xref: /openbmc/linux/fs/buffer.c (revision 94c7b6fc)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 static int sleep_on_buffer(void *word)
65 {
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_atomic();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84 
85 /*
86  * Returns if the page has dirty or writeback buffers. If all the buffers
87  * are unlocked and clean then the PageDirty information is stale. If
88  * any of the pages are locked, it is assumed they are locked for IO.
89  */
90 void buffer_check_dirty_writeback(struct page *page,
91 				     bool *dirty, bool *writeback)
92 {
93 	struct buffer_head *head, *bh;
94 	*dirty = false;
95 	*writeback = false;
96 
97 	BUG_ON(!PageLocked(page));
98 
99 	if (!page_has_buffers(page))
100 		return;
101 
102 	if (PageWriteback(page))
103 		*writeback = true;
104 
105 	head = page_buffers(page);
106 	bh = head;
107 	do {
108 		if (buffer_locked(bh))
109 			*writeback = true;
110 
111 		if (buffer_dirty(bh))
112 			*dirty = true;
113 
114 		bh = bh->b_this_page;
115 	} while (bh != head);
116 }
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
118 
119 /*
120  * Block until a buffer comes unlocked.  This doesn't stop it
121  * from becoming locked again - you have to lock it yourself
122  * if you want to preserve its state.
123  */
124 void __wait_on_buffer(struct buffer_head * bh)
125 {
126 	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
127 }
128 EXPORT_SYMBOL(__wait_on_buffer);
129 
130 static void
131 __clear_page_buffers(struct page *page)
132 {
133 	ClearPagePrivate(page);
134 	set_page_private(page, 0);
135 	page_cache_release(page);
136 }
137 
138 
139 static int quiet_error(struct buffer_head *bh)
140 {
141 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
142 		return 0;
143 	return 1;
144 }
145 
146 
147 static void buffer_io_error(struct buffer_head *bh)
148 {
149 	char b[BDEVNAME_SIZE];
150 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
151 			bdevname(bh->b_bdev, b),
152 			(unsigned long long)bh->b_blocknr);
153 }
154 
155 /*
156  * End-of-IO handler helper function which does not touch the bh after
157  * unlocking it.
158  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
159  * a race there is benign: unlock_buffer() only use the bh's address for
160  * hashing after unlocking the buffer, so it doesn't actually touch the bh
161  * itself.
162  */
163 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
164 {
165 	if (uptodate) {
166 		set_buffer_uptodate(bh);
167 	} else {
168 		/* This happens, due to failed READA attempts. */
169 		clear_buffer_uptodate(bh);
170 	}
171 	unlock_buffer(bh);
172 }
173 
174 /*
175  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
176  * unlock the buffer. This is what ll_rw_block uses too.
177  */
178 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
179 {
180 	__end_buffer_read_notouch(bh, uptodate);
181 	put_bh(bh);
182 }
183 EXPORT_SYMBOL(end_buffer_read_sync);
184 
185 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
186 {
187 	char b[BDEVNAME_SIZE];
188 
189 	if (uptodate) {
190 		set_buffer_uptodate(bh);
191 	} else {
192 		if (!quiet_error(bh)) {
193 			buffer_io_error(bh);
194 			printk(KERN_WARNING "lost page write due to "
195 					"I/O error on %s\n",
196 				       bdevname(bh->b_bdev, b));
197 		}
198 		set_buffer_write_io_error(bh);
199 		clear_buffer_uptodate(bh);
200 	}
201 	unlock_buffer(bh);
202 	put_bh(bh);
203 }
204 EXPORT_SYMBOL(end_buffer_write_sync);
205 
206 /*
207  * Various filesystems appear to want __find_get_block to be non-blocking.
208  * But it's the page lock which protects the buffers.  To get around this,
209  * we get exclusion from try_to_free_buffers with the blockdev mapping's
210  * private_lock.
211  *
212  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
213  * may be quite high.  This code could TryLock the page, and if that
214  * succeeds, there is no need to take private_lock. (But if
215  * private_lock is contended then so is mapping->tree_lock).
216  */
217 static struct buffer_head *
218 __find_get_block_slow(struct block_device *bdev, sector_t block)
219 {
220 	struct inode *bd_inode = bdev->bd_inode;
221 	struct address_space *bd_mapping = bd_inode->i_mapping;
222 	struct buffer_head *ret = NULL;
223 	pgoff_t index;
224 	struct buffer_head *bh;
225 	struct buffer_head *head;
226 	struct page *page;
227 	int all_mapped = 1;
228 
229 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
230 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
231 	if (!page)
232 		goto out;
233 
234 	spin_lock(&bd_mapping->private_lock);
235 	if (!page_has_buffers(page))
236 		goto out_unlock;
237 	head = page_buffers(page);
238 	bh = head;
239 	do {
240 		if (!buffer_mapped(bh))
241 			all_mapped = 0;
242 		else if (bh->b_blocknr == block) {
243 			ret = bh;
244 			get_bh(bh);
245 			goto out_unlock;
246 		}
247 		bh = bh->b_this_page;
248 	} while (bh != head);
249 
250 	/* we might be here because some of the buffers on this page are
251 	 * not mapped.  This is due to various races between
252 	 * file io on the block device and getblk.  It gets dealt with
253 	 * elsewhere, don't buffer_error if we had some unmapped buffers
254 	 */
255 	if (all_mapped) {
256 		char b[BDEVNAME_SIZE];
257 
258 		printk("__find_get_block_slow() failed. "
259 			"block=%llu, b_blocknr=%llu\n",
260 			(unsigned long long)block,
261 			(unsigned long long)bh->b_blocknr);
262 		printk("b_state=0x%08lx, b_size=%zu\n",
263 			bh->b_state, bh->b_size);
264 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
265 			1 << bd_inode->i_blkbits);
266 	}
267 out_unlock:
268 	spin_unlock(&bd_mapping->private_lock);
269 	page_cache_release(page);
270 out:
271 	return ret;
272 }
273 
274 /*
275  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
276  */
277 static void free_more_memory(void)
278 {
279 	struct zone *zone;
280 	int nid;
281 
282 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
283 	yield();
284 
285 	for_each_online_node(nid) {
286 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
287 						gfp_zone(GFP_NOFS), NULL,
288 						&zone);
289 		if (zone)
290 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
291 						GFP_NOFS, NULL);
292 	}
293 }
294 
295 /*
296  * I/O completion handler for block_read_full_page() - pages
297  * which come unlocked at the end of I/O.
298  */
299 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
300 {
301 	unsigned long flags;
302 	struct buffer_head *first;
303 	struct buffer_head *tmp;
304 	struct page *page;
305 	int page_uptodate = 1;
306 
307 	BUG_ON(!buffer_async_read(bh));
308 
309 	page = bh->b_page;
310 	if (uptodate) {
311 		set_buffer_uptodate(bh);
312 	} else {
313 		clear_buffer_uptodate(bh);
314 		if (!quiet_error(bh))
315 			buffer_io_error(bh);
316 		SetPageError(page);
317 	}
318 
319 	/*
320 	 * Be _very_ careful from here on. Bad things can happen if
321 	 * two buffer heads end IO at almost the same time and both
322 	 * decide that the page is now completely done.
323 	 */
324 	first = page_buffers(page);
325 	local_irq_save(flags);
326 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
327 	clear_buffer_async_read(bh);
328 	unlock_buffer(bh);
329 	tmp = bh;
330 	do {
331 		if (!buffer_uptodate(tmp))
332 			page_uptodate = 0;
333 		if (buffer_async_read(tmp)) {
334 			BUG_ON(!buffer_locked(tmp));
335 			goto still_busy;
336 		}
337 		tmp = tmp->b_this_page;
338 	} while (tmp != bh);
339 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
340 	local_irq_restore(flags);
341 
342 	/*
343 	 * If none of the buffers had errors and they are all
344 	 * uptodate then we can set the page uptodate.
345 	 */
346 	if (page_uptodate && !PageError(page))
347 		SetPageUptodate(page);
348 	unlock_page(page);
349 	return;
350 
351 still_busy:
352 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 	local_irq_restore(flags);
354 	return;
355 }
356 
357 /*
358  * Completion handler for block_write_full_page() - pages which are unlocked
359  * during I/O, and which have PageWriteback cleared upon I/O completion.
360  */
361 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
362 {
363 	char b[BDEVNAME_SIZE];
364 	unsigned long flags;
365 	struct buffer_head *first;
366 	struct buffer_head *tmp;
367 	struct page *page;
368 
369 	BUG_ON(!buffer_async_write(bh));
370 
371 	page = bh->b_page;
372 	if (uptodate) {
373 		set_buffer_uptodate(bh);
374 	} else {
375 		if (!quiet_error(bh)) {
376 			buffer_io_error(bh);
377 			printk(KERN_WARNING "lost page write due to "
378 					"I/O error on %s\n",
379 			       bdevname(bh->b_bdev, b));
380 		}
381 		set_bit(AS_EIO, &page->mapping->flags);
382 		set_buffer_write_io_error(bh);
383 		clear_buffer_uptodate(bh);
384 		SetPageError(page);
385 	}
386 
387 	first = page_buffers(page);
388 	local_irq_save(flags);
389 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
390 
391 	clear_buffer_async_write(bh);
392 	unlock_buffer(bh);
393 	tmp = bh->b_this_page;
394 	while (tmp != bh) {
395 		if (buffer_async_write(tmp)) {
396 			BUG_ON(!buffer_locked(tmp));
397 			goto still_busy;
398 		}
399 		tmp = tmp->b_this_page;
400 	}
401 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
402 	local_irq_restore(flags);
403 	end_page_writeback(page);
404 	return;
405 
406 still_busy:
407 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 	local_irq_restore(flags);
409 	return;
410 }
411 EXPORT_SYMBOL(end_buffer_async_write);
412 
413 /*
414  * If a page's buffers are under async readin (end_buffer_async_read
415  * completion) then there is a possibility that another thread of
416  * control could lock one of the buffers after it has completed
417  * but while some of the other buffers have not completed.  This
418  * locked buffer would confuse end_buffer_async_read() into not unlocking
419  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
420  * that this buffer is not under async I/O.
421  *
422  * The page comes unlocked when it has no locked buffer_async buffers
423  * left.
424  *
425  * PageLocked prevents anyone starting new async I/O reads any of
426  * the buffers.
427  *
428  * PageWriteback is used to prevent simultaneous writeout of the same
429  * page.
430  *
431  * PageLocked prevents anyone from starting writeback of a page which is
432  * under read I/O (PageWriteback is only ever set against a locked page).
433  */
434 static void mark_buffer_async_read(struct buffer_head *bh)
435 {
436 	bh->b_end_io = end_buffer_async_read;
437 	set_buffer_async_read(bh);
438 }
439 
440 static void mark_buffer_async_write_endio(struct buffer_head *bh,
441 					  bh_end_io_t *handler)
442 {
443 	bh->b_end_io = handler;
444 	set_buffer_async_write(bh);
445 }
446 
447 void mark_buffer_async_write(struct buffer_head *bh)
448 {
449 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
450 }
451 EXPORT_SYMBOL(mark_buffer_async_write);
452 
453 
454 /*
455  * fs/buffer.c contains helper functions for buffer-backed address space's
456  * fsync functions.  A common requirement for buffer-based filesystems is
457  * that certain data from the backing blockdev needs to be written out for
458  * a successful fsync().  For example, ext2 indirect blocks need to be
459  * written back and waited upon before fsync() returns.
460  *
461  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
462  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
463  * management of a list of dependent buffers at ->i_mapping->private_list.
464  *
465  * Locking is a little subtle: try_to_free_buffers() will remove buffers
466  * from their controlling inode's queue when they are being freed.  But
467  * try_to_free_buffers() will be operating against the *blockdev* mapping
468  * at the time, not against the S_ISREG file which depends on those buffers.
469  * So the locking for private_list is via the private_lock in the address_space
470  * which backs the buffers.  Which is different from the address_space
471  * against which the buffers are listed.  So for a particular address_space,
472  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
473  * mapping->private_list will always be protected by the backing blockdev's
474  * ->private_lock.
475  *
476  * Which introduces a requirement: all buffers on an address_space's
477  * ->private_list must be from the same address_space: the blockdev's.
478  *
479  * address_spaces which do not place buffers at ->private_list via these
480  * utility functions are free to use private_lock and private_list for
481  * whatever they want.  The only requirement is that list_empty(private_list)
482  * be true at clear_inode() time.
483  *
484  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
485  * filesystems should do that.  invalidate_inode_buffers() should just go
486  * BUG_ON(!list_empty).
487  *
488  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
489  * take an address_space, not an inode.  And it should be called
490  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
491  * queued up.
492  *
493  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
494  * list if it is already on a list.  Because if the buffer is on a list,
495  * it *must* already be on the right one.  If not, the filesystem is being
496  * silly.  This will save a ton of locking.  But first we have to ensure
497  * that buffers are taken *off* the old inode's list when they are freed
498  * (presumably in truncate).  That requires careful auditing of all
499  * filesystems (do it inside bforget()).  It could also be done by bringing
500  * b_inode back.
501  */
502 
503 /*
504  * The buffer's backing address_space's private_lock must be held
505  */
506 static void __remove_assoc_queue(struct buffer_head *bh)
507 {
508 	list_del_init(&bh->b_assoc_buffers);
509 	WARN_ON(!bh->b_assoc_map);
510 	if (buffer_write_io_error(bh))
511 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
512 	bh->b_assoc_map = NULL;
513 }
514 
515 int inode_has_buffers(struct inode *inode)
516 {
517 	return !list_empty(&inode->i_data.private_list);
518 }
519 
520 /*
521  * osync is designed to support O_SYNC io.  It waits synchronously for
522  * all already-submitted IO to complete, but does not queue any new
523  * writes to the disk.
