xref: /openbmc/linux/fs/buffer.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49 
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 			 enum rw_hint hint, struct writeback_control *wbc);
53 
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55 
56 inline void touch_buffer(struct buffer_head *bh)
57 {
58 	trace_block_touch_buffer(bh);
59 	mark_page_accessed(bh->b_page);
60 }
61 EXPORT_SYMBOL(touch_buffer);
62 
63 void __lock_buffer(struct buffer_head *bh)
64 {
65 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
66 }
67 EXPORT_SYMBOL(__lock_buffer);
68 
69 void unlock_buffer(struct buffer_head *bh)
70 {
71 	clear_bit_unlock(BH_Lock, &bh->b_state);
72 	smp_mb__after_atomic();
73 	wake_up_bit(&bh->b_state, BH_Lock);
74 }
75 EXPORT_SYMBOL(unlock_buffer);
76 
77 /*
78  * Returns if the page has dirty or writeback buffers. If all the buffers
79  * are unlocked and clean then the PageDirty information is stale. If
80  * any of the pages are locked, it is assumed they are locked for IO.
81  */
82 void buffer_check_dirty_writeback(struct page *page,
83 				     bool *dirty, bool *writeback)
84 {
85 	struct buffer_head *head, *bh;
86 	*dirty = false;
87 	*writeback = false;
88 
89 	BUG_ON(!PageLocked(page));
90 
91 	if (!page_has_buffers(page))
92 		return;
93 
94 	if (PageWriteback(page))
95 		*writeback = true;
96 
97 	head = page_buffers(page);
98 	bh = head;
99 	do {
100 		if (buffer_locked(bh))
101 			*writeback = true;
102 
103 		if (buffer_dirty(bh))
104 			*dirty = true;
105 
106 		bh = bh->b_this_page;
107 	} while (bh != head);
108 }
109 EXPORT_SYMBOL(buffer_check_dirty_writeback);
110 
111 /*
112  * Block until a buffer comes unlocked.  This doesn't stop it
113  * from becoming locked again - you have to lock it yourself
114  * if you want to preserve its state.
115  */
116 void __wait_on_buffer(struct buffer_head * bh)
117 {
118 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
119 }
120 EXPORT_SYMBOL(__wait_on_buffer);
121 
122 static void
123 __clear_page_buffers(struct page *page)
124 {
125 	ClearPagePrivate(page);
126 	set_page_private(page, 0);
127 	put_page(page);
128 }
129 
130 static void buffer_io_error(struct buffer_head *bh, char *msg)
131 {
132 	if (!test_bit(BH_Quiet, &bh->b_state))
133 		printk_ratelimited(KERN_ERR
134 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
135 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 }
137 
138 /*
139  * End-of-IO handler helper function which does not touch the bh after
140  * unlocking it.
141  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142  * a race there is benign: unlock_buffer() only use the bh's address for
143  * hashing after unlocking the buffer, so it doesn't actually touch the bh
144  * itself.
145  */
146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
147 {
148 	if (uptodate) {
149 		set_buffer_uptodate(bh);
150 	} else {
151 		/* This happens, due to failed read-ahead attempts. */
152 		clear_buffer_uptodate(bh);
153 	}
154 	unlock_buffer(bh);
155 }
156 
157 /*
158  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
159  * unlock the buffer. This is what ll_rw_block uses too.
160  */
161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162 {
163 	__end_buffer_read_notouch(bh, uptodate);
164 	put_bh(bh);
165 }
166 EXPORT_SYMBOL(end_buffer_read_sync);
167 
168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169 {
170 	if (uptodate) {
171 		set_buffer_uptodate(bh);
172 	} else {
173 		buffer_io_error(bh, ", lost sync page write");
174 		mark_buffer_write_io_error(bh);
175 		clear_buffer_uptodate(bh);
176 	}
177 	unlock_buffer(bh);
178 	put_bh(bh);
179 }
180 EXPORT_SYMBOL(end_buffer_write_sync);
181 
182 /*
183  * Various filesystems appear to want __find_get_block to be non-blocking.
184  * But it's the page lock which protects the buffers.  To get around this,
185  * we get exclusion from try_to_free_buffers with the blockdev mapping's
186  * private_lock.
