xref: /openbmc/linux/fs/buffer.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49 
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 			 enum rw_hint hint, struct writeback_control *wbc);
53 
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55 
56 inline void touch_buffer(struct buffer_head *bh)
57 {
58 	trace_block_touch_buffer(bh);
59 	mark_page_accessed(bh->b_page);
60 }
61 EXPORT_SYMBOL(touch_buffer);
62 
63 void __lock_buffer(struct buffer_head *bh)
64 {
65 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
66 }
67 EXPORT_SYMBOL(__lock_buffer);
68 
69 void unlock_buffer(struct buffer_head *bh)
70 {
71 	clear_bit_unlock(BH_Lock, &bh->b_state);
72 	smp_mb__after_atomic();
73 	wake_up_bit(&bh->b_state, BH_Lock);
74 }
75 EXPORT_SYMBOL(unlock_buffer);
76 
77 /*
78  * Returns if the page has dirty or writeback buffers. If all the buffers
79  * are unlocked and clean then the PageDirty information is stale. If
80  * any of the pages are locked, it is assumed they are locked for IO.
81  */
82 void buffer_check_dirty_writeback(struct page *page,
83 				     bool *dirty, bool *writeback)
84 {
85 	struct buffer_head *head, *bh;
86 	*dirty = false;
87 	*writeback = false;
88 
89 	BUG_ON(!PageLocked(page));
90 
91 	if (!page_has_buffers(page))
92 		return;
93 
94 	if (PageWriteback(page))
95 		*writeback = true;
96 
97 	head = page_buffers(page);
98 	bh = head;
99 	do {
100 		if (buffer_locked(bh))
101 			*writeback = true;
102 
103 		if (buffer_dirty(bh))
104 			*dirty = true;
105 
106 		bh = bh->b_this_page;
107 	} while (bh != head);
108 }
109 EXPORT_SYMBOL(buffer_check_dirty_writeback);
110 
111 /*
112  * Block until a buffer comes unlocked.  This doesn't stop it
113  * from becoming locked again - you have to lock it yourself
114  * if you want to preserve its state.
115  */
116 void __wait_on_buffer(struct buffer_head * bh)
117 {
118 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
119 }
120 EXPORT_SYMBOL(__wait_on_buffer);
121 
122 static void
123 __clear_page_buffers(struct page *page)
124 {
125 	ClearPagePrivate(page);
126 	set_page_private(page, 0);
127 	put_page(page);
128 }
129 
130 static void buffer_io_error(struct buffer_head *bh, char *msg)
131 {
132 	if (!test_bit(BH_Quiet, &bh->b_state))
133 		printk_ratelimited(KERN_ERR
134 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
135 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 }
137 
138 /*
139  * End-of-IO handler helper function which does not touch the bh after
140  * unlocking it.
141  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142  * a race there is benign: unlock_buffer() only use the bh's address for
143  * hashing after unlocking the buffer, so it doesn't actually touch the bh
144  * itself.
145  */
146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
147 {
148 	if (uptodate) {
149 		set_buffer_uptodate(bh);
150 	} else {
151 		/* This happens, due to failed read-ahead attempts. */
152 		clear_buffer_uptodate(bh);
153 	}
154 	unlock_buffer(bh);
155 }
156 
157 /*
158  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
159  * unlock the buffer. This is what ll_rw_block uses too.
160  */
161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162 {
163 	__end_buffer_read_notouch(bh, uptodate);
164 	put_bh(bh);
165 }
166 EXPORT_SYMBOL(end_buffer_read_sync);
167 
168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169 {
170 	if (uptodate) {
171 		set_buffer_uptodate(bh);
172 	} else {
173 		buffer_io_error(bh, ", lost sync page write");
174 		mark_buffer_write_io_error(bh);
175 		clear_buffer_uptodate(bh);
176 	}
177 	unlock_buffer(bh);
178 	put_bh(bh);
179 }
180 EXPORT_SYMBOL(end_buffer_write_sync);
181 
182 /*
183  * Various filesystems appear to want __find_get_block to be non-blocking.
184  * But it's the page lock which protects the buffers.  To get around this,
185  * we get exclusion from try_to_free_buffers with the blockdev mapping's
186  * private_lock.
187  *
188  * Hack idea: for the blockdev mapping, private_lock contention
189  * may be quite high.  This code could TryLock the page, and if that
190  * succeeds, there is no need to take private_lock.
191  */
192 static struct buffer_head *
193 __find_get_block_slow(struct block_device *bdev, sector_t block)
194 {
195 	struct inode *bd_inode = bdev->bd_inode;
196 	struct address_space *bd_mapping = bd_inode->i_mapping;
197 	struct buffer_head *ret = NULL;
198 	pgoff_t index;
199 	struct buffer_head *bh;
200 	struct buffer_head *head;
201 	struct page *page;
202 	int all_mapped = 1;
203 
204 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
205 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
206 	if (!page)
207 		goto out;
208 
209 	spin_lock(&bd_mapping->private_lock);
210 	if (!page_has_buffers(page))
211 		goto out_unlock;
212 	head = page_buffers(page);
213 	bh = head;
214 	do {
215 		if (!buffer_mapped(bh))
216 			all_mapped = 0;
217 		else if (bh->b_blocknr == block) {
218 			ret = bh;
219 			get_bh(bh);
220 			goto out_unlock;
221 		}
222 		bh = bh->b_this_page;
223 	} while (bh != head);
224 
225 	/* we might be here because some of the buffers on this page are
226 	 * not mapped.  This is due to various races between
227 	 * file io on the block device and getblk.  It gets dealt with
228 	 * elsewhere, don't buffer_error if we had some unmapped buffers
229 	 */
230 	if (all_mapped) {
231 		printk("__find_get_block_slow() failed. "
232 			"block=%llu, b_blocknr=%llu\n",
233 			(unsigned long long)block,
234 			(unsigned long long)bh->b_blocknr);
235 		printk("b_state=0x%08lx, b_size=%zu\n",
236 			bh->b_state, bh->b_size);
237 		printk("device %pg blocksize: %d\n", bdev,
238 			1 << bd_inode->i_blkbits);
239 	}
240 out_unlock:
241 	spin_unlock(&bd_mapping->private_lock);
242 	put_page(page);
243 out:
244 	return ret;
245 }
246 
247 /*
248  * I/O completion handler for block_read_full_page() - pages
249  * which come unlocked at the end of I/O.
250  */
251 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
252 {
253 	unsigned long flags;
254 	struct buffer_head *first;
255 	struct buffer_head *tmp;
256 	struct page *page;
257 	int page_uptodate = 1;
258 
259 	BUG_ON(!buffer_async_read(bh));
260 
261 	page = bh->b_page;
262 	if (uptodate) {
263 		set_buffer_uptodate(bh);
264 	} else {
265 		clear_buffer_uptodate(bh);
266 		buffer_io_error(bh, ", async page read");
267 		SetPageError(page);
268 	}
269 
270 	/*
271 	 * Be _very_ careful from here on. Bad things can happen if
272 	 * two buffer heads end IO at almost the same time and both
273 	 * decide that the page is now completely done.
274 	 */
275 	first = page_buffers(page);
276 	local_irq_save(flags);
277 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
278 	clear_buffer_async_read(bh);
279 	unlock_buffer(bh);
280 	tmp = bh;
281 	do {
282 		if (!buffer_uptodate(tmp))
283 			page_uptodate = 0;
284 		if (buffer_async_read(tmp)) {
285 			BUG_ON(!buffer_locked(tmp));
286 			goto still_busy;
287 		}
288 		tmp = tmp->b_this_page;
289 	} while (tmp != bh);
290 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
291 	local_irq_restore(flags);
292 
293 	/*
294 	 * If none of the buffers had errors and they are all
295 	 * uptodate then we can set the page uptodate.
296 	 */
297 	if (page_uptodate && !PageError(page))
298 		SetPageUptodate(page);
299 	unlock_page(page);
300 	return;
301 
302 still_busy:
303 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
304 	local_irq_restore(flags);
305 	return;
306 }
307 
308 /*
309  * Completion handler for block_write_full_page() - pages which are unlocked
310  * during I/O, and which have PageWriteback cleared upon I/O completion.
311  */
312 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
313 {
314 	unsigned long flags;
315 	struct buffer_head *first;
316 	struct buffer_head *tmp;
317 	struct page *page;
318 
319 	BUG_ON(!buffer_async_write(bh));
320 
321 	page = bh->b_page;
322 	if (uptodate) {
323 		set_buffer_uptodate(bh);
324 	} else {
325 		buffer_io_error(bh, ", lost async page write");
326 		mark_buffer_write_io_error(bh);
327 		clear_buffer_uptodate(bh);
328 		SetPageError(page);
329 	}
330 
331 	first = page_buffers(page);
332 	local_irq_save(flags);
333 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
334 
335 	clear_buffer_async_write(bh);
336 	unlock_buffer(bh);
337 	tmp = bh->b_this_page;
338 	while (tmp != bh) {
339 		if (buffer_async_write(tmp)) {
340 			BUG_ON(!buffer_locked(tmp));
341 			goto still_busy;
342 		}
343 		tmp = tmp->b_this_page;
344 	}
345 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 	local_irq_restore(flags);
347 	end_page_writeback(page);
348 	return;
349 
350 still_busy:
351 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
352 	local_irq_restore(flags);
353 	return;
354 }
355 EXPORT_SYMBOL(end_buffer_async_write);
356 
357 /*
358  * If a page's buffers are under async readin (end_buffer_async_read
359  * completion) then there is a possibility that another thread of
360  * control could lock one of the buffers after it has completed
361  * but while some of the other buffers have not completed.  This
362  * locked buffer would confuse end_buffer_async_read() into not unlocking
363  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
364  * that this buffer is not under async I/O.
365  *
366  * The page comes unlocked when it has no locked buffer_async buffers
367  * left.
368  *
369  * PageLocked prevents anyone starting new async I/O reads any of
370  * the buffers.
371  *
372  * PageWriteback is used to prevent simultaneous writeout of the same
373  * page.
374  *
375  * PageLocked prevents anyone from starting writeback of a page which is
376  * under read I/O (PageWriteback is only ever set against a locked page).
377  */
378 static void mark_buffer_async_read(struct buffer_head *bh)
379 {
380 	bh->b_end_io = end_buffer_async_read;
381 	set_buffer_async_read(bh);
382 }
383 
384 static void mark_buffer_async_write_endio(struct buffer_head *bh,
385 					  bh_end_io_t *handler)
386 {
387 	bh->b_end_io = handler;
388 	set_buffer_async_write(bh);
389 }
390 
391 void mark_buffer_async_write(struct buffer_head *bh)
392 {
393 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
394 }
395 EXPORT_SYMBOL(mark_buffer_async_write);
396 
397 
398 /*
399  * fs/buffer.c contains helper functions for buffer-backed address space's
400  * fsync functions.  A common requirement for buffer-based filesystems is
401  * that certain data from the backing blockdev needs to be written out for
402  * a successful fsync().  For example, ext2 indirect blocks need to be
403  * written back and waited upon before fsync() returns.
404  *
405  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
406  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
407  * management of a list of dependent buffers at ->i_mapping->private_list.
408  *
409  * Locking is a little subtle: try_to_free_buffers() will remove buffers
410  * from their controlling inode's queue when they are being freed.  But
411  * try_to_free_buffers() will be operating against the *blockdev* mapping
412  * at the time, not against the S_ISREG file which depends on those buffers.
413  * So the locking for private_list is via the private_lock in the address_space
414  * which backs the buffers.  Which is different from the address_space
415  * against which the buffers are listed.  So for a particular address_space,
416  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
417  * mapping->private_list will always be protected by the backing blockdev's
418  * ->private_lock.
419  *
420  * Which introduces a requirement: all buffers on an address_space's
421  * ->private_list must be from the same address_space: the blockdev's.
422  *
423  * address_spaces which do not place buffers at ->private_list via these
424  * utility functions are free to use private_lock and private_list for
425  * whatever they want.  The only requirement is that list_empty(private_list)
426  * be true at clear_inode() time.
427  *
428  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
429  * filesystems should do that.  invalidate_inode_buffers() should just go
430  * BUG_ON(!list_empty).
431  *
432  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
433  * take an address_space, not an inode.  And it should be called
434  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
435  * queued up.
436  *
437  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
438  * list if it is already on a list.  Because if the buffer is on a list,
439  * it *must* already be on the right one.  If not, the filesystem is being
440  * silly.  This will save a ton of locking.  But first we have to ensure
441  * that buffers are taken *off* the old inode's list when they are freed
442  * (presumably in truncate).  That requires careful auditing of all
443  * filesystems (do it inside bforget()).  It could also be done by bringing
444  * b_inode back.
445  */
446 
447 /*
448  * The buffer's backing address_space's private_lock must be held
449  */
450 static void __remove_assoc_queue(struct buffer_head *bh)
451 {
452 	list_del_init(&bh->b_assoc_buffers);
453 	WARN_ON(!bh->b_assoc_map);
454 	bh->b_assoc_map = NULL;
455 }
456 
457 int inode_has_buffers(struct inode *inode)
458 {
459 	return !list_empty(&inode->i_data.private_list);
460 }
461 
462 /*
463  * osync is designed to support O_SYNC io.  It waits synchronously for
464  * all already-submitted IO to complete, but does not queue any new
465  * writes to the disk.
466  *
467  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
468  * you dirty the buffers, and then use osync_inode_buffers to wait for
469  * completion.  Any other dirty buffers which are not yet queued for
470  * write will not be flushed to disk by the osync.
471  */
472 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
473 {
474 	struct buffer_head *bh;
475 	struct list_head *p;
476 	int err = 0;
477 
478 	spin_lock(lock);
479 repeat:
480 	list_for_each_prev(p, list) {
481 		bh = BH_ENTRY(p);
482 		if (buffer_locked(bh)) {
483 			get_bh(bh);
484 			spin_unlock(lock);
485 			wait_on_buffer(bh);
486 			if (!buffer_uptodate(bh))
487 				err = -EIO;
488 			brelse(bh);
489 			spin_lock(lock);
490 			goto repeat;
491 		}
492 	}
493 	spin_unlock(lock);
494 	return err;
495 }
496 
497 void emergency_thaw_bdev(struct super_block *sb)
498 {
499 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
500 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
501 }
502 
503 /**
504  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
505  * @mapping: the mapping which wants those buffers written
506  *
507  * Starts I/O against the buffers at mapping->private_list, and waits upon
508  * that I/O.
