we set the page clean and proceed.  To do that, we require
3185  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3186  * private_lock.
3187  *
3188  * try_to_free_buffers() is non-blocking.
3189  */
3190 static inline int buffer_busy(struct buffer_head *bh)
3191 {
3192 	return atomic_read(&bh->b_count) |
3193 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3194 }
3195 
3196 static int
3197 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3198 {
3199 	struct buffer_head *head = page_buffers(page);
3200 	struct buffer_head *bh;
3201 
3202 	bh = head;
3203 	do {
3204 		if (buffer_write_io_error(bh) && page->mapping)
3205 			set_bit(AS_EIO, &page->mapping->flags);
3206 		if (buffer_busy(bh))
3207 			goto failed;
3208 		bh = bh->b_this_page;
3209 	} while (bh != head);
3210 
3211 	do {
3212 		struct buffer_head *next = bh->b_this_page;
3213 
3214 		if (bh->b_assoc_map)
3215 			__remove_assoc_queue(bh);
3216 		bh = next;
3217 	} while (bh != head);
3218 	*buffers_to_free = head;
3219 	__clear_page_buffers(page);
3220 	return 1;
3221 failed:
3222 	return 0;
3223 }
3224 
3225 int try_to_free_buffers(struct page *page)
3226 {
3227 	struct address_space * const mapping = page->mapping;
3228 	struct buffer_head *buffers_to_free = NULL;
3229 	int ret = 0;
3230 
3231 	BUG_ON(!PageLocked(page));
3232 	if (PageWriteback(page))
3233 		return 0;
3234 
3235 	if (mapping == NULL) {		/* can this still happen? */
3236 		ret = drop_buffers(page, &buffers_to_free);
3237 		goto out;
3238 	}
3239 
3240 	spin_lock(&mapping->private_lock);
3241 	ret = drop_buffers(page, &buffers_to_free);
3242 
3243 	/*
3244 	 * If the filesystem writes its buffers by hand (eg ext3)
3245 	 * then we can have clean buffers against a dirty page.  We
3246 	 * clean the page here; otherwise the VM will never notice
3247 	 * that the filesystem did any IO at all.
3248 	 *
3249 	 * Also, during truncate, discard_buffer will have marked all
3250 	 * the page's buffers clean.  We discover that here and clean
3251 	 * the page also.
3252 	 *
3253 	 * private_lock must be held over this entire operation in order
3254 	 * to synchronise against __set_page_dirty_buffers and prevent the
3255 	 * dirty bit from being lost.
3256 	 */
3257 	if (ret)
3258 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3259 	spin_unlock(&mapping->private_lock);
3260 out:
3261 	if (buffers_to_free) {
3262 		struct buffer_head *bh = buffers_to_free;
3263 
3264 		do {
3265 			struct buffer_head *next = bh->b_this_page;
3266 			free_buffer_head(bh);
3267 			bh = next;
3268 		} while (bh != buffers_to_free);
3269 	}
3270 	return ret;
3271 }
3272 EXPORT_SYMBOL(try_to_free_buffers);
3273 
3274 /*
3275  * There are no bdflush tunables left.  But distributions are
3276  * still running obsolete flush daemons, so we terminate them here.
3277  *
3278  * Use of bdflush() is deprecated and will be removed in a future kernel.
3279  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3280  */
3281 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3282 {
3283 	static int msg_count;
3284 
3285 	if (!capable(CAP_SYS_ADMIN))
3286 		return -EPERM;
3287 
3288 	if (msg_count < 5) {
3289 		msg_count++;
3290 		printk(KERN_INFO
3291 			"warning: process `%s' used the obsolete bdflush"
3292 			" system call\n", current->comm);
3293 		printk(KERN_INFO "Fix your initscripts?\n");
3294 	}
3295 
3296 	if (func == 1)
3297 		do_exit(0);
3298 	return 0;
3299 }
3300 
3301 /*
3302  * Buffer-head allocation
3303  */
3304 static struct kmem_cache *bh_cachep __read_mostly;
3305 
3306 /*
3307  * Once the number of bh's in the machine exceeds this level, we start
3308  * stripping them in writeback.
