1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 56 static int sync_buffer(void *word) 57 { 58 struct block_device *bd; 59 struct buffer_head *bh 60 = container_of(word, struct buffer_head, b_state); 61 62 smp_mb(); 63 bd = bh->b_bdev; 64 if (bd) 65 blk_run_address_space(bd->bd_inode->i_mapping); 66 io_schedule(); 67 return 0; 68 } 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 73 TASK_UNINTERRUPTIBLE); 74 } 75 EXPORT_SYMBOL(__lock_buffer); 76 77 void unlock_buffer(struct buffer_head *bh) 78 { 79 smp_mb__before_clear_bit(); 80 clear_buffer_locked(bh); 81 smp_mb__after_clear_bit(); 82 wake_up_bit(&bh->b_state, BH_Lock); 83 } 84 85 /* 86 * Block until a buffer comes unlocked. This doesn't stop it 87 * from becoming locked again - you have to lock it yourself 88 * if you want to preserve its state. 89 */ 90 void __wait_on_buffer(struct buffer_head * bh) 91 { 92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 93 } 94 95 static void 96 __clear_page_buffers(struct page *page) 97 { 98 ClearPagePrivate(page); 99 set_page_private(page, 0); 100 page_cache_release(page); 101 } 102 103 static void buffer_io_error(struct buffer_head *bh) 104 { 105 char b[BDEVNAME_SIZE]; 106 107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 108 bdevname(bh->b_bdev, b), 109 (unsigned long long)bh->b_blocknr); 110 } 111 112 /* 113 * End-of-IO handler helper function which does not touch the bh after 114 * unlocking it. 115 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 116 * a race there is benign: unlock_buffer() only use the bh's address for 117 * hashing after unlocking the buffer, so it doesn't actually touch the bh 118 * itself. 119 */ 120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 121 { 122 if (uptodate) { 123 set_buffer_uptodate(bh); 124 } else { 125 /* This happens, due to failed READA attempts. */ 126 clear_buffer_uptodate(bh); 127 } 128 unlock_buffer(bh); 129 } 130 131 /* 132 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 133 * unlock the buffer. This is what ll_rw_block uses too. 134 */ 135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 136 { 137 __end_buffer_read_notouch(bh, uptodate); 138 put_bh(bh); 139 } 140 141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 142 { 143 char b[BDEVNAME_SIZE]; 144 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 149 buffer_io_error(bh); 150 printk(KERN_WARNING "lost page write due to " 151 "I/O error on %s\n", 152 bdevname(bh->b_bdev, b)); 153 } 154 set_buffer_write_io_error(bh); 155 clear_buffer_uptodate(bh); 156 } 157 unlock_buffer(bh); 158 put_bh(bh); 159 } 160 161 /* 162 * Write out and wait upon all the dirty data associated with a block 163 * device via its mapping. Does not take the superblock lock. 164 */ 165 int sync_blockdev(struct block_device *bdev) 166 { 167 int ret = 0; 168 169 if (bdev) 170 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 171 return ret; 172 } 173 EXPORT_SYMBOL(sync_blockdev); 174 175 /* 176 * Write out and wait upon all dirty data associated with this 177 * device. Filesystem data as well as the underlying block 178 * device. Takes the superblock lock. 179 */ 180 int fsync_bdev(struct block_device *bdev) 181 { 182 struct super_block *sb = get_super(bdev); 183 if (sb) { 184 int res = fsync_super(sb); 185 drop_super(sb); 186 return res; 187 } 188 return sync_blockdev(bdev); 189 } 190 191 /** 192 * freeze_bdev -- lock a filesystem and force it into a consistent state 193 * @bdev: blockdevice to lock 194 * 195 * This takes the block device bd_mount_sem to make sure no new mounts 196 * happen on bdev until thaw_bdev() is called. 197 * If a superblock is found on this device, we take the s_umount semaphore 198 * on it to make sure nobody unmounts until the snapshot creation is done. 199 */ 200 struct super_block *freeze_bdev(struct block_device *bdev) 201 { 202 struct super_block *sb; 203 204 down(&bdev->bd_mount_sem); 205 sb = get_super(bdev); 206 if (sb && !(sb->s_flags & MS_RDONLY)) { 207 sb->s_frozen = SB_FREEZE_WRITE; 208 smp_wmb(); 209 210 __fsync_super(sb); 211 212 sb->s_frozen = SB_FREEZE_TRANS; 213 smp_wmb(); 214 215 sync_blockdev(sb->s_bdev); 216 217 if (sb->s_op->write_super_lockfs) 218 sb->s_op->write_super_lockfs(sb); 219 } 220 221 sync_blockdev(bdev); 222 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 223 } 224 EXPORT_SYMBOL(freeze_bdev); 225 226 /** 227 * thaw_bdev -- unlock filesystem 228 * @bdev: blockdevice to unlock 229 * @sb: associated superblock 230 * 231 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 232 */ 233 void thaw_bdev(struct block_device *bdev, struct super_block *sb) 234 { 235 if (sb) { 236 BUG_ON(sb->s_bdev != bdev); 237 238 if (sb->s_op->unlockfs) 239 sb->s_op->unlockfs(sb); 240 sb->s_frozen = SB_UNFROZEN; 241 smp_wmb(); 242 wake_up(&sb->s_wait_unfrozen); 243 drop_super(sb); 244 } 245 246 up(&bdev->bd_mount_sem); 247 } 248 EXPORT_SYMBOL(thaw_bdev); 249 250 /* 251 * Various filesystems appear to want __find_get_block to be non-blocking. 252 * But it's the page lock which protects the buffers. To get around this, 253 * we get exclusion from try_to_free_buffers with the blockdev mapping's 254 * private_lock. 255 * 256 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 257 * may be quite high. This code could TryLock the page, and if that 258 * succeeds, there is no need to take private_lock. (But if 259 * private_lock is contended then so is mapping->tree_lock). 260 */ 261 static struct buffer_head * 262 __find_get_block_slow(struct block_device *bdev, sector_t block) 263 { 264 struct inode *bd_inode = bdev->bd_inode; 265 struct address_space *bd_mapping = bd_inode->i_mapping; 266 struct buffer_head *ret = NULL; 267 pgoff_t index; 268 struct buffer_head *bh; 269 struct buffer_head *head; 270 struct page *page; 271 int all_mapped = 1; 272 273 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 274 page = find_get_page(bd_mapping, index); 275 if (!page) 276 goto out; 277 278 spin_lock(&bd_mapping->private_lock); 279 if (!page_has_buffers(page)) 280 goto out_unlock; 281 head = page_buffers(page); 282 bh = head; 283 do { 284 if (bh->b_blocknr == block) { 285 ret = bh; 286 get_bh(bh); 287 goto out_unlock; 288 } 289 if (!buffer_mapped(bh)) 290 all_mapped = 0; 291 bh = bh->b_this_page; 292 } while (bh != head); 293 294 /* we might be here because some of the buffers on this page are 295 * not mapped. This is due to various races between 296 * file io on the block device and getblk. It gets dealt with 297 * elsewhere, don't buffer_error if we had some unmapped buffers 298 */ 299 if (all_mapped) { 300 printk("__find_get_block_slow() failed. " 301 "block=%llu, b_blocknr=%llu\n", 302 (unsigned long long)block, 303 (unsigned long long)bh->b_blocknr); 304 printk("b_state=0x%08lx, b_size=%zu\n", 305 bh->b_state, bh->b_size); 306 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 307 } 308 out_unlock: 309 spin_unlock(&bd_mapping->private_lock); 310 page_cache_release(page); 311 out: 312 return ret; 313 } 314 315 /* If invalidate_buffers() will trash dirty buffers, it means some kind 316 of fs corruption is going on. Trashing dirty data always imply losing 317 information that was supposed to be just stored on the physical layer 318 by the user. 319 320 Thus invalidate_buffers in general usage is not allwowed to trash 321 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 322 be preserved. These buffers are simply skipped. 323 324 We also skip buffers which are still in use. For example this can 325 happen if a userspace program is reading the block device. 326 327 NOTE: In the case where the user removed a removable-media-disk even if 328 there's still dirty data not synced on disk (due a bug in the device driver 329 or due an error of the user), by not destroying the dirty buffers we could 330 generate corruption also on the next media inserted, thus a parameter is 331 necessary to handle this case in the most safe way possible (trying 332 to not corrupt also the new disk inserted with the data belonging to 333 the old now corrupted disk). Also for the ramdisk the natural thing 334 to do in order to release the ramdisk memory is to destroy dirty buffers. 335 336 These are two special cases. Normal usage imply the device driver 337 to issue a sync on the device (without waiting I/O completion) and 338 then an invalidate_buffers call that doesn't trash dirty buffers. 339 340 For handling cache coherency with the blkdev pagecache the 'update' case 341 is been introduced. It is needed to re-read from disk any pinned 342 buffer. NOTE: re-reading from disk is destructive so we can do it only 343 when we assume nobody is changing the buffercache under our I/O and when 344 we think the disk contains more recent information than the buffercache. 345 The update == 1 pass marks the buffers we need to update, the update == 2 346 pass does the actual I/O. */ 347 void invalidate_bdev(struct block_device *bdev) 348 { 349 struct address_space *mapping = bdev->bd_inode->i_mapping; 350 351 if (mapping->nrpages == 0) 352 return; 353 354 invalidate_bh_lrus(); 355 invalidate_mapping_pages(mapping, 0, -1); 356 } 357 358 /* 359 * Kick pdflush then try to free up some ZONE_NORMAL memory. 360 */ 361 static void free_more_memory(void) 362 { 363 struct zone *zone; 364 int nid; 365 366 wakeup_pdflush(1024); 367 yield(); 368 369 for_each_online_node(nid) { 370 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 371 gfp_zone(GFP_NOFS), NULL, 372 &zone); 373 if (zone) 374 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 375 GFP_NOFS); 376 } 377 } 378 379 /* 380 * I/O completion handler for block_read_full_page() - pages 381 * which come unlocked at the end of I/O. 382 */ 383 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 384 { 385 unsigned long flags; 386 struct buffer_head *first; 387 struct buffer_head *tmp; 388 struct page *page; 389 int page_uptodate = 1; 390 391 BUG_ON(!buffer_async_read(bh)); 392 393 page = bh->b_page; 394 if (uptodate) { 395 set_buffer_uptodate(bh); 396 } else { 397 clear_buffer_uptodate(bh); 398 if (printk_ratelimit()) 399 buffer_io_error(bh); 400 SetPageError(page); 401 } 402 403 /* 404 * Be _very_ careful from here on. Bad things can happen if 405 * two buffer heads end IO at almost the same time and both 406 * decide that the page is now completely done. 407 */ 408 first = page_buffers(page); 409 local_irq_save(flags); 410 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 411 clear_buffer_async_read(bh); 412 unlock_buffer(bh); 413 tmp = bh; 414 do { 415 if (!buffer_uptodate(tmp)) 416 page_uptodate = 0; 417 if (buffer_async_read(tmp)) { 418 BUG_ON(!buffer_locked(tmp)); 419 goto still_busy; 420 } 421 tmp = tmp->b_this_page; 422 } while (tmp != bh); 423 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 424 local_irq_restore(flags); 425 426 /* 427 * If none of the buffers had errors and they are all 428 * uptodate then we can set the page uptodate. 429 */ 430 if (page_uptodate && !PageError(page)) 431 SetPageUptodate(page); 432 unlock_page(page); 433 return; 434 435 still_busy: 436 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 437 local_irq_restore(flags); 438 return; 439 } 440 441 /* 442 * Completion handler for block_write_full_page() - pages which are unlocked 443 * during I/O, and which have PageWriteback cleared upon I/O completion. 