509  *
510  * Basically, this is a convenience function for fsync().
511  * @mapping is a file or directory which needs those buffers to be written for
512  * a successful fsync().
513  */
514 int sync_mapping_buffers(struct address_space *mapping)
515 {
516 	struct address_space *buffer_mapping = mapping->private_data;
517 
518 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
519 		return 0;
520 
521 	return fsync_buffers_list(&buffer_mapping->private_lock,
522 					&mapping->private_list);
523 }
524 EXPORT_SYMBOL(sync_mapping_buffers);
525 
526 /*
527  * Called when we've recently written block `bblock', and it is known that
528  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
529  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
530  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
531  */
532 void write_boundary_block(struct block_device *bdev,
533 			sector_t bblock, unsigned blocksize)
534 {
535 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
536 	if (bh) {
537 		if (buffer_dirty(bh))
538 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
539 		put_bh(bh);
540 	}
541 }
542 
543 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
544 {
545 	struct address_space *mapping = inode->i_mapping;
546 	struct address_space *buffer_mapping = bh->b_page->mapping;
547 
548 	mark_buffer_dirty(bh);
549 	if (!mapping->private_data) {
550 		mapping->private_data = buffer_mapping;
551 	} else {
552 		BUG_ON(mapping->private_data != buffer_mapping);
553 	}
554 	if (!bh->b_assoc_map) {
555 		spin_lock(&buffer_mapping->private_lock);
556 		list_move_tail(&bh->b_assoc_buffers,
557 				&mapping->private_list);
558 		bh->b_assoc_map = mapping;
559 		spin_unlock(&buffer_mapping->private_lock);
560 	}
561 }
562 EXPORT_SYMBOL(mark_buffer_dirty_inode);
563 
564 /*
565  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
566  * dirty.
567  *
568  * If warn is true, then emit a warning if the page is not uptodate and has
569  * not been truncated.
570  *
571  * The caller must hold lock_page_memcg().
572  */
573 void __set_page_dirty(struct page *page, struct address_space *mapping,
574 			     int warn)
575 {
576 	unsigned long flags;
577 
578 	xa_lock_irqsave(&mapping->i_pages, flags);
579 	if (page->mapping) {	/* Race with truncate? */
580 		WARN_ON_ONCE(warn && !PageUptodate(page));
581 		account_page_dirtied(page, mapping);
582 		radix_tree_tag_set(&mapping->i_pages,
583 				page_index(page), PAGECACHE_TAG_DIRTY);
584 	}
585 	xa_unlock_irqrestore(&mapping->i_pages, flags);
586 }
587 EXPORT_SYMBOL_GPL(__set_page_dirty);
588 
589 /*
590  * Add a page to the dirty page list.
591  *
592  * It is a sad fact of life that this function is called from several places
593  * deeply under spinlocking.  It may not sleep.
594  *
595  * If the page has buffers, the uptodate buffers are set dirty, to preserve
596  * dirty-state coherency between the page and the buffers.  It the page does
597  * not have buffers then when they are later attached they will all be set
598  * dirty.
599  *
600  * The buffers are dirtied before the page is dirtied.  There's a small race
601  * window in which a writepage caller may see the page cleanness but not the
602  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
603  * before the buffers, a concurrent writepage caller could clear the page dirty
604  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
605  * page on the dirty page list.
606  *
607  * We use private_lock to lock against try_to_free_buffers while using the
608  * page's buffer list.  Also use this to protect against clean buffers being
609  * added to the page after it was set dirty.
610  *
611  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
612  * address_space though.
613  */
614 int __set_page_dirty_buffers(struct page *page)
615 {
616 	int newly_dirty;
617 	struct address_space *mapping = page_mapping(page);
618 
619 	if (unlikely(!mapping))
620 		return !TestSetPageDirty(page);
621 
622 	spin_lock(&mapping->private_lock);
623 	if (page_has_buffers(page)) {
624 		struct buffer_head *head = page_buffers(page);
625 		struct buffer_head *bh = head;
626 
627 		do {
628 			set_buffer_dirty(bh);
629 			bh = bh->b_this_page;
630 		} while (bh != head);
631 	}
632 	/*
633 	 * Lock out page->mem_cgroup migration to keep PageDirty
634 	 * synchronized with per-memcg dirty page counters.
635 	 */
636 	lock_page_memcg(page);
637 	newly_dirty = !TestSetPageDirty(page);
638 	spin_unlock(&mapping->private_lock);
639 
640 	if (newly_dirty)
641 		__set_page_dirty(page, mapping, 1);
642 
643 	unlock_page_memcg(page);
644 
645 	if (newly_dirty)
646 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
647 
648 	return newly_dirty;
649 }
650 EXPORT_SYMBOL(__set_page_dirty_buffers);
651 
652 /*
653  * Write out and wait upon a list of buffers.
654  *
655  * We have conflicting pressures: we want to make sure that all
656  * initially dirty buffers get waited on, but that any subsequently
657  * dirtied buffers don't.  After all, we don't want fsync to last
658  * forever if somebody is actively writing to the file.
659  *
660  * Do this in two main stages: first we copy dirty buffers to a
661  * temporary inode list, queueing the writes as we go.  Then we clean
662  * up, waiting for those writes to complete.
663  *
664  * During this second stage, any subsequent updates to the file may end
665  * up refiling the buffer on the original inode's dirty list again, so
666  * there is a chance we will end up with a buffer queued for write but
667  * not yet completed on that list.  So, as a final cleanup we go through
668  * the osync code to catch these locked, dirty buffers without requeuing
669  * any newly dirty buffers for write.
670  */
671 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
672 {
673 	struct buffer_head *bh;
674 	struct list_head tmp;
675 	struct address_space *mapping;
676 	int err = 0, err2;
677 	struct blk_plug plug;
678 
679 	INIT_LIST_HEAD(&tmp);
680 	blk_start_plug(&plug);
681 
682 	spin_lock(lock);
683 	while (!list_empty(list)) {
684 		bh = BH_ENTRY(list->next);
685 		mapping = bh->b_assoc_map;
686 		__remove_assoc_queue(bh);
687 		/* Avoid race with mark_buffer_dirty_inode() which does
688 		 * a lockless check and we rely on seeing the dirty bit */
689 		smp_mb();
690 		if (buffer_dirty(bh) || buffer_locked(bh)) {
691 			list_add(&bh->b_assoc_buffers, &tmp);
692 			bh->b_assoc_map = mapping;
693 			if (buffer_dirty(bh)) {
694 				get_bh(bh);
695 				spin_unlock(lock);
696 				/*
697 				 * Ensure any pending I/O completes so that
698 				 * write_dirty_buffer() actually writes the
699 				 * current contents - it is a noop if I/O is
700 				 * still in flight on potentially older
701 				 * contents.
702 				 */
703 				write_dirty_buffer(bh, REQ_SYNC);
704 
705 				/*
706 				 * Kick off IO for the previous mapping. Note
707 				 * that we will not run the very last mapping,
708 				 * wait_on_buffer() will do that for us
709 				 * through sync_buffer().
710 				 */
711 				brelse(bh);
712 				spin_lock(lock);
713 			}
714 		}
715 	}
716 
717 	spin_unlock(lock);
718 	blk_finish_plug(&plug);
719 	spin_lock(lock);
720 
721 	while (!list_empty(&tmp)) {
722 		bh = BH_ENTRY(tmp.prev);
723 		get_bh(bh);
724 		mapping = bh->b_assoc_map;
725 		__remove_assoc_queue(bh);
726 		/* Avoid race with mark_buffer_dirty_inode() which does
727 		 * a lockless check and we rely on seeing the dirty bit */
728 		smp_mb();
729 		if (buffer_dirty(bh)) {
730 			list_add(&bh->b_assoc_buffers,
731 				 &mapping->private_list);
732 			bh->b_assoc_map = mapping;
733 		}
734 		spin_unlock(lock);
735 		wait_on_buffer(bh);
736 		if (!buffer_uptodate(bh))
737 			err = -EIO;
738 		brelse(bh);
739 		spin_lock(lock);
740 	}
741 
742 	spin_unlock(lock);
743 	err2 = osync_buffers_list(lock, list);
744 	if (err)
745 		return err;
746 	else
747 		return err2;
748 }
749 
750 /*
751  * Invalidate any and all dirty buffers on a given inode.  We are
752  * probably unmounting the fs, but that doesn't mean we have already
753  * done a sync().  Just drop the buffers from the inode list.
754  *
755  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
756  * assumes that all the buffers are against the blockdev.  Not true
757  * for reiserfs.
758  */
759 void invalidate_inode_buffers(struct inode *inode)
760 {
761 	if (inode_has_buffers(inode)) {
762 		struct address_space *mapping = &inode->i_data;
763 		struct list_head *list = &mapping->private_list;
764 		struct address_space *buffer_mapping = mapping->private_data;
765 
766 		spin_lock(&buffer_mapping->private_lock);
767 		while (!list_empty(list))
768 			__remove_assoc_queue(BH_ENTRY(list->next));
769 		spin_unlock(&buffer_mapping->private_lock);
770 	}
771 }
772 EXPORT_SYMBOL(invalidate_inode_buffers);
773 
774 /*
775  * Remove any clean buffers from the inode's buffer list.  This is called
776  * when we're trying to free the inode itself.  Those buffers can pin it.
777  *
778  * Returns true if all buffers were removed.
779  */
780 int remove_inode_buffers(struct inode *inode)
781 {
782 	int ret = 1;
783 
784 	if (inode_has_buffers(inode)) {
785 		struct address_space *mapping = &inode->i_data;
786 		struct list_head *list = &mapping->private_list;
787 		struct address_space *buffer_mapping = mapping->private_data;
788 
789 		spin_lock(&buffer_mapping->private_lock);
790 		while (!list_empty(list)) {
791 			struct buffer_head *bh = BH_ENTRY(list->next);
792 			if (buffer_dirty(bh)) {
793 				ret = 0;
794 				break;
795 			}
796 			__remove_assoc_queue(bh);
797 		}
798 		spin_unlock(&buffer_mapping->private_lock);
799 	}
800 	return ret;
801 }
802 
803 /*
804  * Create the appropriate buffers when given a page for data area and
805  * the size of each buffer.. Use the bh->b_this_page linked list to
806  * follow the buffers created.  Return NULL if unable to create more
807  * buffers.
808  *
809  * The retry flag is used to differentiate async IO (paging, swapping)
810  * which may not fail from ordinary buffer allocations.
811  */
812 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
813 		bool retry)
814 {
815 	struct buffer_head *bh, *head;
816 	gfp_t gfp = GFP_NOFS;
817 	long offset;
818 
819 	if (retry)
820 		gfp |= __GFP_NOFAIL;
821 
822 	head = NULL;
823 	offset = PAGE_SIZE;
824 	while ((offset -= size) >= 0) {
825 		bh = alloc_buffer_head(gfp);
826 		if (!bh)
827 			goto no_grow;
828 
829 		bh->b_this_page = head;
830 		bh->b_blocknr = -1;
831 		head = bh;
832 
833 		bh->b_size = size;
834 
835 		/* Link the buffer to its page */
836 		set_bh_page(bh, page, offset);
837 	}
838 	return head;
839 /*
840  * In case anything failed, we just free everything we got.
841  */
842 no_grow:
843 	if (head) {
844 		do {
845 			bh = head;
846 			head = head->b_this_page;
847 			free_buffer_head(bh);
848 		} while (head);
849 	}
850 
851 	return NULL;
852 }
853 EXPORT_SYMBOL_GPL(alloc_page_buffers);
854 
855 static inline void
856 link_dev_buffers(struct page *page, struct buffer_head *head)
857 {
858 	struct buffer_head *bh, *tail;
859 
860 	bh = head;
861 	do {
862 		tail = bh;
863 		bh = bh->b_this_page;
864 	} while (bh);
865 	tail->b_this_page = head;
866 	attach_page_buffers(page, head);
867 }
868 
869 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
870 {
871 	sector_t retval = ~((sector_t)0);
872 	loff_t sz = i_size_read(bdev->bd_inode);
873 
874 	if (sz) {
875 		unsigned int sizebits = blksize_bits(size);
876 		retval = (sz >> sizebits);
877 	}
878 	return retval;
879 }
880 
881 /*
882  * Initialise the state of a blockdev page's buffers.
883  */
884 static sector_t
885 init_page_buffers(struct page *page, struct block_device *bdev,
886 			sector_t block, int size)
887 {
888 	struct buffer_head *head = page_buffers(page);
889 	struct buffer_head *bh = head;
890 	int uptodate = PageUptodate(page);
891 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
892 
893 	do {
894 		if (!buffer_mapped(bh)) {
895 			bh->b_end_io = NULL;
896 			bh->b_private = NULL;
897 			bh->b_bdev = bdev;
898 			bh->b_blocknr = block;
899 			if (uptodate)
900 				set_buffer_uptodate(bh);
901 			if (block < end_block)
902 				set_buffer_mapped(bh);
903 		}
904 		block++;
905 		bh = bh->b_this_page;
906 	} while (bh != head);
907 
908 	/*
909 	 * Caller needs to validate requested block against end of device.
910 	 */
911 	return end_block;
912 }
913 
914 /*
915  * Create the page-cache page that contains the requested block.
916  *
917  * This is used purely for blockdev mappings.
918  */
919 static int
920 grow_dev_page(struct block_device *bdev, sector_t block,
921 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
922 {
923 	struct inode *inode = bdev->bd_inode;
924 	struct page *page;
925 	struct buffer_head *bh;
926 	sector_t end_block;
927 	int ret = 0;		/* Will call free_more_memory() */
928 	gfp_t gfp_mask;
929 
930 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
931 
932 	/*
933 	 * XXX: __getblk_slow() can not really deal with failure and
934 	 * will endlessly loop on improvised global reclaim.  Prefer
935 	 * looping in the allocator rather than here, at least that
936 	 * code knows what it's doing.