187  *
188  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
189  * may be quite high.  This code could TryLock the page, and if that
190  * succeeds, there is no need to take private_lock. (But if
191  * private_lock is contended then so is mapping->tree_lock).
192  */
193 static struct buffer_head *
194 __find_get_block_slow(struct block_device *bdev, sector_t block)
195 {
196 	struct inode *bd_inode = bdev->bd_inode;
197 	struct address_space *bd_mapping = bd_inode->i_mapping;
198 	struct buffer_head *ret = NULL;
199 	pgoff_t index;
200 	struct buffer_head *bh;
201 	struct buffer_head *head;
202 	struct page *page;
203 	int all_mapped = 1;
204 
205 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
206 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
207 	if (!page)
208 		goto out;
209 
210 	spin_lock(&bd_mapping->private_lock);
211 	if (!page_has_buffers(page))
212 		goto out_unlock;
213 	head = page_buffers(page);
214 	bh = head;
215 	do {
216 		if (!buffer_mapped(bh))
217 			all_mapped = 0;
218 		else if (bh->b_blocknr == block) {
219 			ret = bh;
220 			get_bh(bh);
221 			goto out_unlock;
222 		}
223 		bh = bh->b_this_page;
224 	} while (bh != head);
225 
226 	/* we might be here because some of the buffers on this page are
227 	 * not mapped.  This is due to various races between
228 	 * file io on the block device and getblk.  It gets dealt with
229 	 * elsewhere, don't buffer_error if we had some unmapped buffers
230 	 */
231 	if (all_mapped) {
232 		printk("__find_get_block_slow() failed. "
233 			"block=%llu, b_blocknr=%llu\n",
234 			(unsigned long long)block,
235 			(unsigned long long)bh->b_blocknr);
236 		printk("b_state=0x%08lx, b_size=%zu\n",
237 			bh->b_state, bh->b_size);
238 		printk("device %pg blocksize: %d\n", bdev,
239 			1 << bd_inode->i_blkbits);
240 	}
241 out_unlock:
242 	spin_unlock(&bd_mapping->private_lock);
243 	put_page(page);
244 out:
245 	return ret;
246 }
247 
248 /*
249  * I/O completion handler for block_read_full_page() - pages
250  * which come unlocked at the end of I/O.
251  */
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254 	unsigned long flags;
255 	struct buffer_head *first;
256 	struct buffer_head *tmp;
257 	struct page *page;
258 	int page_uptodate = 1;
259 
260 	BUG_ON(!buffer_async_read(bh));
261 
262 	page = bh->b_page;
263 	if (uptodate) {
264 		set_buffer_uptodate(bh);
265 	} else {
266 		clear_buffer_uptodate(bh);
267 		buffer_io_error(bh, ", async page read");
268 		SetPageError(page);
269 	}
270 
271 	/*
272 	 * Be _very_ careful from here on. Bad things can happen if
273 	 * two buffer heads end IO at almost the same time and both
274 	 * decide that the page is now completely done.
275 	 */
276 	first = page_buffers(page);
277 	local_irq_save(flags);
278 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
279 	clear_buffer_async_read(bh);
280 	unlock_buffer(bh);
281 	tmp = bh;
282 	do {
283 		if (!buffer_uptodate(tmp))
284 			page_uptodate = 0;
285 		if (buffer_async_read(tmp)) {
286 			BUG_ON(!buffer_locked(tmp));
287 			goto still_busy;
288 		}
289 		tmp = tmp->b_this_page;
290 	} while (tmp != bh);
291 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
292 	local_irq_restore(flags);
293 
294 	/*
295 	 * If none of the buffers had errors and they are all
296 	 * uptodate then we can set the page uptodate.
297 	 */
298 	if (page_uptodate && !PageError(page))
299 		SetPageUptodate(page);
300 	unlock_page(page);
301 	return;
302 
303 still_busy:
304 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
305 	local_irq_restore(flags);
306 	return;
307 }
308 
309 /*
310  * Completion handler for block_write_full_page() - pages which are unlocked
311  * during I/O, and which have PageWriteback cleared upon I/O completion.