444 */ 445 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 446 { 447 char b[BDEVNAME_SIZE]; 448 unsigned long flags; 449 struct buffer_head *first; 450 struct buffer_head *tmp; 451 struct page *page; 452 453 BUG_ON(!buffer_async_write(bh)); 454 455 page = bh->b_page; 456 if (uptodate) { 457 set_buffer_uptodate(bh); 458 } else { 459 if (printk_ratelimit()) { 460 buffer_io_error(bh); 461 printk(KERN_WARNING "lost page write due to " 462 "I/O error on %s\n", 463 bdevname(bh->b_bdev, b)); 464 } 465 set_bit(AS_EIO, &page->mapping->flags); 466 set_buffer_write_io_error(bh); 467 clear_buffer_uptodate(bh); 468 SetPageError(page); 469 } 470 471 first = page_buffers(page); 472 local_irq_save(flags); 473 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 474 475 clear_buffer_async_write(bh); 476 unlock_buffer(bh); 477 tmp = bh->b_this_page; 478 while (tmp != bh) { 479 if (buffer_async_write(tmp)) { 480 BUG_ON(!buffer_locked(tmp)); 481 goto still_busy; 482 } 483 tmp = tmp->b_this_page; 484 } 485 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 486 local_irq_restore(flags); 487 end_page_writeback(page); 488 return; 489 490 still_busy: 491 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 492 local_irq_restore(flags); 493 return; 494 } 495 496 /* 497 * If a page's buffers are under async readin (end_buffer_async_read 498 * completion) then there is a possibility that another thread of 499 * control could lock one of the buffers after it has completed 500 * but while some of the other buffers have not completed. This 501 * locked buffer would confuse end_buffer_async_read() into not unlocking 502 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 503 * that this buffer is not under async I/O. 504 * 505 * The page comes unlocked when it has no locked buffer_async buffers 506 * left. 507 * 508 * PageLocked prevents anyone starting new async I/O reads any of 509 * the buffers. 510 * 511 * PageWriteback is used to prevent simultaneous writeout of the same 512 * page. 513 * 514 * PageLocked prevents anyone from starting writeback of a page which is 515 * under read I/O (PageWriteback is only ever set against a locked page). 516 */ 517 static void mark_buffer_async_read(struct buffer_head *bh) 518 { 519 bh->b_end_io = end_buffer_async_read; 520 set_buffer_async_read(bh); 521 } 522 523 void mark_buffer_async_write(struct buffer_head *bh) 524 { 525 bh->b_end_io = end_buffer_async_write; 526 set_buffer_async_write(bh); 527 } 528 EXPORT_SYMBOL(mark_buffer_async_write); 529 530 531 /* 532 * fs/buffer.c contains helper functions for buffer-backed address space's 533 * fsync functions. A common requirement for buffer-based filesystems is 534 * that certain data from the backing blockdev needs to be written out for 535 * a successful fsync(). For example, ext2 indirect blocks need to be 536 * written back and waited upon before fsync() returns. 537 * 538 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 539 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 540 * management of a list of dependent buffers at ->i_mapping->private_list. 541 * 542 * Locking is a little subtle: try_to_free_buffers() will remove buffers 543 * from their controlling inode's queue when they are being freed. But 544 * try_to_free_buffers() will be operating against the *blockdev* mapping 545 * at the time, not against the S_ISREG file which depends on those buffers. 546 * So the locking for private_list is via the private_lock in the address_space 547 * which backs the buffers. Which is different from the address_space 548 * against which the buffers are listed. So for a particular address_space, 549 * mapping->private_lock does *not* protect mapping->private_list! In fact, 550 * mapping->private_list will always be protected by the backing blockdev's 551 * ->private_lock. 552 * 553 * Which introduces a requirement: all buffers on an address_space's 554 * ->private_list must be from the same address_space: the blockdev's. 555 * 556 * address_spaces which do not place buffers at ->private_list via these 557 * utility functions are free to use private_lock and private_list for 558 * whatever they want. The only requirement is that list_empty(private_list) 559 * be true at clear_inode() time. 560 * 561 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 562 * filesystems should do that. invalidate_inode_buffers() should just go 563 * BUG_ON(!list_empty). 564 * 565 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 566 * take an address_space, not an inode. And it should be called 567 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 568 * queued up. 569 * 570 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 571 * list if it is already on a list. Because if the buffer is on a list, 572 * it *must* already be on the right one. If not, the filesystem is being 573 * silly. This will save a ton of locking. But first we have to ensure 574 * that buffers are taken *off* the old inode's list when they are freed 575 * (presumably in truncate). That requires careful auditing of all 576 * filesystems (do it inside bforget()). It could also be done by bringing 577 * b_inode back. 578 */ 579 580 /* 581 * The buffer's backing address_space's private_lock must be held 582 */ 583 static inline void __remove_assoc_queue(struct buffer_head *bh) 584 { 585 list_del_init(&bh->b_assoc_buffers); 586 WARN_ON(!bh->b_assoc_map); 587 if (buffer_write_io_error(bh)) 588 set_bit(AS_EIO, &bh->b_assoc_map->flags); 589 bh->b_assoc_map = NULL; 590 } 591 592 int inode_has_buffers(struct inode *inode) 593 { 594 return !list_empty(&inode->i_data.private_list); 595 } 596 597 /* 598 * osync is designed to support O_SYNC io. It waits synchronously for 599 * all already-submitted IO to complete, but does not queue any new 600 * writes to the disk. 601 * 602 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 603 * you dirty the buffers, and then use osync_inode_buffers to wait for 604 * completion. Any other dirty buffers which are not yet queued for 605 * write will not be flushed to disk by the osync. 606 */ 607 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 608 { 609 struct buffer_head *bh; 610 struct list_head *p; 611 int err = 0; 612 613 spin_lock(lock); 614 repeat: 615 list_for_each_prev(p, list) { 616 bh = BH_ENTRY(p); 617 if (buffer_locked(bh)) { 618 get_bh(bh); 619 spin_unlock(lock); 620 wait_on_buffer(bh); 621 if (!buffer_uptodate(bh)) 622 err = -EIO; 623 brelse(bh); 624 spin_lock(lock); 625 goto repeat; 626 } 627 } 628 spin_unlock(lock); 629 return err; 630 } 631 632 /** 633 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 634 * @mapping: the mapping which wants those buffers written 635 * 636 * Starts I/O against the buffers at mapping->private_list, and waits upon 637 * that I/O. 638 * 639 * Basically, this is a convenience function for fsync(). 640 * @mapping is a file or directory which needs those buffers to be written for 641 * a successful fsync(). 642 */ 643 int sync_mapping_buffers(struct address_space *mapping) 644 { 645 struct address_space *buffer_mapping = mapping->assoc_mapping; 646 647 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 648 return 0; 649 650 return fsync_buffers_list(&buffer_mapping->private_lock, 651 &mapping->private_list); 652 } 653 EXPORT_SYMBOL(sync_mapping_buffers); 654 655 /* 656 * Called when we've recently written block `bblock', and it is known that 657 * `bblock' was for a buffer_boundary() buffer. This means that the block at 658 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 659 * dirty, schedule it for IO. So that indirects merge nicely with their data. 660 */ 661 void write_boundary_block(struct block_device *bdev, 662 sector_t bblock, unsigned blocksize) 663 { 664 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 665 if (bh) { 666 if (buffer_dirty(bh)) 667 ll_rw_block(WRITE, 1, &bh); 668 put_bh(bh); 669 } 670 } 671 672 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 673 { 674 struct address_space *mapping = inode->i_mapping; 675 struct address_space *buffer_mapping = bh->b_page->mapping; 676 677 mark_buffer_dirty(bh); 678 if (!mapping->assoc_mapping) { 679 mapping->assoc_mapping = buffer_mapping; 680 } else { 681 BUG_ON(mapping->assoc_mapping != buffer_mapping); 682 } 683 if (!bh->b_assoc_map) { 684 spin_lock(&buffer_mapping->private_lock); 685 list_move_tail(&bh->b_assoc_buffers, 686 &mapping->private_list); 687 bh->b_assoc_map = mapping; 688 spin_unlock(&buffer_mapping->private_lock); 689 } 690 } 691 EXPORT_SYMBOL(mark_buffer_dirty_inode); 692 693 /* 694 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 695 * dirty. 696 * 697 * If warn is true, then emit a warning if the page is not uptodate and has 698 * not been truncated. 699 */ 700 static int __set_page_dirty(struct page *page, 701 struct address_space *mapping, int warn) 702 { 703 if (unlikely(!mapping)) 704 return !TestSetPageDirty(page); 705 706 if (TestSetPageDirty(page)) 707 return 0; 708 709 spin_lock_irq(&mapping->tree_lock); 710 if (page->mapping) { /* Race with truncate? */ 711 WARN_ON_ONCE(warn && !PageUptodate(page)); 712 713 if (mapping_cap_account_dirty(mapping)) { 714 __inc_zone_page_state(page, NR_FILE_DIRTY); 715 __inc_bdi_stat(mapping->backing_dev_info, 716 BDI_RECLAIMABLE); 717 task_io_account_write(PAGE_CACHE_SIZE); 718 } 719 radix_tree_tag_set(&mapping->page_tree, 720 page_index(page), PAGECACHE_TAG_DIRTY); 721 } 722 spin_unlock_irq(&mapping->tree_lock); 723 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 724 725 return 1; 726 } 727 728 /* 729 * Add a page to the dirty page list. 730 * 731 * It is a sad fact of life that this function is called from several places 732 * deeply under spinlocking. It may not sleep. 733 * 734 * If the page has buffers, the uptodate buffers are set dirty, to preserve 735 * dirty-state coherency between the page and the buffers. It the page does 736 * not have buffers then when they are later attached they will all be set 737 * dirty. 738 * 739 * The buffers are dirtied before the page is dirtied. There's a small race 740 * window in which a writepage caller may see the page cleanness but not the 741 * buffer dirtiness. That's fine. If this code were to set the page dirty 742 * before the buffers, a concurrent writepage caller could clear the page dirty 743 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 744 * page on the dirty page list. 745 * 746 * We use private_lock to lock against try_to_free_buffers while using the 747 * page's buffer list. Also use this to protect against clean buffers being 748 * added to the page after it was set dirty. 749 * 750 * FIXME: may need to call ->reservepage here as well. That's rather up to the 751 * address_space though. 752 */ 753 int __set_page_dirty_buffers(struct page *page) 754 { 755 struct address_space *mapping = page_mapping(page); 756 757 if (unlikely(!mapping)) 758 return !TestSetPageDirty(page); 759 760 spin_lock(&mapping->private_lock); 761 if (page_has_buffers(page)) { 762 struct buffer_head *head = page_buffers(page); 763 struct buffer_head *bh = head; 764 765 do { 766 set_buffer_dirty(bh); 767 bh = bh->b_this_page; 768 } while (bh != head); 769 } 770 spin_unlock(&mapping->private_lock); 771 772 return __set_page_dirty(page, mapping, 1); 773 } 774 EXPORT_SYMBOL(__set_page_dirty_buffers); 775 776 /* 777 * Write out and wait upon a list of buffers. 778 * 779 * We have conflicting pressures: we want to make sure that all 780 * initially dirty buffers get waited on, but that any subsequently 781 * dirtied buffers don't. After all, we don't want fsync to last 782 * forever if somebody is actively writing to the file. 783 * 784 * Do this in two main stages: first we copy dirty buffers to a 785 * temporary inode list, queueing the writes as we go. Then we clean 786 * up, waiting for those writes to complete. 787 * 788 * During this second stage, any subsequent updates to the file may end 789 * up refiling the buffer on the original inode's dirty list again, so 790 * there is a chance we will end up with a buffer queued for write but 791 * not yet completed on that list. So, as a final cleanup we go through 792 * the osync code to catch these locked, dirty buffers without requeuing 793 * any newly dirty buffers for write. 794 */ 795 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 796 { 797 struct buffer_head *bh; 798 struct list_head tmp; 799 struct address_space *mapping; 800 int err = 0, err2; 801 802 INIT_LIST_HEAD(&tmp); 803 804 spin_lock(lock); 805 while (!list_empty(list)) { 806 bh = BH_ENTRY(list->next); 807 mapping = bh->b_assoc_map; 808 __remove_assoc_queue(bh); 809 /* Avoid race with mark_buffer_dirty_inode() which does 810 * a lockless check and we rely on seeing the dirty bit */ 811 smp_mb(); 812 if (buffer_dirty(bh) || buffer_locked(bh)) { 813 list_add(&bh->b_assoc_buffers, &tmp); 814 bh->b_assoc_map = mapping; 815 if (buffer_dirty(bh)) { 816 get_bh(bh); 817 spin_unlock(lock); 818 /* 819 * Ensure any pending I/O completes so that 820 * ll_rw_block() actually writes the current 821 * contents - it is a noop if I/O is still in 822 * flight on potentially older contents. 