524  *
525  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
526  * you dirty the buffers, and then use osync_inode_buffers to wait for
527  * completion.  Any other dirty buffers which are not yet queued for
528  * write will not be flushed to disk by the osync.
529  */
530 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
531 {
532 	struct buffer_head *bh;
533 	struct list_head *p;
534 	int err = 0;
535 
536 	spin_lock(lock);
537 repeat:
538 	list_for_each_prev(p, list) {
539 		bh = BH_ENTRY(p);
540 		if (buffer_locked(bh)) {
541 			get_bh(bh);
542 			spin_unlock(lock);
543 			wait_on_buffer(bh);
544 			if (!buffer_uptodate(bh))
545 				err = -EIO;
546 			brelse(bh);
547 			spin_lock(lock);
548 			goto repeat;
549 		}
550 	}
551 	spin_unlock(lock);
552 	return err;
553 }
554 
555 static void do_thaw_one(struct super_block *sb, void *unused)
556 {
557 	char b[BDEVNAME_SIZE];
558 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
559 		printk(KERN_WARNING "Emergency Thaw on %s\n",
560 		       bdevname(sb->s_bdev, b));
561 }
562 
563 static void do_thaw_all(struct work_struct *work)
564 {
565 	iterate_supers(do_thaw_one, NULL);
566 	kfree(work);
567 	printk(KERN_WARNING "Emergency Thaw complete\n");
568 }
569 
570 /**
571  * emergency_thaw_all -- forcibly thaw every frozen filesystem
572  *
573  * Used for emergency unfreeze of all filesystems via SysRq
574  */
575 void emergency_thaw_all(void)
576 {
577 	struct work_struct *work;
578 
579 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
580 	if (work) {
581 		INIT_WORK(work, do_thaw_all);
582 		schedule_work(work);
583 	}
584 }
585 
586 /**
587  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
588  * @mapping: the mapping which wants those buffers written
589  *
590  * Starts I/O against the buffers at mapping->private_list, and waits upon
591  * that I/O.
592  *
593  * Basically, this is a convenience function for fsync().
594  * @mapping is a file or directory which needs those buffers to be written for
595  * a successful fsync().
596  */
597 int sync_mapping_buffers(struct address_space *mapping)
598 {
599 	struct address_space *buffer_mapping = mapping->private_data;
600 
601 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
602 		return 0;
603 
604 	return fsync_buffers_list(&buffer_mapping->private_lock,
605 					&mapping->private_list);
606 }
607 EXPORT_SYMBOL(sync_mapping_buffers);
608 
609 /*
610  * Called when we've recently written block `bblock', and it is known that
611  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
612  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
613  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
614  */
615 void write_boundary_block(struct block_device *bdev,
616 			sector_t bblock, unsigned blocksize)
617 {
618 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
619 	if (bh) {
620 		if (buffer_dirty(bh))
621 			ll_rw_block(WRITE, 1, &bh);
622 		put_bh(bh);
623 	}
624 }
625 
626 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
627 {
628 	struct address_space *mapping = inode->i_mapping;
629 	struct address_space *buffer_mapping = bh->b_page->mapping;
630 
631 	mark_buffer_dirty(bh);
632 	if (!mapping->private_data) {
633 		mapping->private_data = buffer_mapping;
634 	} else {
635 		BUG_ON(mapping->private_data != buffer_mapping);
636 	}
637 	if (!bh->b_assoc_map) {
638 		spin_lock(&buffer_mapping->private_lock);
639 		list_move_tail(&bh->b_assoc_buffers,
640 				&mapping->private_list);
641 		bh->b_assoc_map = mapping;
642 		spin_unlock(&buffer_mapping->private_lock);
643 	}
644 }
645 EXPORT_SYMBOL(mark_buffer_dirty_inode);
646 
647 /*
648  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
649  * dirty.
650  *
651  * If warn is true, then emit a warning if the page is not uptodate and has
652  * not been truncated.
653  */
654 static void __set_page_dirty(struct page *page,
655 		struct address_space *mapping, int warn)
656 {
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&mapping->tree_lock, flags);
660 	if (page->mapping) {	/* Race with truncate? */
661 		WARN_ON_ONCE(warn && !PageUptodate(page));
662 		account_page_dirtied(page, mapping);
663 		radix_tree_tag_set(&mapping->page_tree,
664 				page_index(page), PAGECACHE_TAG_DIRTY);
665 	}
666 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
667 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
668 }
669 
670 /*
671  * Add a page to the dirty page list.
672  *
673  * It is a sad fact of life that this function is called from several places
674  * deeply under spinlocking.  It may not sleep.
675  *
676  * If the page has buffers, the uptodate buffers are set dirty, to preserve
677  * dirty-state coherency between the page and the buffers.  It the page does
678  * not have buffers then when they are later attached they will all be set
679  * dirty.
680  *
681  * The buffers are dirtied before the page is dirtied.  There's a small race
682  * window in which a writepage caller may see the page cleanness but not the
683  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
684  * before the buffers, a concurrent writepage caller could clear the page dirty
685  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
686  * page on the dirty page list.
687  *
688  * We use private_lock to lock against try_to_free_buffers while using the
689  * page's buffer list.  Also use this to protect against clean buffers being
690  * added to the page after it was set dirty.
691  *
692  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
693  * address_space though.
694  */
695 int __set_page_dirty_buffers(struct page *page)
696 {
697 	int newly_dirty;
698 	struct address_space *mapping = page_mapping(page);
699 
700 	if (unlikely(!mapping))
701 		return !TestSetPageDirty(page);
702 
703 	spin_lock(&mapping->private_lock);
704 	if (page_has_buffers(page)) {
705 		struct buffer_head *head = page_buffers(page);
706 		struct buffer_head *bh = head;
707 
708 		do {
709 			set_buffer_dirty(bh);
710 			bh = bh->b_this_page;
711 		} while (bh != head);
712 	}
713 	newly_dirty = !TestSetPageDirty(page);
714 	spin_unlock(&mapping->private_lock);
715 
716 	if (newly_dirty)
717 		__set_page_dirty(page, mapping, 1);
718 	return newly_dirty;
719 }
720 EXPORT_SYMBOL(__set_page_dirty_buffers);
721 
722 /*
723  * Write out and wait upon a list of buffers.
724  *
725  * We have conflicting pressures: we want to make sure that all
726  * initially dirty buffers get waited on, but that any subsequently
727  * dirtied buffers don't.  After all, we don't want fsync to last
728  * forever if somebody is actively writing to the file.
729  *
730  * Do this in two main stages: first we copy dirty buffers to a
731  * temporary inode list, queueing the writes as we go.  Then we clean
732  * up, waiting for those writes to complete.
733  *
734  * During this second stage, any subsequent updates to the file may end
735  * up refiling the buffer on the original inode's dirty list again, so
736  * there is a chance we will end up with a buffer queued for write but
737  * not yet completed on that list.  So, as a final cleanup we go through
738  * the osync code to catch these locked, dirty buffers without requeuing
739  * any newly dirty buffers for write.
740  */
741 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
742 {
743 	struct buffer_head *bh;
744 	struct list_head tmp;
745 	struct address_space *mapping;
746 	int err = 0, err2;
747 	struct blk_plug plug;
748 
749 	INIT_LIST_HEAD(&tmp);
750 	blk_start_plug(&plug);
751 
752 	spin_lock(lock);
753 	while (!list_empty(list)) {
754 		bh = BH_ENTRY(list->next);
755 		mapping = bh->b_assoc_map;
756 		__remove_assoc_queue(bh);
757 		/* Avoid race with mark_buffer_dirty_inode() which does
758 		 * a lockless check and we rely on seeing the dirty bit */
759 		smp_mb();
760 		if (buffer_dirty(bh) || buffer_locked(bh)) {
761 			list_add(&bh->b_assoc_buffers, &tmp);
762 			bh->b_assoc_map = mapping;
763 			if (buffer_dirty(bh)) {
764 				get_bh(bh);
765 				spin_unlock(lock);
766 				/*
767 				 * Ensure any pending I/O completes so that
768 				 * write_dirty_buffer() actually writes the
769 				 * current contents - it is a noop if I/O is
770 				 * still in flight on potentially older
771 				 * contents.
772 				 */
773 				write_dirty_buffer(bh, WRITE_SYNC);
774 
775 				/*
776 				 * Kick off IO for the previous mapping. Note
777 				 * that we will not run the very last mapping,
778 				 * wait_on_buffer() will do that for us
779 				 * through sync_buffer().
780 				 */
781 				brelse(bh);
782 				spin_lock(lock);
783 			}
784 		}
785 	}
786 
787 	spin_unlock(lock);
788 	blk_finish_plug(&plug);
789 	spin_lock(lock);
790 
791 	while (!list_empty(&tmp)) {
792 		bh = BH_ENTRY(tmp.prev);
793 		get_bh(bh);
794 		mapping = bh->b_assoc_map;
795 		__remove_assoc_queue(bh);
796 		/* Avoid race with mark_buffer_dirty_inode() which does
797 		 * a lockless check and we rely on seeing the dirty bit */
798 		smp_mb();
799 		if (buffer_dirty(bh)) {
800 			list_add(&bh->b_assoc_buffers,
801 				 &mapping->private_list);
802 			bh->b_assoc_map = mapping;
803 		}
804 		spin_unlock(lock);
805 		wait_on_buffer(bh);
806 		if (!buffer_uptodate(bh))
807 			err = -EIO;
808 		brelse(bh);
809 		spin_lock(lock);
810 	}
811 
812 	spin_unlock(lock);
813 	err2 = osync_buffers_list(lock, list);
814 	if (err)
815 		return err;
816 	else
817 		return err2;
818 }
819 
820 /*
821  * Invalidate any and all dirty buffers on a given inode.  We are
822  * probably unmounting the fs, but that doesn't mean we have already
823  * done a sync().  Just drop the buffers from the inode list.
824  *
825  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
826  * assumes that all the buffers are against the blockdev.  Not true
827  * for reiserfs.
828  */
829 void invalidate_inode_buffers(struct inode *inode)
830 {
831 	if (inode_has_buffers(inode)) {
832 		struct address_space *mapping = &inode->i_data;
833 		struct list_head *list = &mapping->private_list;
834 		struct address_space *buffer_mapping = mapping->private_data;
835 
836 		spin_lock(&buffer_mapping->private_lock);
837 		while (!list_empty(list))
838 			__remove_assoc_queue(BH_ENTRY(list->next));
839 		spin_unlock(&buffer_mapping->private_lock);
840 	}
841 }
842 EXPORT_SYMBOL(invalidate_inode_buffers);
843 
844 /*
845  * Remove any clean buffers from the inode's buffer list.  This is called
846  * when we're trying to free the inode itself.  Those buffers can pin it.
847  *
848  * Returns true if all buffers were removed.
849  */
850 int remove_inode_buffers(struct inode *inode)
851 {
852 	int ret = 1;
853 
854 	if (inode_has_buffers(inode)) {
855 		struct address_space *mapping = &inode->i_data;
856 		struct list_head *list = &mapping->private_list;
857 		struct address_space *buffer_mapping = mapping->private_data;
858 
859 		spin_lock(&buffer_mapping->private_lock);
860 		while (!list_empty(list)) {
861 			struct buffer_head *bh = BH_ENTRY(list->next);
862 			if (buffer_dirty(bh)) {
863 				ret = 0;
864 				break;
865 			}
866 			__remove_assoc_queue(bh);
867 		}
868 		spin_unlock(&buffer_mapping->private_lock);
869 	}
870 	return ret;
871 }
872 
873 /*
874  * Create the appropriate buffers when given a page for data area and
875  * the size of each buffer.. Use the bh->b_this_page linked list to
876  * follow the buffers created.  Return NULL if unable to create more
877  * buffers.
878  *
879  * The retry flag is used to differentiate async IO (paging, swapping)
880  * which may not fail from ordinary buffer allocations.
881  */
882 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
883 		int retry)
884 {
885 	struct buffer_head *bh, *head;
886 	long offset;
887 
888 try_again:
889 	head = NULL;
890 	offset = PAGE_SIZE;
891 	while ((offset -= size) >= 0) {
892 		bh = alloc_buffer_head(GFP_NOFS);
893 		if (!bh)
894 			goto no_grow;
895 
896 		bh->b_this_page = head;
897 		bh->b_blocknr = -1;
898 		head = bh;
899 
900 		bh->b_size = size;
901 
902 		/* Link the buffer to its page */
903 		set_bh_page(bh, page, offset);
904 	}
905 	return head;
906 /*
907  * In case anything failed, we just free everything we got.
908  */
909 no_grow:
910 	if (head) {
911 		do {
912 			bh = head;
913 			head = head->b_this_page;
914 			free_buffer_head(bh);
915 		} while (head);
916 	}
917 
918 	/*
919 	 * Return failure for non-async IO requests.  Async IO requests
920 	 * are not allowed to fail, so we have to wait until buffer heads
921 	 * become available.  But we don't want tasks sleeping with
922 	 * partially complete buffers, so all were released above.
923 	 */
924 	if (!retry)
925 		return NULL;
926 
927 	/* We're _really_ low on memory. Now we just
928 	 * wait for old buffer heads to become free due to
929 	 * finishing IO.  Since this is an async request and
930 	 * the reserve list is empty, we're sure there are
931 	 * async buffer heads in use.