312  */
313 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
314 {
315 	unsigned long flags;
316 	struct buffer_head *first;
317 	struct buffer_head *tmp;
318 	struct page *page;
319 
320 	BUG_ON(!buffer_async_write(bh));
321 
322 	page = bh->b_page;
323 	if (uptodate) {
324 		set_buffer_uptodate(bh);
325 	} else {
326 		buffer_io_error(bh, ", lost async page write");
327 		mark_buffer_write_io_error(bh);
328 		clear_buffer_uptodate(bh);
329 		SetPageError(page);
330 	}
331 
332 	first = page_buffers(page);
333 	local_irq_save(flags);
334 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
335 
336 	clear_buffer_async_write(bh);
337 	unlock_buffer(bh);
338 	tmp = bh->b_this_page;
339 	while (tmp != bh) {
340 		if (buffer_async_write(tmp)) {
341 			BUG_ON(!buffer_locked(tmp));
342 			goto still_busy;
343 		}
344 		tmp = tmp->b_this_page;
345 	}
346 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
347 	local_irq_restore(flags);
348 	end_page_writeback(page);
349 	return;
350 
351 still_busy:
352 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 	local_irq_restore(flags);
354 	return;
355 }
356 EXPORT_SYMBOL(end_buffer_async_write);
357 
358 /*
359  * If a page's buffers are under async readin (end_buffer_async_read
360  * completion) then there is a possibility that another thread of
361  * control could lock one of the buffers after it has completed
362  * but while some of the other buffers have not completed.  This
363  * locked buffer would confuse end_buffer_async_read() into not unlocking
364  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
365  * that this buffer is not under async I/O.
366  *
367  * The page comes unlocked when it has no locked buffer_async buffers
368  * left.
369  *
370  * PageLocked prevents anyone starting new async I/O reads any of
371  * the buffers.
372  *
373  * PageWriteback is used to prevent simultaneous writeout of the same
374  * page.
375  *
376  * PageLocked prevents anyone from starting writeback of a page which is
377  * under read I/O (PageWriteback is only ever set against a locked page).
378  */
379 static void mark_buffer_async_read(struct buffer_head *bh)
380 {
381 	bh->b_end_io = end_buffer_async_read;
382 	set_buffer_async_read(bh);
383 }
384 
385 static void mark_buffer_async_write_endio(struct buffer_head *bh,
386 					  bh_end_io_t *handler)
387 {
388 	bh->b_end_io = handler;
389 	set_buffer_async_write(bh);
390 }
391 
392 void mark_buffer_async_write(struct buffer_head *bh)
393 {
394 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
395 }
396 EXPORT_SYMBOL(mark_buffer_async_write);
397 
398 
399 /*
400  * fs/buffer.c contains helper functions for buffer-backed address space's
401  * fsync functions.  A common requirement for buffer-based filesystems is
402  * that certain data from the backing blockdev needs to be written out for
403  * a successful fsync().  For example, ext2 indirect blocks need to be
404  * written back and waited upon before fsync() returns.
405  *
406  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
407  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
408  * management of a list of dependent buffers at ->i_mapping->private_list.
409  *
410  * Locking is a little subtle: try_to_free_buffers() will remove buffers
411  * from their controlling inode's queue when they are being freed.  But
412  * try_to_free_buffers() will be operating against the *blockdev* mapping
413  * at the time, not against the S_ISREG file which depends on those buffers.
414  * So the locking for private_list is via the private_lock in the address_space
415  * which backs the buffers.  Which is different from the address_space
416  * against which the buffers are listed.  So for a particular address_space,
417  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
418  * mapping->private_list will always be protected by the backing blockdev's
419  * ->private_lock.
420  *
421  * Which introduces a requirement: all buffers on an address_space's
422  * ->private_list must be from the same address_space: the blockdev's.
423  *
424  * address_spaces which do not place buffers at ->private_list via these
425  * utility functions are free to use private_lock and private_list for
426  * whatever they want.  The only requirement is that list_empty(private_list)
427  * be true at clear_inode() time.
428  *
429  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
430  * filesystems should do that.  invalidate_inode_buffers() should just go
431  * BUG_ON(!list_empty).
432  *
433  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
434  * take an address_space, not an inode.  And it should be called
435  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
436  * queued up.
437  *
438  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
439  * list if it is already on a list.  Because if the buffer is on a list,
440  * it *must* already be on the right one.  If not, the filesystem is being
441  * silly.  This will save a ton of locking.  But first we have to ensure
442  * that buffers are taken *off* the old inode's list when they are freed
443  * (presumably in truncate).  That requires careful auditing of all
444  * filesystems (do it inside bforget()).  It could also be done by bringing
445  * b_inode back.