937 	 */
938 	gfp_mask |= __GFP_NOFAIL;
939 
940 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
941 
942 	BUG_ON(!PageLocked(page));
943 
944 	if (page_has_buffers(page)) {
945 		bh = page_buffers(page);
946 		if (bh->b_size == size) {
947 			end_block = init_page_buffers(page, bdev,
948 						(sector_t)index << sizebits,
949 						size);
950 			goto done;
951 		}
952 		if (!try_to_free_buffers(page))
953 			goto failed;
954 	}
955 
956 	/*
957 	 * Allocate some buffers for this page
958 	 */
959 	bh = alloc_page_buffers(page, size, true);
960 
961 	/*
962 	 * Link the page to the buffers and initialise them.  Take the
963 	 * lock to be atomic wrt __find_get_block(), which does not
964 	 * run under the page lock.
965 	 */
966 	spin_lock(&inode->i_mapping->private_lock);
967 	link_dev_buffers(page, bh);
968 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
969 			size);
970 	spin_unlock(&inode->i_mapping->private_lock);
971 done:
972 	ret = (block < end_block) ? 1 : -ENXIO;
973 failed:
974 	unlock_page(page);
975 	put_page(page);
976 	return ret;
977 }
978 
979 /*
980  * Create buffers for the specified block device block's page.  If
981  * that page was dirty, the buffers are set dirty also.
982  */
983 static int
984 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
985 {
986 	pgoff_t index;
987 	int sizebits;
988 
989 	sizebits = -1;
990 	do {
991 		sizebits++;
992 	} while ((size << sizebits) < PAGE_SIZE);
993 
994 	index = block >> sizebits;
995 
996 	/*
997 	 * Check for a block which wants to lie outside our maximum possible
998 	 * pagecache index.  (this comparison is done using sector_t types).
999 	 */
1000 	if (unlikely(index != block >> sizebits)) {
1001 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1002 			"device %pg\n",
1003 			__func__, (unsigned long long)block,
1004 			bdev);
1005 		return -EIO;
1006 	}
1007 
1008 	/* Create a page with the proper size buffers.. */
1009 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1010 }
1011 
1012 static struct buffer_head *
1013 __getblk_slow(struct block_device *bdev, sector_t block,
1014 	     unsigned size, gfp_t gfp)
1015 {
1016 	/* Size must be multiple of hard sectorsize */
1017 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1018 			(size < 512 || size > PAGE_SIZE))) {
1019 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1020 					size);
1021 		printk(KERN_ERR "logical block size: %d\n",
1022 					bdev_logical_block_size(bdev));
1023 
1024 		dump_stack();
1025 		return NULL;
1026 	}
1027 
1028 	for (;;) {
1029 		struct buffer_head *bh;
1030 		int ret;
1031 
1032 		bh = __find_get_block(bdev, block, size);
1033 		if (bh)
1034 			return bh;
1035 
1036 		ret = grow_buffers(bdev, block, size, gfp);
1037 		if (ret < 0)
1038 			return NULL;
1039 	}
1040 }
1041 
1042 /*
1043  * The relationship between dirty buffers and dirty pages:
1044  *
1045  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1046  * the page is tagged dirty in its radix tree.
1047  *
1048  * At all times, the dirtiness of the buffers represents the dirtiness of
1049  * subsections of the page.  If the page has buffers, the page dirty bit is
1050  * merely a hint about the true dirty state.
1051  *
1052  * When a page is set dirty in its entirety, all its buffers are marked dirty
1053  * (if the page has buffers).
1054  *
1055  * When a buffer is marked dirty, its page is dirtied, but the page's other
1056  * buffers are not.
1057  *
1058  * Also.  When blockdev buffers are explicitly read with bread(), they
1059  * individually become uptodate.  But their backing page remains not
1060  * uptodate - even if all of its buffers are uptodate.  A subsequent
1061  * block_read_full_page() against that page will discover all the uptodate
1062  * buffers, will set the page uptodate and will perform no I/O.
1063  */
1064 
1065 /**
1066  * mark_buffer_dirty - mark a buffer_head as needing writeout
1067  * @bh: the buffer_head to mark dirty
1068  *
1069  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1070  * backing page dirty, then tag the page as dirty in its address_space's radix
1071  * tree and then attach the address_space's inode to its superblock's dirty
1072  * inode list.
1073  *
1074  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1075  * i_pages lock and mapping->host->i_lock.
1076  */
1077 void mark_buffer_dirty(struct buffer_head *bh)
1078 {
1079 	WARN_ON_ONCE(!buffer_uptodate(bh));
1080 
1081 	trace_block_dirty_buffer(bh);
1082 
1083 	/*
1084 	 * Very *carefully* optimize the it-is-already-dirty case.
1085 	 *
1086 	 * Don't let the final "is it dirty" escape to before we
1087 	 * perhaps modified the buffer.
1088 	 */
1089 	if (buffer_dirty(bh)) {
1090 		smp_mb();
1091 		if (buffer_dirty(bh))
1092 			return;
1093 	}
1094 
1095 	if (!test_set_buffer_dirty(bh)) {
1096 		struct page *page = bh->b_page;
1097 		struct address_space *mapping = NULL;
1098 
1099 		lock_page_memcg(page);
1100 		if (!TestSetPageDirty(page)) {
1101 			mapping = page_mapping(page);
1102 			if (mapping)
1103 				__set_page_dirty(page, mapping, 0);
1104 		}
1105 		unlock_page_memcg(page);
1106 		if (mapping)
1107 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1108 	}
1109 }
1110 EXPORT_SYMBOL(mark_buffer_dirty);
1111 
1112 void mark_buffer_write_io_error(struct buffer_head *bh)
1113 {
1114 	set_buffer_write_io_error(bh);
1115 	/* FIXME: do we need to set this in both places? */
1116 	if (bh->b_page && bh->b_page->mapping)
1117 		mapping_set_error(bh->b_page->mapping, -EIO);
1118 	if (bh->b_assoc_map)
1119 		mapping_set_error(bh->b_assoc_map, -EIO);
1120 }
1121 EXPORT_SYMBOL(mark_buffer_write_io_error);
1122 
1123 /*
1124  * Decrement a buffer_head's reference count.  If all buffers against a page
1125  * have zero reference count, are clean and unlocked, and if the page is clean
1126  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1127  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1128  * a page but it ends up not being freed, and buffers may later be reattached).
1129  */
1130 void __brelse(struct buffer_head * buf)
1131 {
1132 	if (atomic_read(&buf->b_count)) {
1133 		put_bh(buf);
1134 		return;
1135 	}
1136 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1137 }
1138 EXPORT_SYMBOL(__brelse);
1139 
1140 /*
1141  * bforget() is like brelse(), except it discards any
1142  * potentially dirty data.
1143  */
1144 void __bforget(struct buffer_head *bh)
1145 {
1146 	clear_buffer_dirty(bh);
1147 	if (bh->b_assoc_map) {
1148 		struct address_space *buffer_mapping = bh->b_page->mapping;
1149 
1150 		spin_lock(&buffer_mapping->private_lock);
1151 		list_del_init(&bh->b_assoc_buffers);
1152 		bh->b_assoc_map = NULL;
1153 		spin_unlock(&buffer_mapping->private_lock);
1154 	}
1155 	__brelse(bh);
1156 }
1157 EXPORT_SYMBOL(__bforget);
1158 
1159 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1160 {
1161 	lock_buffer(bh);
1162 	if (buffer_uptodate(bh)) {
1163 		unlock_buffer(bh);
1164 		return bh;
1165 	} else {
1166 		get_bh(bh);
1167 		bh->b_end_io = end_buffer_read_sync;
1168 		submit_bh(REQ_OP_READ, 0, bh);
1169 		wait_on_buffer(bh);
1170 		if (buffer_uptodate(bh))
1171 			return bh;
1172 	}
1173 	brelse(bh);
1174 	return NULL;
1175 }
1176 
1177 /*
1178  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1179  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1180  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1181  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1182  * CPU's LRUs at the same time.
1183  *
1184  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1185  * sb_find_get_block().
1186  *
1187  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1188  * a local interrupt disable for that.
1189  */
1190 
1191 #define BH_LRU_SIZE	16
1192 
1193 struct bh_lru {
1194 	struct buffer_head *bhs[BH_LRU_SIZE];
1195 };
1196 
1197 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1198 
1199 #ifdef CONFIG_SMP
1200 #define bh_lru_lock()	local_irq_disable()
1201 #define bh_lru_unlock()	local_irq_enable()
1202 #else
1203 #define bh_lru_lock()	preempt_disable()
1204 #define bh_lru_unlock()	preempt_enable()
1205 #endif
1206 
1207 static inline void check_irqs_on(void)
1208 {
1209 #ifdef irqs_disabled
1210 	BUG_ON(irqs_disabled());
1211 #endif
1212 }
1213 
1214 /*
1215  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1216  * inserted at the front, and the buffer_head at the back if any is evicted.
1217  * Or, if already in the LRU it is moved to the front.
1218  */
1219 static void bh_lru_install(struct buffer_head *bh)
1220 {
1221 	struct buffer_head *evictee = bh;
1222 	struct bh_lru *b;
1223 	int i;
1224 
1225 	check_irqs_on();
1226 	bh_lru_lock();
1227 
1228 	b = this_cpu_ptr(&bh_lrus);
1229 	for (i = 0; i < BH_LRU_SIZE; i++) {
1230 		swap(evictee, b->bhs[i]);
1231 		if (evictee == bh) {
1232 			bh_lru_unlock();
1233 			return;
1234 		}
1235 	}
1236 
1237 	get_bh(bh);
1238 	bh_lru_unlock();
1239 	brelse(evictee);
1240 }
1241 
1242 /*
1243  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1244  */
1245 static struct buffer_head *
1246 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1247 {
1248 	struct buffer_head *ret = NULL;
1249 	unsigned int i;
1250 
1251 	check_irqs_on();
1252 	bh_lru_lock();
1253 	for (i = 0; i < BH_LRU_SIZE; i++) {
1254 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1255 
1256 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1257 		    bh->b_size == size) {
1258 			if (i) {
1259 				while (i) {
1260 					__this_cpu_write(bh_lrus.bhs[i],
1261 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1262 					i--;
1263 				}
1264 				__this_cpu_write(bh_lrus.bhs[0], bh);
1265 			}
1266 			get_bh(bh);
1267 			ret = bh;
1268 			break;
1269 		}
1270 	}
1271 	bh_lru_unlock();
1272 	return ret;
1273 }
1274 
1275 /*
1276  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1277  * it in the LRU and mark it as accessed.  If it is not present then return
1278  * NULL
1279  */
1280 struct buffer_head *
1281 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1282 {
1283 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1284 
1285 	if (bh == NULL) {
1286 		/* __find_get_block_slow will mark the page accessed */
1287 		bh = __find_get_block_slow(bdev, block);
1288 		if (bh)
1289 			bh_lru_install(bh);
1290 	} else
1291 		touch_buffer(bh);
1292 
1293 	return bh;
1294 }
1295 EXPORT_SYMBOL(__find_get_block);
1296 
1297 /*
1298  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1299  * which corresponds to the passed block_device, block and size. The
1300  * returned buffer has its reference count incremented.
1301  *
1302  * __getblk_gfp() will lock up the machine if grow_dev_page's
1303  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1304  */
1305 struct buffer_head *
1306 __getblk_gfp(struct block_device *bdev, sector_t block,
1307 	     unsigned size, gfp_t gfp)
1308 {
1309 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1310 
1311 	might_sleep();
1312 	if (bh == NULL)
1313 		bh = __getblk_slow(bdev, block, size, gfp);
1314 	return bh;
1315 }
1316 EXPORT_SYMBOL(__getblk_gfp);
1317 
1318 /*
1319  * Do async read-ahead on a buffer..
1320  */
1321 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1322 {
1323 	struct buffer_head *bh = __getblk(bdev, block, size);
1324 	if (likely(bh)) {
1325 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1326 		brelse(bh);
1327 	}
1328 }
1329 EXPORT_SYMBOL(__breadahead);
1330 
1331 /**
1332  *  __bread_gfp() - reads a specified block and returns the bh
1333  *  @bdev: the block_device to read from
1334  *  @block: number of block
1335  *  @size: size (in bytes) to read
1336  *  @gfp: page allocation flag
1337  *
1338  *  Reads a specified block, and returns buffer head that contains it.
1339  *  The page cache can be allocated from non-movable area
1340  *  not to prevent page migration if you set gfp to zero.
1341  *  It returns NULL if the block was unreadable.
1342  */
1343 struct buffer_head *
1344 __bread_gfp(struct block_device *bdev, sector_t block,
1345 		   unsigned size, gfp_t gfp)
1346 {
1347 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1348 
1349 	if (likely(bh) && !buffer_uptodate(bh))
1350 		bh = __bread_slow(bh);
1351 	return bh;
1352 }
1353 EXPORT_SYMBOL(__bread_gfp);
1354 
1355 /*
1356  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1357  * This doesn't race because it runs in each cpu either in irq
1358  * or with preempt disabled.
1359  */
1360 static void invalidate_bh_lru(void *arg)
1361 {
1362 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1363 	int i;
1364 
1365 	for (i = 0; i < BH_LRU_SIZE; i++) {
1366 		brelse(b->bhs[i]);
1367 		b->bhs[i] = NULL;
1368 	}
1369 	put_cpu_var(bh_lrus);
1370 }
1371 
1372 static bool has_bh_in_lru(int cpu, void *dummy)
1373 {
1374 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1375 	int i;
1376 
1377 	for (i = 0; i < BH_LRU_SIZE; i++) {
1378 		if (b->bhs[i])
1379 			return 1;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 void invalidate_bh_lrus(void)
1386 {
1387 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1388 }
1389 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1390 
1391 void set_bh_page(struct buffer_head *bh,
1392 		struct page *page, unsigned long offset)
1393 {
1394 	bh->b_page = page;
1395 	BUG_ON(offset >= PAGE_SIZE);
1396 	if (PageHighMem(page))
1397 		/*
1398 		 * This catches illegal uses and preserves the offset:
1399 		 */
1400 		bh->b_data = (char *)(0 + offset);
1401 	else
1402 		bh->b_data = page_address(page) + offset;
1403 }
1404 EXPORT_SYMBOL(set_bh_page);
1405 
1406 /*
1407  * Called when truncating a buffer on a page completely.