932 	 */
933 	free_more_memory();
934 	goto try_again;
935 }
936 EXPORT_SYMBOL_GPL(alloc_page_buffers);
937 
938 static inline void
939 link_dev_buffers(struct page *page, struct buffer_head *head)
940 {
941 	struct buffer_head *bh, *tail;
942 
943 	bh = head;
944 	do {
945 		tail = bh;
946 		bh = bh->b_this_page;
947 	} while (bh);
948 	tail->b_this_page = head;
949 	attach_page_buffers(page, head);
950 }
951 
952 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
953 {
954 	sector_t retval = ~((sector_t)0);
955 	loff_t sz = i_size_read(bdev->bd_inode);
956 
957 	if (sz) {
958 		unsigned int sizebits = blksize_bits(size);
959 		retval = (sz >> sizebits);
960 	}
961 	return retval;
962 }
963 
964 /*
965  * Initialise the state of a blockdev page's buffers.
966  */
967 static sector_t
968 init_page_buffers(struct page *page, struct block_device *bdev,
969 			sector_t block, int size)
970 {
971 	struct buffer_head *head = page_buffers(page);
972 	struct buffer_head *bh = head;
973 	int uptodate = PageUptodate(page);
974 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
975 
976 	do {
977 		if (!buffer_mapped(bh)) {
978 			init_buffer(bh, NULL, NULL);
979 			bh->b_bdev = bdev;
980 			bh->b_blocknr = block;
981 			if (uptodate)
982 				set_buffer_uptodate(bh);
983 			if (block < end_block)
984 				set_buffer_mapped(bh);
985 		}
986 		block++;
987 		bh = bh->b_this_page;
988 	} while (bh != head);
989 
990 	/*
991 	 * Caller needs to validate requested block against end of device.
992 	 */
993 	return end_block;
994 }
995 
996 /*
997  * Create the page-cache page that contains the requested block.
998  *
999  * This is used purely for blockdev mappings.
1000  */
1001 static int
1002 grow_dev_page(struct block_device *bdev, sector_t block,
1003 		pgoff_t index, int size, int sizebits)
1004 {
1005 	struct inode *inode = bdev->bd_inode;
1006 	struct page *page;
1007 	struct buffer_head *bh;
1008 	sector_t end_block;
1009 	int ret = 0;		/* Will call free_more_memory() */
1010 	gfp_t gfp_mask;
1011 
1012 	gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1013 	gfp_mask |= __GFP_MOVABLE;
1014 	/*
1015 	 * XXX: __getblk_slow() can not really deal with failure and
1016 	 * will endlessly loop on improvised global reclaim.  Prefer
1017 	 * looping in the allocator rather than here, at least that
1018 	 * code knows what it's doing.
1019 	 */
1020 	gfp_mask |= __GFP_NOFAIL;
1021 
1022 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1023 	if (!page)
1024 		return ret;
1025 
1026 	BUG_ON(!PageLocked(page));
1027 
1028 	if (page_has_buffers(page)) {
1029 		bh = page_buffers(page);
1030 		if (bh->b_size == size) {
1031 			end_block = init_page_buffers(page, bdev,
1032 						index << sizebits, size);
1033 			goto done;
1034 		}
1035 		if (!try_to_free_buffers(page))
1036 			goto failed;
1037 	}
1038 
1039 	/*
1040 	 * Allocate some buffers for this page
1041 	 */
1042 	bh = alloc_page_buffers(page, size, 0);
1043 	if (!bh)
1044 		goto failed;
1045 
1046 	/*
1047 	 * Link the page to the buffers and initialise them.  Take the
1048 	 * lock to be atomic wrt __find_get_block(), which does not
1049 	 * run under the page lock.
1050 	 */
1051 	spin_lock(&inode->i_mapping->private_lock);
1052 	link_dev_buffers(page, bh);
1053 	end_block = init_page_buffers(page, bdev, index << sizebits, size);
1054 	spin_unlock(&inode->i_mapping->private_lock);
1055 done:
1056 	ret = (block < end_block) ? 1 : -ENXIO;
1057 failed:
1058 	unlock_page(page);
1059 	page_cache_release(page);
1060 	return ret;
1061 }
1062 
1063 /*
1064  * Create buffers for the specified block device block's page.  If
1065  * that page was dirty, the buffers are set dirty also.
1066  */
1067 static int
1068 grow_buffers(struct block_device *bdev, sector_t block, int size)
1069 {
1070 	pgoff_t index;
1071 	int sizebits;
1072 
1073 	sizebits = -1;
1074 	do {
1075 		sizebits++;
1076 	} while ((size << sizebits) < PAGE_SIZE);
1077 
1078 	index = block >> sizebits;
1079 
1080 	/*
1081 	 * Check for a block which wants to lie outside our maximum possible
1082 	 * pagecache index.  (this comparison is done using sector_t types).
1083 	 */
1084 	if (unlikely(index != block >> sizebits)) {
1085 		char b[BDEVNAME_SIZE];
1086 
1087 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1088 			"device %s\n",
1089 			__func__, (unsigned long long)block,
1090 			bdevname(bdev, b));
1091 		return -EIO;
1092 	}
1093 
1094 	/* Create a page with the proper size buffers.. */
1095 	return grow_dev_page(bdev, block, index, size, sizebits);
1096 }
1097 
1098 static struct buffer_head *
1099 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1100 {
1101 	/* Size must be multiple of hard sectorsize */
1102 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1103 			(size < 512 || size > PAGE_SIZE))) {
1104 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1105 					size);
1106 		printk(KERN_ERR "logical block size: %d\n",
1107 					bdev_logical_block_size(bdev));
1108 
1109 		dump_stack();
1110 		return NULL;
1111 	}
1112 
1113 	for (;;) {
1114 		struct buffer_head *bh;
1115 		int ret;
1116 
1117 		bh = __find_get_block(bdev, block, size);
1118 		if (bh)
1119 			return bh;
1120 
1121 		ret = grow_buffers(bdev, block, size);
1122 		if (ret < 0)
1123 			return NULL;
1124 		if (ret == 0)
1125 			free_more_memory();
1126 	}
1127 }
1128 
1129 /*
1130  * The relationship between dirty buffers and dirty pages:
1131  *
1132  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1133  * the page is tagged dirty in its radix tree.
1134  *
1135  * At all times, the dirtiness of the buffers represents the dirtiness of
1136  * subsections of the page.  If the page has buffers, the page dirty bit is
1137  * merely a hint about the true dirty state.
1138  *
1139  * When a page is set dirty in its entirety, all its buffers are marked dirty
1140  * (if the page has buffers).
1141  *
1142  * When a buffer is marked dirty, its page is dirtied, but the page's other
1143  * buffers are not.
1144  *
1145  * Also.  When blockdev buffers are explicitly read with bread(), they
1146  * individually become uptodate.  But their backing page remains not
1147  * uptodate - even if all of its buffers are uptodate.  A subsequent
1148  * block_read_full_page() against that page will discover all the uptodate
1149  * buffers, will set the page uptodate and will perform no I/O.
1150  */
1151 
1152 /**
1153  * mark_buffer_dirty - mark a buffer_head as needing writeout
1154  * @bh: the buffer_head to mark dirty
1155  *
1156  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1157  * backing page dirty, then tag the page as dirty in its address_space's radix
1158  * tree and then attach the address_space's inode to its superblock's dirty
1159  * inode list.
1160  *
1161  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1162  * mapping->tree_lock and mapping->host->i_lock.
1163  */
1164 void mark_buffer_dirty(struct buffer_head *bh)
1165 {
1166 	WARN_ON_ONCE(!buffer_uptodate(bh));
1167 
1168 	trace_block_dirty_buffer(bh);
1169 
1170 	/*
1171 	 * Very *carefully* optimize the it-is-already-dirty case.
1172 	 *
1173 	 * Don't let the final "is it dirty" escape to before we
1174 	 * perhaps modified the buffer.
1175 	 */
1176 	if (buffer_dirty(bh)) {
1177 		smp_mb();
1178 		if (buffer_dirty(bh))
1179 			return;
1180 	}
1181 
1182 	if (!test_set_buffer_dirty(bh)) {
1183 		struct page *page = bh->b_page;
1184 		if (!TestSetPageDirty(page)) {
1185 			struct address_space *mapping = page_mapping(page);
1186 			if (mapping)
1187 				__set_page_dirty(page, mapping, 0);
1188 		}
1189 	}
1190 }
1191 EXPORT_SYMBOL(mark_buffer_dirty);
1192 
1193 /*
1194  * Decrement a buffer_head's reference count.  If all buffers against a page
1195  * have zero reference count, are clean and unlocked, and if the page is clean
1196  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1197  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1198  * a page but it ends up not being freed, and buffers may later be reattached).
1199  */
1200 void __brelse(struct buffer_head * buf)
1201 {
1202 	if (atomic_read(&buf->b_count)) {
1203 		put_bh(buf);
1204 		return;
1205 	}
1206 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1207 }
1208 EXPORT_SYMBOL(__brelse);
1209 
1210 /*
1211  * bforget() is like brelse(), except it discards any
1212  * potentially dirty data.
1213  */
1214 void __bforget(struct buffer_head *bh)
1215 {
1216 	clear_buffer_dirty(bh);
1217 	if (bh->b_assoc_map) {
1218 		struct address_space *buffer_mapping = bh->b_page->mapping;
1219 
1220 		spin_lock(&buffer_mapping->private_lock);
1221 		list_del_init(&bh->b_assoc_buffers);
1222 		bh->b_assoc_map = NULL;
1223 		spin_unlock(&buffer_mapping->private_lock);
1224 	}
1225 	__brelse(bh);
1226 }
1227 EXPORT_SYMBOL(__bforget);
1228 
1229 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1230 {
1231 	lock_buffer(bh);
1232 	if (buffer_uptodate(bh)) {
1233 		unlock_buffer(bh);
1234 		return bh;
1235 	} else {
1236 		get_bh(bh);
1237 		bh->b_end_io = end_buffer_read_sync;
1238 		submit_bh(READ, bh);
1239 		wait_on_buffer(bh);
1240 		if (buffer_uptodate(bh))
1241 			return bh;
1242 	}
1243 	brelse(bh);
1244 	return NULL;
1245 }
1246 
1247 /*
1248  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1249  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1250  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1251  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1252  * CPU's LRUs at the same time.
1253  *
1254  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1255  * sb_find_get_block().
1256  *
1257  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1258  * a local interrupt disable for that.
1259  */
1260 
1261 #define BH_LRU_SIZE	8
1262 
1263 struct bh_lru {
1264 	struct buffer_head *bhs[BH_LRU_SIZE];
1265 };
1266 
1267 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1268 
1269 #ifdef CONFIG_SMP
1270 #define bh_lru_lock()	local_irq_disable()
1271 #define bh_lru_unlock()	local_irq_enable()
1272 #else
1273 #define bh_lru_lock()	preempt_disable()
1274 #define bh_lru_unlock()	preempt_enable()
1275 #endif
1276 
1277 static inline void check_irqs_on(void)
1278 {
1279 #ifdef irqs_disabled
1280 	BUG_ON(irqs_disabled());
1281 #endif
1282 }
1283 
1284 /*
1285  * The LRU management algorithm is dopey-but-simple.  Sorry.
1286  */
1287 static void bh_lru_install(struct buffer_head *bh)
1288 {
1289 	struct buffer_head *evictee = NULL;
1290 
1291 	check_irqs_on();
1292 	bh_lru_lock();
1293 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1294 		struct buffer_head *bhs[BH_LRU_SIZE];
1295 		int in;
1296 		int out = 0;
1297 
1298 		get_bh(bh);
1299 		bhs[out++] = bh;
1300 		for (in = 0; in < BH_LRU_SIZE; in++) {
1301 			struct buffer_head *bh2 =
1302 				__this_cpu_read(bh_lrus.bhs[in]);
1303 
1304 			if (bh2 == bh) {
1305 				__brelse(bh2);
1306 			} else {
1307 				if (out >= BH_LRU_SIZE) {
1308 					BUG_ON(evictee != NULL);
1309 					evictee = bh2;
1310 				} else {
1311 					bhs[out++] = bh2;
1312 				}
1313 			}
1314 		}
1315 		while (out < BH_LRU_SIZE)
1316 			bhs[out++] = NULL;
1317 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1318 	}
1319 	bh_lru_unlock();
1320 
1321 	if (evictee)
1322 		__brelse(evictee);
1323 }
1324 
1325 /*
1326  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1327  */
1328 static struct buffer_head *
1329 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1330 {
1331 	struct buffer_head *ret = NULL;
1332 	unsigned int i;
1333 
1334 	check_irqs_on();
1335 	bh_lru_lock();
1336 	for (i = 0; i < BH_LRU_SIZE; i++) {
1337 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1338 
1339 		if (bh && bh->b_bdev == bdev &&
1340 				bh->b_blocknr == block && bh->b_size == size) {
1341 			if (i) {
1342 				while (i) {
1343 					__this_cpu_write(bh_lrus.bhs[i],
1344 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1345 					i--;
1346 				}
1347 				__this_cpu_write(bh_lrus.bhs[0], bh);
1348 			}
1349 			get_bh(bh);
1350 			ret = bh;
1351 			break;
1352 		}
1353 	}
1354 	bh_lru_unlock();
1355 	return ret;
1356 }
1357 
1358 /*
1359  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1360  * it in the LRU and mark it as accessed.  If it is not present then return
1361  * NULL
1362  */
1363 struct buffer_head *
1364 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1365 {
1366 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1367 
1368 	if (bh == NULL) {
1369 		/* __find_get_block_slow will mark the page accessed */
1370 		bh = __find_get_block_slow(bdev, block);
1371 		if (bh)
1372 			bh_lru_install(bh);
1373 	} else
1374 		touch_buffer(bh);
1375 
1376 	return bh;
1377 }
1378 EXPORT_SYMBOL(__find_get_block);
1379 
1380 /*
1381  * __getblk will locate (and, if necessary, create) the buffer_head
1382  * which corresponds to the passed block_device, block and size. The
1383  * returned buffer has its reference count incremented.