446  */
447 
448 /*
449  * The buffer's backing address_space's private_lock must be held
450  */
451 static void __remove_assoc_queue(struct buffer_head *bh)
452 {
453 	list_del_init(&bh->b_assoc_buffers);
454 	WARN_ON(!bh->b_assoc_map);
455 	bh->b_assoc_map = NULL;
456 }
457 
458 int inode_has_buffers(struct inode *inode)
459 {
460 	return !list_empty(&inode->i_data.private_list);
461 }
462 
463 /*
464  * osync is designed to support O_SYNC io.  It waits synchronously for
465  * all already-submitted IO to complete, but does not queue any new
466  * writes to the disk.
467  *
468  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
469  * you dirty the buffers, and then use osync_inode_buffers to wait for
470  * completion.  Any other dirty buffers which are not yet queued for
471  * write will not be flushed to disk by the osync.
472  */
473 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
474 {
475 	struct buffer_head *bh;
476 	struct list_head *p;
477 	int err = 0;
478 
479 	spin_lock(lock);
480 repeat:
481 	list_for_each_prev(p, list) {
482 		bh = BH_ENTRY(p);
483 		if (buffer_locked(bh)) {
484 			get_bh(bh);
485 			spin_unlock(lock);
486 			wait_on_buffer(bh);
487 			if (!buffer_uptodate(bh))
488 				err = -EIO;
489 			brelse(bh);
490 			spin_lock(lock);
491 			goto repeat;
492 		}
493 	}
494 	spin_unlock(lock);
495 	return err;
496 }
497 
498 static void do_thaw_one(struct super_block *sb, void *unused)
499 {
500 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
501 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
502 }
503 
504 static void do_thaw_all(struct work_struct *work)
505 {
506 	iterate_supers(do_thaw_one, NULL);
507 	kfree(work);
508 	printk(KERN_WARNING "Emergency Thaw complete\n");
509 }
510 
511 /**
512  * emergency_thaw_all -- forcibly thaw every frozen filesystem
513  *
514  * Used for emergency unfreeze of all filesystems via SysRq
515  */
516 void emergency_thaw_all(void)
517 {
518 	struct work_struct *work;
519 
520 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
521 	if (work) {
522 		INIT_WORK(work, do_thaw_all);
523 		schedule_work(work);
524 	}
525 }
526 
527 /**
528  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
529  * @mapping: the mapping which wants those buffers written
530  *
531  * Starts I/O against the buffers at mapping->private_list, and waits upon
532  * that I/O.
533  *
534  * Basically, this is a convenience function for fsync().
535  * @mapping is a file or directory which needs those buffers to be written for
536  * a successful fsync().
537  */
538 int sync_mapping_buffers(struct address_space *mapping)
539 {
540 	struct address_space *buffer_mapping = mapping->private_data;
541 
542 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
543 		return 0;
544 
545 	return fsync_buffers_list(&buffer_mapping->private_lock,
546 					&mapping->private_list);
547 }
548 EXPORT_SYMBOL(sync_mapping_buffers);
549 
550 /*
551  * Called when we've recently written block `bblock', and it is known that
552  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
553  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
554  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
555  */
556 void write_boundary_block(struct block_device *bdev,
557 			sector_t bblock, unsigned blocksize)
558 {
559 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
560 	if (bh) {
561 		if (buffer_dirty(bh))
562 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
563 		put_bh(bh);
564 	}
565 }
566 
567 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
568 {
569 	struct address_space *mapping = inode->i_mapping;
570 	struct address_space *buffer_mapping = bh->b_page->mapping;
571 
572 	mark_buffer_dirty(bh);
573 	if (!mapping->private_data) {
574 		mapping->private_data = buffer_mapping;
575 	} else {
576 		BUG_ON(mapping->private_data != buffer_mapping);
577 	}
578 	if (!bh->b_assoc_map) {
579 		spin_lock(&buffer_mapping->private_lock);
580 		list_move_tail(&bh->b_assoc_buffers,
581 				&mapping->private_list);
582 		bh->b_assoc_map = mapping;
583 		spin_unlock(&buffer_mapping->private_lock);
584 	}
585 }
586 EXPORT_SYMBOL(mark_buffer_dirty_inode);
587 
588 /*
589  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
590  * dirty.
