xref: /openbmc/linux/fs/buffer.c (revision 93dc544c)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	smp_mb__before_clear_bit();
80 	clear_buffer_locked(bh);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 	ClearPagePrivate(page);
99 	set_page_private(page, 0);
100 	page_cache_release(page);
101 }
102 
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 	char b[BDEVNAME_SIZE];
106 
107 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 			bdevname(bh->b_bdev, b),
109 			(unsigned long long)bh->b_blocknr);
110 }
111 
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122 	if (uptodate) {
123 		set_buffer_uptodate(bh);
124 	} else {
125 		/* This happens, due to failed READA attempts. */
126 		clear_buffer_uptodate(bh);
127 	}
128 	unlock_buffer(bh);
129 }
130 
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137 	__end_buffer_read_notouch(bh, uptodate);
138 	put_bh(bh);
139 }
140 
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143 	char b[BDEVNAME_SIZE];
144 
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149 			buffer_io_error(bh);
150 			printk(KERN_WARNING "lost page write due to "
151 					"I/O error on %s\n",
152 				       bdevname(bh->b_bdev, b));
153 		}
154 		set_buffer_write_io_error(bh);
155 		clear_buffer_uptodate(bh);
156 	}
157 	unlock_buffer(bh);
158 	put_bh(bh);
159 }
160 
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167 	int ret = 0;
168 
169 	if (bdev)
170 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171 	return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174 
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182 	struct super_block *sb = get_super(bdev);
183 	if (sb) {
184 		int res = fsync_super(sb);
185 		drop_super(sb);
186 		return res;
187 	}
188 	return sync_blockdev(bdev);
189 }
190 
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:	blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202 	struct super_block *sb;
203 
204 	down(&bdev->bd_mount_sem);
205 	sb = get_super(bdev);
206 	if (sb && !(sb->s_flags & MS_RDONLY)) {
207 		sb->s_frozen = SB_FREEZE_WRITE;
208 		smp_wmb();
209 
210 		__fsync_super(sb);
211 
212 		sb->s_frozen = SB_FREEZE_TRANS;
213 		smp_wmb();
214 
215 		sync_blockdev(sb->s_bdev);
216 
217 		if (sb->s_op->write_super_lockfs)
218 			sb->s_op->write_super_lockfs(sb);
219 	}
220 
221 	sync_blockdev(bdev);
222 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225 
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:	blockdevice to unlock
229  * @sb:		associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235 	if (sb) {
236 		BUG_ON(sb->s_bdev != bdev);
237 
238 		if (sb->s_op->unlockfs)
239 			sb->s_op->unlockfs(sb);
240 		sb->s_frozen = SB_UNFROZEN;
241 		smp_wmb();
242 		wake_up(&sb->s_wait_unfrozen);
243 		drop_super(sb);
244 	}
245 
246 	up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249 
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264 	struct inode *bd_inode = bdev->bd_inode;
265 	struct address_space *bd_mapping = bd_inode->i_mapping;
266 	struct buffer_head *ret = NULL;
267 	pgoff_t index;
268 	struct buffer_head *bh;
269 	struct buffer_head *head;
270 	struct page *page;
271 	int all_mapped = 1;
272 
273 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274 	page = find_get_page(bd_mapping, index);
275 	if (!page)
276 		goto out;
277 
278 	spin_lock(&bd_mapping->private_lock);
279 	if (!page_has_buffers(page))
280 		goto out_unlock;
281 	head = page_buffers(page);
282 	bh = head;
283 	do {
284 		if (bh->b_blocknr == block) {
285 			ret = bh;
286 			get_bh(bh);
287 			goto out_unlock;
288 		}
289 		if (!buffer_mapped(bh))
290 			all_mapped = 0;
291 		bh = bh->b_this_page;
292 	} while (bh != head);
293 
294 	/* we might be here because some of the buffers on this page are
295 	 * not mapped.  This is due to various races between
296 	 * file io on the block device and getblk.  It gets dealt with
297 	 * elsewhere, don't buffer_error if we had some unmapped buffers
298 	 */
299 	if (all_mapped) {
300 		printk("__find_get_block_slow() failed. "
301 			"block=%llu, b_blocknr=%llu\n",
302 			(unsigned long long)block,
303 			(unsigned long long)bh->b_blocknr);
304 		printk("b_state=0x%08lx, b_size=%zu\n",
305 			bh->b_state, bh->b_size);
306 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307 	}
308 out_unlock:
309 	spin_unlock(&bd_mapping->private_lock);
310 	page_cache_release(page);
311 out:
312 	return ret;
313 }
314 
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319 
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323 
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326 
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335 
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339 
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349 	struct address_space *mapping = bdev->bd_inode->i_mapping;
350 
351 	if (mapping->nrpages == 0)
352 		return;
353 
354 	invalidate_bh_lrus();
355 	invalidate_mapping_pages(mapping, 0, -1);
356 }
357 
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363 	struct zone *zone;
364 	int nid;
365 
366 	wakeup_pdflush(1024);
367 	yield();
368 
369 	for_each_online_node(nid) {
370 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
371 						gfp_zone(GFP_NOFS), NULL,
372 						&zone);
373 		if (zone)
374 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
375 						GFP_NOFS);
376 	}
377 }
378 
379 /*
380  * I/O completion handler for block_read_full_page() - pages
381  * which come unlocked at the end of I/O.
382  */
383 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
384 {
385 	unsigned long flags;
386 	struct buffer_head *first;
387 	struct buffer_head *tmp;
388 	struct page *page;
389 	int page_uptodate = 1;
390 
391 	BUG_ON(!buffer_async_read(bh));
392 
393 	page = bh->b_page;
394 	if (uptodate) {
395 		set_buffer_uptodate(bh);
396 	} else {
397 		clear_buffer_uptodate(bh);
398 		if (printk_ratelimit())
399 			buffer_io_error(bh);
400 		SetPageError(page);
401 	}
402 
403 	/*
404 	 * Be _very_ careful from here on. Bad things can happen if
405 	 * two buffer heads end IO at almost the same time and both
406 	 * decide that the page is now completely done.
407 	 */
408 	first = page_buffers(page);
409 	local_irq_save(flags);
410 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
411 	clear_buffer_async_read(bh);
412 	unlock_buffer(bh);
413 	tmp = bh;
414 	do {
415 		if (!buffer_uptodate(tmp))
416 			page_uptodate = 0;
417 		if (buffer_async_read(tmp)) {
418 			BUG_ON(!buffer_locked(tmp));
419 			goto still_busy;
420 		}
421 		tmp = tmp->b_this_page;
422 	} while (tmp != bh);
423 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
424 	local_irq_restore(flags);
425 
426 	/*
427 	 * If none of the buffers had errors and they are all
428 	 * uptodate then we can set the page uptodate.
429 	 */
430 	if (page_uptodate && !PageError(page))
431 		SetPageUptodate(page);
432 	unlock_page(page);
433 	return;
434 
435 still_busy:
436 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
437 	local_irq_restore(flags);
438 	return;
439 }
440 
441 /*
442  * Completion handler for block_write_full_page() - pages which are unlocked
443  * during I/O, and which have PageWriteback cleared upon I/O completion.
444  */
445 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
446 {
447 	char b[BDEVNAME_SIZE];
448 	unsigned long flags;
449 	struct buffer_head *first;
450 	struct buffer_head *tmp;
451 	struct page *page;
452 
453 	BUG_ON(!buffer_async_write(bh));
454 
455 	page = bh->b_page;
456 	if (uptodate) {
457 		set_buffer_uptodate(bh);
458 	} else {
459 		if (printk_ratelimit()) {
460 			buffer_io_error(bh);
461 			printk(KERN_WARNING "lost page write due to "
462 					"I/O error on %s\n",
463 			       bdevname(bh->b_bdev, b));
464 		}
465 		set_bit(AS_EIO, &page->mapping->flags);
466 		set_buffer_write_io_error(bh);
467 		clear_buffer_uptodate(bh);
468 		SetPageError(page);
469 	}
470 
471 	first = page_buffers(page);
472 	local_irq_save(flags);
473 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
474 
475 	clear_buffer_async_write(bh);
476 	unlock_buffer(bh);
477 	tmp = bh->b_this_page;
478 	while (tmp != bh) {
479 		if (buffer_async_write(tmp)) {
480 			BUG_ON(!buffer_locked(tmp));
481 			goto still_busy;
482 		}
483 		tmp = tmp->b_this_page;
484 	}
485 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
486 	local_irq_restore(flags);
487 	end_page_writeback(page);
488 	return;
489 
490 still_busy:
491 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
492 	local_irq_restore(flags);
493 	return;
494 }
495 
496 /*
497  * If a page's buffers are under async readin (end_buffer_async_read
498  * completion) then there is a possibility that another thread of
499  * control could lock one of the buffers after it has completed
500  * but while some of the other buffers have not completed.  This
501  * locked buffer would confuse end_buffer_async_read() into not unlocking
502  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
503  * that this buffer is not under async I/O.
504  *
505  * The page comes unlocked when it has no locked buffer_async buffers
506  * left.
507  *
508  * PageLocked prevents anyone starting new async I/O reads any of
509  * the buffers.
510  *
511  * PageWriteback is used to prevent simultaneous writeout of the same
512  * page.
513  *
514  * PageLocked prevents anyone from starting writeback of a page which is
515  * under read I/O (PageWriteback is only ever set against a locked page).
516  */
517 static void mark_buffer_async_read(struct buffer_head *bh)
518 {
519 	bh->b_end_io = end_buffer_async_read;
520 	set_buffer_async_read(bh);
521 }
522 
523 void mark_buffer_async_write(struct buffer_head *bh)
524 {
525 	bh->b_end_io = end_buffer_async_write;
526 	set_buffer_async_write(bh);
527 }
528 EXPORT_SYMBOL(mark_buffer_async_write);
529 
530 
531 /*
532  * fs/buffer.c contains helper functions for buffer-backed address space's
533  * fsync functions.  A common requirement for buffer-based filesystems is
534  * that certain data from the backing blockdev needs to be written out for
535  * a successful fsync().  For example, ext2 indirect blocks need to be
536  * written back and waited upon before fsync() returns.
537  *
538  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
539  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
540  * management of a list of dependent buffers at ->i_mapping->private_list.
541  *
542  * Locking is a little subtle: try_to_free_buffers() will remove buffers
543  * from their controlling inode's queue when they are being freed.  But
544  * try_to_free_buffers() will be operating against the *blockdev* mapping
545  * at the time, not against the S_ISREG file which depends on those buffers.
546  * So the locking for private_list is via the private_lock in the address_space
547  * which backs the buffers.  Which is different from the address_space
548  * against which the buffers are listed.  So for a particular address_space,
549  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
550  * mapping->private_list will always be protected by the backing blockdev's
551  * ->private_lock.
552  *
553  * Which introduces a requirement: all buffers on an address_space's
554  * ->private_list must be from the same address_space: the blockdev's.
555  *
556  * address_spaces which do not place buffers at ->private_list via these
557  * utility functions are free to use private_lock and private_list for
558  * whatever they want.  The only requirement is that list_empty(private_list)
559  * be true at clear_inode() time.
560  *
561  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
562  * filesystems should do that.  invalidate_inode_buffers() should just go
563  * BUG_ON(!list_empty).
564  *
565  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
566  * take an address_space, not an inode.  And it should be called
567  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
568  * queued up.
569  *
570  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
571  * list if it is already on a list.  Because if the buffer is on a list,
572  * it *must* already be on the right one.  If not, the filesystem is being
573  * silly.  This will save a ton of locking.  But first we have to ensure
574  * that buffers are taken *off* the old inode's list when they are freed
575  * (presumably in truncate).  That requires careful auditing of all
576  * filesystems (do it inside bforget()).  It could also be done by bringing
577  * b_inode back.
578  */
579 
580 /*
581  * The buffer's backing address_space's private_lock must be held
582  */
583 static inline void __remove_assoc_queue(struct buffer_head *bh)
584 {
585 	list_del_init(&bh->b_assoc_buffers);
586 	WARN_ON(!bh->b_assoc_map);
587 	if (buffer_write_io_error(bh))
588 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
589 	bh->b_assoc_map = NULL;
590 }
591 
592 int inode_has_buffers(struct inode *inode)
593 {
594 	return !list_empty(&inode->i_data.private_list);
595 }
596 
597 /*
598  * osync is designed to support O_SYNC io.  It waits synchronously for
599  * all already-submitted IO to complete, but does not queue any new
600  * writes to the disk.
601  *
602  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
603  * you dirty the buffers, and then use osync_inode_buffers to wait for
604  * completion.  Any other dirty buffers which are not yet queued for
605  * write will not be flushed to disk by the osync.
