1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/sched/signal.h> 23 #include <linux/syscalls.h> 24 #include <linux/fs.h> 25 #include <linux/iomap.h> 26 #include <linux/mm.h> 27 #include <linux/percpu.h> 28 #include <linux/slab.h> 29 #include <linux/capability.h> 30 #include <linux/blkdev.h> 31 #include <linux/file.h> 32 #include <linux/quotaops.h> 33 #include <linux/highmem.h> 34 #include <linux/export.h> 35 #include <linux/backing-dev.h> 36 #include <linux/writeback.h> 37 #include <linux/hash.h> 38 #include <linux/suspend.h> 39 #include <linux/buffer_head.h> 40 #include <linux/task_io_accounting_ops.h> 41 #include <linux/bio.h> 42 #include <linux/notifier.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <trace/events/block.h> 49 50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 52 enum rw_hint hint, struct writeback_control *wbc); 53 54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 55 56 inline void touch_buffer(struct buffer_head *bh) 57 { 58 trace_block_touch_buffer(bh); 59 mark_page_accessed(bh->b_page); 60 } 61 EXPORT_SYMBOL(touch_buffer); 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 66 } 67 EXPORT_SYMBOL(__lock_buffer); 68 69 void unlock_buffer(struct buffer_head *bh) 70 { 71 clear_bit_unlock(BH_Lock, &bh->b_state); 72 smp_mb__after_atomic(); 73 wake_up_bit(&bh->b_state, BH_Lock); 74 } 75 EXPORT_SYMBOL(unlock_buffer); 76 77 /* 78 * Returns if the page has dirty or writeback buffers. If all the buffers 79 * are unlocked and clean then the PageDirty information is stale. If 80 * any of the pages are locked, it is assumed they are locked for IO. 81 */ 82 void buffer_check_dirty_writeback(struct page *page, 83 bool *dirty, bool *writeback) 84 { 85 struct buffer_head *head, *bh; 86 *dirty = false; 87 *writeback = false; 88 89 BUG_ON(!PageLocked(page)); 90 91 if (!page_has_buffers(page)) 92 return; 93 94 if (PageWriteback(page)) 95 *writeback = true; 96 97 head = page_buffers(page); 98 bh = head; 99 do { 100 if (buffer_locked(bh)) 101 *writeback = true; 102 103 if (buffer_dirty(bh)) 104 *dirty = true; 105 106 bh = bh->b_this_page; 107 } while (bh != head); 108 } 109 EXPORT_SYMBOL(buffer_check_dirty_writeback); 110 111 /* 112 * Block until a buffer comes unlocked. This doesn't stop it 113 * from becoming locked again - you have to lock it yourself 114 * if you want to preserve its state. 115 */ 116 void __wait_on_buffer(struct buffer_head * bh) 117 { 118 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 119 } 120 EXPORT_SYMBOL(__wait_on_buffer); 121 122 static void 123 __clear_page_buffers(struct page *page) 124 { 125 ClearPagePrivate(page); 126 set_page_private(page, 0); 127 put_page(page); 128 } 129 130 static void buffer_io_error(struct buffer_head *bh, char *msg) 131 { 132 if (!test_bit(BH_Quiet, &bh->b_state)) 133 printk_ratelimited(KERN_ERR 134 "Buffer I/O error on dev %pg, logical block %llu%s\n", 135 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 136 } 137 138 /* 139 * End-of-IO handler helper function which does not touch the bh after 140 * unlocking it. 141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 142 * a race there is benign: unlock_buffer() only use the bh's address for 143 * hashing after unlocking the buffer, so it doesn't actually touch the bh 144 * itself. 145 */ 146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 147 { 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 /* This happens, due to failed read-ahead attempts. */ 152 clear_buffer_uptodate(bh); 153 } 154 unlock_buffer(bh); 155 } 156 157 /* 158 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 159 * unlock the buffer. This is what ll_rw_block uses too. 160 */ 161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 162 { 163 __end_buffer_read_notouch(bh, uptodate); 164 put_bh(bh); 165 } 166 EXPORT_SYMBOL(end_buffer_read_sync); 167 168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 169 { 170 if (uptodate) { 171 set_buffer_uptodate(bh); 172 } else { 173 buffer_io_error(bh, ", lost sync page write"); 174 mark_buffer_write_io_error(bh); 175 clear_buffer_uptodate(bh); 176 } 177 unlock_buffer(bh); 178 put_bh(bh); 179 } 180 EXPORT_SYMBOL(end_buffer_write_sync); 181 182 /* 183 * Various filesystems appear to want __find_get_block to be non-blocking. 184 * But it's the page lock which protects the buffers. To get around this, 185 * we get exclusion from try_to_free_buffers with the blockdev mapping's 186 * private_lock. 187 * 188 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 189 * may be quite high. This code could TryLock the page, and if that 190 * succeeds, there is no need to take private_lock. (But if 191 * private_lock is contended then so is mapping->tree_lock). 192 */ 193 static struct buffer_head * 194 __find_get_block_slow(struct block_device *bdev, sector_t block) 195 { 196 struct inode *bd_inode = bdev->bd_inode; 197 struct address_space *bd_mapping = bd_inode->i_mapping; 198 struct buffer_head *ret = NULL; 199 pgoff_t index; 200 struct buffer_head *bh; 201 struct buffer_head *head; 202 struct page *page; 203 int all_mapped = 1; 204 205 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 206 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 207 if (!page) 208 goto out; 209 210 spin_lock(&bd_mapping->private_lock); 211 if (!page_has_buffers(page)) 212 goto out_unlock; 213 head = page_buffers(page); 214 bh = head; 215 do { 216 if (!buffer_mapped(bh)) 217 all_mapped = 0; 218 else if (bh->b_blocknr == block) { 219 ret = bh; 220 get_bh(bh); 221 goto out_unlock; 222 } 223 bh = bh->b_this_page; 224 } while (bh != head); 225 226 /* we might be here because some of the buffers on this page are 227 * not mapped. This is due to various races between 228 * file io on the block device and getblk. It gets dealt with 229 * elsewhere, don't buffer_error if we had some unmapped buffers 230 */ 231 if (all_mapped) { 232 printk("__find_get_block_slow() failed. " 233 "block=%llu, b_blocknr=%llu\n", 234 (unsigned long long)block, 235 (unsigned long long)bh->b_blocknr); 236 printk("b_state=0x%08lx, b_size=%zu\n", 237 bh->b_state, bh->b_size); 238 printk("device %pg blocksize: %d\n", bdev, 239 1 << bd_inode->i_blkbits); 240 } 241 out_unlock: 242 spin_unlock(&bd_mapping->private_lock); 243 put_page(page); 244 out: 245 return ret; 246 } 247 248 /* 249 * I/O completion handler for block_read_full_page() - pages 250 * which come unlocked at the end of I/O. 251 */ 252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 253 { 254 unsigned long flags; 255 struct buffer_head *first; 256 struct buffer_head *tmp; 257 struct page *page; 258 int page_uptodate = 1; 259 260 BUG_ON(!buffer_async_read(bh)); 261 262 page = bh->b_page; 263 if (uptodate) { 264 set_buffer_uptodate(bh); 265 } else { 266 clear_buffer_uptodate(bh); 267 buffer_io_error(bh, ", async page read"); 268 SetPageError(page); 269 } 270 271 /* 272 * Be _very_ careful from here on. Bad things can happen if 273 * two buffer heads end IO at almost the same time and both 274 * decide that the page is now completely done. 275 */ 276 first = page_buffers(page); 277 local_irq_save(flags); 278 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 279 clear_buffer_async_read(bh); 280 unlock_buffer(bh); 281 tmp = bh; 282 do { 283 if (!buffer_uptodate(tmp)) 284 page_uptodate = 0; 285 if (buffer_async_read(tmp)) { 286 BUG_ON(!buffer_locked(tmp)); 287 goto still_busy; 288 } 289 tmp = tmp->b_this_page; 290 } while (tmp != bh); 291 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 292 local_irq_restore(flags); 293 294 /* 295 * If none of the buffers had errors and they are all 296 * uptodate then we can set the page uptodate. 297 */ 298 if (page_uptodate && !PageError(page)) 299 SetPageUptodate(page); 300 unlock_page(page); 301 return; 302 303 still_busy: 304 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 305 local_irq_restore(flags); 306 return; 307 } 308 309 /* 310 * Completion handler for block_write_full_page() - pages which are unlocked 311 * during I/O, and which have PageWriteback cleared upon I/O completion. 312 */ 313 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 314 { 315 unsigned long flags; 316 struct buffer_head *first; 317 struct buffer_head *tmp; 318 struct page *page; 319 320 BUG_ON(!buffer_async_write(bh)); 321 322 page = bh->b_page; 323 if (uptodate) { 324 set_buffer_uptodate(bh); 325 } else { 326 buffer_io_error(bh, ", lost async page write"); 327 mark_buffer_write_io_error(bh); 328 clear_buffer_uptodate(bh); 329 SetPageError(page); 330 } 331 332 first = page_buffers(page); 333 local_irq_save(flags); 334 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 335 336 clear_buffer_async_write(bh); 337 unlock_buffer(bh); 338 tmp = bh->b_this_page; 339 while (tmp != bh) { 340 if (buffer_async_write(tmp)) { 341 BUG_ON(!buffer_locked(tmp)); 342 goto still_busy; 343 } 344 tmp = tmp->b_this_page; 345 } 346 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 347 local_irq_restore(flags); 348 end_page_writeback(page); 349 return; 350 351 still_busy: 352 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 353 local_irq_restore(flags); 354 return; 355 } 356 EXPORT_SYMBOL(end_buffer_async_write); 357 358 /* 359 * If a page's buffers are under async readin (end_buffer_async_read 360 * completion) then there is a possibility that another thread of 361 * control could lock one of the buffers after it has completed 362 * but while some of the other buffers have not completed. This 363 * locked buffer would confuse end_buffer_async_read() into not unlocking 364 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 365 * that this buffer is not under async I/O. 366 * 367 * The page comes unlocked when it has no locked buffer_async buffers 368 * left. 369 * 370 * PageLocked prevents anyone starting new async I/O reads any of 371 * the buffers. 372 * 373 * PageWriteback is used to prevent simultaneous writeout of the same 374 * page. 375 * 376 * PageLocked prevents anyone from starting writeback of a page which is 377 * under read I/O (PageWriteback is only ever set against a locked page). 378 */ 379 static void mark_buffer_async_read(struct buffer_head *bh) 380 { 381 bh->b_end_io = end_buffer_async_read; 382 set_buffer_async_read(bh); 383 } 384 385 static void mark_buffer_async_write_endio(struct buffer_head *bh, 386 bh_end_io_t *handler) 387 { 388 bh->b_end_io = handler; 389 set_buffer_async_write(bh); 390 } 391 392 void mark_buffer_async_write(struct buffer_head *bh) 393 { 394 mark_buffer_async_write_endio(bh, end_buffer_async_write); 395 } 396 EXPORT_SYMBOL(mark_buffer_async_write); 397 398 399 /* 400 * fs/buffer.c contains helper functions for buffer-backed address space's 401 * fsync functions. A common requirement for buffer-based filesystems is 402 * that certain data from the backing blockdev needs to be written out for 403 * a successful fsync(). For example, ext2 indirect blocks need to be 404 * written back and waited upon before fsync() returns. 405 * 406 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 407 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 408 * management of a list of dependent buffers at ->i_mapping->private_list. 409 * 410 * Locking is a little subtle: try_to_free_buffers() will remove buffers 411 * from their controlling inode's queue when they are being freed. But 412 * try_to_free_buffers() will be operating against the *blockdev* mapping 413 * at the time, not against the S_ISREG file which depends on those buffers. 414 * So the locking for private_list is via the private_lock in the address_space 415 * which backs the buffers. Which is different from the address_space 416 * against which the buffers are listed. So for a particular address_space, 417 * mapping->private_lock does *not* protect mapping->private_list! In fact, 418 * mapping->private_list will always be protected by the backing blockdev's 419 * ->private_lock. 420 * 421 * Which introduces a requirement: all buffers on an address_space's 422 * ->private_list must be from the same address_space: the blockdev's. 423 * 424 * address_spaces which do not place buffers at ->private_list via these 425 * utility functions are free to use private_lock and private_list for 426 * whatever they want. The only requirement is that list_empty(private_list) 427 * be true at clear_inode() time. 428 * 429 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 430 * filesystems should do that. invalidate_inode_buffers() should just go 431 * BUG_ON(!list_empty). 