591  *
592  * If warn is true, then emit a warning if the page is not uptodate and has
593  * not been truncated.
594  *
595  * The caller must hold lock_page_memcg().
596  */
597 static void __set_page_dirty(struct page *page, struct address_space *mapping,
598 			     int warn)
599 {
600 	unsigned long flags;
601 
602 	spin_lock_irqsave(&mapping->tree_lock, flags);
603 	if (page->mapping) {	/* Race with truncate? */
604 		WARN_ON_ONCE(warn && !PageUptodate(page));
605 		account_page_dirtied(page, mapping);
606 		radix_tree_tag_set(&mapping->page_tree,
607 				page_index(page), PAGECACHE_TAG_DIRTY);
608 	}
609 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
610 }
611 
612 /*
613  * Add a page to the dirty page list.
614  *
615  * It is a sad fact of life that this function is called from several places
616  * deeply under spinlocking.  It may not sleep.
617  *
618  * If the page has buffers, the uptodate buffers are set dirty, to preserve
619  * dirty-state coherency between the page and the buffers.  It the page does
620  * not have buffers then when they are later attached they will all be set
621  * dirty.
622  *
623  * The buffers are dirtied before the page is dirtied.  There's a small race
624  * window in which a writepage caller may see the page cleanness but not the
625  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
626  * before the buffers, a concurrent writepage caller could clear the page dirty
627  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
628  * page on the dirty page list.
629  *
630  * We use private_lock to lock against try_to_free_buffers while using the
631  * page's buffer list.  Also use this to protect against clean buffers being
632  * added to the page after it was set dirty.
633  *
634  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
635  * address_space though.
636  */
637 int __set_page_dirty_buffers(struct page *page)
638 {
639 	int newly_dirty;
640 	struct address_space *mapping = page_mapping(page);
641 
642 	if (unlikely(!mapping))
643 		return !TestSetPageDirty(page);
644 
645 	spin_lock(&mapping->private_lock);
646 	if (page_has_buffers(page)) {
647 		struct buffer_head *head = page_buffers(page);
648 		struct buffer_head *bh = head;
649 
650 		do {
651 			set_buffer_dirty(bh);
652 			bh = bh->b_this_page;
653 		} while (bh != head);
654 	}
655 	/*
656 	 * Lock out page->mem_cgroup migration to keep PageDirty
657 	 * synchronized with per-memcg dirty page counters.
658 	 */
659 	lock_page_memcg(page);
660 	newly_dirty = !TestSetPageDirty(page);
661 	spin_unlock(&mapping->private_lock);
662 
663 	if (newly_dirty)
664 		__set_page_dirty(page, mapping, 1);
665 
666 	unlock_page_memcg(page);
667 
668 	if (newly_dirty)
669 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
670 
671 	return newly_dirty;
672 }
673 EXPORT_SYMBOL(__set_page_dirty_buffers);
674 
675 /*
676  * Write out and wait upon a list of buffers.
677  *
678  * We have conflicting pressures: we want to make sure that all
679  * initially dirty buffers get waited on, but that any subsequently
680  * dirtied buffers don't.  After all, we don't want fsync to last
681  * forever if somebody is actively writing to the file.
682  *
683  * Do this in two main stages: first we copy dirty buffers to a
684  * temporary inode list, queueing the writes as we go.  Then we clean
685  * up, waiting for those writes to complete.
686  *
687  * During this second stage, any subsequent updates to the file may end
688  * up refiling the buffer on the original inode's dirty list again, so
689  * there is a chance we will end up with a buffer queued for write but
690  * not yet completed on that list.  So, as a final cleanup we go through
691  * the osync code to catch these locked, dirty buffers without requeuing
692  * any newly dirty buffers for write.