606  */
607 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
608 {
609 	struct buffer_head *bh;
610 	struct list_head *p;
611 	int err = 0;
612 
613 	spin_lock(lock);
614 repeat:
615 	list_for_each_prev(p, list) {
616 		bh = BH_ENTRY(p);
617 		if (buffer_locked(bh)) {
618 			get_bh(bh);
619 			spin_unlock(lock);
620 			wait_on_buffer(bh);
621 			if (!buffer_uptodate(bh))
622 				err = -EIO;
623 			brelse(bh);
624 			spin_lock(lock);
625 			goto repeat;
626 		}
627 	}
628 	spin_unlock(lock);
629 	return err;
630 }
631 
632 /**
633  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
634  * @mapping: the mapping which wants those buffers written
635  *
636  * Starts I/O against the buffers at mapping->private_list, and waits upon
637  * that I/O.
638  *
639  * Basically, this is a convenience function for fsync().
640  * @mapping is a file or directory which needs those buffers to be written for
641  * a successful fsync().
642  */
643 int sync_mapping_buffers(struct address_space *mapping)
644 {
645 	struct address_space *buffer_mapping = mapping->assoc_mapping;
646 
647 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
648 		return 0;
649 
650 	return fsync_buffers_list(&buffer_mapping->private_lock,
651 					&mapping->private_list);
652 }
653 EXPORT_SYMBOL(sync_mapping_buffers);
654 
655 /*
656  * Called when we've recently written block `bblock', and it is known that
657  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
658  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
659  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
660  */
661 void write_boundary_block(struct block_device *bdev,
662 			sector_t bblock, unsigned blocksize)
663 {
664 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
665 	if (bh) {
666 		if (buffer_dirty(bh))
667 			ll_rw_block(WRITE, 1, &bh);
668 		put_bh(bh);
669 	}
670 }
671 
672 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
673 {
674 	struct address_space *mapping = inode->i_mapping;
675 	struct address_space *buffer_mapping = bh->b_page->mapping;
676 
677 	mark_buffer_dirty(bh);
678 	if (!mapping->assoc_mapping) {
679 		mapping->assoc_mapping = buffer_mapping;
680 	} else {
681 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
682 	}
683 	if (!bh->b_assoc_map) {
684 		spin_lock(&buffer_mapping->private_lock);
685 		list_move_tail(&bh->b_assoc_buffers,
686 				&mapping->private_list);
687 		bh->b_assoc_map = mapping;
688 		spin_unlock(&buffer_mapping->private_lock);
689 	}
690 }
691 EXPORT_SYMBOL(mark_buffer_dirty_inode);
692 
693 /*
694  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
695  * dirty.
696  *
697  * If warn is true, then emit a warning if the page is not uptodate and has
698  * not been truncated.
699  */
700 static int __set_page_dirty(struct page *page,
701 		struct address_space *mapping, int warn)
702 {
703 	if (unlikely(!mapping))
704 		return !TestSetPageDirty(page);
705 
706 	if (TestSetPageDirty(page))
707 		return 0;
708 
709 	spin_lock_irq(&mapping->tree_lock);
710 	if (page->mapping) {	/* Race with truncate? */
711 		WARN_ON_ONCE(warn && !PageUptodate(page));
712 
713 		if (mapping_cap_account_dirty(mapping)) {
714 			__inc_zone_page_state(page, NR_FILE_DIRTY);
715 			__inc_bdi_stat(mapping->backing_dev_info,
716 					BDI_RECLAIMABLE);
717 			task_io_account_write(PAGE_CACHE_SIZE);
718 		}
719 		radix_tree_tag_set(&mapping->page_tree,
720 				page_index(page), PAGECACHE_TAG_DIRTY);
721 	}
722 	spin_unlock_irq(&mapping->tree_lock);
723 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
724 
725 	return 1;
726 }
727 
728 /*
729  * Add a page to the dirty page list.
730  *
731  * It is a sad fact of life that this function is called from several places
732  * deeply under spinlocking.  It may not sleep.
733  *
734  * If the page has buffers, the uptodate buffers are set dirty, to preserve
735  * dirty-state coherency between the page and the buffers.  It the page does
736  * not have buffers then when they are later attached they will all be set
737  * dirty.
738  *
739  * The buffers are dirtied before the page is dirtied.  There's a small race
740  * window in which a writepage caller may see the page cleanness but not the
741  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
742  * before the buffers, a concurrent writepage caller could clear the page dirty
743  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
744  * page on the dirty page list.
745  *
746  * We use private_lock to lock against try_to_free_buffers while using the
747  * page's buffer list.  Also use this to protect against clean buffers being
748  * added to the page after it was set dirty.
749  *
750  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
751  * address_space though.
752  */
753 int __set_page_dirty_buffers(struct page *page)
754 {
755 	struct address_space *mapping = page_mapping(page);
756 
757 	if (unlikely(!mapping))
758 		return !TestSetPageDirty(page);
759 
760 	spin_lock(&mapping->private_lock);
761 	if (page_has_buffers(page)) {
762 		struct buffer_head *head = page_buffers(page);
763 		struct buffer_head *bh = head;
764 
765 		do {
766 			set_buffer_dirty(bh);
767 			bh = bh->b_this_page;
768 		} while (bh != head);
769 	}
770 	spin_unlock(&mapping->private_lock);
771 
772 	return __set_page_dirty(page, mapping, 1);
773 }
774 EXPORT_SYMBOL(__set_page_dirty_buffers);
775 
776 /*
777  * Write out and wait upon a list of buffers.
778  *
779  * We have conflicting pressures: we want to make sure that all
780  * initially dirty buffers get waited on, but that any subsequently
781  * dirtied buffers don't.  After all, we don't want fsync to last
782  * forever if somebody is actively writing to the file.
783  *
784  * Do this in two main stages: first we copy dirty buffers to a
785  * temporary inode list, queueing the writes as we go.  Then we clean
786  * up, waiting for those writes to complete.
787  *
788  * During this second stage, any subsequent updates to the file may end
789  * up refiling the buffer on the original inode's dirty list again, so
790  * there is a chance we will end up with a buffer queued for write but
791  * not yet completed on that list.  So, as a final cleanup we go through
792  * the osync code to catch these locked, dirty buffers without requeuing
793  * any newly dirty buffers for write.
794  */
795 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
796 {
797 	struct buffer_head *bh;
798 	struct list_head tmp;
799 	struct address_space *mapping;
800 	int err = 0, err2;
801 
802 	INIT_LIST_HEAD(&tmp);
803 
804 	spin_lock(lock);
805 	while (!list_empty(list)) {
806 		bh = BH_ENTRY(list->next);
807 		mapping = bh->b_assoc_map;
808 		__remove_assoc_queue(bh);
809 		/* Avoid race with mark_buffer_dirty_inode() which does
810 		 * a lockless check and we rely on seeing the dirty bit */
811 		smp_mb();
812 		if (buffer_dirty(bh) || buffer_locked(bh)) {
813 			list_add(&bh->b_assoc_buffers, &tmp);
814 			bh->b_assoc_map = mapping;
815 			if (buffer_dirty(bh)) {
816 				get_bh(bh);
817 				spin_unlock(lock);
818 				/*
819 				 * Ensure any pending I/O completes so that
820 				 * ll_rw_block() actually writes the current
821 				 * contents - it is a noop if I/O is still in
822 				 * flight on potentially older contents.
823 				 */
824 				ll_rw_block(SWRITE_SYNC, 1, &bh);
825 				brelse(bh);
826 				spin_lock(lock);
827 			}
828 		}
829 	}
830 
831 	while (!list_empty(&tmp)) {
832 		bh = BH_ENTRY(tmp.prev);
833 		get_bh(bh);
834 		mapping = bh->b_assoc_map;
835 		__remove_assoc_queue(bh);
836 		/* Avoid race with mark_buffer_dirty_inode() which does
837 		 * a lockless check and we rely on seeing the dirty bit */
838 		smp_mb();
839 		if (buffer_dirty(bh)) {
840 			list_add(&bh->b_assoc_buffers,
841 				 &mapping->private_list);
842 			bh->b_assoc_map = mapping;
843 		}
844 		spin_unlock(lock);
845 		wait_on_buffer(bh);
846 		if (!buffer_uptodate(bh))
847 			err = -EIO;
848 		brelse(bh);
849 		spin_lock(lock);
850 	}
851 
852 	spin_unlock(lock);
853 	err2 = osync_buffers_list(lock, list);
854 	if (err)
855 		return err;
856 	else
857 		return err2;
858 }
859 
860 /*
861  * Invalidate any and all dirty buffers on a given inode.  We are
862  * probably unmounting the fs, but that doesn't mean we have already
863  * done a sync().  Just drop the buffers from the inode list.
864  *
865  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
866  * assumes that all the buffers are against the blockdev.  Not true
867  * for reiserfs.
868  */
869 void invalidate_inode_buffers(struct inode *inode)
870 {
871 	if (inode_has_buffers(inode)) {
872 		struct address_space *mapping = &inode->i_data;
873 		struct list_head *list = &mapping->private_list;
874 		struct address_space *buffer_mapping = mapping->assoc_mapping;
875 
876 		spin_lock(&buffer_mapping->private_lock);
877 		while (!list_empty(list))
878 			__remove_assoc_queue(BH_ENTRY(list->next));
879 		spin_unlock(&buffer_mapping->private_lock);
880 	}
881 }
882 
883 /*
884  * Remove any clean buffers from the inode's buffer list.  This is called
885  * when we're trying to free the inode itself.  Those buffers can pin it.
886  *
887  * Returns true if all buffers were removed.
888  */
889 int remove_inode_buffers(struct inode *inode)
890 {
891 	int ret = 1;
892 
893 	if (inode_has_buffers(inode)) {
894 		struct address_space *mapping = &inode->i_data;
895 		struct list_head *list = &mapping->private_list;
896 		struct address_space *buffer_mapping = mapping->assoc_mapping;
897 
898 		spin_lock(&buffer_mapping->private_lock);
899 		while (!list_empty(list)) {
900 			struct buffer_head *bh = BH_ENTRY(list->next);
901 			if (buffer_dirty(bh)) {
902 				ret = 0;
903 				break;
904 			}
905 			__remove_assoc_queue(bh);
906 		}
907 		spin_unlock(&buffer_mapping->private_lock);
908 	}
909 	return ret;
910 }
911 
912 /*
913  * Create the appropriate buffers when given a page for data area and
914  * the size of each buffer.. Use the bh->b_this_page linked list to
915  * follow the buffers created.  Return NULL if unable to create more
916  * buffers.
917  *
918  * The retry flag is used to differentiate async IO (paging, swapping)
919  * which may not fail from ordinary buffer allocations.
920  */
921 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
922 		int retry)
923 {
924 	struct buffer_head *bh, *head;
925 	long offset;
926 
927 try_again:
928 	head = NULL;
929 	offset = PAGE_SIZE;
930 	while ((offset -= size) >= 0) {
931 		bh = alloc_buffer_head(GFP_NOFS);
932 		if (!bh)
933 			goto no_grow;
934 
935 		bh->b_bdev = NULL;
936 		bh->b_this_page = head;
937 		bh->b_blocknr = -1;
938 		head = bh;
939 
940 		bh->b_state = 0;
941 		atomic_set(&bh->b_count, 0);
942 		bh->b_private = NULL;
943 		bh->b_size = size;
944 
945 		/* Link the buffer to its page */
946 		set_bh_page(bh, page, offset);
947 
948 		init_buffer(bh, NULL, NULL);
949 	}
950 	return head;
951 /*
952  * In case anything failed, we just free everything we got.
953  */
954 no_grow:
955 	if (head) {
956 		do {
957 			bh = head;
958 			head = head->b_this_page;
959 			free_buffer_head(bh);
960 		} while (head);
961 	}
962 
963 	/*
964 	 * Return failure for non-async IO requests.  Async IO requests
965 	 * are not allowed to fail, so we have to wait until buffer heads
966 	 * become available.  But we don't want tasks sleeping with
967 	 * partially complete buffers, so all were released above.
968 	 */
969 	if (!retry)
970 		return NULL;
971 
972 	/* We're _really_ low on memory. Now we just
973 	 * wait for old buffer heads to become free due to
974 	 * finishing IO.  Since this is an async request and
975 	 * the reserve list is empty, we're sure there are
976 	 * async buffer heads in use.
977 	 */
978 	free_more_memory();
979 	goto try_again;
980 }
981 EXPORT_SYMBOL_GPL(alloc_page_buffers);
982 
983 static inline void
984 link_dev_buffers(struct page *page, struct buffer_head *head)
985 {
986 	struct buffer_head *bh, *tail;
987 
988 	bh = head;
989 	do {
990 		tail = bh;
991 		bh = bh->b_this_page;
992 	} while (bh);
993 	tail->b_this_page = head;
994 	attach_page_buffers(page, head);
995 }
996 
997 /*
998  * Initialise the state of a blockdev page's buffers.
