1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 #include "internal.h" 53 54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 56 enum rw_hint hint, struct writeback_control *wbc); 57 58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 59 60 inline void touch_buffer(struct buffer_head *bh) 61 { 62 trace_block_touch_buffer(bh); 63 mark_page_accessed(bh->b_page); 64 } 65 EXPORT_SYMBOL(touch_buffer); 66 67 void __lock_buffer(struct buffer_head *bh) 68 { 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 70 } 71 EXPORT_SYMBOL(__lock_buffer); 72 73 void unlock_buffer(struct buffer_head *bh) 74 { 75 clear_bit_unlock(BH_Lock, &bh->b_state); 76 smp_mb__after_atomic(); 77 wake_up_bit(&bh->b_state, BH_Lock); 78 } 79 EXPORT_SYMBOL(unlock_buffer); 80 81 /* 82 * Returns if the page has dirty or writeback buffers. If all the buffers 83 * are unlocked and clean then the PageDirty information is stale. If 84 * any of the pages are locked, it is assumed they are locked for IO. 85 */ 86 void buffer_check_dirty_writeback(struct page *page, 87 bool *dirty, bool *writeback) 88 { 89 struct buffer_head *head, *bh; 90 *dirty = false; 91 *writeback = false; 92 93 BUG_ON(!PageLocked(page)); 94 95 if (!page_has_buffers(page)) 96 return; 97 98 if (PageWriteback(page)) 99 *writeback = true; 100 101 head = page_buffers(page); 102 bh = head; 103 do { 104 if (buffer_locked(bh)) 105 *writeback = true; 106 107 if (buffer_dirty(bh)) 108 *dirty = true; 109 110 bh = bh->b_this_page; 111 } while (bh != head); 112 } 113 EXPORT_SYMBOL(buffer_check_dirty_writeback); 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. This is what ll_rw_block uses too. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct page *page; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 203 if (!page) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 if (!page_has_buffers(page)) 208 goto out_unlock; 209 head = page_buffers(page); 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 put_page(page); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct page *page; 250 int page_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 page = bh->b_page; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 SetPageError(page); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = page_buffers(page); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 page_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If none of the buffers had errors and they are all 286 * uptodate then we can set the page uptodate. 287 */ 288 if (page_uptodate && !PageError(page)) 289 SetPageUptodate(page); 290 unlock_page(page); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct decrypt_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void decrypt_bh(struct work_struct *work) 304 { 305 struct decrypt_bh_ctx *ctx = 306 container_of(work, struct decrypt_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 int err; 309 310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 311 bh_offset(bh)); 312 end_buffer_async_read(bh, err == 0); 313 kfree(ctx); 314 } 315 316 /* 317 * I/O completion handler for block_read_full_page() - pages 318 * which come unlocked at the end of I/O. 319 */ 320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 321 { 322 /* Decrypt if needed */ 323 if (uptodate && 324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) { 325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 326 327 if (ctx) { 328 INIT_WORK(&ctx->work, decrypt_bh); 329 ctx->bh = bh; 330 fscrypt_enqueue_decrypt_work(&ctx->work); 331 return; 332 } 333 uptodate = 0; 334 } 335 end_buffer_async_read(bh, uptodate); 336 } 337 338 /* 339 * Completion handler for block_write_full_page() - pages which are unlocked 340 * during I/O, and which have PageWriteback cleared upon I/O completion. 341 */ 342 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 343 { 344 unsigned long flags; 345 struct buffer_head *first; 346 struct buffer_head *tmp; 347 struct page *page; 348 349 BUG_ON(!buffer_async_write(bh)); 350 351 page = bh->b_page; 352 if (uptodate) { 353 set_buffer_uptodate(bh); 354 } else { 355 buffer_io_error(bh, ", lost async page write"); 356 mark_buffer_write_io_error(bh); 357 clear_buffer_uptodate(bh); 358 SetPageError(page); 359 } 360 361 first = page_buffers(page); 362 spin_lock_irqsave(&first->b_uptodate_lock, flags); 363 364 clear_buffer_async_write(bh); 365 unlock_buffer(bh); 366 tmp = bh->b_this_page; 367 while (tmp != bh) { 368 if (buffer_async_write(tmp)) { 369 BUG_ON(!buffer_locked(tmp)); 370 goto still_busy; 371 } 372 tmp = tmp->b_this_page; 373 } 374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 375 end_page_writeback(page); 376 return; 377 378 still_busy: 379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 380 return; 381 } 382 EXPORT_SYMBOL(end_buffer_async_write); 383 384 /* 385 * If a page's buffers are under async readin (end_buffer_async_read 386 * completion) then there is a possibility that another thread of 387 * control could lock one of the buffers after it has completed 388 * but while some of the other buffers have not completed. This 389 * locked buffer would confuse end_buffer_async_read() into not unlocking 390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 391 * that this buffer is not under async I/O. 392 * 393 * The page comes unlocked when it has no locked buffer_async buffers 394 * left. 395 * 396 * PageLocked prevents anyone starting new async I/O reads any of 397 * the buffers. 398 * 399 * PageWriteback is used to prevent simultaneous writeout of the same 400 * page. 401 * 402 * PageLocked prevents anyone from starting writeback of a page which is 403 * under read I/O (PageWriteback is only ever set against a locked page). 404 */ 405 static void mark_buffer_async_read(struct buffer_head *bh) 406 { 407 bh->b_end_io = end_buffer_async_read_io; 408 set_buffer_async_read(bh); 409 } 410 411 static void mark_buffer_async_write_endio(struct buffer_head *bh, 412 bh_end_io_t *handler) 413 { 414 bh->b_end_io = handler; 415 set_buffer_async_write(bh); 416 } 417 418 void mark_buffer_async_write(struct buffer_head *bh) 419 { 420 mark_buffer_async_write_endio(bh, end_buffer_async_write); 421 } 422 EXPORT_SYMBOL(mark_buffer_async_write); 423 424 425 /* 426 * fs/buffer.c contains helper functions for buffer-backed address space's 427 * fsync functions. A common requirement for buffer-based filesystems is 428 * that certain data from the backing blockdev needs to be written out for 429 * a successful fsync(). For example, ext2 indirect blocks need to be 430 * written back and waited upon before fsync() returns. 431 * 432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 434 * management of a list of dependent buffers at ->i_mapping->private_list. 435 * 436 * Locking is a little subtle: try_to_free_buffers() will remove buffers 437 * from their controlling inode's queue when they are being freed. But 438 * try_to_free_buffers() will be operating against the *blockdev* mapping 439 * at the time, not against the S_ISREG file which depends on those buffers. 440 * So the locking for private_list is via the private_lock in the address_space 441 * which backs the buffers. Which is different from the address_space 442 * against which the buffers are listed. So for a particular address_space, 443 * mapping->private_lock does *not* protect mapping->private_list! In fact, 444 * mapping->private_list will always be protected by the backing blockdev's 445 * ->private_lock. 446 * 447 * Which introduces a requirement: all buffers on an address_space's 448 * ->private_list must be from the same address_space: the blockdev's. 449 * 450 * address_spaces which do not place buffers at ->private_list via these 451 * utility functions are free to use private_lock and private_list for 452 * whatever they want. The only requirement is that list_empty(private_list) 453 * be true at clear_inode() time. 454 * 455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 456 * filesystems should do that. invalidate_inode_buffers() should just go 457 * BUG_ON(!list_empty). 458 * 459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 460 * take an address_space, not an inode. And it should be called 461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 462 * queued up. 463 * 464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 465 * list if it is already on a list. Because if the buffer is on a list, 466 * it *must* already be on the right one. If not, the filesystem is being 467 * silly. This will save a ton of locking. But first we have to ensure 468 * that buffers are taken *off* the old inode's list when they are freed 469 * (presumably in truncate). That requires careful auditing of all 470 * filesystems (do it inside bforget()). It could also be done by bringing 471 * b_inode back. 472 */ 473 474 /* 475 * The buffer's backing address_space's private_lock must be held 476 */ 477 static void __remove_assoc_queue(struct buffer_head *bh) 478 { 479 list_del_init(&bh->b_assoc_buffers); 480 WARN_ON(!bh->b_assoc_map); 481 bh->b_assoc_map = NULL; 482 } 483 484 int inode_has_buffers(struct inode *inode) 485 { 486 return !list_empty(&inode->i_data.private_list); 487 } 488 489 /* 490 * osync is designed to support O_SYNC io. It waits synchronously for 491 * all already-submitted IO to complete, but does not queue any new 492 * writes to the disk. 493 * 494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 495 * you dirty the buffers, and then use osync_inode_buffers to wait for 496 * completion. Any other dirty buffers which are not yet queued for 497 * write will not be flushed to disk by the osync. 498 */ 499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 500 { 501 struct buffer_head *bh; 502 struct list_head *p; 503 int err = 0; 504 505 spin_lock(lock); 506 repeat: 507 list_for_each_prev(p, list) { 508 bh = BH_ENTRY(p); 509 if (buffer_locked(bh)) { 510 get_bh(bh); 511 spin_unlock(lock); 512 wait_on_buffer(bh); 513 if (!buffer_uptodate(bh)) 514 err = -EIO; 515 brelse(bh); 516 spin_lock(lock); 517 goto repeat; 518 } 519 } 520 spin_unlock(lock); 521 return err; 522 } 523 524 void emergency_thaw_bdev(struct super_block *sb) 525 { 526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 528 } 529 530 /** 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 532 * @mapping: the mapping which wants those buffers written 533 * 534 * Starts I/O against the buffers at mapping->private_list, and waits upon 535 * that I/O. 536 * 537 * Basically, this is a convenience function for fsync(). 538 * @mapping is a file or directory which needs those buffers to be written for 539 * a successful fsync(). 540 */ 541 int sync_mapping_buffers(struct address_space *mapping) 542 { 543 struct address_space *buffer_mapping = mapping->private_data; 544 545 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 546 return 0; 547 548 return fsync_buffers_list(&buffer_mapping->private_lock, 549 &mapping->private_list); 550 } 551 EXPORT_SYMBOL(sync_mapping_buffers); 552 553 /* 554 * Called when we've recently written block `bblock', and it is known that 555 * `bblock' was for a buffer_boundary() buffer. This means that the block at 556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 557 * dirty, schedule it for IO. So that indirects merge nicely with their data. 558 */ 559 void write_boundary_block(struct block_device *bdev, 560 sector_t bblock, unsigned blocksize) 561 { 562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 563 if (bh) { 564 if (buffer_dirty(bh)) 565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 566 put_bh(bh); 567 } 568 } 569 570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 571 { 572 struct address_space *mapping = inode->i_mapping; 573 struct address_space *buffer_mapping = bh->b_page->mapping; 574 575 mark_buffer_dirty(bh); 576 if (!mapping->private_data) { 577 mapping->private_data = buffer_mapping; 578 } else { 579 BUG_ON(mapping->private_data != buffer_mapping); 580 } 581 if (!bh->b_assoc_map) { 582 spin_lock(&buffer_mapping->private_lock); 583 list_move_tail(&bh->b_assoc_buffers, 584 &mapping->private_list); 585 bh->b_assoc_map = mapping; 586 spin_unlock(&buffer_mapping->private_lock); 587 } 588 } 589 EXPORT_SYMBOL(mark_buffer_dirty_inode); 590 591 /* 592 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 593 * dirty. 