1384  *
1385  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1386  * attempt is failing.  FIXME, perhaps?
1387  */
1388 struct buffer_head *
1389 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1390 {
1391 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1392 
1393 	might_sleep();
1394 	if (bh == NULL)
1395 		bh = __getblk_slow(bdev, block, size);
1396 	return bh;
1397 }
1398 EXPORT_SYMBOL(__getblk);
1399 
1400 /*
1401  * Do async read-ahead on a buffer..
1402  */
1403 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1404 {
1405 	struct buffer_head *bh = __getblk(bdev, block, size);
1406 	if (likely(bh)) {
1407 		ll_rw_block(READA, 1, &bh);
1408 		brelse(bh);
1409 	}
1410 }
1411 EXPORT_SYMBOL(__breadahead);
1412 
1413 /**
1414  *  __bread() - reads a specified block and returns the bh
1415  *  @bdev: the block_device to read from
1416  *  @block: number of block
1417  *  @size: size (in bytes) to read
1418  *
1419  *  Reads a specified block, and returns buffer head that contains it.
1420  *  It returns NULL if the block was unreadable.
1421  */
1422 struct buffer_head *
1423 __bread(struct block_device *bdev, sector_t block, unsigned size)
1424 {
1425 	struct buffer_head *bh = __getblk(bdev, block, size);
1426 
1427 	if (likely(bh) && !buffer_uptodate(bh))
1428 		bh = __bread_slow(bh);
1429 	return bh;
1430 }
1431 EXPORT_SYMBOL(__bread);
1432 
1433 /*
1434  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1435  * This doesn't race because it runs in each cpu either in irq
1436  * or with preempt disabled.
1437  */
1438 static void invalidate_bh_lru(void *arg)
1439 {
1440 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1441 	int i;
1442 
1443 	for (i = 0; i < BH_LRU_SIZE; i++) {
1444 		brelse(b->bhs[i]);
1445 		b->bhs[i] = NULL;
1446 	}
1447 	put_cpu_var(bh_lrus);
1448 }
1449 
1450 static bool has_bh_in_lru(int cpu, void *dummy)
1451 {
1452 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1453 	int i;
1454 
1455 	for (i = 0; i < BH_LRU_SIZE; i++) {
1456 		if (b->bhs[i])
1457 			return 1;
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 void invalidate_bh_lrus(void)
1464 {
1465 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1466 }
1467 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1468 
1469 void set_bh_page(struct buffer_head *bh,
1470 		struct page *page, unsigned long offset)
1471 {
1472 	bh->b_page = page;
1473 	BUG_ON(offset >= PAGE_SIZE);
1474 	if (PageHighMem(page))
1475 		/*
1476 		 * This catches illegal uses and preserves the offset:
1477 		 */
1478 		bh->b_data = (char *)(0 + offset);
1479 	else
1480 		bh->b_data = page_address(page) + offset;
1481 }
1482 EXPORT_SYMBOL(set_bh_page);
1483 
1484 /*
1485  * Called when truncating a buffer on a page completely.
1486  */
1487 
1488 /* Bits that are cleared during an invalidate */
1489 #define BUFFER_FLAGS_DISCARD \
1490 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1491 	 1 << BH_Delay | 1 << BH_Unwritten)
1492 
1493 static void discard_buffer(struct buffer_head * bh)
1494 {
1495 	unsigned long b_state, b_state_old;
1496 
1497 	lock_buffer(bh);
1498 	clear_buffer_dirty(bh);
1499 	bh->b_bdev = NULL;
1500 	b_state = bh->b_state;
1501 	for (;;) {
1502 		b_state_old = cmpxchg(&bh->b_state, b_state,
1503 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1504 		if (b_state_old == b_state)
1505 			break;
1506 		b_state = b_state_old;
1507 	}
1508 	unlock_buffer(bh);
1509 }
1510 
1511 /**
1512  * block_invalidatepage - invalidate part or all of a buffer-backed page
1513  *
1514  * @page: the page which is affected
1515  * @offset: start of the range to invalidate
1516  * @length: length of the range to invalidate
1517  *
1518  * block_invalidatepage() is called when all or part of the page has become
1519  * invalidated by a truncate operation.
1520  *
1521  * block_invalidatepage() does not have to release all buffers, but it must
1522  * ensure that no dirty buffer is left outside @offset and that no I/O
1523  * is underway against any of the blocks which are outside the truncation
1524  * point.  Because the caller is about to free (and possibly reuse) those
1525  * blocks on-disk.
1526  */
1527 void block_invalidatepage(struct page *page, unsigned int offset,
1528 			  unsigned int length)
1529 {
1530 	struct buffer_head *head, *bh, *next;
1531 	unsigned int curr_off = 0;
1532 	unsigned int stop = length + offset;
1533 
1534 	BUG_ON(!PageLocked(page));
1535 	if (!page_has_buffers(page))
1536 		goto out;
1537 
1538 	/*
1539 	 * Check for overflow
1540 	 */
1541 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1542 
1543 	head = page_buffers(page);
1544 	bh = head;
1545 	do {
1546 		unsigned int next_off = curr_off + bh->b_size;
1547 		next = bh->b_this_page;
1548 
1549 		/*
1550 		 * Are we still fully in range ?
1551 		 */
1552 		if (next_off > stop)
1553 			goto out;
1554 
1555 		/*
1556 		 * is this block fully invalidated?
1557 		 */
1558 		if (offset <= curr_off)
1559 			discard_buffer(bh);
1560 		curr_off = next_off;
1561 		bh = next;
1562 	} while (bh != head);
1563 
1564 	/*
1565 	 * We release buffers only if the entire page is being invalidated.
1566 	 * The get_block cached value has been unconditionally invalidated,
1567 	 * so real IO is not possible anymore.
1568 	 */
1569 	if (offset == 0)
1570 		try_to_release_page(page, 0);
1571 out:
1572 	return;
1573 }
1574 EXPORT_SYMBOL(block_invalidatepage);
1575 
1576 
1577 /*
1578  * We attach and possibly dirty the buffers atomically wrt
1579  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1580  * is already excluded via the page lock.
1581  */
1582 void create_empty_buffers(struct page *page,
1583 			unsigned long blocksize, unsigned long b_state)
1584 {
1585 	struct buffer_head *bh, *head, *tail;
1586 
1587 	head = alloc_page_buffers(page, blocksize, 1);
1588 	bh = head;
1589 	do {
1590 		bh->b_state |= b_state;
1591 		tail = bh;
1592 		bh = bh->b_this_page;
1593 	} while (bh);
1594 	tail->b_this_page = head;
1595 
1596 	spin_lock(&page->mapping->private_lock);
1597 	if (PageUptodate(page) || PageDirty(page)) {
1598 		bh = head;
1599 		do {
1600 			if (PageDirty(page))
1601 				set_buffer_dirty(bh);
1602 			if (PageUptodate(page))
1603 				set_buffer_uptodate(bh);
1604 			bh = bh->b_this_page;
1605 		} while (bh != head);
1606 	}
1607 	attach_page_buffers(page, head);
1608 	spin_unlock(&page->mapping->private_lock);
1609 }
1610 EXPORT_SYMBOL(create_empty_buffers);
1611 
1612 /*
1613  * We are taking a block for data and we don't want any output from any
1614  * buffer-cache aliases starting from return from that function and
1615  * until the moment when something will explicitly mark the buffer
1616  * dirty (hopefully that will not happen until we will free that block ;-)
1617  * We don't even need to mark it not-uptodate - nobody can expect
1618  * anything from a newly allocated buffer anyway. We used to used
1619  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1620  * don't want to mark the alias unmapped, for example - it would confuse
1621  * anyone who might pick it with bread() afterwards...
1622  *
1623  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1624  * be writeout I/O going on against recently-freed buffers.  We don't
1625  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1626  * only if we really need to.  That happens here.
1627  */
1628 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1629 {
1630 	struct buffer_head *old_bh;
1631 
1632 	might_sleep();
1633 
1634 	old_bh = __find_get_block_slow(bdev, block);
1635 	if (old_bh) {
1636 		clear_buffer_dirty(old_bh);
1637 		wait_on_buffer(old_bh);
1638 		clear_buffer_req(old_bh);
1639 		__brelse(old_bh);
1640 	}
1641 }
1642 EXPORT_SYMBOL(unmap_underlying_metadata);
1643 
1644 /*
1645  * Size is a power-of-two in the range 512..PAGE_SIZE,
1646  * and the case we care about most is PAGE_SIZE.
1647  *
1648  * So this *could* possibly be written with those
1649  * constraints in mind (relevant mostly if some
1650  * architecture has a slow bit-scan instruction)
1651  */
1652 static inline int block_size_bits(unsigned int blocksize)
1653 {
1654 	return ilog2(blocksize);
1655 }
1656 
1657 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1658 {
1659 	BUG_ON(!PageLocked(page));
1660 
1661 	if (!page_has_buffers(page))
1662 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1663 	return page_buffers(page);
1664 }
1665 
1666 /*
1667  * NOTE! All mapped/uptodate combinations are valid:
1668  *
1669  *	Mapped	Uptodate	Meaning
1670  *
1671  *	No	No		"unknown" - must do get_block()
1672  *	No	Yes		"hole" - zero-filled
1673  *	Yes	No		"allocated" - allocated on disk, not read in
1674  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1675  *
1676  * "Dirty" is valid only with the last case (mapped+uptodate).
1677  */
1678 
1679 /*
1680  * While block_write_full_page is writing back the dirty buffers under
1681  * the page lock, whoever dirtied the buffers may decide to clean them
1682  * again at any time.  We handle that by only looking at the buffer
1683  * state inside lock_buffer().
1684  *
1685  * If block_write_full_page() is called for regular writeback
1686  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1687  * locked buffer.   This only can happen if someone has written the buffer
1688  * directly, with submit_bh().  At the address_space level PageWriteback
1689  * prevents this contention from occurring.
1690  *
1691  * If block_write_full_page() is called with wbc->sync_mode ==
1692  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1693  * causes the writes to be flagged as synchronous writes.
1694  */
1695 static int __block_write_full_page(struct inode *inode, struct page *page,
1696 			get_block_t *get_block, struct writeback_control *wbc,
1697 			bh_end_io_t *handler)
1698 {
1699 	int err;
1700 	sector_t block;
1701 	sector_t last_block;
1702 	struct buffer_head *bh, *head;
1703 	unsigned int blocksize, bbits;
1704 	int nr_underway = 0;
1705 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1706 			WRITE_SYNC : WRITE);
1707 
1708 	head = create_page_buffers(page, inode,
1709 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1710 
1711 	/*
1712 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1713 	 * here, and the (potentially unmapped) buffers may become dirty at
1714 	 * any time.  If a buffer becomes dirty here after we've inspected it
1715 	 * then we just miss that fact, and the page stays dirty.
1716 	 *
1717 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1718 	 * handle that here by just cleaning them.
1719 	 */
1720 
1721 	bh = head;
1722 	blocksize = bh->b_size;
1723 	bbits = block_size_bits(blocksize);
1724 
1725 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1726 	last_block = (i_size_read(inode) - 1) >> bbits;
1727 
1728 	/*
1729 	 * Get all the dirty buffers mapped to disk addresses and
1730 	 * handle any aliases from the underlying blockdev's mapping.
1731 	 */
1732 	do {
1733 		if (block > last_block) {
1734 			/*
1735 			 * mapped buffers outside i_size will occur, because
1736 			 * this page can be outside i_size when there is a
1737 			 * truncate in progress.
1738 			 */
1739 			/*
1740 			 * The buffer was zeroed by block_write_full_page()
1741 			 */
1742 			clear_buffer_dirty(bh);
1743 			set_buffer_uptodate(bh);
1744 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1745 			   buffer_dirty(bh)) {
1746 			WARN_ON(bh->b_size != blocksize);
1747 			err = get_block(inode, block, bh, 1);
1748 			if (err)
1749 				goto recover;
1750 			clear_buffer_delay(bh);
1751 			if (buffer_new(bh)) {
1752 				/* blockdev mappings never come here */
1753 				clear_buffer_new(bh);
1754 				unmap_underlying_metadata(bh->b_bdev,
1755 							bh->b_blocknr);
1756 			}
1757 		}
1758 		bh = bh->b_this_page;
1759 		block++;
1760 	} while (bh != head);
1761 
1762 	do {
1763 		if (!buffer_mapped(bh))
1764 			continue;
1765 		/*
1766 		 * If it's a fully non-blocking write attempt and we cannot
1767 		 * lock the buffer then redirty the page.  Note that this can
1768 		 * potentially cause a busy-wait loop from writeback threads
1769 		 * and kswapd activity, but those code paths have their own
1770 		 * higher-level throttling.
1771 		 */
1772 		if (wbc->sync_mode != WB_SYNC_NONE) {
1773 			lock_buffer(bh);
1774 		} else if (!trylock_buffer(bh)) {
1775 			redirty_page_for_writepage(wbc, page);
1776 			continue;
1777 		}
1778 		if (test_clear_buffer_dirty(bh)) {
1779 			mark_buffer_async_write_endio(bh, handler);
1780 		} else {
1781 			unlock_buffer(bh);
1782 		}
1783 	} while ((bh = bh->b_this_page) != head);
1784 
1785 	/*
1786 	 * The page and its buffers are protected by PageWriteback(), so we can
1787 	 * drop the bh refcounts early.