823 */ 824 ll_rw_block(SWRITE_SYNC, 1, &bh); 825 brelse(bh); 826 spin_lock(lock); 827 } 828 } 829 } 830 831 while (!list_empty(&tmp)) { 832 bh = BH_ENTRY(tmp.prev); 833 get_bh(bh); 834 mapping = bh->b_assoc_map; 835 __remove_assoc_queue(bh); 836 /* Avoid race with mark_buffer_dirty_inode() which does 837 * a lockless check and we rely on seeing the dirty bit */ 838 smp_mb(); 839 if (buffer_dirty(bh)) { 840 list_add(&bh->b_assoc_buffers, 841 &mapping->private_list); 842 bh->b_assoc_map = mapping; 843 } 844 spin_unlock(lock); 845 wait_on_buffer(bh); 846 if (!buffer_uptodate(bh)) 847 err = -EIO; 848 brelse(bh); 849 spin_lock(lock); 850 } 851 852 spin_unlock(lock); 853 err2 = osync_buffers_list(lock, list); 854 if (err) 855 return err; 856 else 857 return err2; 858 } 859 860 /* 861 * Invalidate any and all dirty buffers on a given inode. We are 862 * probably unmounting the fs, but that doesn't mean we have already 863 * done a sync(). Just drop the buffers from the inode list. 864 * 865 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 866 * assumes that all the buffers are against the blockdev. Not true 867 * for reiserfs. 868 */ 869 void invalidate_inode_buffers(struct inode *inode) 870 { 871 if (inode_has_buffers(inode)) { 872 struct address_space *mapping = &inode->i_data; 873 struct list_head *list = &mapping->private_list; 874 struct address_space *buffer_mapping = mapping->assoc_mapping; 875 876 spin_lock(&buffer_mapping->private_lock); 877 while (!list_empty(list)) 878 __remove_assoc_queue(BH_ENTRY(list->next)); 879 spin_unlock(&buffer_mapping->private_lock); 880 } 881 } 882 883 /* 884 * Remove any clean buffers from the inode's buffer list. This is called 885 * when we're trying to free the inode itself. Those buffers can pin it. 886 * 887 * Returns true if all buffers were removed. 888 */ 889 int remove_inode_buffers(struct inode *inode) 890 { 891 int ret = 1; 892 893 if (inode_has_buffers(inode)) { 894 struct address_space *mapping = &inode->i_data; 895 struct list_head *list = &mapping->private_list; 896 struct address_space *buffer_mapping = mapping->assoc_mapping; 897 898 spin_lock(&buffer_mapping->private_lock); 899 while (!list_empty(list)) { 900 struct buffer_head *bh = BH_ENTRY(list->next); 901 if (buffer_dirty(bh)) { 902 ret = 0; 903 break; 904 } 905 __remove_assoc_queue(bh); 906 } 907 spin_unlock(&buffer_mapping->private_lock); 908 } 909 return ret; 910 } 911 912 /* 913 * Create the appropriate buffers when given a page for data area and 914 * the size of each buffer.. Use the bh->b_this_page linked list to 915 * follow the buffers created. Return NULL if unable to create more 916 * buffers. 917 * 918 * The retry flag is used to differentiate async IO (paging, swapping) 919 * which may not fail from ordinary buffer allocations. 920 */ 921 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 922 int retry) 923 { 924 struct buffer_head *bh, *head; 925 long offset; 926 927 try_again: 928 head = NULL; 929 offset = PAGE_SIZE; 930 while ((offset -= size) >= 0) { 931 bh = alloc_buffer_head(GFP_NOFS); 932 if (!bh) 933 goto no_grow; 934 935 bh->b_bdev = NULL; 936 bh->b_this_page = head; 937 bh->b_blocknr = -1; 938 head = bh; 939 940 bh->b_state = 0; 941 atomic_set(&bh->b_count, 0); 942 bh->b_private = NULL; 943 bh->b_size = size; 944 945 /* Link the buffer to its page */ 946 set_bh_page(bh, page, offset); 947 948 init_buffer(bh, NULL, NULL); 949 } 950 return head; 951 /* 952 * In case anything failed, we just free everything we got. 953 */ 954 no_grow: 955 if (head) { 956 do { 957 bh = head; 958 head = head->b_this_page; 959 free_buffer_head(bh); 960 } while (head); 961 } 962 963 /* 964 * Return failure for non-async IO requests. Async IO requests 965 * are not allowed to fail, so we have to wait until buffer heads 966 * become available. But we don't want tasks sleeping with 967 * partially complete buffers, so all were released above. 968 */ 969 if (!retry) 970 return NULL; 971 972 /* We're _really_ low on memory. Now we just 973 * wait for old buffer heads to become free due to 974 * finishing IO. Since this is an async request and 975 * the reserve list is empty, we're sure there are 976 * async buffer heads in use. 977 */ 978 free_more_memory(); 979 goto try_again; 980 } 981 EXPORT_SYMBOL_GPL(alloc_page_buffers); 982 983 static inline void 984 link_dev_buffers(struct page *page, struct buffer_head *head) 985 { 986 struct buffer_head *bh, *tail; 987 988 bh = head; 989 do { 990 tail = bh; 991 bh = bh->b_this_page; 992 } while (bh); 993 tail->b_this_page = head; 994 attach_page_buffers(page, head); 995 } 996 997 /* 998 * Initialise the state of a blockdev page's buffers. 999 */ 1000 static void 1001 init_page_buffers(struct page *page, struct block_device *bdev, 1002 sector_t block, int size) 1003 { 1004 struct buffer_head *head = page_buffers(page); 1005 struct buffer_head *bh = head; 1006 int uptodate = PageUptodate(page); 1007 1008 do { 1009 if (!buffer_mapped(bh)) { 1010 init_buffer(bh, NULL, NULL); 1011 bh->b_bdev = bdev; 1012 bh->b_blocknr = block; 1013 if (uptodate) 1014 set_buffer_uptodate(bh); 1015 set_buffer_mapped(bh); 1016 } 1017 block++; 1018 bh = bh->b_this_page; 1019 } while (bh != head); 1020 } 1021 1022 /* 1023 * Create the page-cache page that contains the requested block. 1024 * 1025 * This is user purely for blockdev mappings. 1026 */ 1027 static struct page * 1028 grow_dev_page(struct block_device *bdev, sector_t block, 1029 pgoff_t index, int size) 1030 { 1031 struct inode *inode = bdev->bd_inode; 1032 struct page *page; 1033 struct buffer_head *bh; 1034 1035 page = find_or_create_page(inode->i_mapping, index, 1036 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 1037 if (!page) 1038 return NULL; 1039 1040 BUG_ON(!PageLocked(page)); 1041 1042 if (page_has_buffers(page)) { 1043 bh = page_buffers(page); 1044 if (bh->b_size == size) { 1045 init_page_buffers(page, bdev, block, size); 1046 return page; 1047 } 1048 if (!try_to_free_buffers(page)) 1049 goto failed; 1050 } 1051 1052 /* 1053 * Allocate some buffers for this page 1054 */ 1055 bh = alloc_page_buffers(page, size, 0); 1056 if (!bh) 1057 goto failed; 1058 1059 /* 1060 * Link the page to the buffers and initialise them. Take the 1061 * lock to be atomic wrt __find_get_block(), which does not 1062 * run under the page lock. 1063 */ 1064 spin_lock(&inode->i_mapping->private_lock); 1065 link_dev_buffers(page, bh); 1066 init_page_buffers(page, bdev, block, size); 1067 spin_unlock(&inode->i_mapping->private_lock); 1068 return page; 1069 1070 failed: 1071 BUG(); 1072 unlock_page(page); 1073 page_cache_release(page); 1074 return NULL; 1075 } 1076 1077 /* 1078 * Create buffers for the specified block device block's page. If 1079 * that page was dirty, the buffers are set dirty also. 1080 */ 1081 static int 1082 grow_buffers(struct block_device *bdev, sector_t block, int size) 1083 { 1084 struct page *page; 1085 pgoff_t index; 1086 int sizebits; 1087 1088 sizebits = -1; 1089 do { 1090 sizebits++; 1091 } while ((size << sizebits) < PAGE_SIZE); 1092 1093 index = block >> sizebits; 1094 1095 /* 1096 * Check for a block which wants to lie outside our maximum possible 1097 * pagecache index. (this comparison is done using sector_t types). 1098 */ 1099 if (unlikely(index != block >> sizebits)) { 1100 char b[BDEVNAME_SIZE]; 1101 1102 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1103 "device %s\n", 1104 __func__, (unsigned long long)block, 1105 bdevname(bdev, b)); 1106 return -EIO; 1107 } 1108 block = index << sizebits; 1109 /* Create a page with the proper size buffers.. */ 1110 page = grow_dev_page(bdev, block, index, size); 1111 if (!page) 1112 return 0; 1113 unlock_page(page); 1114 page_cache_release(page); 1115 return 1; 1116 } 1117 1118 static struct buffer_head * 1119 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1120 { 1121 /* Size must be multiple of hard sectorsize */ 1122 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1123 (size < 512 || size > PAGE_SIZE))) { 1124 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1125 size); 1126 printk(KERN_ERR "hardsect size: %d\n", 1127 bdev_hardsect_size(bdev)); 1128 1129 dump_stack(); 1130 return NULL; 1131 } 1132 1133 for (;;) { 1134 struct buffer_head * bh; 1135 int ret; 1136 1137 bh = __find_get_block(bdev, block, size); 1138 if (bh) 1139 return bh; 1140 1141 ret = grow_buffers(bdev, block, size); 1142 if (ret < 0) 1143 return NULL; 1144 if (ret == 0) 1145 free_more_memory(); 1146 } 1147 } 1148 1149 /* 1150 * The relationship between dirty buffers and dirty pages: 1151 * 1152 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1153 * the page is tagged dirty in its radix tree. 1154 * 1155 * At all times, the dirtiness of the buffers represents the dirtiness of 1156 * subsections of the page. If the page has buffers, the page dirty bit is 1157 * merely a hint about the true dirty state. 1158 * 1159 * When a page is set dirty in its entirety, all its buffers are marked dirty 1160 * (if the page has buffers). 1161 * 1162 * When a buffer is marked dirty, its page is dirtied, but the page's other 1163 * buffers are not. 1164 * 1165 * Also. When blockdev buffers are explicitly read with bread(), they 1166 * individually become uptodate. But their backing page remains not 1167 * uptodate - even if all of its buffers are uptodate. A subsequent 1168 * block_read_full_page() against that page will discover all the uptodate 1169 * buffers, will set the page uptodate and will perform no I/O. 1170 */ 1171 1172 /** 1173 * mark_buffer_dirty - mark a buffer_head as needing writeout 1174 * @bh: the buffer_head to mark dirty 1175 * 1176 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1177 * backing page dirty, then tag the page as dirty in its address_space's radix 1178 * tree and then attach the address_space's inode to its superblock's dirty 1179 * inode list. 1180 * 1181 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1182 * mapping->tree_lock and the global inode_lock. 1183 */ 1184 void mark_buffer_dirty(struct buffer_head *bh) 1185 { 1186 WARN_ON_ONCE(!buffer_uptodate(bh)); 1187 1188 /* 1189 * Very *carefully* optimize the it-is-already-dirty case. 1190 * 1191 * Don't let the final "is it dirty" escape to before we 1192 * perhaps modified the buffer. 1193 */ 1194 if (buffer_dirty(bh)) { 1195 smp_mb(); 1196 if (buffer_dirty(bh)) 1197 return; 1198 } 1199 1200 if (!test_set_buffer_dirty(bh)) 1201 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0); 1202 } 1203 1204 /* 1205 * Decrement a buffer_head's reference count. If all buffers against a page 1206 * have zero reference count, are clean and unlocked, and if the page is clean 1207 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1208 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1209 * a page but it ends up not being freed, and buffers may later be reattached). 