594 * 595 * If warn is true, then emit a warning if the page is not uptodate and has 596 * not been truncated. 597 * 598 * The caller must hold lock_page_memcg(). 599 */ 600 void __set_page_dirty(struct page *page, struct address_space *mapping, 601 int warn) 602 { 603 unsigned long flags; 604 605 xa_lock_irqsave(&mapping->i_pages, flags); 606 if (page->mapping) { /* Race with truncate? */ 607 WARN_ON_ONCE(warn && !PageUptodate(page)); 608 account_page_dirtied(page, mapping); 609 __xa_set_mark(&mapping->i_pages, page_index(page), 610 PAGECACHE_TAG_DIRTY); 611 } 612 xa_unlock_irqrestore(&mapping->i_pages, flags); 613 } 614 EXPORT_SYMBOL_GPL(__set_page_dirty); 615 616 /* 617 * Add a page to the dirty page list. 618 * 619 * It is a sad fact of life that this function is called from several places 620 * deeply under spinlocking. It may not sleep. 621 * 622 * If the page has buffers, the uptodate buffers are set dirty, to preserve 623 * dirty-state coherency between the page and the buffers. It the page does 624 * not have buffers then when they are later attached they will all be set 625 * dirty. 626 * 627 * The buffers are dirtied before the page is dirtied. There's a small race 628 * window in which a writepage caller may see the page cleanness but not the 629 * buffer dirtiness. That's fine. If this code were to set the page dirty 630 * before the buffers, a concurrent writepage caller could clear the page dirty 631 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 632 * page on the dirty page list. 633 * 634 * We use private_lock to lock against try_to_free_buffers while using the 635 * page's buffer list. Also use this to protect against clean buffers being 636 * added to the page after it was set dirty. 637 * 638 * FIXME: may need to call ->reservepage here as well. That's rather up to the 639 * address_space though. 640 */ 641 int __set_page_dirty_buffers(struct page *page) 642 { 643 int newly_dirty; 644 struct address_space *mapping = page_mapping(page); 645 646 if (unlikely(!mapping)) 647 return !TestSetPageDirty(page); 648 649 spin_lock(&mapping->private_lock); 650 if (page_has_buffers(page)) { 651 struct buffer_head *head = page_buffers(page); 652 struct buffer_head *bh = head; 653 654 do { 655 set_buffer_dirty(bh); 656 bh = bh->b_this_page; 657 } while (bh != head); 658 } 659 /* 660 * Lock out page->mem_cgroup migration to keep PageDirty 661 * synchronized with per-memcg dirty page counters. 662 */ 663 lock_page_memcg(page); 664 newly_dirty = !TestSetPageDirty(page); 665 spin_unlock(&mapping->private_lock); 666 667 if (newly_dirty) 668 __set_page_dirty(page, mapping, 1); 669 670 unlock_page_memcg(page); 671 672 if (newly_dirty) 673 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 674 675 return newly_dirty; 676 } 677 EXPORT_SYMBOL(__set_page_dirty_buffers); 678 679 /* 680 * Write out and wait upon a list of buffers. 681 * 682 * We have conflicting pressures: we want to make sure that all 683 * initially dirty buffers get waited on, but that any subsequently 684 * dirtied buffers don't. After all, we don't want fsync to last 685 * forever if somebody is actively writing to the file. 686 * 687 * Do this in two main stages: first we copy dirty buffers to a 688 * temporary inode list, queueing the writes as we go. Then we clean 689 * up, waiting for those writes to complete. 690 * 691 * During this second stage, any subsequent updates to the file may end 692 * up refiling the buffer on the original inode's dirty list again, so 693 * there is a chance we will end up with a buffer queued for write but 694 * not yet completed on that list. So, as a final cleanup we go through 695 * the osync code to catch these locked, dirty buffers without requeuing 696 * any newly dirty buffers for write. 697 */ 698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 699 { 700 struct buffer_head *bh; 701 struct list_head tmp; 702 struct address_space *mapping; 703 int err = 0, err2; 704 struct blk_plug plug; 705 706 INIT_LIST_HEAD(&tmp); 707 blk_start_plug(&plug); 708 709 spin_lock(lock); 710 while (!list_empty(list)) { 711 bh = BH_ENTRY(list->next); 712 mapping = bh->b_assoc_map; 713 __remove_assoc_queue(bh); 714 /* Avoid race with mark_buffer_dirty_inode() which does 715 * a lockless check and we rely on seeing the dirty bit */ 716 smp_mb(); 717 if (buffer_dirty(bh) || buffer_locked(bh)) { 718 list_add(&bh->b_assoc_buffers, &tmp); 719 bh->b_assoc_map = mapping; 720 if (buffer_dirty(bh)) { 721 get_bh(bh); 722 spin_unlock(lock); 723 /* 724 * Ensure any pending I/O completes so that 725 * write_dirty_buffer() actually writes the 726 * current contents - it is a noop if I/O is 727 * still in flight on potentially older 728 * contents. 729 */ 730 write_dirty_buffer(bh, REQ_SYNC); 731 732 /* 733 * Kick off IO for the previous mapping. Note 734 * that we will not run the very last mapping, 735 * wait_on_buffer() will do that for us 736 * through sync_buffer(). 737 */ 738 brelse(bh); 739 spin_lock(lock); 740 } 741 } 742 } 743 744 spin_unlock(lock); 745 blk_finish_plug(&plug); 746 spin_lock(lock); 747 748 while (!list_empty(&tmp)) { 749 bh = BH_ENTRY(tmp.prev); 750 get_bh(bh); 751 mapping = bh->b_assoc_map; 752 __remove_assoc_queue(bh); 753 /* Avoid race with mark_buffer_dirty_inode() which does 754 * a lockless check and we rely on seeing the dirty bit */ 755 smp_mb(); 756 if (buffer_dirty(bh)) { 757 list_add(&bh->b_assoc_buffers, 758 &mapping->private_list); 759 bh->b_assoc_map = mapping; 760 } 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 } 768 769 spin_unlock(lock); 770 err2 = osync_buffers_list(lock, list); 771 if (err) 772 return err; 773 else 774 return err2; 775 } 776 777 /* 778 * Invalidate any and all dirty buffers on a given inode. We are 779 * probably unmounting the fs, but that doesn't mean we have already 780 * done a sync(). Just drop the buffers from the inode list. 781 * 782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 783 * assumes that all the buffers are against the blockdev. Not true 784 * for reiserfs. 785 */ 786 void invalidate_inode_buffers(struct inode *inode) 787 { 788 if (inode_has_buffers(inode)) { 789 struct address_space *mapping = &inode->i_data; 790 struct list_head *list = &mapping->private_list; 791 struct address_space *buffer_mapping = mapping->private_data; 792 793 spin_lock(&buffer_mapping->private_lock); 794 while (!list_empty(list)) 795 __remove_assoc_queue(BH_ENTRY(list->next)); 796 spin_unlock(&buffer_mapping->private_lock); 797 } 798 } 799 EXPORT_SYMBOL(invalidate_inode_buffers); 800 801 /* 802 * Remove any clean buffers from the inode's buffer list. This is called 803 * when we're trying to free the inode itself. Those buffers can pin it. 804 * 805 * Returns true if all buffers were removed. 806 */ 807 int remove_inode_buffers(struct inode *inode) 808 { 809 int ret = 1; 810 811 if (inode_has_buffers(inode)) { 812 struct address_space *mapping = &inode->i_data; 813 struct list_head *list = &mapping->private_list; 814 struct address_space *buffer_mapping = mapping->private_data; 815 816 spin_lock(&buffer_mapping->private_lock); 817 while (!list_empty(list)) { 818 struct buffer_head *bh = BH_ENTRY(list->next); 819 if (buffer_dirty(bh)) { 820 ret = 0; 821 break; 822 } 823 __remove_assoc_queue(bh); 824 } 825 spin_unlock(&buffer_mapping->private_lock); 826 } 827 return ret; 828 } 829 830 /* 831 * Create the appropriate buffers when given a page for data area and 832 * the size of each buffer.. Use the bh->b_this_page linked list to 833 * follow the buffers created. Return NULL if unable to create more 834 * buffers. 835 * 836 * The retry flag is used to differentiate async IO (paging, swapping) 837 * which may not fail from ordinary buffer allocations. 838 */ 839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 840 bool retry) 841 { 842 struct buffer_head *bh, *head; 843 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 844 long offset; 845 struct mem_cgroup *memcg; 846 847 if (retry) 848 gfp |= __GFP_NOFAIL; 849 850 memcg = get_mem_cgroup_from_page(page); 851 memalloc_use_memcg(memcg); 852 853 head = NULL; 854 offset = PAGE_SIZE; 855 while ((offset -= size) >= 0) { 856 bh = alloc_buffer_head(gfp); 857 if (!bh) 858 goto no_grow; 859 860 bh->b_this_page = head; 861 bh->b_blocknr = -1; 862 head = bh; 863 864 bh->b_size = size; 865 866 /* Link the buffer to its page */ 867 set_bh_page(bh, page, offset); 868 } 869 out: 870 memalloc_unuse_memcg(); 871 mem_cgroup_put(memcg); 872 return head; 873 /* 874 * In case anything failed, we just free everything we got. 875 */ 876 no_grow: 877 if (head) { 878 do { 879 bh = head; 880 head = head->b_this_page; 881 free_buffer_head(bh); 882 } while (head); 883 } 884 885 goto out; 886 } 887 EXPORT_SYMBOL_GPL(alloc_page_buffers); 888 889 static inline void 890 link_dev_buffers(struct page *page, struct buffer_head *head) 891 { 892 struct buffer_head *bh, *tail; 893 894 bh = head; 895 do { 896 tail = bh; 897 bh = bh->b_this_page; 898 } while (bh); 899 tail->b_this_page = head; 900 attach_page_private(page, head); 901 } 902 903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 904 { 905 sector_t retval = ~((sector_t)0); 906 loff_t sz = i_size_read(bdev->bd_inode); 907 908 if (sz) { 909 unsigned int sizebits = blksize_bits(size); 910 retval = (sz >> sizebits); 911 } 912 return retval; 913 } 914 915 /* 916 * Initialise the state of a blockdev page's buffers. 917 */ 918 static sector_t 919 init_page_buffers(struct page *page, struct block_device *bdev, 920 sector_t block, int size) 921 { 922 struct buffer_head *head = page_buffers(page); 923 struct buffer_head *bh = head; 924 int uptodate = PageUptodate(page); 925 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 926 927 do { 928 if (!buffer_mapped(bh)) { 929 bh->b_end_io = NULL; 930 bh->b_private = NULL; 931 bh->b_bdev = bdev; 932 bh->b_blocknr = block; 933 if (uptodate) 934 set_buffer_uptodate(bh); 935 if (block < end_block) 936 set_buffer_mapped(bh); 937 } 938 block++; 939 bh = bh->b_this_page; 940 } while (bh != head); 941 942 /* 943 * Caller needs to validate requested block against end of device. 944 */ 945 return end_block; 946 } 947 948 /* 949 * Create the page-cache page that contains the requested block. 950 * 951 * This is used purely for blockdev mappings. 952 */ 953 static int 954 grow_dev_page(struct block_device *bdev, sector_t block, 955 pgoff_t index, int size, int sizebits, gfp_t gfp) 956 { 957 struct inode *inode = bdev->bd_inode; 958 struct page *page; 959 struct buffer_head *bh; 960 sector_t end_block; 961 int ret = 0; 962 gfp_t gfp_mask; 963 964 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 965 966 /* 967 * XXX: __getblk_slow() can not really deal with failure and 968 * will endlessly loop on improvised global reclaim. Prefer 969 * looping in the allocator rather than here, at least that 970 * code knows what it's doing. 