1408  */
1409 
1410 /* Bits that are cleared during an invalidate */
1411 #define BUFFER_FLAGS_DISCARD \
1412 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1413 	 1 << BH_Delay | 1 << BH_Unwritten)
1414 
1415 static void discard_buffer(struct buffer_head * bh)
1416 {
1417 	unsigned long b_state, b_state_old;
1418 
1419 	lock_buffer(bh);
1420 	clear_buffer_dirty(bh);
1421 	bh->b_bdev = NULL;
1422 	b_state = bh->b_state;
1423 	for (;;) {
1424 		b_state_old = cmpxchg(&bh->b_state, b_state,
1425 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1426 		if (b_state_old == b_state)
1427 			break;
1428 		b_state = b_state_old;
1429 	}
1430 	unlock_buffer(bh);
1431 }
1432 
1433 /**
1434  * block_invalidatepage - invalidate part or all of a buffer-backed page
1435  *
1436  * @page: the page which is affected
1437  * @offset: start of the range to invalidate
1438  * @length: length of the range to invalidate
1439  *
1440  * block_invalidatepage() is called when all or part of the page has become
1441  * invalidated by a truncate operation.
1442  *
1443  * block_invalidatepage() does not have to release all buffers, but it must
1444  * ensure that no dirty buffer is left outside @offset and that no I/O
1445  * is underway against any of the blocks which are outside the truncation
1446  * point.  Because the caller is about to free (and possibly reuse) those
1447  * blocks on-disk.
1448  */
1449 void block_invalidatepage(struct page *page, unsigned int offset,
1450 			  unsigned int length)
1451 {
1452 	struct buffer_head *head, *bh, *next;
1453 	unsigned int curr_off = 0;
1454 	unsigned int stop = length + offset;
1455 
1456 	BUG_ON(!PageLocked(page));
1457 	if (!page_has_buffers(page))
1458 		goto out;
1459 
1460 	/*
1461 	 * Check for overflow
1462 	 */
1463 	BUG_ON(stop > PAGE_SIZE || stop < length);
1464 
1465 	head = page_buffers(page);
1466 	bh = head;
1467 	do {
1468 		unsigned int next_off = curr_off + bh->b_size;
1469 		next = bh->b_this_page;
1470 
1471 		/*
1472 		 * Are we still fully in range ?
1473 		 */
1474 		if (next_off > stop)
1475 			goto out;
1476 
1477 		/*
1478 		 * is this block fully invalidated?
1479 		 */
1480 		if (offset <= curr_off)
1481 			discard_buffer(bh);
1482 		curr_off = next_off;
1483 		bh = next;
1484 	} while (bh != head);
1485 
1486 	/*
1487 	 * We release buffers only if the entire page is being invalidated.
1488 	 * The get_block cached value has been unconditionally invalidated,
1489 	 * so real IO is not possible anymore.
1490 	 */
1491 	if (length == PAGE_SIZE)
1492 		try_to_release_page(page, 0);
1493 out:
1494 	return;
1495 }
1496 EXPORT_SYMBOL(block_invalidatepage);
1497 
1498 
1499 /*
1500  * We attach and possibly dirty the buffers atomically wrt
1501  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1502  * is already excluded via the page lock.
1503  */
1504 void create_empty_buffers(struct page *page,
1505 			unsigned long blocksize, unsigned long b_state)
1506 {
1507 	struct buffer_head *bh, *head, *tail;
1508 
1509 	head = alloc_page_buffers(page, blocksize, true);
1510 	bh = head;
1511 	do {
1512 		bh->b_state |= b_state;
1513 		tail = bh;
1514 		bh = bh->b_this_page;
1515 	} while (bh);
1516 	tail->b_this_page = head;
1517 
1518 	spin_lock(&page->mapping->private_lock);
1519 	if (PageUptodate(page) || PageDirty(page)) {
1520 		bh = head;
1521 		do {
1522 			if (PageDirty(page))
1523 				set_buffer_dirty(bh);
1524 			if (PageUptodate(page))
1525 				set_buffer_uptodate(bh);
1526 			bh = bh->b_this_page;
1527 		} while (bh != head);
1528 	}
1529 	attach_page_buffers(page, head);
1530 	spin_unlock(&page->mapping->private_lock);
1531 }
1532 EXPORT_SYMBOL(create_empty_buffers);
1533 
1534 /**
1535  * clean_bdev_aliases: clean a range of buffers in block device
1536  * @bdev: Block device to clean buffers in
1537  * @block: Start of a range of blocks to clean
1538  * @len: Number of blocks to clean
1539  *
1540  * We are taking a range of blocks for data and we don't want writeback of any
1541  * buffer-cache aliases starting from return from this function and until the
1542  * moment when something will explicitly mark the buffer dirty (hopefully that
1543  * will not happen until we will free that block ;-) We don't even need to mark
1544  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1545  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1546  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1547  * would confuse anyone who might pick it with bread() afterwards...
1548  *
1549  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1550  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1551  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1552  * need to.  That happens here.
1553  */
1554 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1555 {
1556 	struct inode *bd_inode = bdev->bd_inode;
1557 	struct address_space *bd_mapping = bd_inode->i_mapping;
1558 	struct pagevec pvec;
1559 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1560 	pgoff_t end;
1561 	int i, count;
1562 	struct buffer_head *bh;
1563 	struct buffer_head *head;
1564 
1565 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1566 	pagevec_init(&pvec);
1567 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1568 		count = pagevec_count(&pvec);
1569 		for (i = 0; i < count; i++) {
1570 			struct page *page = pvec.pages[i];
1571 
1572 			if (!page_has_buffers(page))
1573 				continue;
1574 			/*
1575 			 * We use page lock instead of bd_mapping->private_lock
1576 			 * to pin buffers here since we can afford to sleep and
1577 			 * it scales better than a global spinlock lock.
1578 			 */
1579 			lock_page(page);
1580 			/* Recheck when the page is locked which pins bhs */
1581 			if (!page_has_buffers(page))
1582 				goto unlock_page;
1583 			head = page_buffers(page);
1584 			bh = head;
1585 			do {
1586 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1587 					goto next;
1588 				if (bh->b_blocknr >= block + len)
1589 					break;
1590 				clear_buffer_dirty(bh);
1591 				wait_on_buffer(bh);
1592 				clear_buffer_req(bh);
1593 next:
1594 				bh = bh->b_this_page;
1595 			} while (bh != head);
1596 unlock_page:
1597 			unlock_page(page);
1598 		}
1599 		pagevec_release(&pvec);
1600 		cond_resched();
1601 		/* End of range already reached? */
1602 		if (index > end || !index)
1603 			break;
1604 	}
1605 }
1606 EXPORT_SYMBOL(clean_bdev_aliases);
1607 
1608 /*
1609  * Size is a power-of-two in the range 512..PAGE_SIZE,
1610  * and the case we care about most is PAGE_SIZE.
1611  *
1612  * So this *could* possibly be written with those
1613  * constraints in mind (relevant mostly if some
1614  * architecture has a slow bit-scan instruction)
1615  */
1616 static inline int block_size_bits(unsigned int blocksize)
1617 {
1618 	return ilog2(blocksize);
1619 }
1620 
1621 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1622 {
1623 	BUG_ON(!PageLocked(page));
1624 
1625 	if (!page_has_buffers(page))
1626 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1627 				     b_state);
1628 	return page_buffers(page);
1629 }
1630 
1631 /*
1632  * NOTE! All mapped/uptodate combinations are valid:
1633  *
1634  *	Mapped	Uptodate	Meaning
1635  *
1636  *	No	No		"unknown" - must do get_block()
1637  *	No	Yes		"hole" - zero-filled
1638  *	Yes	No		"allocated" - allocated on disk, not read in
1639  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1640  *
1641  * "Dirty" is valid only with the last case (mapped+uptodate).
1642  */
1643 
1644 /*
1645  * While block_write_full_page is writing back the dirty buffers under
1646  * the page lock, whoever dirtied the buffers may decide to clean them
1647  * again at any time.  We handle that by only looking at the buffer
1648  * state inside lock_buffer().
1649  *
1650  * If block_write_full_page() is called for regular writeback
1651  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1652  * locked buffer.   This only can happen if someone has written the buffer
1653  * directly, with submit_bh().  At the address_space level PageWriteback
1654  * prevents this contention from occurring.
1655  *
1656  * If block_write_full_page() is called with wbc->sync_mode ==
1657  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1658  * causes the writes to be flagged as synchronous writes.
1659  */
1660 int __block_write_full_page(struct inode *inode, struct page *page,
1661 			get_block_t *get_block, struct writeback_control *wbc,
1662 			bh_end_io_t *handler)
1663 {
1664 	int err;
1665 	sector_t block;
1666 	sector_t last_block;
1667 	struct buffer_head *bh, *head;
1668 	unsigned int blocksize, bbits;
1669 	int nr_underway = 0;
1670 	int write_flags = wbc_to_write_flags(wbc);
1671 
1672 	head = create_page_buffers(page, inode,
1673 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1674 
1675 	/*
1676 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1677 	 * here, and the (potentially unmapped) buffers may become dirty at
1678 	 * any time.  If a buffer becomes dirty here after we've inspected it
1679 	 * then we just miss that fact, and the page stays dirty.
1680 	 *
1681 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1682 	 * handle that here by just cleaning them.
1683 	 */
1684 
1685 	bh = head;
1686 	blocksize = bh->b_size;
1687 	bbits = block_size_bits(blocksize);
1688 
1689 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1690 	last_block = (i_size_read(inode) - 1) >> bbits;
1691 
1692 	/*
1693 	 * Get all the dirty buffers mapped to disk addresses and
1694 	 * handle any aliases from the underlying blockdev's mapping.
1695 	 */
1696 	do {
1697 		if (block > last_block) {
1698 			/*
1699 			 * mapped buffers outside i_size will occur, because
1700 			 * this page can be outside i_size when there is a
1701 			 * truncate in progress.
1702 			 */
1703 			/*
1704 			 * The buffer was zeroed by block_write_full_page()
1705 			 */
1706 			clear_buffer_dirty(bh);
1707 			set_buffer_uptodate(bh);
1708 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1709 			   buffer_dirty(bh)) {
1710 			WARN_ON(bh->b_size != blocksize);
1711 			err = get_block(inode, block, bh, 1);
1712 			if (err)
1713 				goto recover;
1714 			clear_buffer_delay(bh);
1715 			if (buffer_new(bh)) {
1716 				/* blockdev mappings never come here */
1717 				clear_buffer_new(bh);
1718 				clean_bdev_bh_alias(bh);
1719 			}
1720 		}
1721 		bh = bh->b_this_page;
1722 		block++;
1723 	} while (bh != head);
1724 
1725 	do {
1726 		if (!buffer_mapped(bh))
1727 			continue;
1728 		/*
1729 		 * If it's a fully non-blocking write attempt and we cannot
1730 		 * lock the buffer then redirty the page.  Note that this can
1731 		 * potentially cause a busy-wait loop from writeback threads
1732 		 * and kswapd activity, but those code paths have their own
1733 		 * higher-level throttling.
1734 		 */
1735 		if (wbc->sync_mode != WB_SYNC_NONE) {
1736 			lock_buffer(bh);
1737 		} else if (!trylock_buffer(bh)) {
1738 			redirty_page_for_writepage(wbc, page);
1739 			continue;
1740 		}
1741 		if (test_clear_buffer_dirty(bh)) {
1742 			mark_buffer_async_write_endio(bh, handler);
1743 		} else {
1744 			unlock_buffer(bh);
1745 		}
1746 	} while ((bh = bh->b_this_page) != head);
1747 
1748 	/*
1749 	 * The page and its buffers are protected by PageWriteback(), so we can
1750 	 * drop the bh refcounts early.
1751 	 */
1752 	BUG_ON(PageWriteback(page));
1753 	set_page_writeback(page);
1754 
1755 	do {
1756 		struct buffer_head *next = bh->b_this_page;
1757 		if (buffer_async_write(bh)) {
1758 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1759 					inode->i_write_hint, wbc);
1760 			nr_underway++;
1761 		}
1762 		bh = next;
1763 	} while (bh != head);
1764 	unlock_page(page);
1765 
1766 	err = 0;
1767 done:
1768 	if (nr_underway == 0) {
1769 		/*
1770 		 * The page was marked dirty, but the buffers were
1771 		 * clean.  Someone wrote them back by hand with
1772 		 * ll_rw_block/submit_bh.  A rare case.
1773 		 */
1774 		end_page_writeback(page);
1775 
1776 		/*
1777 		 * The page and buffer_heads can be released at any time from
1778 		 * here on.
1779 		 */
1780 	}
1781 	return err;
1782 
1783 recover:
1784 	/*
1785 	 * ENOSPC, or some other error.  We may already have added some
1786 	 * blocks to the file, so we need to write these out to avoid
1787 	 * exposing stale data.
1788 	 * The page is currently locked and not marked for writeback
1789 	 */
1790 	bh = head;
1791 	/* Recovery: lock and submit the mapped buffers */
1792 	do {
1793 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1794 		    !buffer_delay(bh)) {
1795 			lock_buffer(bh);
1796 			mark_buffer_async_write_endio(bh, handler);
1797 		} else {
1798 			/*
1799 			 * The buffer may have been set dirty during
1800 			 * attachment to a dirty page.
1801 			 */
1802 			clear_buffer_dirty(bh);
1803 		}
1804 	} while ((bh = bh->b_this_page) != head);
1805 	SetPageError(page);
1806 	BUG_ON(PageWriteback(page));
1807 	mapping_set_error(page->mapping, err);
1808 	set_page_writeback(page);
1809 	do {
1810 		struct buffer_head *next = bh->b_this_page;
1811 		if (buffer_async_write(bh)) {
1812 			clear_buffer_dirty(bh);
1813 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1814 					inode->i_write_hint, wbc);
1815 			nr_underway++;
1816 		}
1817 		bh = next;
1818 	} while (bh != head);
1819 	unlock_page(page);
1820 	goto done;
1821 }
1822 EXPORT_SYMBOL(__block_write_full_page);
1823 
1824 /*
1825  * If a page has any new buffers, zero them out here, and mark them uptodate
1826  * and dirty so they'll be written out (in order to prevent uninitialised
1827  * block data from leaking). And clear the new bit.