999  */
1000 static void
1001 init_page_buffers(struct page *page, struct block_device *bdev,
1002 			sector_t block, int size)
1003 {
1004 	struct buffer_head *head = page_buffers(page);
1005 	struct buffer_head *bh = head;
1006 	int uptodate = PageUptodate(page);
1007 
1008 	do {
1009 		if (!buffer_mapped(bh)) {
1010 			init_buffer(bh, NULL, NULL);
1011 			bh->b_bdev = bdev;
1012 			bh->b_blocknr = block;
1013 			if (uptodate)
1014 				set_buffer_uptodate(bh);
1015 			set_buffer_mapped(bh);
1016 		}
1017 		block++;
1018 		bh = bh->b_this_page;
1019 	} while (bh != head);
1020 }
1021 
1022 /*
1023  * Create the page-cache page that contains the requested block.
1024  *
1025  * This is user purely for blockdev mappings.
1026  */
1027 static struct page *
1028 grow_dev_page(struct block_device *bdev, sector_t block,
1029 		pgoff_t index, int size)
1030 {
1031 	struct inode *inode = bdev->bd_inode;
1032 	struct page *page;
1033 	struct buffer_head *bh;
1034 
1035 	page = find_or_create_page(inode->i_mapping, index,
1036 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1037 	if (!page)
1038 		return NULL;
1039 
1040 	BUG_ON(!PageLocked(page));
1041 
1042 	if (page_has_buffers(page)) {
1043 		bh = page_buffers(page);
1044 		if (bh->b_size == size) {
1045 			init_page_buffers(page, bdev, block, size);
1046 			return page;
1047 		}
1048 		if (!try_to_free_buffers(page))
1049 			goto failed;
1050 	}
1051 
1052 	/*
1053 	 * Allocate some buffers for this page
1054 	 */
1055 	bh = alloc_page_buffers(page, size, 0);
1056 	if (!bh)
1057 		goto failed;
1058 
1059 	/*
1060 	 * Link the page to the buffers and initialise them.  Take the
1061 	 * lock to be atomic wrt __find_get_block(), which does not
1062 	 * run under the page lock.
1063 	 */
1064 	spin_lock(&inode->i_mapping->private_lock);
1065 	link_dev_buffers(page, bh);
1066 	init_page_buffers(page, bdev, block, size);
1067 	spin_unlock(&inode->i_mapping->private_lock);
1068 	return page;
1069 
1070 failed:
1071 	BUG();
1072 	unlock_page(page);
1073 	page_cache_release(page);
1074 	return NULL;
1075 }
1076 
1077 /*
1078  * Create buffers for the specified block device block's page.  If
1079  * that page was dirty, the buffers are set dirty also.
1080  */
1081 static int
1082 grow_buffers(struct block_device *bdev, sector_t block, int size)
1083 {
1084 	struct page *page;
1085 	pgoff_t index;
1086 	int sizebits;
1087 
1088 	sizebits = -1;
1089 	do {
1090 		sizebits++;
1091 	} while ((size << sizebits) < PAGE_SIZE);
1092 
1093 	index = block >> sizebits;
1094 
1095 	/*
1096 	 * Check for a block which wants to lie outside our maximum possible
1097 	 * pagecache index.  (this comparison is done using sector_t types).
1098 	 */
1099 	if (unlikely(index != block >> sizebits)) {
1100 		char b[BDEVNAME_SIZE];
1101 
1102 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1103 			"device %s\n",
1104 			__func__, (unsigned long long)block,
1105 			bdevname(bdev, b));
1106 		return -EIO;
1107 	}
1108 	block = index << sizebits;
1109 	/* Create a page with the proper size buffers.. */
1110 	page = grow_dev_page(bdev, block, index, size);
1111 	if (!page)
1112 		return 0;
1113 	unlock_page(page);
1114 	page_cache_release(page);
1115 	return 1;
1116 }
1117 
1118 static struct buffer_head *
1119 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1120 {
1121 	/* Size must be multiple of hard sectorsize */
1122 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1123 			(size < 512 || size > PAGE_SIZE))) {
1124 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1125 					size);
1126 		printk(KERN_ERR "hardsect size: %d\n",
1127 					bdev_hardsect_size(bdev));
1128 
1129 		dump_stack();
1130 		return NULL;
1131 	}
1132 
1133 	for (;;) {
1134 		struct buffer_head * bh;
1135 		int ret;
1136 
1137 		bh = __find_get_block(bdev, block, size);
1138 		if (bh)
1139 			return bh;
1140 
1141 		ret = grow_buffers(bdev, block, size);
1142 		if (ret < 0)
1143 			return NULL;
1144 		if (ret == 0)
1145 			free_more_memory();
1146 	}
1147 }
1148 
1149 /*
1150  * The relationship between dirty buffers and dirty pages:
1151  *
1152  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1153  * the page is tagged dirty in its radix tree.
1154  *
1155  * At all times, the dirtiness of the buffers represents the dirtiness of
1156  * subsections of the page.  If the page has buffers, the page dirty bit is
1157  * merely a hint about the true dirty state.
1158  *
1159  * When a page is set dirty in its entirety, all its buffers are marked dirty
1160  * (if the page has buffers).
1161  *
1162  * When a buffer is marked dirty, its page is dirtied, but the page's other
1163  * buffers are not.
1164  *
1165  * Also.  When blockdev buffers are explicitly read with bread(), they
1166  * individually become uptodate.  But their backing page remains not
1167  * uptodate - even if all of its buffers are uptodate.  A subsequent
1168  * block_read_full_page() against that page will discover all the uptodate
1169  * buffers, will set the page uptodate and will perform no I/O.
1170  */
1171 
1172 /**
1173  * mark_buffer_dirty - mark a buffer_head as needing writeout
1174  * @bh: the buffer_head to mark dirty
1175  *
1176  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1177  * backing page dirty, then tag the page as dirty in its address_space's radix
1178  * tree and then attach the address_space's inode to its superblock's dirty
1179  * inode list.
1180  *
1181  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1182  * mapping->tree_lock and the global inode_lock.
1183  */
1184 void mark_buffer_dirty(struct buffer_head *bh)
1185 {
1186 	WARN_ON_ONCE(!buffer_uptodate(bh));
1187 
1188 	/*
1189 	 * Very *carefully* optimize the it-is-already-dirty case.
1190 	 *
1191 	 * Don't let the final "is it dirty" escape to before we
1192 	 * perhaps modified the buffer.
1193 	 */
1194 	if (buffer_dirty(bh)) {
1195 		smp_mb();
1196 		if (buffer_dirty(bh))
1197 			return;
1198 	}
1199 
1200 	if (!test_set_buffer_dirty(bh))
1201 		__set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1202 }
1203 
1204 /*
1205  * Decrement a buffer_head's reference count.  If all buffers against a page
1206  * have zero reference count, are clean and unlocked, and if the page is clean
1207  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1208  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1209  * a page but it ends up not being freed, and buffers may later be reattached).
1210  */
1211 void __brelse(struct buffer_head * buf)
1212 {
1213 	if (atomic_read(&buf->b_count)) {
1214 		put_bh(buf);
1215 		return;
1216 	}
1217 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1218 }
1219 
1220 /*
1221  * bforget() is like brelse(), except it discards any
1222  * potentially dirty data.
1223  */
1224 void __bforget(struct buffer_head *bh)
1225 {
1226 	clear_buffer_dirty(bh);
1227 	if (bh->b_assoc_map) {
1228 		struct address_space *buffer_mapping = bh->b_page->mapping;
1229 
1230 		spin_lock(&buffer_mapping->private_lock);
1231 		list_del_init(&bh->b_assoc_buffers);
1232 		bh->b_assoc_map = NULL;
1233 		spin_unlock(&buffer_mapping->private_lock);
1234 	}
1235 	__brelse(bh);
1236 }
1237 
1238 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1239 {
1240 	lock_buffer(bh);
1241 	if (buffer_uptodate(bh)) {
1242 		unlock_buffer(bh);
1243 		return bh;
1244 	} else {
1245 		get_bh(bh);
1246 		bh->b_end_io = end_buffer_read_sync;
1247 		submit_bh(READ, bh);
1248 		wait_on_buffer(bh);
1249 		if (buffer_uptodate(bh))
1250 			return bh;
1251 	}
1252 	brelse(bh);
1253 	return NULL;
1254 }
1255 
1256 /*
1257  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1258  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1259  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1260  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1261  * CPU's LRUs at the same time.
1262  *
1263  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1264  * sb_find_get_block().
1265  *
1266  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1267  * a local interrupt disable for that.
1268  */
1269 
1270 #define BH_LRU_SIZE	8
1271 
1272 struct bh_lru {
1273 	struct buffer_head *bhs[BH_LRU_SIZE];
1274 };
1275 
1276 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1277 
1278 #ifdef CONFIG_SMP
1279 #define bh_lru_lock()	local_irq_disable()
1280 #define bh_lru_unlock()	local_irq_enable()
1281 #else
1282 #define bh_lru_lock()	preempt_disable()
1283 #define bh_lru_unlock()	preempt_enable()
1284 #endif
1285 
1286 static inline void check_irqs_on(void)
1287 {
1288 #ifdef irqs_disabled
1289 	BUG_ON(irqs_disabled());
1290 #endif
1291 }
1292 
1293 /*
1294  * The LRU management algorithm is dopey-but-simple.  Sorry.
1295  */
1296 static void bh_lru_install(struct buffer_head *bh)
1297 {
1298 	struct buffer_head *evictee = NULL;
1299 	struct bh_lru *lru;
1300 
1301 	check_irqs_on();
1302 	bh_lru_lock();
1303 	lru = &__get_cpu_var(bh_lrus);
1304 	if (lru->bhs[0] != bh) {
1305 		struct buffer_head *bhs[BH_LRU_SIZE];
1306 		int in;
1307 		int out = 0;
1308 
1309 		get_bh(bh);
1310 		bhs[out++] = bh;
1311 		for (in = 0; in < BH_LRU_SIZE; in++) {
1312 			struct buffer_head *bh2 = lru->bhs[in];
1313 
1314 			if (bh2 == bh) {
1315 				__brelse(bh2);
1316 			} else {
1317 				if (out >= BH_LRU_SIZE) {
1318 					BUG_ON(evictee != NULL);
1319 					evictee = bh2;
1320 				} else {
1321 					bhs[out++] = bh2;
1322 				}
1323 			}
1324 		}
1325 		while (out < BH_LRU_SIZE)
1326 			bhs[out++] = NULL;
1327 		memcpy(lru->bhs, bhs, sizeof(bhs));
1328 	}
1329 	bh_lru_unlock();
1330 
1331 	if (evictee)
1332 		__brelse(evictee);
1333 }
1334 
1335 /*
1336  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1337  */
1338 static struct buffer_head *
1339 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1340 {
1341 	struct buffer_head *ret = NULL;
1342 	struct bh_lru *lru;
1343 	unsigned int i;
1344 
1345 	check_irqs_on();
1346 	bh_lru_lock();
1347 	lru = &__get_cpu_var(bh_lrus);
1348 	for (i = 0; i < BH_LRU_SIZE; i++) {
1349 		struct buffer_head *bh = lru->bhs[i];
1350 
1351 		if (bh && bh->b_bdev == bdev &&
1352 				bh->b_blocknr == block && bh->b_size == size) {
1353 			if (i) {
1354 				while (i) {
1355 					lru->bhs[i] = lru->bhs[i - 1];
1356 					i--;
1357 				}
1358 				lru->bhs[0] = bh;
1359 			}
1360 			get_bh(bh);
1361 			ret = bh;
1362 			break;
1363 		}
1364 	}
1365 	bh_lru_unlock();
1366 	return ret;
1367 }
1368 
1369 /*
1370  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1371  * it in the LRU and mark it as accessed.  If it is not present then return
1372  * NULL
1373  */
1374 struct buffer_head *
1375 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1376 {
1377 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1378 
1379 	if (bh == NULL) {
1380 		bh = __find_get_block_slow(bdev, block);
1381 		if (bh)
1382 			bh_lru_install(bh);
1383 	}
1384 	if (bh)
1385 		touch_buffer(bh);
1386 	return bh;
1387 }
1388 EXPORT_SYMBOL(__find_get_block);
1389 
1390 /*
1391  * __getblk will locate (and, if necessary, create) the buffer_head
1392  * which corresponds to the passed block_device, block and size. The
1393  * returned buffer has its reference count incremented.
1394  *
1395  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1396  * illegal block number, __getblk() will happily return a buffer_head
1397  * which represents the non-existent block.  Very weird.
1398  *
1399  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1400  * attempt is failing.  FIXME, perhaps?
1401  */
1402 struct buffer_head *
1403 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1404 {
1405 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1406 
1407 	might_sleep();
1408 	if (bh == NULL)
1409 		bh = __getblk_slow(bdev, block, size);
1410 	return bh;
1411 }
1412 EXPORT_SYMBOL(__getblk);
1413 
1414 /*
1415  * Do async read-ahead on a buffer..