1788 	 */
1789 	BUG_ON(PageWriteback(page));
1790 	set_page_writeback(page);
1791 
1792 	do {
1793 		struct buffer_head *next = bh->b_this_page;
1794 		if (buffer_async_write(bh)) {
1795 			submit_bh(write_op, bh);
1796 			nr_underway++;
1797 		}
1798 		bh = next;
1799 	} while (bh != head);
1800 	unlock_page(page);
1801 
1802 	err = 0;
1803 done:
1804 	if (nr_underway == 0) {
1805 		/*
1806 		 * The page was marked dirty, but the buffers were
1807 		 * clean.  Someone wrote them back by hand with
1808 		 * ll_rw_block/submit_bh.  A rare case.
1809 		 */
1810 		end_page_writeback(page);
1811 
1812 		/*
1813 		 * The page and buffer_heads can be released at any time from
1814 		 * here on.
1815 		 */
1816 	}
1817 	return err;
1818 
1819 recover:
1820 	/*
1821 	 * ENOSPC, or some other error.  We may already have added some
1822 	 * blocks to the file, so we need to write these out to avoid
1823 	 * exposing stale data.
1824 	 * The page is currently locked and not marked for writeback
1825 	 */
1826 	bh = head;
1827 	/* Recovery: lock and submit the mapped buffers */
1828 	do {
1829 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1830 		    !buffer_delay(bh)) {
1831 			lock_buffer(bh);
1832 			mark_buffer_async_write_endio(bh, handler);
1833 		} else {
1834 			/*
1835 			 * The buffer may have been set dirty during
1836 			 * attachment to a dirty page.
1837 			 */
1838 			clear_buffer_dirty(bh);
1839 		}
1840 	} while ((bh = bh->b_this_page) != head);
1841 	SetPageError(page);
1842 	BUG_ON(PageWriteback(page));
1843 	mapping_set_error(page->mapping, err);
1844 	set_page_writeback(page);
1845 	do {
1846 		struct buffer_head *next = bh->b_this_page;
1847 		if (buffer_async_write(bh)) {
1848 			clear_buffer_dirty(bh);
1849 			submit_bh(write_op, bh);
1850 			nr_underway++;
1851 		}
1852 		bh = next;
1853 	} while (bh != head);
1854 	unlock_page(page);
1855 	goto done;
1856 }
1857 
1858 /*
1859  * If a page has any new buffers, zero them out here, and mark them uptodate
1860  * and dirty so they'll be written out (in order to prevent uninitialised
1861  * block data from leaking). And clear the new bit.
1862  */
1863 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1864 {
1865 	unsigned int block_start, block_end;
1866 	struct buffer_head *head, *bh;
1867 
1868 	BUG_ON(!PageLocked(page));
1869 	if (!page_has_buffers(page))
1870 		return;
1871 
1872 	bh = head = page_buffers(page);
1873 	block_start = 0;
1874 	do {
1875 		block_end = block_start + bh->b_size;
1876 
1877 		if (buffer_new(bh)) {
1878 			if (block_end > from && block_start < to) {
1879 				if (!PageUptodate(page)) {
1880 					unsigned start, size;
1881 
1882 					start = max(from, block_start);
1883 					size = min(to, block_end) - start;
1884 
1885 					zero_user(page, start, size);
1886 					set_buffer_uptodate(bh);
1887 				}
1888 
1889 				clear_buffer_new(bh);
1890 				mark_buffer_dirty(bh);
1891 			}
1892 		}
1893 
1894 		block_start = block_end;
1895 		bh = bh->b_this_page;
1896 	} while (bh != head);
1897 }
1898 EXPORT_SYMBOL(page_zero_new_buffers);
1899 
1900 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1901 		get_block_t *get_block)
1902 {
1903 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1904 	unsigned to = from + len;
1905 	struct inode *inode = page->mapping->host;
1906 	unsigned block_start, block_end;
1907 	sector_t block;
1908 	int err = 0;
1909 	unsigned blocksize, bbits;
1910 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1911 
1912 	BUG_ON(!PageLocked(page));
1913 	BUG_ON(from > PAGE_CACHE_SIZE);
1914 	BUG_ON(to > PAGE_CACHE_SIZE);
1915 	BUG_ON(from > to);
1916 
1917 	head = create_page_buffers(page, inode, 0);
1918 	blocksize = head->b_size;
1919 	bbits = block_size_bits(blocksize);
1920 
1921 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1922 
1923 	for(bh = head, block_start = 0; bh != head || !block_start;
1924 	    block++, block_start=block_end, bh = bh->b_this_page) {
1925 		block_end = block_start + blocksize;
1926 		if (block_end <= from || block_start >= to) {
1927 			if (PageUptodate(page)) {
1928 				if (!buffer_uptodate(bh))
1929 					set_buffer_uptodate(bh);
1930 			}
1931 			continue;
1932 		}
1933 		if (buffer_new(bh))
1934 			clear_buffer_new(bh);
1935 		if (!buffer_mapped(bh)) {
1936 			WARN_ON(bh->b_size != blocksize);
1937 			err = get_block(inode, block, bh, 1);
1938 			if (err)
1939 				break;
1940 			if (buffer_new(bh)) {
1941 				unmap_underlying_metadata(bh->b_bdev,
1942 							bh->b_blocknr);
1943 				if (PageUptodate(page)) {
1944 					clear_buffer_new(bh);
1945 					set_buffer_uptodate(bh);
1946 					mark_buffer_dirty(bh);
1947 					continue;
1948 				}
1949 				if (block_end > to || block_start < from)
1950 					zero_user_segments(page,
1951 						to, block_end,
1952 						block_start, from);
1953 				continue;
1954 			}
1955 		}
1956 		if (PageUptodate(page)) {
1957 			if (!buffer_uptodate(bh))
1958 				set_buffer_uptodate(bh);
1959 			continue;
1960 		}
1961 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1962 		    !buffer_unwritten(bh) &&
1963 		     (block_start < from || block_end > to)) {
1964 			ll_rw_block(READ, 1, &bh);
1965 			*wait_bh++=bh;
1966 		}
1967 	}
1968 	/*
1969 	 * If we issued read requests - let them complete.
1970 	 */
1971 	while(wait_bh > wait) {
1972 		wait_on_buffer(*--wait_bh);
1973 		if (!buffer_uptodate(*wait_bh))
1974 			err = -EIO;
1975 	}
1976 	if (unlikely(err))
1977 		page_zero_new_buffers(page, from, to);
1978 	return err;
1979 }
1980 EXPORT_SYMBOL(__block_write_begin);
1981 
1982 static int __block_commit_write(struct inode *inode, struct page *page,
1983 		unsigned from, unsigned to)
1984 {
1985 	unsigned block_start, block_end;
1986 	int partial = 0;
1987 	unsigned blocksize;
1988 	struct buffer_head *bh, *head;
1989 
1990 	bh = head = page_buffers(page);
1991 	blocksize = bh->b_size;
1992 
1993 	block_start = 0;
1994 	do {
1995 		block_end = block_start + blocksize;
1996 		if (block_end <= from || block_start >= to) {
1997 			if (!buffer_uptodate(bh))
1998 				partial = 1;
1999 		} else {
2000 			set_buffer_uptodate(bh);
2001 			mark_buffer_dirty(bh);
2002 		}
2003 		clear_buffer_new(bh);
2004 
2005 		block_start = block_end;
2006 		bh = bh->b_this_page;
2007 	} while (bh != head);
2008 
2009 	/*
2010 	 * If this is a partial write which happened to make all buffers
2011 	 * uptodate then we can optimize away a bogus readpage() for
2012 	 * the next read(). Here we 'discover' whether the page went
2013 	 * uptodate as a result of this (potentially partial) write.
2014 	 */
2015 	if (!partial)
2016 		SetPageUptodate(page);
2017 	return 0;
2018 }
2019 
2020 /*
2021  * block_write_begin takes care of the basic task of block allocation and
2022  * bringing partial write blocks uptodate first.
2023  *
2024  * The filesystem needs to handle block truncation upon failure.
2025  */
2026 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2027 		unsigned flags, struct page **pagep, get_block_t *get_block)
2028 {
2029 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2030 	struct page *page;
2031 	int status;
2032 
2033 	page = grab_cache_page_write_begin(mapping, index, flags);
2034 	if (!page)
2035 		return -ENOMEM;
2036 
2037 	status = __block_write_begin(page, pos, len, get_block);
2038 	if (unlikely(status)) {
2039 		unlock_page(page);
2040 		page_cache_release(page);
2041 		page = NULL;
2042 	}
2043 
2044 	*pagep = page;
2045 	return status;
2046 }
2047 EXPORT_SYMBOL(block_write_begin);
2048 
2049 int block_write_end(struct file *file, struct address_space *mapping,
2050 			loff_t pos, unsigned len, unsigned copied,
2051 			struct page *page, void *fsdata)
2052 {
2053 	struct inode *inode = mapping->host;
2054 	unsigned start;
2055 
2056 	start = pos & (PAGE_CACHE_SIZE - 1);
2057 
2058 	if (unlikely(copied < len)) {
2059 		/*
2060 		 * The buffers that were written will now be uptodate, so we
2061 		 * don't have to worry about a readpage reading them and
2062 		 * overwriting a partial write. However if we have encountered
2063 		 * a short write and only partially written into a buffer, it
2064 		 * will not be marked uptodate, so a readpage might come in and
2065 		 * destroy our partial write.
2066 		 *
2067 		 * Do the simplest thing, and just treat any short write to a
2068 		 * non uptodate page as a zero-length write, and force the
2069 		 * caller to redo the whole thing.
2070 		 */
2071 		if (!PageUptodate(page))
2072 			copied = 0;
2073 
2074 		page_zero_new_buffers(page, start+copied, start+len);
2075 	}
2076 	flush_dcache_page(page);
2077 
2078 	/* This could be a short (even 0-length) commit */
2079 	__block_commit_write(inode, page, start, start+copied);
2080 
2081 	return copied;
2082 }
2083 EXPORT_SYMBOL(block_write_end);
2084 
2085 int generic_write_end(struct file *file, struct address_space *mapping,
2086 			loff_t pos, unsigned len, unsigned copied,
2087 			struct page *page, void *fsdata)
2088 {
2089 	struct inode *inode = mapping->host;
2090 	int i_size_changed = 0;
2091 
2092 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2093 
2094 	/*
2095 	 * No need to use i_size_read() here, the i_size
2096 	 * cannot change under us because we hold i_mutex.
2097 	 *
2098 	 * But it's important to update i_size while still holding page lock:
2099 	 * page writeout could otherwise come in and zero beyond i_size.
2100 	 */
2101 	if (pos+copied > inode->i_size) {
2102 		i_size_write(inode, pos+copied);
2103 		i_size_changed = 1;
2104 	}
2105 
2106 	unlock_page(page);
2107 	page_cache_release(page);
2108 
2109 	/*
2110 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2111 	 * makes the holding time of page lock longer. Second, it forces lock
2112 	 * ordering of page lock and transaction start for journaling
2113 	 * filesystems.
2114 	 */
2115 	if (i_size_changed)
2116 		mark_inode_dirty(inode);
2117 
2118 	return copied;
2119 }
2120 EXPORT_SYMBOL(generic_write_end);
2121 
2122 /*
2123  * block_is_partially_uptodate checks whether buffers within a page are
2124  * uptodate or not.
2125  *
2126  * Returns true if all buffers which correspond to a file portion
2127  * we want to read are uptodate.
2128  */
2129 int block_is_partially_uptodate(struct page *page, unsigned long from,
2130 					unsigned long count)
2131 {
2132 	unsigned block_start, block_end, blocksize;
2133 	unsigned to;
2134 	struct buffer_head *bh, *head;
2135 	int ret = 1;
2136 
2137 	if (!page_has_buffers(page))
2138 		return 0;
2139 
2140 	head = page_buffers(page);
2141 	blocksize = head->b_size;
2142 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2143 	to = from + to;
2144 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2145 		return 0;
2146 
2147 	bh = head;
2148 	block_start = 0;
2149 	do {
2150 		block_end = block_start + blocksize;
2151 		if (block_end > from && block_start < to) {
2152 			if (!buffer_uptodate(bh)) {
2153 				ret = 0;
2154 				break;
2155 			}
2156 			if (block_end >= to)
2157 				break;
2158 		}
2159 		block_start = block_end;
2160 		bh = bh->b_this_page;
2161 	} while (bh != head);
2162 
2163 	return ret;
2164 }
2165 EXPORT_SYMBOL(block_is_partially_uptodate);
2166 
2167 /*
2168  * Generic "read page" function for block devices that have the normal
2169  * get_block functionality. This is most of the block device filesystems.
2170  * Reads the page asynchronously --- the unlock_buffer() and
2171  * set/clear_buffer_uptodate() functions propagate buffer state into the
2172  * page struct once IO has completed.
2173  */
2174 int block_read_full_page(struct page *page, get_block_t *get_block)
2175 {
2176 	struct inode *inode = page->mapping->host;
2177 	sector_t iblock, lblock;
2178 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2179 	unsigned int blocksize, bbits;
2180 	int nr, i;
2181 	int fully_mapped = 1;
2182 
2183 	head = create_page_buffers(page, inode, 0);
2184 	blocksize = head->b_size;
2185 	bbits = block_size_bits(blocksize);
2186 
2187 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2188 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2189 	bh = head;
2190 	nr = 0;
2191 	i = 0;
2192 
2193 	do {
2194 		if (buffer_uptodate(bh))
2195 			continue;
2196 
2197 		if (!buffer_mapped(bh)) {
2198 			int err = 0;
2199 
2200 			fully_mapped = 0;
2201 			if (iblock < lblock) {
2202 				WARN_ON(bh->b_size != blocksize);
2203 				err = get_block(inode, iblock, bh, 0);
2204 				if (err)
2205 					SetPageError(page);
2206 			}
2207 			if (!buffer_mapped(bh)) {
2208 				zero_user(page, i * blocksize, blocksize);
2209 				if (!err)
2210 					set_buffer_uptodate(bh);
2211 				continue;
2212 			}
2213 			/*
2214 			 * get_block() might have updated the buffer
2215 			 * synchronously
2216 			 */
2217 			if (buffer_uptodate(bh))
2218 				continue;
2219 		}
2220 		arr[nr++] = bh;
2221 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2222 
2223 	if (fully_mapped)
2224 		SetPageMappedToDisk(page);
2225 
2226 	if (!nr) {
2227 		/*
2228 		 * All buffers are uptodate - we can set the page uptodate
2229 		 * as well. But not if get_block() returned an error.