1210 */ 1211 void __brelse(struct buffer_head * buf) 1212 { 1213 if (atomic_read(&buf->b_count)) { 1214 put_bh(buf); 1215 return; 1216 } 1217 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1218 } 1219 1220 /* 1221 * bforget() is like brelse(), except it discards any 1222 * potentially dirty data. 1223 */ 1224 void __bforget(struct buffer_head *bh) 1225 { 1226 clear_buffer_dirty(bh); 1227 if (bh->b_assoc_map) { 1228 struct address_space *buffer_mapping = bh->b_page->mapping; 1229 1230 spin_lock(&buffer_mapping->private_lock); 1231 list_del_init(&bh->b_assoc_buffers); 1232 bh->b_assoc_map = NULL; 1233 spin_unlock(&buffer_mapping->private_lock); 1234 } 1235 __brelse(bh); 1236 } 1237 1238 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1239 { 1240 lock_buffer(bh); 1241 if (buffer_uptodate(bh)) { 1242 unlock_buffer(bh); 1243 return bh; 1244 } else { 1245 get_bh(bh); 1246 bh->b_end_io = end_buffer_read_sync; 1247 submit_bh(READ, bh); 1248 wait_on_buffer(bh); 1249 if (buffer_uptodate(bh)) 1250 return bh; 1251 } 1252 brelse(bh); 1253 return NULL; 1254 } 1255 1256 /* 1257 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1258 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1259 * refcount elevated by one when they're in an LRU. A buffer can only appear 1260 * once in a particular CPU's LRU. A single buffer can be present in multiple 1261 * CPU's LRUs at the same time. 1262 * 1263 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1264 * sb_find_get_block(). 1265 * 1266 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1267 * a local interrupt disable for that. 1268 */ 1269 1270 #define BH_LRU_SIZE 8 1271 1272 struct bh_lru { 1273 struct buffer_head *bhs[BH_LRU_SIZE]; 1274 }; 1275 1276 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1277 1278 #ifdef CONFIG_SMP 1279 #define bh_lru_lock() local_irq_disable() 1280 #define bh_lru_unlock() local_irq_enable() 1281 #else 1282 #define bh_lru_lock() preempt_disable() 1283 #define bh_lru_unlock() preempt_enable() 1284 #endif 1285 1286 static inline void check_irqs_on(void) 1287 { 1288 #ifdef irqs_disabled 1289 BUG_ON(irqs_disabled()); 1290 #endif 1291 } 1292 1293 /* 1294 * The LRU management algorithm is dopey-but-simple. Sorry. 1295 */ 1296 static void bh_lru_install(struct buffer_head *bh) 1297 { 1298 struct buffer_head *evictee = NULL; 1299 struct bh_lru *lru; 1300 1301 check_irqs_on(); 1302 bh_lru_lock(); 1303 lru = &__get_cpu_var(bh_lrus); 1304 if (lru->bhs[0] != bh) { 1305 struct buffer_head *bhs[BH_LRU_SIZE]; 1306 int in; 1307 int out = 0; 1308 1309 get_bh(bh); 1310 bhs[out++] = bh; 1311 for (in = 0; in < BH_LRU_SIZE; in++) { 1312 struct buffer_head *bh2 = lru->bhs[in]; 1313 1314 if (bh2 == bh) { 1315 __brelse(bh2); 1316 } else { 1317 if (out >= BH_LRU_SIZE) { 1318 BUG_ON(evictee != NULL); 1319 evictee = bh2; 1320 } else { 1321 bhs[out++] = bh2; 1322 } 1323 } 1324 } 1325 while (out < BH_LRU_SIZE) 1326 bhs[out++] = NULL; 1327 memcpy(lru->bhs, bhs, sizeof(bhs)); 1328 } 1329 bh_lru_unlock(); 1330 1331 if (evictee) 1332 __brelse(evictee); 1333 } 1334 1335 /* 1336 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1337 */ 1338 static struct buffer_head * 1339 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1340 { 1341 struct buffer_head *ret = NULL; 1342 struct bh_lru *lru; 1343 unsigned int i; 1344 1345 check_irqs_on(); 1346 bh_lru_lock(); 1347 lru = &__get_cpu_var(bh_lrus); 1348 for (i = 0; i < BH_LRU_SIZE; i++) { 1349 struct buffer_head *bh = lru->bhs[i]; 1350 1351 if (bh && bh->b_bdev == bdev && 1352 bh->b_blocknr == block && bh->b_size == size) { 1353 if (i) { 1354 while (i) { 1355 lru->bhs[i] = lru->bhs[i - 1]; 1356 i--; 1357 } 1358 lru->bhs[0] = bh; 1359 } 1360 get_bh(bh); 1361 ret = bh; 1362 break; 1363 } 1364 } 1365 bh_lru_unlock(); 1366 return ret; 1367 } 1368 1369 /* 1370 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1371 * it in the LRU and mark it as accessed. If it is not present then return 1372 * NULL 1373 */ 1374 struct buffer_head * 1375 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1376 { 1377 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1378 1379 if (bh == NULL) { 1380 bh = __find_get_block_slow(bdev, block); 1381 if (bh) 1382 bh_lru_install(bh); 1383 } 1384 if (bh) 1385 touch_buffer(bh); 1386 return bh; 1387 } 1388 EXPORT_SYMBOL(__find_get_block); 1389 1390 /* 1391 * __getblk will locate (and, if necessary, create) the buffer_head 1392 * which corresponds to the passed block_device, block and size. The 1393 * returned buffer has its reference count incremented. 1394 * 1395 * __getblk() cannot fail - it just keeps trying. If you pass it an 1396 * illegal block number, __getblk() will happily return a buffer_head 1397 * which represents the non-existent block. Very weird. 1398 * 1399 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1400 * attempt is failing. FIXME, perhaps? 1401 */ 1402 struct buffer_head * 1403 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1404 { 1405 struct buffer_head *bh = __find_get_block(bdev, block, size); 1406 1407 might_sleep(); 1408 if (bh == NULL) 1409 bh = __getblk_slow(bdev, block, size); 1410 return bh; 1411 } 1412 EXPORT_SYMBOL(__getblk); 1413 1414 /* 1415 * Do async read-ahead on a buffer.. 1416 */ 1417 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1418 { 1419 struct buffer_head *bh = __getblk(bdev, block, size); 1420 if (likely(bh)) { 1421 ll_rw_block(READA, 1, &bh); 1422 brelse(bh); 1423 } 1424 } 1425 EXPORT_SYMBOL(__breadahead); 1426 1427 /** 1428 * __bread() - reads a specified block and returns the bh 1429 * @bdev: the block_device to read from 1430 * @block: number of block 1431 * @size: size (in bytes) to read 1432 * 1433 * Reads a specified block, and returns buffer head that contains it. 1434 * It returns NULL if the block was unreadable. 1435 */ 1436 struct buffer_head * 1437 __bread(struct block_device *bdev, sector_t block, unsigned size) 1438 { 1439 struct buffer_head *bh = __getblk(bdev, block, size); 1440 1441 if (likely(bh) && !buffer_uptodate(bh)) 1442 bh = __bread_slow(bh); 1443 return bh; 1444 } 1445 EXPORT_SYMBOL(__bread); 1446 1447 /* 1448 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1449 * This doesn't race because it runs in each cpu either in irq 1450 * or with preempt disabled. 1451 */ 1452 static void invalidate_bh_lru(void *arg) 1453 { 1454 struct bh_lru *b = &get_cpu_var(bh_lrus); 1455 int i; 1456 1457 for (i = 0; i < BH_LRU_SIZE; i++) { 1458 brelse(b->bhs[i]); 1459 b->bhs[i] = NULL; 1460 } 1461 put_cpu_var(bh_lrus); 1462 } 1463 1464 void invalidate_bh_lrus(void) 1465 { 1466 on_each_cpu(invalidate_bh_lru, NULL, 1); 1467 } 1468 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1469 1470 void set_bh_page(struct buffer_head *bh, 1471 struct page *page, unsigned long offset) 1472 { 1473 bh->b_page = page; 1474 BUG_ON(offset >= PAGE_SIZE); 1475 if (PageHighMem(page)) 1476 /* 1477 * This catches illegal uses and preserves the offset: 1478 */ 1479 bh->b_data = (char *)(0 + offset); 1480 else 1481 bh->b_data = page_address(page) + offset; 1482 } 1483 EXPORT_SYMBOL(set_bh_page); 1484 1485 /* 1486 * Called when truncating a buffer on a page completely. 1487 */ 1488 static void discard_buffer(struct buffer_head * bh) 1489 { 1490 lock_buffer(bh); 1491 clear_buffer_dirty(bh); 1492 bh->b_bdev = NULL; 1493 clear_buffer_mapped(bh); 1494 clear_buffer_req(bh); 1495 clear_buffer_new(bh); 1496 clear_buffer_delay(bh); 1497 clear_buffer_unwritten(bh); 1498 unlock_buffer(bh); 1499 } 1500 1501 /** 1502 * block_invalidatepage - invalidate part of all of a buffer-backed page 1503 * 1504 * @page: the page which is affected 1505 * @offset: the index of the truncation point 1506 * 1507 * block_invalidatepage() is called when all or part of the page has become 1508 * invalidatedby a truncate operation. 1509 * 1510 * block_invalidatepage() does not have to release all buffers, but it must 1511 * ensure that no dirty buffer is left outside @offset and that no I/O 1512 * is underway against any of the blocks which are outside the truncation 1513 * point. Because the caller is about to free (and possibly reuse) those 1514 * blocks on-disk. 1515 */ 1516 void block_invalidatepage(struct page *page, unsigned long offset) 1517 { 1518 struct buffer_head *head, *bh, *next; 1519 unsigned int curr_off = 0; 1520 1521 BUG_ON(!PageLocked(page)); 1522 if (!page_has_buffers(page)) 1523 goto out; 1524 1525 head = page_buffers(page); 1526 bh = head; 1527 do { 1528 unsigned int next_off = curr_off + bh->b_size; 1529 next = bh->b_this_page; 1530 1531 /* 1532 * is this block fully invalidated? 1533 */ 1534 if (offset <= curr_off) 1535 discard_buffer(bh); 1536 curr_off = next_off; 1537 bh = next; 1538 } while (bh != head); 1539 1540 /* 1541 * We release buffers only if the entire page is being invalidated. 1542 * The get_block cached value has been unconditionally invalidated, 1543 * so real IO is not possible anymore. 1544 */ 1545 if (offset == 0) 1546 try_to_release_page(page, 0); 1547 out: 1548 return; 1549 } 1550 EXPORT_SYMBOL(block_invalidatepage); 1551 1552 /* 1553 * We attach and possibly dirty the buffers atomically wrt 1554 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1555 * is already excluded via the page lock. 1556 */ 1557 void create_empty_buffers(struct page *page, 1558 unsigned long blocksize, unsigned long b_state) 1559 { 1560 struct buffer_head *bh, *head, *tail; 1561 1562 head = alloc_page_buffers(page, blocksize, 1); 1563 bh = head; 1564 do { 1565 bh->b_state |= b_state; 1566 tail = bh; 1567 bh = bh->b_this_page; 1568 } while (bh); 1569 tail->b_this_page = head; 1570 1571 spin_lock(&page->mapping->private_lock); 1572 if (PageUptodate(page) || PageDirty(page)) { 1573 bh = head; 1574 do { 1575 if (PageDirty(page)) 1576 set_buffer_dirty(bh); 1577 if (PageUptodate(page)) 1578 set_buffer_uptodate(bh); 1579 bh = bh->b_this_page; 1580 } while (bh != head); 1581 } 1582 attach_page_buffers(page, head); 1583 spin_unlock(&page->mapping->private_lock); 1584 } 1585 EXPORT_SYMBOL(create_empty_buffers); 1586 1587 /* 1588 * We are taking a block for data and we don't want any output from any 1589 * buffer-cache aliases starting from return from that function and 1590 * until the moment when something will explicitly mark the buffer 1591 * dirty (hopefully that will not happen until we will free that block ;-) 1592 * We don't even need to mark it not-uptodate - nobody can expect 1593 * anything from a newly allocated buffer anyway. We used to used 1594 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1595 * don't want to mark the alias unmapped, for example - it would confuse 1596 * anyone who might pick it with bread() afterwards... 1597 * 1598 * Also.. Note that bforget() doesn't lock the buffer. So there can 1599 * be writeout I/O going on against recently-freed buffers. We don't 1600 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1601 * only if we really need to. That happens here. 1602 */ 1603 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1604 { 1605 struct buffer_head *old_bh; 1606 1607 might_sleep(); 1608 1609 old_bh = __find_get_block_slow(bdev, block); 1610 if (old_bh) { 1611 clear_buffer_dirty(old_bh); 1612 wait_on_buffer(old_bh); 1613 clear_buffer_req(old_bh); 1614 __brelse(old_bh); 1615 } 1616 } 1617 EXPORT_SYMBOL(unmap_underlying_metadata); 1618 1619 /* 1620 * NOTE! All mapped/uptodate combinations are valid: 1621 * 1622 * Mapped Uptodate Meaning 1623 * 1624 * No No "unknown" - must do get_block() 1625 * No Yes "hole" - zero-filled 1626 * Yes No "allocated" - allocated on disk, not read in 1627 * Yes Yes "valid" - allocated and up-to-date in memory. 1628 * 1629 * "Dirty" is valid only with the last case (mapped+uptodate). 1630 */ 1631 1632 /* 1633 * While block_write_full_page is writing back the dirty buffers under 1634 * the page lock, whoever dirtied the buffers may decide to clean them 1635 * again at any time. We handle that by only looking at the buffer 1636 * state inside lock_buffer(). 1637 * 1638 * If block_write_full_page() is called for regular writeback 1639 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1640 * locked buffer. This only can happen if someone has written the buffer 1641 * directly, with submit_bh(). At the address_space level PageWriteback 1642 * prevents this contention from occurring. 