1828  */
1829 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1830 {
1831 	unsigned int block_start, block_end;
1832 	struct buffer_head *head, *bh;
1833 
1834 	BUG_ON(!PageLocked(page));
1835 	if (!page_has_buffers(page))
1836 		return;
1837 
1838 	bh = head = page_buffers(page);
1839 	block_start = 0;
1840 	do {
1841 		block_end = block_start + bh->b_size;
1842 
1843 		if (buffer_new(bh)) {
1844 			if (block_end > from && block_start < to) {
1845 				if (!PageUptodate(page)) {
1846 					unsigned start, size;
1847 
1848 					start = max(from, block_start);
1849 					size = min(to, block_end) - start;
1850 
1851 					zero_user(page, start, size);
1852 					set_buffer_uptodate(bh);
1853 				}
1854 
1855 				clear_buffer_new(bh);
1856 				mark_buffer_dirty(bh);
1857 			}
1858 		}
1859 
1860 		block_start = block_end;
1861 		bh = bh->b_this_page;
1862 	} while (bh != head);
1863 }
1864 EXPORT_SYMBOL(page_zero_new_buffers);
1865 
1866 static void
1867 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1868 		struct iomap *iomap)
1869 {
1870 	loff_t offset = block << inode->i_blkbits;
1871 
1872 	bh->b_bdev = iomap->bdev;
1873 
1874 	/*
1875 	 * Block points to offset in file we need to map, iomap contains
1876 	 * the offset at which the map starts. If the map ends before the
1877 	 * current block, then do not map the buffer and let the caller
1878 	 * handle it.
1879 	 */
1880 	BUG_ON(offset >= iomap->offset + iomap->length);
1881 
1882 	switch (iomap->type) {
1883 	case IOMAP_HOLE:
1884 		/*
1885 		 * If the buffer is not up to date or beyond the current EOF,
1886 		 * we need to mark it as new to ensure sub-block zeroing is
1887 		 * executed if necessary.
1888 		 */
1889 		if (!buffer_uptodate(bh) ||
1890 		    (offset >= i_size_read(inode)))
1891 			set_buffer_new(bh);
1892 		break;
1893 	case IOMAP_DELALLOC:
1894 		if (!buffer_uptodate(bh) ||
1895 		    (offset >= i_size_read(inode)))
1896 			set_buffer_new(bh);
1897 		set_buffer_uptodate(bh);
1898 		set_buffer_mapped(bh);
1899 		set_buffer_delay(bh);
1900 		break;
1901 	case IOMAP_UNWRITTEN:
1902 		/*
1903 		 * For unwritten regions, we always need to ensure that
1904 		 * sub-block writes cause the regions in the block we are not
1905 		 * writing to are zeroed. Set the buffer as new to ensure this.
1906 		 */
1907 		set_buffer_new(bh);
1908 		set_buffer_unwritten(bh);
1909 		/* FALLTHRU */
1910 	case IOMAP_MAPPED:
1911 		if (offset >= i_size_read(inode))
1912 			set_buffer_new(bh);
1913 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1914 				inode->i_blkbits;
1915 		set_buffer_mapped(bh);
1916 		break;
1917 	}
1918 }
1919 
1920 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1921 		get_block_t *get_block, struct iomap *iomap)
1922 {
1923 	unsigned from = pos & (PAGE_SIZE - 1);
1924 	unsigned to = from + len;
1925 	struct inode *inode = page->mapping->host;
1926 	unsigned block_start, block_end;
1927 	sector_t block;
1928 	int err = 0;
1929 	unsigned blocksize, bbits;
1930 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1931 
1932 	BUG_ON(!PageLocked(page));
1933 	BUG_ON(from > PAGE_SIZE);
1934 	BUG_ON(to > PAGE_SIZE);
1935 	BUG_ON(from > to);
1936 
1937 	head = create_page_buffers(page, inode, 0);
1938 	blocksize = head->b_size;
1939 	bbits = block_size_bits(blocksize);
1940 
1941 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1942 
1943 	for(bh = head, block_start = 0; bh != head || !block_start;
1944 	    block++, block_start=block_end, bh = bh->b_this_page) {
1945 		block_end = block_start + blocksize;
1946 		if (block_end <= from || block_start >= to) {
1947 			if (PageUptodate(page)) {
1948 				if (!buffer_uptodate(bh))
1949 					set_buffer_uptodate(bh);
1950 			}
1951 			continue;
1952 		}
1953 		if (buffer_new(bh))
1954 			clear_buffer_new(bh);
1955 		if (!buffer_mapped(bh)) {
1956 			WARN_ON(bh->b_size != blocksize);
1957 			if (get_block) {
1958 				err = get_block(inode, block, bh, 1);
1959 				if (err)
1960 					break;
1961 			} else {
1962 				iomap_to_bh(inode, block, bh, iomap);
1963 			}
1964 
1965 			if (buffer_new(bh)) {
1966 				clean_bdev_bh_alias(bh);
1967 				if (PageUptodate(page)) {
1968 					clear_buffer_new(bh);
1969 					set_buffer_uptodate(bh);
1970 					mark_buffer_dirty(bh);
1971 					continue;
1972 				}
1973 				if (block_end > to || block_start < from)
1974 					zero_user_segments(page,
1975 						to, block_end,
1976 						block_start, from);
1977 				continue;
1978 			}
1979 		}
1980 		if (PageUptodate(page)) {
1981 			if (!buffer_uptodate(bh))
1982 				set_buffer_uptodate(bh);
1983 			continue;
1984 		}
1985 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1986 		    !buffer_unwritten(bh) &&
1987 		     (block_start < from || block_end > to)) {
1988 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1989 			*wait_bh++=bh;
1990 		}
1991 	}
1992 	/*
1993 	 * If we issued read requests - let them complete.
1994 	 */
1995 	while(wait_bh > wait) {
1996 		wait_on_buffer(*--wait_bh);
1997 		if (!buffer_uptodate(*wait_bh))
1998 			err = -EIO;
1999 	}
2000 	if (unlikely(err))
2001 		page_zero_new_buffers(page, from, to);
2002 	return err;
2003 }
2004 
2005 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2006 		get_block_t *get_block)
2007 {
2008 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2009 }
2010 EXPORT_SYMBOL(__block_write_begin);
2011 
2012 static int __block_commit_write(struct inode *inode, struct page *page,
2013 		unsigned from, unsigned to)
2014 {
2015 	unsigned block_start, block_end;
2016 	int partial = 0;
2017 	unsigned blocksize;
2018 	struct buffer_head *bh, *head;
2019 
2020 	bh = head = page_buffers(page);
2021 	blocksize = bh->b_size;
2022 
2023 	block_start = 0;
2024 	do {
2025 		block_end = block_start + blocksize;
2026 		if (block_end <= from || block_start >= to) {
2027 			if (!buffer_uptodate(bh))
2028 				partial = 1;
2029 		} else {
2030 			set_buffer_uptodate(bh);
2031 			mark_buffer_dirty(bh);
2032 		}
2033 		clear_buffer_new(bh);
2034 
2035 		block_start = block_end;
2036 		bh = bh->b_this_page;
2037 	} while (bh != head);
2038 
2039 	/*
2040 	 * If this is a partial write which happened to make all buffers
2041 	 * uptodate then we can optimize away a bogus readpage() for
2042 	 * the next read(). Here we 'discover' whether the page went
2043 	 * uptodate as a result of this (potentially partial) write.
2044 	 */
2045 	if (!partial)
2046 		SetPageUptodate(page);
2047 	return 0;
2048 }
2049 
2050 /*
2051  * block_write_begin takes care of the basic task of block allocation and
2052  * bringing partial write blocks uptodate first.
2053  *
2054  * The filesystem needs to handle block truncation upon failure.
2055  */
2056 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2057 		unsigned flags, struct page **pagep, get_block_t *get_block)
2058 {
2059 	pgoff_t index = pos >> PAGE_SHIFT;
2060 	struct page *page;
2061 	int status;
2062 
2063 	page = grab_cache_page_write_begin(mapping, index, flags);
2064 	if (!page)
2065 		return -ENOMEM;
2066 
2067 	status = __block_write_begin(page, pos, len, get_block);
2068 	if (unlikely(status)) {
2069 		unlock_page(page);
2070 		put_page(page);
2071 		page = NULL;
2072 	}
2073 
2074 	*pagep = page;
2075 	return status;
2076 }
2077 EXPORT_SYMBOL(block_write_begin);
2078 
2079 int block_write_end(struct file *file, struct address_space *mapping,
2080 			loff_t pos, unsigned len, unsigned copied,
2081 			struct page *page, void *fsdata)
2082 {
2083 	struct inode *inode = mapping->host;
2084 	unsigned start;
2085 
2086 	start = pos & (PAGE_SIZE - 1);
2087 
2088 	if (unlikely(copied < len)) {
2089 		/*
2090 		 * The buffers that were written will now be uptodate, so we
2091 		 * don't have to worry about a readpage reading them and
2092 		 * overwriting a partial write. However if we have encountered
2093 		 * a short write and only partially written into a buffer, it
2094 		 * will not be marked uptodate, so a readpage might come in and
2095 		 * destroy our partial write.
2096 		 *
2097 		 * Do the simplest thing, and just treat any short write to a
2098 		 * non uptodate page as a zero-length write, and force the
2099 		 * caller to redo the whole thing.
2100 		 */
2101 		if (!PageUptodate(page))
2102 			copied = 0;
2103 
2104 		page_zero_new_buffers(page, start+copied, start+len);
2105 	}
2106 	flush_dcache_page(page);
2107 
2108 	/* This could be a short (even 0-length) commit */
2109 	__block_commit_write(inode, page, start, start+copied);
2110 
2111 	return copied;
2112 }
2113 EXPORT_SYMBOL(block_write_end);
2114 
2115 int generic_write_end(struct file *file, struct address_space *mapping,
2116 			loff_t pos, unsigned len, unsigned copied,
2117 			struct page *page, void *fsdata)
2118 {
2119 	struct inode *inode = mapping->host;
2120 	loff_t old_size = inode->i_size;
2121 	int i_size_changed = 0;
2122 
2123 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2124 
2125 	/*
2126 	 * No need to use i_size_read() here, the i_size
2127 	 * cannot change under us because we hold i_mutex.
2128 	 *
2129 	 * But it's important to update i_size while still holding page lock:
2130 	 * page writeout could otherwise come in and zero beyond i_size.
2131 	 */
2132 	if (pos+copied > inode->i_size) {
2133 		i_size_write(inode, pos+copied);
2134 		i_size_changed = 1;
2135 	}
2136 
2137 	unlock_page(page);
2138 	put_page(page);
2139 
2140 	if (old_size < pos)
2141 		pagecache_isize_extended(inode, old_size, pos);
2142 	/*
2143 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2144 	 * makes the holding time of page lock longer. Second, it forces lock
2145 	 * ordering of page lock and transaction start for journaling
2146 	 * filesystems.
2147 	 */
2148 	if (i_size_changed)
2149 		mark_inode_dirty(inode);
2150 
2151 	return copied;
2152 }
2153 EXPORT_SYMBOL(generic_write_end);
2154 
2155 /*
2156  * block_is_partially_uptodate checks whether buffers within a page are
2157  * uptodate or not.
2158  *
2159  * Returns true if all buffers which correspond to a file portion
2160  * we want to read are uptodate.
2161  */
2162 int block_is_partially_uptodate(struct page *page, unsigned long from,
2163 					unsigned long count)
2164 {
2165 	unsigned block_start, block_end, blocksize;
2166 	unsigned to;
2167 	struct buffer_head *bh, *head;
2168 	int ret = 1;
2169 
2170 	if (!page_has_buffers(page))
2171 		return 0;
2172 
2173 	head = page_buffers(page);
2174 	blocksize = head->b_size;
2175 	to = min_t(unsigned, PAGE_SIZE - from, count);
2176 	to = from + to;
2177 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2178 		return 0;
2179 
2180 	bh = head;
2181 	block_start = 0;
2182 	do {
2183 		block_end = block_start + blocksize;
2184 		if (block_end > from && block_start < to) {
2185 			if (!buffer_uptodate(bh)) {
2186 				ret = 0;
2187 				break;
2188 			}
2189 			if (block_end >= to)
2190 				break;
2191 		}
2192 		block_start = block_end;
2193 		bh = bh->b_this_page;
2194 	} while (bh != head);
2195 
2196 	return ret;
2197 }
2198 EXPORT_SYMBOL(block_is_partially_uptodate);
2199 
2200 /*
2201  * Generic "read page" function for block devices that have the normal
2202  * get_block functionality. This is most of the block device filesystems.
2203  * Reads the page asynchronously --- the unlock_buffer() and
2204  * set/clear_buffer_uptodate() functions propagate buffer state into the
2205  * page struct once IO has completed.
2206  */
2207 int block_read_full_page(struct page *page, get_block_t *get_block)
2208 {
2209 	struct inode *inode = page->mapping->host;
2210 	sector_t iblock, lblock;
2211 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2212 	unsigned int blocksize, bbits;
2213 	int nr, i;
2214 	int fully_mapped = 1;
2215 
2216 	head = create_page_buffers(page, inode, 0);
2217 	blocksize = head->b_size;
2218 	bbits = block_size_bits(blocksize);
2219 
2220 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2221 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2222 	bh = head;
2223 	nr = 0;
2224 	i = 0;
2225 
2226 	do {
2227 		if (buffer_uptodate(bh))
2228 			continue;
2229 
2230 		if (!buffer_mapped(bh)) {
2231 			int err = 0;
2232 
2233 			fully_mapped = 0;
2234 			if (iblock < lblock) {
2235 				WARN_ON(bh->b_size != blocksize);
2236 				err = get_block(inode, iblock, bh, 0);
2237 				if (err)
2238 					SetPageError(page);
2239 			}
2240 			if (!buffer_mapped(bh)) {
2241 				zero_user(page, i * blocksize, blocksize);
2242 				if (!err)
2243 					set_buffer_uptodate(bh);
2244 				continue;
2245 			}
2246 			/*
2247 			 * get_block() might have updated the buffer
2248 			 * synchronously
2249 			 */
2250 			if (buffer_uptodate(bh))
2251 				continue;
2252 		}
2253 		arr[nr++] = bh;
2254 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2255 
2256 	if (fully_mapped)
2257 		SetPageMappedToDisk(page);
2258 
2259 	if (!nr) {
2260 		/*
2261 		 * All buffers are uptodate - we can set the page uptodate
2262 		 * as well. But not if get_block() returned an error.