1416  */
1417 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1418 {
1419 	struct buffer_head *bh = __getblk(bdev, block, size);
1420 	if (likely(bh)) {
1421 		ll_rw_block(READA, 1, &bh);
1422 		brelse(bh);
1423 	}
1424 }
1425 EXPORT_SYMBOL(__breadahead);
1426 
1427 /**
1428  *  __bread() - reads a specified block and returns the bh
1429  *  @bdev: the block_device to read from
1430  *  @block: number of block
1431  *  @size: size (in bytes) to read
1432  *
1433  *  Reads a specified block, and returns buffer head that contains it.
1434  *  It returns NULL if the block was unreadable.
1435  */
1436 struct buffer_head *
1437 __bread(struct block_device *bdev, sector_t block, unsigned size)
1438 {
1439 	struct buffer_head *bh = __getblk(bdev, block, size);
1440 
1441 	if (likely(bh) && !buffer_uptodate(bh))
1442 		bh = __bread_slow(bh);
1443 	return bh;
1444 }
1445 EXPORT_SYMBOL(__bread);
1446 
1447 /*
1448  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1449  * This doesn't race because it runs in each cpu either in irq
1450  * or with preempt disabled.
1451  */
1452 static void invalidate_bh_lru(void *arg)
1453 {
1454 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1455 	int i;
1456 
1457 	for (i = 0; i < BH_LRU_SIZE; i++) {
1458 		brelse(b->bhs[i]);
1459 		b->bhs[i] = NULL;
1460 	}
1461 	put_cpu_var(bh_lrus);
1462 }
1463 
1464 void invalidate_bh_lrus(void)
1465 {
1466 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1467 }
1468 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1469 
1470 void set_bh_page(struct buffer_head *bh,
1471 		struct page *page, unsigned long offset)
1472 {
1473 	bh->b_page = page;
1474 	BUG_ON(offset >= PAGE_SIZE);
1475 	if (PageHighMem(page))
1476 		/*
1477 		 * This catches illegal uses and preserves the offset:
1478 		 */
1479 		bh->b_data = (char *)(0 + offset);
1480 	else
1481 		bh->b_data = page_address(page) + offset;
1482 }
1483 EXPORT_SYMBOL(set_bh_page);
1484 
1485 /*
1486  * Called when truncating a buffer on a page completely.
1487  */
1488 static void discard_buffer(struct buffer_head * bh)
1489 {
1490 	lock_buffer(bh);
1491 	clear_buffer_dirty(bh);
1492 	bh->b_bdev = NULL;
1493 	clear_buffer_mapped(bh);
1494 	clear_buffer_req(bh);
1495 	clear_buffer_new(bh);
1496 	clear_buffer_delay(bh);
1497 	clear_buffer_unwritten(bh);
1498 	unlock_buffer(bh);
1499 }
1500 
1501 /**
1502  * block_invalidatepage - invalidate part of all of a buffer-backed page
1503  *
1504  * @page: the page which is affected
1505  * @offset: the index of the truncation point
1506  *
1507  * block_invalidatepage() is called when all or part of the page has become
1508  * invalidatedby a truncate operation.
1509  *
1510  * block_invalidatepage() does not have to release all buffers, but it must
1511  * ensure that no dirty buffer is left outside @offset and that no I/O
1512  * is underway against any of the blocks which are outside the truncation
1513  * point.  Because the caller is about to free (and possibly reuse) those
1514  * blocks on-disk.
1515  */
1516 void block_invalidatepage(struct page *page, unsigned long offset)
1517 {
1518 	struct buffer_head *head, *bh, *next;
1519 	unsigned int curr_off = 0;
1520 
1521 	BUG_ON(!PageLocked(page));
1522 	if (!page_has_buffers(page))
1523 		goto out;
1524 
1525 	head = page_buffers(page);
1526 	bh = head;
1527 	do {
1528 		unsigned int next_off = curr_off + bh->b_size;
1529 		next = bh->b_this_page;
1530 
1531 		/*
1532 		 * is this block fully invalidated?
1533 		 */
1534 		if (offset <= curr_off)
1535 			discard_buffer(bh);
1536 		curr_off = next_off;
1537 		bh = next;
1538 	} while (bh != head);
1539 
1540 	/*
1541 	 * We release buffers only if the entire page is being invalidated.
1542 	 * The get_block cached value has been unconditionally invalidated,
1543 	 * so real IO is not possible anymore.
1544 	 */
1545 	if (offset == 0)
1546 		try_to_release_page(page, 0);
1547 out:
1548 	return;
1549 }
1550 EXPORT_SYMBOL(block_invalidatepage);
1551 
1552 /*
1553  * We attach and possibly dirty the buffers atomically wrt
1554  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1555  * is already excluded via the page lock.
1556  */
1557 void create_empty_buffers(struct page *page,
1558 			unsigned long blocksize, unsigned long b_state)
1559 {
1560 	struct buffer_head *bh, *head, *tail;
1561 
1562 	head = alloc_page_buffers(page, blocksize, 1);
1563 	bh = head;
1564 	do {
1565 		bh->b_state |= b_state;
1566 		tail = bh;
1567 		bh = bh->b_this_page;
1568 	} while (bh);
1569 	tail->b_this_page = head;
1570 
1571 	spin_lock(&page->mapping->private_lock);
1572 	if (PageUptodate(page) || PageDirty(page)) {
1573 		bh = head;
1574 		do {
1575 			if (PageDirty(page))
1576 				set_buffer_dirty(bh);
1577 			if (PageUptodate(page))
1578 				set_buffer_uptodate(bh);
1579 			bh = bh->b_this_page;
1580 		} while (bh != head);
1581 	}
1582 	attach_page_buffers(page, head);
1583 	spin_unlock(&page->mapping->private_lock);
1584 }
1585 EXPORT_SYMBOL(create_empty_buffers);
1586 
1587 /*
1588  * We are taking a block for data and we don't want any output from any
1589  * buffer-cache aliases starting from return from that function and
1590  * until the moment when something will explicitly mark the buffer
1591  * dirty (hopefully that will not happen until we will free that block ;-)
1592  * We don't even need to mark it not-uptodate - nobody can expect
1593  * anything from a newly allocated buffer anyway. We used to used
1594  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1595  * don't want to mark the alias unmapped, for example - it would confuse
1596  * anyone who might pick it with bread() afterwards...
1597  *
1598  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1599  * be writeout I/O going on against recently-freed buffers.  We don't
1600  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1601  * only if we really need to.  That happens here.
1602  */
1603 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1604 {
1605 	struct buffer_head *old_bh;
1606 
1607 	might_sleep();
1608 
1609 	old_bh = __find_get_block_slow(bdev, block);
1610 	if (old_bh) {
1611 		clear_buffer_dirty(old_bh);
1612 		wait_on_buffer(old_bh);
1613 		clear_buffer_req(old_bh);
1614 		__brelse(old_bh);
1615 	}
1616 }
1617 EXPORT_SYMBOL(unmap_underlying_metadata);
1618 
1619 /*
1620  * NOTE! All mapped/uptodate combinations are valid:
1621  *
1622  *	Mapped	Uptodate	Meaning
1623  *
1624  *	No	No		"unknown" - must do get_block()
1625  *	No	Yes		"hole" - zero-filled
1626  *	Yes	No		"allocated" - allocated on disk, not read in
1627  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1628  *
1629  * "Dirty" is valid only with the last case (mapped+uptodate).
1630  */
1631 
1632 /*
1633  * While block_write_full_page is writing back the dirty buffers under
1634  * the page lock, whoever dirtied the buffers may decide to clean them
1635  * again at any time.  We handle that by only looking at the buffer
1636  * state inside lock_buffer().
1637  *
1638  * If block_write_full_page() is called for regular writeback
1639  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1640  * locked buffer.   This only can happen if someone has written the buffer
1641  * directly, with submit_bh().  At the address_space level PageWriteback
1642  * prevents this contention from occurring.
1643  */
1644 static int __block_write_full_page(struct inode *inode, struct page *page,
1645 			get_block_t *get_block, struct writeback_control *wbc)
1646 {
1647 	int err;
1648 	sector_t block;
1649 	sector_t last_block;
1650 	struct buffer_head *bh, *head;
1651 	const unsigned blocksize = 1 << inode->i_blkbits;
1652 	int nr_underway = 0;
1653 
1654 	BUG_ON(!PageLocked(page));
1655 
1656 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1657 
1658 	if (!page_has_buffers(page)) {
1659 		create_empty_buffers(page, blocksize,
1660 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1661 	}
1662 
1663 	/*
1664 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1665 	 * here, and the (potentially unmapped) buffers may become dirty at
1666 	 * any time.  If a buffer becomes dirty here after we've inspected it
1667 	 * then we just miss that fact, and the page stays dirty.
1668 	 *
1669 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1670 	 * handle that here by just cleaning them.
1671 	 */
1672 
1673 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1674 	head = page_buffers(page);
1675 	bh = head;
1676 
1677 	/*
1678 	 * Get all the dirty buffers mapped to disk addresses and
1679 	 * handle any aliases from the underlying blockdev's mapping.
1680 	 */
1681 	do {
1682 		if (block > last_block) {
1683 			/*
1684 			 * mapped buffers outside i_size will occur, because
1685 			 * this page can be outside i_size when there is a
1686 			 * truncate in progress.
1687 			 */
1688 			/*
1689 			 * The buffer was zeroed by block_write_full_page()
1690 			 */
1691 			clear_buffer_dirty(bh);
1692 			set_buffer_uptodate(bh);
1693 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1694 			   buffer_dirty(bh)) {
1695 			WARN_ON(bh->b_size != blocksize);
1696 			err = get_block(inode, block, bh, 1);
1697 			if (err)
1698 				goto recover;
1699 			clear_buffer_delay(bh);
1700 			if (buffer_new(bh)) {
1701 				/* blockdev mappings never come here */
1702 				clear_buffer_new(bh);
1703 				unmap_underlying_metadata(bh->b_bdev,
1704 							bh->b_blocknr);
1705 			}
1706 		}
1707 		bh = bh->b_this_page;
1708 		block++;
1709 	} while (bh != head);
1710 
1711 	do {
1712 		if (!buffer_mapped(bh))
1713 			continue;
1714 		/*
1715 		 * If it's a fully non-blocking write attempt and we cannot
1716 		 * lock the buffer then redirty the page.  Note that this can
1717 		 * potentially cause a busy-wait loop from pdflush and kswapd
1718 		 * activity, but those code paths have their own higher-level
1719 		 * throttling.
1720 		 */
1721 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1722 			lock_buffer(bh);
1723 		} else if (test_set_buffer_locked(bh)) {
1724 			redirty_page_for_writepage(wbc, page);
1725 			continue;
1726 		}
1727 		if (test_clear_buffer_dirty(bh)) {
1728 			mark_buffer_async_write(bh);
1729 		} else {
1730 			unlock_buffer(bh);
1731 		}
1732 	} while ((bh = bh->b_this_page) != head);
1733 
1734 	/*
1735 	 * The page and its buffers are protected by PageWriteback(), so we can
1736 	 * drop the bh refcounts early.
1737 	 */
1738 	BUG_ON(PageWriteback(page));
1739 	set_page_writeback(page);
1740 
1741 	do {
1742 		struct buffer_head *next = bh->b_this_page;
1743 		if (buffer_async_write(bh)) {
1744 			submit_bh(WRITE, bh);
1745 			nr_underway++;
1746 		}
1747 		bh = next;
1748 	} while (bh != head);
1749 	unlock_page(page);
1750 
1751 	err = 0;
1752 done:
1753 	if (nr_underway == 0) {
1754 		/*
1755 		 * The page was marked dirty, but the buffers were
1756 		 * clean.  Someone wrote them back by hand with
1757 		 * ll_rw_block/submit_bh.  A rare case.
1758 		 */
1759 		end_page_writeback(page);
1760 
1761 		/*
1762 		 * The page and buffer_heads can be released at any time from
1763 		 * here on.
1764 		 */
1765 	}
1766 	return err;
1767 
1768 recover:
1769 	/*
1770 	 * ENOSPC, or some other error.  We may already have added some
1771 	 * blocks to the file, so we need to write these out to avoid
1772 	 * exposing stale data.
1773 	 * The page is currently locked and not marked for writeback
1774 	 */
1775 	bh = head;
1776 	/* Recovery: lock and submit the mapped buffers */
1777 	do {
1778 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1779 		    !buffer_delay(bh)) {
1780 			lock_buffer(bh);
1781 			mark_buffer_async_write(bh);
1782 		} else {
1783 			/*
1784 			 * The buffer may have been set dirty during
1785 			 * attachment to a dirty page.
1786 			 */
1787 			clear_buffer_dirty(bh);
1788 		}
1789 	} while ((bh = bh->b_this_page) != head);
1790 	SetPageError(page);
1791 	BUG_ON(PageWriteback(page));
1792 	mapping_set_error(page->mapping, err);
1793 	set_page_writeback(page);
1794 	do {
1795 		struct buffer_head *next = bh->b_this_page;
1796 		if (buffer_async_write(bh)) {
1797 			clear_buffer_dirty(bh);
1798 			submit_bh(WRITE, bh);
1799 			nr_underway++;
1800 		}
1801 		bh = next;
1802 	} while (bh != head);
1803 	unlock_page(page);
1804 	goto done;
1805 }
1806 
1807 /*
1808  * If a page has any new buffers, zero them out here, and mark them uptodate
1809  * and dirty so they'll be written out (in order to prevent uninitialised
1810  * block data from leaking). And clear the new bit.