432 * 433 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 434 * take an address_space, not an inode. And it should be called 435 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 436 * queued up. 437 * 438 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 439 * list if it is already on a list. Because if the buffer is on a list, 440 * it *must* already be on the right one. If not, the filesystem is being 441 * silly. This will save a ton of locking. But first we have to ensure 442 * that buffers are taken *off* the old inode's list when they are freed 443 * (presumably in truncate). That requires careful auditing of all 444 * filesystems (do it inside bforget()). It could also be done by bringing 445 * b_inode back. 446 */ 447 448 /* 449 * The buffer's backing address_space's private_lock must be held 450 */ 451 static void __remove_assoc_queue(struct buffer_head *bh) 452 { 453 list_del_init(&bh->b_assoc_buffers); 454 WARN_ON(!bh->b_assoc_map); 455 bh->b_assoc_map = NULL; 456 } 457 458 int inode_has_buffers(struct inode *inode) 459 { 460 return !list_empty(&inode->i_data.private_list); 461 } 462 463 /* 464 * osync is designed to support O_SYNC io. It waits synchronously for 465 * all already-submitted IO to complete, but does not queue any new 466 * writes to the disk. 467 * 468 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 469 * you dirty the buffers, and then use osync_inode_buffers to wait for 470 * completion. Any other dirty buffers which are not yet queued for 471 * write will not be flushed to disk by the osync. 472 */ 473 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 474 { 475 struct buffer_head *bh; 476 struct list_head *p; 477 int err = 0; 478 479 spin_lock(lock); 480 repeat: 481 list_for_each_prev(p, list) { 482 bh = BH_ENTRY(p); 483 if (buffer_locked(bh)) { 484 get_bh(bh); 485 spin_unlock(lock); 486 wait_on_buffer(bh); 487 if (!buffer_uptodate(bh)) 488 err = -EIO; 489 brelse(bh); 490 spin_lock(lock); 491 goto repeat; 492 } 493 } 494 spin_unlock(lock); 495 return err; 496 } 497 498 static void do_thaw_one(struct super_block *sb, void *unused) 499 { 500 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 501 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 502 } 503 504 static void do_thaw_all(struct work_struct *work) 505 { 506 iterate_supers(do_thaw_one, NULL); 507 kfree(work); 508 printk(KERN_WARNING "Emergency Thaw complete\n"); 509 } 510 511 /** 512 * emergency_thaw_all -- forcibly thaw every frozen filesystem 513 * 514 * Used for emergency unfreeze of all filesystems via SysRq 515 */ 516 void emergency_thaw_all(void) 517 { 518 struct work_struct *work; 519 520 work = kmalloc(sizeof(*work), GFP_ATOMIC); 521 if (work) { 522 INIT_WORK(work, do_thaw_all); 523 schedule_work(work); 524 } 525 } 526 527 /** 528 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 529 * @mapping: the mapping which wants those buffers written 530 * 531 * Starts I/O against the buffers at mapping->private_list, and waits upon 532 * that I/O. 533 * 534 * Basically, this is a convenience function for fsync(). 535 * @mapping is a file or directory which needs those buffers to be written for 536 * a successful fsync(). 537 */ 538 int sync_mapping_buffers(struct address_space *mapping) 539 { 540 struct address_space *buffer_mapping = mapping->private_data; 541 542 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 543 return 0; 544 545 return fsync_buffers_list(&buffer_mapping->private_lock, 546 &mapping->private_list); 547 } 548 EXPORT_SYMBOL(sync_mapping_buffers); 549 550 /* 551 * Called when we've recently written block `bblock', and it is known that 552 * `bblock' was for a buffer_boundary() buffer. This means that the block at 553 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 554 * dirty, schedule it for IO. So that indirects merge nicely with their data. 555 */ 556 void write_boundary_block(struct block_device *bdev, 557 sector_t bblock, unsigned blocksize) 558 { 559 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 560 if (bh) { 561 if (buffer_dirty(bh)) 562 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 563 put_bh(bh); 564 } 565 } 566 567 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 568 { 569 struct address_space *mapping = inode->i_mapping; 570 struct address_space *buffer_mapping = bh->b_page->mapping; 571 572 mark_buffer_dirty(bh); 573 if (!mapping->private_data) { 574 mapping->private_data = buffer_mapping; 575 } else { 576 BUG_ON(mapping->private_data != buffer_mapping); 577 } 578 if (!bh->b_assoc_map) { 579 spin_lock(&buffer_mapping->private_lock); 580 list_move_tail(&bh->b_assoc_buffers, 581 &mapping->private_list); 582 bh->b_assoc_map = mapping; 583 spin_unlock(&buffer_mapping->private_lock); 584 } 585 } 586 EXPORT_SYMBOL(mark_buffer_dirty_inode); 587 588 /* 589 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 590 * dirty. 591 * 592 * If warn is true, then emit a warning if the page is not uptodate and has 593 * not been truncated. 594 * 595 * The caller must hold lock_page_memcg(). 596 */ 597 static void __set_page_dirty(struct page *page, struct address_space *mapping, 598 int warn) 599 { 600 unsigned long flags; 601 602 spin_lock_irqsave(&mapping->tree_lock, flags); 603 if (page->mapping) { /* Race with truncate? */ 604 WARN_ON_ONCE(warn && !PageUptodate(page)); 605 account_page_dirtied(page, mapping); 606 radix_tree_tag_set(&mapping->page_tree, 607 page_index(page), PAGECACHE_TAG_DIRTY); 608 } 609 spin_unlock_irqrestore(&mapping->tree_lock, flags); 610 } 611 612 /* 613 * Add a page to the dirty page list. 614 * 615 * It is a sad fact of life that this function is called from several places 616 * deeply under spinlocking. It may not sleep. 617 * 618 * If the page has buffers, the uptodate buffers are set dirty, to preserve 619 * dirty-state coherency between the page and the buffers. It the page does 620 * not have buffers then when they are later attached they will all be set 621 * dirty. 622 * 623 * The buffers are dirtied before the page is dirtied. There's a small race 624 * window in which a writepage caller may see the page cleanness but not the 625 * buffer dirtiness. That's fine. If this code were to set the page dirty 626 * before the buffers, a concurrent writepage caller could clear the page dirty 627 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 628 * page on the dirty page list. 629 * 630 * We use private_lock to lock against try_to_free_buffers while using the 631 * page's buffer list. Also use this to protect against clean buffers being 632 * added to the page after it was set dirty. 633 * 634 * FIXME: may need to call ->reservepage here as well. That's rather up to the 635 * address_space though. 636 */ 637 int __set_page_dirty_buffers(struct page *page) 638 { 639 int newly_dirty; 640 struct address_space *mapping = page_mapping(page); 641 642 if (unlikely(!mapping)) 643 return !TestSetPageDirty(page); 644 645 spin_lock(&mapping->private_lock); 646 if (page_has_buffers(page)) { 647 struct buffer_head *head = page_buffers(page); 648 struct buffer_head *bh = head; 649 650 do { 651 set_buffer_dirty(bh); 652 bh = bh->b_this_page; 653 } while (bh != head); 654 } 655 /* 656 * Lock out page->mem_cgroup migration to keep PageDirty 657 * synchronized with per-memcg dirty page counters. 658 */ 659 lock_page_memcg(page); 660 newly_dirty = !TestSetPageDirty(page); 661 spin_unlock(&mapping->private_lock); 662 663 if (newly_dirty) 664 __set_page_dirty(page, mapping, 1); 665 666 unlock_page_memcg(page); 667 668 if (newly_dirty) 669 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 670 671 return newly_dirty; 672 } 673 EXPORT_SYMBOL(__set_page_dirty_buffers); 674 675 /* 676 * Write out and wait upon a list of buffers. 677 * 678 * We have conflicting pressures: we want to make sure that all 679 * initially dirty buffers get waited on, but that any subsequently 680 * dirtied buffers don't. After all, we don't want fsync to last 681 * forever if somebody is actively writing to the file. 682 * 683 * Do this in two main stages: first we copy dirty buffers to a 684 * temporary inode list, queueing the writes as we go. Then we clean 685 * up, waiting for those writes to complete. 686 * 687 * During this second stage, any subsequent updates to the file may end 688 * up refiling the buffer on the original inode's dirty list again, so 689 * there is a chance we will end up with a buffer queued for write but 690 * not yet completed on that list. So, as a final cleanup we go through 691 * the osync code to catch these locked, dirty buffers without requeuing 692 * any newly dirty buffers for write. 693 */ 694 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 695 { 696 struct buffer_head *bh; 697 struct list_head tmp; 698 struct address_space *mapping; 699 int err = 0, err2; 700 struct blk_plug plug; 701 702 INIT_LIST_HEAD(&tmp); 703 blk_start_plug(&plug); 704 705 spin_lock(lock); 706 while (!list_empty(list)) { 707 bh = BH_ENTRY(list->next); 708 mapping = bh->b_assoc_map; 709 __remove_assoc_queue(bh); 710 /* Avoid race with mark_buffer_dirty_inode() which does 711 * a lockless check and we rely on seeing the dirty bit */ 712 smp_mb(); 713 if (buffer_dirty(bh) || buffer_locked(bh)) { 714 list_add(&bh->b_assoc_buffers, &tmp); 715 bh->b_assoc_map = mapping; 716 if (buffer_dirty(bh)) { 717 get_bh(bh); 718 spin_unlock(lock); 719 /* 720 * Ensure any pending I/O completes so that 721 * write_dirty_buffer() actually writes the 722 * current contents - it is a noop if I/O is 723 * still in flight on potentially older 724 * contents. 725 */ 726 write_dirty_buffer(bh, REQ_SYNC); 727 728 /* 729 * Kick off IO for the previous mapping. Note 730 * that we will not run the very last mapping, 731 * wait_on_buffer() will do that for us 732 * through sync_buffer(). 733 */ 734 brelse(bh); 735 spin_lock(lock); 736 } 737 } 738 } 739 740 spin_unlock(lock); 741 blk_finish_plug(&plug); 742 spin_lock(lock); 743 744 while (!list_empty(&tmp)) { 745 bh = BH_ENTRY(tmp.prev); 746 get_bh(bh); 747 mapping = bh->b_assoc_map; 748 __remove_assoc_queue(bh); 749 /* Avoid race with mark_buffer_dirty_inode() which does 750 * a lockless check and we rely on seeing the dirty bit */ 751 smp_mb(); 752 if (buffer_dirty(bh)) { 753 list_add(&bh->b_assoc_buffers, 754 &mapping->private_list); 755 bh->b_assoc_map = mapping; 756 } 757 spin_unlock(lock); 758 wait_on_buffer(bh); 759 if (!buffer_uptodate(bh)) 760 err = -EIO; 761 brelse(bh); 762 spin_lock(lock); 763 } 764 765 spin_unlock(lock); 766 err2 = osync_buffers_list(lock, list); 767 if (err) 768 return err; 769 else 770 return err2; 771 } 772 773 /* 774 * Invalidate any and all dirty buffers on a given inode. We are 775 * probably unmounting the fs, but that doesn't mean we have already 776 * done a sync(). Just drop the buffers from the inode list. 777 * 778 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 779 * assumes that all the buffers are against the blockdev. Not true 780 * for reiserfs. 781 */ 782 void invalidate_inode_buffers(struct inode *inode) 783 { 784 if (inode_has_buffers(inode)) { 785 struct address_space *mapping = &inode->i_data; 786 struct list_head *list = &mapping->private_list; 787 struct address_space *buffer_mapping = mapping->private_data; 788 789 spin_lock(&buffer_mapping->private_lock); 790 while (!list_empty(list)) 791 __remove_assoc_queue(BH_ENTRY(list->next)); 792 spin_unlock(&buffer_mapping->private_lock); 793 } 794 } 795 EXPORT_SYMBOL(invalidate_inode_buffers); 796 797 /* 798 * Remove any clean buffers from the inode's buffer list. This is called 799 * when we're trying to free the inode itself. Those buffers can pin it. 800 * 801 * Returns true if all buffers were removed. 802 */ 803 int remove_inode_buffers(struct inode *inode) 804 { 805 int ret = 1; 806 807 if (inode_has_buffers(inode)) { 808 struct address_space *mapping = &inode->i_data; 809 struct list_head *list = &mapping->private_list; 810 struct address_space *buffer_mapping = mapping->private_data; 811 812 spin_lock(&buffer_mapping->private_lock); 813 while (!list_empty(list)) { 814 struct buffer_head *bh = BH_ENTRY(list->next); 815 if (buffer_dirty(bh)) { 816 ret = 0; 817 break; 818 } 819 __remove_assoc_queue(bh); 820 } 821 spin_unlock(&buffer_mapping->private_lock); 822 } 823 return ret; 824 } 825 826 /* 827 * Create the appropriate buffers when given a page for data area and 828 * the size of each buffer.. Use the bh->b_this_page linked list to 829 * follow the buffers created. Return NULL if unable to create more 830 * buffers. 831 * 832 * The retry flag is used to differentiate async IO (paging, swapping) 833 * which may not fail from ordinary buffer allocations. 834 */ 835 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 836 bool retry) 837 { 838 struct buffer_head *bh, *head; 839 gfp_t gfp = GFP_NOFS; 840 long offset; 841 842 if (retry) 843 gfp |= __GFP_NOFAIL; 844 845 head = NULL; 846 offset = PAGE_SIZE; 847 while ((offset -= size) >= 0) { 848 bh = alloc_buffer_head(gfp); 849 if (!bh) 850 goto no_grow; 851 852 bh->b_this_page = head; 853 bh->b_blocknr = -1; 854 head = bh; 855 856 bh->b_size = size; 857 858 /* Link the buffer to its page */ 859 set_bh_page(bh, page, offset); 860 } 861 return head; 862 /* 863 * In case anything failed, we just free everything we got. 864 */ 865 no_grow: 866 if (head) { 867 do { 868 bh = head; 869 head = head->b_this_page; 870 free_buffer_head(bh); 871 } while (head); 872 } 873 874 return NULL; 875 } 876 EXPORT_SYMBOL_GPL(alloc_page_buffers); 877 878 static inline void 879 link_dev_buffers(struct page *page, struct buffer_head *head) 880 { 881 struct buffer_head *bh, *tail; 882 883 bh = head; 884 do { 885 tail = bh; 886 bh = bh->b_this_page; 887 } while (bh); 888 tail->b_this_page = head; 889 attach_page_buffers(page, head); 890 } 891 892 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 893 { 894 sector_t retval = ~((sector_t)0); 895 loff_t sz = i_size_read(bdev->bd_inode); 896 897 if (sz) { 898 unsigned int sizebits = blksize_bits(size); 899 retval = (sz >> sizebits); 900 } 901 return retval; 902 } 903 904 /* 905 * Initialise the state of a blockdev page's buffers. 