2230 		 */
2231 		if (!PageError(page))
2232 			SetPageUptodate(page);
2233 		unlock_page(page);
2234 		return 0;
2235 	}
2236 
2237 	/* Stage two: lock the buffers */
2238 	for (i = 0; i < nr; i++) {
2239 		bh = arr[i];
2240 		lock_buffer(bh);
2241 		mark_buffer_async_read(bh);
2242 	}
2243 
2244 	/*
2245 	 * Stage 3: start the IO.  Check for uptodateness
2246 	 * inside the buffer lock in case another process reading
2247 	 * the underlying blockdev brought it uptodate (the sct fix).
2248 	 */
2249 	for (i = 0; i < nr; i++) {
2250 		bh = arr[i];
2251 		if (buffer_uptodate(bh))
2252 			end_buffer_async_read(bh, 1);
2253 		else
2254 			submit_bh(READ, bh);
2255 	}
2256 	return 0;
2257 }
2258 EXPORT_SYMBOL(block_read_full_page);
2259 
2260 /* utility function for filesystems that need to do work on expanding
2261  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2262  * deal with the hole.
2263  */
2264 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2265 {
2266 	struct address_space *mapping = inode->i_mapping;
2267 	struct page *page;
2268 	void *fsdata;
2269 	int err;
2270 
2271 	err = inode_newsize_ok(inode, size);
2272 	if (err)
2273 		goto out;
2274 
2275 	err = pagecache_write_begin(NULL, mapping, size, 0,
2276 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2277 				&page, &fsdata);
2278 	if (err)
2279 		goto out;
2280 
2281 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2282 	BUG_ON(err > 0);
2283 
2284 out:
2285 	return err;
2286 }
2287 EXPORT_SYMBOL(generic_cont_expand_simple);
2288 
2289 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2290 			    loff_t pos, loff_t *bytes)
2291 {
2292 	struct inode *inode = mapping->host;
2293 	unsigned blocksize = 1 << inode->i_blkbits;
2294 	struct page *page;
2295 	void *fsdata;
2296 	pgoff_t index, curidx;
2297 	loff_t curpos;
2298 	unsigned zerofrom, offset, len;
2299 	int err = 0;
2300 
2301 	index = pos >> PAGE_CACHE_SHIFT;
2302 	offset = pos & ~PAGE_CACHE_MASK;
2303 
2304 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2305 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2306 		if (zerofrom & (blocksize-1)) {
2307 			*bytes |= (blocksize-1);
2308 			(*bytes)++;
2309 		}
2310 		len = PAGE_CACHE_SIZE - zerofrom;
2311 
2312 		err = pagecache_write_begin(file, mapping, curpos, len,
2313 						AOP_FLAG_UNINTERRUPTIBLE,
2314 						&page, &fsdata);
2315 		if (err)
2316 			goto out;
2317 		zero_user(page, zerofrom, len);
2318 		err = pagecache_write_end(file, mapping, curpos, len, len,
2319 						page, fsdata);
2320 		if (err < 0)
2321 			goto out;
2322 		BUG_ON(err != len);
2323 		err = 0;
2324 
2325 		balance_dirty_pages_ratelimited(mapping);
2326 	}
2327 
2328 	/* page covers the boundary, find the boundary offset */
2329 	if (index == curidx) {
2330 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2331 		/* if we will expand the thing last block will be filled */
2332 		if (offset <= zerofrom) {
2333 			goto out;
2334 		}
2335 		if (zerofrom & (blocksize-1)) {
2336 			*bytes |= (blocksize-1);
2337 			(*bytes)++;
2338 		}
2339 		len = offset - zerofrom;
2340 
2341 		err = pagecache_write_begin(file, mapping, curpos, len,
2342 						AOP_FLAG_UNINTERRUPTIBLE,
2343 						&page, &fsdata);
2344 		if (err)
2345 			goto out;
2346 		zero_user(page, zerofrom, len);
2347 		err = pagecache_write_end(file, mapping, curpos, len, len,
2348 						page, fsdata);
2349 		if (err < 0)
2350 			goto out;
2351 		BUG_ON(err != len);
2352 		err = 0;
2353 	}
2354 out:
2355 	return err;
2356 }
2357 
2358 /*
2359  * For moronic filesystems that do not allow holes in file.
2360  * We may have to extend the file.
2361  */
2362 int cont_write_begin(struct file *file, struct address_space *mapping,
2363 			loff_t pos, unsigned len, unsigned flags,
2364 			struct page **pagep, void **fsdata,
2365 			get_block_t *get_block, loff_t *bytes)
2366 {
2367 	struct inode *inode = mapping->host;
2368 	unsigned blocksize = 1 << inode->i_blkbits;
2369 	unsigned zerofrom;
2370 	int err;
2371 
2372 	err = cont_expand_zero(file, mapping, pos, bytes);
2373 	if (err)
2374 		return err;
2375 
2376 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2377 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2378 		*bytes |= (blocksize-1);
2379 		(*bytes)++;
2380 	}
2381 
2382 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2383 }
2384 EXPORT_SYMBOL(cont_write_begin);
2385 
2386 int block_commit_write(struct page *page, unsigned from, unsigned to)
2387 {
2388 	struct inode *inode = page->mapping->host;
2389 	__block_commit_write(inode,page,from,to);
2390 	return 0;
2391 }
2392 EXPORT_SYMBOL(block_commit_write);
2393 
2394 /*
2395  * block_page_mkwrite() is not allowed to change the file size as it gets
2396  * called from a page fault handler when a page is first dirtied. Hence we must
2397  * be careful to check for EOF conditions here. We set the page up correctly
2398  * for a written page which means we get ENOSPC checking when writing into
2399  * holes and correct delalloc and unwritten extent mapping on filesystems that
2400  * support these features.
2401  *
2402  * We are not allowed to take the i_mutex here so we have to play games to
2403  * protect against truncate races as the page could now be beyond EOF.  Because
2404  * truncate writes the inode size before removing pages, once we have the
2405  * page lock we can determine safely if the page is beyond EOF. If it is not
2406  * beyond EOF, then the page is guaranteed safe against truncation until we
2407  * unlock the page.
2408  *
2409  * Direct callers of this function should protect against filesystem freezing
2410  * using sb_start_write() - sb_end_write() functions.
2411  */
2412 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2413 			 get_block_t get_block)
2414 {
2415 	struct page *page = vmf->page;
2416 	struct inode *inode = file_inode(vma->vm_file);
2417 	unsigned long end;
2418 	loff_t size;
2419 	int ret;
2420 
2421 	lock_page(page);
2422 	size = i_size_read(inode);
2423 	if ((page->mapping != inode->i_mapping) ||
2424 	    (page_offset(page) > size)) {
2425 		/* We overload EFAULT to mean page got truncated */
2426 		ret = -EFAULT;
2427 		goto out_unlock;
2428 	}
2429 
2430 	/* page is wholly or partially inside EOF */
2431 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2432 		end = size & ~PAGE_CACHE_MASK;
2433 	else
2434 		end = PAGE_CACHE_SIZE;
2435 
2436 	ret = __block_write_begin(page, 0, end, get_block);
2437 	if (!ret)
2438 		ret = block_commit_write(page, 0, end);
2439 
2440 	if (unlikely(ret < 0))
2441 		goto out_unlock;
2442 	set_page_dirty(page);
2443 	wait_for_stable_page(page);
2444 	return 0;
2445 out_unlock:
2446 	unlock_page(page);
2447 	return ret;
2448 }
2449 EXPORT_SYMBOL(__block_page_mkwrite);
2450 
2451 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2452 		   get_block_t get_block)
2453 {
2454 	int ret;
2455 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2456 
2457 	sb_start_pagefault(sb);
2458 
2459 	/*
2460 	 * Update file times before taking page lock. We may end up failing the
2461 	 * fault so this update may be superfluous but who really cares...
2462 	 */
2463 	file_update_time(vma->vm_file);
2464 
2465 	ret = __block_page_mkwrite(vma, vmf, get_block);
2466 	sb_end_pagefault(sb);
2467 	return block_page_mkwrite_return(ret);
2468 }
2469 EXPORT_SYMBOL(block_page_mkwrite);
2470 
2471 /*
2472  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2473  * immediately, while under the page lock.  So it needs a special end_io
2474  * handler which does not touch the bh after unlocking it.
2475  */
2476 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2477 {
2478 	__end_buffer_read_notouch(bh, uptodate);
2479 }
2480 
2481 /*
2482  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2483  * the page (converting it to circular linked list and taking care of page
2484  * dirty races).
2485  */
2486 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2487 {
2488 	struct buffer_head *bh;
2489 
2490 	BUG_ON(!PageLocked(page));
2491 
2492 	spin_lock(&page->mapping->private_lock);
2493 	bh = head;
2494 	do {
2495 		if (PageDirty(page))
2496 			set_buffer_dirty(bh);
2497 		if (!bh->b_this_page)
2498 			bh->b_this_page = head;
2499 		bh = bh->b_this_page;
2500 	} while (bh != head);
2501 	attach_page_buffers(page, head);
2502 	spin_unlock(&page->mapping->private_lock);
2503 }
2504 
2505 /*
2506  * On entry, the page is fully not uptodate.
2507  * On exit the page is fully uptodate in the areas outside (from,to)
2508  * The filesystem needs to handle block truncation upon failure.
2509  */
2510 int nobh_write_begin(struct address_space *mapping,
2511 			loff_t pos, unsigned len, unsigned flags,
2512 			struct page **pagep, void **fsdata,
2513 			get_block_t *get_block)
2514 {
2515 	struct inode *inode = mapping->host;
2516 	const unsigned blkbits = inode->i_blkbits;
2517 	const unsigned blocksize = 1 << blkbits;
2518 	struct buffer_head *head, *bh;
2519 	struct page *page;
2520 	pgoff_t index;
2521 	unsigned from, to;
2522 	unsigned block_in_page;
2523 	unsigned block_start, block_end;
2524 	sector_t block_in_file;
2525 	int nr_reads = 0;
2526 	int ret = 0;
2527 	int is_mapped_to_disk = 1;
2528 
2529 	index = pos >> PAGE_CACHE_SHIFT;
2530 	from = pos & (PAGE_CACHE_SIZE - 1);
2531 	to = from + len;
2532 
2533 	page = grab_cache_page_write_begin(mapping, index, flags);
2534 	if (!page)
2535 		return -ENOMEM;
2536 	*pagep = page;
2537 	*fsdata = NULL;
2538 
2539 	if (page_has_buffers(page)) {
2540 		ret = __block_write_begin(page, pos, len, get_block);
2541 		if (unlikely(ret))
2542 			goto out_release;
2543 		return ret;
2544 	}
2545 
2546 	if (PageMappedToDisk(page))
2547 		return 0;
2548 
2549 	/*
2550 	 * Allocate buffers so that we can keep track of state, and potentially
2551 	 * attach them to the page if an error occurs. In the common case of
2552 	 * no error, they will just be freed again without ever being attached
2553 	 * to the page (which is all OK, because we're under the page lock).
2554 	 *
2555 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2556 	 * than the circular one we're used to.
2557 	 */
2558 	head = alloc_page_buffers(page, blocksize, 0);
2559 	if (!head) {
2560 		ret = -ENOMEM;
2561 		goto out_release;
2562 	}
2563 
2564 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2565 
2566 	/*
2567 	 * We loop across all blocks in the page, whether or not they are
2568 	 * part of the affected region.  This is so we can discover if the
2569 	 * page is fully mapped-to-disk.
2570 	 */
2571 	for (block_start = 0, block_in_page = 0, bh = head;
2572 		  block_start < PAGE_CACHE_SIZE;
2573 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2574 		int create;
2575 
2576 		block_end = block_start + blocksize;
2577 		bh->b_state = 0;
2578 		create = 1;
2579 		if (block_start >= to)
2580 			create = 0;
2581 		ret = get_block(inode, block_in_file + block_in_page,
2582 					bh, create);
2583 		if (ret)
2584 			goto failed;
2585 		if (!buffer_mapped(bh))
2586 			is_mapped_to_disk = 0;
2587 		if (buffer_new(bh))
2588 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2589 		if (PageUptodate(page)) {
2590 			set_buffer_uptodate(bh);
2591 			continue;
2592 		}
2593 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2594 			zero_user_segments(page, block_start, from,
2595 							to, block_end);
2596 			continue;
2597 		}
2598 		if (buffer_uptodate(bh))
2599 			continue;	/* reiserfs does this */
2600 		if (block_start < from || block_end > to) {
2601 			lock_buffer(bh);
2602 			bh->b_end_io = end_buffer_read_nobh;
2603 			submit_bh(READ, bh);
2604 			nr_reads++;
2605 		}
2606 	}
2607 
2608 	if (nr_reads) {
2609 		/*
2610 		 * The page is locked, so these buffers are protected from
2611 		 * any VM or truncate activity.  Hence we don't need to care
2612 		 * for the buffer_head refcounts.