1811  */
1812 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1813 {
1814 	unsigned int block_start, block_end;
1815 	struct buffer_head *head, *bh;
1816 
1817 	BUG_ON(!PageLocked(page));
1818 	if (!page_has_buffers(page))
1819 		return;
1820 
1821 	bh = head = page_buffers(page);
1822 	block_start = 0;
1823 	do {
1824 		block_end = block_start + bh->b_size;
1825 
1826 		if (buffer_new(bh)) {
1827 			if (block_end > from && block_start < to) {
1828 				if (!PageUptodate(page)) {
1829 					unsigned start, size;
1830 
1831 					start = max(from, block_start);
1832 					size = min(to, block_end) - start;
1833 
1834 					zero_user(page, start, size);
1835 					set_buffer_uptodate(bh);
1836 				}
1837 
1838 				clear_buffer_new(bh);
1839 				mark_buffer_dirty(bh);
1840 			}
1841 		}
1842 
1843 		block_start = block_end;
1844 		bh = bh->b_this_page;
1845 	} while (bh != head);
1846 }
1847 EXPORT_SYMBOL(page_zero_new_buffers);
1848 
1849 static int __block_prepare_write(struct inode *inode, struct page *page,
1850 		unsigned from, unsigned to, get_block_t *get_block)
1851 {
1852 	unsigned block_start, block_end;
1853 	sector_t block;
1854 	int err = 0;
1855 	unsigned blocksize, bbits;
1856 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1857 
1858 	BUG_ON(!PageLocked(page));
1859 	BUG_ON(from > PAGE_CACHE_SIZE);
1860 	BUG_ON(to > PAGE_CACHE_SIZE);
1861 	BUG_ON(from > to);
1862 
1863 	blocksize = 1 << inode->i_blkbits;
1864 	if (!page_has_buffers(page))
1865 		create_empty_buffers(page, blocksize, 0);
1866 	head = page_buffers(page);
1867 
1868 	bbits = inode->i_blkbits;
1869 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1870 
1871 	for(bh = head, block_start = 0; bh != head || !block_start;
1872 	    block++, block_start=block_end, bh = bh->b_this_page) {
1873 		block_end = block_start + blocksize;
1874 		if (block_end <= from || block_start >= to) {
1875 			if (PageUptodate(page)) {
1876 				if (!buffer_uptodate(bh))
1877 					set_buffer_uptodate(bh);
1878 			}
1879 			continue;
1880 		}
1881 		if (buffer_new(bh))
1882 			clear_buffer_new(bh);
1883 		if (!buffer_mapped(bh)) {
1884 			WARN_ON(bh->b_size != blocksize);
1885 			err = get_block(inode, block, bh, 1);
1886 			if (err)
1887 				break;
1888 			if (buffer_new(bh)) {
1889 				unmap_underlying_metadata(bh->b_bdev,
1890 							bh->b_blocknr);
1891 				if (PageUptodate(page)) {
1892 					clear_buffer_new(bh);
1893 					set_buffer_uptodate(bh);
1894 					mark_buffer_dirty(bh);
1895 					continue;
1896 				}
1897 				if (block_end > to || block_start < from)
1898 					zero_user_segments(page,
1899 						to, block_end,
1900 						block_start, from);
1901 				continue;
1902 			}
1903 		}
1904 		if (PageUptodate(page)) {
1905 			if (!buffer_uptodate(bh))
1906 				set_buffer_uptodate(bh);
1907 			continue;
1908 		}
1909 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1910 		    !buffer_unwritten(bh) &&
1911 		     (block_start < from || block_end > to)) {
1912 			ll_rw_block(READ, 1, &bh);
1913 			*wait_bh++=bh;
1914 		}
1915 	}
1916 	/*
1917 	 * If we issued read requests - let them complete.
1918 	 */
1919 	while(wait_bh > wait) {
1920 		wait_on_buffer(*--wait_bh);
1921 		if (!buffer_uptodate(*wait_bh))
1922 			err = -EIO;
1923 	}
1924 	if (unlikely(err))
1925 		page_zero_new_buffers(page, from, to);
1926 	return err;
1927 }
1928 
1929 static int __block_commit_write(struct inode *inode, struct page *page,
1930 		unsigned from, unsigned to)
1931 {
1932 	unsigned block_start, block_end;
1933 	int partial = 0;
1934 	unsigned blocksize;
1935 	struct buffer_head *bh, *head;
1936 
1937 	blocksize = 1 << inode->i_blkbits;
1938 
1939 	for(bh = head = page_buffers(page), block_start = 0;
1940 	    bh != head || !block_start;
1941 	    block_start=block_end, bh = bh->b_this_page) {
1942 		block_end = block_start + blocksize;
1943 		if (block_end <= from || block_start >= to) {
1944 			if (!buffer_uptodate(bh))
1945 				partial = 1;
1946 		} else {
1947 			set_buffer_uptodate(bh);
1948 			mark_buffer_dirty(bh);
1949 		}
1950 		clear_buffer_new(bh);
1951 	}
1952 
1953 	/*
1954 	 * If this is a partial write which happened to make all buffers
1955 	 * uptodate then we can optimize away a bogus readpage() for
1956 	 * the next read(). Here we 'discover' whether the page went
1957 	 * uptodate as a result of this (potentially partial) write.
1958 	 */
1959 	if (!partial)
1960 		SetPageUptodate(page);
1961 	return 0;
1962 }
1963 
1964 /*
1965  * block_write_begin takes care of the basic task of block allocation and
1966  * bringing partial write blocks uptodate first.
1967  *
1968  * If *pagep is not NULL, then block_write_begin uses the locked page
1969  * at *pagep rather than allocating its own. In this case, the page will
1970  * not be unlocked or deallocated on failure.
1971  */
1972 int block_write_begin(struct file *file, struct address_space *mapping,
1973 			loff_t pos, unsigned len, unsigned flags,
1974 			struct page **pagep, void **fsdata,
1975 			get_block_t *get_block)
1976 {
1977 	struct inode *inode = mapping->host;
1978 	int status = 0;
1979 	struct page *page;
1980 	pgoff_t index;
1981 	unsigned start, end;
1982 	int ownpage = 0;
1983 
1984 	index = pos >> PAGE_CACHE_SHIFT;
1985 	start = pos & (PAGE_CACHE_SIZE - 1);
1986 	end = start + len;
1987 
1988 	page = *pagep;
1989 	if (page == NULL) {
1990 		ownpage = 1;
1991 		page = __grab_cache_page(mapping, index);
1992 		if (!page) {
1993 			status = -ENOMEM;
1994 			goto out;
1995 		}
1996 		*pagep = page;
1997 	} else
1998 		BUG_ON(!PageLocked(page));
1999 
2000 	status = __block_prepare_write(inode, page, start, end, get_block);
2001 	if (unlikely(status)) {
2002 		ClearPageUptodate(page);
2003 
2004 		if (ownpage) {
2005 			unlock_page(page);
2006 			page_cache_release(page);
2007 			*pagep = NULL;
2008 
2009 			/*
2010 			 * prepare_write() may have instantiated a few blocks
2011 			 * outside i_size.  Trim these off again. Don't need
2012 			 * i_size_read because we hold i_mutex.
2013 			 */
2014 			if (pos + len > inode->i_size)
2015 				vmtruncate(inode, inode->i_size);
2016 		}
2017 		goto out;
2018 	}
2019 
2020 out:
2021 	return status;
2022 }
2023 EXPORT_SYMBOL(block_write_begin);
2024 
2025 int block_write_end(struct file *file, struct address_space *mapping,
2026 			loff_t pos, unsigned len, unsigned copied,
2027 			struct page *page, void *fsdata)
2028 {
2029 	struct inode *inode = mapping->host;
2030 	unsigned start;
2031 
2032 	start = pos & (PAGE_CACHE_SIZE - 1);
2033 
2034 	if (unlikely(copied < len)) {
2035 		/*
2036 		 * The buffers that were written will now be uptodate, so we
2037 		 * don't have to worry about a readpage reading them and
2038 		 * overwriting a partial write. However if we have encountered
2039 		 * a short write and only partially written into a buffer, it
2040 		 * will not be marked uptodate, so a readpage might come in and
2041 		 * destroy our partial write.
2042 		 *
2043 		 * Do the simplest thing, and just treat any short write to a
2044 		 * non uptodate page as a zero-length write, and force the
2045 		 * caller to redo the whole thing.
2046 		 */
2047 		if (!PageUptodate(page))
2048 			copied = 0;
2049 
2050 		page_zero_new_buffers(page, start+copied, start+len);
2051 	}
2052 	flush_dcache_page(page);
2053 
2054 	/* This could be a short (even 0-length) commit */
2055 	__block_commit_write(inode, page, start, start+copied);
2056 
2057 	return copied;
2058 }
2059 EXPORT_SYMBOL(block_write_end);
2060 
2061 int generic_write_end(struct file *file, struct address_space *mapping,
2062 			loff_t pos, unsigned len, unsigned copied,
2063 			struct page *page, void *fsdata)
2064 {
2065 	struct inode *inode = mapping->host;
2066 	int i_size_changed = 0;
2067 
2068 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2069 
2070 	/*
2071 	 * No need to use i_size_read() here, the i_size
2072 	 * cannot change under us because we hold i_mutex.
2073 	 *
2074 	 * But it's important to update i_size while still holding page lock:
2075 	 * page writeout could otherwise come in and zero beyond i_size.
2076 	 */
2077 	if (pos+copied > inode->i_size) {
2078 		i_size_write(inode, pos+copied);
2079 		i_size_changed = 1;
2080 	}
2081 
2082 	unlock_page(page);
2083 	page_cache_release(page);
2084 
2085 	/*
2086 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2087 	 * makes the holding time of page lock longer. Second, it forces lock
2088 	 * ordering of page lock and transaction start for journaling
2089 	 * filesystems.
2090 	 */
2091 	if (i_size_changed)
2092 		mark_inode_dirty(inode);
2093 
2094 	return copied;
2095 }
2096 EXPORT_SYMBOL(generic_write_end);
2097 
2098 /*
2099  * Generic "read page" function for block devices that have the normal
2100  * get_block functionality. This is most of the block device filesystems.
2101  * Reads the page asynchronously --- the unlock_buffer() and
2102  * set/clear_buffer_uptodate() functions propagate buffer state into the
2103  * page struct once IO has completed.
2104  */
2105 int block_read_full_page(struct page *page, get_block_t *get_block)
2106 {
2107 	struct inode *inode = page->mapping->host;
2108 	sector_t iblock, lblock;
2109 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2110 	unsigned int blocksize;
2111 	int nr, i;
2112 	int fully_mapped = 1;
2113 
2114 	BUG_ON(!PageLocked(page));
2115 	blocksize = 1 << inode->i_blkbits;
2116 	if (!page_has_buffers(page))
2117 		create_empty_buffers(page, blocksize, 0);
2118 	head = page_buffers(page);
2119 
2120 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2121 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2122 	bh = head;
2123 	nr = 0;
2124 	i = 0;
2125 
2126 	do {
2127 		if (buffer_uptodate(bh))
2128 			continue;
2129 
2130 		if (!buffer_mapped(bh)) {
2131 			int err = 0;
2132 
2133 			fully_mapped = 0;
2134 			if (iblock < lblock) {
2135 				WARN_ON(bh->b_size != blocksize);
2136 				err = get_block(inode, iblock, bh, 0);
2137 				if (err)
2138 					SetPageError(page);
2139 			}
2140 			if (!buffer_mapped(bh)) {
2141 				zero_user(page, i * blocksize, blocksize);
2142 				if (!err)
2143 					set_buffer_uptodate(bh);
2144 				continue;
2145 			}
2146 			/*
2147 			 * get_block() might have updated the buffer
2148 			 * synchronously
2149 			 */
2150 			if (buffer_uptodate(bh))
2151 				continue;
2152 		}
2153 		arr[nr++] = bh;
2154 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2155 
2156 	if (fully_mapped)
2157 		SetPageMappedToDisk(page);
2158 
2159 	if (!nr) {
2160 		/*
2161 		 * All buffers are uptodate - we can set the page uptodate
2162 		 * as well. But not if get_block() returned an error.
2163 		 */
2164 		if (!PageError(page))
2165 			SetPageUptodate(page);
2166 		unlock_page(page);
2167 		return 0;
2168 	}
2169 
2170 	/* Stage two: lock the buffers */
2171 	for (i = 0; i < nr; i++) {
2172 		bh = arr[i];
2173 		lock_buffer(bh);
2174 		mark_buffer_async_read(bh);
2175 	}
2176 
2177 	/*
2178 	 * Stage 3: start the IO.  Check for uptodateness
2179 	 * inside the buffer lock in case another process reading
2180 	 * the underlying blockdev brought it uptodate (the sct fix).