906 */ 907 static sector_t 908 init_page_buffers(struct page *page, struct block_device *bdev, 909 sector_t block, int size) 910 { 911 struct buffer_head *head = page_buffers(page); 912 struct buffer_head *bh = head; 913 int uptodate = PageUptodate(page); 914 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 915 916 do { 917 if (!buffer_mapped(bh)) { 918 bh->b_end_io = NULL; 919 bh->b_private = NULL; 920 bh->b_bdev = bdev; 921 bh->b_blocknr = block; 922 if (uptodate) 923 set_buffer_uptodate(bh); 924 if (block < end_block) 925 set_buffer_mapped(bh); 926 } 927 block++; 928 bh = bh->b_this_page; 929 } while (bh != head); 930 931 /* 932 * Caller needs to validate requested block against end of device. 933 */ 934 return end_block; 935 } 936 937 /* 938 * Create the page-cache page that contains the requested block. 939 * 940 * This is used purely for blockdev mappings. 941 */ 942 static int 943 grow_dev_page(struct block_device *bdev, sector_t block, 944 pgoff_t index, int size, int sizebits, gfp_t gfp) 945 { 946 struct inode *inode = bdev->bd_inode; 947 struct page *page; 948 struct buffer_head *bh; 949 sector_t end_block; 950 int ret = 0; /* Will call free_more_memory() */ 951 gfp_t gfp_mask; 952 953 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 954 955 /* 956 * XXX: __getblk_slow() can not really deal with failure and 957 * will endlessly loop on improvised global reclaim. Prefer 958 * looping in the allocator rather than here, at least that 959 * code knows what it's doing. 960 */ 961 gfp_mask |= __GFP_NOFAIL; 962 963 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 964 965 BUG_ON(!PageLocked(page)); 966 967 if (page_has_buffers(page)) { 968 bh = page_buffers(page); 969 if (bh->b_size == size) { 970 end_block = init_page_buffers(page, bdev, 971 (sector_t)index << sizebits, 972 size); 973 goto done; 974 } 975 if (!try_to_free_buffers(page)) 976 goto failed; 977 } 978 979 /* 980 * Allocate some buffers for this page 981 */ 982 bh = alloc_page_buffers(page, size, true); 983 984 /* 985 * Link the page to the buffers and initialise them. Take the 986 * lock to be atomic wrt __find_get_block(), which does not 987 * run under the page lock. 988 */ 989 spin_lock(&inode->i_mapping->private_lock); 990 link_dev_buffers(page, bh); 991 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 992 size); 993 spin_unlock(&inode->i_mapping->private_lock); 994 done: 995 ret = (block < end_block) ? 1 : -ENXIO; 996 failed: 997 unlock_page(page); 998 put_page(page); 999 return ret; 1000 } 1001 1002 /* 1003 * Create buffers for the specified block device block's page. If 1004 * that page was dirty, the buffers are set dirty also. 1005 */ 1006 static int 1007 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1008 { 1009 pgoff_t index; 1010 int sizebits; 1011 1012 sizebits = -1; 1013 do { 1014 sizebits++; 1015 } while ((size << sizebits) < PAGE_SIZE); 1016 1017 index = block >> sizebits; 1018 1019 /* 1020 * Check for a block which wants to lie outside our maximum possible 1021 * pagecache index. (this comparison is done using sector_t types). 1022 */ 1023 if (unlikely(index != block >> sizebits)) { 1024 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1025 "device %pg\n", 1026 __func__, (unsigned long long)block, 1027 bdev); 1028 return -EIO; 1029 } 1030 1031 /* Create a page with the proper size buffers.. */ 1032 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1033 } 1034 1035 static struct buffer_head * 1036 __getblk_slow(struct block_device *bdev, sector_t block, 1037 unsigned size, gfp_t gfp) 1038 { 1039 /* Size must be multiple of hard sectorsize */ 1040 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1041 (size < 512 || size > PAGE_SIZE))) { 1042 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1043 size); 1044 printk(KERN_ERR "logical block size: %d\n", 1045 bdev_logical_block_size(bdev)); 1046 1047 dump_stack(); 1048 return NULL; 1049 } 1050 1051 for (;;) { 1052 struct buffer_head *bh; 1053 int ret; 1054 1055 bh = __find_get_block(bdev, block, size); 1056 if (bh) 1057 return bh; 1058 1059 ret = grow_buffers(bdev, block, size, gfp); 1060 if (ret < 0) 1061 return NULL; 1062 } 1063 } 1064 1065 /* 1066 * The relationship between dirty buffers and dirty pages: 1067 * 1068 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1069 * the page is tagged dirty in its radix tree. 1070 * 1071 * At all times, the dirtiness of the buffers represents the dirtiness of 1072 * subsections of the page. If the page has buffers, the page dirty bit is 1073 * merely a hint about the true dirty state. 1074 * 1075 * When a page is set dirty in its entirety, all its buffers are marked dirty 1076 * (if the page has buffers). 1077 * 1078 * When a buffer is marked dirty, its page is dirtied, but the page's other 1079 * buffers are not. 1080 * 1081 * Also. When blockdev buffers are explicitly read with bread(), they 1082 * individually become uptodate. But their backing page remains not 1083 * uptodate - even if all of its buffers are uptodate. A subsequent 1084 * block_read_full_page() against that page will discover all the uptodate 1085 * buffers, will set the page uptodate and will perform no I/O. 1086 */ 1087 1088 /** 1089 * mark_buffer_dirty - mark a buffer_head as needing writeout 1090 * @bh: the buffer_head to mark dirty 1091 * 1092 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1093 * backing page dirty, then tag the page as dirty in its address_space's radix 1094 * tree and then attach the address_space's inode to its superblock's dirty 1095 * inode list. 1096 * 1097 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1098 * mapping->tree_lock and mapping->host->i_lock. 1099 */ 1100 void mark_buffer_dirty(struct buffer_head *bh) 1101 { 1102 WARN_ON_ONCE(!buffer_uptodate(bh)); 1103 1104 trace_block_dirty_buffer(bh); 1105 1106 /* 1107 * Very *carefully* optimize the it-is-already-dirty case. 1108 * 1109 * Don't let the final "is it dirty" escape to before we 1110 * perhaps modified the buffer. 1111 */ 1112 if (buffer_dirty(bh)) { 1113 smp_mb(); 1114 if (buffer_dirty(bh)) 1115 return; 1116 } 1117 1118 if (!test_set_buffer_dirty(bh)) { 1119 struct page *page = bh->b_page; 1120 struct address_space *mapping = NULL; 1121 1122 lock_page_memcg(page); 1123 if (!TestSetPageDirty(page)) { 1124 mapping = page_mapping(page); 1125 if (mapping) 1126 __set_page_dirty(page, mapping, 0); 1127 } 1128 unlock_page_memcg(page); 1129 if (mapping) 1130 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1131 } 1132 } 1133 EXPORT_SYMBOL(mark_buffer_dirty); 1134 1135 void mark_buffer_write_io_error(struct buffer_head *bh) 1136 { 1137 set_buffer_write_io_error(bh); 1138 /* FIXME: do we need to set this in both places? */ 1139 if (bh->b_page && bh->b_page->mapping) 1140 mapping_set_error(bh->b_page->mapping, -EIO); 1141 if (bh->b_assoc_map) 1142 mapping_set_error(bh->b_assoc_map, -EIO); 1143 } 1144 EXPORT_SYMBOL(mark_buffer_write_io_error); 1145 1146 /* 1147 * Decrement a buffer_head's reference count. If all buffers against a page 1148 * have zero reference count, are clean and unlocked, and if the page is clean 1149 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1150 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1151 * a page but it ends up not being freed, and buffers may later be reattached). 1152 */ 1153 void __brelse(struct buffer_head * buf) 1154 { 1155 if (atomic_read(&buf->b_count)) { 1156 put_bh(buf); 1157 return; 1158 } 1159 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1160 } 1161 EXPORT_SYMBOL(__brelse); 1162 1163 /* 1164 * bforget() is like brelse(), except it discards any 1165 * potentially dirty data. 1166 */ 1167 void __bforget(struct buffer_head *bh) 1168 { 1169 clear_buffer_dirty(bh); 1170 if (bh->b_assoc_map) { 1171 struct address_space *buffer_mapping = bh->b_page->mapping; 1172 1173 spin_lock(&buffer_mapping->private_lock); 1174 list_del_init(&bh->b_assoc_buffers); 1175 bh->b_assoc_map = NULL; 1176 spin_unlock(&buffer_mapping->private_lock); 1177 } 1178 __brelse(bh); 1179 } 1180 EXPORT_SYMBOL(__bforget); 1181 1182 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1183 { 1184 lock_buffer(bh); 1185 if (buffer_uptodate(bh)) { 1186 unlock_buffer(bh); 1187 return bh; 1188 } else { 1189 get_bh(bh); 1190 bh->b_end_io = end_buffer_read_sync; 1191 submit_bh(REQ_OP_READ, 0, bh); 1192 wait_on_buffer(bh); 1193 if (buffer_uptodate(bh)) 1194 return bh; 1195 } 1196 brelse(bh); 1197 return NULL; 1198 } 1199 1200 /* 1201 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1202 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1203 * refcount elevated by one when they're in an LRU. A buffer can only appear 1204 * once in a particular CPU's LRU. A single buffer can be present in multiple 1205 * CPU's LRUs at the same time. 1206 * 1207 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1208 * sb_find_get_block(). 1209 * 1210 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1211 * a local interrupt disable for that. 1212 */ 1213 1214 #define BH_LRU_SIZE 16 1215 1216 struct bh_lru { 1217 struct buffer_head *bhs[BH_LRU_SIZE]; 1218 }; 1219 1220 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1221 1222 #ifdef CONFIG_SMP 1223 #define bh_lru_lock() local_irq_disable() 1224 #define bh_lru_unlock() local_irq_enable() 1225 #else 1226 #define bh_lru_lock() preempt_disable() 1227 #define bh_lru_unlock() preempt_enable() 1228 #endif 1229 1230 static inline void check_irqs_on(void) 1231 { 1232 #ifdef irqs_disabled 1233 BUG_ON(irqs_disabled()); 1234 #endif 1235 } 1236 1237 /* 1238 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1239 * inserted at the front, and the buffer_head at the back if any is evicted. 1240 * Or, if already in the LRU it is moved to the front. 1241 */ 1242 static void bh_lru_install(struct buffer_head *bh) 1243 { 1244 struct buffer_head *evictee = bh; 1245 struct bh_lru *b; 1246 int i; 1247 1248 check_irqs_on(); 1249 bh_lru_lock(); 1250 1251 b = this_cpu_ptr(&bh_lrus); 1252 for (i = 0; i < BH_LRU_SIZE; i++) { 1253 swap(evictee, b->bhs[i]); 1254 if (evictee == bh) { 1255 bh_lru_unlock(); 1256 return; 1257 } 1258 } 1259 1260 get_bh(bh); 1261 bh_lru_unlock(); 1262 brelse(evictee); 1263 } 1264 1265 /* 1266 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1267 */ 1268 static struct buffer_head * 1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1270 { 1271 struct buffer_head *ret = NULL; 1272 unsigned int i; 1273 1274 check_irqs_on(); 1275 bh_lru_lock(); 1276 for (i = 0; i < BH_LRU_SIZE; i++) { 1277 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1278 1279 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1280 bh->b_size == size) { 1281 if (i) { 1282 while (i) { 1283 __this_cpu_write(bh_lrus.bhs[i], 1284 __this_cpu_read(bh_lrus.bhs[i - 1])); 1285 i--; 1286 } 1287 __this_cpu_write(bh_lrus.bhs[0], bh); 1288 } 1289 get_bh(bh); 1290 ret = bh; 1291 break; 1292 } 1293 } 1294 bh_lru_unlock(); 1295 return ret; 1296 } 1297 1298 /* 1299 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1300 * it in the LRU and mark it as accessed. If it is not present then return 1301 * NULL 1302 */ 1303 struct buffer_head * 1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1305 { 1306 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1307 1308 if (bh == NULL) { 1309 /* __find_get_block_slow will mark the page accessed */ 1310 bh = __find_get_block_slow(bdev, block); 1311 if (bh) 1312 bh_lru_install(bh); 1313 } else 1314 touch_buffer(bh); 1315 1316 return bh; 1317 } 1318 EXPORT_SYMBOL(__find_get_block); 1319 1320 /* 1321 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1322 * which corresponds to the passed block_device, block and size. The 1323 * returned buffer has its reference count incremented. 1324 * 1325 * __getblk_gfp() will lock up the machine if grow_dev_page's 1326 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1327 */ 1328 struct buffer_head * 1329 __getblk_gfp(struct block_device *bdev, sector_t block, 1330 unsigned size, gfp_t gfp) 1331 { 1332 struct buffer_head *bh = __find_get_block(bdev, block, size); 1333 1334 might_sleep(); 1335 if (bh == NULL) 1336 bh = __getblk_slow(bdev, block, size, gfp); 1337 return bh; 1338 } 1339 EXPORT_SYMBOL(__getblk_gfp); 1340 1341 /* 1342 * Do async read-ahead on a buffer.. 