2263 		 */
2264 		if (!PageError(page))
2265 			SetPageUptodate(page);
2266 		unlock_page(page);
2267 		return 0;
2268 	}
2269 
2270 	/* Stage two: lock the buffers */
2271 	for (i = 0; i < nr; i++) {
2272 		bh = arr[i];
2273 		lock_buffer(bh);
2274 		mark_buffer_async_read(bh);
2275 	}
2276 
2277 	/*
2278 	 * Stage 3: start the IO.  Check for uptodateness
2279 	 * inside the buffer lock in case another process reading
2280 	 * the underlying blockdev brought it uptodate (the sct fix).
2281 	 */
2282 	for (i = 0; i < nr; i++) {
2283 		bh = arr[i];
2284 		if (buffer_uptodate(bh))
2285 			end_buffer_async_read(bh, 1);
2286 		else
2287 			submit_bh(REQ_OP_READ, 0, bh);
2288 	}
2289 	return 0;
2290 }
2291 EXPORT_SYMBOL(block_read_full_page);
2292 
2293 /* utility function for filesystems that need to do work on expanding
2294  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2295  * deal with the hole.
2296  */
2297 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2298 {
2299 	struct address_space *mapping = inode->i_mapping;
2300 	struct page *page;
2301 	void *fsdata;
2302 	int err;
2303 
2304 	err = inode_newsize_ok(inode, size);
2305 	if (err)
2306 		goto out;
2307 
2308 	err = pagecache_write_begin(NULL, mapping, size, 0,
2309 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2310 	if (err)
2311 		goto out;
2312 
2313 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2314 	BUG_ON(err > 0);
2315 
2316 out:
2317 	return err;
2318 }
2319 EXPORT_SYMBOL(generic_cont_expand_simple);
2320 
2321 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2322 			    loff_t pos, loff_t *bytes)
2323 {
2324 	struct inode *inode = mapping->host;
2325 	unsigned int blocksize = i_blocksize(inode);
2326 	struct page *page;
2327 	void *fsdata;
2328 	pgoff_t index, curidx;
2329 	loff_t curpos;
2330 	unsigned zerofrom, offset, len;
2331 	int err = 0;
2332 
2333 	index = pos >> PAGE_SHIFT;
2334 	offset = pos & ~PAGE_MASK;
2335 
2336 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2337 		zerofrom = curpos & ~PAGE_MASK;
2338 		if (zerofrom & (blocksize-1)) {
2339 			*bytes |= (blocksize-1);
2340 			(*bytes)++;
2341 		}
2342 		len = PAGE_SIZE - zerofrom;
2343 
2344 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2345 					    &page, &fsdata);
2346 		if (err)
2347 			goto out;
2348 		zero_user(page, zerofrom, len);
2349 		err = pagecache_write_end(file, mapping, curpos, len, len,
2350 						page, fsdata);
2351 		if (err < 0)
2352 			goto out;
2353 		BUG_ON(err != len);
2354 		err = 0;
2355 
2356 		balance_dirty_pages_ratelimited(mapping);
2357 
2358 		if (unlikely(fatal_signal_pending(current))) {
2359 			err = -EINTR;
2360 			goto out;
2361 		}
2362 	}
2363 
2364 	/* page covers the boundary, find the boundary offset */
2365 	if (index == curidx) {
2366 		zerofrom = curpos & ~PAGE_MASK;
2367 		/* if we will expand the thing last block will be filled */
2368 		if (offset <= zerofrom) {
2369 			goto out;
2370 		}
2371 		if (zerofrom & (blocksize-1)) {
2372 			*bytes |= (blocksize-1);
2373 			(*bytes)++;
2374 		}
2375 		len = offset - zerofrom;
2376 
2377 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2378 					    &page, &fsdata);
2379 		if (err)
2380 			goto out;
2381 		zero_user(page, zerofrom, len);
2382 		err = pagecache_write_end(file, mapping, curpos, len, len,
2383 						page, fsdata);
2384 		if (err < 0)
2385 			goto out;
2386 		BUG_ON(err != len);
2387 		err = 0;
2388 	}
2389 out:
2390 	return err;
2391 }
2392 
2393 /*
2394  * For moronic filesystems that do not allow holes in file.
2395  * We may have to extend the file.
2396  */
2397 int cont_write_begin(struct file *file, struct address_space *mapping,
2398 			loff_t pos, unsigned len, unsigned flags,
2399 			struct page **pagep, void **fsdata,
2400 			get_block_t *get_block, loff_t *bytes)
2401 {
2402 	struct inode *inode = mapping->host;
2403 	unsigned int blocksize = i_blocksize(inode);
2404 	unsigned int zerofrom;
2405 	int err;
2406 
2407 	err = cont_expand_zero(file, mapping, pos, bytes);
2408 	if (err)
2409 		return err;
2410 
2411 	zerofrom = *bytes & ~PAGE_MASK;
2412 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2413 		*bytes |= (blocksize-1);
2414 		(*bytes)++;
2415 	}
2416 
2417 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2418 }
2419 EXPORT_SYMBOL(cont_write_begin);
2420 
2421 int block_commit_write(struct page *page, unsigned from, unsigned to)
2422 {
2423 	struct inode *inode = page->mapping->host;
2424 	__block_commit_write(inode,page,from,to);
2425 	return 0;
2426 }
2427 EXPORT_SYMBOL(block_commit_write);
2428 
2429 /*
2430  * block_page_mkwrite() is not allowed to change the file size as it gets
2431  * called from a page fault handler when a page is first dirtied. Hence we must
2432  * be careful to check for EOF conditions here. We set the page up correctly
2433  * for a written page which means we get ENOSPC checking when writing into
2434  * holes and correct delalloc and unwritten extent mapping on filesystems that
2435  * support these features.
2436  *
2437  * We are not allowed to take the i_mutex here so we have to play games to
2438  * protect against truncate races as the page could now be beyond EOF.  Because
2439  * truncate writes the inode size before removing pages, once we have the
2440  * page lock we can determine safely if the page is beyond EOF. If it is not
2441  * beyond EOF, then the page is guaranteed safe against truncation until we
2442  * unlock the page.
2443  *
2444  * Direct callers of this function should protect against filesystem freezing
2445  * using sb_start_pagefault() - sb_end_pagefault() functions.
2446  */
2447 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2448 			 get_block_t get_block)
2449 {
2450 	struct page *page = vmf->page;
2451 	struct inode *inode = file_inode(vma->vm_file);
2452 	unsigned long end;
2453 	loff_t size;
2454 	int ret;
2455 
2456 	lock_page(page);
2457 	size = i_size_read(inode);
2458 	if ((page->mapping != inode->i_mapping) ||
2459 	    (page_offset(page) > size)) {
2460 		/* We overload EFAULT to mean page got truncated */
2461 		ret = -EFAULT;
2462 		goto out_unlock;
2463 	}
2464 
2465 	/* page is wholly or partially inside EOF */
2466 	if (((page->index + 1) << PAGE_SHIFT) > size)
2467 		end = size & ~PAGE_MASK;
2468 	else
2469 		end = PAGE_SIZE;
2470 
2471 	ret = __block_write_begin(page, 0, end, get_block);
2472 	if (!ret)
2473 		ret = block_commit_write(page, 0, end);
2474 
2475 	if (unlikely(ret < 0))
2476 		goto out_unlock;
2477 	set_page_dirty(page);
2478 	wait_for_stable_page(page);
2479 	return 0;
2480 out_unlock:
2481 	unlock_page(page);
2482 	return ret;
2483 }
2484 EXPORT_SYMBOL(block_page_mkwrite);
2485 
2486 /*
2487  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2488  * immediately, while under the page lock.  So it needs a special end_io
2489  * handler which does not touch the bh after unlocking it.
2490  */
2491 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2492 {
2493 	__end_buffer_read_notouch(bh, uptodate);
2494 }
2495 
2496 /*
2497  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2498  * the page (converting it to circular linked list and taking care of page
2499  * dirty races).
2500  */
2501 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2502 {
2503 	struct buffer_head *bh;
2504 
2505 	BUG_ON(!PageLocked(page));
2506 
2507 	spin_lock(&page->mapping->private_lock);
2508 	bh = head;
2509 	do {
2510 		if (PageDirty(page))
2511 			set_buffer_dirty(bh);
2512 		if (!bh->b_this_page)
2513 			bh->b_this_page = head;
2514 		bh = bh->b_this_page;
2515 	} while (bh != head);
2516 	attach_page_buffers(page, head);
2517 	spin_unlock(&page->mapping->private_lock);
2518 }
2519 
2520 /*
2521  * On entry, the page is fully not uptodate.
2522  * On exit the page is fully uptodate in the areas outside (from,to)
2523  * The filesystem needs to handle block truncation upon failure.
2524  */
2525 int nobh_write_begin(struct address_space *mapping,
2526 			loff_t pos, unsigned len, unsigned flags,
2527 			struct page **pagep, void **fsdata,
2528 			get_block_t *get_block)
2529 {
2530 	struct inode *inode = mapping->host;
2531 	const unsigned blkbits = inode->i_blkbits;
2532 	const unsigned blocksize = 1 << blkbits;
2533 	struct buffer_head *head, *bh;
2534 	struct page *page;
2535 	pgoff_t index;
2536 	unsigned from, to;
2537 	unsigned block_in_page;
2538 	unsigned block_start, block_end;
2539 	sector_t block_in_file;
2540 	int nr_reads = 0;
2541 	int ret = 0;
2542 	int is_mapped_to_disk = 1;
2543 
2544 	index = pos >> PAGE_SHIFT;
2545 	from = pos & (PAGE_SIZE - 1);
2546 	to = from + len;
2547 
2548 	page = grab_cache_page_write_begin(mapping, index, flags);
2549 	if (!page)
2550 		return -ENOMEM;
2551 	*pagep = page;
2552 	*fsdata = NULL;
2553 
2554 	if (page_has_buffers(page)) {
2555 		ret = __block_write_begin(page, pos, len, get_block);
2556 		if (unlikely(ret))
2557 			goto out_release;
2558 		return ret;
2559 	}
2560 
2561 	if (PageMappedToDisk(page))
2562 		return 0;
2563 
2564 	/*
2565 	 * Allocate buffers so that we can keep track of state, and potentially
2566 	 * attach them to the page if an error occurs. In the common case of
2567 	 * no error, they will just be freed again without ever being attached
2568 	 * to the page (which is all OK, because we're under the page lock).
2569 	 *
2570 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2571 	 * than the circular one we're used to.
2572 	 */
2573 	head = alloc_page_buffers(page, blocksize, false);
2574 	if (!head) {
2575 		ret = -ENOMEM;
2576 		goto out_release;
2577 	}
2578 
2579 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2580 
2581 	/*
2582 	 * We loop across all blocks in the page, whether or not they are
2583 	 * part of the affected region.  This is so we can discover if the
2584 	 * page is fully mapped-to-disk.
2585 	 */
2586 	for (block_start = 0, block_in_page = 0, bh = head;
2587 		  block_start < PAGE_SIZE;
2588 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2589 		int create;
2590 
2591 		block_end = block_start + blocksize;
2592 		bh->b_state = 0;
2593 		create = 1;
2594 		if (block_start >= to)
2595 			create = 0;
2596 		ret = get_block(inode, block_in_file + block_in_page,
2597 					bh, create);
2598 		if (ret)
2599 			goto failed;
2600 		if (!buffer_mapped(bh))
2601 			is_mapped_to_disk = 0;
2602 		if (buffer_new(bh))
2603 			clean_bdev_bh_alias(bh);
2604 		if (PageUptodate(page)) {
2605 			set_buffer_uptodate(bh);
2606 			continue;
2607 		}
2608 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2609 			zero_user_segments(page, block_start, from,
2610 							to, block_end);
2611 			continue;
2612 		}
2613 		if (buffer_uptodate(bh))
2614 			continue;	/* reiserfs does this */
2615 		if (block_start < from || block_end > to) {
2616 			lock_buffer(bh);
2617 			bh->b_end_io = end_buffer_read_nobh;
2618 			submit_bh(REQ_OP_READ, 0, bh);
2619 			nr_reads++;
2620 		}
2621 	}
2622 
2623 	if (nr_reads) {
2624 		/*
2625 		 * The page is locked, so these buffers are protected from
2626 		 * any VM or truncate activity.  Hence we don't need to care
2627 		 * for the buffer_head refcounts.
2628 		 */
2629 		for (bh = head; bh; bh = bh->b_this_page) {
2630 			wait_on_buffer(bh);
2631 			if (!buffer_uptodate(bh))
2632 				ret = -EIO;
2633 		}
2634 		if (ret)
2635 			goto failed;
2636 	}
2637 
2638 	if (is_mapped_to_disk)
2639 		SetPageMappedToDisk(page);
2640 
2641 	*fsdata = head; /* to be released by nobh_write_end */
2642 
2643 	return 0;
2644 
2645 failed:
2646 	BUG_ON(!ret);
2647 	/*
2648 	 * Error recovery is a bit difficult. We need to zero out blocks that
2649 	 * were newly allocated, and dirty them to ensure they get written out.
2650 	 * Buffers need to be attached to the page at this point, otherwise
2651 	 * the handling of potential IO errors during writeout would be hard
2652 	 * (could try doing synchronous writeout, but what if that fails too?)
2653 	 */
2654 	attach_nobh_buffers(page, head);
2655 	page_zero_new_buffers(page, from, to);
2656 
2657 out_release:
2658 	unlock_page(page);
2659 	put_page(page);
2660 	*pagep = NULL;
2661 
2662 	return ret;
2663 }
2664 EXPORT_SYMBOL(nobh_write_begin);
2665 
2666 int nobh_write_end(struct file *file, struct address_space *mapping,
2667 			loff_t pos, unsigned len, unsigned copied,
2668 			struct page *page, void *fsdata)
2669 {
2670 	struct inode *inode = page->mapping->host;
2671 	struct buffer_head *head = fsdata;
2672 	struct buffer_head *bh;
2673 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2674 
2675 	if (unlikely(copied < len) && head)
2676 		attach_nobh_buffers(page, head);
2677 	if (page_has_buffers(page))
2678 		return generic_write_end(file, mapping, pos, len,
2679 					copied, page, fsdata);
2680 
2681 	SetPageUptodate(page);
2682 	set_page_dirty(page);
2683 	if (pos+copied > inode->i_size) {
2684 		i_size_write(inode, pos+copied);
2685 		mark_inode_dirty(inode);
2686 	}
2687 
2688 	unlock_page(page);
2689 	put_page(page);
2690 
2691 	while (head) {
2692 		bh = head;
2693 		head = head->b_this_page;
2694 		free_buffer_head(bh);
2695 	}
2696 
2697 	return copied;
2698 }
2699 EXPORT_SYMBOL(nobh_write_end);
2700 
2701 /*
2702  * nobh_writepage() - based on block_full_write_page() except
2703  * that it tries to operate without attaching bufferheads to
2704  * the page.