2181 	 */
2182 	for (i = 0; i < nr; i++) {
2183 		bh = arr[i];
2184 		if (buffer_uptodate(bh))
2185 			end_buffer_async_read(bh, 1);
2186 		else
2187 			submit_bh(READ, bh);
2188 	}
2189 	return 0;
2190 }
2191 
2192 /* utility function for filesystems that need to do work on expanding
2193  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2194  * deal with the hole.
2195  */
2196 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2197 {
2198 	struct address_space *mapping = inode->i_mapping;
2199 	struct page *page;
2200 	void *fsdata;
2201 	unsigned long limit;
2202 	int err;
2203 
2204 	err = -EFBIG;
2205         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2206 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2207 		send_sig(SIGXFSZ, current, 0);
2208 		goto out;
2209 	}
2210 	if (size > inode->i_sb->s_maxbytes)
2211 		goto out;
2212 
2213 	err = pagecache_write_begin(NULL, mapping, size, 0,
2214 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2215 				&page, &fsdata);
2216 	if (err)
2217 		goto out;
2218 
2219 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2220 	BUG_ON(err > 0);
2221 
2222 out:
2223 	return err;
2224 }
2225 
2226 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2227 			    loff_t pos, loff_t *bytes)
2228 {
2229 	struct inode *inode = mapping->host;
2230 	unsigned blocksize = 1 << inode->i_blkbits;
2231 	struct page *page;
2232 	void *fsdata;
2233 	pgoff_t index, curidx;
2234 	loff_t curpos;
2235 	unsigned zerofrom, offset, len;
2236 	int err = 0;
2237 
2238 	index = pos >> PAGE_CACHE_SHIFT;
2239 	offset = pos & ~PAGE_CACHE_MASK;
2240 
2241 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2242 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2243 		if (zerofrom & (blocksize-1)) {
2244 			*bytes |= (blocksize-1);
2245 			(*bytes)++;
2246 		}
2247 		len = PAGE_CACHE_SIZE - zerofrom;
2248 
2249 		err = pagecache_write_begin(file, mapping, curpos, len,
2250 						AOP_FLAG_UNINTERRUPTIBLE,
2251 						&page, &fsdata);
2252 		if (err)
2253 			goto out;
2254 		zero_user(page, zerofrom, len);
2255 		err = pagecache_write_end(file, mapping, curpos, len, len,
2256 						page, fsdata);
2257 		if (err < 0)
2258 			goto out;
2259 		BUG_ON(err != len);
2260 		err = 0;
2261 
2262 		balance_dirty_pages_ratelimited(mapping);
2263 	}
2264 
2265 	/* page covers the boundary, find the boundary offset */
2266 	if (index == curidx) {
2267 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2268 		/* if we will expand the thing last block will be filled */
2269 		if (offset <= zerofrom) {
2270 			goto out;
2271 		}
2272 		if (zerofrom & (blocksize-1)) {
2273 			*bytes |= (blocksize-1);
2274 			(*bytes)++;
2275 		}
2276 		len = offset - zerofrom;
2277 
2278 		err = pagecache_write_begin(file, mapping, curpos, len,
2279 						AOP_FLAG_UNINTERRUPTIBLE,
2280 						&page, &fsdata);
2281 		if (err)
2282 			goto out;
2283 		zero_user(page, zerofrom, len);
2284 		err = pagecache_write_end(file, mapping, curpos, len, len,
2285 						page, fsdata);
2286 		if (err < 0)
2287 			goto out;
2288 		BUG_ON(err != len);
2289 		err = 0;
2290 	}
2291 out:
2292 	return err;
2293 }
2294 
2295 /*
2296  * For moronic filesystems that do not allow holes in file.
2297  * We may have to extend the file.
2298  */
2299 int cont_write_begin(struct file *file, struct address_space *mapping,
2300 			loff_t pos, unsigned len, unsigned flags,
2301 			struct page **pagep, void **fsdata,
2302 			get_block_t *get_block, loff_t *bytes)
2303 {
2304 	struct inode *inode = mapping->host;
2305 	unsigned blocksize = 1 << inode->i_blkbits;
2306 	unsigned zerofrom;
2307 	int err;
2308 
2309 	err = cont_expand_zero(file, mapping, pos, bytes);
2310 	if (err)
2311 		goto out;
2312 
2313 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2314 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2315 		*bytes |= (blocksize-1);
2316 		(*bytes)++;
2317 	}
2318 
2319 	*pagep = NULL;
2320 	err = block_write_begin(file, mapping, pos, len,
2321 				flags, pagep, fsdata, get_block);
2322 out:
2323 	return err;
2324 }
2325 
2326 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2327 			get_block_t *get_block)
2328 {
2329 	struct inode *inode = page->mapping->host;
2330 	int err = __block_prepare_write(inode, page, from, to, get_block);
2331 	if (err)
2332 		ClearPageUptodate(page);
2333 	return err;
2334 }
2335 
2336 int block_commit_write(struct page *page, unsigned from, unsigned to)
2337 {
2338 	struct inode *inode = page->mapping->host;
2339 	__block_commit_write(inode,page,from,to);
2340 	return 0;
2341 }
2342 
2343 /*
2344  * block_page_mkwrite() is not allowed to change the file size as it gets
2345  * called from a page fault handler when a page is first dirtied. Hence we must
2346  * be careful to check for EOF conditions here. We set the page up correctly
2347  * for a written page which means we get ENOSPC checking when writing into
2348  * holes and correct delalloc and unwritten extent mapping on filesystems that
2349  * support these features.
2350  *
2351  * We are not allowed to take the i_mutex here so we have to play games to
2352  * protect against truncate races as the page could now be beyond EOF.  Because
2353  * vmtruncate() writes the inode size before removing pages, once we have the
2354  * page lock we can determine safely if the page is beyond EOF. If it is not
2355  * beyond EOF, then the page is guaranteed safe against truncation until we
2356  * unlock the page.
2357  */
2358 int
2359 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2360 		   get_block_t get_block)
2361 {
2362 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2363 	unsigned long end;
2364 	loff_t size;
2365 	int ret = -EINVAL;
2366 
2367 	lock_page(page);
2368 	size = i_size_read(inode);
2369 	if ((page->mapping != inode->i_mapping) ||
2370 	    (page_offset(page) > size)) {
2371 		/* page got truncated out from underneath us */
2372 		goto out_unlock;
2373 	}
2374 
2375 	/* page is wholly or partially inside EOF */
2376 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2377 		end = size & ~PAGE_CACHE_MASK;
2378 	else
2379 		end = PAGE_CACHE_SIZE;
2380 
2381 	ret = block_prepare_write(page, 0, end, get_block);
2382 	if (!ret)
2383 		ret = block_commit_write(page, 0, end);
2384 
2385 out_unlock:
2386 	unlock_page(page);
2387 	return ret;
2388 }
2389 
2390 /*
2391  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2392  * immediately, while under the page lock.  So it needs a special end_io
2393  * handler which does not touch the bh after unlocking it.
2394  */
2395 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2396 {
2397 	__end_buffer_read_notouch(bh, uptodate);
2398 }
2399 
2400 /*
2401  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2402  * the page (converting it to circular linked list and taking care of page
2403  * dirty races).
2404  */
2405 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2406 {
2407 	struct buffer_head *bh;
2408 
2409 	BUG_ON(!PageLocked(page));
2410 
2411 	spin_lock(&page->mapping->private_lock);
2412 	bh = head;
2413 	do {
2414 		if (PageDirty(page))
2415 			set_buffer_dirty(bh);
2416 		if (!bh->b_this_page)
2417 			bh->b_this_page = head;
2418 		bh = bh->b_this_page;
2419 	} while (bh != head);
2420 	attach_page_buffers(page, head);
2421 	spin_unlock(&page->mapping->private_lock);
2422 }
2423 
2424 /*
2425  * On entry, the page is fully not uptodate.
2426  * On exit the page is fully uptodate in the areas outside (from,to)
2427  */
2428 int nobh_write_begin(struct file *file, struct address_space *mapping,
2429 			loff_t pos, unsigned len, unsigned flags,
2430 			struct page **pagep, void **fsdata,
2431 			get_block_t *get_block)
2432 {
2433 	struct inode *inode = mapping->host;
2434 	const unsigned blkbits = inode->i_blkbits;
2435 	const unsigned blocksize = 1 << blkbits;
2436 	struct buffer_head *head, *bh;
2437 	struct page *page;
2438 	pgoff_t index;
2439 	unsigned from, to;
2440 	unsigned block_in_page;
2441 	unsigned block_start, block_end;
2442 	sector_t block_in_file;
2443 	int nr_reads = 0;
2444 	int ret = 0;
2445 	int is_mapped_to_disk = 1;
2446 
2447 	index = pos >> PAGE_CACHE_SHIFT;
2448 	from = pos & (PAGE_CACHE_SIZE - 1);
2449 	to = from + len;
2450 
2451 	page = __grab_cache_page(mapping, index);
2452 	if (!page)
2453 		return -ENOMEM;
2454 	*pagep = page;
2455 	*fsdata = NULL;
2456 
2457 	if (page_has_buffers(page)) {
2458 		unlock_page(page);
2459 		page_cache_release(page);
2460 		*pagep = NULL;
2461 		return block_write_begin(file, mapping, pos, len, flags, pagep,
2462 					fsdata, get_block);
2463 	}
2464 
2465 	if (PageMappedToDisk(page))
2466 		return 0;
2467 
2468 	/*
2469 	 * Allocate buffers so that we can keep track of state, and potentially
2470 	 * attach them to the page if an error occurs. In the common case of
2471 	 * no error, they will just be freed again without ever being attached
2472 	 * to the page (which is all OK, because we're under the page lock).
2473 	 *
2474 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2475 	 * than the circular one we're used to.
2476 	 */
2477 	head = alloc_page_buffers(page, blocksize, 0);
2478 	if (!head) {
2479 		ret = -ENOMEM;
2480 		goto out_release;
2481 	}
2482 
2483 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2484 
2485 	/*
2486 	 * We loop across all blocks in the page, whether or not they are
2487 	 * part of the affected region.  This is so we can discover if the
2488 	 * page is fully mapped-to-disk.
2489 	 */
2490 	for (block_start = 0, block_in_page = 0, bh = head;
2491 		  block_start < PAGE_CACHE_SIZE;
2492 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2493 		int create;
2494 
2495 		block_end = block_start + blocksize;
2496 		bh->b_state = 0;
2497 		create = 1;
2498 		if (block_start >= to)
2499 			create = 0;
2500 		ret = get_block(inode, block_in_file + block_in_page,
2501 					bh, create);
2502 		if (ret)
2503 			goto failed;
2504 		if (!buffer_mapped(bh))
2505 			is_mapped_to_disk = 0;
2506 		if (buffer_new(bh))
2507 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2508 		if (PageUptodate(page)) {
2509 			set_buffer_uptodate(bh);
2510 			continue;
2511 		}
2512 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2513 			zero_user_segments(page, block_start, from,
2514 							to, block_end);
2515 			continue;
2516 		}
2517 		if (buffer_uptodate(bh))
2518 			continue;	/* reiserfs does this */
2519 		if (block_start < from || block_end > to) {
2520 			lock_buffer(bh);
2521 			bh->b_end_io = end_buffer_read_nobh;
2522 			submit_bh(READ, bh);
2523 			nr_reads++;
2524 		}
2525 	}
2526 
2527 	if (nr_reads) {
2528 		/*
2529 		 * The page is locked, so these buffers are protected from
2530 		 * any VM or truncate activity.  Hence we don't need to care
2531 		 * for the buffer_head refcounts.
2532 		 */
2533 		for (bh = head; bh; bh = bh->b_this_page) {
2534 			wait_on_buffer(bh);
2535 			if (!buffer_uptodate(bh))
2536 				ret = -EIO;
2537 		}
2538 		if (ret)
2539 			goto failed;
2540 	}
2541 
2542 	if (is_mapped_to_disk)
2543 		SetPageMappedToDisk(page);
2544 
2545 	*fsdata = head; /* to be released by nobh_write_end */
2546 
2547 	return 0;
2548 
2549 failed:
2550 	BUG_ON(!ret);
2551 	/*
2552 	 * Error recovery is a bit difficult. We need to zero out blocks that
2553 	 * were newly allocated, and dirty them to ensure they get written out.
2554 	 * Buffers need to be attached to the page at this point, otherwise
2555 	 * the handling of potential IO errors during writeout would be hard
2556 	 * (could try doing synchronous writeout, but what if that fails too?)