971 */ 972 gfp_mask |= __GFP_NOFAIL; 973 974 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 975 976 BUG_ON(!PageLocked(page)); 977 978 if (page_has_buffers(page)) { 979 bh = page_buffers(page); 980 if (bh->b_size == size) { 981 end_block = init_page_buffers(page, bdev, 982 (sector_t)index << sizebits, 983 size); 984 goto done; 985 } 986 if (!try_to_free_buffers(page)) 987 goto failed; 988 } 989 990 /* 991 * Allocate some buffers for this page 992 */ 993 bh = alloc_page_buffers(page, size, true); 994 995 /* 996 * Link the page to the buffers and initialise them. Take the 997 * lock to be atomic wrt __find_get_block(), which does not 998 * run under the page lock. 999 */ 1000 spin_lock(&inode->i_mapping->private_lock); 1001 link_dev_buffers(page, bh); 1002 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1003 size); 1004 spin_unlock(&inode->i_mapping->private_lock); 1005 done: 1006 ret = (block < end_block) ? 1 : -ENXIO; 1007 failed: 1008 unlock_page(page); 1009 put_page(page); 1010 return ret; 1011 } 1012 1013 /* 1014 * Create buffers for the specified block device block's page. If 1015 * that page was dirty, the buffers are set dirty also. 1016 */ 1017 static int 1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1019 { 1020 pgoff_t index; 1021 int sizebits; 1022 1023 sizebits = -1; 1024 do { 1025 sizebits++; 1026 } while ((size << sizebits) < PAGE_SIZE); 1027 1028 index = block >> sizebits; 1029 1030 /* 1031 * Check for a block which wants to lie outside our maximum possible 1032 * pagecache index. (this comparison is done using sector_t types). 1033 */ 1034 if (unlikely(index != block >> sizebits)) { 1035 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1036 "device %pg\n", 1037 __func__, (unsigned long long)block, 1038 bdev); 1039 return -EIO; 1040 } 1041 1042 /* Create a page with the proper size buffers.. */ 1043 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1044 } 1045 1046 static struct buffer_head * 1047 __getblk_slow(struct block_device *bdev, sector_t block, 1048 unsigned size, gfp_t gfp) 1049 { 1050 /* Size must be multiple of hard sectorsize */ 1051 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1052 (size < 512 || size > PAGE_SIZE))) { 1053 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1054 size); 1055 printk(KERN_ERR "logical block size: %d\n", 1056 bdev_logical_block_size(bdev)); 1057 1058 dump_stack(); 1059 return NULL; 1060 } 1061 1062 for (;;) { 1063 struct buffer_head *bh; 1064 int ret; 1065 1066 bh = __find_get_block(bdev, block, size); 1067 if (bh) 1068 return bh; 1069 1070 ret = grow_buffers(bdev, block, size, gfp); 1071 if (ret < 0) 1072 return NULL; 1073 } 1074 } 1075 1076 /* 1077 * The relationship between dirty buffers and dirty pages: 1078 * 1079 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1080 * the page is tagged dirty in the page cache. 1081 * 1082 * At all times, the dirtiness of the buffers represents the dirtiness of 1083 * subsections of the page. If the page has buffers, the page dirty bit is 1084 * merely a hint about the true dirty state. 1085 * 1086 * When a page is set dirty in its entirety, all its buffers are marked dirty 1087 * (if the page has buffers). 1088 * 1089 * When a buffer is marked dirty, its page is dirtied, but the page's other 1090 * buffers are not. 1091 * 1092 * Also. When blockdev buffers are explicitly read with bread(), they 1093 * individually become uptodate. But their backing page remains not 1094 * uptodate - even if all of its buffers are uptodate. A subsequent 1095 * block_read_full_page() against that page will discover all the uptodate 1096 * buffers, will set the page uptodate and will perform no I/O. 1097 */ 1098 1099 /** 1100 * mark_buffer_dirty - mark a buffer_head as needing writeout 1101 * @bh: the buffer_head to mark dirty 1102 * 1103 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1104 * its backing page dirty, then tag the page as dirty in the page cache 1105 * and then attach the address_space's inode to its superblock's dirty 1106 * inode list. 1107 * 1108 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1109 * i_pages lock and mapping->host->i_lock. 1110 */ 1111 void mark_buffer_dirty(struct buffer_head *bh) 1112 { 1113 WARN_ON_ONCE(!buffer_uptodate(bh)); 1114 1115 trace_block_dirty_buffer(bh); 1116 1117 /* 1118 * Very *carefully* optimize the it-is-already-dirty case. 1119 * 1120 * Don't let the final "is it dirty" escape to before we 1121 * perhaps modified the buffer. 1122 */ 1123 if (buffer_dirty(bh)) { 1124 smp_mb(); 1125 if (buffer_dirty(bh)) 1126 return; 1127 } 1128 1129 if (!test_set_buffer_dirty(bh)) { 1130 struct page *page = bh->b_page; 1131 struct address_space *mapping = NULL; 1132 1133 lock_page_memcg(page); 1134 if (!TestSetPageDirty(page)) { 1135 mapping = page_mapping(page); 1136 if (mapping) 1137 __set_page_dirty(page, mapping, 0); 1138 } 1139 unlock_page_memcg(page); 1140 if (mapping) 1141 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1142 } 1143 } 1144 EXPORT_SYMBOL(mark_buffer_dirty); 1145 1146 void mark_buffer_write_io_error(struct buffer_head *bh) 1147 { 1148 struct super_block *sb; 1149 1150 set_buffer_write_io_error(bh); 1151 /* FIXME: do we need to set this in both places? */ 1152 if (bh->b_page && bh->b_page->mapping) 1153 mapping_set_error(bh->b_page->mapping, -EIO); 1154 if (bh->b_assoc_map) 1155 mapping_set_error(bh->b_assoc_map, -EIO); 1156 rcu_read_lock(); 1157 sb = READ_ONCE(bh->b_bdev->bd_super); 1158 if (sb) 1159 errseq_set(&sb->s_wb_err, -EIO); 1160 rcu_read_unlock(); 1161 } 1162 EXPORT_SYMBOL(mark_buffer_write_io_error); 1163 1164 /* 1165 * Decrement a buffer_head's reference count. If all buffers against a page 1166 * have zero reference count, are clean and unlocked, and if the page is clean 1167 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1168 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1169 * a page but it ends up not being freed, and buffers may later be reattached). 1170 */ 1171 void __brelse(struct buffer_head * buf) 1172 { 1173 if (atomic_read(&buf->b_count)) { 1174 put_bh(buf); 1175 return; 1176 } 1177 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1178 } 1179 EXPORT_SYMBOL(__brelse); 1180 1181 /* 1182 * bforget() is like brelse(), except it discards any 1183 * potentially dirty data. 1184 */ 1185 void __bforget(struct buffer_head *bh) 1186 { 1187 clear_buffer_dirty(bh); 1188 if (bh->b_assoc_map) { 1189 struct address_space *buffer_mapping = bh->b_page->mapping; 1190 1191 spin_lock(&buffer_mapping->private_lock); 1192 list_del_init(&bh->b_assoc_buffers); 1193 bh->b_assoc_map = NULL; 1194 spin_unlock(&buffer_mapping->private_lock); 1195 } 1196 __brelse(bh); 1197 } 1198 EXPORT_SYMBOL(__bforget); 1199 1200 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1201 { 1202 lock_buffer(bh); 1203 if (buffer_uptodate(bh)) { 1204 unlock_buffer(bh); 1205 return bh; 1206 } else { 1207 get_bh(bh); 1208 bh->b_end_io = end_buffer_read_sync; 1209 submit_bh(REQ_OP_READ, 0, bh); 1210 wait_on_buffer(bh); 1211 if (buffer_uptodate(bh)) 1212 return bh; 1213 } 1214 brelse(bh); 1215 return NULL; 1216 } 1217 1218 /* 1219 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1220 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1221 * refcount elevated by one when they're in an LRU. A buffer can only appear 1222 * once in a particular CPU's LRU. A single buffer can be present in multiple 1223 * CPU's LRUs at the same time. 1224 * 1225 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1226 * sb_find_get_block(). 1227 * 1228 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1229 * a local interrupt disable for that. 1230 */ 1231 1232 #define BH_LRU_SIZE 16 1233 1234 struct bh_lru { 1235 struct buffer_head *bhs[BH_LRU_SIZE]; 1236 }; 1237 1238 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1239 1240 #ifdef CONFIG_SMP 1241 #define bh_lru_lock() local_irq_disable() 1242 #define bh_lru_unlock() local_irq_enable() 1243 #else 1244 #define bh_lru_lock() preempt_disable() 1245 #define bh_lru_unlock() preempt_enable() 1246 #endif 1247 1248 static inline void check_irqs_on(void) 1249 { 1250 #ifdef irqs_disabled 1251 BUG_ON(irqs_disabled()); 1252 #endif 1253 } 1254 1255 /* 1256 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1257 * inserted at the front, and the buffer_head at the back if any is evicted. 1258 * Or, if already in the LRU it is moved to the front. 1259 */ 1260 static void bh_lru_install(struct buffer_head *bh) 1261 { 1262 struct buffer_head *evictee = bh; 1263 struct bh_lru *b; 1264 int i; 1265 1266 check_irqs_on(); 1267 bh_lru_lock(); 1268 1269 b = this_cpu_ptr(&bh_lrus); 1270 for (i = 0; i < BH_LRU_SIZE; i++) { 1271 swap(evictee, b->bhs[i]); 1272 if (evictee == bh) { 1273 bh_lru_unlock(); 1274 return; 1275 } 1276 } 1277 1278 get_bh(bh); 1279 bh_lru_unlock(); 1280 brelse(evictee); 1281 } 1282 1283 /* 1284 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1285 */ 1286 static struct buffer_head * 1287 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1288 { 1289 struct buffer_head *ret = NULL; 1290 unsigned int i; 1291 1292 check_irqs_on(); 1293 bh_lru_lock(); 1294 for (i = 0; i < BH_LRU_SIZE; i++) { 1295 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1296 1297 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1298 bh->b_size == size) { 1299 if (i) { 1300 while (i) { 1301 __this_cpu_write(bh_lrus.bhs[i], 1302 __this_cpu_read(bh_lrus.bhs[i - 1])); 1303 i--; 1304 } 1305 __this_cpu_write(bh_lrus.bhs[0], bh); 1306 } 1307 get_bh(bh); 1308 ret = bh; 1309 break; 1310 } 1311 } 1312 bh_lru_unlock(); 1313 return ret; 1314 } 1315 1316 /* 1317 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1318 * it in the LRU and mark it as accessed. If it is not present then return 1319 * NULL 1320 */ 1321 struct buffer_head * 1322 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1323 { 1324 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1325 1326 if (bh == NULL) { 1327 /* __find_get_block_slow will mark the page accessed */ 1328 bh = __find_get_block_slow(bdev, block); 1329 if (bh) 1330 bh_lru_install(bh); 1331 } else 1332 touch_buffer(bh); 1333 1334 return bh; 1335 } 1336 EXPORT_SYMBOL(__find_get_block); 1337 1338 /* 1339 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1340 * which corresponds to the passed block_device, block and size. The 1341 * returned buffer has its reference count incremented. 1342 * 1343 * __getblk_gfp() will lock up the machine if grow_dev_page's 1344 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1345 */ 1346 struct buffer_head * 1347 __getblk_gfp(struct block_device *bdev, sector_t block, 1348 unsigned size, gfp_t gfp) 1349 { 1350 struct buffer_head *bh = __find_get_block(bdev, block, size); 1351 1352 might_sleep(); 1353 if (bh == NULL) 1354 bh = __getblk_slow(bdev, block, size, gfp); 1355 return bh; 1356 } 1357 EXPORT_SYMBOL(__getblk_gfp); 1358 1359 /* 1360 * Do async read-ahead on a buffer.. 1361 */ 1362 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1363 { 1364 struct buffer_head *bh = __getblk(bdev, block, size); 1365 if (likely(bh)) { 1366 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1367 brelse(bh); 1368 } 1369 } 1370 EXPORT_SYMBOL(__breadahead); 1371 1372 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size, 1373 gfp_t gfp) 1374 { 1375 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1376 if (likely(bh)) { 1377 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1378 brelse(bh); 1379 } 1380 } 1381 EXPORT_SYMBOL(__breadahead_gfp); 1382 1383 /** 1384 * __bread_gfp() - reads a specified block and returns the bh 1385 * @bdev: the block_device to read from 1386 * @block: number of block 1387 * @size: size (in bytes) to read 1388 * @gfp: page allocation flag 1389 * 1390 * Reads a specified block, and returns buffer head that contains it. 1391 * The page cache can be allocated from non-movable area 1392 * not to prevent page migration if you set gfp to zero. 1393 * It returns NULL if the block was unreadable. 1394 */ 1395 struct buffer_head * 1396 __bread_gfp(struct block_device *bdev, sector_t block, 1397 unsigned size, gfp_t gfp) 1398 { 1399 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1400 1401 if (likely(bh) && !buffer_uptodate(bh)) 1402 bh = __bread_slow(bh); 1403 return bh; 1404 } 1405 EXPORT_SYMBOL(__bread_gfp); 1406 1407 /* 1408 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1409 * This doesn't race because it runs in each cpu either in irq 1410 * or with preempt disabled. 