1343 */ 1344 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1345 { 1346 struct buffer_head *bh = __getblk(bdev, block, size); 1347 if (likely(bh)) { 1348 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1349 brelse(bh); 1350 } 1351 } 1352 EXPORT_SYMBOL(__breadahead); 1353 1354 /** 1355 * __bread_gfp() - reads a specified block and returns the bh 1356 * @bdev: the block_device to read from 1357 * @block: number of block 1358 * @size: size (in bytes) to read 1359 * @gfp: page allocation flag 1360 * 1361 * Reads a specified block, and returns buffer head that contains it. 1362 * The page cache can be allocated from non-movable area 1363 * not to prevent page migration if you set gfp to zero. 1364 * It returns NULL if the block was unreadable. 1365 */ 1366 struct buffer_head * 1367 __bread_gfp(struct block_device *bdev, sector_t block, 1368 unsigned size, gfp_t gfp) 1369 { 1370 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1371 1372 if (likely(bh) && !buffer_uptodate(bh)) 1373 bh = __bread_slow(bh); 1374 return bh; 1375 } 1376 EXPORT_SYMBOL(__bread_gfp); 1377 1378 /* 1379 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1380 * This doesn't race because it runs in each cpu either in irq 1381 * or with preempt disabled. 1382 */ 1383 static void invalidate_bh_lru(void *arg) 1384 { 1385 struct bh_lru *b = &get_cpu_var(bh_lrus); 1386 int i; 1387 1388 for (i = 0; i < BH_LRU_SIZE; i++) { 1389 brelse(b->bhs[i]); 1390 b->bhs[i] = NULL; 1391 } 1392 put_cpu_var(bh_lrus); 1393 } 1394 1395 static bool has_bh_in_lru(int cpu, void *dummy) 1396 { 1397 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1398 int i; 1399 1400 for (i = 0; i < BH_LRU_SIZE; i++) { 1401 if (b->bhs[i]) 1402 return 1; 1403 } 1404 1405 return 0; 1406 } 1407 1408 void invalidate_bh_lrus(void) 1409 { 1410 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1411 } 1412 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1413 1414 void set_bh_page(struct buffer_head *bh, 1415 struct page *page, unsigned long offset) 1416 { 1417 bh->b_page = page; 1418 BUG_ON(offset >= PAGE_SIZE); 1419 if (PageHighMem(page)) 1420 /* 1421 * This catches illegal uses and preserves the offset: 1422 */ 1423 bh->b_data = (char *)(0 + offset); 1424 else 1425 bh->b_data = page_address(page) + offset; 1426 } 1427 EXPORT_SYMBOL(set_bh_page); 1428 1429 /* 1430 * Called when truncating a buffer on a page completely. 1431 */ 1432 1433 /* Bits that are cleared during an invalidate */ 1434 #define BUFFER_FLAGS_DISCARD \ 1435 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1436 1 << BH_Delay | 1 << BH_Unwritten) 1437 1438 static void discard_buffer(struct buffer_head * bh) 1439 { 1440 unsigned long b_state, b_state_old; 1441 1442 lock_buffer(bh); 1443 clear_buffer_dirty(bh); 1444 bh->b_bdev = NULL; 1445 b_state = bh->b_state; 1446 for (;;) { 1447 b_state_old = cmpxchg(&bh->b_state, b_state, 1448 (b_state & ~BUFFER_FLAGS_DISCARD)); 1449 if (b_state_old == b_state) 1450 break; 1451 b_state = b_state_old; 1452 } 1453 unlock_buffer(bh); 1454 } 1455 1456 /** 1457 * block_invalidatepage - invalidate part or all of a buffer-backed page 1458 * 1459 * @page: the page which is affected 1460 * @offset: start of the range to invalidate 1461 * @length: length of the range to invalidate 1462 * 1463 * block_invalidatepage() is called when all or part of the page has become 1464 * invalidated by a truncate operation. 1465 * 1466 * block_invalidatepage() does not have to release all buffers, but it must 1467 * ensure that no dirty buffer is left outside @offset and that no I/O 1468 * is underway against any of the blocks which are outside the truncation 1469 * point. Because the caller is about to free (and possibly reuse) those 1470 * blocks on-disk. 1471 */ 1472 void block_invalidatepage(struct page *page, unsigned int offset, 1473 unsigned int length) 1474 { 1475 struct buffer_head *head, *bh, *next; 1476 unsigned int curr_off = 0; 1477 unsigned int stop = length + offset; 1478 1479 BUG_ON(!PageLocked(page)); 1480 if (!page_has_buffers(page)) 1481 goto out; 1482 1483 /* 1484 * Check for overflow 1485 */ 1486 BUG_ON(stop > PAGE_SIZE || stop < length); 1487 1488 head = page_buffers(page); 1489 bh = head; 1490 do { 1491 unsigned int next_off = curr_off + bh->b_size; 1492 next = bh->b_this_page; 1493 1494 /* 1495 * Are we still fully in range ? 1496 */ 1497 if (next_off > stop) 1498 goto out; 1499 1500 /* 1501 * is this block fully invalidated? 1502 */ 1503 if (offset <= curr_off) 1504 discard_buffer(bh); 1505 curr_off = next_off; 1506 bh = next; 1507 } while (bh != head); 1508 1509 /* 1510 * We release buffers only if the entire page is being invalidated. 1511 * The get_block cached value has been unconditionally invalidated, 1512 * so real IO is not possible anymore. 1513 */ 1514 if (offset == 0) 1515 try_to_release_page(page, 0); 1516 out: 1517 return; 1518 } 1519 EXPORT_SYMBOL(block_invalidatepage); 1520 1521 1522 /* 1523 * We attach and possibly dirty the buffers atomically wrt 1524 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1525 * is already excluded via the page lock. 1526 */ 1527 void create_empty_buffers(struct page *page, 1528 unsigned long blocksize, unsigned long b_state) 1529 { 1530 struct buffer_head *bh, *head, *tail; 1531 1532 head = alloc_page_buffers(page, blocksize, true); 1533 bh = head; 1534 do { 1535 bh->b_state |= b_state; 1536 tail = bh; 1537 bh = bh->b_this_page; 1538 } while (bh); 1539 tail->b_this_page = head; 1540 1541 spin_lock(&page->mapping->private_lock); 1542 if (PageUptodate(page) || PageDirty(page)) { 1543 bh = head; 1544 do { 1545 if (PageDirty(page)) 1546 set_buffer_dirty(bh); 1547 if (PageUptodate(page)) 1548 set_buffer_uptodate(bh); 1549 bh = bh->b_this_page; 1550 } while (bh != head); 1551 } 1552 attach_page_buffers(page, head); 1553 spin_unlock(&page->mapping->private_lock); 1554 } 1555 EXPORT_SYMBOL(create_empty_buffers); 1556 1557 /** 1558 * clean_bdev_aliases: clean a range of buffers in block device 1559 * @bdev: Block device to clean buffers in 1560 * @block: Start of a range of blocks to clean 1561 * @len: Number of blocks to clean 1562 * 1563 * We are taking a range of blocks for data and we don't want writeback of any 1564 * buffer-cache aliases starting from return from this function and until the 1565 * moment when something will explicitly mark the buffer dirty (hopefully that 1566 * will not happen until we will free that block ;-) We don't even need to mark 1567 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1568 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1569 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1570 * would confuse anyone who might pick it with bread() afterwards... 1571 * 1572 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1573 * writeout I/O going on against recently-freed buffers. We don't wait on that 1574 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1575 * need to. That happens here. 1576 */ 1577 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1578 { 1579 struct inode *bd_inode = bdev->bd_inode; 1580 struct address_space *bd_mapping = bd_inode->i_mapping; 1581 struct pagevec pvec; 1582 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1583 pgoff_t end; 1584 int i, count; 1585 struct buffer_head *bh; 1586 struct buffer_head *head; 1587 1588 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1589 pagevec_init(&pvec); 1590 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1591 count = pagevec_count(&pvec); 1592 for (i = 0; i < count; i++) { 1593 struct page *page = pvec.pages[i]; 1594 1595 if (!page_has_buffers(page)) 1596 continue; 1597 /* 1598 * We use page lock instead of bd_mapping->private_lock 1599 * to pin buffers here since we can afford to sleep and 1600 * it scales better than a global spinlock lock. 1601 */ 1602 lock_page(page); 1603 /* Recheck when the page is locked which pins bhs */ 1604 if (!page_has_buffers(page)) 1605 goto unlock_page; 1606 head = page_buffers(page); 1607 bh = head; 1608 do { 1609 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1610 goto next; 1611 if (bh->b_blocknr >= block + len) 1612 break; 1613 clear_buffer_dirty(bh); 1614 wait_on_buffer(bh); 1615 clear_buffer_req(bh); 1616 next: 1617 bh = bh->b_this_page; 1618 } while (bh != head); 1619 unlock_page: 1620 unlock_page(page); 1621 } 1622 pagevec_release(&pvec); 1623 cond_resched(); 1624 /* End of range already reached? */ 1625 if (index > end || !index) 1626 break; 1627 } 1628 } 1629 EXPORT_SYMBOL(clean_bdev_aliases); 1630 1631 /* 1632 * Size is a power-of-two in the range 512..PAGE_SIZE, 1633 * and the case we care about most is PAGE_SIZE. 1634 * 1635 * So this *could* possibly be written with those 1636 * constraints in mind (relevant mostly if some 1637 * architecture has a slow bit-scan instruction) 1638 */ 1639 static inline int block_size_bits(unsigned int blocksize) 1640 { 1641 return ilog2(blocksize); 1642 } 1643 1644 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1645 { 1646 BUG_ON(!PageLocked(page)); 1647 1648 if (!page_has_buffers(page)) 1649 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1650 b_state); 1651 return page_buffers(page); 1652 } 1653 1654 /* 1655 * NOTE! All mapped/uptodate combinations are valid: 1656 * 1657 * Mapped Uptodate Meaning 1658 * 1659 * No No "unknown" - must do get_block() 1660 * No Yes "hole" - zero-filled 1661 * Yes No "allocated" - allocated on disk, not read in 1662 * Yes Yes "valid" - allocated and up-to-date in memory. 1663 * 1664 * "Dirty" is valid only with the last case (mapped+uptodate). 1665 */ 1666 1667 /* 1668 * While block_write_full_page is writing back the dirty buffers under 1669 * the page lock, whoever dirtied the buffers may decide to clean them 1670 * again at any time. We handle that by only looking at the buffer 1671 * state inside lock_buffer(). 1672 * 1673 * If block_write_full_page() is called for regular writeback 1674 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1675 * locked buffer. This only can happen if someone has written the buffer 1676 * directly, with submit_bh(). At the address_space level PageWriteback 1677 * prevents this contention from occurring. 1678 * 1679 * If block_write_full_page() is called with wbc->sync_mode == 1680 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1681 * causes the writes to be flagged as synchronous writes. 1682 */ 1683 int __block_write_full_page(struct inode *inode, struct page *page, 1684 get_block_t *get_block, struct writeback_control *wbc, 1685 bh_end_io_t *handler) 1686 { 1687 int err; 1688 sector_t block; 1689 sector_t last_block; 1690 struct buffer_head *bh, *head; 1691 unsigned int blocksize, bbits; 1692 int nr_underway = 0; 1693 int write_flags = wbc_to_write_flags(wbc); 1694 1695 head = create_page_buffers(page, inode, 1696 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1697 1698 /* 1699 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1700 * here, and the (potentially unmapped) buffers may become dirty at 1701 * any time. If a buffer becomes dirty here after we've inspected it 1702 * then we just miss that fact, and the page stays dirty. 1703 * 1704 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1705 * handle that here by just cleaning them. 1706 */ 1707 1708 bh = head; 1709 blocksize = bh->b_size; 1710 bbits = block_size_bits(blocksize); 1711 1712 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1713 last_block = (i_size_read(inode) - 1) >> bbits; 1714 1715 /* 1716 * Get all the dirty buffers mapped to disk addresses and 1717 * handle any aliases from the underlying blockdev's mapping. 1718 */ 1719 do { 1720 if (block > last_block) { 1721 /* 1722 * mapped buffers outside i_size will occur, because 1723 * this page can be outside i_size when there is a 1724 * truncate in progress. 1725 */ 1726 /* 1727 * The buffer was zeroed by block_write_full_page() 1728 */ 1729 clear_buffer_dirty(bh); 1730 set_buffer_uptodate(bh); 1731 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1732 buffer_dirty(bh)) { 1733 WARN_ON(bh->b_size != blocksize); 1734 err = get_block(inode, block, bh, 1); 1735 if (err) 1736 goto recover; 1737 clear_buffer_delay(bh); 1738 if (buffer_new(bh)) { 1739 /* blockdev mappings never come here */ 1740 clear_buffer_new(bh); 1741 clean_bdev_bh_alias(bh); 1742 } 1743 } 1744 bh = bh->b_this_page; 1745 block++; 1746 } while (bh != head); 1747 1748 do { 1749 if (!buffer_mapped(bh)) 1750 continue; 1751 /* 1752 * If it's a fully non-blocking write attempt and we cannot 1753 * lock the buffer then redirty the page. Note that this can 1754 * potentially cause a busy-wait loop from writeback threads 1755 * and kswapd activity, but those code paths have their own 1756 * higher-level throttling. 1757 */ 1758 if (wbc->sync_mode != WB_SYNC_NONE) { 1759 lock_buffer(bh); 1760 } else if (!trylock_buffer(bh)) { 1761 redirty_page_for_writepage(wbc, page); 1762 continue; 1763 } 1764 if (test_clear_buffer_dirty(bh)) { 1765 mark_buffer_async_write_endio(bh, handler); 1766 } else { 1767 unlock_buffer(bh); 1768 } 1769 } while ((bh = bh->b_this_page) != head); 1770 1771 /* 1772 * The page and its buffers are protected by PageWriteback(), so we can 1773 * drop the bh refcounts early. 