2557 	 */
2558 	attach_nobh_buffers(page, head);
2559 	page_zero_new_buffers(page, from, to);
2560 
2561 out_release:
2562 	unlock_page(page);
2563 	page_cache_release(page);
2564 	*pagep = NULL;
2565 
2566 	if (pos + len > inode->i_size)
2567 		vmtruncate(inode, inode->i_size);
2568 
2569 	return ret;
2570 }
2571 EXPORT_SYMBOL(nobh_write_begin);
2572 
2573 int nobh_write_end(struct file *file, struct address_space *mapping,
2574 			loff_t pos, unsigned len, unsigned copied,
2575 			struct page *page, void *fsdata)
2576 {
2577 	struct inode *inode = page->mapping->host;
2578 	struct buffer_head *head = fsdata;
2579 	struct buffer_head *bh;
2580 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2581 
2582 	if (unlikely(copied < len) && !page_has_buffers(page))
2583 		attach_nobh_buffers(page, head);
2584 	if (page_has_buffers(page))
2585 		return generic_write_end(file, mapping, pos, len,
2586 					copied, page, fsdata);
2587 
2588 	SetPageUptodate(page);
2589 	set_page_dirty(page);
2590 	if (pos+copied > inode->i_size) {
2591 		i_size_write(inode, pos+copied);
2592 		mark_inode_dirty(inode);
2593 	}
2594 
2595 	unlock_page(page);
2596 	page_cache_release(page);
2597 
2598 	while (head) {
2599 		bh = head;
2600 		head = head->b_this_page;
2601 		free_buffer_head(bh);
2602 	}
2603 
2604 	return copied;
2605 }
2606 EXPORT_SYMBOL(nobh_write_end);
2607 
2608 /*
2609  * nobh_writepage() - based on block_full_write_page() except
2610  * that it tries to operate without attaching bufferheads to
2611  * the page.
2612  */
2613 int nobh_writepage(struct page *page, get_block_t *get_block,
2614 			struct writeback_control *wbc)
2615 {
2616 	struct inode * const inode = page->mapping->host;
2617 	loff_t i_size = i_size_read(inode);
2618 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2619 	unsigned offset;
2620 	int ret;
2621 
2622 	/* Is the page fully inside i_size? */
2623 	if (page->index < end_index)
2624 		goto out;
2625 
2626 	/* Is the page fully outside i_size? (truncate in progress) */
2627 	offset = i_size & (PAGE_CACHE_SIZE-1);
2628 	if (page->index >= end_index+1 || !offset) {
2629 		/*
2630 		 * The page may have dirty, unmapped buffers.  For example,
2631 		 * they may have been added in ext3_writepage().  Make them
2632 		 * freeable here, so the page does not leak.
2633 		 */
2634 #if 0
2635 		/* Not really sure about this  - do we need this ? */
2636 		if (page->mapping->a_ops->invalidatepage)
2637 			page->mapping->a_ops->invalidatepage(page, offset);
2638 #endif
2639 		unlock_page(page);
2640 		return 0; /* don't care */
2641 	}
2642 
2643 	/*
2644 	 * The page straddles i_size.  It must be zeroed out on each and every
2645 	 * writepage invocation because it may be mmapped.  "A file is mapped
2646 	 * in multiples of the page size.  For a file that is not a multiple of
2647 	 * the  page size, the remaining memory is zeroed when mapped, and
2648 	 * writes to that region are not written out to the file."
2649 	 */
2650 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2651 out:
2652 	ret = mpage_writepage(page, get_block, wbc);
2653 	if (ret == -EAGAIN)
2654 		ret = __block_write_full_page(inode, page, get_block, wbc);
2655 	return ret;
2656 }
2657 EXPORT_SYMBOL(nobh_writepage);
2658 
2659 int nobh_truncate_page(struct address_space *mapping,
2660 			loff_t from, get_block_t *get_block)
2661 {
2662 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2663 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2664 	unsigned blocksize;
2665 	sector_t iblock;
2666 	unsigned length, pos;
2667 	struct inode *inode = mapping->host;
2668 	struct page *page;
2669 	struct buffer_head map_bh;
2670 	int err;
2671 
2672 	blocksize = 1 << inode->i_blkbits;
2673 	length = offset & (blocksize - 1);
2674 
2675 	/* Block boundary? Nothing to do */
2676 	if (!length)
2677 		return 0;
2678 
2679 	length = blocksize - length;
2680 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2681 
2682 	page = grab_cache_page(mapping, index);
2683 	err = -ENOMEM;
2684 	if (!page)
2685 		goto out;
2686 
2687 	if (page_has_buffers(page)) {
2688 has_buffers:
2689 		unlock_page(page);
2690 		page_cache_release(page);
2691 		return block_truncate_page(mapping, from, get_block);
2692 	}
2693 
2694 	/* Find the buffer that contains "offset" */
2695 	pos = blocksize;
2696 	while (offset >= pos) {
2697 		iblock++;
2698 		pos += blocksize;
2699 	}
2700 
2701 	err = get_block(inode, iblock, &map_bh, 0);
2702 	if (err)
2703 		goto unlock;
2704 	/* unmapped? It's a hole - nothing to do */
2705 	if (!buffer_mapped(&map_bh))
2706 		goto unlock;
2707 
2708 	/* Ok, it's mapped. Make sure it's up-to-date */
2709 	if (!PageUptodate(page)) {
2710 		err = mapping->a_ops->readpage(NULL, page);
2711 		if (err) {
2712 			page_cache_release(page);
2713 			goto out;
2714 		}
2715 		lock_page(page);
2716 		if (!PageUptodate(page)) {
2717 			err = -EIO;
2718 			goto unlock;
2719 		}
2720 		if (page_has_buffers(page))
2721 			goto has_buffers;
2722 	}
2723 	zero_user(page, offset, length);
2724 	set_page_dirty(page);
2725 	err = 0;
2726 
2727 unlock:
2728 	unlock_page(page);
2729 	page_cache_release(page);
2730 out:
2731 	return err;
2732 }
2733 EXPORT_SYMBOL(nobh_truncate_page);
2734 
2735 int block_truncate_page(struct address_space *mapping,
2736 			loff_t from, get_block_t *get_block)
2737 {
2738 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2739 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2740 	unsigned blocksize;
2741 	sector_t iblock;
2742 	unsigned length, pos;
2743 	struct inode *inode = mapping->host;
2744 	struct page *page;
2745 	struct buffer_head *bh;
2746 	int err;
2747 
2748 	blocksize = 1 << inode->i_blkbits;
2749 	length = offset & (blocksize - 1);
2750 
2751 	/* Block boundary? Nothing to do */
2752 	if (!length)
2753 		return 0;
2754 
2755 	length = blocksize - length;
2756 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2757 
2758 	page = grab_cache_page(mapping, index);
2759 	err = -ENOMEM;
2760 	if (!page)
2761 		goto out;
2762 
2763 	if (!page_has_buffers(page))
2764 		create_empty_buffers(page, blocksize, 0);
2765 
2766 	/* Find the buffer that contains "offset" */
2767 	bh = page_buffers(page);
2768 	pos = blocksize;
2769 	while (offset >= pos) {
2770 		bh = bh->b_this_page;
2771 		iblock++;
2772 		pos += blocksize;
2773 	}
2774 
2775 	err = 0;
2776 	if (!buffer_mapped(bh)) {
2777 		WARN_ON(bh->b_size != blocksize);
2778 		err = get_block(inode, iblock, bh, 0);
2779 		if (err)
2780 			goto unlock;
2781 		/* unmapped? It's a hole - nothing to do */
2782 		if (!buffer_mapped(bh))
2783 			goto unlock;
2784 	}
2785 
2786 	/* Ok, it's mapped. Make sure it's up-to-date */
2787 	if (PageUptodate(page))
2788 		set_buffer_uptodate(bh);
2789 
2790 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2791 		err = -EIO;
2792 		ll_rw_block(READ, 1, &bh);
2793 		wait_on_buffer(bh);
2794 		/* Uhhuh. Read error. Complain and punt. */
2795 		if (!buffer_uptodate(bh))
2796 			goto unlock;
2797 	}
2798 
2799 	zero_user(page, offset, length);
2800 	mark_buffer_dirty(bh);
2801 	err = 0;
2802 
2803 unlock:
2804 	unlock_page(page);
2805 	page_cache_release(page);
2806 out:
2807 	return err;
2808 }
2809 
2810 /*
2811  * The generic ->writepage function for buffer-backed address_spaces
2812  */
2813 int block_write_full_page(struct page *page, get_block_t *get_block,
2814 			struct writeback_control *wbc)
2815 {
2816 	struct inode * const inode = page->mapping->host;
2817 	loff_t i_size = i_size_read(inode);
2818 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2819 	unsigned offset;
2820 
2821 	/* Is the page fully inside i_size? */
2822 	if (page->index < end_index)
2823 		return __block_write_full_page(inode, page, get_block, wbc);
2824 
2825 	/* Is the page fully outside i_size? (truncate in progress) */
2826 	offset = i_size & (PAGE_CACHE_SIZE-1);
2827 	if (page->index >= end_index+1 || !offset) {
2828 		/*
2829 		 * The page may have dirty, unmapped buffers.  For example,
2830 		 * they may have been added in ext3_writepage().  Make them
2831 		 * freeable here, so the page does not leak.
2832 		 */
2833 		do_invalidatepage(page, 0);
2834 		unlock_page(page);
2835 		return 0; /* don't care */
2836 	}
2837 
2838 	/*
2839 	 * The page straddles i_size.  It must be zeroed out on each and every
2840 	 * writepage invokation because it may be mmapped.  "A file is mapped
2841 	 * in multiples of the page size.  For a file that is not a multiple of
2842 	 * the  page size, the remaining memory is zeroed when mapped, and
2843 	 * writes to that region are not written out to the file."
2844 	 */
2845 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2846 	return __block_write_full_page(inode, page, get_block, wbc);
2847 }
2848 
2849 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2850 			    get_block_t *get_block)
2851 {
2852 	struct buffer_head tmp;
2853 	struct inode *inode = mapping->host;
2854 	tmp.b_state = 0;
2855 	tmp.b_blocknr = 0;
2856 	tmp.b_size = 1 << inode->i_blkbits;
2857 	get_block(inode, block, &tmp, 0);
2858 	return tmp.b_blocknr;
2859 }
2860 
2861 static void end_bio_bh_io_sync(struct bio *bio, int err)
2862 {
2863 	struct buffer_head *bh = bio->bi_private;
2864 
2865 	if (err == -EOPNOTSUPP) {
2866 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2867 		set_bit(BH_Eopnotsupp, &bh->b_state);
2868 	}
2869 
2870 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2871 	bio_put(bio);
2872 }
2873 
2874 int submit_bh(int rw, struct buffer_head * bh)
2875 {
2876 	struct bio *bio;
2877 	int ret = 0;
2878 
2879 	BUG_ON(!buffer_locked(bh));
2880 	BUG_ON(!buffer_mapped(bh));
2881 	BUG_ON(!bh->b_end_io);
2882 
2883 	if (buffer_ordered(bh) && (rw == WRITE))
2884 		rw = WRITE_BARRIER;
2885 
2886 	/*
2887 	 * Only clear out a write error when rewriting, should this
2888 	 * include WRITE_SYNC as well?
2889 	 */
2890 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2891 		clear_buffer_write_io_error(bh);
2892 
2893 	/*
2894 	 * from here on down, it's all bio -- do the initial mapping,
2895 	 * submit_bio -> generic_make_request may further map this bio around
2896 	 */
2897 	bio = bio_alloc(GFP_NOIO, 1);
2898 
2899 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2900 	bio->bi_bdev = bh->b_bdev;
2901 	bio->bi_io_vec[0].bv_page = bh->b_page;
2902 	bio->bi_io_vec[0].bv_len = bh->b_size;
2903 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2904 
2905 	bio->bi_vcnt = 1;
2906 	bio->bi_idx = 0;
2907 	bio->bi_size = bh->b_size;
2908 
2909 	bio->bi_end_io = end_bio_bh_io_sync;
2910 	bio->bi_private = bh;
2911 
2912 	bio_get(bio);
2913 	submit_bio(rw, bio);
2914 
2915 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2916 		ret = -EOPNOTSUPP;
2917 
2918 	bio_put(bio);
2919 	return ret;
2920 }
2921 
2922 /**
2923  * ll_rw_block: low-level access to block devices (DEPRECATED)
2924  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2925  * @nr: number of &struct buffer_heads in the array
2926  * @bhs: array of pointers to &struct buffer_head
2927  *
2928  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2929  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2930  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2931  * are sent to disk. The fourth %READA option is described in the documentation
2932  * for generic_make_request() which ll_rw_block() calls.
2933  *
2934  * This function drops any buffer that it cannot get a lock on (with the
2935  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2936  * clean when doing a write request, and any buffer that appears to be
2937  * up-to-date when doing read request.  Further it marks as clean buffers that
2938  * are processed for writing (the buffer cache won't assume that they are
2939  * actually clean until the buffer gets unlocked).
2940  *
2941  * ll_rw_block sets b_end_io to simple completion handler that marks
2942  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2943  * any waiters.