2705  */
2706 int nobh_writepage(struct page *page, get_block_t *get_block,
2707 			struct writeback_control *wbc)
2708 {
2709 	struct inode * const inode = page->mapping->host;
2710 	loff_t i_size = i_size_read(inode);
2711 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2712 	unsigned offset;
2713 	int ret;
2714 
2715 	/* Is the page fully inside i_size? */
2716 	if (page->index < end_index)
2717 		goto out;
2718 
2719 	/* Is the page fully outside i_size? (truncate in progress) */
2720 	offset = i_size & (PAGE_SIZE-1);
2721 	if (page->index >= end_index+1 || !offset) {
2722 		/*
2723 		 * The page may have dirty, unmapped buffers.  For example,
2724 		 * they may have been added in ext3_writepage().  Make them
2725 		 * freeable here, so the page does not leak.
2726 		 */
2727 #if 0
2728 		/* Not really sure about this  - do we need this ? */
2729 		if (page->mapping->a_ops->invalidatepage)
2730 			page->mapping->a_ops->invalidatepage(page, offset);
2731 #endif
2732 		unlock_page(page);
2733 		return 0; /* don't care */
2734 	}
2735 
2736 	/*
2737 	 * The page straddles i_size.  It must be zeroed out on each and every
2738 	 * writepage invocation because it may be mmapped.  "A file is mapped
2739 	 * in multiples of the page size.  For a file that is not a multiple of
2740 	 * the  page size, the remaining memory is zeroed when mapped, and
2741 	 * writes to that region are not written out to the file."
2742 	 */
2743 	zero_user_segment(page, offset, PAGE_SIZE);
2744 out:
2745 	ret = mpage_writepage(page, get_block, wbc);
2746 	if (ret == -EAGAIN)
2747 		ret = __block_write_full_page(inode, page, get_block, wbc,
2748 					      end_buffer_async_write);
2749 	return ret;
2750 }
2751 EXPORT_SYMBOL(nobh_writepage);
2752 
2753 int nobh_truncate_page(struct address_space *mapping,
2754 			loff_t from, get_block_t *get_block)
2755 {
2756 	pgoff_t index = from >> PAGE_SHIFT;
2757 	unsigned offset = from & (PAGE_SIZE-1);
2758 	unsigned blocksize;
2759 	sector_t iblock;
2760 	unsigned length, pos;
2761 	struct inode *inode = mapping->host;
2762 	struct page *page;
2763 	struct buffer_head map_bh;
2764 	int err;
2765 
2766 	blocksize = i_blocksize(inode);
2767 	length = offset & (blocksize - 1);
2768 
2769 	/* Block boundary? Nothing to do */
2770 	if (!length)
2771 		return 0;
2772 
2773 	length = blocksize - length;
2774 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2775 
2776 	page = grab_cache_page(mapping, index);
2777 	err = -ENOMEM;
2778 	if (!page)
2779 		goto out;
2780 
2781 	if (page_has_buffers(page)) {
2782 has_buffers:
2783 		unlock_page(page);
2784 		put_page(page);
2785 		return block_truncate_page(mapping, from, get_block);
2786 	}
2787 
2788 	/* Find the buffer that contains "offset" */
2789 	pos = blocksize;
2790 	while (offset >= pos) {
2791 		iblock++;
2792 		pos += blocksize;
2793 	}
2794 
2795 	map_bh.b_size = blocksize;
2796 	map_bh.b_state = 0;
2797 	err = get_block(inode, iblock, &map_bh, 0);
2798 	if (err)
2799 		goto unlock;
2800 	/* unmapped? It's a hole - nothing to do */
2801 	if (!buffer_mapped(&map_bh))
2802 		goto unlock;
2803 
2804 	/* Ok, it's mapped. Make sure it's up-to-date */
2805 	if (!PageUptodate(page)) {
2806 		err = mapping->a_ops->readpage(NULL, page);
2807 		if (err) {
2808 			put_page(page);
2809 			goto out;
2810 		}
2811 		lock_page(page);
2812 		if (!PageUptodate(page)) {
2813 			err = -EIO;
2814 			goto unlock;
2815 		}
2816 		if (page_has_buffers(page))
2817 			goto has_buffers;
2818 	}
2819 	zero_user(page, offset, length);
2820 	set_page_dirty(page);
2821 	err = 0;
2822 
2823 unlock:
2824 	unlock_page(page);
2825 	put_page(page);
2826 out:
2827 	return err;
2828 }
2829 EXPORT_SYMBOL(nobh_truncate_page);
2830 
2831 int block_truncate_page(struct address_space *mapping,
2832 			loff_t from, get_block_t *get_block)
2833 {
2834 	pgoff_t index = from >> PAGE_SHIFT;
2835 	unsigned offset = from & (PAGE_SIZE-1);
2836 	unsigned blocksize;
2837 	sector_t iblock;
2838 	unsigned length, pos;
2839 	struct inode *inode = mapping->host;
2840 	struct page *page;
2841 	struct buffer_head *bh;
2842 	int err;
2843 
2844 	blocksize = i_blocksize(inode);
2845 	length = offset & (blocksize - 1);
2846 
2847 	/* Block boundary? Nothing to do */
2848 	if (!length)
2849 		return 0;
2850 
2851 	length = blocksize - length;
2852 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2853 
2854 	page = grab_cache_page(mapping, index);
2855 	err = -ENOMEM;
2856 	if (!page)
2857 		goto out;
2858 
2859 	if (!page_has_buffers(page))
2860 		create_empty_buffers(page, blocksize, 0);
2861 
2862 	/* Find the buffer that contains "offset" */
2863 	bh = page_buffers(page);
2864 	pos = blocksize;
2865 	while (offset >= pos) {
2866 		bh = bh->b_this_page;
2867 		iblock++;
2868 		pos += blocksize;
2869 	}
2870 
2871 	err = 0;
2872 	if (!buffer_mapped(bh)) {
2873 		WARN_ON(bh->b_size != blocksize);
2874 		err = get_block(inode, iblock, bh, 0);
2875 		if (err)
2876 			goto unlock;
2877 		/* unmapped? It's a hole - nothing to do */
2878 		if (!buffer_mapped(bh))
2879 			goto unlock;
2880 	}
2881 
2882 	/* Ok, it's mapped. Make sure it's up-to-date */
2883 	if (PageUptodate(page))
2884 		set_buffer_uptodate(bh);
2885 
2886 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2887 		err = -EIO;
2888 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2889 		wait_on_buffer(bh);
2890 		/* Uhhuh. Read error. Complain and punt. */
2891 		if (!buffer_uptodate(bh))
2892 			goto unlock;
2893 	}
2894 
2895 	zero_user(page, offset, length);
2896 	mark_buffer_dirty(bh);
2897 	err = 0;
2898 
2899 unlock:
2900 	unlock_page(page);
2901 	put_page(page);
2902 out:
2903 	return err;
2904 }
2905 EXPORT_SYMBOL(block_truncate_page);
2906 
2907 /*
2908  * The generic ->writepage function for buffer-backed address_spaces
2909  */
2910 int block_write_full_page(struct page *page, get_block_t *get_block,
2911 			struct writeback_control *wbc)
2912 {
2913 	struct inode * const inode = page->mapping->host;
2914 	loff_t i_size = i_size_read(inode);
2915 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2916 	unsigned offset;
2917 
2918 	/* Is the page fully inside i_size? */
2919 	if (page->index < end_index)
2920 		return __block_write_full_page(inode, page, get_block, wbc,
2921 					       end_buffer_async_write);
2922 
2923 	/* Is the page fully outside i_size? (truncate in progress) */
2924 	offset = i_size & (PAGE_SIZE-1);
2925 	if (page->index >= end_index+1 || !offset) {
2926 		/*
2927 		 * The page may have dirty, unmapped buffers.  For example,
2928 		 * they may have been added in ext3_writepage().  Make them
2929 		 * freeable here, so the page does not leak.
2930 		 */
2931 		do_invalidatepage(page, 0, PAGE_SIZE);
2932 		unlock_page(page);
2933 		return 0; /* don't care */
2934 	}
2935 
2936 	/*
2937 	 * The page straddles i_size.  It must be zeroed out on each and every
2938 	 * writepage invocation because it may be mmapped.  "A file is mapped
2939 	 * in multiples of the page size.  For a file that is not a multiple of
2940 	 * the  page size, the remaining memory is zeroed when mapped, and
2941 	 * writes to that region are not written out to the file."
2942 	 */
2943 	zero_user_segment(page, offset, PAGE_SIZE);
2944 	return __block_write_full_page(inode, page, get_block, wbc,
2945 							end_buffer_async_write);
2946 }
2947 EXPORT_SYMBOL(block_write_full_page);
2948 
2949 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2950 			    get_block_t *get_block)
2951 {
2952 	struct inode *inode = mapping->host;
2953 	struct buffer_head tmp = {
2954 		.b_size = i_blocksize(inode),
2955 	};
2956 
2957 	get_block(inode, block, &tmp, 0);
2958 	return tmp.b_blocknr;
2959 }
2960 EXPORT_SYMBOL(generic_block_bmap);
2961 
2962 static void end_bio_bh_io_sync(struct bio *bio)
2963 {
2964 	struct buffer_head *bh = bio->bi_private;
2965 
2966 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2967 		set_bit(BH_Quiet, &bh->b_state);
2968 
2969 	bh->b_end_io(bh, !bio->bi_status);
2970 	bio_put(bio);
2971 }
2972 
2973 /*
2974  * This allows us to do IO even on the odd last sectors
2975  * of a device, even if the block size is some multiple
2976  * of the physical sector size.
2977  *
2978  * We'll just truncate the bio to the size of the device,
2979  * and clear the end of the buffer head manually.
2980  *
2981  * Truly out-of-range accesses will turn into actual IO
2982  * errors, this only handles the "we need to be able to
2983  * do IO at the final sector" case.
2984  */
2985 void guard_bio_eod(int op, struct bio *bio)
2986 {
2987 	sector_t maxsector;
2988 	struct bio_vec *bvec = bio_last_bvec_all(bio);
2989 	unsigned truncated_bytes;
2990 	struct hd_struct *part;
2991 
2992 	rcu_read_lock();
2993 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
2994 	if (part)
2995 		maxsector = part_nr_sects_read(part);
2996 	else
2997 		maxsector = get_capacity(bio->bi_disk);
2998 	rcu_read_unlock();
2999 
3000 	if (!maxsector)
3001 		return;
3002 
3003 	/*
3004 	 * If the *whole* IO is past the end of the device,
3005 	 * let it through, and the IO layer will turn it into
3006 	 * an EIO.
3007 	 */
3008 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3009 		return;
3010 
3011 	maxsector -= bio->bi_iter.bi_sector;
3012 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3013 		return;
3014 
3015 	/* Uhhuh. We've got a bio that straddles the device size! */
3016 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3017 
3018 	/* Truncate the bio.. */
3019 	bio->bi_iter.bi_size -= truncated_bytes;
3020 	bvec->bv_len -= truncated_bytes;
3021 
3022 	/* ..and clear the end of the buffer for reads */
3023 	if (op == REQ_OP_READ) {
3024 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3025 				truncated_bytes);
3026 	}
3027 }
3028 
3029 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3030 			 enum rw_hint write_hint, struct writeback_control *wbc)
3031 {
3032 	struct bio *bio;
3033 
3034 	BUG_ON(!buffer_locked(bh));
3035 	BUG_ON(!buffer_mapped(bh));
3036 	BUG_ON(!bh->b_end_io);
3037 	BUG_ON(buffer_delay(bh));
3038 	BUG_ON(buffer_unwritten(bh));
3039 
3040 	/*
3041 	 * Only clear out a write error when rewriting
3042 	 */
3043 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3044 		clear_buffer_write_io_error(bh);
3045 
3046 	/*
3047 	 * from here on down, it's all bio -- do the initial mapping,
3048 	 * submit_bio -> generic_make_request may further map this bio around
3049 	 */
3050 	bio = bio_alloc(GFP_NOIO, 1);
3051 
3052 	if (wbc) {
3053 		wbc_init_bio(wbc, bio);
3054 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3055 	}
3056 
3057 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3058 	bio_set_dev(bio, bh->b_bdev);
3059 	bio->bi_write_hint = write_hint;
3060 
3061 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3062 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3063 
3064 	bio->bi_end_io = end_bio_bh_io_sync;
3065 	bio->bi_private = bh;
3066 
3067 	/* Take care of bh's that straddle the end of the device */
3068 	guard_bio_eod(op, bio);
3069 
3070 	if (buffer_meta(bh))
3071 		op_flags |= REQ_META;
3072 	if (buffer_prio(bh))
3073 		op_flags |= REQ_PRIO;
3074 	bio_set_op_attrs(bio, op, op_flags);
3075 
3076 	submit_bio(bio);
3077 	return 0;
3078 }
3079 
3080 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3081 {
3082 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3083 }
3084 EXPORT_SYMBOL(submit_bh);
3085 
3086 /**
3087  * ll_rw_block: low-level access to block devices (DEPRECATED)
3088  * @op: whether to %READ or %WRITE
3089  * @op_flags: req_flag_bits
3090  * @nr: number of &struct buffer_heads in the array
3091  * @bhs: array of pointers to &struct buffer_head
3092  *
3093  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3094  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3095  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3096  * %REQ_RAHEAD.
3097  *
3098  * This function drops any buffer that it cannot get a lock on (with the
3099  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3100  * request, and any buffer that appears to be up-to-date when doing read
3101  * request.  Further it marks as clean buffers that are processed for
3102  * writing (the buffer cache won't assume that they are actually clean
3103  * until the buffer gets unlocked).
3104  *
3105  * ll_rw_block sets b_end_io to simple completion handler that marks
3106  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3107  * any waiters.