1411 */ 1412 static void invalidate_bh_lru(void *arg) 1413 { 1414 struct bh_lru *b = &get_cpu_var(bh_lrus); 1415 int i; 1416 1417 for (i = 0; i < BH_LRU_SIZE; i++) { 1418 brelse(b->bhs[i]); 1419 b->bhs[i] = NULL; 1420 } 1421 put_cpu_var(bh_lrus); 1422 } 1423 1424 static bool has_bh_in_lru(int cpu, void *dummy) 1425 { 1426 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1427 int i; 1428 1429 for (i = 0; i < BH_LRU_SIZE; i++) { 1430 if (b->bhs[i]) 1431 return true; 1432 } 1433 1434 return false; 1435 } 1436 1437 void invalidate_bh_lrus(void) 1438 { 1439 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1440 } 1441 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1442 1443 void set_bh_page(struct buffer_head *bh, 1444 struct page *page, unsigned long offset) 1445 { 1446 bh->b_page = page; 1447 BUG_ON(offset >= PAGE_SIZE); 1448 if (PageHighMem(page)) 1449 /* 1450 * This catches illegal uses and preserves the offset: 1451 */ 1452 bh->b_data = (char *)(0 + offset); 1453 else 1454 bh->b_data = page_address(page) + offset; 1455 } 1456 EXPORT_SYMBOL(set_bh_page); 1457 1458 /* 1459 * Called when truncating a buffer on a page completely. 1460 */ 1461 1462 /* Bits that are cleared during an invalidate */ 1463 #define BUFFER_FLAGS_DISCARD \ 1464 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1465 1 << BH_Delay | 1 << BH_Unwritten) 1466 1467 static void discard_buffer(struct buffer_head * bh) 1468 { 1469 unsigned long b_state, b_state_old; 1470 1471 lock_buffer(bh); 1472 clear_buffer_dirty(bh); 1473 bh->b_bdev = NULL; 1474 b_state = bh->b_state; 1475 for (;;) { 1476 b_state_old = cmpxchg(&bh->b_state, b_state, 1477 (b_state & ~BUFFER_FLAGS_DISCARD)); 1478 if (b_state_old == b_state) 1479 break; 1480 b_state = b_state_old; 1481 } 1482 unlock_buffer(bh); 1483 } 1484 1485 /** 1486 * block_invalidatepage - invalidate part or all of a buffer-backed page 1487 * 1488 * @page: the page which is affected 1489 * @offset: start of the range to invalidate 1490 * @length: length of the range to invalidate 1491 * 1492 * block_invalidatepage() is called when all or part of the page has become 1493 * invalidated by a truncate operation. 1494 * 1495 * block_invalidatepage() does not have to release all buffers, but it must 1496 * ensure that no dirty buffer is left outside @offset and that no I/O 1497 * is underway against any of the blocks which are outside the truncation 1498 * point. Because the caller is about to free (and possibly reuse) those 1499 * blocks on-disk. 1500 */ 1501 void block_invalidatepage(struct page *page, unsigned int offset, 1502 unsigned int length) 1503 { 1504 struct buffer_head *head, *bh, *next; 1505 unsigned int curr_off = 0; 1506 unsigned int stop = length + offset; 1507 1508 BUG_ON(!PageLocked(page)); 1509 if (!page_has_buffers(page)) 1510 goto out; 1511 1512 /* 1513 * Check for overflow 1514 */ 1515 BUG_ON(stop > PAGE_SIZE || stop < length); 1516 1517 head = page_buffers(page); 1518 bh = head; 1519 do { 1520 unsigned int next_off = curr_off + bh->b_size; 1521 next = bh->b_this_page; 1522 1523 /* 1524 * Are we still fully in range ? 1525 */ 1526 if (next_off > stop) 1527 goto out; 1528 1529 /* 1530 * is this block fully invalidated? 1531 */ 1532 if (offset <= curr_off) 1533 discard_buffer(bh); 1534 curr_off = next_off; 1535 bh = next; 1536 } while (bh != head); 1537 1538 /* 1539 * We release buffers only if the entire page is being invalidated. 1540 * The get_block cached value has been unconditionally invalidated, 1541 * so real IO is not possible anymore. 1542 */ 1543 if (length == PAGE_SIZE) 1544 try_to_release_page(page, 0); 1545 out: 1546 return; 1547 } 1548 EXPORT_SYMBOL(block_invalidatepage); 1549 1550 1551 /* 1552 * We attach and possibly dirty the buffers atomically wrt 1553 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1554 * is already excluded via the page lock. 1555 */ 1556 void create_empty_buffers(struct page *page, 1557 unsigned long blocksize, unsigned long b_state) 1558 { 1559 struct buffer_head *bh, *head, *tail; 1560 1561 head = alloc_page_buffers(page, blocksize, true); 1562 bh = head; 1563 do { 1564 bh->b_state |= b_state; 1565 tail = bh; 1566 bh = bh->b_this_page; 1567 } while (bh); 1568 tail->b_this_page = head; 1569 1570 spin_lock(&page->mapping->private_lock); 1571 if (PageUptodate(page) || PageDirty(page)) { 1572 bh = head; 1573 do { 1574 if (PageDirty(page)) 1575 set_buffer_dirty(bh); 1576 if (PageUptodate(page)) 1577 set_buffer_uptodate(bh); 1578 bh = bh->b_this_page; 1579 } while (bh != head); 1580 } 1581 attach_page_private(page, head); 1582 spin_unlock(&page->mapping->private_lock); 1583 } 1584 EXPORT_SYMBOL(create_empty_buffers); 1585 1586 /** 1587 * clean_bdev_aliases: clean a range of buffers in block device 1588 * @bdev: Block device to clean buffers in 1589 * @block: Start of a range of blocks to clean 1590 * @len: Number of blocks to clean 1591 * 1592 * We are taking a range of blocks for data and we don't want writeback of any 1593 * buffer-cache aliases starting from return from this function and until the 1594 * moment when something will explicitly mark the buffer dirty (hopefully that 1595 * will not happen until we will free that block ;-) We don't even need to mark 1596 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1597 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1598 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1599 * would confuse anyone who might pick it with bread() afterwards... 1600 * 1601 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1602 * writeout I/O going on against recently-freed buffers. We don't wait on that 1603 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1604 * need to. That happens here. 1605 */ 1606 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1607 { 1608 struct inode *bd_inode = bdev->bd_inode; 1609 struct address_space *bd_mapping = bd_inode->i_mapping; 1610 struct pagevec pvec; 1611 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1612 pgoff_t end; 1613 int i, count; 1614 struct buffer_head *bh; 1615 struct buffer_head *head; 1616 1617 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1618 pagevec_init(&pvec); 1619 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1620 count = pagevec_count(&pvec); 1621 for (i = 0; i < count; i++) { 1622 struct page *page = pvec.pages[i]; 1623 1624 if (!page_has_buffers(page)) 1625 continue; 1626 /* 1627 * We use page lock instead of bd_mapping->private_lock 1628 * to pin buffers here since we can afford to sleep and 1629 * it scales better than a global spinlock lock. 1630 */ 1631 lock_page(page); 1632 /* Recheck when the page is locked which pins bhs */ 1633 if (!page_has_buffers(page)) 1634 goto unlock_page; 1635 head = page_buffers(page); 1636 bh = head; 1637 do { 1638 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1639 goto next; 1640 if (bh->b_blocknr >= block + len) 1641 break; 1642 clear_buffer_dirty(bh); 1643 wait_on_buffer(bh); 1644 clear_buffer_req(bh); 1645 next: 1646 bh = bh->b_this_page; 1647 } while (bh != head); 1648 unlock_page: 1649 unlock_page(page); 1650 } 1651 pagevec_release(&pvec); 1652 cond_resched(); 1653 /* End of range already reached? */ 1654 if (index > end || !index) 1655 break; 1656 } 1657 } 1658 EXPORT_SYMBOL(clean_bdev_aliases); 1659 1660 /* 1661 * Size is a power-of-two in the range 512..PAGE_SIZE, 1662 * and the case we care about most is PAGE_SIZE. 1663 * 1664 * So this *could* possibly be written with those 1665 * constraints in mind (relevant mostly if some 1666 * architecture has a slow bit-scan instruction) 1667 */ 1668 static inline int block_size_bits(unsigned int blocksize) 1669 { 1670 return ilog2(blocksize); 1671 } 1672 1673 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1674 { 1675 BUG_ON(!PageLocked(page)); 1676 1677 if (!page_has_buffers(page)) 1678 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1679 b_state); 1680 return page_buffers(page); 1681 } 1682 1683 /* 1684 * NOTE! All mapped/uptodate combinations are valid: 1685 * 1686 * Mapped Uptodate Meaning 1687 * 1688 * No No "unknown" - must do get_block() 1689 * No Yes "hole" - zero-filled 1690 * Yes No "allocated" - allocated on disk, not read in 1691 * Yes Yes "valid" - allocated and up-to-date in memory. 1692 * 1693 * "Dirty" is valid only with the last case (mapped+uptodate). 1694 */ 1695 1696 /* 1697 * While block_write_full_page is writing back the dirty buffers under 1698 * the page lock, whoever dirtied the buffers may decide to clean them 1699 * again at any time. We handle that by only looking at the buffer 1700 * state inside lock_buffer(). 1701 * 1702 * If block_write_full_page() is called for regular writeback 1703 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1704 * locked buffer. This only can happen if someone has written the buffer 1705 * directly, with submit_bh(). At the address_space level PageWriteback 1706 * prevents this contention from occurring. 1707 * 1708 * If block_write_full_page() is called with wbc->sync_mode == 1709 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1710 * causes the writes to be flagged as synchronous writes. 1711 */ 1712 int __block_write_full_page(struct inode *inode, struct page *page, 1713 get_block_t *get_block, struct writeback_control *wbc, 1714 bh_end_io_t *handler) 1715 { 1716 int err; 1717 sector_t block; 1718 sector_t last_block; 1719 struct buffer_head *bh, *head; 1720 unsigned int blocksize, bbits; 1721 int nr_underway = 0; 1722 int write_flags = wbc_to_write_flags(wbc); 1723 1724 head = create_page_buffers(page, inode, 1725 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1726 1727 /* 1728 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1729 * here, and the (potentially unmapped) buffers may become dirty at 1730 * any time. If a buffer becomes dirty here after we've inspected it 1731 * then we just miss that fact, and the page stays dirty. 1732 * 1733 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1734 * handle that here by just cleaning them. 1735 */ 1736 1737 bh = head; 1738 blocksize = bh->b_size; 1739 bbits = block_size_bits(blocksize); 1740 1741 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1742 last_block = (i_size_read(inode) - 1) >> bbits; 1743 1744 /* 1745 * Get all the dirty buffers mapped to disk addresses and 1746 * handle any aliases from the underlying blockdev's mapping. 1747 */ 1748 do { 1749 if (block > last_block) { 1750 /* 1751 * mapped buffers outside i_size will occur, because 1752 * this page can be outside i_size when there is a 1753 * truncate in progress. 1754 */ 1755 /* 1756 * The buffer was zeroed by block_write_full_page() 1757 */ 1758 clear_buffer_dirty(bh); 1759 set_buffer_uptodate(bh); 1760 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1761 buffer_dirty(bh)) { 1762 WARN_ON(bh->b_size != blocksize); 1763 err = get_block(inode, block, bh, 1); 1764 if (err) 1765 goto recover; 1766 clear_buffer_delay(bh); 1767 if (buffer_new(bh)) { 1768 /* blockdev mappings never come here */ 1769 clear_buffer_new(bh); 1770 clean_bdev_bh_alias(bh); 1771 } 1772 } 1773 bh = bh->b_this_page; 1774 block++; 1775 } while (bh != head); 1776 1777 do { 1778 if (!buffer_mapped(bh)) 1779 continue; 1780 /* 1781 * If it's a fully non-blocking write attempt and we cannot 1782 * lock the buffer then redirty the page. Note that this can 1783 * potentially cause a busy-wait loop from writeback threads 1784 * and kswapd activity, but those code paths have their own 1785 * higher-level throttling. 