1643 */ 1644 static int __block_write_full_page(struct inode *inode, struct page *page, 1645 get_block_t *get_block, struct writeback_control *wbc) 1646 { 1647 int err; 1648 sector_t block; 1649 sector_t last_block; 1650 struct buffer_head *bh, *head; 1651 const unsigned blocksize = 1 << inode->i_blkbits; 1652 int nr_underway = 0; 1653 1654 BUG_ON(!PageLocked(page)); 1655 1656 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1657 1658 if (!page_has_buffers(page)) { 1659 create_empty_buffers(page, blocksize, 1660 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1661 } 1662 1663 /* 1664 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1665 * here, and the (potentially unmapped) buffers may become dirty at 1666 * any time. If a buffer becomes dirty here after we've inspected it 1667 * then we just miss that fact, and the page stays dirty. 1668 * 1669 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1670 * handle that here by just cleaning them. 1671 */ 1672 1673 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1674 head = page_buffers(page); 1675 bh = head; 1676 1677 /* 1678 * Get all the dirty buffers mapped to disk addresses and 1679 * handle any aliases from the underlying blockdev's mapping. 1680 */ 1681 do { 1682 if (block > last_block) { 1683 /* 1684 * mapped buffers outside i_size will occur, because 1685 * this page can be outside i_size when there is a 1686 * truncate in progress. 1687 */ 1688 /* 1689 * The buffer was zeroed by block_write_full_page() 1690 */ 1691 clear_buffer_dirty(bh); 1692 set_buffer_uptodate(bh); 1693 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1694 buffer_dirty(bh)) { 1695 WARN_ON(bh->b_size != blocksize); 1696 err = get_block(inode, block, bh, 1); 1697 if (err) 1698 goto recover; 1699 clear_buffer_delay(bh); 1700 if (buffer_new(bh)) { 1701 /* blockdev mappings never come here */ 1702 clear_buffer_new(bh); 1703 unmap_underlying_metadata(bh->b_bdev, 1704 bh->b_blocknr); 1705 } 1706 } 1707 bh = bh->b_this_page; 1708 block++; 1709 } while (bh != head); 1710 1711 do { 1712 if (!buffer_mapped(bh)) 1713 continue; 1714 /* 1715 * If it's a fully non-blocking write attempt and we cannot 1716 * lock the buffer then redirty the page. Note that this can 1717 * potentially cause a busy-wait loop from pdflush and kswapd 1718 * activity, but those code paths have their own higher-level 1719 * throttling. 1720 */ 1721 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1722 lock_buffer(bh); 1723 } else if (test_set_buffer_locked(bh)) { 1724 redirty_page_for_writepage(wbc, page); 1725 continue; 1726 } 1727 if (test_clear_buffer_dirty(bh)) { 1728 mark_buffer_async_write(bh); 1729 } else { 1730 unlock_buffer(bh); 1731 } 1732 } while ((bh = bh->b_this_page) != head); 1733 1734 /* 1735 * The page and its buffers are protected by PageWriteback(), so we can 1736 * drop the bh refcounts early. 1737 */ 1738 BUG_ON(PageWriteback(page)); 1739 set_page_writeback(page); 1740 1741 do { 1742 struct buffer_head *next = bh->b_this_page; 1743 if (buffer_async_write(bh)) { 1744 submit_bh(WRITE, bh); 1745 nr_underway++; 1746 } 1747 bh = next; 1748 } while (bh != head); 1749 unlock_page(page); 1750 1751 err = 0; 1752 done: 1753 if (nr_underway == 0) { 1754 /* 1755 * The page was marked dirty, but the buffers were 1756 * clean. Someone wrote them back by hand with 1757 * ll_rw_block/submit_bh. A rare case. 1758 */ 1759 end_page_writeback(page); 1760 1761 /* 1762 * The page and buffer_heads can be released at any time from 1763 * here on. 1764 */ 1765 } 1766 return err; 1767 1768 recover: 1769 /* 1770 * ENOSPC, or some other error. We may already have added some 1771 * blocks to the file, so we need to write these out to avoid 1772 * exposing stale data. 1773 * The page is currently locked and not marked for writeback 1774 */ 1775 bh = head; 1776 /* Recovery: lock and submit the mapped buffers */ 1777 do { 1778 if (buffer_mapped(bh) && buffer_dirty(bh) && 1779 !buffer_delay(bh)) { 1780 lock_buffer(bh); 1781 mark_buffer_async_write(bh); 1782 } else { 1783 /* 1784 * The buffer may have been set dirty during 1785 * attachment to a dirty page. 1786 */ 1787 clear_buffer_dirty(bh); 1788 } 1789 } while ((bh = bh->b_this_page) != head); 1790 SetPageError(page); 1791 BUG_ON(PageWriteback(page)); 1792 mapping_set_error(page->mapping, err); 1793 set_page_writeback(page); 1794 do { 1795 struct buffer_head *next = bh->b_this_page; 1796 if (buffer_async_write(bh)) { 1797 clear_buffer_dirty(bh); 1798 submit_bh(WRITE, bh); 1799 nr_underway++; 1800 } 1801 bh = next; 1802 } while (bh != head); 1803 unlock_page(page); 1804 goto done; 1805 } 1806 1807 /* 1808 * If a page has any new buffers, zero them out here, and mark them uptodate 1809 * and dirty so they'll be written out (in order to prevent uninitialised 1810 * block data from leaking). And clear the new bit. 1811 */ 1812 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1813 { 1814 unsigned int block_start, block_end; 1815 struct buffer_head *head, *bh; 1816 1817 BUG_ON(!PageLocked(page)); 1818 if (!page_has_buffers(page)) 1819 return; 1820 1821 bh = head = page_buffers(page); 1822 block_start = 0; 1823 do { 1824 block_end = block_start + bh->b_size; 1825 1826 if (buffer_new(bh)) { 1827 if (block_end > from && block_start < to) { 1828 if (!PageUptodate(page)) { 1829 unsigned start, size; 1830 1831 start = max(from, block_start); 1832 size = min(to, block_end) - start; 1833 1834 zero_user(page, start, size); 1835 set_buffer_uptodate(bh); 1836 } 1837 1838 clear_buffer_new(bh); 1839 mark_buffer_dirty(bh); 1840 } 1841 } 1842 1843 block_start = block_end; 1844 bh = bh->b_this_page; 1845 } while (bh != head); 1846 } 1847 EXPORT_SYMBOL(page_zero_new_buffers); 1848 1849 static int __block_prepare_write(struct inode *inode, struct page *page, 1850 unsigned from, unsigned to, get_block_t *get_block) 1851 { 1852 unsigned block_start, block_end; 1853 sector_t block; 1854 int err = 0; 1855 unsigned blocksize, bbits; 1856 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1857 1858 BUG_ON(!PageLocked(page)); 1859 BUG_ON(from > PAGE_CACHE_SIZE); 1860 BUG_ON(to > PAGE_CACHE_SIZE); 1861 BUG_ON(from > to); 1862 1863 blocksize = 1 << inode->i_blkbits; 1864 if (!page_has_buffers(page)) 1865 create_empty_buffers(page, blocksize, 0); 1866 head = page_buffers(page); 1867 1868 bbits = inode->i_blkbits; 1869 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1870 1871 for(bh = head, block_start = 0; bh != head || !block_start; 1872 block++, block_start=block_end, bh = bh->b_this_page) { 1873 block_end = block_start + blocksize; 1874 if (block_end <= from || block_start >= to) { 1875 if (PageUptodate(page)) { 1876 if (!buffer_uptodate(bh)) 1877 set_buffer_uptodate(bh); 1878 } 1879 continue; 1880 } 1881 if (buffer_new(bh)) 1882 clear_buffer_new(bh); 1883 if (!buffer_mapped(bh)) { 1884 WARN_ON(bh->b_size != blocksize); 1885 err = get_block(inode, block, bh, 1); 1886 if (err) 1887 break; 1888 if (buffer_new(bh)) { 1889 unmap_underlying_metadata(bh->b_bdev, 1890 bh->b_blocknr); 1891 if (PageUptodate(page)) { 1892 clear_buffer_new(bh); 1893 set_buffer_uptodate(bh); 1894 mark_buffer_dirty(bh); 1895 continue; 1896 } 1897 if (block_end > to || block_start < from) 1898 zero_user_segments(page, 1899 to, block_end, 1900 block_start, from); 1901 continue; 1902 } 1903 } 1904 if (PageUptodate(page)) { 1905 if (!buffer_uptodate(bh)) 1906 set_buffer_uptodate(bh); 1907 continue; 1908 } 1909 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1910 !buffer_unwritten(bh) && 1911 (block_start < from || block_end > to)) { 1912 ll_rw_block(READ, 1, &bh); 1913 *wait_bh++=bh; 1914 } 1915 } 1916 /* 1917 * If we issued read requests - let them complete. 1918 */ 1919 while(wait_bh > wait) { 1920 wait_on_buffer(*--wait_bh); 1921 if (!buffer_uptodate(*wait_bh)) 1922 err = -EIO; 1923 } 1924 if (unlikely(err)) 1925 page_zero_new_buffers(page, from, to); 1926 return err; 1927 } 1928 1929 static int __block_commit_write(struct inode *inode, struct page *page, 1930 unsigned from, unsigned to) 1931 { 1932 unsigned block_start, block_end; 1933 int partial = 0; 1934 unsigned blocksize; 1935 struct buffer_head *bh, *head; 1936 1937 blocksize = 1 << inode->i_blkbits; 1938 1939 for(bh = head = page_buffers(page), block_start = 0; 1940 bh != head || !block_start; 1941 block_start=block_end, bh = bh->b_this_page) { 1942 block_end = block_start + blocksize; 1943 if (block_end <= from || block_start >= to) { 1944 if (!buffer_uptodate(bh)) 1945 partial = 1; 1946 } else { 1947 set_buffer_uptodate(bh); 1948 mark_buffer_dirty(bh); 1949 } 1950 clear_buffer_new(bh); 1951 } 1952 1953 /* 1954 * If this is a partial write which happened to make all buffers 1955 * uptodate then we can optimize away a bogus readpage() for 1956 * the next read(). Here we 'discover' whether the page went 1957 * uptodate as a result of this (potentially partial) write. 1958 */ 1959 if (!partial) 1960 SetPageUptodate(page); 1961 return 0; 1962 } 1963 1964 /* 1965 * block_write_begin takes care of the basic task of block allocation and 1966 * bringing partial write blocks uptodate first. 1967 * 1968 * If *pagep is not NULL, then block_write_begin uses the locked page 1969 * at *pagep rather than allocating its own. In this case, the page will 1970 * not be unlocked or deallocated on failure. 1971 */ 1972 int block_write_begin(struct file *file, struct address_space *mapping, 1973 loff_t pos, unsigned len, unsigned flags, 1974 struct page **pagep, void **fsdata, 1975 get_block_t *get_block) 1976 { 1977 struct inode *inode = mapping->host; 1978 int status = 0; 1979 struct page *page; 1980 pgoff_t index; 1981 unsigned start, end; 1982 int ownpage = 0; 1983 1984 index = pos >> PAGE_CACHE_SHIFT; 1985 start = pos & (PAGE_CACHE_SIZE - 1); 1986 end = start + len; 1987 1988 page = *pagep; 1989 if (page == NULL) { 1990 ownpage = 1; 1991 page = __grab_cache_page(mapping, index); 1992 if (!page) { 1993 status = -ENOMEM; 1994 goto out; 1995 } 1996 *pagep = page; 1997 } else 1998 BUG_ON(!PageLocked(page)); 1999 2000 status = __block_prepare_write(inode, page, start, end, get_block); 2001 if (unlikely(status)) { 2002 ClearPageUptodate(page); 2003 2004 if (ownpage) { 2005 unlock_page(page); 2006 page_cache_release(page); 2007 *pagep = NULL; 2008 2009 /* 2010 * prepare_write() may have instantiated a few blocks 2011 * outside i_size. Trim these off again. Don't need 2012 * i_size_read because we hold i_mutex. 2013 */ 2014 if (pos + len > inode->i_size) 2015 vmtruncate(inode, inode->i_size); 2016 } 2017 goto out; 2018 } 2019 2020 out: 2021 return status; 2022 } 2023 EXPORT_SYMBOL(block_write_begin); 2024 2025 int block_write_end(struct file *file, struct address_space *mapping, 2026 loff_t pos, unsigned len, unsigned copied, 2027 struct page *page, void *fsdata) 2028 { 2029 struct inode *inode = mapping->host; 2030 unsigned start; 2031 2032 start = pos & (PAGE_CACHE_SIZE - 1); 2033 2034 if (unlikely(copied < len)) { 2035 /* 2036 * The buffers that were written will now be uptodate, so we 2037 * don't have to worry about a readpage reading them and 2038 * overwriting a partial write. However if we have encountered 2039 * a short write and only partially written into a buffer, it 2040 * will not be marked uptodate, so a readpage might come in and 2041 * destroy our partial write. 2042 * 2043 * Do the simplest thing, and just treat any short write to a 2044 * non uptodate page as a zero-length write, and force the 2045 * caller to redo the whole thing. 2046 */ 2047 if (!PageUptodate(page)) 2048 copied = 0; 2049 2050 page_zero_new_buffers(page, start+copied, start+len); 2051 } 2052 flush_dcache_page(page); 2053 2054 /* This could be a short (even 0-length) commit */ 2055 __block_commit_write(inode, page, start, start+copied); 2056 2057 return copied; 2058 } 2059 EXPORT_SYMBOL(block_write_end); 2060 2061 int generic_write_end(struct file *file, struct address_space *mapping, 2062 loff_t pos, unsigned len, unsigned copied, 2063 struct page *page, void *fsdata) 2064 { 2065 struct inode *inode = mapping->host; 2066 int i_size_changed = 0; 2067 2068 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2069 2070 /* 2071 * No need to use i_size_read() here, the i_size 2072 * cannot change under us because we hold i_mutex. 