1774 */ 1775 BUG_ON(PageWriteback(page)); 1776 set_page_writeback(page); 1777 1778 do { 1779 struct buffer_head *next = bh->b_this_page; 1780 if (buffer_async_write(bh)) { 1781 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1782 inode->i_write_hint, wbc); 1783 nr_underway++; 1784 } 1785 bh = next; 1786 } while (bh != head); 1787 unlock_page(page); 1788 1789 err = 0; 1790 done: 1791 if (nr_underway == 0) { 1792 /* 1793 * The page was marked dirty, but the buffers were 1794 * clean. Someone wrote them back by hand with 1795 * ll_rw_block/submit_bh. A rare case. 1796 */ 1797 end_page_writeback(page); 1798 1799 /* 1800 * The page and buffer_heads can be released at any time from 1801 * here on. 1802 */ 1803 } 1804 return err; 1805 1806 recover: 1807 /* 1808 * ENOSPC, or some other error. We may already have added some 1809 * blocks to the file, so we need to write these out to avoid 1810 * exposing stale data. 1811 * The page is currently locked and not marked for writeback 1812 */ 1813 bh = head; 1814 /* Recovery: lock and submit the mapped buffers */ 1815 do { 1816 if (buffer_mapped(bh) && buffer_dirty(bh) && 1817 !buffer_delay(bh)) { 1818 lock_buffer(bh); 1819 mark_buffer_async_write_endio(bh, handler); 1820 } else { 1821 /* 1822 * The buffer may have been set dirty during 1823 * attachment to a dirty page. 1824 */ 1825 clear_buffer_dirty(bh); 1826 } 1827 } while ((bh = bh->b_this_page) != head); 1828 SetPageError(page); 1829 BUG_ON(PageWriteback(page)); 1830 mapping_set_error(page->mapping, err); 1831 set_page_writeback(page); 1832 do { 1833 struct buffer_head *next = bh->b_this_page; 1834 if (buffer_async_write(bh)) { 1835 clear_buffer_dirty(bh); 1836 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1837 inode->i_write_hint, wbc); 1838 nr_underway++; 1839 } 1840 bh = next; 1841 } while (bh != head); 1842 unlock_page(page); 1843 goto done; 1844 } 1845 EXPORT_SYMBOL(__block_write_full_page); 1846 1847 /* 1848 * If a page has any new buffers, zero them out here, and mark them uptodate 1849 * and dirty so they'll be written out (in order to prevent uninitialised 1850 * block data from leaking). And clear the new bit. 1851 */ 1852 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1853 { 1854 unsigned int block_start, block_end; 1855 struct buffer_head *head, *bh; 1856 1857 BUG_ON(!PageLocked(page)); 1858 if (!page_has_buffers(page)) 1859 return; 1860 1861 bh = head = page_buffers(page); 1862 block_start = 0; 1863 do { 1864 block_end = block_start + bh->b_size; 1865 1866 if (buffer_new(bh)) { 1867 if (block_end > from && block_start < to) { 1868 if (!PageUptodate(page)) { 1869 unsigned start, size; 1870 1871 start = max(from, block_start); 1872 size = min(to, block_end) - start; 1873 1874 zero_user(page, start, size); 1875 set_buffer_uptodate(bh); 1876 } 1877 1878 clear_buffer_new(bh); 1879 mark_buffer_dirty(bh); 1880 } 1881 } 1882 1883 block_start = block_end; 1884 bh = bh->b_this_page; 1885 } while (bh != head); 1886 } 1887 EXPORT_SYMBOL(page_zero_new_buffers); 1888 1889 static void 1890 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1891 struct iomap *iomap) 1892 { 1893 loff_t offset = block << inode->i_blkbits; 1894 1895 bh->b_bdev = iomap->bdev; 1896 1897 /* 1898 * Block points to offset in file we need to map, iomap contains 1899 * the offset at which the map starts. If the map ends before the 1900 * current block, then do not map the buffer and let the caller 1901 * handle it. 1902 */ 1903 BUG_ON(offset >= iomap->offset + iomap->length); 1904 1905 switch (iomap->type) { 1906 case IOMAP_HOLE: 1907 /* 1908 * If the buffer is not up to date or beyond the current EOF, 1909 * we need to mark it as new to ensure sub-block zeroing is 1910 * executed if necessary. 1911 */ 1912 if (!buffer_uptodate(bh) || 1913 (offset >= i_size_read(inode))) 1914 set_buffer_new(bh); 1915 break; 1916 case IOMAP_DELALLOC: 1917 if (!buffer_uptodate(bh) || 1918 (offset >= i_size_read(inode))) 1919 set_buffer_new(bh); 1920 set_buffer_uptodate(bh); 1921 set_buffer_mapped(bh); 1922 set_buffer_delay(bh); 1923 break; 1924 case IOMAP_UNWRITTEN: 1925 /* 1926 * For unwritten regions, we always need to ensure that 1927 * sub-block writes cause the regions in the block we are not 1928 * writing to are zeroed. Set the buffer as new to ensure this. 1929 */ 1930 set_buffer_new(bh); 1931 set_buffer_unwritten(bh); 1932 /* FALLTHRU */ 1933 case IOMAP_MAPPED: 1934 if (offset >= i_size_read(inode)) 1935 set_buffer_new(bh); 1936 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1937 inode->i_blkbits; 1938 set_buffer_mapped(bh); 1939 break; 1940 } 1941 } 1942 1943 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1944 get_block_t *get_block, struct iomap *iomap) 1945 { 1946 unsigned from = pos & (PAGE_SIZE - 1); 1947 unsigned to = from + len; 1948 struct inode *inode = page->mapping->host; 1949 unsigned block_start, block_end; 1950 sector_t block; 1951 int err = 0; 1952 unsigned blocksize, bbits; 1953 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1954 1955 BUG_ON(!PageLocked(page)); 1956 BUG_ON(from > PAGE_SIZE); 1957 BUG_ON(to > PAGE_SIZE); 1958 BUG_ON(from > to); 1959 1960 head = create_page_buffers(page, inode, 0); 1961 blocksize = head->b_size; 1962 bbits = block_size_bits(blocksize); 1963 1964 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1965 1966 for(bh = head, block_start = 0; bh != head || !block_start; 1967 block++, block_start=block_end, bh = bh->b_this_page) { 1968 block_end = block_start + blocksize; 1969 if (block_end <= from || block_start >= to) { 1970 if (PageUptodate(page)) { 1971 if (!buffer_uptodate(bh)) 1972 set_buffer_uptodate(bh); 1973 } 1974 continue; 1975 } 1976 if (buffer_new(bh)) 1977 clear_buffer_new(bh); 1978 if (!buffer_mapped(bh)) { 1979 WARN_ON(bh->b_size != blocksize); 1980 if (get_block) { 1981 err = get_block(inode, block, bh, 1); 1982 if (err) 1983 break; 1984 } else { 1985 iomap_to_bh(inode, block, bh, iomap); 1986 } 1987 1988 if (buffer_new(bh)) { 1989 clean_bdev_bh_alias(bh); 1990 if (PageUptodate(page)) { 1991 clear_buffer_new(bh); 1992 set_buffer_uptodate(bh); 1993 mark_buffer_dirty(bh); 1994 continue; 1995 } 1996 if (block_end > to || block_start < from) 1997 zero_user_segments(page, 1998 to, block_end, 1999 block_start, from); 2000 continue; 2001 } 2002 } 2003 if (PageUptodate(page)) { 2004 if (!buffer_uptodate(bh)) 2005 set_buffer_uptodate(bh); 2006 continue; 2007 } 2008 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2009 !buffer_unwritten(bh) && 2010 (block_start < from || block_end > to)) { 2011 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2012 *wait_bh++=bh; 2013 } 2014 } 2015 /* 2016 * If we issued read requests - let them complete. 2017 */ 2018 while(wait_bh > wait) { 2019 wait_on_buffer(*--wait_bh); 2020 if (!buffer_uptodate(*wait_bh)) 2021 err = -EIO; 2022 } 2023 if (unlikely(err)) 2024 page_zero_new_buffers(page, from, to); 2025 return err; 2026 } 2027 2028 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2029 get_block_t *get_block) 2030 { 2031 return __block_write_begin_int(page, pos, len, get_block, NULL); 2032 } 2033 EXPORT_SYMBOL(__block_write_begin); 2034 2035 static int __block_commit_write(struct inode *inode, struct page *page, 2036 unsigned from, unsigned to) 2037 { 2038 unsigned block_start, block_end; 2039 int partial = 0; 2040 unsigned blocksize; 2041 struct buffer_head *bh, *head; 2042 2043 bh = head = page_buffers(page); 2044 blocksize = bh->b_size; 2045 2046 block_start = 0; 2047 do { 2048 block_end = block_start + blocksize; 2049 if (block_end <= from || block_start >= to) { 2050 if (!buffer_uptodate(bh)) 2051 partial = 1; 2052 } else { 2053 set_buffer_uptodate(bh); 2054 mark_buffer_dirty(bh); 2055 } 2056 clear_buffer_new(bh); 2057 2058 block_start = block_end; 2059 bh = bh->b_this_page; 2060 } while (bh != head); 2061 2062 /* 2063 * If this is a partial write which happened to make all buffers 2064 * uptodate then we can optimize away a bogus readpage() for 2065 * the next read(). Here we 'discover' whether the page went 2066 * uptodate as a result of this (potentially partial) write. 2067 */ 2068 if (!partial) 2069 SetPageUptodate(page); 2070 return 0; 2071 } 2072 2073 /* 2074 * block_write_begin takes care of the basic task of block allocation and 2075 * bringing partial write blocks uptodate first. 2076 * 2077 * The filesystem needs to handle block truncation upon failure. 2078 */ 2079 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2080 unsigned flags, struct page **pagep, get_block_t *get_block) 2081 { 2082 pgoff_t index = pos >> PAGE_SHIFT; 2083 struct page *page; 2084 int status; 2085 2086 page = grab_cache_page_write_begin(mapping, index, flags); 2087 if (!page) 2088 return -ENOMEM; 2089 2090 status = __block_write_begin(page, pos, len, get_block); 2091 if (unlikely(status)) { 2092 unlock_page(page); 2093 put_page(page); 2094 page = NULL; 2095 } 2096 2097 *pagep = page; 2098 return status; 2099 } 2100 EXPORT_SYMBOL(block_write_begin); 2101 2102 int block_write_end(struct file *file, struct address_space *mapping, 2103 loff_t pos, unsigned len, unsigned copied, 2104 struct page *page, void *fsdata) 2105 { 2106 struct inode *inode = mapping->host; 2107 unsigned start; 2108 2109 start = pos & (PAGE_SIZE - 1); 2110 2111 if (unlikely(copied < len)) { 2112 /* 2113 * The buffers that were written will now be uptodate, so we 2114 * don't have to worry about a readpage reading them and 2115 * overwriting a partial write. However if we have encountered 2116 * a short write and only partially written into a buffer, it 2117 * will not be marked uptodate, so a readpage might come in and 2118 * destroy our partial write. 2119 * 2120 * Do the simplest thing, and just treat any short write to a 2121 * non uptodate page as a zero-length write, and force the 2122 * caller to redo the whole thing. 2123 */ 2124 if (!PageUptodate(page)) 2125 copied = 0; 2126 2127 page_zero_new_buffers(page, start+copied, start+len); 2128 } 2129 flush_dcache_page(page); 2130 2131 /* This could be a short (even 0-length) commit */ 2132 __block_commit_write(inode, page, start, start+copied); 2133 2134 return copied; 2135 } 2136 EXPORT_SYMBOL(block_write_end); 2137 2138 int generic_write_end(struct file *file, struct address_space *mapping, 2139 loff_t pos, unsigned len, unsigned copied, 2140 struct page *page, void *fsdata) 2141 { 2142 struct inode *inode = mapping->host; 2143 loff_t old_size = inode->i_size; 2144 int i_size_changed = 0; 2145 2146 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2147 2148 /* 2149 * No need to use i_size_read() here, the i_size 2150 * cannot change under us because we hold i_mutex. 2151 * 2152 * But it's important to update i_size while still holding page lock: 2153 * page writeout could otherwise come in and zero beyond i_size. 2154 */ 2155 if (pos+copied > inode->i_size) { 2156 i_size_write(inode, pos+copied); 2157 i_size_changed = 1; 2158 } 2159 2160 unlock_page(page); 2161 put_page(page); 2162 2163 if (old_size < pos) 2164 pagecache_isize_extended(inode, old_size, pos); 2165 /* 2166 * Don't mark the inode dirty under page lock. First, it unnecessarily 2167 * makes the holding time of page lock longer. Second, it forces lock 2168 * ordering of page lock and transaction start for journaling 2169 * filesystems. 2170 */ 2171 if (i_size_changed) 2172 mark_inode_dirty(inode); 2173 2174 return copied; 2175 } 2176 EXPORT_SYMBOL(generic_write_end); 2177 2178 /* 2179 * block_is_partially_uptodate checks whether buffers within a page are 2180 * uptodate or not. 2181 * 2182 * Returns true if all buffers which correspond to a file portion 2183 * we want to read are uptodate. 2184 */ 2185 int block_is_partially_uptodate(struct page *page, unsigned long from, 2186 unsigned long count) 2187 { 2188 unsigned block_start, block_end, blocksize; 2189 unsigned to; 2190 struct buffer_head *bh, *head; 2191 int ret = 1; 2192 2193 if (!page_has_buffers(page)) 2194 return 0; 2195 2196 head = page_buffers(page); 2197 blocksize = head->b_size; 2198 to = min_t(unsigned, PAGE_SIZE - from, count); 2199 to = from + to; 2200 if (from < blocksize && to > PAGE_SIZE - blocksize) 2201 return 0; 2202 2203 bh = head; 2204 block_start = 0; 2205 do { 2206 block_end = block_start + blocksize; 2207 if (block_end > from && block_start < to) { 2208 if (!buffer_uptodate(bh)) { 2209 ret = 0; 2210 break; 2211 } 2212 if (block_end >= to) 2213 break; 2214 } 2215 block_start = block_end; 2216 bh = bh->b_this_page; 2217 } while (bh != head); 2218 2219 return ret; 2220 } 2221 EXPORT_SYMBOL(block_is_partially_uptodate); 2222 2223 /* 2224 * Generic "read page" function for block devices that have the normal 2225 * get_block functionality. This is most of the block device filesystems. 