1786 */ 1787 if (wbc->sync_mode != WB_SYNC_NONE) { 1788 lock_buffer(bh); 1789 } else if (!trylock_buffer(bh)) { 1790 redirty_page_for_writepage(wbc, page); 1791 continue; 1792 } 1793 if (test_clear_buffer_dirty(bh)) { 1794 mark_buffer_async_write_endio(bh, handler); 1795 } else { 1796 unlock_buffer(bh); 1797 } 1798 } while ((bh = bh->b_this_page) != head); 1799 1800 /* 1801 * The page and its buffers are protected by PageWriteback(), so we can 1802 * drop the bh refcounts early. 1803 */ 1804 BUG_ON(PageWriteback(page)); 1805 set_page_writeback(page); 1806 1807 do { 1808 struct buffer_head *next = bh->b_this_page; 1809 if (buffer_async_write(bh)) { 1810 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1811 inode->i_write_hint, wbc); 1812 nr_underway++; 1813 } 1814 bh = next; 1815 } while (bh != head); 1816 unlock_page(page); 1817 1818 err = 0; 1819 done: 1820 if (nr_underway == 0) { 1821 /* 1822 * The page was marked dirty, but the buffers were 1823 * clean. Someone wrote them back by hand with 1824 * ll_rw_block/submit_bh. A rare case. 1825 */ 1826 end_page_writeback(page); 1827 1828 /* 1829 * The page and buffer_heads can be released at any time from 1830 * here on. 1831 */ 1832 } 1833 return err; 1834 1835 recover: 1836 /* 1837 * ENOSPC, or some other error. We may already have added some 1838 * blocks to the file, so we need to write these out to avoid 1839 * exposing stale data. 1840 * The page is currently locked and not marked for writeback 1841 */ 1842 bh = head; 1843 /* Recovery: lock and submit the mapped buffers */ 1844 do { 1845 if (buffer_mapped(bh) && buffer_dirty(bh) && 1846 !buffer_delay(bh)) { 1847 lock_buffer(bh); 1848 mark_buffer_async_write_endio(bh, handler); 1849 } else { 1850 /* 1851 * The buffer may have been set dirty during 1852 * attachment to a dirty page. 1853 */ 1854 clear_buffer_dirty(bh); 1855 } 1856 } while ((bh = bh->b_this_page) != head); 1857 SetPageError(page); 1858 BUG_ON(PageWriteback(page)); 1859 mapping_set_error(page->mapping, err); 1860 set_page_writeback(page); 1861 do { 1862 struct buffer_head *next = bh->b_this_page; 1863 if (buffer_async_write(bh)) { 1864 clear_buffer_dirty(bh); 1865 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1866 inode->i_write_hint, wbc); 1867 nr_underway++; 1868 } 1869 bh = next; 1870 } while (bh != head); 1871 unlock_page(page); 1872 goto done; 1873 } 1874 EXPORT_SYMBOL(__block_write_full_page); 1875 1876 /* 1877 * If a page has any new buffers, zero them out here, and mark them uptodate 1878 * and dirty so they'll be written out (in order to prevent uninitialised 1879 * block data from leaking). And clear the new bit. 1880 */ 1881 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1882 { 1883 unsigned int block_start, block_end; 1884 struct buffer_head *head, *bh; 1885 1886 BUG_ON(!PageLocked(page)); 1887 if (!page_has_buffers(page)) 1888 return; 1889 1890 bh = head = page_buffers(page); 1891 block_start = 0; 1892 do { 1893 block_end = block_start + bh->b_size; 1894 1895 if (buffer_new(bh)) { 1896 if (block_end > from && block_start < to) { 1897 if (!PageUptodate(page)) { 1898 unsigned start, size; 1899 1900 start = max(from, block_start); 1901 size = min(to, block_end) - start; 1902 1903 zero_user(page, start, size); 1904 set_buffer_uptodate(bh); 1905 } 1906 1907 clear_buffer_new(bh); 1908 mark_buffer_dirty(bh); 1909 } 1910 } 1911 1912 block_start = block_end; 1913 bh = bh->b_this_page; 1914 } while (bh != head); 1915 } 1916 EXPORT_SYMBOL(page_zero_new_buffers); 1917 1918 static void 1919 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1920 struct iomap *iomap) 1921 { 1922 loff_t offset = block << inode->i_blkbits; 1923 1924 bh->b_bdev = iomap->bdev; 1925 1926 /* 1927 * Block points to offset in file we need to map, iomap contains 1928 * the offset at which the map starts. If the map ends before the 1929 * current block, then do not map the buffer and let the caller 1930 * handle it. 1931 */ 1932 BUG_ON(offset >= iomap->offset + iomap->length); 1933 1934 switch (iomap->type) { 1935 case IOMAP_HOLE: 1936 /* 1937 * If the buffer is not up to date or beyond the current EOF, 1938 * we need to mark it as new to ensure sub-block zeroing is 1939 * executed if necessary. 1940 */ 1941 if (!buffer_uptodate(bh) || 1942 (offset >= i_size_read(inode))) 1943 set_buffer_new(bh); 1944 break; 1945 case IOMAP_DELALLOC: 1946 if (!buffer_uptodate(bh) || 1947 (offset >= i_size_read(inode))) 1948 set_buffer_new(bh); 1949 set_buffer_uptodate(bh); 1950 set_buffer_mapped(bh); 1951 set_buffer_delay(bh); 1952 break; 1953 case IOMAP_UNWRITTEN: 1954 /* 1955 * For unwritten regions, we always need to ensure that regions 1956 * in the block we are not writing to are zeroed. Mark the 1957 * buffer as new to ensure this. 1958 */ 1959 set_buffer_new(bh); 1960 set_buffer_unwritten(bh); 1961 fallthrough; 1962 case IOMAP_MAPPED: 1963 if ((iomap->flags & IOMAP_F_NEW) || 1964 offset >= i_size_read(inode)) 1965 set_buffer_new(bh); 1966 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1967 inode->i_blkbits; 1968 set_buffer_mapped(bh); 1969 break; 1970 } 1971 } 1972 1973 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1974 get_block_t *get_block, struct iomap *iomap) 1975 { 1976 unsigned from = pos & (PAGE_SIZE - 1); 1977 unsigned to = from + len; 1978 struct inode *inode = page->mapping->host; 1979 unsigned block_start, block_end; 1980 sector_t block; 1981 int err = 0; 1982 unsigned blocksize, bbits; 1983 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1984 1985 BUG_ON(!PageLocked(page)); 1986 BUG_ON(from > PAGE_SIZE); 1987 BUG_ON(to > PAGE_SIZE); 1988 BUG_ON(from > to); 1989 1990 head = create_page_buffers(page, inode, 0); 1991 blocksize = head->b_size; 1992 bbits = block_size_bits(blocksize); 1993 1994 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1995 1996 for(bh = head, block_start = 0; bh != head || !block_start; 1997 block++, block_start=block_end, bh = bh->b_this_page) { 1998 block_end = block_start + blocksize; 1999 if (block_end <= from || block_start >= to) { 2000 if (PageUptodate(page)) { 2001 if (!buffer_uptodate(bh)) 2002 set_buffer_uptodate(bh); 2003 } 2004 continue; 2005 } 2006 if (buffer_new(bh)) 2007 clear_buffer_new(bh); 2008 if (!buffer_mapped(bh)) { 2009 WARN_ON(bh->b_size != blocksize); 2010 if (get_block) { 2011 err = get_block(inode, block, bh, 1); 2012 if (err) 2013 break; 2014 } else { 2015 iomap_to_bh(inode, block, bh, iomap); 2016 } 2017 2018 if (buffer_new(bh)) { 2019 clean_bdev_bh_alias(bh); 2020 if (PageUptodate(page)) { 2021 clear_buffer_new(bh); 2022 set_buffer_uptodate(bh); 2023 mark_buffer_dirty(bh); 2024 continue; 2025 } 2026 if (block_end > to || block_start < from) 2027 zero_user_segments(page, 2028 to, block_end, 2029 block_start, from); 2030 continue; 2031 } 2032 } 2033 if (PageUptodate(page)) { 2034 if (!buffer_uptodate(bh)) 2035 set_buffer_uptodate(bh); 2036 continue; 2037 } 2038 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2039 !buffer_unwritten(bh) && 2040 (block_start < from || block_end > to)) { 2041 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2042 *wait_bh++=bh; 2043 } 2044 } 2045 /* 2046 * If we issued read requests - let them complete. 2047 */ 2048 while(wait_bh > wait) { 2049 wait_on_buffer(*--wait_bh); 2050 if (!buffer_uptodate(*wait_bh)) 2051 err = -EIO; 2052 } 2053 if (unlikely(err)) 2054 page_zero_new_buffers(page, from, to); 2055 return err; 2056 } 2057 2058 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2059 get_block_t *get_block) 2060 { 2061 return __block_write_begin_int(page, pos, len, get_block, NULL); 2062 } 2063 EXPORT_SYMBOL(__block_write_begin); 2064 2065 static int __block_commit_write(struct inode *inode, struct page *page, 2066 unsigned from, unsigned to) 2067 { 2068 unsigned block_start, block_end; 2069 int partial = 0; 2070 unsigned blocksize; 2071 struct buffer_head *bh, *head; 2072 2073 bh = head = page_buffers(page); 2074 blocksize = bh->b_size; 2075 2076 block_start = 0; 2077 do { 2078 block_end = block_start + blocksize; 2079 if (block_end <= from || block_start >= to) { 2080 if (!buffer_uptodate(bh)) 2081 partial = 1; 2082 } else { 2083 set_buffer_uptodate(bh); 2084 mark_buffer_dirty(bh); 2085 } 2086 clear_buffer_new(bh); 2087 2088 block_start = block_end; 2089 bh = bh->b_this_page; 2090 } while (bh != head); 2091 2092 /* 2093 * If this is a partial write which happened to make all buffers 2094 * uptodate then we can optimize away a bogus readpage() for 2095 * the next read(). Here we 'discover' whether the page went 2096 * uptodate as a result of this (potentially partial) write. 2097 */ 2098 if (!partial) 2099 SetPageUptodate(page); 2100 return 0; 2101 } 2102 2103 /* 2104 * block_write_begin takes care of the basic task of block allocation and 2105 * bringing partial write blocks uptodate first. 2106 * 2107 * The filesystem needs to handle block truncation upon failure. 2108 */ 2109 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2110 unsigned flags, struct page **pagep, get_block_t *get_block) 2111 { 2112 pgoff_t index = pos >> PAGE_SHIFT; 2113 struct page *page; 2114 int status; 2115 2116 page = grab_cache_page_write_begin(mapping, index, flags); 2117 if (!page) 2118 return -ENOMEM; 2119 2120 status = __block_write_begin(page, pos, len, get_block); 2121 if (unlikely(status)) { 2122 unlock_page(page); 2123 put_page(page); 2124 page = NULL; 2125 } 2126 2127 *pagep = page; 2128 return status; 2129 } 2130 EXPORT_SYMBOL(block_write_begin); 2131 2132 int block_write_end(struct file *file, struct address_space *mapping, 2133 loff_t pos, unsigned len, unsigned copied, 2134 struct page *page, void *fsdata) 2135 { 2136 struct inode *inode = mapping->host; 2137 unsigned start; 2138 2139 start = pos & (PAGE_SIZE - 1); 2140 2141 if (unlikely(copied < len)) { 2142 /* 2143 * The buffers that were written will now be uptodate, so we 2144 * don't have to worry about a readpage reading them and 2145 * overwriting a partial write. However if we have encountered 2146 * a short write and only partially written into a buffer, it 2147 * will not be marked uptodate, so a readpage might come in and 2148 * destroy our partial write. 2149 * 2150 * Do the simplest thing, and just treat any short write to a 2151 * non uptodate page as a zero-length write, and force the 2152 * caller to redo the whole thing. 2153 */ 2154 if (!PageUptodate(page)) 2155 copied = 0; 2156 2157 page_zero_new_buffers(page, start+copied, start+len); 2158 } 2159 flush_dcache_page(page); 2160 2161 /* This could be a short (even 0-length) commit */ 2162 __block_commit_write(inode, page, start, start+copied); 2163 2164 return copied; 2165 } 2166 EXPORT_SYMBOL(block_write_end); 2167 2168 int generic_write_end(struct file *file, struct address_space *mapping, 2169 loff_t pos, unsigned len, unsigned copied, 2170 struct page *page, void *fsdata) 2171 { 2172 struct inode *inode = mapping->host; 2173 loff_t old_size = inode->i_size; 2174 bool i_size_changed = false; 2175 2176 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2177 2178 /* 2179 * No need to use i_size_read() here, the i_size cannot change under us 2180 * because we hold i_rwsem. 2181 * 2182 * But it's important to update i_size while still holding page lock: 2183 * page writeout could otherwise come in and zero beyond i_size. 2184 */ 2185 if (pos + copied > inode->i_size) { 2186 i_size_write(inode, pos + copied); 2187 i_size_changed = true; 2188 } 2189 2190 unlock_page(page); 2191 put_page(page); 2192 2193 if (old_size < pos) 2194 pagecache_isize_extended(inode, old_size, pos); 2195 /* 2196 * Don't mark the inode dirty under page lock. First, it unnecessarily 2197 * makes the holding time of page lock longer. Second, it forces lock 2198 * ordering of page lock and transaction start for journaling 2199 * filesystems. 