2073 * 2074 * But it's important to update i_size while still holding page lock: 2075 * page writeout could otherwise come in and zero beyond i_size. 2076 */ 2077 if (pos+copied > inode->i_size) { 2078 i_size_write(inode, pos+copied); 2079 i_size_changed = 1; 2080 } 2081 2082 unlock_page(page); 2083 page_cache_release(page); 2084 2085 /* 2086 * Don't mark the inode dirty under page lock. First, it unnecessarily 2087 * makes the holding time of page lock longer. Second, it forces lock 2088 * ordering of page lock and transaction start for journaling 2089 * filesystems. 2090 */ 2091 if (i_size_changed) 2092 mark_inode_dirty(inode); 2093 2094 return copied; 2095 } 2096 EXPORT_SYMBOL(generic_write_end); 2097 2098 /* 2099 * Generic "read page" function for block devices that have the normal 2100 * get_block functionality. This is most of the block device filesystems. 2101 * Reads the page asynchronously --- the unlock_buffer() and 2102 * set/clear_buffer_uptodate() functions propagate buffer state into the 2103 * page struct once IO has completed. 2104 */ 2105 int block_read_full_page(struct page *page, get_block_t *get_block) 2106 { 2107 struct inode *inode = page->mapping->host; 2108 sector_t iblock, lblock; 2109 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2110 unsigned int blocksize; 2111 int nr, i; 2112 int fully_mapped = 1; 2113 2114 BUG_ON(!PageLocked(page)); 2115 blocksize = 1 << inode->i_blkbits; 2116 if (!page_has_buffers(page)) 2117 create_empty_buffers(page, blocksize, 0); 2118 head = page_buffers(page); 2119 2120 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2121 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2122 bh = head; 2123 nr = 0; 2124 i = 0; 2125 2126 do { 2127 if (buffer_uptodate(bh)) 2128 continue; 2129 2130 if (!buffer_mapped(bh)) { 2131 int err = 0; 2132 2133 fully_mapped = 0; 2134 if (iblock < lblock) { 2135 WARN_ON(bh->b_size != blocksize); 2136 err = get_block(inode, iblock, bh, 0); 2137 if (err) 2138 SetPageError(page); 2139 } 2140 if (!buffer_mapped(bh)) { 2141 zero_user(page, i * blocksize, blocksize); 2142 if (!err) 2143 set_buffer_uptodate(bh); 2144 continue; 2145 } 2146 /* 2147 * get_block() might have updated the buffer 2148 * synchronously 2149 */ 2150 if (buffer_uptodate(bh)) 2151 continue; 2152 } 2153 arr[nr++] = bh; 2154 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2155 2156 if (fully_mapped) 2157 SetPageMappedToDisk(page); 2158 2159 if (!nr) { 2160 /* 2161 * All buffers are uptodate - we can set the page uptodate 2162 * as well. But not if get_block() returned an error. 2163 */ 2164 if (!PageError(page)) 2165 SetPageUptodate(page); 2166 unlock_page(page); 2167 return 0; 2168 } 2169 2170 /* Stage two: lock the buffers */ 2171 for (i = 0; i < nr; i++) { 2172 bh = arr[i]; 2173 lock_buffer(bh); 2174 mark_buffer_async_read(bh); 2175 } 2176 2177 /* 2178 * Stage 3: start the IO. Check for uptodateness 2179 * inside the buffer lock in case another process reading 2180 * the underlying blockdev brought it uptodate (the sct fix). 2181 */ 2182 for (i = 0; i < nr; i++) { 2183 bh = arr[i]; 2184 if (buffer_uptodate(bh)) 2185 end_buffer_async_read(bh, 1); 2186 else 2187 submit_bh(READ, bh); 2188 } 2189 return 0; 2190 } 2191 2192 /* utility function for filesystems that need to do work on expanding 2193 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2194 * deal with the hole. 2195 */ 2196 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2197 { 2198 struct address_space *mapping = inode->i_mapping; 2199 struct page *page; 2200 void *fsdata; 2201 unsigned long limit; 2202 int err; 2203 2204 err = -EFBIG; 2205 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2206 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2207 send_sig(SIGXFSZ, current, 0); 2208 goto out; 2209 } 2210 if (size > inode->i_sb->s_maxbytes) 2211 goto out; 2212 2213 err = pagecache_write_begin(NULL, mapping, size, 0, 2214 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2215 &page, &fsdata); 2216 if (err) 2217 goto out; 2218 2219 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2220 BUG_ON(err > 0); 2221 2222 out: 2223 return err; 2224 } 2225 2226 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2227 loff_t pos, loff_t *bytes) 2228 { 2229 struct inode *inode = mapping->host; 2230 unsigned blocksize = 1 << inode->i_blkbits; 2231 struct page *page; 2232 void *fsdata; 2233 pgoff_t index, curidx; 2234 loff_t curpos; 2235 unsigned zerofrom, offset, len; 2236 int err = 0; 2237 2238 index = pos >> PAGE_CACHE_SHIFT; 2239 offset = pos & ~PAGE_CACHE_MASK; 2240 2241 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2242 zerofrom = curpos & ~PAGE_CACHE_MASK; 2243 if (zerofrom & (blocksize-1)) { 2244 *bytes |= (blocksize-1); 2245 (*bytes)++; 2246 } 2247 len = PAGE_CACHE_SIZE - zerofrom; 2248 2249 err = pagecache_write_begin(file, mapping, curpos, len, 2250 AOP_FLAG_UNINTERRUPTIBLE, 2251 &page, &fsdata); 2252 if (err) 2253 goto out; 2254 zero_user(page, zerofrom, len); 2255 err = pagecache_write_end(file, mapping, curpos, len, len, 2256 page, fsdata); 2257 if (err < 0) 2258 goto out; 2259 BUG_ON(err != len); 2260 err = 0; 2261 2262 balance_dirty_pages_ratelimited(mapping); 2263 } 2264 2265 /* page covers the boundary, find the boundary offset */ 2266 if (index == curidx) { 2267 zerofrom = curpos & ~PAGE_CACHE_MASK; 2268 /* if we will expand the thing last block will be filled */ 2269 if (offset <= zerofrom) { 2270 goto out; 2271 } 2272 if (zerofrom & (blocksize-1)) { 2273 *bytes |= (blocksize-1); 2274 (*bytes)++; 2275 } 2276 len = offset - zerofrom; 2277 2278 err = pagecache_write_begin(file, mapping, curpos, len, 2279 AOP_FLAG_UNINTERRUPTIBLE, 2280 &page, &fsdata); 2281 if (err) 2282 goto out; 2283 zero_user(page, zerofrom, len); 2284 err = pagecache_write_end(file, mapping, curpos, len, len, 2285 page, fsdata); 2286 if (err < 0) 2287 goto out; 2288 BUG_ON(err != len); 2289 err = 0; 2290 } 2291 out: 2292 return err; 2293 } 2294 2295 /* 2296 * For moronic filesystems that do not allow holes in file. 2297 * We may have to extend the file. 2298 */ 2299 int cont_write_begin(struct file *file, struct address_space *mapping, 2300 loff_t pos, unsigned len, unsigned flags, 2301 struct page **pagep, void **fsdata, 2302 get_block_t *get_block, loff_t *bytes) 2303 { 2304 struct inode *inode = mapping->host; 2305 unsigned blocksize = 1 << inode->i_blkbits; 2306 unsigned zerofrom; 2307 int err; 2308 2309 err = cont_expand_zero(file, mapping, pos, bytes); 2310 if (err) 2311 goto out; 2312 2313 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2314 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2315 *bytes |= (blocksize-1); 2316 (*bytes)++; 2317 } 2318 2319 *pagep = NULL; 2320 err = block_write_begin(file, mapping, pos, len, 2321 flags, pagep, fsdata, get_block); 2322 out: 2323 return err; 2324 } 2325 2326 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2327 get_block_t *get_block) 2328 { 2329 struct inode *inode = page->mapping->host; 2330 int err = __block_prepare_write(inode, page, from, to, get_block); 2331 if (err) 2332 ClearPageUptodate(page); 2333 return err; 2334 } 2335 2336 int block_commit_write(struct page *page, unsigned from, unsigned to) 2337 { 2338 struct inode *inode = page->mapping->host; 2339 __block_commit_write(inode,page,from,to); 2340 return 0; 2341 } 2342 2343 /* 2344 * block_page_mkwrite() is not allowed to change the file size as it gets 2345 * called from a page fault handler when a page is first dirtied. Hence we must 2346 * be careful to check for EOF conditions here. We set the page up correctly 2347 * for a written page which means we get ENOSPC checking when writing into 2348 * holes and correct delalloc and unwritten extent mapping on filesystems that 2349 * support these features. 2350 * 2351 * We are not allowed to take the i_mutex here so we have to play games to 2352 * protect against truncate races as the page could now be beyond EOF. Because 2353 * vmtruncate() writes the inode size before removing pages, once we have the 2354 * page lock we can determine safely if the page is beyond EOF. If it is not 2355 * beyond EOF, then the page is guaranteed safe against truncation until we 2356 * unlock the page. 2357 */ 2358 int 2359 block_page_mkwrite(struct vm_area_struct *vma, struct page *page, 2360 get_block_t get_block) 2361 { 2362 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2363 unsigned long end; 2364 loff_t size; 2365 int ret = -EINVAL; 2366 2367 lock_page(page); 2368 size = i_size_read(inode); 2369 if ((page->mapping != inode->i_mapping) || 2370 (page_offset(page) > size)) { 2371 /* page got truncated out from underneath us */ 2372 goto out_unlock; 2373 } 2374 2375 /* page is wholly or partially inside EOF */ 2376 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2377 end = size & ~PAGE_CACHE_MASK; 2378 else 2379 end = PAGE_CACHE_SIZE; 2380 2381 ret = block_prepare_write(page, 0, end, get_block); 2382 if (!ret) 2383 ret = block_commit_write(page, 0, end); 2384 2385 out_unlock: 2386 unlock_page(page); 2387 return ret; 2388 } 2389 2390 /* 2391 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2392 * immediately, while under the page lock. So it needs a special end_io 2393 * handler which does not touch the bh after unlocking it. 2394 */ 2395 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2396 { 2397 __end_buffer_read_notouch(bh, uptodate); 2398 } 2399 2400 /* 2401 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2402 * the page (converting it to circular linked list and taking care of page 2403 * dirty races). 2404 */ 2405 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2406 { 2407 struct buffer_head *bh; 2408 2409 BUG_ON(!PageLocked(page)); 2410 2411 spin_lock(&page->mapping->private_lock); 2412 bh = head; 2413 do { 2414 if (PageDirty(page)) 2415 set_buffer_dirty(bh); 2416 if (!bh->b_this_page) 2417 bh->b_this_page = head; 2418 bh = bh->b_this_page; 2419 } while (bh != head); 2420 attach_page_buffers(page, head); 2421 spin_unlock(&page->mapping->private_lock); 2422 } 2423 2424 /* 2425 * On entry, the page is fully not uptodate. 2426 * On exit the page is fully uptodate in the areas outside (from,to) 2427 */ 2428 int nobh_write_begin(struct file *file, struct address_space *mapping, 2429 loff_t pos, unsigned len, unsigned flags, 2430 struct page **pagep, void **fsdata, 2431 get_block_t *get_block) 2432 { 2433 struct inode *inode = mapping->host; 2434 const unsigned blkbits = inode->i_blkbits; 2435 const unsigned blocksize = 1 << blkbits; 2436 struct buffer_head *head, *bh; 2437 struct page *page; 2438 pgoff_t index; 2439 unsigned from, to; 2440 unsigned block_in_page; 2441 unsigned block_start, block_end; 2442 sector_t block_in_file; 2443 int nr_reads = 0; 2444 int ret = 0; 2445 int is_mapped_to_disk = 1; 2446 2447 index = pos >> PAGE_CACHE_SHIFT; 2448 from = pos & (PAGE_CACHE_SIZE - 1); 2449 to = from + len; 2450 2451 page = __grab_cache_page(mapping, index); 2452 if (!page) 2453 return -ENOMEM; 2454 *pagep = page; 2455 *fsdata = NULL; 2456 2457 if (page_has_buffers(page)) { 2458 unlock_page(page); 2459 page_cache_release(page); 2460 *pagep = NULL; 2461 return block_write_begin(file, mapping, pos, len, flags, pagep, 2462 fsdata, get_block); 2463 } 2464 2465 if (PageMappedToDisk(page)) 2466 return 0; 2467 2468 /* 2469 * Allocate buffers so that we can keep track of state, and potentially 2470 * attach them to the page if an error occurs. In the common case of 2471 * no error, they will just be freed again without ever being attached 2472 * to the page (which is all OK, because we're under the page lock). 