2226 * Reads the page asynchronously --- the unlock_buffer() and 2227 * set/clear_buffer_uptodate() functions propagate buffer state into the 2228 * page struct once IO has completed. 2229 */ 2230 int block_read_full_page(struct page *page, get_block_t *get_block) 2231 { 2232 struct inode *inode = page->mapping->host; 2233 sector_t iblock, lblock; 2234 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2235 unsigned int blocksize, bbits; 2236 int nr, i; 2237 int fully_mapped = 1; 2238 2239 head = create_page_buffers(page, inode, 0); 2240 blocksize = head->b_size; 2241 bbits = block_size_bits(blocksize); 2242 2243 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2244 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2245 bh = head; 2246 nr = 0; 2247 i = 0; 2248 2249 do { 2250 if (buffer_uptodate(bh)) 2251 continue; 2252 2253 if (!buffer_mapped(bh)) { 2254 int err = 0; 2255 2256 fully_mapped = 0; 2257 if (iblock < lblock) { 2258 WARN_ON(bh->b_size != blocksize); 2259 err = get_block(inode, iblock, bh, 0); 2260 if (err) 2261 SetPageError(page); 2262 } 2263 if (!buffer_mapped(bh)) { 2264 zero_user(page, i * blocksize, blocksize); 2265 if (!err) 2266 set_buffer_uptodate(bh); 2267 continue; 2268 } 2269 /* 2270 * get_block() might have updated the buffer 2271 * synchronously 2272 */ 2273 if (buffer_uptodate(bh)) 2274 continue; 2275 } 2276 arr[nr++] = bh; 2277 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2278 2279 if (fully_mapped) 2280 SetPageMappedToDisk(page); 2281 2282 if (!nr) { 2283 /* 2284 * All buffers are uptodate - we can set the page uptodate 2285 * as well. But not if get_block() returned an error. 2286 */ 2287 if (!PageError(page)) 2288 SetPageUptodate(page); 2289 unlock_page(page); 2290 return 0; 2291 } 2292 2293 /* Stage two: lock the buffers */ 2294 for (i = 0; i < nr; i++) { 2295 bh = arr[i]; 2296 lock_buffer(bh); 2297 mark_buffer_async_read(bh); 2298 } 2299 2300 /* 2301 * Stage 3: start the IO. Check for uptodateness 2302 * inside the buffer lock in case another process reading 2303 * the underlying blockdev brought it uptodate (the sct fix). 2304 */ 2305 for (i = 0; i < nr; i++) { 2306 bh = arr[i]; 2307 if (buffer_uptodate(bh)) 2308 end_buffer_async_read(bh, 1); 2309 else 2310 submit_bh(REQ_OP_READ, 0, bh); 2311 } 2312 return 0; 2313 } 2314 EXPORT_SYMBOL(block_read_full_page); 2315 2316 /* utility function for filesystems that need to do work on expanding 2317 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2318 * deal with the hole. 2319 */ 2320 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2321 { 2322 struct address_space *mapping = inode->i_mapping; 2323 struct page *page; 2324 void *fsdata; 2325 int err; 2326 2327 err = inode_newsize_ok(inode, size); 2328 if (err) 2329 goto out; 2330 2331 err = pagecache_write_begin(NULL, mapping, size, 0, 2332 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2333 if (err) 2334 goto out; 2335 2336 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2337 BUG_ON(err > 0); 2338 2339 out: 2340 return err; 2341 } 2342 EXPORT_SYMBOL(generic_cont_expand_simple); 2343 2344 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2345 loff_t pos, loff_t *bytes) 2346 { 2347 struct inode *inode = mapping->host; 2348 unsigned int blocksize = i_blocksize(inode); 2349 struct page *page; 2350 void *fsdata; 2351 pgoff_t index, curidx; 2352 loff_t curpos; 2353 unsigned zerofrom, offset, len; 2354 int err = 0; 2355 2356 index = pos >> PAGE_SHIFT; 2357 offset = pos & ~PAGE_MASK; 2358 2359 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2360 zerofrom = curpos & ~PAGE_MASK; 2361 if (zerofrom & (blocksize-1)) { 2362 *bytes |= (blocksize-1); 2363 (*bytes)++; 2364 } 2365 len = PAGE_SIZE - zerofrom; 2366 2367 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2368 &page, &fsdata); 2369 if (err) 2370 goto out; 2371 zero_user(page, zerofrom, len); 2372 err = pagecache_write_end(file, mapping, curpos, len, len, 2373 page, fsdata); 2374 if (err < 0) 2375 goto out; 2376 BUG_ON(err != len); 2377 err = 0; 2378 2379 balance_dirty_pages_ratelimited(mapping); 2380 2381 if (unlikely(fatal_signal_pending(current))) { 2382 err = -EINTR; 2383 goto out; 2384 } 2385 } 2386 2387 /* page covers the boundary, find the boundary offset */ 2388 if (index == curidx) { 2389 zerofrom = curpos & ~PAGE_MASK; 2390 /* if we will expand the thing last block will be filled */ 2391 if (offset <= zerofrom) { 2392 goto out; 2393 } 2394 if (zerofrom & (blocksize-1)) { 2395 *bytes |= (blocksize-1); 2396 (*bytes)++; 2397 } 2398 len = offset - zerofrom; 2399 2400 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2401 &page, &fsdata); 2402 if (err) 2403 goto out; 2404 zero_user(page, zerofrom, len); 2405 err = pagecache_write_end(file, mapping, curpos, len, len, 2406 page, fsdata); 2407 if (err < 0) 2408 goto out; 2409 BUG_ON(err != len); 2410 err = 0; 2411 } 2412 out: 2413 return err; 2414 } 2415 2416 /* 2417 * For moronic filesystems that do not allow holes in file. 2418 * We may have to extend the file. 2419 */ 2420 int cont_write_begin(struct file *file, struct address_space *mapping, 2421 loff_t pos, unsigned len, unsigned flags, 2422 struct page **pagep, void **fsdata, 2423 get_block_t *get_block, loff_t *bytes) 2424 { 2425 struct inode *inode = mapping->host; 2426 unsigned int blocksize = i_blocksize(inode); 2427 unsigned int zerofrom; 2428 int err; 2429 2430 err = cont_expand_zero(file, mapping, pos, bytes); 2431 if (err) 2432 return err; 2433 2434 zerofrom = *bytes & ~PAGE_MASK; 2435 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2436 *bytes |= (blocksize-1); 2437 (*bytes)++; 2438 } 2439 2440 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2441 } 2442 EXPORT_SYMBOL(cont_write_begin); 2443 2444 int block_commit_write(struct page *page, unsigned from, unsigned to) 2445 { 2446 struct inode *inode = page->mapping->host; 2447 __block_commit_write(inode,page,from,to); 2448 return 0; 2449 } 2450 EXPORT_SYMBOL(block_commit_write); 2451 2452 /* 2453 * block_page_mkwrite() is not allowed to change the file size as it gets 2454 * called from a page fault handler when a page is first dirtied. Hence we must 2455 * be careful to check for EOF conditions here. We set the page up correctly 2456 * for a written page which means we get ENOSPC checking when writing into 2457 * holes and correct delalloc and unwritten extent mapping on filesystems that 2458 * support these features. 2459 * 2460 * We are not allowed to take the i_mutex here so we have to play games to 2461 * protect against truncate races as the page could now be beyond EOF. Because 2462 * truncate writes the inode size before removing pages, once we have the 2463 * page lock we can determine safely if the page is beyond EOF. If it is not 2464 * beyond EOF, then the page is guaranteed safe against truncation until we 2465 * unlock the page. 2466 * 2467 * Direct callers of this function should protect against filesystem freezing 2468 * using sb_start_pagefault() - sb_end_pagefault() functions. 2469 */ 2470 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2471 get_block_t get_block) 2472 { 2473 struct page *page = vmf->page; 2474 struct inode *inode = file_inode(vma->vm_file); 2475 unsigned long end; 2476 loff_t size; 2477 int ret; 2478 2479 lock_page(page); 2480 size = i_size_read(inode); 2481 if ((page->mapping != inode->i_mapping) || 2482 (page_offset(page) > size)) { 2483 /* We overload EFAULT to mean page got truncated */ 2484 ret = -EFAULT; 2485 goto out_unlock; 2486 } 2487 2488 /* page is wholly or partially inside EOF */ 2489 if (((page->index + 1) << PAGE_SHIFT) > size) 2490 end = size & ~PAGE_MASK; 2491 else 2492 end = PAGE_SIZE; 2493 2494 ret = __block_write_begin(page, 0, end, get_block); 2495 if (!ret) 2496 ret = block_commit_write(page, 0, end); 2497 2498 if (unlikely(ret < 0)) 2499 goto out_unlock; 2500 set_page_dirty(page); 2501 wait_for_stable_page(page); 2502 return 0; 2503 out_unlock: 2504 unlock_page(page); 2505 return ret; 2506 } 2507 EXPORT_SYMBOL(block_page_mkwrite); 2508 2509 /* 2510 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2511 * immediately, while under the page lock. So it needs a special end_io 2512 * handler which does not touch the bh after unlocking it. 2513 */ 2514 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2515 { 2516 __end_buffer_read_notouch(bh, uptodate); 2517 } 2518 2519 /* 2520 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2521 * the page (converting it to circular linked list and taking care of page 2522 * dirty races). 2523 */ 2524 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2525 { 2526 struct buffer_head *bh; 2527 2528 BUG_ON(!PageLocked(page)); 2529 2530 spin_lock(&page->mapping->private_lock); 2531 bh = head; 2532 do { 2533 if (PageDirty(page)) 2534 set_buffer_dirty(bh); 2535 if (!bh->b_this_page) 2536 bh->b_this_page = head; 2537 bh = bh->b_this_page; 2538 } while (bh != head); 2539 attach_page_buffers(page, head); 2540 spin_unlock(&page->mapping->private_lock); 2541 } 2542 2543 /* 2544 * On entry, the page is fully not uptodate. 2545 * On exit the page is fully uptodate in the areas outside (from,to) 2546 * The filesystem needs to handle block truncation upon failure. 2547 */ 2548 int nobh_write_begin(struct address_space *mapping, 2549 loff_t pos, unsigned len, unsigned flags, 2550 struct page **pagep, void **fsdata, 2551 get_block_t *get_block) 2552 { 2553 struct inode *inode = mapping->host; 2554 const unsigned blkbits = inode->i_blkbits; 2555 const unsigned blocksize = 1 << blkbits; 2556 struct buffer_head *head, *bh; 2557 struct page *page; 2558 pgoff_t index; 2559 unsigned from, to; 2560 unsigned block_in_page; 2561 unsigned block_start, block_end; 2562 sector_t block_in_file; 2563 int nr_reads = 0; 2564 int ret = 0; 2565 int is_mapped_to_disk = 1; 2566 2567 index = pos >> PAGE_SHIFT; 2568 from = pos & (PAGE_SIZE - 1); 2569 to = from + len; 2570 2571 page = grab_cache_page_write_begin(mapping, index, flags); 2572 if (!page) 2573 return -ENOMEM; 2574 *pagep = page; 2575 *fsdata = NULL; 2576 2577 if (page_has_buffers(page)) { 2578 ret = __block_write_begin(page, pos, len, get_block); 2579 if (unlikely(ret)) 2580 goto out_release; 2581 return ret; 2582 } 2583 2584 if (PageMappedToDisk(page)) 2585 return 0; 2586 2587 /* 2588 * Allocate buffers so that we can keep track of state, and potentially 2589 * attach them to the page if an error occurs. In the common case of 2590 * no error, they will just be freed again without ever being attached 2591 * to the page (which is all OK, because we're under the page lock). 2592 * 2593 * Be careful: the buffer linked list is a NULL terminated one, rather 2594 * than the circular one we're used to. 2595 */ 2596 head = alloc_page_buffers(page, blocksize, false); 2597 if (!head) { 2598 ret = -ENOMEM; 2599 goto out_release; 2600 } 2601 2602 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2603 2604 /* 2605 * We loop across all blocks in the page, whether or not they are 2606 * part of the affected region. This is so we can discover if the 2607 * page is fully mapped-to-disk. 2608 */ 2609 for (block_start = 0, block_in_page = 0, bh = head; 2610 block_start < PAGE_SIZE; 2611 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2612 int create; 2613 2614 block_end = block_start + blocksize; 2615 bh->b_state = 0; 2616 create = 1; 2617 if (block_start >= to) 2618 create = 0; 2619 ret = get_block(inode, block_in_file + block_in_page, 2620 bh, create); 2621 if (ret) 2622 goto failed; 2623 if (!buffer_mapped(bh)) 2624 is_mapped_to_disk = 0; 2625 if (buffer_new(bh)) 2626 clean_bdev_bh_alias(bh); 2627 if (PageUptodate(page)) { 2628 set_buffer_uptodate(bh); 2629 continue; 2630 } 2631 if (buffer_new(bh) || !buffer_mapped(bh)) { 2632 zero_user_segments(page, block_start, from, 2633 to, block_end); 2634 continue; 2635 } 2636 if (buffer_uptodate(bh)) 2637 continue; /* reiserfs does this */ 2638 if (block_start < from || block_end > to) { 2639 lock_buffer(bh); 2640 bh->b_end_io = end_buffer_read_nobh; 2641 submit_bh(REQ_OP_READ, 0, bh); 2642 nr_reads++; 2643 } 2644 } 2645 2646 if (nr_reads) { 2647 /* 2648 * The page is locked, so these buffers are protected from 2649 * any VM or truncate activity. Hence we don't need to care 2650 * for the buffer_head refcounts. 