2200 */ 2201 if (i_size_changed) 2202 mark_inode_dirty(inode); 2203 return copied; 2204 } 2205 EXPORT_SYMBOL(generic_write_end); 2206 2207 /* 2208 * block_is_partially_uptodate checks whether buffers within a page are 2209 * uptodate or not. 2210 * 2211 * Returns true if all buffers which correspond to a file portion 2212 * we want to read are uptodate. 2213 */ 2214 int block_is_partially_uptodate(struct page *page, unsigned long from, 2215 unsigned long count) 2216 { 2217 unsigned block_start, block_end, blocksize; 2218 unsigned to; 2219 struct buffer_head *bh, *head; 2220 int ret = 1; 2221 2222 if (!page_has_buffers(page)) 2223 return 0; 2224 2225 head = page_buffers(page); 2226 blocksize = head->b_size; 2227 to = min_t(unsigned, PAGE_SIZE - from, count); 2228 to = from + to; 2229 if (from < blocksize && to > PAGE_SIZE - blocksize) 2230 return 0; 2231 2232 bh = head; 2233 block_start = 0; 2234 do { 2235 block_end = block_start + blocksize; 2236 if (block_end > from && block_start < to) { 2237 if (!buffer_uptodate(bh)) { 2238 ret = 0; 2239 break; 2240 } 2241 if (block_end >= to) 2242 break; 2243 } 2244 block_start = block_end; 2245 bh = bh->b_this_page; 2246 } while (bh != head); 2247 2248 return ret; 2249 } 2250 EXPORT_SYMBOL(block_is_partially_uptodate); 2251 2252 /* 2253 * Generic "read page" function for block devices that have the normal 2254 * get_block functionality. This is most of the block device filesystems. 2255 * Reads the page asynchronously --- the unlock_buffer() and 2256 * set/clear_buffer_uptodate() functions propagate buffer state into the 2257 * page struct once IO has completed. 2258 */ 2259 int block_read_full_page(struct page *page, get_block_t *get_block) 2260 { 2261 struct inode *inode = page->mapping->host; 2262 sector_t iblock, lblock; 2263 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2264 unsigned int blocksize, bbits; 2265 int nr, i; 2266 int fully_mapped = 1; 2267 2268 head = create_page_buffers(page, inode, 0); 2269 blocksize = head->b_size; 2270 bbits = block_size_bits(blocksize); 2271 2272 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2273 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2274 bh = head; 2275 nr = 0; 2276 i = 0; 2277 2278 do { 2279 if (buffer_uptodate(bh)) 2280 continue; 2281 2282 if (!buffer_mapped(bh)) { 2283 int err = 0; 2284 2285 fully_mapped = 0; 2286 if (iblock < lblock) { 2287 WARN_ON(bh->b_size != blocksize); 2288 err = get_block(inode, iblock, bh, 0); 2289 if (err) 2290 SetPageError(page); 2291 } 2292 if (!buffer_mapped(bh)) { 2293 zero_user(page, i * blocksize, blocksize); 2294 if (!err) 2295 set_buffer_uptodate(bh); 2296 continue; 2297 } 2298 /* 2299 * get_block() might have updated the buffer 2300 * synchronously 2301 */ 2302 if (buffer_uptodate(bh)) 2303 continue; 2304 } 2305 arr[nr++] = bh; 2306 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2307 2308 if (fully_mapped) 2309 SetPageMappedToDisk(page); 2310 2311 if (!nr) { 2312 /* 2313 * All buffers are uptodate - we can set the page uptodate 2314 * as well. But not if get_block() returned an error. 2315 */ 2316 if (!PageError(page)) 2317 SetPageUptodate(page); 2318 unlock_page(page); 2319 return 0; 2320 } 2321 2322 /* Stage two: lock the buffers */ 2323 for (i = 0; i < nr; i++) { 2324 bh = arr[i]; 2325 lock_buffer(bh); 2326 mark_buffer_async_read(bh); 2327 } 2328 2329 /* 2330 * Stage 3: start the IO. Check for uptodateness 2331 * inside the buffer lock in case another process reading 2332 * the underlying blockdev brought it uptodate (the sct fix). 2333 */ 2334 for (i = 0; i < nr; i++) { 2335 bh = arr[i]; 2336 if (buffer_uptodate(bh)) 2337 end_buffer_async_read(bh, 1); 2338 else 2339 submit_bh(REQ_OP_READ, 0, bh); 2340 } 2341 return 0; 2342 } 2343 EXPORT_SYMBOL(block_read_full_page); 2344 2345 /* utility function for filesystems that need to do work on expanding 2346 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2347 * deal with the hole. 2348 */ 2349 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2350 { 2351 struct address_space *mapping = inode->i_mapping; 2352 struct page *page; 2353 void *fsdata; 2354 int err; 2355 2356 err = inode_newsize_ok(inode, size); 2357 if (err) 2358 goto out; 2359 2360 err = pagecache_write_begin(NULL, mapping, size, 0, 2361 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2362 if (err) 2363 goto out; 2364 2365 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2366 BUG_ON(err > 0); 2367 2368 out: 2369 return err; 2370 } 2371 EXPORT_SYMBOL(generic_cont_expand_simple); 2372 2373 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2374 loff_t pos, loff_t *bytes) 2375 { 2376 struct inode *inode = mapping->host; 2377 unsigned int blocksize = i_blocksize(inode); 2378 struct page *page; 2379 void *fsdata; 2380 pgoff_t index, curidx; 2381 loff_t curpos; 2382 unsigned zerofrom, offset, len; 2383 int err = 0; 2384 2385 index = pos >> PAGE_SHIFT; 2386 offset = pos & ~PAGE_MASK; 2387 2388 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2389 zerofrom = curpos & ~PAGE_MASK; 2390 if (zerofrom & (blocksize-1)) { 2391 *bytes |= (blocksize-1); 2392 (*bytes)++; 2393 } 2394 len = PAGE_SIZE - zerofrom; 2395 2396 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2397 &page, &fsdata); 2398 if (err) 2399 goto out; 2400 zero_user(page, zerofrom, len); 2401 err = pagecache_write_end(file, mapping, curpos, len, len, 2402 page, fsdata); 2403 if (err < 0) 2404 goto out; 2405 BUG_ON(err != len); 2406 err = 0; 2407 2408 balance_dirty_pages_ratelimited(mapping); 2409 2410 if (fatal_signal_pending(current)) { 2411 err = -EINTR; 2412 goto out; 2413 } 2414 } 2415 2416 /* page covers the boundary, find the boundary offset */ 2417 if (index == curidx) { 2418 zerofrom = curpos & ~PAGE_MASK; 2419 /* if we will expand the thing last block will be filled */ 2420 if (offset <= zerofrom) { 2421 goto out; 2422 } 2423 if (zerofrom & (blocksize-1)) { 2424 *bytes |= (blocksize-1); 2425 (*bytes)++; 2426 } 2427 len = offset - zerofrom; 2428 2429 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2430 &page, &fsdata); 2431 if (err) 2432 goto out; 2433 zero_user(page, zerofrom, len); 2434 err = pagecache_write_end(file, mapping, curpos, len, len, 2435 page, fsdata); 2436 if (err < 0) 2437 goto out; 2438 BUG_ON(err != len); 2439 err = 0; 2440 } 2441 out: 2442 return err; 2443 } 2444 2445 /* 2446 * For moronic filesystems that do not allow holes in file. 2447 * We may have to extend the file. 2448 */ 2449 int cont_write_begin(struct file *file, struct address_space *mapping, 2450 loff_t pos, unsigned len, unsigned flags, 2451 struct page **pagep, void **fsdata, 2452 get_block_t *get_block, loff_t *bytes) 2453 { 2454 struct inode *inode = mapping->host; 2455 unsigned int blocksize = i_blocksize(inode); 2456 unsigned int zerofrom; 2457 int err; 2458 2459 err = cont_expand_zero(file, mapping, pos, bytes); 2460 if (err) 2461 return err; 2462 2463 zerofrom = *bytes & ~PAGE_MASK; 2464 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2465 *bytes |= (blocksize-1); 2466 (*bytes)++; 2467 } 2468 2469 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2470 } 2471 EXPORT_SYMBOL(cont_write_begin); 2472 2473 int block_commit_write(struct page *page, unsigned from, unsigned to) 2474 { 2475 struct inode *inode = page->mapping->host; 2476 __block_commit_write(inode,page,from,to); 2477 return 0; 2478 } 2479 EXPORT_SYMBOL(block_commit_write); 2480 2481 /* 2482 * block_page_mkwrite() is not allowed to change the file size as it gets 2483 * called from a page fault handler when a page is first dirtied. Hence we must 2484 * be careful to check for EOF conditions here. We set the page up correctly 2485 * for a written page which means we get ENOSPC checking when writing into 2486 * holes and correct delalloc and unwritten extent mapping on filesystems that 2487 * support these features. 2488 * 2489 * We are not allowed to take the i_mutex here so we have to play games to 2490 * protect against truncate races as the page could now be beyond EOF. Because 2491 * truncate writes the inode size before removing pages, once we have the 2492 * page lock we can determine safely if the page is beyond EOF. If it is not 2493 * beyond EOF, then the page is guaranteed safe against truncation until we 2494 * unlock the page. 2495 * 2496 * Direct callers of this function should protect against filesystem freezing 2497 * using sb_start_pagefault() - sb_end_pagefault() functions. 2498 */ 2499 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2500 get_block_t get_block) 2501 { 2502 struct page *page = vmf->page; 2503 struct inode *inode = file_inode(vma->vm_file); 2504 unsigned long end; 2505 loff_t size; 2506 int ret; 2507 2508 lock_page(page); 2509 size = i_size_read(inode); 2510 if ((page->mapping != inode->i_mapping) || 2511 (page_offset(page) > size)) { 2512 /* We overload EFAULT to mean page got truncated */ 2513 ret = -EFAULT; 2514 goto out_unlock; 2515 } 2516 2517 /* page is wholly or partially inside EOF */ 2518 if (((page->index + 1) << PAGE_SHIFT) > size) 2519 end = size & ~PAGE_MASK; 2520 else 2521 end = PAGE_SIZE; 2522 2523 ret = __block_write_begin(page, 0, end, get_block); 2524 if (!ret) 2525 ret = block_commit_write(page, 0, end); 2526 2527 if (unlikely(ret < 0)) 2528 goto out_unlock; 2529 set_page_dirty(page); 2530 wait_for_stable_page(page); 2531 return 0; 2532 out_unlock: 2533 unlock_page(page); 2534 return ret; 2535 } 2536 EXPORT_SYMBOL(block_page_mkwrite); 2537 2538 /* 2539 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2540 * immediately, while under the page lock. So it needs a special end_io 2541 * handler which does not touch the bh after unlocking it. 2542 */ 2543 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2544 { 2545 __end_buffer_read_notouch(bh, uptodate); 2546 } 2547 2548 /* 2549 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2550 * the page (converting it to circular linked list and taking care of page 2551 * dirty races). 2552 */ 2553 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2554 { 2555 struct buffer_head *bh; 2556 2557 BUG_ON(!PageLocked(page)); 2558 2559 spin_lock(&page->mapping->private_lock); 2560 bh = head; 2561 do { 2562 if (PageDirty(page)) 2563 set_buffer_dirty(bh); 2564 if (!bh->b_this_page) 2565 bh->b_this_page = head; 2566 bh = bh->b_this_page; 2567 } while (bh != head); 2568 attach_page_private(page, head); 2569 spin_unlock(&page->mapping->private_lock); 2570 } 2571 2572 /* 2573 * On entry, the page is fully not uptodate. 2574 * On exit the page is fully uptodate in the areas outside (from,to) 2575 * The filesystem needs to handle block truncation upon failure. 2576 */ 2577 int nobh_write_begin(struct address_space *mapping, 2578 loff_t pos, unsigned len, unsigned flags, 2579 struct page **pagep, void **fsdata, 2580 get_block_t *get_block) 2581 { 2582 struct inode *inode = mapping->host; 2583 const unsigned blkbits = inode->i_blkbits; 2584 const unsigned blocksize = 1 << blkbits; 2585 struct buffer_head *head, *bh; 2586 struct page *page; 2587 pgoff_t index; 2588 unsigned from, to; 2589 unsigned block_in_page; 2590 unsigned block_start, block_end; 2591 sector_t block_in_file; 2592 int nr_reads = 0; 2593 int ret = 0; 2594 int is_mapped_to_disk = 1; 2595 2596 index = pos >> PAGE_SHIFT; 2597 from = pos & (PAGE_SIZE - 1); 2598 to = from + len; 2599 2600 page = grab_cache_page_write_begin(mapping, index, flags); 2601 if (!page) 2602 return -ENOMEM; 2603 *pagep = page; 2604 *fsdata = NULL; 2605 2606 if (page_has_buffers(page)) { 2607 ret = __block_write_begin(page, pos, len, get_block); 2608 if (unlikely(ret)) 2609 goto out_release; 2610 return ret; 2611 } 2612 2613 if (PageMappedToDisk(page)) 2614 return 0; 2615 2616 /* 2617 * Allocate buffers so that we can keep track of state, and potentially 2618 * attach them to the page if an error occurs. In the common case of 2619 * no error, they will just be freed again without ever being attached 2620 * to the page (which is all OK, because we're under the page lock). 