3309  */
3310 static unsigned long max_buffer_heads;
3311 
3312 int buffer_heads_over_limit;
3313 
3314 struct bh_accounting {
3315 	int nr;			/* Number of live bh's */
3316 	int ratelimit;		/* Limit cacheline bouncing */
3317 };
3318 
3319 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3320 
3321 static void recalc_bh_state(void)
3322 {
3323 	int i;
3324 	int tot = 0;
3325 
3326 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3327 		return;
3328 	__this_cpu_write(bh_accounting.ratelimit, 0);
3329 	for_each_online_cpu(i)
3330 		tot += per_cpu(bh_accounting, i).nr;
3331 	buffer_heads_over_limit = (tot > max_buffer_heads);
3332 }
3333 
3334 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3335 {
3336 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3337 	if (ret) {
3338 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3339 		preempt_disable();
3340 		__this_cpu_inc(bh_accounting.nr);
3341 		recalc_bh_state();
3342 		preempt_enable();
3343 	}
3344 	return ret;
3345 }
3346 EXPORT_SYMBOL(alloc_buffer_head);
3347 
3348 void free_buffer_head(struct buffer_head *bh)
3349 {
3350 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3351 	kmem_cache_free(bh_cachep, bh);
3352 	preempt_disable();
3353 	__this_cpu_dec(bh_accounting.nr);
3354 	recalc_bh_state();
3355 	preempt_enable();
3356 }
3357 EXPORT_SYMBOL(free_buffer_head);
3358 
3359 static void buffer_exit_cpu(int cpu)
3360 {
3361 	int i;
3362 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3363 
3364 	for (i = 0; i < BH_LRU_SIZE; i++) {
3365 		brelse(b->bhs[i]);
3366 		b->bhs[i] = NULL;
3367 	}
3368 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3369 	per_cpu(bh_accounting, cpu).nr = 0;
3370 }
3371 
3372 static int buffer_cpu_notify(struct notifier_block *self,
3373 			      unsigned long action, void *hcpu)
3374 {
3375 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3376 		buffer_exit_cpu((unsigned long)hcpu);
3377 	return NOTIFY_OK;
3378 }
3379 
3380 /**
3381  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3382  * @bh: struct buffer_head
3383  *
3384  * Return true if the buffer is up-to-date and false,
3385  * with the buffer locked, if not.
3386  */
3387 int bh_uptodate_or_lock(struct buffer_head *bh)
3388 {
3389 	if (!buffer_uptodate(bh)) {
3390 		lock_buffer(bh);
3391 		if (!buffer_uptodate(bh))
3392 			return 0;
3393 		unlock_buffer(bh);
3394 	}
3395 	return 1;
3396 }
3397 EXPORT_SYMBOL(bh_uptodate_or_lock);
3398 
3399 /**
3400  * bh_submit_read - Submit a locked buffer for reading
3401  * @bh: struct buffer_head
3402  *
3403  * Returns zero on success and -EIO on error.
3404  */
3405 int bh_submit_read(struct buffer_head *bh)
3406 {
3407 	BUG_ON(!buffer_locked(bh));
3408 
3409 	if (buffer_uptodate(bh)) {
3410 		unlock_buffer(bh);
3411 		return 0;
3412 	}
3413 
3414 	get_bh(bh);
3415 	bh->b_end_io = end_buffer_read_sync;
3416 	submit_bh(READ, bh);
3417 	wait_on_buffer(bh);
3418 	if (buffer_uptodate(bh))
3419 		return 0;
3420 	return -EIO;
3421 }
3422 EXPORT_SYMBOL(bh_submit_read);
3423 
3424 void __init buffer_init(void)
3425 {
3426 	unsigned long nrpages;
3427 
3428 	bh_cachep = kmem_cache_create("buffer_head",
3429 			sizeof(struct buffer_head), 0,
3430 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3431 				SLAB_MEM_SPREAD),
3432 				NULL);
3433 
3434 	/*
3435 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3436 	 */
3437 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3438 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3439 	hotcpu_notifier(buffer_cpu_notify, 0);
3440 }
3441