2613 		 */
2614 		for (bh = head; bh; bh = bh->b_this_page) {
2615 			wait_on_buffer(bh);
2616 			if (!buffer_uptodate(bh))
2617 				ret = -EIO;
2618 		}
2619 		if (ret)
2620 			goto failed;
2621 	}
2622 
2623 	if (is_mapped_to_disk)
2624 		SetPageMappedToDisk(page);
2625 
2626 	*fsdata = head; /* to be released by nobh_write_end */
2627 
2628 	return 0;
2629 
2630 failed:
2631 	BUG_ON(!ret);
2632 	/*
2633 	 * Error recovery is a bit difficult. We need to zero out blocks that
2634 	 * were newly allocated, and dirty them to ensure they get written out.
2635 	 * Buffers need to be attached to the page at this point, otherwise
2636 	 * the handling of potential IO errors during writeout would be hard
2637 	 * (could try doing synchronous writeout, but what if that fails too?)
2638 	 */
2639 	attach_nobh_buffers(page, head);
2640 	page_zero_new_buffers(page, from, to);
2641 
2642 out_release:
2643 	unlock_page(page);
2644 	page_cache_release(page);
2645 	*pagep = NULL;
2646 
2647 	return ret;
2648 }
2649 EXPORT_SYMBOL(nobh_write_begin);
2650 
2651 int nobh_write_end(struct file *file, struct address_space *mapping,
2652 			loff_t pos, unsigned len, unsigned copied,
2653 			struct page *page, void *fsdata)
2654 {
2655 	struct inode *inode = page->mapping->host;
2656 	struct buffer_head *head = fsdata;
2657 	struct buffer_head *bh;
2658 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2659 
2660 	if (unlikely(copied < len) && head)
2661 		attach_nobh_buffers(page, head);
2662 	if (page_has_buffers(page))
2663 		return generic_write_end(file, mapping, pos, len,
2664 					copied, page, fsdata);
2665 
2666 	SetPageUptodate(page);
2667 	set_page_dirty(page);
2668 	if (pos+copied > inode->i_size) {
2669 		i_size_write(inode, pos+copied);
2670 		mark_inode_dirty(inode);
2671 	}
2672 
2673 	unlock_page(page);
2674 	page_cache_release(page);
2675 
2676 	while (head) {
2677 		bh = head;
2678 		head = head->b_this_page;
2679 		free_buffer_head(bh);
2680 	}
2681 
2682 	return copied;
2683 }
2684 EXPORT_SYMBOL(nobh_write_end);
2685 
2686 /*
2687  * nobh_writepage() - based on block_full_write_page() except
2688  * that it tries to operate without attaching bufferheads to
2689  * the page.
2690  */
2691 int nobh_writepage(struct page *page, get_block_t *get_block,
2692 			struct writeback_control *wbc)
2693 {
2694 	struct inode * const inode = page->mapping->host;
2695 	loff_t i_size = i_size_read(inode);
2696 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2697 	unsigned offset;
2698 	int ret;
2699 
2700 	/* Is the page fully inside i_size? */
2701 	if (page->index < end_index)
2702 		goto out;
2703 
2704 	/* Is the page fully outside i_size? (truncate in progress) */
2705 	offset = i_size & (PAGE_CACHE_SIZE-1);
2706 	if (page->index >= end_index+1 || !offset) {
2707 		/*
2708 		 * The page may have dirty, unmapped buffers.  For example,
2709 		 * they may have been added in ext3_writepage().  Make them
2710 		 * freeable here, so the page does not leak.
2711 		 */
2712 #if 0
2713 		/* Not really sure about this  - do we need this ? */
2714 		if (page->mapping->a_ops->invalidatepage)
2715 			page->mapping->a_ops->invalidatepage(page, offset);
2716 #endif
2717 		unlock_page(page);
2718 		return 0; /* don't care */
2719 	}
2720 
2721 	/*
2722 	 * The page straddles i_size.  It must be zeroed out on each and every
2723 	 * writepage invocation because it may be mmapped.  "A file is mapped
2724 	 * in multiples of the page size.  For a file that is not a multiple of
2725 	 * the  page size, the remaining memory is zeroed when mapped, and
2726 	 * writes to that region are not written out to the file."
2727 	 */
2728 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2729 out:
2730 	ret = mpage_writepage(page, get_block, wbc);
2731 	if (ret == -EAGAIN)
2732 		ret = __block_write_full_page(inode, page, get_block, wbc,
2733 					      end_buffer_async_write);
2734 	return ret;
2735 }
2736 EXPORT_SYMBOL(nobh_writepage);
2737 
2738 int nobh_truncate_page(struct address_space *mapping,
2739 			loff_t from, get_block_t *get_block)
2740 {
2741 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2742 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2743 	unsigned blocksize;
2744 	sector_t iblock;
2745 	unsigned length, pos;
2746 	struct inode *inode = mapping->host;
2747 	struct page *page;
2748 	struct buffer_head map_bh;
2749 	int err;
2750 
2751 	blocksize = 1 << inode->i_blkbits;
2752 	length = offset & (blocksize - 1);
2753 
2754 	/* Block boundary? Nothing to do */
2755 	if (!length)
2756 		return 0;
2757 
2758 	length = blocksize - length;
2759 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2760 
2761 	page = grab_cache_page(mapping, index);
2762 	err = -ENOMEM;
2763 	if (!page)
2764 		goto out;
2765 
2766 	if (page_has_buffers(page)) {
2767 has_buffers:
2768 		unlock_page(page);
2769 		page_cache_release(page);
2770 		return block_truncate_page(mapping, from, get_block);
2771 	}
2772 
2773 	/* Find the buffer that contains "offset" */
2774 	pos = blocksize;
2775 	while (offset >= pos) {
2776 		iblock++;
2777 		pos += blocksize;
2778 	}
2779 
2780 	map_bh.b_size = blocksize;
2781 	map_bh.b_state = 0;
2782 	err = get_block(inode, iblock, &map_bh, 0);
2783 	if (err)
2784 		goto unlock;
2785 	/* unmapped? It's a hole - nothing to do */
2786 	if (!buffer_mapped(&map_bh))
2787 		goto unlock;
2788 
2789 	/* Ok, it's mapped. Make sure it's up-to-date */
2790 	if (!PageUptodate(page)) {
2791 		err = mapping->a_ops->readpage(NULL, page);
2792 		if (err) {
2793 			page_cache_release(page);
2794 			goto out;
2795 		}
2796 		lock_page(page);
2797 		if (!PageUptodate(page)) {
2798 			err = -EIO;
2799 			goto unlock;
2800 		}
2801 		if (page_has_buffers(page))
2802 			goto has_buffers;
2803 	}
2804 	zero_user(page, offset, length);
2805 	set_page_dirty(page);
2806 	err = 0;
2807 
2808 unlock:
2809 	unlock_page(page);
2810 	page_cache_release(page);
2811 out:
2812 	return err;
2813 }
2814 EXPORT_SYMBOL(nobh_truncate_page);
2815 
2816 int block_truncate_page(struct address_space *mapping,
2817 			loff_t from, get_block_t *get_block)
2818 {
2819 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2820 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2821 	unsigned blocksize;
2822 	sector_t iblock;
2823 	unsigned length, pos;
2824 	struct inode *inode = mapping->host;
2825 	struct page *page;
2826 	struct buffer_head *bh;
2827 	int err;
2828 
2829 	blocksize = 1 << inode->i_blkbits;
2830 	length = offset & (blocksize - 1);
2831 
2832 	/* Block boundary? Nothing to do */
2833 	if (!length)
2834 		return 0;
2835 
2836 	length = blocksize - length;
2837 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2838 
2839 	page = grab_cache_page(mapping, index);
2840 	err = -ENOMEM;
2841 	if (!page)
2842 		goto out;
2843 
2844 	if (!page_has_buffers(page))
2845 		create_empty_buffers(page, blocksize, 0);
2846 
2847 	/* Find the buffer that contains "offset" */
2848 	bh = page_buffers(page);
2849 	pos = blocksize;
2850 	while (offset >= pos) {
2851 		bh = bh->b_this_page;
2852 		iblock++;
2853 		pos += blocksize;
2854 	}
2855 
2856 	err = 0;
2857 	if (!buffer_mapped(bh)) {
2858 		WARN_ON(bh->b_size != blocksize);
2859 		err = get_block(inode, iblock, bh, 0);
2860 		if (err)
2861 			goto unlock;
2862 		/* unmapped? It's a hole - nothing to do */
2863 		if (!buffer_mapped(bh))
2864 			goto unlock;
2865 	}
2866 
2867 	/* Ok, it's mapped. Make sure it's up-to-date */
2868 	if (PageUptodate(page))
2869 		set_buffer_uptodate(bh);
2870 
2871 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2872 		err = -EIO;
2873 		ll_rw_block(READ, 1, &bh);
2874 		wait_on_buffer(bh);
2875 		/* Uhhuh. Read error. Complain and punt. */
2876 		if (!buffer_uptodate(bh))
2877 			goto unlock;
2878 	}
2879 
2880 	zero_user(page, offset, length);
2881 	mark_buffer_dirty(bh);
2882 	err = 0;
2883 
2884 unlock:
2885 	unlock_page(page);
2886 	page_cache_release(page);
2887 out:
2888 	return err;
2889 }
2890 EXPORT_SYMBOL(block_truncate_page);
2891 
2892 /*
2893  * The generic ->writepage function for buffer-backed address_spaces
2894  */
2895 int block_write_full_page(struct page *page, get_block_t *get_block,
2896 			struct writeback_control *wbc)
2897 {
2898 	struct inode * const inode = page->mapping->host;
2899 	loff_t i_size = i_size_read(inode);
2900 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2901 	unsigned offset;
2902 
2903 	/* Is the page fully inside i_size? */
2904 	if (page->index < end_index)
2905 		return __block_write_full_page(inode, page, get_block, wbc,
2906 					       end_buffer_async_write);
2907 
2908 	/* Is the page fully outside i_size? (truncate in progress) */
2909 	offset = i_size & (PAGE_CACHE_SIZE-1);
2910 	if (page->index >= end_index+1 || !offset) {
2911 		/*
2912 		 * The page may have dirty, unmapped buffers.  For example,
2913 		 * they may have been added in ext3_writepage().  Make them
2914 		 * freeable here, so the page does not leak.
2915 		 */
2916 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2917 		unlock_page(page);
2918 		return 0; /* don't care */
2919 	}
2920 
2921 	/*
2922 	 * The page straddles i_size.  It must be zeroed out on each and every
2923 	 * writepage invocation because it may be mmapped.  "A file is mapped
2924 	 * in multiples of the page size.  For a file that is not a multiple of
2925 	 * the  page size, the remaining memory is zeroed when mapped, and
2926 	 * writes to that region are not written out to the file."
2927 	 */
2928 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2929 	return __block_write_full_page(inode, page, get_block, wbc,
2930 							end_buffer_async_write);
2931 }
2932 EXPORT_SYMBOL(block_write_full_page);
2933 
2934 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2935 			    get_block_t *get_block)
2936 {
2937 	struct buffer_head tmp;
2938 	struct inode *inode = mapping->host;
2939 	tmp.b_state = 0;
2940 	tmp.b_blocknr = 0;
2941 	tmp.b_size = 1 << inode->i_blkbits;
2942 	get_block(inode, block, &tmp, 0);
2943 	return tmp.b_blocknr;
2944 }
2945 EXPORT_SYMBOL(generic_block_bmap);
2946 
2947 static void end_bio_bh_io_sync(struct bio *bio, int err)
2948 {
2949 	struct buffer_head *bh = bio->bi_private;
2950 
2951 	if (err == -EOPNOTSUPP) {
2952 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2953 	}
2954 
2955 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2956 		set_bit(BH_Quiet, &bh->b_state);
2957 
2958 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2959 	bio_put(bio);
2960 }
2961 
2962 /*
2963  * This allows us to do IO even on the odd last sectors
2964  * of a device, even if the bh block size is some multiple
2965  * of the physical sector size.
2966  *
2967  * We'll just truncate the bio to the size of the device,
2968  * and clear the end of the buffer head manually.
2969  *
2970  * Truly out-of-range accesses will turn into actual IO
2971  * errors, this only handles the "we need to be able to
2972  * do IO at the final sector" case.
2973  */
2974 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2975 {
2976 	sector_t maxsector;
2977 	unsigned bytes;
2978 
2979 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2980 	if (!maxsector)
2981 		return;
2982 
2983 	/*
2984 	 * If the *whole* IO is past the end of the device,
2985 	 * let it through, and the IO layer will turn it into
2986 	 * an EIO.