2621 * 2622 * Be careful: the buffer linked list is a NULL terminated one, rather 2623 * than the circular one we're used to. 2624 */ 2625 head = alloc_page_buffers(page, blocksize, false); 2626 if (!head) { 2627 ret = -ENOMEM; 2628 goto out_release; 2629 } 2630 2631 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2632 2633 /* 2634 * We loop across all blocks in the page, whether or not they are 2635 * part of the affected region. This is so we can discover if the 2636 * page is fully mapped-to-disk. 2637 */ 2638 for (block_start = 0, block_in_page = 0, bh = head; 2639 block_start < PAGE_SIZE; 2640 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2641 int create; 2642 2643 block_end = block_start + blocksize; 2644 bh->b_state = 0; 2645 create = 1; 2646 if (block_start >= to) 2647 create = 0; 2648 ret = get_block(inode, block_in_file + block_in_page, 2649 bh, create); 2650 if (ret) 2651 goto failed; 2652 if (!buffer_mapped(bh)) 2653 is_mapped_to_disk = 0; 2654 if (buffer_new(bh)) 2655 clean_bdev_bh_alias(bh); 2656 if (PageUptodate(page)) { 2657 set_buffer_uptodate(bh); 2658 continue; 2659 } 2660 if (buffer_new(bh) || !buffer_mapped(bh)) { 2661 zero_user_segments(page, block_start, from, 2662 to, block_end); 2663 continue; 2664 } 2665 if (buffer_uptodate(bh)) 2666 continue; /* reiserfs does this */ 2667 if (block_start < from || block_end > to) { 2668 lock_buffer(bh); 2669 bh->b_end_io = end_buffer_read_nobh; 2670 submit_bh(REQ_OP_READ, 0, bh); 2671 nr_reads++; 2672 } 2673 } 2674 2675 if (nr_reads) { 2676 /* 2677 * The page is locked, so these buffers are protected from 2678 * any VM or truncate activity. Hence we don't need to care 2679 * for the buffer_head refcounts. 2680 */ 2681 for (bh = head; bh; bh = bh->b_this_page) { 2682 wait_on_buffer(bh); 2683 if (!buffer_uptodate(bh)) 2684 ret = -EIO; 2685 } 2686 if (ret) 2687 goto failed; 2688 } 2689 2690 if (is_mapped_to_disk) 2691 SetPageMappedToDisk(page); 2692 2693 *fsdata = head; /* to be released by nobh_write_end */ 2694 2695 return 0; 2696 2697 failed: 2698 BUG_ON(!ret); 2699 /* 2700 * Error recovery is a bit difficult. We need to zero out blocks that 2701 * were newly allocated, and dirty them to ensure they get written out. 2702 * Buffers need to be attached to the page at this point, otherwise 2703 * the handling of potential IO errors during writeout would be hard 2704 * (could try doing synchronous writeout, but what if that fails too?) 2705 */ 2706 attach_nobh_buffers(page, head); 2707 page_zero_new_buffers(page, from, to); 2708 2709 out_release: 2710 unlock_page(page); 2711 put_page(page); 2712 *pagep = NULL; 2713 2714 return ret; 2715 } 2716 EXPORT_SYMBOL(nobh_write_begin); 2717 2718 int nobh_write_end(struct file *file, struct address_space *mapping, 2719 loff_t pos, unsigned len, unsigned copied, 2720 struct page *page, void *fsdata) 2721 { 2722 struct inode *inode = page->mapping->host; 2723 struct buffer_head *head = fsdata; 2724 struct buffer_head *bh; 2725 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2726 2727 if (unlikely(copied < len) && head) 2728 attach_nobh_buffers(page, head); 2729 if (page_has_buffers(page)) 2730 return generic_write_end(file, mapping, pos, len, 2731 copied, page, fsdata); 2732 2733 SetPageUptodate(page); 2734 set_page_dirty(page); 2735 if (pos+copied > inode->i_size) { 2736 i_size_write(inode, pos+copied); 2737 mark_inode_dirty(inode); 2738 } 2739 2740 unlock_page(page); 2741 put_page(page); 2742 2743 while (head) { 2744 bh = head; 2745 head = head->b_this_page; 2746 free_buffer_head(bh); 2747 } 2748 2749 return copied; 2750 } 2751 EXPORT_SYMBOL(nobh_write_end); 2752 2753 /* 2754 * nobh_writepage() - based on block_full_write_page() except 2755 * that it tries to operate without attaching bufferheads to 2756 * the page. 2757 */ 2758 int nobh_writepage(struct page *page, get_block_t *get_block, 2759 struct writeback_control *wbc) 2760 { 2761 struct inode * const inode = page->mapping->host; 2762 loff_t i_size = i_size_read(inode); 2763 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2764 unsigned offset; 2765 int ret; 2766 2767 /* Is the page fully inside i_size? */ 2768 if (page->index < end_index) 2769 goto out; 2770 2771 /* Is the page fully outside i_size? (truncate in progress) */ 2772 offset = i_size & (PAGE_SIZE-1); 2773 if (page->index >= end_index+1 || !offset) { 2774 /* 2775 * The page may have dirty, unmapped buffers. For example, 2776 * they may have been added in ext3_writepage(). Make them 2777 * freeable here, so the page does not leak. 2778 */ 2779 #if 0 2780 /* Not really sure about this - do we need this ? */ 2781 if (page->mapping->a_ops->invalidatepage) 2782 page->mapping->a_ops->invalidatepage(page, offset); 2783 #endif 2784 unlock_page(page); 2785 return 0; /* don't care */ 2786 } 2787 2788 /* 2789 * The page straddles i_size. It must be zeroed out on each and every 2790 * writepage invocation because it may be mmapped. "A file is mapped 2791 * in multiples of the page size. For a file that is not a multiple of 2792 * the page size, the remaining memory is zeroed when mapped, and 2793 * writes to that region are not written out to the file." 2794 */ 2795 zero_user_segment(page, offset, PAGE_SIZE); 2796 out: 2797 ret = mpage_writepage(page, get_block, wbc); 2798 if (ret == -EAGAIN) 2799 ret = __block_write_full_page(inode, page, get_block, wbc, 2800 end_buffer_async_write); 2801 return ret; 2802 } 2803 EXPORT_SYMBOL(nobh_writepage); 2804 2805 int nobh_truncate_page(struct address_space *mapping, 2806 loff_t from, get_block_t *get_block) 2807 { 2808 pgoff_t index = from >> PAGE_SHIFT; 2809 unsigned offset = from & (PAGE_SIZE-1); 2810 unsigned blocksize; 2811 sector_t iblock; 2812 unsigned length, pos; 2813 struct inode *inode = mapping->host; 2814 struct page *page; 2815 struct buffer_head map_bh; 2816 int err; 2817 2818 blocksize = i_blocksize(inode); 2819 length = offset & (blocksize - 1); 2820 2821 /* Block boundary? Nothing to do */ 2822 if (!length) 2823 return 0; 2824 2825 length = blocksize - length; 2826 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2827 2828 page = grab_cache_page(mapping, index); 2829 err = -ENOMEM; 2830 if (!page) 2831 goto out; 2832 2833 if (page_has_buffers(page)) { 2834 has_buffers: 2835 unlock_page(page); 2836 put_page(page); 2837 return block_truncate_page(mapping, from, get_block); 2838 } 2839 2840 /* Find the buffer that contains "offset" */ 2841 pos = blocksize; 2842 while (offset >= pos) { 2843 iblock++; 2844 pos += blocksize; 2845 } 2846 2847 map_bh.b_size = blocksize; 2848 map_bh.b_state = 0; 2849 err = get_block(inode, iblock, &map_bh, 0); 2850 if (err) 2851 goto unlock; 2852 /* unmapped? It's a hole - nothing to do */ 2853 if (!buffer_mapped(&map_bh)) 2854 goto unlock; 2855 2856 /* Ok, it's mapped. Make sure it's up-to-date */ 2857 if (!PageUptodate(page)) { 2858 err = mapping->a_ops->readpage(NULL, page); 2859 if (err) { 2860 put_page(page); 2861 goto out; 2862 } 2863 lock_page(page); 2864 if (!PageUptodate(page)) { 2865 err = -EIO; 2866 goto unlock; 2867 } 2868 if (page_has_buffers(page)) 2869 goto has_buffers; 2870 } 2871 zero_user(page, offset, length); 2872 set_page_dirty(page); 2873 err = 0; 2874 2875 unlock: 2876 unlock_page(page); 2877 put_page(page); 2878 out: 2879 return err; 2880 } 2881 EXPORT_SYMBOL(nobh_truncate_page); 2882 2883 int block_truncate_page(struct address_space *mapping, 2884 loff_t from, get_block_t *get_block) 2885 { 2886 pgoff_t index = from >> PAGE_SHIFT; 2887 unsigned offset = from & (PAGE_SIZE-1); 2888 unsigned blocksize; 2889 sector_t iblock; 2890 unsigned length, pos; 2891 struct inode *inode = mapping->host; 2892 struct page *page; 2893 struct buffer_head *bh; 2894 int err; 2895 2896 blocksize = i_blocksize(inode); 2897 length = offset & (blocksize - 1); 2898 2899 /* Block boundary? Nothing to do */ 2900 if (!length) 2901 return 0; 2902 2903 length = blocksize - length; 2904 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2905 2906 page = grab_cache_page(mapping, index); 2907 err = -ENOMEM; 2908 if (!page) 2909 goto out; 2910 2911 if (!page_has_buffers(page)) 2912 create_empty_buffers(page, blocksize, 0); 2913 2914 /* Find the buffer that contains "offset" */ 2915 bh = page_buffers(page); 2916 pos = blocksize; 2917 while (offset >= pos) { 2918 bh = bh->b_this_page; 2919 iblock++; 2920 pos += blocksize; 2921 } 2922 2923 err = 0; 2924 if (!buffer_mapped(bh)) { 2925 WARN_ON(bh->b_size != blocksize); 2926 err = get_block(inode, iblock, bh, 0); 2927 if (err) 2928 goto unlock; 2929 /* unmapped? It's a hole - nothing to do */ 2930 if (!buffer_mapped(bh)) 2931 goto unlock; 2932 } 2933 2934 /* Ok, it's mapped. Make sure it's up-to-date */ 2935 if (PageUptodate(page)) 2936 set_buffer_uptodate(bh); 2937 2938 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2939 err = -EIO; 2940 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2941 wait_on_buffer(bh); 2942 /* Uhhuh. Read error. Complain and punt. */ 2943 if (!buffer_uptodate(bh)) 2944 goto unlock; 2945 } 2946 2947 zero_user(page, offset, length); 2948 mark_buffer_dirty(bh); 2949 err = 0; 2950 2951 unlock: 2952 unlock_page(page); 2953 put_page(page); 2954 out: 2955 return err; 2956 } 2957 EXPORT_SYMBOL(block_truncate_page); 2958 2959 /* 2960 * The generic ->writepage function for buffer-backed address_spaces 2961 */ 2962 int block_write_full_page(struct page *page, get_block_t *get_block, 2963 struct writeback_control *wbc) 2964 { 2965 struct inode * const inode = page->mapping->host; 2966 loff_t i_size = i_size_read(inode); 2967 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2968 unsigned offset; 2969 2970 /* Is the page fully inside i_size? */ 2971 if (page->index < end_index) 2972 return __block_write_full_page(inode, page, get_block, wbc, 2973 end_buffer_async_write); 2974 2975 /* Is the page fully outside i_size? (truncate in progress) */ 2976 offset = i_size & (PAGE_SIZE-1); 2977 if (page->index >= end_index+1 || !offset) { 2978 /* 2979 * The page may have dirty, unmapped buffers. For example, 2980 * they may have been added in ext3_writepage(). Make them 2981 * freeable here, so the page does not leak. 2982 */ 2983 do_invalidatepage(page, 0, PAGE_SIZE); 2984 unlock_page(page); 2985 return 0; /* don't care */ 2986 } 2987 2988 /* 2989 * The page straddles i_size. It must be zeroed out on each and every 2990 * writepage invocation because it may be mmapped. "A file is mapped 2991 * in multiples of the page size. For a file that is not a multiple of 2992 * the page size, the remaining memory is zeroed when mapped, and 2993 * writes to that region are not written out to the file." 2994 */ 2995 zero_user_segment(page, offset, PAGE_SIZE); 2996 return __block_write_full_page(inode, page, get_block, wbc, 2997 end_buffer_async_write); 2998 } 2999 EXPORT_SYMBOL(block_write_full_page); 3000 3001 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 3002 get_block_t *get_block) 3003 { 3004 struct inode *inode = mapping->host; 3005 struct buffer_head tmp = { 3006 .b_size = i_blocksize(inode), 3007 }; 3008 3009 get_block(inode, block, &tmp, 0); 3010 return tmp.b_blocknr; 3011 } 3012 EXPORT_SYMBOL(generic_block_bmap); 3013 3014 static void end_bio_bh_io_sync(struct bio *bio) 3015 { 3016 struct buffer_head *bh = bio->bi_private; 3017 3018 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3019 set_bit(BH_Quiet, &bh->b_state); 3020 3021 bh->b_end_io(bh, !bio->bi_status); 3022 bio_put(bio); 3023 } 3024 3025 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3026 enum rw_hint write_hint, struct writeback_control *wbc) 3027 { 3028 struct bio *bio; 3029 3030 BUG_ON(!buffer_locked(bh)); 3031 BUG_ON(!buffer_mapped(bh)); 3032 BUG_ON(!bh->b_end_io); 3033 BUG_ON(buffer_delay(bh)); 3034 BUG_ON(buffer_unwritten(bh)); 3035 3036 /* 3037 * Only clear out a write error when rewriting 3038 */ 3039 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3040 clear_buffer_write_io_error(bh); 3041 3042 bio = bio_alloc(GFP_NOIO, 1); 3043 3044 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 3045 3046 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3047 bio_set_dev(bio, bh->b_bdev); 3048 bio->bi_write_hint = write_hint; 3049 3050 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3051 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3052 3053 bio->bi_end_io = end_bio_bh_io_sync; 3054 bio->bi_private = bh; 3055 3056 if (buffer_meta(bh)) 3057 op_flags |= REQ_META; 3058 if (buffer_prio(bh)) 3059 op_flags |= REQ_PRIO; 3060 bio_set_op_attrs(bio, op, op_flags); 3061 3062 /* Take care of bh's that straddle the end of the device */ 3063 guard_bio_eod(bio); 3064 3065 if (wbc) { 3066 wbc_init_bio(wbc, bio); 3067 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 3068 } 3069 3070 submit_bio(bio); 3071 return 0; 3072 } 3073 3074 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3075 { 3076 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3077 } 3078 EXPORT_SYMBOL(submit_bh); 3079 3080 /** 3081 * ll_rw_block: low-level access to block devices (DEPRECATED) 3082 * @op: whether to %READ or %WRITE 3083 * @op_flags: req_flag_bits 3084 * @nr: number of &struct buffer_heads in the array 3085 * @bhs: array of pointers to &struct buffer_head 3086 * 3087 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3088 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3089 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3090 * %REQ_RAHEAD. 