2651 */ 2652 for (bh = head; bh; bh = bh->b_this_page) { 2653 wait_on_buffer(bh); 2654 if (!buffer_uptodate(bh)) 2655 ret = -EIO; 2656 } 2657 if (ret) 2658 goto failed; 2659 } 2660 2661 if (is_mapped_to_disk) 2662 SetPageMappedToDisk(page); 2663 2664 *fsdata = head; /* to be released by nobh_write_end */ 2665 2666 return 0; 2667 2668 failed: 2669 BUG_ON(!ret); 2670 /* 2671 * Error recovery is a bit difficult. We need to zero out blocks that 2672 * were newly allocated, and dirty them to ensure they get written out. 2673 * Buffers need to be attached to the page at this point, otherwise 2674 * the handling of potential IO errors during writeout would be hard 2675 * (could try doing synchronous writeout, but what if that fails too?) 2676 */ 2677 attach_nobh_buffers(page, head); 2678 page_zero_new_buffers(page, from, to); 2679 2680 out_release: 2681 unlock_page(page); 2682 put_page(page); 2683 *pagep = NULL; 2684 2685 return ret; 2686 } 2687 EXPORT_SYMBOL(nobh_write_begin); 2688 2689 int nobh_write_end(struct file *file, struct address_space *mapping, 2690 loff_t pos, unsigned len, unsigned copied, 2691 struct page *page, void *fsdata) 2692 { 2693 struct inode *inode = page->mapping->host; 2694 struct buffer_head *head = fsdata; 2695 struct buffer_head *bh; 2696 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2697 2698 if (unlikely(copied < len) && head) 2699 attach_nobh_buffers(page, head); 2700 if (page_has_buffers(page)) 2701 return generic_write_end(file, mapping, pos, len, 2702 copied, page, fsdata); 2703 2704 SetPageUptodate(page); 2705 set_page_dirty(page); 2706 if (pos+copied > inode->i_size) { 2707 i_size_write(inode, pos+copied); 2708 mark_inode_dirty(inode); 2709 } 2710 2711 unlock_page(page); 2712 put_page(page); 2713 2714 while (head) { 2715 bh = head; 2716 head = head->b_this_page; 2717 free_buffer_head(bh); 2718 } 2719 2720 return copied; 2721 } 2722 EXPORT_SYMBOL(nobh_write_end); 2723 2724 /* 2725 * nobh_writepage() - based on block_full_write_page() except 2726 * that it tries to operate without attaching bufferheads to 2727 * the page. 2728 */ 2729 int nobh_writepage(struct page *page, get_block_t *get_block, 2730 struct writeback_control *wbc) 2731 { 2732 struct inode * const inode = page->mapping->host; 2733 loff_t i_size = i_size_read(inode); 2734 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2735 unsigned offset; 2736 int ret; 2737 2738 /* Is the page fully inside i_size? */ 2739 if (page->index < end_index) 2740 goto out; 2741 2742 /* Is the page fully outside i_size? (truncate in progress) */ 2743 offset = i_size & (PAGE_SIZE-1); 2744 if (page->index >= end_index+1 || !offset) { 2745 /* 2746 * The page may have dirty, unmapped buffers. For example, 2747 * they may have been added in ext3_writepage(). Make them 2748 * freeable here, so the page does not leak. 2749 */ 2750 #if 0 2751 /* Not really sure about this - do we need this ? */ 2752 if (page->mapping->a_ops->invalidatepage) 2753 page->mapping->a_ops->invalidatepage(page, offset); 2754 #endif 2755 unlock_page(page); 2756 return 0; /* don't care */ 2757 } 2758 2759 /* 2760 * The page straddles i_size. It must be zeroed out on each and every 2761 * writepage invocation because it may be mmapped. "A file is mapped 2762 * in multiples of the page size. For a file that is not a multiple of 2763 * the page size, the remaining memory is zeroed when mapped, and 2764 * writes to that region are not written out to the file." 2765 */ 2766 zero_user_segment(page, offset, PAGE_SIZE); 2767 out: 2768 ret = mpage_writepage(page, get_block, wbc); 2769 if (ret == -EAGAIN) 2770 ret = __block_write_full_page(inode, page, get_block, wbc, 2771 end_buffer_async_write); 2772 return ret; 2773 } 2774 EXPORT_SYMBOL(nobh_writepage); 2775 2776 int nobh_truncate_page(struct address_space *mapping, 2777 loff_t from, get_block_t *get_block) 2778 { 2779 pgoff_t index = from >> PAGE_SHIFT; 2780 unsigned offset = from & (PAGE_SIZE-1); 2781 unsigned blocksize; 2782 sector_t iblock; 2783 unsigned length, pos; 2784 struct inode *inode = mapping->host; 2785 struct page *page; 2786 struct buffer_head map_bh; 2787 int err; 2788 2789 blocksize = i_blocksize(inode); 2790 length = offset & (blocksize - 1); 2791 2792 /* Block boundary? Nothing to do */ 2793 if (!length) 2794 return 0; 2795 2796 length = blocksize - length; 2797 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2798 2799 page = grab_cache_page(mapping, index); 2800 err = -ENOMEM; 2801 if (!page) 2802 goto out; 2803 2804 if (page_has_buffers(page)) { 2805 has_buffers: 2806 unlock_page(page); 2807 put_page(page); 2808 return block_truncate_page(mapping, from, get_block); 2809 } 2810 2811 /* Find the buffer that contains "offset" */ 2812 pos = blocksize; 2813 while (offset >= pos) { 2814 iblock++; 2815 pos += blocksize; 2816 } 2817 2818 map_bh.b_size = blocksize; 2819 map_bh.b_state = 0; 2820 err = get_block(inode, iblock, &map_bh, 0); 2821 if (err) 2822 goto unlock; 2823 /* unmapped? It's a hole - nothing to do */ 2824 if (!buffer_mapped(&map_bh)) 2825 goto unlock; 2826 2827 /* Ok, it's mapped. Make sure it's up-to-date */ 2828 if (!PageUptodate(page)) { 2829 err = mapping->a_ops->readpage(NULL, page); 2830 if (err) { 2831 put_page(page); 2832 goto out; 2833 } 2834 lock_page(page); 2835 if (!PageUptodate(page)) { 2836 err = -EIO; 2837 goto unlock; 2838 } 2839 if (page_has_buffers(page)) 2840 goto has_buffers; 2841 } 2842 zero_user(page, offset, length); 2843 set_page_dirty(page); 2844 err = 0; 2845 2846 unlock: 2847 unlock_page(page); 2848 put_page(page); 2849 out: 2850 return err; 2851 } 2852 EXPORT_SYMBOL(nobh_truncate_page); 2853 2854 int block_truncate_page(struct address_space *mapping, 2855 loff_t from, get_block_t *get_block) 2856 { 2857 pgoff_t index = from >> PAGE_SHIFT; 2858 unsigned offset = from & (PAGE_SIZE-1); 2859 unsigned blocksize; 2860 sector_t iblock; 2861 unsigned length, pos; 2862 struct inode *inode = mapping->host; 2863 struct page *page; 2864 struct buffer_head *bh; 2865 int err; 2866 2867 blocksize = i_blocksize(inode); 2868 length = offset & (blocksize - 1); 2869 2870 /* Block boundary? Nothing to do */ 2871 if (!length) 2872 return 0; 2873 2874 length = blocksize - length; 2875 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2876 2877 page = grab_cache_page(mapping, index); 2878 err = -ENOMEM; 2879 if (!page) 2880 goto out; 2881 2882 if (!page_has_buffers(page)) 2883 create_empty_buffers(page, blocksize, 0); 2884 2885 /* Find the buffer that contains "offset" */ 2886 bh = page_buffers(page); 2887 pos = blocksize; 2888 while (offset >= pos) { 2889 bh = bh->b_this_page; 2890 iblock++; 2891 pos += blocksize; 2892 } 2893 2894 err = 0; 2895 if (!buffer_mapped(bh)) { 2896 WARN_ON(bh->b_size != blocksize); 2897 err = get_block(inode, iblock, bh, 0); 2898 if (err) 2899 goto unlock; 2900 /* unmapped? It's a hole - nothing to do */ 2901 if (!buffer_mapped(bh)) 2902 goto unlock; 2903 } 2904 2905 /* Ok, it's mapped. Make sure it's up-to-date */ 2906 if (PageUptodate(page)) 2907 set_buffer_uptodate(bh); 2908 2909 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2910 err = -EIO; 2911 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2912 wait_on_buffer(bh); 2913 /* Uhhuh. Read error. Complain and punt. */ 2914 if (!buffer_uptodate(bh)) 2915 goto unlock; 2916 } 2917 2918 zero_user(page, offset, length); 2919 mark_buffer_dirty(bh); 2920 err = 0; 2921 2922 unlock: 2923 unlock_page(page); 2924 put_page(page); 2925 out: 2926 return err; 2927 } 2928 EXPORT_SYMBOL(block_truncate_page); 2929 2930 /* 2931 * The generic ->writepage function for buffer-backed address_spaces 2932 */ 2933 int block_write_full_page(struct page *page, get_block_t *get_block, 2934 struct writeback_control *wbc) 2935 { 2936 struct inode * const inode = page->mapping->host; 2937 loff_t i_size = i_size_read(inode); 2938 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2939 unsigned offset; 2940 2941 /* Is the page fully inside i_size? */ 2942 if (page->index < end_index) 2943 return __block_write_full_page(inode, page, get_block, wbc, 2944 end_buffer_async_write); 2945 2946 /* Is the page fully outside i_size? (truncate in progress) */ 2947 offset = i_size & (PAGE_SIZE-1); 2948 if (page->index >= end_index+1 || !offset) { 2949 /* 2950 * The page may have dirty, unmapped buffers. For example, 2951 * they may have been added in ext3_writepage(). Make them 2952 * freeable here, so the page does not leak. 2953 */ 2954 do_invalidatepage(page, 0, PAGE_SIZE); 2955 unlock_page(page); 2956 return 0; /* don't care */ 2957 } 2958 2959 /* 2960 * The page straddles i_size. It must be zeroed out on each and every 2961 * writepage invocation because it may be mmapped. "A file is mapped 2962 * in multiples of the page size. For a file that is not a multiple of 2963 * the page size, the remaining memory is zeroed when mapped, and 2964 * writes to that region are not written out to the file." 2965 */ 2966 zero_user_segment(page, offset, PAGE_SIZE); 2967 return __block_write_full_page(inode, page, get_block, wbc, 2968 end_buffer_async_write); 2969 } 2970 EXPORT_SYMBOL(block_write_full_page); 2971 2972 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2973 get_block_t *get_block) 2974 { 2975 struct inode *inode = mapping->host; 2976 struct buffer_head tmp = { 2977 .b_size = i_blocksize(inode), 2978 }; 2979 2980 get_block(inode, block, &tmp, 0); 2981 return tmp.b_blocknr; 2982 } 2983 EXPORT_SYMBOL(generic_block_bmap); 2984 2985 static void end_bio_bh_io_sync(struct bio *bio) 2986 { 2987 struct buffer_head *bh = bio->bi_private; 2988 2989 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2990 set_bit(BH_Quiet, &bh->b_state); 2991 2992 bh->b_end_io(bh, !bio->bi_status); 2993 bio_put(bio); 2994 } 2995 2996 /* 2997 * This allows us to do IO even on the odd last sectors 2998 * of a device, even if the block size is some multiple 2999 * of the physical sector size. 3000 * 3001 * We'll just truncate the bio to the size of the device, 3002 * and clear the end of the buffer head manually. 3003 * 3004 * Truly out-of-range accesses will turn into actual IO 3005 * errors, this only handles the "we need to be able to 3006 * do IO at the final sector" case. 3007 */ 3008 void guard_bio_eod(int op, struct bio *bio) 3009 { 3010 sector_t maxsector; 3011 struct bio_vec *bvec = bio_last_bvec_all(bio); 3012 unsigned truncated_bytes; 3013 struct hd_struct *part; 3014 3015 rcu_read_lock(); 3016 part = __disk_get_part(bio->bi_disk, bio->bi_partno); 3017 if (part) 3018 maxsector = part_nr_sects_read(part); 3019 else 3020 maxsector = get_capacity(bio->bi_disk); 3021 rcu_read_unlock(); 3022 3023 if (!maxsector) 3024 return; 3025 3026 /* 3027 * If the *whole* IO is past the end of the device, 3028 * let it through, and the IO layer will turn it into 3029 * an EIO. 3030 */ 3031 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3032 return; 3033 3034 maxsector -= bio->bi_iter.bi_sector; 3035 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3036 return; 3037 3038 /* Uhhuh. We've got a bio that straddles the device size! */ 3039 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3040 3041 /* Truncate the bio.. */ 3042 bio->bi_iter.bi_size -= truncated_bytes; 3043 bvec->bv_len -= truncated_bytes; 3044 3045 /* ..and clear the end of the buffer for reads */ 3046 if (op == REQ_OP_READ) { 3047 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3048 truncated_bytes); 3049 } 3050 } 3051 3052 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3053 enum rw_hint write_hint, struct writeback_control *wbc) 3054 { 3055 struct bio *bio; 3056 3057 BUG_ON(!buffer_locked(bh)); 3058 BUG_ON(!buffer_mapped(bh)); 3059 BUG_ON(!bh->b_end_io); 3060 BUG_ON(buffer_delay(bh)); 3061 BUG_ON(buffer_unwritten(bh)); 3062 3063 /* 3064 * Only clear out a write error when rewriting 3065 */ 3066 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3067 clear_buffer_write_io_error(bh); 3068 3069 /* 3070 * from here on down, it's all bio -- do the initial mapping, 3071 * submit_bio -> generic_make_request may further map this bio around 3072 */ 3073 bio = bio_alloc(GFP_NOIO, 1); 3074 3075 if (wbc) { 3076 wbc_init_bio(wbc, bio); 3077 wbc_account_io(wbc, bh->b_page, bh->b_size); 3078 } 3079 3080 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3081 bio_set_dev(bio, bh->b_bdev); 3082 bio->bi_write_hint = write_hint; 3083 3084 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3085 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3086 3087 bio->bi_end_io = end_bio_bh_io_sync; 3088 bio->bi_private = bh; 3089 3090 /* Take care of bh's that straddle the end of the device */ 3091 guard_bio_eod(op, bio); 3092 3093 if (buffer_meta(bh)) 3094 op_flags |= REQ_META; 3095 if (buffer_prio(bh)) 3096 op_flags |= REQ_PRIO; 3097 bio_set_op_attrs(bio, op, op_flags); 3098 3099 submit_bio(bio); 3100 return 0; 3101 } 3102 3103 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3104 { 3105 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3106 } 3107 EXPORT_SYMBOL(submit_bh); 3108 3109 /** 3110 * ll_rw_block: low-level access to block devices (DEPRECATED) 3111 * @op: whether to %READ or %WRITE 3112 * @op_flags: req_flag_bits 3113 * @nr: number of &struct buffer_heads in the array 3114 * @bhs: array of pointers to &struct buffer_head 3115 * 3116 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3117 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3118 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3119 * %REQ_RAHEAD. 