2944  *
2945  * All of the buffers must be for the same device, and must also be a
2946  * multiple of the current approved size for the device.
2947  */
2948 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2949 {
2950 	int i;
2951 
2952 	for (i = 0; i < nr; i++) {
2953 		struct buffer_head *bh = bhs[i];
2954 
2955 		if (rw == SWRITE || rw == SWRITE_SYNC)
2956 			lock_buffer(bh);
2957 		else if (test_set_buffer_locked(bh))
2958 			continue;
2959 
2960 		if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
2961 			if (test_clear_buffer_dirty(bh)) {
2962 				bh->b_end_io = end_buffer_write_sync;
2963 				get_bh(bh);
2964 				if (rw == SWRITE_SYNC)
2965 					submit_bh(WRITE_SYNC, bh);
2966 				else
2967 					submit_bh(WRITE, bh);
2968 				continue;
2969 			}
2970 		} else {
2971 			if (!buffer_uptodate(bh)) {
2972 				bh->b_end_io = end_buffer_read_sync;
2973 				get_bh(bh);
2974 				submit_bh(rw, bh);
2975 				continue;
2976 			}
2977 		}
2978 		unlock_buffer(bh);
2979 	}
2980 }
2981 
2982 /*
2983  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2984  * and then start new I/O and then wait upon it.  The caller must have a ref on
2985  * the buffer_head.
2986  */
2987 int sync_dirty_buffer(struct buffer_head *bh)
2988 {
2989 	int ret = 0;
2990 
2991 	WARN_ON(atomic_read(&bh->b_count) < 1);
2992 	lock_buffer(bh);
2993 	if (test_clear_buffer_dirty(bh)) {
2994 		get_bh(bh);
2995 		bh->b_end_io = end_buffer_write_sync;
2996 		ret = submit_bh(WRITE_SYNC, bh);
2997 		wait_on_buffer(bh);
2998 		if (buffer_eopnotsupp(bh)) {
2999 			clear_buffer_eopnotsupp(bh);
3000 			ret = -EOPNOTSUPP;
3001 		}
3002 		if (!ret && !buffer_uptodate(bh))
3003 			ret = -EIO;
3004 	} else {
3005 		unlock_buffer(bh);
3006 	}
3007 	return ret;
3008 }
3009 
3010 /*
3011  * try_to_free_buffers() checks if all the buffers on this particular page
3012  * are unused, and releases them if so.
3013  *
3014  * Exclusion against try_to_free_buffers may be obtained by either
3015  * locking the page or by holding its mapping's private_lock.
3016  *
3017  * If the page is dirty but all the buffers are clean then we need to
3018  * be sure to mark the page clean as well.  This is because the page
3019  * may be against a block device, and a later reattachment of buffers
3020  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3021  * filesystem data on the same device.
3022  *
3023  * The same applies to regular filesystem pages: if all the buffers are
3024  * clean then we set the page clean and proceed.  To do that, we require
3025  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3026  * private_lock.
3027  *
3028  * try_to_free_buffers() is non-blocking.
3029  */
3030 static inline int buffer_busy(struct buffer_head *bh)
3031 {
3032 	return atomic_read(&bh->b_count) |
3033 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3034 }
3035 
3036 static int
3037 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3038 {
3039 	struct buffer_head *head = page_buffers(page);
3040 	struct buffer_head *bh;
3041 
3042 	bh = head;
3043 	do {
3044 		if (buffer_write_io_error(bh) && page->mapping)
3045 			set_bit(AS_EIO, &page->mapping->flags);
3046 		if (buffer_busy(bh))
3047 			goto failed;
3048 		bh = bh->b_this_page;
3049 	} while (bh != head);
3050 
3051 	do {
3052 		struct buffer_head *next = bh->b_this_page;
3053 
3054 		if (bh->b_assoc_map)
3055 			__remove_assoc_queue(bh);
3056 		bh = next;
3057 	} while (bh != head);
3058 	*buffers_to_free = head;
3059 	__clear_page_buffers(page);
3060 	return 1;
3061 failed:
3062 	return 0;
3063 }
3064 
3065 int try_to_free_buffers(struct page *page)
3066 {
3067 	struct address_space * const mapping = page->mapping;
3068 	struct buffer_head *buffers_to_free = NULL;
3069 	int ret = 0;
3070 
3071 	BUG_ON(!PageLocked(page));
3072 	if (PageWriteback(page))
3073 		return 0;
3074 
3075 	if (mapping == NULL) {		/* can this still happen? */
3076 		ret = drop_buffers(page, &buffers_to_free);
3077 		goto out;
3078 	}
3079 
3080 	spin_lock(&mapping->private_lock);
3081 	ret = drop_buffers(page, &buffers_to_free);
3082 
3083 	/*
3084 	 * If the filesystem writes its buffers by hand (eg ext3)
3085 	 * then we can have clean buffers against a dirty page.  We
3086 	 * clean the page here; otherwise the VM will never notice
3087 	 * that the filesystem did any IO at all.
3088 	 *
3089 	 * Also, during truncate, discard_buffer will have marked all
3090 	 * the page's buffers clean.  We discover that here and clean
3091 	 * the page also.
3092 	 *
3093 	 * private_lock must be held over this entire operation in order
3094 	 * to synchronise against __set_page_dirty_buffers and prevent the
3095 	 * dirty bit from being lost.
3096 	 */
3097 	if (ret)
3098 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3099 	spin_unlock(&mapping->private_lock);
3100 out:
3101 	if (buffers_to_free) {
3102 		struct buffer_head *bh = buffers_to_free;
3103 
3104 		do {
3105 			struct buffer_head *next = bh->b_this_page;
3106 			free_buffer_head(bh);
3107 			bh = next;
3108 		} while (bh != buffers_to_free);
3109 	}
3110 	return ret;
3111 }
3112 EXPORT_SYMBOL(try_to_free_buffers);
3113 
3114 void block_sync_page(struct page *page)
3115 {
3116 	struct address_space *mapping;
3117 
3118 	smp_mb();
3119 	mapping = page_mapping(page);
3120 	if (mapping)
3121 		blk_run_backing_dev(mapping->backing_dev_info, page);
3122 }
3123 
3124 /*
3125  * There are no bdflush tunables left.  But distributions are
3126  * still running obsolete flush daemons, so we terminate them here.
3127  *
3128  * Use of bdflush() is deprecated and will be removed in a future kernel.
3129  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3130  */
3131 asmlinkage long sys_bdflush(int func, long data)
3132 {
3133 	static int msg_count;
3134 
3135 	if (!capable(CAP_SYS_ADMIN))
3136 		return -EPERM;
3137 
3138 	if (msg_count < 5) {
3139 		msg_count++;
3140 		printk(KERN_INFO
3141 			"warning: process `%s' used the obsolete bdflush"
3142 			" system call\n", current->comm);
3143 		printk(KERN_INFO "Fix your initscripts?\n");
3144 	}
3145 
3146 	if (func == 1)
3147 		do_exit(0);
3148 	return 0;
3149 }
3150 
3151 /*
3152  * Buffer-head allocation
3153  */
3154 static struct kmem_cache *bh_cachep;
3155 
3156 /*
3157  * Once the number of bh's in the machine exceeds this level, we start
3158  * stripping them in writeback.
3159  */
3160 static int max_buffer_heads;
3161 
3162 int buffer_heads_over_limit;
3163 
3164 struct bh_accounting {
3165 	int nr;			/* Number of live bh's */
3166 	int ratelimit;		/* Limit cacheline bouncing */
3167 };
3168 
3169 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3170 
3171 static void recalc_bh_state(void)
3172 {
3173 	int i;
3174 	int tot = 0;
3175 
3176 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3177 		return;
3178 	__get_cpu_var(bh_accounting).ratelimit = 0;
3179 	for_each_online_cpu(i)
3180 		tot += per_cpu(bh_accounting, i).nr;
3181 	buffer_heads_over_limit = (tot > max_buffer_heads);
3182 }
3183 
3184 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3185 {
3186 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3187 	if (ret) {
3188 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3189 		get_cpu_var(bh_accounting).nr++;
3190 		recalc_bh_state();
3191 		put_cpu_var(bh_accounting);
3192 	}
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL(alloc_buffer_head);
3196 
3197 void free_buffer_head(struct buffer_head *bh)
3198 {
3199 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3200 	kmem_cache_free(bh_cachep, bh);
3201 	get_cpu_var(bh_accounting).nr--;
3202 	recalc_bh_state();
3203 	put_cpu_var(bh_accounting);
3204 }
3205 EXPORT_SYMBOL(free_buffer_head);
3206 
3207 static void buffer_exit_cpu(int cpu)
3208 {
3209 	int i;
3210 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3211 
3212 	for (i = 0; i < BH_LRU_SIZE; i++) {
3213 		brelse(b->bhs[i]);
3214 		b->bhs[i] = NULL;
3215 	}
3216 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3217 	per_cpu(bh_accounting, cpu).nr = 0;
3218 	put_cpu_var(bh_accounting);
3219 }
3220 
3221 static int buffer_cpu_notify(struct notifier_block *self,
3222 			      unsigned long action, void *hcpu)
3223 {
3224 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3225 		buffer_exit_cpu((unsigned long)hcpu);
3226 	return NOTIFY_OK;
3227 }
3228 
3229 /**
3230  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3231  * @bh: struct buffer_head
3232  *
3233  * Return true if the buffer is up-to-date and false,
3234  * with the buffer locked, if not.
3235  */
3236 int bh_uptodate_or_lock(struct buffer_head *bh)
3237 {
3238 	if (!buffer_uptodate(bh)) {
3239 		lock_buffer(bh);
3240 		if (!buffer_uptodate(bh))
3241 			return 0;
3242 		unlock_buffer(bh);
3243 	}
3244 	return 1;
3245 }
3246 EXPORT_SYMBOL(bh_uptodate_or_lock);
3247 
3248 /**
3249  * bh_submit_read - Submit a locked buffer for reading
3250  * @bh: struct buffer_head
3251  *
3252  * Returns zero on success and -EIO on error.
3253  */
3254 int bh_submit_read(struct buffer_head *bh)
3255 {
3256 	BUG_ON(!buffer_locked(bh));
3257 
3258 	if (buffer_uptodate(bh)) {
3259 		unlock_buffer(bh);
3260 		return 0;
3261 	}
3262 
3263 	get_bh(bh);
3264 	bh->b_end_io = end_buffer_read_sync;
3265 	submit_bh(READ, bh);
3266 	wait_on_buffer(bh);
3267 	if (buffer_uptodate(bh))
3268 		return 0;
3269 	return -EIO;
3270 }
3271 EXPORT_SYMBOL(bh_submit_read);
3272 
3273 static void
3274 init_buffer_head(void *data)
3275 {
3276 	struct buffer_head *bh = data;
3277 
3278 	memset(bh, 0, sizeof(*bh));
3279 	INIT_LIST_HEAD(&bh->b_assoc_buffers);
3280 }
3281 
3282 void __init buffer_init(void)
3283 {
3284 	int nrpages;
3285 
3286 	bh_cachep = kmem_cache_create("buffer_head",
3287 			sizeof(struct buffer_head), 0,
3288 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3289 				SLAB_MEM_SPREAD),
3290 				init_buffer_head);
3291 
3292 	/*
3293 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3294 	 */
3295 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3296 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3297 	hotcpu_notifier(buffer_cpu_notify, 0);
3298 }
3299 
3300 EXPORT_SYMBOL(__bforget);
3301 EXPORT_SYMBOL(__brelse);
3302 EXPORT_SYMBOL(__wait_on_buffer);
3303 EXPORT_SYMBOL(block_commit_write);
3304 EXPORT_SYMBOL(block_prepare_write);
3305 EXPORT_SYMBOL(block_page_mkwrite);
3306 EXPORT_SYMBOL(block_read_full_page);
3307 EXPORT_SYMBOL(block_sync_page);
3308 EXPORT_SYMBOL(block_truncate_page);
3309 EXPORT_SYMBOL(block_write_full_page);
3310 EXPORT_SYMBOL(cont_write_begin);
3311 EXPORT_SYMBOL(end_buffer_read_sync);
3312 EXPORT_SYMBOL(end_buffer_write_sync);
3313 EXPORT_SYMBOL(file_fsync);
3314 EXPORT_SYMBOL(fsync_bdev);
3315 EXPORT_SYMBOL(generic_block_bmap);
3316 EXPORT_SYMBOL(generic_cont_expand_simple);
3317 EXPORT_SYMBOL(init_buffer);
3318 EXPORT_SYMBOL(invalidate_bdev);
3319 EXPORT_SYMBOL(ll_rw_block);
3320 EXPORT_SYMBOL(mark_buffer_dirty);
3321 EXPORT_SYMBOL(submit_bh);
3322 EXPORT_SYMBOL(sync_dirty_buffer);
3323 EXPORT_SYMBOL(unlock_buffer);
3324