3091 * 3092 * This function drops any buffer that it cannot get a lock on (with the 3093 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3094 * request, and any buffer that appears to be up-to-date when doing read 3095 * request. Further it marks as clean buffers that are processed for 3096 * writing (the buffer cache won't assume that they are actually clean 3097 * until the buffer gets unlocked). 3098 * 3099 * ll_rw_block sets b_end_io to simple completion handler that marks 3100 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3101 * any waiters. 3102 * 3103 * All of the buffers must be for the same device, and must also be a 3104 * multiple of the current approved size for the device. 3105 */ 3106 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3107 { 3108 int i; 3109 3110 for (i = 0; i < nr; i++) { 3111 struct buffer_head *bh = bhs[i]; 3112 3113 if (!trylock_buffer(bh)) 3114 continue; 3115 if (op == WRITE) { 3116 if (test_clear_buffer_dirty(bh)) { 3117 bh->b_end_io = end_buffer_write_sync; 3118 get_bh(bh); 3119 submit_bh(op, op_flags, bh); 3120 continue; 3121 } 3122 } else { 3123 if (!buffer_uptodate(bh)) { 3124 bh->b_end_io = end_buffer_read_sync; 3125 get_bh(bh); 3126 submit_bh(op, op_flags, bh); 3127 continue; 3128 } 3129 } 3130 unlock_buffer(bh); 3131 } 3132 } 3133 EXPORT_SYMBOL(ll_rw_block); 3134 3135 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3136 { 3137 lock_buffer(bh); 3138 if (!test_clear_buffer_dirty(bh)) { 3139 unlock_buffer(bh); 3140 return; 3141 } 3142 bh->b_end_io = end_buffer_write_sync; 3143 get_bh(bh); 3144 submit_bh(REQ_OP_WRITE, op_flags, bh); 3145 } 3146 EXPORT_SYMBOL(write_dirty_buffer); 3147 3148 /* 3149 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3150 * and then start new I/O and then wait upon it. The caller must have a ref on 3151 * the buffer_head. 3152 */ 3153 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3154 { 3155 int ret = 0; 3156 3157 WARN_ON(atomic_read(&bh->b_count) < 1); 3158 lock_buffer(bh); 3159 if (test_clear_buffer_dirty(bh)) { 3160 /* 3161 * The bh should be mapped, but it might not be if the 3162 * device was hot-removed. Not much we can do but fail the I/O. 3163 */ 3164 if (!buffer_mapped(bh)) { 3165 unlock_buffer(bh); 3166 return -EIO; 3167 } 3168 3169 get_bh(bh); 3170 bh->b_end_io = end_buffer_write_sync; 3171 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3172 wait_on_buffer(bh); 3173 if (!ret && !buffer_uptodate(bh)) 3174 ret = -EIO; 3175 } else { 3176 unlock_buffer(bh); 3177 } 3178 return ret; 3179 } 3180 EXPORT_SYMBOL(__sync_dirty_buffer); 3181 3182 int sync_dirty_buffer(struct buffer_head *bh) 3183 { 3184 return __sync_dirty_buffer(bh, REQ_SYNC); 3185 } 3186 EXPORT_SYMBOL(sync_dirty_buffer); 3187 3188 /* 3189 * try_to_free_buffers() checks if all the buffers on this particular page 3190 * are unused, and releases them if so. 3191 * 3192 * Exclusion against try_to_free_buffers may be obtained by either 3193 * locking the page or by holding its mapping's private_lock. 3194 * 3195 * If the page is dirty but all the buffers are clean then we need to 3196 * be sure to mark the page clean as well. This is because the page 3197 * may be against a block device, and a later reattachment of buffers 3198 * to a dirty page will set *all* buffers dirty. Which would corrupt 3199 * filesystem data on the same device. 3200 * 3201 * The same applies to regular filesystem pages: if all the buffers are 3202 * clean then we set the page clean and proceed. To do that, we require 3203 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3204 * private_lock. 3205 * 3206 * try_to_free_buffers() is non-blocking. 3207 */ 3208 static inline int buffer_busy(struct buffer_head *bh) 3209 { 3210 return atomic_read(&bh->b_count) | 3211 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3212 } 3213 3214 static int 3215 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3216 { 3217 struct buffer_head *head = page_buffers(page); 3218 struct buffer_head *bh; 3219 3220 bh = head; 3221 do { 3222 if (buffer_busy(bh)) 3223 goto failed; 3224 bh = bh->b_this_page; 3225 } while (bh != head); 3226 3227 do { 3228 struct buffer_head *next = bh->b_this_page; 3229 3230 if (bh->b_assoc_map) 3231 __remove_assoc_queue(bh); 3232 bh = next; 3233 } while (bh != head); 3234 *buffers_to_free = head; 3235 detach_page_private(page); 3236 return 1; 3237 failed: 3238 return 0; 3239 } 3240 3241 int try_to_free_buffers(struct page *page) 3242 { 3243 struct address_space * const mapping = page->mapping; 3244 struct buffer_head *buffers_to_free = NULL; 3245 int ret = 0; 3246 3247 BUG_ON(!PageLocked(page)); 3248 if (PageWriteback(page)) 3249 return 0; 3250 3251 if (mapping == NULL) { /* can this still happen? */ 3252 ret = drop_buffers(page, &buffers_to_free); 3253 goto out; 3254 } 3255 3256 spin_lock(&mapping->private_lock); 3257 ret = drop_buffers(page, &buffers_to_free); 3258 3259 /* 3260 * If the filesystem writes its buffers by hand (eg ext3) 3261 * then we can have clean buffers against a dirty page. We 3262 * clean the page here; otherwise the VM will never notice 3263 * that the filesystem did any IO at all. 3264 * 3265 * Also, during truncate, discard_buffer will have marked all 3266 * the page's buffers clean. We discover that here and clean 3267 * the page also. 3268 * 3269 * private_lock must be held over this entire operation in order 3270 * to synchronise against __set_page_dirty_buffers and prevent the 3271 * dirty bit from being lost. 3272 */ 3273 if (ret) 3274 cancel_dirty_page(page); 3275 spin_unlock(&mapping->private_lock); 3276 out: 3277 if (buffers_to_free) { 3278 struct buffer_head *bh = buffers_to_free; 3279 3280 do { 3281 struct buffer_head *next = bh->b_this_page; 3282 free_buffer_head(bh); 3283 bh = next; 3284 } while (bh != buffers_to_free); 3285 } 3286 return ret; 3287 } 3288 EXPORT_SYMBOL(try_to_free_buffers); 3289 3290 /* 3291 * There are no bdflush tunables left. But distributions are 3292 * still running obsolete flush daemons, so we terminate them here. 3293 * 3294 * Use of bdflush() is deprecated and will be removed in a future kernel. 3295 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3296 */ 3297 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3298 { 3299 static int msg_count; 3300 3301 if (!capable(CAP_SYS_ADMIN)) 3302 return -EPERM; 3303 3304 if (msg_count < 5) { 3305 msg_count++; 3306 printk(KERN_INFO 3307 "warning: process `%s' used the obsolete bdflush" 3308 " system call\n", current->comm); 3309 printk(KERN_INFO "Fix your initscripts?\n"); 3310 } 3311 3312 if (func == 1) 3313 do_exit(0); 3314 return 0; 3315 } 3316 3317 /* 3318 * Buffer-head allocation 3319 */ 3320 static struct kmem_cache *bh_cachep __read_mostly; 3321 3322 /* 3323 * Once the number of bh's in the machine exceeds this level, we start 3324 * stripping them in writeback. 3325 */ 3326 static unsigned long max_buffer_heads; 3327 3328 int buffer_heads_over_limit; 3329 3330 struct bh_accounting { 3331 int nr; /* Number of live bh's */ 3332 int ratelimit; /* Limit cacheline bouncing */ 3333 }; 3334 3335 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3336 3337 static void recalc_bh_state(void) 3338 { 3339 int i; 3340 int tot = 0; 3341 3342 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3343 return; 3344 __this_cpu_write(bh_accounting.ratelimit, 0); 3345 for_each_online_cpu(i) 3346 tot += per_cpu(bh_accounting, i).nr; 3347 buffer_heads_over_limit = (tot > max_buffer_heads); 3348 } 3349 3350 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3351 { 3352 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3353 if (ret) { 3354 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3355 spin_lock_init(&ret->b_uptodate_lock); 3356 preempt_disable(); 3357 __this_cpu_inc(bh_accounting.nr); 3358 recalc_bh_state(); 3359 preempt_enable(); 3360 } 3361 return ret; 3362 } 3363 EXPORT_SYMBOL(alloc_buffer_head); 3364 3365 void free_buffer_head(struct buffer_head *bh) 3366 { 3367 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3368 kmem_cache_free(bh_cachep, bh); 3369 preempt_disable(); 3370 __this_cpu_dec(bh_accounting.nr); 3371 recalc_bh_state(); 3372 preempt_enable(); 3373 } 3374 EXPORT_SYMBOL(free_buffer_head); 3375 3376 static int buffer_exit_cpu_dead(unsigned int cpu) 3377 { 3378 int i; 3379 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3380 3381 for (i = 0; i < BH_LRU_SIZE; i++) { 3382 brelse(b->bhs[i]); 3383 b->bhs[i] = NULL; 3384 } 3385 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3386 per_cpu(bh_accounting, cpu).nr = 0; 3387 return 0; 3388 } 3389 3390 /** 3391 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3392 * @bh: struct buffer_head 3393 * 3394 * Return true if the buffer is up-to-date and false, 3395 * with the buffer locked, if not. 3396 */ 3397 int bh_uptodate_or_lock(struct buffer_head *bh) 3398 { 3399 if (!buffer_uptodate(bh)) { 3400 lock_buffer(bh); 3401 if (!buffer_uptodate(bh)) 3402 return 0; 3403 unlock_buffer(bh); 3404 } 3405 return 1; 3406 } 3407 EXPORT_SYMBOL(bh_uptodate_or_lock); 3408 3409 /** 3410 * bh_submit_read - Submit a locked buffer for reading 3411 * @bh: struct buffer_head 3412 * 3413 * Returns zero on success and -EIO on error. 3414 */ 3415 int bh_submit_read(struct buffer_head *bh) 3416 { 3417 BUG_ON(!buffer_locked(bh)); 3418 3419 if (buffer_uptodate(bh)) { 3420 unlock_buffer(bh); 3421 return 0; 3422 } 3423 3424 get_bh(bh); 3425 bh->b_end_io = end_buffer_read_sync; 3426 submit_bh(REQ_OP_READ, 0, bh); 3427 wait_on_buffer(bh); 3428 if (buffer_uptodate(bh)) 3429 return 0; 3430 return -EIO; 3431 } 3432 EXPORT_SYMBOL(bh_submit_read); 3433 3434 void __init buffer_init(void) 3435 { 3436 unsigned long nrpages; 3437 int ret; 3438 3439 bh_cachep = kmem_cache_create("buffer_head", 3440 sizeof(struct buffer_head), 0, 3441 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3442 SLAB_MEM_SPREAD), 3443 NULL); 3444 3445 /* 3446 * Limit the bh occupancy to 10% of ZONE_NORMAL 3447 */ 3448 nrpages = (nr_free_buffer_pages() * 10) / 100; 3449 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3450 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3451 NULL, buffer_exit_cpu_dead); 3452 WARN_ON(ret < 0); 3453 } 3454