2473 * 2474 * Be careful: the buffer linked list is a NULL terminated one, rather 2475 * than the circular one we're used to. 2476 */ 2477 head = alloc_page_buffers(page, blocksize, 0); 2478 if (!head) { 2479 ret = -ENOMEM; 2480 goto out_release; 2481 } 2482 2483 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2484 2485 /* 2486 * We loop across all blocks in the page, whether or not they are 2487 * part of the affected region. This is so we can discover if the 2488 * page is fully mapped-to-disk. 2489 */ 2490 for (block_start = 0, block_in_page = 0, bh = head; 2491 block_start < PAGE_CACHE_SIZE; 2492 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2493 int create; 2494 2495 block_end = block_start + blocksize; 2496 bh->b_state = 0; 2497 create = 1; 2498 if (block_start >= to) 2499 create = 0; 2500 ret = get_block(inode, block_in_file + block_in_page, 2501 bh, create); 2502 if (ret) 2503 goto failed; 2504 if (!buffer_mapped(bh)) 2505 is_mapped_to_disk = 0; 2506 if (buffer_new(bh)) 2507 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2508 if (PageUptodate(page)) { 2509 set_buffer_uptodate(bh); 2510 continue; 2511 } 2512 if (buffer_new(bh) || !buffer_mapped(bh)) { 2513 zero_user_segments(page, block_start, from, 2514 to, block_end); 2515 continue; 2516 } 2517 if (buffer_uptodate(bh)) 2518 continue; /* reiserfs does this */ 2519 if (block_start < from || block_end > to) { 2520 lock_buffer(bh); 2521 bh->b_end_io = end_buffer_read_nobh; 2522 submit_bh(READ, bh); 2523 nr_reads++; 2524 } 2525 } 2526 2527 if (nr_reads) { 2528 /* 2529 * The page is locked, so these buffers are protected from 2530 * any VM or truncate activity. Hence we don't need to care 2531 * for the buffer_head refcounts. 2532 */ 2533 for (bh = head; bh; bh = bh->b_this_page) { 2534 wait_on_buffer(bh); 2535 if (!buffer_uptodate(bh)) 2536 ret = -EIO; 2537 } 2538 if (ret) 2539 goto failed; 2540 } 2541 2542 if (is_mapped_to_disk) 2543 SetPageMappedToDisk(page); 2544 2545 *fsdata = head; /* to be released by nobh_write_end */ 2546 2547 return 0; 2548 2549 failed: 2550 BUG_ON(!ret); 2551 /* 2552 * Error recovery is a bit difficult. We need to zero out blocks that 2553 * were newly allocated, and dirty them to ensure they get written out. 2554 * Buffers need to be attached to the page at this point, otherwise 2555 * the handling of potential IO errors during writeout would be hard 2556 * (could try doing synchronous writeout, but what if that fails too?) 2557 */ 2558 attach_nobh_buffers(page, head); 2559 page_zero_new_buffers(page, from, to); 2560 2561 out_release: 2562 unlock_page(page); 2563 page_cache_release(page); 2564 *pagep = NULL; 2565 2566 if (pos + len > inode->i_size) 2567 vmtruncate(inode, inode->i_size); 2568 2569 return ret; 2570 } 2571 EXPORT_SYMBOL(nobh_write_begin); 2572 2573 int nobh_write_end(struct file *file, struct address_space *mapping, 2574 loff_t pos, unsigned len, unsigned copied, 2575 struct page *page, void *fsdata) 2576 { 2577 struct inode *inode = page->mapping->host; 2578 struct buffer_head *head = fsdata; 2579 struct buffer_head *bh; 2580 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2581 2582 if (unlikely(copied < len) && !page_has_buffers(page)) 2583 attach_nobh_buffers(page, head); 2584 if (page_has_buffers(page)) 2585 return generic_write_end(file, mapping, pos, len, 2586 copied, page, fsdata); 2587 2588 SetPageUptodate(page); 2589 set_page_dirty(page); 2590 if (pos+copied > inode->i_size) { 2591 i_size_write(inode, pos+copied); 2592 mark_inode_dirty(inode); 2593 } 2594 2595 unlock_page(page); 2596 page_cache_release(page); 2597 2598 while (head) { 2599 bh = head; 2600 head = head->b_this_page; 2601 free_buffer_head(bh); 2602 } 2603 2604 return copied; 2605 } 2606 EXPORT_SYMBOL(nobh_write_end); 2607 2608 /* 2609 * nobh_writepage() - based on block_full_write_page() except 2610 * that it tries to operate without attaching bufferheads to 2611 * the page. 2612 */ 2613 int nobh_writepage(struct page *page, get_block_t *get_block, 2614 struct writeback_control *wbc) 2615 { 2616 struct inode * const inode = page->mapping->host; 2617 loff_t i_size = i_size_read(inode); 2618 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2619 unsigned offset; 2620 int ret; 2621 2622 /* Is the page fully inside i_size? */ 2623 if (page->index < end_index) 2624 goto out; 2625 2626 /* Is the page fully outside i_size? (truncate in progress) */ 2627 offset = i_size & (PAGE_CACHE_SIZE-1); 2628 if (page->index >= end_index+1 || !offset) { 2629 /* 2630 * The page may have dirty, unmapped buffers. For example, 2631 * they may have been added in ext3_writepage(). Make them 2632 * freeable here, so the page does not leak. 2633 */ 2634 #if 0 2635 /* Not really sure about this - do we need this ? */ 2636 if (page->mapping->a_ops->invalidatepage) 2637 page->mapping->a_ops->invalidatepage(page, offset); 2638 #endif 2639 unlock_page(page); 2640 return 0; /* don't care */ 2641 } 2642 2643 /* 2644 * The page straddles i_size. It must be zeroed out on each and every 2645 * writepage invocation because it may be mmapped. "A file is mapped 2646 * in multiples of the page size. For a file that is not a multiple of 2647 * the page size, the remaining memory is zeroed when mapped, and 2648 * writes to that region are not written out to the file." 2649 */ 2650 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2651 out: 2652 ret = mpage_writepage(page, get_block, wbc); 2653 if (ret == -EAGAIN) 2654 ret = __block_write_full_page(inode, page, get_block, wbc); 2655 return ret; 2656 } 2657 EXPORT_SYMBOL(nobh_writepage); 2658 2659 int nobh_truncate_page(struct address_space *mapping, 2660 loff_t from, get_block_t *get_block) 2661 { 2662 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2663 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2664 unsigned blocksize; 2665 sector_t iblock; 2666 unsigned length, pos; 2667 struct inode *inode = mapping->host; 2668 struct page *page; 2669 struct buffer_head map_bh; 2670 int err; 2671 2672 blocksize = 1 << inode->i_blkbits; 2673 length = offset & (blocksize - 1); 2674 2675 /* Block boundary? Nothing to do */ 2676 if (!length) 2677 return 0; 2678 2679 length = blocksize - length; 2680 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2681 2682 page = grab_cache_page(mapping, index); 2683 err = -ENOMEM; 2684 if (!page) 2685 goto out; 2686 2687 if (page_has_buffers(page)) { 2688 has_buffers: 2689 unlock_page(page); 2690 page_cache_release(page); 2691 return block_truncate_page(mapping, from, get_block); 2692 } 2693 2694 /* Find the buffer that contains "offset" */ 2695 pos = blocksize; 2696 while (offset >= pos) { 2697 iblock++; 2698 pos += blocksize; 2699 } 2700 2701 err = get_block(inode, iblock, &map_bh, 0); 2702 if (err) 2703 goto unlock; 2704 /* unmapped? It's a hole - nothing to do */ 2705 if (!buffer_mapped(&map_bh)) 2706 goto unlock; 2707 2708 /* Ok, it's mapped. Make sure it's up-to-date */ 2709 if (!PageUptodate(page)) { 2710 err = mapping->a_ops->readpage(NULL, page); 2711 if (err) { 2712 page_cache_release(page); 2713 goto out; 2714 } 2715 lock_page(page); 2716 if (!PageUptodate(page)) { 2717 err = -EIO; 2718 goto unlock; 2719 } 2720 if (page_has_buffers(page)) 2721 goto has_buffers; 2722 } 2723 zero_user(page, offset, length); 2724 set_page_dirty(page); 2725 err = 0; 2726 2727 unlock: 2728 unlock_page(page); 2729 page_cache_release(page); 2730 out: 2731 return err; 2732 } 2733 EXPORT_SYMBOL(nobh_truncate_page); 2734 2735 int block_truncate_page(struct address_space *mapping, 2736 loff_t from, get_block_t *get_block) 2737 { 2738 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2739 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2740 unsigned blocksize; 2741 sector_t iblock; 2742 unsigned length, pos; 2743 struct inode *inode = mapping->host; 2744 struct page *page; 2745 struct buffer_head *bh; 2746 int err; 2747 2748 blocksize = 1 << inode->i_blkbits; 2749 length = offset & (blocksize - 1); 2750 2751 /* Block boundary? Nothing to do */ 2752 if (!length) 2753 return 0; 2754 2755 length = blocksize - length; 2756 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2757 2758 page = grab_cache_page(mapping, index); 2759 err = -ENOMEM; 2760 if (!page) 2761 goto out; 2762 2763 if (!page_has_buffers(page)) 2764 create_empty_buffers(page, blocksize, 0); 2765 2766 /* Find the buffer that contains "offset" */ 2767 bh = page_buffers(page); 2768 pos = blocksize; 2769 while (offset >= pos) { 2770 bh = bh->b_this_page; 2771 iblock++; 2772 pos += blocksize; 2773 } 2774 2775 err = 0; 2776 if (!buffer_mapped(bh)) { 2777 WARN_ON(bh->b_size != blocksize); 2778 err = get_block(inode, iblock, bh, 0); 2779 if (err) 2780 goto unlock; 2781 /* unmapped? It's a hole - nothing to do */ 2782 if (!buffer_mapped(bh)) 2783 goto unlock; 2784 } 2785 2786 /* Ok, it's mapped. Make sure it's up-to-date */ 2787 if (PageUptodate(page)) 2788 set_buffer_uptodate(bh); 2789 2790 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2791 err = -EIO; 2792 ll_rw_block(READ, 1, &bh); 2793 wait_on_buffer(bh); 2794 /* Uhhuh. Read error. Complain and punt. */ 2795 if (!buffer_uptodate(bh)) 2796 goto unlock; 2797 } 2798 2799 zero_user(page, offset, length); 2800 mark_buffer_dirty(bh); 2801 err = 0; 2802 2803 unlock: 2804 unlock_page(page); 2805 page_cache_release(page); 2806 out: 2807 return err; 2808 } 2809 2810 /* 2811 * The generic ->writepage function for buffer-backed address_spaces 2812 */ 2813 int block_write_full_page(struct page *page, get_block_t *get_block, 2814 struct writeback_control *wbc) 2815 { 2816 struct inode * const inode = page->mapping->host; 2817 loff_t i_size = i_size_read(inode); 2818 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2819 unsigned offset; 2820 2821 /* Is the page fully inside i_size? */ 2822 if (page->index < end_index) 2823 return __block_write_full_page(inode, page, get_block, wbc); 2824 2825 /* Is the page fully outside i_size? (truncate in progress) */ 2826 offset = i_size & (PAGE_CACHE_SIZE-1); 2827 if (page->index >= end_index+1 || !offset) { 2828 /* 2829 * The page may have dirty, unmapped buffers. For example, 2830 * they may have been added in ext3_writepage(). Make them 2831 * freeable here, so the page does not leak. 2832 */ 2833 do_invalidatepage(page, 0); 2834 unlock_page(page); 2835 return 0; /* don't care */ 2836 } 2837 2838 /* 2839 * The page straddles i_size. It must be zeroed out on each and every 2840 * writepage invokation because it may be mmapped. "A file is mapped 2841 * in multiples of the page size. For a file that is not a multiple of 2842 * the page size, the remaining memory is zeroed when mapped, and 2843 * writes to that region are not written out to the file." 2844 */ 2845 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2846 return __block_write_full_page(inode, page, get_block, wbc); 2847 } 2848 2849 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2850 get_block_t *get_block) 2851 { 2852 struct buffer_head tmp; 2853 struct inode *inode = mapping->host; 2854 tmp.b_state = 0; 2855 tmp.b_blocknr = 0; 2856 tmp.b_size = 1 << inode->i_blkbits; 2857 get_block(inode, block, &tmp, 0); 2858 return tmp.b_blocknr; 2859 } 2860 2861 static void end_bio_bh_io_sync(struct bio *bio, int err) 2862 { 2863 struct buffer_head *bh = bio->bi_private; 2864 2865 if (err == -EOPNOTSUPP) { 2866 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2867 set_bit(BH_Eopnotsupp, &bh->b_state); 2868 } 2869 2870 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2871 bio_put(bio); 2872 } 2873 2874 int submit_bh(int rw, struct buffer_head * bh) 2875 { 2876 struct bio *bio; 2877 int ret = 0; 2878 2879 BUG_ON(!buffer_locked(bh)); 2880 BUG_ON(!buffer_mapped(bh)); 2881 BUG_ON(!bh->b_end_io); 2882 2883 if (buffer_ordered(bh) && (rw == WRITE)) 2884 rw = WRITE_BARRIER; 2885 2886 /* 2887 * Only clear out a write error when rewriting, should this 2888 * include WRITE_SYNC as well? 2889 */ 2890 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2891 clear_buffer_write_io_error(bh); 2892 2893 /* 2894 * from here on down, it's all bio -- do the initial mapping, 2895 * submit_bio -> generic_make_request may further map this bio around 2896 */ 2897 bio = bio_alloc(GFP_NOIO, 1); 2898 2899 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2900 bio->bi_bdev = bh->b_bdev; 2901 bio->bi_io_vec[0].bv_page = bh->b_page; 2902 bio->bi_io_vec[0].bv_len = bh->b_size; 2903 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2904 2905 bio->bi_vcnt = 1; 2906 bio->bi_idx = 0; 2907 bio->bi_size = bh->b_size; 2908 2909 bio->bi_end_io = end_bio_bh_io_sync; 2910 bio->bi_private = bh; 2911 2912 bio_get(bio); 2913 submit_bio(rw, bio); 2914 2915 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2916 ret = -EOPNOTSUPP; 2917 2918 bio_put(bio); 2919 return ret; 2920 } 2921 2922 /** 2923 * ll_rw_block: low-level access to block devices (DEPRECATED) 2924 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2925 * @nr: number of &struct buffer_heads in the array 2926 * @bhs: array of pointers to &struct buffer_head 2927 * 2928 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2929 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2930 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2931 * are sent to disk. The fourth %READA option is described in the documentation 2932 * for generic_make_request() which ll_rw_block() calls. 