2987 	 */
2988 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2989 		return;
2990 
2991 	maxsector -= bio->bi_iter.bi_sector;
2992 	bytes = bio->bi_iter.bi_size;
2993 	if (likely((bytes >> 9) <= maxsector))
2994 		return;
2995 
2996 	/* Uhhuh. We've got a bh that straddles the device size! */
2997 	bytes = maxsector << 9;
2998 
2999 	/* Truncate the bio.. */
3000 	bio->bi_iter.bi_size = bytes;
3001 	bio->bi_io_vec[0].bv_len = bytes;
3002 
3003 	/* ..and clear the end of the buffer for reads */
3004 	if ((rw & RW_MASK) == READ) {
3005 		void *kaddr = kmap_atomic(bh->b_page);
3006 		memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3007 		kunmap_atomic(kaddr);
3008 		flush_dcache_page(bh->b_page);
3009 	}
3010 }
3011 
3012 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3013 {
3014 	struct bio *bio;
3015 	int ret = 0;
3016 
3017 	BUG_ON(!buffer_locked(bh));
3018 	BUG_ON(!buffer_mapped(bh));
3019 	BUG_ON(!bh->b_end_io);
3020 	BUG_ON(buffer_delay(bh));
3021 	BUG_ON(buffer_unwritten(bh));
3022 
3023 	/*
3024 	 * Only clear out a write error when rewriting
3025 	 */
3026 	if (test_set_buffer_req(bh) && (rw & WRITE))
3027 		clear_buffer_write_io_error(bh);
3028 
3029 	/*
3030 	 * from here on down, it's all bio -- do the initial mapping,
3031 	 * submit_bio -> generic_make_request may further map this bio around
3032 	 */
3033 	bio = bio_alloc(GFP_NOIO, 1);
3034 
3035 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3036 	bio->bi_bdev = bh->b_bdev;
3037 	bio->bi_io_vec[0].bv_page = bh->b_page;
3038 	bio->bi_io_vec[0].bv_len = bh->b_size;
3039 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3040 
3041 	bio->bi_vcnt = 1;
3042 	bio->bi_iter.bi_size = bh->b_size;
3043 
3044 	bio->bi_end_io = end_bio_bh_io_sync;
3045 	bio->bi_private = bh;
3046 	bio->bi_flags |= bio_flags;
3047 
3048 	/* Take care of bh's that straddle the end of the device */
3049 	guard_bh_eod(rw, bio, bh);
3050 
3051 	if (buffer_meta(bh))
3052 		rw |= REQ_META;
3053 	if (buffer_prio(bh))
3054 		rw |= REQ_PRIO;
3055 
3056 	bio_get(bio);
3057 	submit_bio(rw, bio);
3058 
3059 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3060 		ret = -EOPNOTSUPP;
3061 
3062 	bio_put(bio);
3063 	return ret;
3064 }
3065 EXPORT_SYMBOL_GPL(_submit_bh);
3066 
3067 int submit_bh(int rw, struct buffer_head *bh)
3068 {
3069 	return _submit_bh(rw, bh, 0);
3070 }
3071 EXPORT_SYMBOL(submit_bh);
3072 
3073 /**
3074  * ll_rw_block: low-level access to block devices (DEPRECATED)
3075  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3076  * @nr: number of &struct buffer_heads in the array
3077  * @bhs: array of pointers to &struct buffer_head
3078  *
3079  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3080  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3081  * %READA option is described in the documentation for generic_make_request()
3082  * which ll_rw_block() calls.
3083  *
3084  * This function drops any buffer that it cannot get a lock on (with the
3085  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3086  * request, and any buffer that appears to be up-to-date when doing read
3087  * request.  Further it marks as clean buffers that are processed for
3088  * writing (the buffer cache won't assume that they are actually clean
3089  * until the buffer gets unlocked).
3090  *
3091  * ll_rw_block sets b_end_io to simple completion handler that marks
3092  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3093  * any waiters.
3094  *
3095  * All of the buffers must be for the same device, and must also be a
3096  * multiple of the current approved size for the device.
3097  */
3098 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3099 {
3100 	int i;
3101 
3102 	for (i = 0; i < nr; i++) {
3103 		struct buffer_head *bh = bhs[i];
3104 
3105 		if (!trylock_buffer(bh))
3106 			continue;
3107 		if (rw == WRITE) {
3108 			if (test_clear_buffer_dirty(bh)) {
3109 				bh->b_end_io = end_buffer_write_sync;
3110 				get_bh(bh);
3111 				submit_bh(WRITE, bh);
3112 				continue;
3113 			}
3114 		} else {
3115 			if (!buffer_uptodate(bh)) {
3116 				bh->b_end_io = end_buffer_read_sync;
3117 				get_bh(bh);
3118 				submit_bh(rw, bh);
3119 				continue;
3120 			}
3121 		}
3122 		unlock_buffer(bh);
3123 	}
3124 }
3125 EXPORT_SYMBOL(ll_rw_block);
3126 
3127 void write_dirty_buffer(struct buffer_head *bh, int rw)
3128 {
3129 	lock_buffer(bh);
3130 	if (!test_clear_buffer_dirty(bh)) {
3131 		unlock_buffer(bh);
3132 		return;
3133 	}
3134 	bh->b_end_io = end_buffer_write_sync;
3135 	get_bh(bh);
3136 	submit_bh(rw, bh);
3137 }
3138 EXPORT_SYMBOL(write_dirty_buffer);
3139 
3140 /*
3141  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3142  * and then start new I/O and then wait upon it.  The caller must have a ref on
3143  * the buffer_head.
3144  */
3145 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3146 {
3147 	int ret = 0;
3148 
3149 	WARN_ON(atomic_read(&bh->b_count) < 1);
3150 	lock_buffer(bh);
3151 	if (test_clear_buffer_dirty(bh)) {
3152 		get_bh(bh);
3153 		bh->b_end_io = end_buffer_write_sync;
3154 		ret = submit_bh(rw, bh);
3155 		wait_on_buffer(bh);
3156 		if (!ret && !buffer_uptodate(bh))
3157 			ret = -EIO;
3158 	} else {
3159 		unlock_buffer(bh);
3160 	}
3161 	return ret;
3162 }
3163 EXPORT_SYMBOL(__sync_dirty_buffer);
3164 
3165 int sync_dirty_buffer(struct buffer_head *bh)
3166 {
3167 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3168 }
3169 EXPORT_SYMBOL(sync_dirty_buffer);
3170 
3171 /*
3172  * try_to_free_buffers() checks if all the buffers on this particular page
3173  * are unused, and releases them if so.
3174  *
3175  * Exclusion against try_to_free_buffers may be obtained by either
3176  * locking the page or by holding its mapping's private_lock.
3177  *
3178  * If the page is dirty but all the buffers are clean then we need to
3179  * be sure to mark the page clean as well.  This is because the page
3180  * may be against a block device, and a later reattachment of buffers
3181  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3182  * filesystem data on the same device.
3183  *
3184  * The same applies to regular filesystem pages: if all the buffers are
3185  * clean then we set the page clean and proceed.  To do that, we require
3186  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3187  * private_lock.
3188  *
3189  * try_to_free_buffers() is non-blocking.
3190  */
3191 static inline int buffer_busy(struct buffer_head *bh)
3192 {
3193 	return atomic_read(&bh->b_count) |
3194 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3195 }
3196 
3197 static int
3198 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3199 {
3200 	struct buffer_head *head = page_buffers(page);
3201 	struct buffer_head *bh;
3202 
3203 	bh = head;
3204 	do {
3205 		if (buffer_write_io_error(bh) && page->mapping)
3206 			set_bit(AS_EIO, &page->mapping->flags);
3207 		if (buffer_busy(bh))
3208 			goto failed;
3209 		bh = bh->b_this_page;
3210 	} while (bh != head);
3211 
3212 	do {
3213 		struct buffer_head *next = bh->b_this_page;
3214 
3215 		if (bh->b_assoc_map)
3216 			__remove_assoc_queue(bh);
3217 		bh = next;
3218 	} while (bh != head);
3219 	*buffers_to_free = head;
3220 	__clear_page_buffers(page);
3221 	return 1;
3222 failed:
3223 	return 0;
3224 }
3225 
3226 int try_to_free_buffers(struct page *page)
3227 {
3228 	struct address_space * const mapping = page->mapping;
3229 	struct buffer_head *buffers_to_free = NULL;
3230 	int ret = 0;
3231 
3232 	BUG_ON(!PageLocked(page));
3233 	if (PageWriteback(page))
3234 		return 0;
3235 
3236 	if (mapping == NULL) {		/* can this still happen? */
3237 		ret = drop_buffers(page, &buffers_to_free);
3238 		goto out;
3239 	}
3240 
3241 	spin_lock(&mapping->private_lock);
3242 	ret = drop_buffers(page, &buffers_to_free);
3243 
3244 	/*
3245 	 * If the filesystem writes its buffers by hand (eg ext3)
3246 	 * then we can have clean buffers against a dirty page.  We
3247 	 * clean the page here; otherwise the VM will never notice
3248 	 * that the filesystem did any IO at all.
3249 	 *
3250 	 * Also, during truncate, discard_buffer will have marked all
3251 	 * the page's buffers clean.  We discover that here and clean
3252 	 * the page also.
3253 	 *
3254 	 * private_lock must be held over this entire operation in order
3255 	 * to synchronise against __set_page_dirty_buffers and prevent the
3256 	 * dirty bit from being lost.
3257 	 */
3258 	if (ret)
3259 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3260 	spin_unlock(&mapping->private_lock);
3261 out:
3262 	if (buffers_to_free) {
3263 		struct buffer_head *bh = buffers_to_free;
3264 
3265 		do {
3266 			struct buffer_head *next = bh->b_this_page;
3267 			free_buffer_head(bh);
3268 			bh = next;
3269 		} while (bh != buffers_to_free);
3270 	}
3271 	return ret;
3272 }
3273 EXPORT_SYMBOL(try_to_free_buffers);
3274 
3275 /*
3276  * There are no bdflush tunables left.  But distributions are
3277  * still running obsolete flush daemons, so we terminate them here.
3278  *
3279  * Use of bdflush() is deprecated and will be removed in a future kernel.
3280  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3281  */
3282 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3283 {
3284 	static int msg_count;
3285 
3286 	if (!capable(CAP_SYS_ADMIN))
3287 		return -EPERM;
3288 
3289 	if (msg_count < 5) {
3290 		msg_count++;
3291 		printk(KERN_INFO
3292 			"warning: process `%s' used the obsolete bdflush"
3293 			" system call\n", current->comm);
3294 		printk(KERN_INFO "Fix your initscripts?\n");
3295 	}
3296 
3297 	if (func == 1)
3298 		do_exit(0);
3299 	return 0;
3300 }
3301 
3302 /*
3303  * Buffer-head allocation
3304  */
3305 static struct kmem_cache *bh_cachep __read_mostly;
3306 
3307 /*
3308  * Once the number of bh's in the machine exceeds this level, we start
3309  * stripping them in writeback.
3310  */
3311 static unsigned long max_buffer_heads;
3312 
3313 int buffer_heads_over_limit;
3314 
3315 struct bh_accounting {
3316 	int nr;			/* Number of live bh's */
3317 	int ratelimit;		/* Limit cacheline bouncing */
3318 };
3319 
3320 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3321 
3322 static void recalc_bh_state(void)
3323 {
3324 	int i;
3325 	int tot = 0;
3326 
3327 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3328 		return;
3329 	__this_cpu_write(bh_accounting.ratelimit, 0);
3330 	for_each_online_cpu(i)
3331 		tot += per_cpu(bh_accounting, i).nr;
3332 	buffer_heads_over_limit = (tot > max_buffer_heads);
3333 }
3334 
3335 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3336 {
3337 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3338 	if (ret) {
3339 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3340 		preempt_disable();
3341 		__this_cpu_inc(bh_accounting.nr);
3342 		recalc_bh_state();
3343 		preempt_enable();
3344 	}
3345 	return ret;
3346 }
3347 EXPORT_SYMBOL(alloc_buffer_head);
3348 
3349 void free_buffer_head(struct buffer_head *bh)
3350 {
3351 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3352 	kmem_cache_free(bh_cachep, bh);
3353 	preempt_disable();
3354 	__this_cpu_dec(bh_accounting.nr);
3355 	recalc_bh_state();
3356 	preempt_enable();
3357 }
3358 EXPORT_SYMBOL(free_buffer_head);
3359 
3360 static void buffer_exit_cpu(int cpu)
3361 {
3362 	int i;
3363 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3364 
3365 	for (i = 0; i < BH_LRU_SIZE; i++) {
3366 		brelse(b->bhs[i]);
3367 		b->bhs[i] = NULL;
3368 	}
3369 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3370 	per_cpu(bh_accounting, cpu).nr = 0;
3371 }
3372 
3373 static int buffer_cpu_notify(struct notifier_block *self,
3374 			      unsigned long action, void *hcpu)
3375 {
3376 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3377 		buffer_exit_cpu((unsigned long)hcpu);
3378 	return NOTIFY_OK;
3379 }
3380 
3381 /**
3382  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3383  * @bh: struct buffer_head
3384  *
3385  * Return true if the buffer is up-to-date and false,
3386  * with the buffer locked, if not.
3387  */
3388 int bh_uptodate_or_lock(struct buffer_head *bh)
3389 {
3390 	if (!buffer_uptodate(bh)) {
3391 		lock_buffer(bh);
3392 		if (!buffer_uptodate(bh))
3393 			return 0;
3394 		unlock_buffer(bh);
3395 	}
3396 	return 1;
3397 }
3398 EXPORT_SYMBOL(bh_uptodate_or_lock);
3399 
3400 /**
3401  * bh_submit_read - Submit a locked buffer for reading
3402  * @bh: struct buffer_head
3403  *
3404  * Returns zero on success and -EIO on error.
3405  */
3406 int bh_submit_read(struct buffer_head *bh)
3407 {
3408 	BUG_ON(!buffer_locked(bh));
3409 
3410 	if (buffer_uptodate(bh)) {
3411 		unlock_buffer(bh);
3412 		return 0;
3413 	}
3414 
3415 	get_bh(bh);
3416 	bh->b_end_io = end_buffer_read_sync;
3417 	submit_bh(READ, bh);
3418 	wait_on_buffer(bh);
3419 	if (buffer_uptodate(bh))
3420 		return 0;
3421 	return -EIO;
3422 }
3423 EXPORT_SYMBOL(bh_submit_read);
3424 
3425 void __init buffer_init(void)
3426 {
3427 	unsigned long nrpages;
3428 
3429 	bh_cachep = kmem_cache_create("buffer_head",
3430 			sizeof(struct buffer_head), 0,
3431 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3432 				SLAB_MEM_SPREAD),
3433 				NULL);
3434 
3435 	/*
3436 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3437 	 */
3438 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3439 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3440 	hotcpu_notifier(buffer_cpu_notify, 0);
3441 }
3442