3120 * 3121 * This function drops any buffer that it cannot get a lock on (with the 3122 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3123 * request, and any buffer that appears to be up-to-date when doing read 3124 * request. Further it marks as clean buffers that are processed for 3125 * writing (the buffer cache won't assume that they are actually clean 3126 * until the buffer gets unlocked). 3127 * 3128 * ll_rw_block sets b_end_io to simple completion handler that marks 3129 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3130 * any waiters. 3131 * 3132 * All of the buffers must be for the same device, and must also be a 3133 * multiple of the current approved size for the device. 3134 */ 3135 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3136 { 3137 int i; 3138 3139 for (i = 0; i < nr; i++) { 3140 struct buffer_head *bh = bhs[i]; 3141 3142 if (!trylock_buffer(bh)) 3143 continue; 3144 if (op == WRITE) { 3145 if (test_clear_buffer_dirty(bh)) { 3146 bh->b_end_io = end_buffer_write_sync; 3147 get_bh(bh); 3148 submit_bh(op, op_flags, bh); 3149 continue; 3150 } 3151 } else { 3152 if (!buffer_uptodate(bh)) { 3153 bh->b_end_io = end_buffer_read_sync; 3154 get_bh(bh); 3155 submit_bh(op, op_flags, bh); 3156 continue; 3157 } 3158 } 3159 unlock_buffer(bh); 3160 } 3161 } 3162 EXPORT_SYMBOL(ll_rw_block); 3163 3164 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3165 { 3166 lock_buffer(bh); 3167 if (!test_clear_buffer_dirty(bh)) { 3168 unlock_buffer(bh); 3169 return; 3170 } 3171 bh->b_end_io = end_buffer_write_sync; 3172 get_bh(bh); 3173 submit_bh(REQ_OP_WRITE, op_flags, bh); 3174 } 3175 EXPORT_SYMBOL(write_dirty_buffer); 3176 3177 /* 3178 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3179 * and then start new I/O and then wait upon it. The caller must have a ref on 3180 * the buffer_head. 3181 */ 3182 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3183 { 3184 int ret = 0; 3185 3186 WARN_ON(atomic_read(&bh->b_count) < 1); 3187 lock_buffer(bh); 3188 if (test_clear_buffer_dirty(bh)) { 3189 get_bh(bh); 3190 bh->b_end_io = end_buffer_write_sync; 3191 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3192 wait_on_buffer(bh); 3193 if (!ret && !buffer_uptodate(bh)) 3194 ret = -EIO; 3195 } else { 3196 unlock_buffer(bh); 3197 } 3198 return ret; 3199 } 3200 EXPORT_SYMBOL(__sync_dirty_buffer); 3201 3202 int sync_dirty_buffer(struct buffer_head *bh) 3203 { 3204 return __sync_dirty_buffer(bh, REQ_SYNC); 3205 } 3206 EXPORT_SYMBOL(sync_dirty_buffer); 3207 3208 /* 3209 * try_to_free_buffers() checks if all the buffers on this particular page 3210 * are unused, and releases them if so. 3211 * 3212 * Exclusion against try_to_free_buffers may be obtained by either 3213 * locking the page or by holding its mapping's private_lock. 3214 * 3215 * If the page is dirty but all the buffers are clean then we need to 3216 * be sure to mark the page clean as well. This is because the page 3217 * may be against a block device, and a later reattachment of buffers 3218 * to a dirty page will set *all* buffers dirty. Which would corrupt 3219 * filesystem data on the same device. 3220 * 3221 * The same applies to regular filesystem pages: if all the buffers are 3222 * clean then we set the page clean and proceed. To do that, we require 3223 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3224 * private_lock. 3225 * 3226 * try_to_free_buffers() is non-blocking. 3227 */ 3228 static inline int buffer_busy(struct buffer_head *bh) 3229 { 3230 return atomic_read(&bh->b_count) | 3231 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3232 } 3233 3234 static int 3235 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3236 { 3237 struct buffer_head *head = page_buffers(page); 3238 struct buffer_head *bh; 3239 3240 bh = head; 3241 do { 3242 if (buffer_busy(bh)) 3243 goto failed; 3244 bh = bh->b_this_page; 3245 } while (bh != head); 3246 3247 do { 3248 struct buffer_head *next = bh->b_this_page; 3249 3250 if (bh->b_assoc_map) 3251 __remove_assoc_queue(bh); 3252 bh = next; 3253 } while (bh != head); 3254 *buffers_to_free = head; 3255 __clear_page_buffers(page); 3256 return 1; 3257 failed: 3258 return 0; 3259 } 3260 3261 int try_to_free_buffers(struct page *page) 3262 { 3263 struct address_space * const mapping = page->mapping; 3264 struct buffer_head *buffers_to_free = NULL; 3265 int ret = 0; 3266 3267 BUG_ON(!PageLocked(page)); 3268 if (PageWriteback(page)) 3269 return 0; 3270 3271 if (mapping == NULL) { /* can this still happen? */ 3272 ret = drop_buffers(page, &buffers_to_free); 3273 goto out; 3274 } 3275 3276 spin_lock(&mapping->private_lock); 3277 ret = drop_buffers(page, &buffers_to_free); 3278 3279 /* 3280 * If the filesystem writes its buffers by hand (eg ext3) 3281 * then we can have clean buffers against a dirty page. We 3282 * clean the page here; otherwise the VM will never notice 3283 * that the filesystem did any IO at all. 3284 * 3285 * Also, during truncate, discard_buffer will have marked all 3286 * the page's buffers clean. We discover that here and clean 3287 * the page also. 3288 * 3289 * private_lock must be held over this entire operation in order 3290 * to synchronise against __set_page_dirty_buffers and prevent the 3291 * dirty bit from being lost. 3292 */ 3293 if (ret) 3294 cancel_dirty_page(page); 3295 spin_unlock(&mapping->private_lock); 3296 out: 3297 if (buffers_to_free) { 3298 struct buffer_head *bh = buffers_to_free; 3299 3300 do { 3301 struct buffer_head *next = bh->b_this_page; 3302 free_buffer_head(bh); 3303 bh = next; 3304 } while (bh != buffers_to_free); 3305 } 3306 return ret; 3307 } 3308 EXPORT_SYMBOL(try_to_free_buffers); 3309 3310 /* 3311 * There are no bdflush tunables left. But distributions are 3312 * still running obsolete flush daemons, so we terminate them here. 3313 * 3314 * Use of bdflush() is deprecated and will be removed in a future kernel. 3315 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3316 */ 3317 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3318 { 3319 static int msg_count; 3320 3321 if (!capable(CAP_SYS_ADMIN)) 3322 return -EPERM; 3323 3324 if (msg_count < 5) { 3325 msg_count++; 3326 printk(KERN_INFO 3327 "warning: process `%s' used the obsolete bdflush" 3328 " system call\n", current->comm); 3329 printk(KERN_INFO "Fix your initscripts?\n"); 3330 } 3331 3332 if (func == 1) 3333 do_exit(0); 3334 return 0; 3335 } 3336 3337 /* 3338 * Buffer-head allocation 3339 */ 3340 static struct kmem_cache *bh_cachep __read_mostly; 3341 3342 /* 3343 * Once the number of bh's in the machine exceeds this level, we start 3344 * stripping them in writeback. 3345 */ 3346 static unsigned long max_buffer_heads; 3347 3348 int buffer_heads_over_limit; 3349 3350 struct bh_accounting { 3351 int nr; /* Number of live bh's */ 3352 int ratelimit; /* Limit cacheline bouncing */ 3353 }; 3354 3355 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3356 3357 static void recalc_bh_state(void) 3358 { 3359 int i; 3360 int tot = 0; 3361 3362 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3363 return; 3364 __this_cpu_write(bh_accounting.ratelimit, 0); 3365 for_each_online_cpu(i) 3366 tot += per_cpu(bh_accounting, i).nr; 3367 buffer_heads_over_limit = (tot > max_buffer_heads); 3368 } 3369 3370 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3371 { 3372 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3373 if (ret) { 3374 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3375 preempt_disable(); 3376 __this_cpu_inc(bh_accounting.nr); 3377 recalc_bh_state(); 3378 preempt_enable(); 3379 } 3380 return ret; 3381 } 3382 EXPORT_SYMBOL(alloc_buffer_head); 3383 3384 void free_buffer_head(struct buffer_head *bh) 3385 { 3386 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3387 kmem_cache_free(bh_cachep, bh); 3388 preempt_disable(); 3389 __this_cpu_dec(bh_accounting.nr); 3390 recalc_bh_state(); 3391 preempt_enable(); 3392 } 3393 EXPORT_SYMBOL(free_buffer_head); 3394 3395 static int buffer_exit_cpu_dead(unsigned int cpu) 3396 { 3397 int i; 3398 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3399 3400 for (i = 0; i < BH_LRU_SIZE; i++) { 3401 brelse(b->bhs[i]); 3402 b->bhs[i] = NULL; 3403 } 3404 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3405 per_cpu(bh_accounting, cpu).nr = 0; 3406 return 0; 3407 } 3408 3409 /** 3410 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3411 * @bh: struct buffer_head 3412 * 3413 * Return true if the buffer is up-to-date and false, 3414 * with the buffer locked, if not. 3415 */ 3416 int bh_uptodate_or_lock(struct buffer_head *bh) 3417 { 3418 if (!buffer_uptodate(bh)) { 3419 lock_buffer(bh); 3420 if (!buffer_uptodate(bh)) 3421 return 0; 3422 unlock_buffer(bh); 3423 } 3424 return 1; 3425 } 3426 EXPORT_SYMBOL(bh_uptodate_or_lock); 3427 3428 /** 3429 * bh_submit_read - Submit a locked buffer for reading 3430 * @bh: struct buffer_head 3431 * 3432 * Returns zero on success and -EIO on error. 3433 */ 3434 int bh_submit_read(struct buffer_head *bh) 3435 { 3436 BUG_ON(!buffer_locked(bh)); 3437 3438 if (buffer_uptodate(bh)) { 3439 unlock_buffer(bh); 3440 return 0; 3441 } 3442 3443 get_bh(bh); 3444 bh->b_end_io = end_buffer_read_sync; 3445 submit_bh(REQ_OP_READ, 0, bh); 3446 wait_on_buffer(bh); 3447 if (buffer_uptodate(bh)) 3448 return 0; 3449 return -EIO; 3450 } 3451 EXPORT_SYMBOL(bh_submit_read); 3452 3453 /* 3454 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff. 3455 * 3456 * Returns the offset within the file on success, and -ENOENT otherwise. 3457 */ 3458 static loff_t 3459 page_seek_hole_data(struct page *page, loff_t lastoff, int whence) 3460 { 3461 loff_t offset = page_offset(page); 3462 struct buffer_head *bh, *head; 3463 bool seek_data = whence == SEEK_DATA; 3464 3465 if (lastoff < offset) 3466 lastoff = offset; 3467 3468 bh = head = page_buffers(page); 3469 do { 3470 offset += bh->b_size; 3471 if (lastoff >= offset) 3472 continue; 3473 3474 /* 3475 * Unwritten extents that have data in the page cache covering 3476 * them can be identified by the BH_Unwritten state flag. 3477 * Pages with multiple buffers might have a mix of holes, data 3478 * and unwritten extents - any buffer with valid data in it 3479 * should have BH_Uptodate flag set on it. 3480 */ 3481 3482 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data) 3483 return lastoff; 3484 3485 lastoff = offset; 3486 } while ((bh = bh->b_this_page) != head); 3487 return -ENOENT; 3488 } 3489 3490 /* 3491 * Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3492 * 3493 * Within unwritten extents, the page cache determines which parts are holes 3494 * and which are data: unwritten and uptodate buffer heads count as data; 3495 * everything else counts as a hole. 3496 * 3497 * Returns the resulting offset on successs, and -ENOENT otherwise. 3498 */ 3499 loff_t 3500 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length, 3501 int whence) 3502 { 3503 pgoff_t index = offset >> PAGE_SHIFT; 3504 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE); 3505 loff_t lastoff = offset; 3506 struct pagevec pvec; 3507 3508 if (length <= 0) 3509 return -ENOENT; 3510 3511 pagevec_init(&pvec); 3512 3513 do { 3514 unsigned nr_pages, i; 3515 3516 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index, 3517 end - 1); 3518 if (nr_pages == 0) 3519 break; 3520 3521 for (i = 0; i < nr_pages; i++) { 3522 struct page *page = pvec.pages[i]; 3523 3524 /* 3525 * At this point, the page may be truncated or 3526 * invalidated (changing page->mapping to NULL), or 3527 * even swizzled back from swapper_space to tmpfs file 3528 * mapping. However, page->index will not change 3529 * because we have a reference on the page. 3530 * 3531 * If current page offset is beyond where we've ended, 3532 * we've found a hole. 3533 */ 3534 if (whence == SEEK_HOLE && 3535 lastoff < page_offset(page)) 3536 goto check_range; 3537 3538 lock_page(page); 3539 if (likely(page->mapping == inode->i_mapping) && 3540 page_has_buffers(page)) { 3541 lastoff = page_seek_hole_data(page, lastoff, whence); 3542 if (lastoff >= 0) { 3543 unlock_page(page); 3544 goto check_range; 3545 } 3546 } 3547 unlock_page(page); 3548 lastoff = page_offset(page) + PAGE_SIZE; 3549 } 3550 pagevec_release(&pvec); 3551 } while (index < end); 3552 3553 /* When no page at lastoff and we are not done, we found a hole. */ 3554 if (whence != SEEK_HOLE) 3555 goto not_found; 3556 3557 check_range: 3558 if (lastoff < offset + length) 3559 goto out; 3560 not_found: 3561 lastoff = -ENOENT; 3562 out: 3563 pagevec_release(&pvec); 3564 return lastoff; 3565 } 3566 3567 void __init buffer_init(void) 3568 { 3569 unsigned long nrpages; 3570 int ret; 3571 3572 bh_cachep = kmem_cache_create("buffer_head", 3573 sizeof(struct buffer_head), 0, 3574 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3575 SLAB_MEM_SPREAD), 3576 NULL); 3577 3578 /* 3579 * Limit the bh occupancy to 10% of ZONE_NORMAL 3580 */ 3581 nrpages = (nr_free_buffer_pages() * 10) / 100; 3582 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3583 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3584 NULL, buffer_exit_cpu_dead); 3585 WARN_ON(ret < 0); 3586 } 3587