2933 * 2934 * This function drops any buffer that it cannot get a lock on (with the 2935 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2936 * clean when doing a write request, and any buffer that appears to be 2937 * up-to-date when doing read request. Further it marks as clean buffers that 2938 * are processed for writing (the buffer cache won't assume that they are 2939 * actually clean until the buffer gets unlocked). 2940 * 2941 * ll_rw_block sets b_end_io to simple completion handler that marks 2942 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2943 * any waiters. 2944 * 2945 * All of the buffers must be for the same device, and must also be a 2946 * multiple of the current approved size for the device. 2947 */ 2948 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2949 { 2950 int i; 2951 2952 for (i = 0; i < nr; i++) { 2953 struct buffer_head *bh = bhs[i]; 2954 2955 if (rw == SWRITE || rw == SWRITE_SYNC) 2956 lock_buffer(bh); 2957 else if (test_set_buffer_locked(bh)) 2958 continue; 2959 2960 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) { 2961 if (test_clear_buffer_dirty(bh)) { 2962 bh->b_end_io = end_buffer_write_sync; 2963 get_bh(bh); 2964 if (rw == SWRITE_SYNC) 2965 submit_bh(WRITE_SYNC, bh); 2966 else 2967 submit_bh(WRITE, bh); 2968 continue; 2969 } 2970 } else { 2971 if (!buffer_uptodate(bh)) { 2972 bh->b_end_io = end_buffer_read_sync; 2973 get_bh(bh); 2974 submit_bh(rw, bh); 2975 continue; 2976 } 2977 } 2978 unlock_buffer(bh); 2979 } 2980 } 2981 2982 /* 2983 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2984 * and then start new I/O and then wait upon it. The caller must have a ref on 2985 * the buffer_head. 2986 */ 2987 int sync_dirty_buffer(struct buffer_head *bh) 2988 { 2989 int ret = 0; 2990 2991 WARN_ON(atomic_read(&bh->b_count) < 1); 2992 lock_buffer(bh); 2993 if (test_clear_buffer_dirty(bh)) { 2994 get_bh(bh); 2995 bh->b_end_io = end_buffer_write_sync; 2996 ret = submit_bh(WRITE_SYNC, bh); 2997 wait_on_buffer(bh); 2998 if (buffer_eopnotsupp(bh)) { 2999 clear_buffer_eopnotsupp(bh); 3000 ret = -EOPNOTSUPP; 3001 } 3002 if (!ret && !buffer_uptodate(bh)) 3003 ret = -EIO; 3004 } else { 3005 unlock_buffer(bh); 3006 } 3007 return ret; 3008 } 3009 3010 /* 3011 * try_to_free_buffers() checks if all the buffers on this particular page 3012 * are unused, and releases them if so. 3013 * 3014 * Exclusion against try_to_free_buffers may be obtained by either 3015 * locking the page or by holding its mapping's private_lock. 3016 * 3017 * If the page is dirty but all the buffers are clean then we need to 3018 * be sure to mark the page clean as well. This is because the page 3019 * may be against a block device, and a later reattachment of buffers 3020 * to a dirty page will set *all* buffers dirty. Which would corrupt 3021 * filesystem data on the same device. 3022 * 3023 * The same applies to regular filesystem pages: if all the buffers are 3024 * clean then we set the page clean and proceed. To do that, we require 3025 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3026 * private_lock. 3027 * 3028 * try_to_free_buffers() is non-blocking. 3029 */ 3030 static inline int buffer_busy(struct buffer_head *bh) 3031 { 3032 return atomic_read(&bh->b_count) | 3033 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3034 } 3035 3036 static int 3037 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3038 { 3039 struct buffer_head *head = page_buffers(page); 3040 struct buffer_head *bh; 3041 3042 bh = head; 3043 do { 3044 if (buffer_write_io_error(bh) && page->mapping) 3045 set_bit(AS_EIO, &page->mapping->flags); 3046 if (buffer_busy(bh)) 3047 goto failed; 3048 bh = bh->b_this_page; 3049 } while (bh != head); 3050 3051 do { 3052 struct buffer_head *next = bh->b_this_page; 3053 3054 if (bh->b_assoc_map) 3055 __remove_assoc_queue(bh); 3056 bh = next; 3057 } while (bh != head); 3058 *buffers_to_free = head; 3059 __clear_page_buffers(page); 3060 return 1; 3061 failed: 3062 return 0; 3063 } 3064 3065 int try_to_free_buffers(struct page *page) 3066 { 3067 struct address_space * const mapping = page->mapping; 3068 struct buffer_head *buffers_to_free = NULL; 3069 int ret = 0; 3070 3071 BUG_ON(!PageLocked(page)); 3072 if (PageWriteback(page)) 3073 return 0; 3074 3075 if (mapping == NULL) { /* can this still happen? */ 3076 ret = drop_buffers(page, &buffers_to_free); 3077 goto out; 3078 } 3079 3080 spin_lock(&mapping->private_lock); 3081 ret = drop_buffers(page, &buffers_to_free); 3082 3083 /* 3084 * If the filesystem writes its buffers by hand (eg ext3) 3085 * then we can have clean buffers against a dirty page. We 3086 * clean the page here; otherwise the VM will never notice 3087 * that the filesystem did any IO at all. 3088 * 3089 * Also, during truncate, discard_buffer will have marked all 3090 * the page's buffers clean. We discover that here and clean 3091 * the page also. 3092 * 3093 * private_lock must be held over this entire operation in order 3094 * to synchronise against __set_page_dirty_buffers and prevent the 3095 * dirty bit from being lost. 3096 */ 3097 if (ret) 3098 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3099 spin_unlock(&mapping->private_lock); 3100 out: 3101 if (buffers_to_free) { 3102 struct buffer_head *bh = buffers_to_free; 3103 3104 do { 3105 struct buffer_head *next = bh->b_this_page; 3106 free_buffer_head(bh); 3107 bh = next; 3108 } while (bh != buffers_to_free); 3109 } 3110 return ret; 3111 } 3112 EXPORT_SYMBOL(try_to_free_buffers); 3113 3114 void block_sync_page(struct page *page) 3115 { 3116 struct address_space *mapping; 3117 3118 smp_mb(); 3119 mapping = page_mapping(page); 3120 if (mapping) 3121 blk_run_backing_dev(mapping->backing_dev_info, page); 3122 } 3123 3124 /* 3125 * There are no bdflush tunables left. But distributions are 3126 * still running obsolete flush daemons, so we terminate them here. 3127 * 3128 * Use of bdflush() is deprecated and will be removed in a future kernel. 3129 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 3130 */ 3131 asmlinkage long sys_bdflush(int func, long data) 3132 { 3133 static int msg_count; 3134 3135 if (!capable(CAP_SYS_ADMIN)) 3136 return -EPERM; 3137 3138 if (msg_count < 5) { 3139 msg_count++; 3140 printk(KERN_INFO 3141 "warning: process `%s' used the obsolete bdflush" 3142 " system call\n", current->comm); 3143 printk(KERN_INFO "Fix your initscripts?\n"); 3144 } 3145 3146 if (func == 1) 3147 do_exit(0); 3148 return 0; 3149 } 3150 3151 /* 3152 * Buffer-head allocation 3153 */ 3154 static struct kmem_cache *bh_cachep; 3155 3156 /* 3157 * Once the number of bh's in the machine exceeds this level, we start 3158 * stripping them in writeback. 3159 */ 3160 static int max_buffer_heads; 3161 3162 int buffer_heads_over_limit; 3163 3164 struct bh_accounting { 3165 int nr; /* Number of live bh's */ 3166 int ratelimit; /* Limit cacheline bouncing */ 3167 }; 3168 3169 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3170 3171 static void recalc_bh_state(void) 3172 { 3173 int i; 3174 int tot = 0; 3175 3176 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3177 return; 3178 __get_cpu_var(bh_accounting).ratelimit = 0; 3179 for_each_online_cpu(i) 3180 tot += per_cpu(bh_accounting, i).nr; 3181 buffer_heads_over_limit = (tot > max_buffer_heads); 3182 } 3183 3184 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3185 { 3186 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 3187 if (ret) { 3188 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3189 get_cpu_var(bh_accounting).nr++; 3190 recalc_bh_state(); 3191 put_cpu_var(bh_accounting); 3192 } 3193 return ret; 3194 } 3195 EXPORT_SYMBOL(alloc_buffer_head); 3196 3197 void free_buffer_head(struct buffer_head *bh) 3198 { 3199 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3200 kmem_cache_free(bh_cachep, bh); 3201 get_cpu_var(bh_accounting).nr--; 3202 recalc_bh_state(); 3203 put_cpu_var(bh_accounting); 3204 } 3205 EXPORT_SYMBOL(free_buffer_head); 3206 3207 static void buffer_exit_cpu(int cpu) 3208 { 3209 int i; 3210 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3211 3212 for (i = 0; i < BH_LRU_SIZE; i++) { 3213 brelse(b->bhs[i]); 3214 b->bhs[i] = NULL; 3215 } 3216 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3217 per_cpu(bh_accounting, cpu).nr = 0; 3218 put_cpu_var(bh_accounting); 3219 } 3220 3221 static int buffer_cpu_notify(struct notifier_block *self, 3222 unsigned long action, void *hcpu) 3223 { 3224 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3225 buffer_exit_cpu((unsigned long)hcpu); 3226 return NOTIFY_OK; 3227 } 3228 3229 /** 3230 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3231 * @bh: struct buffer_head 3232 * 3233 * Return true if the buffer is up-to-date and false, 3234 * with the buffer locked, if not. 3235 */ 3236 int bh_uptodate_or_lock(struct buffer_head *bh) 3237 { 3238 if (!buffer_uptodate(bh)) { 3239 lock_buffer(bh); 3240 if (!buffer_uptodate(bh)) 3241 return 0; 3242 unlock_buffer(bh); 3243 } 3244 return 1; 3245 } 3246 EXPORT_SYMBOL(bh_uptodate_or_lock); 3247 3248 /** 3249 * bh_submit_read - Submit a locked buffer for reading 3250 * @bh: struct buffer_head 3251 * 3252 * Returns zero on success and -EIO on error. 3253 */ 3254 int bh_submit_read(struct buffer_head *bh) 3255 { 3256 BUG_ON(!buffer_locked(bh)); 3257 3258 if (buffer_uptodate(bh)) { 3259 unlock_buffer(bh); 3260 return 0; 3261 } 3262 3263 get_bh(bh); 3264 bh->b_end_io = end_buffer_read_sync; 3265 submit_bh(READ, bh); 3266 wait_on_buffer(bh); 3267 if (buffer_uptodate(bh)) 3268 return 0; 3269 return -EIO; 3270 } 3271 EXPORT_SYMBOL(bh_submit_read); 3272 3273 static void 3274 init_buffer_head(void *data) 3275 { 3276 struct buffer_head *bh = data; 3277 3278 memset(bh, 0, sizeof(*bh)); 3279 INIT_LIST_HEAD(&bh->b_assoc_buffers); 3280 } 3281 3282 void __init buffer_init(void) 3283 { 3284 int nrpages; 3285 3286 bh_cachep = kmem_cache_create("buffer_head", 3287 sizeof(struct buffer_head), 0, 3288 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3289 SLAB_MEM_SPREAD), 3290 init_buffer_head); 3291 3292 /* 3293 * Limit the bh occupancy to 10% of ZONE_NORMAL 3294 */ 3295 nrpages = (nr_free_buffer_pages() * 10) / 100; 3296 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3297 hotcpu_notifier(buffer_cpu_notify, 0); 3298 } 3299 3300 EXPORT_SYMBOL(__bforget); 3301 EXPORT_SYMBOL(__brelse); 3302 EXPORT_SYMBOL(__wait_on_buffer); 3303 EXPORT_SYMBOL(block_commit_write); 3304 EXPORT_SYMBOL(block_prepare_write); 3305 EXPORT_SYMBOL(block_page_mkwrite); 3306 EXPORT_SYMBOL(block_read_full_page); 3307 EXPORT_SYMBOL(block_sync_page); 3308 EXPORT_SYMBOL(block_truncate_page); 3309 EXPORT_SYMBOL(block_write_full_page); 3310 EXPORT_SYMBOL(cont_write_begin); 3311 EXPORT_SYMBOL(end_buffer_read_sync); 3312 EXPORT_SYMBOL(end_buffer_write_sync); 3313 EXPORT_SYMBOL(file_fsync); 3314 EXPORT_SYMBOL(fsync_bdev); 3315 EXPORT_SYMBOL(generic_block_bmap); 3316 EXPORT_SYMBOL(generic_cont_expand_simple); 3317 EXPORT_SYMBOL(init_buffer); 3318 EXPORT_SYMBOL(invalidate_bdev); 3319 EXPORT_SYMBOL(ll_rw_block); 3320 EXPORT_SYMBOL(mark_buffer_dirty); 3321 EXPORT_SYMBOL(submit_bh); 3322 EXPORT_SYMBOL(sync_dirty_buffer); 3323 EXPORT_SYMBOL(unlock_buffer); 3324