3108  *
3109  * All of the buffers must be for the same device, and must also be a
3110  * multiple of the current approved size for the device.
3111  */
3112 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3113 {
3114 	int i;
3115 
3116 	for (i = 0; i < nr; i++) {
3117 		struct buffer_head *bh = bhs[i];
3118 
3119 		if (!trylock_buffer(bh))
3120 			continue;
3121 		if (op == WRITE) {
3122 			if (test_clear_buffer_dirty(bh)) {
3123 				bh->b_end_io = end_buffer_write_sync;
3124 				get_bh(bh);
3125 				submit_bh(op, op_flags, bh);
3126 				continue;
3127 			}
3128 		} else {
3129 			if (!buffer_uptodate(bh)) {
3130 				bh->b_end_io = end_buffer_read_sync;
3131 				get_bh(bh);
3132 				submit_bh(op, op_flags, bh);
3133 				continue;
3134 			}
3135 		}
3136 		unlock_buffer(bh);
3137 	}
3138 }
3139 EXPORT_SYMBOL(ll_rw_block);
3140 
3141 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3142 {
3143 	lock_buffer(bh);
3144 	if (!test_clear_buffer_dirty(bh)) {
3145 		unlock_buffer(bh);
3146 		return;
3147 	}
3148 	bh->b_end_io = end_buffer_write_sync;
3149 	get_bh(bh);
3150 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3151 }
3152 EXPORT_SYMBOL(write_dirty_buffer);
3153 
3154 /*
3155  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3156  * and then start new I/O and then wait upon it.  The caller must have a ref on
3157  * the buffer_head.
3158  */
3159 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3160 {
3161 	int ret = 0;
3162 
3163 	WARN_ON(atomic_read(&bh->b_count) < 1);
3164 	lock_buffer(bh);
3165 	if (test_clear_buffer_dirty(bh)) {
3166 		get_bh(bh);
3167 		bh->b_end_io = end_buffer_write_sync;
3168 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3169 		wait_on_buffer(bh);
3170 		if (!ret && !buffer_uptodate(bh))
3171 			ret = -EIO;
3172 	} else {
3173 		unlock_buffer(bh);
3174 	}
3175 	return ret;
3176 }
3177 EXPORT_SYMBOL(__sync_dirty_buffer);
3178 
3179 int sync_dirty_buffer(struct buffer_head *bh)
3180 {
3181 	return __sync_dirty_buffer(bh, REQ_SYNC);
3182 }
3183 EXPORT_SYMBOL(sync_dirty_buffer);
3184 
3185 /*
3186  * try_to_free_buffers() checks if all the buffers on this particular page
3187  * are unused, and releases them if so.
3188  *
3189  * Exclusion against try_to_free_buffers may be obtained by either
3190  * locking the page or by holding its mapping's private_lock.
3191  *
3192  * If the page is dirty but all the buffers are clean then we need to
3193  * be sure to mark the page clean as well.  This is because the page
3194  * may be against a block device, and a later reattachment of buffers
3195  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3196  * filesystem data on the same device.
3197  *
3198  * The same applies to regular filesystem pages: if all the buffers are
3199  * clean then we set the page clean and proceed.  To do that, we require
3200  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3201  * private_lock.
3202  *
3203  * try_to_free_buffers() is non-blocking.
3204  */
3205 static inline int buffer_busy(struct buffer_head *bh)
3206 {
3207 	return atomic_read(&bh->b_count) |
3208 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3209 }
3210 
3211 static int
3212 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3213 {
3214 	struct buffer_head *head = page_buffers(page);
3215 	struct buffer_head *bh;
3216 
3217 	bh = head;
3218 	do {
3219 		if (buffer_busy(bh))
3220 			goto failed;
3221 		bh = bh->b_this_page;
3222 	} while (bh != head);
3223 
3224 	do {
3225 		struct buffer_head *next = bh->b_this_page;
3226 
3227 		if (bh->b_assoc_map)
3228 			__remove_assoc_queue(bh);
3229 		bh = next;
3230 	} while (bh != head);
3231 	*buffers_to_free = head;
3232 	__clear_page_buffers(page);
3233 	return 1;
3234 failed:
3235 	return 0;
3236 }
3237 
3238 int try_to_free_buffers(struct page *page)
3239 {
3240 	struct address_space * const mapping = page->mapping;
3241 	struct buffer_head *buffers_to_free = NULL;
3242 	int ret = 0;
3243 
3244 	BUG_ON(!PageLocked(page));
3245 	if (PageWriteback(page))
3246 		return 0;
3247 
3248 	if (mapping == NULL) {		/* can this still happen? */
3249 		ret = drop_buffers(page, &buffers_to_free);
3250 		goto out;
3251 	}
3252 
3253 	spin_lock(&mapping->private_lock);
3254 	ret = drop_buffers(page, &buffers_to_free);
3255 
3256 	/*
3257 	 * If the filesystem writes its buffers by hand (eg ext3)
3258 	 * then we can have clean buffers against a dirty page.  We
3259 	 * clean the page here; otherwise the VM will never notice
3260 	 * that the filesystem did any IO at all.
3261 	 *
3262 	 * Also, during truncate, discard_buffer will have marked all
3263 	 * the page's buffers clean.  We discover that here and clean
3264 	 * the page also.
3265 	 *
3266 	 * private_lock must be held over this entire operation in order
3267 	 * to synchronise against __set_page_dirty_buffers and prevent the
3268 	 * dirty bit from being lost.
3269 	 */
3270 	if (ret)
3271 		cancel_dirty_page(page);
3272 	spin_unlock(&mapping->private_lock);
3273 out:
3274 	if (buffers_to_free) {
3275 		struct buffer_head *bh = buffers_to_free;
3276 
3277 		do {
3278 			struct buffer_head *next = bh->b_this_page;
3279 			free_buffer_head(bh);
3280 			bh = next;
3281 		} while (bh != buffers_to_free);
3282 	}
3283 	return ret;
3284 }
3285 EXPORT_SYMBOL(try_to_free_buffers);
3286 
3287 /*
3288  * There are no bdflush tunables left.  But distributions are
3289  * still running obsolete flush daemons, so we terminate them here.
3290  *
3291  * Use of bdflush() is deprecated and will be removed in a future kernel.
3292  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3293  */
3294 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3295 {
3296 	static int msg_count;
3297 
3298 	if (!capable(CAP_SYS_ADMIN))
3299 		return -EPERM;
3300 
3301 	if (msg_count < 5) {
3302 		msg_count++;
3303 		printk(KERN_INFO
3304 			"warning: process `%s' used the obsolete bdflush"
3305 			" system call\n", current->comm);
3306 		printk(KERN_INFO "Fix your initscripts?\n");
3307 	}
3308 
3309 	if (func == 1)
3310 		do_exit(0);
3311 	return 0;
3312 }
3313 
3314 /*
3315  * Buffer-head allocation
3316  */
3317 static struct kmem_cache *bh_cachep __read_mostly;
3318 
3319 /*
3320  * Once the number of bh's in the machine exceeds this level, we start
3321  * stripping them in writeback.
3322  */
3323 static unsigned long max_buffer_heads;
3324 
3325 int buffer_heads_over_limit;
3326 
3327 struct bh_accounting {
3328 	int nr;			/* Number of live bh's */
3329 	int ratelimit;		/* Limit cacheline bouncing */
3330 };
3331 
3332 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3333 
3334 static void recalc_bh_state(void)
3335 {
3336 	int i;
3337 	int tot = 0;
3338 
3339 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3340 		return;
3341 	__this_cpu_write(bh_accounting.ratelimit, 0);
3342 	for_each_online_cpu(i)
3343 		tot += per_cpu(bh_accounting, i).nr;
3344 	buffer_heads_over_limit = (tot > max_buffer_heads);
3345 }
3346 
3347 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3348 {
3349 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3350 	if (ret) {
3351 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3352 		preempt_disable();
3353 		__this_cpu_inc(bh_accounting.nr);
3354 		recalc_bh_state();
3355 		preempt_enable();
3356 	}
3357 	return ret;
3358 }
3359 EXPORT_SYMBOL(alloc_buffer_head);
3360 
3361 void free_buffer_head(struct buffer_head *bh)
3362 {
3363 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3364 	kmem_cache_free(bh_cachep, bh);
3365 	preempt_disable();
3366 	__this_cpu_dec(bh_accounting.nr);
3367 	recalc_bh_state();
3368 	preempt_enable();
3369 }
3370 EXPORT_SYMBOL(free_buffer_head);
3371 
3372 static int buffer_exit_cpu_dead(unsigned int cpu)
3373 {
3374 	int i;
3375 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3376 
3377 	for (i = 0; i < BH_LRU_SIZE; i++) {
3378 		brelse(b->bhs[i]);
3379 		b->bhs[i] = NULL;
3380 	}
3381 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3382 	per_cpu(bh_accounting, cpu).nr = 0;
3383 	return 0;
3384 }
3385 
3386 /**
3387  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3388  * @bh: struct buffer_head
3389  *
3390  * Return true if the buffer is up-to-date and false,
3391  * with the buffer locked, if not.
3392  */
3393 int bh_uptodate_or_lock(struct buffer_head *bh)
3394 {
3395 	if (!buffer_uptodate(bh)) {
3396 		lock_buffer(bh);
3397 		if (!buffer_uptodate(bh))
3398 			return 0;
3399 		unlock_buffer(bh);
3400 	}
3401 	return 1;
3402 }
3403 EXPORT_SYMBOL(bh_uptodate_or_lock);
3404 
3405 /**
3406  * bh_submit_read - Submit a locked buffer for reading
3407  * @bh: struct buffer_head
3408  *
3409  * Returns zero on success and -EIO on error.
3410  */
3411 int bh_submit_read(struct buffer_head *bh)
3412 {
3413 	BUG_ON(!buffer_locked(bh));
3414 
3415 	if (buffer_uptodate(bh)) {
3416 		unlock_buffer(bh);
3417 		return 0;
3418 	}
3419 
3420 	get_bh(bh);
3421 	bh->b_end_io = end_buffer_read_sync;
3422 	submit_bh(REQ_OP_READ, 0, bh);
3423 	wait_on_buffer(bh);
3424 	if (buffer_uptodate(bh))
3425 		return 0;
3426 	return -EIO;
3427 }
3428 EXPORT_SYMBOL(bh_submit_read);
3429 
3430 /*
3431  * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3432  *
3433  * Returns the offset within the file on success, and -ENOENT otherwise.
3434  */
3435 static loff_t
3436 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3437 {
3438 	loff_t offset = page_offset(page);
3439 	struct buffer_head *bh, *head;
3440 	bool seek_data = whence == SEEK_DATA;
3441 
3442 	if (lastoff < offset)
3443 		lastoff = offset;
3444 
3445 	bh = head = page_buffers(page);
3446 	do {
3447 		offset += bh->b_size;
3448 		if (lastoff >= offset)
3449 			continue;
3450 
3451 		/*
3452 		 * Unwritten extents that have data in the page cache covering
3453 		 * them can be identified by the BH_Unwritten state flag.
3454 		 * Pages with multiple buffers might have a mix of holes, data
3455 		 * and unwritten extents - any buffer with valid data in it
3456 		 * should have BH_Uptodate flag set on it.
3457 		 */
3458 
3459 		if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3460 			return lastoff;
3461 
3462 		lastoff = offset;
3463 	} while ((bh = bh->b_this_page) != head);
3464 	return -ENOENT;
3465 }
3466 
3467 /*
3468  * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3469  *
3470  * Within unwritten extents, the page cache determines which parts are holes
3471  * and which are data: unwritten and uptodate buffer heads count as data;
3472  * everything else counts as a hole.
3473  *
3474  * Returns the resulting offset on successs, and -ENOENT otherwise.
3475  */
3476 loff_t
3477 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3478 			  int whence)
3479 {
3480 	pgoff_t index = offset >> PAGE_SHIFT;
3481 	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3482 	loff_t lastoff = offset;
3483 	struct pagevec pvec;
3484 
3485 	if (length <= 0)
3486 		return -ENOENT;
3487 
3488 	pagevec_init(&pvec);
3489 
3490 	do {
3491 		unsigned nr_pages, i;
3492 
3493 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3494 						end - 1);
3495 		if (nr_pages == 0)
3496 			break;
3497 
3498 		for (i = 0; i < nr_pages; i++) {
3499 			struct page *page = pvec.pages[i];
3500 
3501 			/*
3502 			 * At this point, the page may be truncated or
3503 			 * invalidated (changing page->mapping to NULL), or
3504 			 * even swizzled back from swapper_space to tmpfs file
3505 			 * mapping.  However, page->index will not change
3506 			 * because we have a reference on the page.
3507                          *
3508 			 * If current page offset is beyond where we've ended,
3509 			 * we've found a hole.
3510                          */
3511 			if (whence == SEEK_HOLE &&
3512 			    lastoff < page_offset(page))
3513 				goto check_range;
3514 
3515 			lock_page(page);
3516 			if (likely(page->mapping == inode->i_mapping) &&
3517 			    page_has_buffers(page)) {
3518 				lastoff = page_seek_hole_data(page, lastoff, whence);
3519 				if (lastoff >= 0) {
3520 					unlock_page(page);
3521 					goto check_range;
3522 				}
3523 			}
3524 			unlock_page(page);
3525 			lastoff = page_offset(page) + PAGE_SIZE;
3526 		}
3527 		pagevec_release(&pvec);
3528 	} while (index < end);
3529 
3530 	/* When no page at lastoff and we are not done, we found a hole. */
3531 	if (whence != SEEK_HOLE)
3532 		goto not_found;
3533 
3534 check_range:
3535 	if (lastoff < offset + length)
3536 		goto out;
3537 not_found:
3538 	lastoff = -ENOENT;
3539 out:
3540 	pagevec_release(&pvec);
3541 	return lastoff;
3542 }
3543 
3544 void __init buffer_init(void)
3545 {
3546 	unsigned long nrpages;
3547 	int ret;
3548 
3549 	bh_cachep = kmem_cache_create("buffer_head",
3550 			sizeof(struct buffer_head), 0,
3551 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3552 				SLAB_MEM_SPREAD),
3553 				NULL);
3554 
3555 	/*
3556 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3557 	 */
3558 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3559 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3560 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3561 					NULL, buffer_exit_cpu_dead);
3562 	WARN_ON(ret < 0);
3563 }
3564