693  */
694 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
695 {
696 	struct buffer_head *bh;
697 	struct list_head tmp;
698 	struct address_space *mapping;
699 	int err = 0, err2;
700 	struct blk_plug plug;
701 
702 	INIT_LIST_HEAD(&tmp);
703 	blk_start_plug(&plug);
704 
705 	spin_lock(lock);
706 	while (!list_empty(list)) {
707 		bh = BH_ENTRY(list->next);
708 		mapping = bh->b_assoc_map;
709 		__remove_assoc_queue(bh);
710 		/* Avoid race with mark_buffer_dirty_inode() which does
711 		 * a lockless check and we rely on seeing the dirty bit */
712 		smp_mb();
713 		if (buffer_dirty(bh) || buffer_locked(bh)) {
714 			list_add(&bh->b_assoc_buffers, &tmp);
715 			bh->b_assoc_map = mapping;
716 			if (buffer_dirty(bh)) {
717 				get_bh(bh);
718 				spin_unlock(lock);
719 				/*
720 				 * Ensure any pending I/O completes so that
721 				 * write_dirty_buffer() actually writes the
722 				 * current contents - it is a noop if I/O is
723 				 * still in flight on potentially older
724 				 * contents.
725 				 */
726 				write_dirty_buffer(bh, REQ_SYNC);
727 
728 				/*
729 				 * Kick off IO for the previous mapping. Note
730 				 * that we will not run the very last mapping,
731 				 * wait_on_buffer() will do that for us
732 				 * through sync_buffer().
733 				 */
734 				brelse(bh);
735 				spin_lock(lock);
736 			}
737 		}
738 	}
739 
740 	spin_unlock(lock);
741 	blk_finish_plug(&plug);
742 	spin_lock(lock);
743 
744 	while (!list_empty(&tmp)) {
745 		bh = BH_ENTRY(tmp.prev);
746 		get_bh(bh);
747 		mapping = bh->b_assoc_map;
748 		__remove_assoc_queue(bh);
749 		/* Avoid race with mark_buffer_dirty_inode() which does
750 		 * a lockless check and we rely on seeing the dirty bit */
751 		smp_mb();
752 		if (buffer_dirty(bh)) {
753 			list_add(&bh->b_assoc_buffers,
754 				 &mapping->private_list);
755 			bh->b_assoc_map = mapping;
756 		}
757 		spin_unlock(lock);
758 		wait_on_buffer(bh);
759 		if (!buffer_uptodate(bh))
760 			err = -EIO;
761 		brelse(bh);
762 		spin_lock(lock);
763 	}
764 
765 	spin_unlock(lock);
766 	err2 = osync_buffers_list(lock, list);
767 	if (err)
768 		return err;
769 	else
770 		return err2;
771 }
772 
773 /*
774  * Invalidate any and all dirty buffers on a given inode.  We are
775  * probably unmounting the fs, but that doesn't mean we have already
776  * done a sync().  Just drop the buffers from the inode list.
777  *
778  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
779  * assumes that all the buffers are against the blockdev.  Not true
780  * for reiserfs.
781  */
782 void invalidate_inode_buffers(struct inode *inode)
783 {
784 	if (inode_has_buffers(inode)) {
785 		struct address_space *mapping = &inode->i_data;
786 		struct list_head *list = &mapping->private_list;
787 		struct address_space *buffer_mapping = mapping->private_data;
788 
789 		spin_lock(&buffer_mapping->private_lock);
790 		while (!list_empty(list))
791 			__remove_assoc_queue(BH_ENTRY(list->next));
792 		spin_unlock(&buffer_mapping->private_lock);
793 	}
794 }
795 EXPORT_SYMBOL(invalidate_inode_buffers);
796 
797 /*
798  * Remove any clean buffers from the inode's buffer list.  This is called
799  * when we're trying to free the inode itself.  Those buffers can pin it.
800  *
801  * Returns true if all buffers were removed.
802  */
803 int remove_inode_buffers(struct inode *inode)
804 {
805 	int ret = 1;
806 
807 	if (inode_has_buffers(inode)) {
808 		struct address_space *mapping = &inode->i_data;
809 		struct list_head *list = &mapping->private_list;
810 		struct address_space *buffer_mapping = mapping->private_data;
811 
812 		spin_lock(&buffer_mapping->private_lock);
813 		while (!list_empty(list)) {
814 			struct buffer_head *bh = BH_ENTRY(list->next);
815 			if (buffer_dirty(bh)) {
816 				ret = 0;
817 				break;
818 			}
819 			__remove_assoc_queue(bh);
820 		}
821 		spin_unlock(&buffer_mapping->private_lock);
822 	}
823 	return ret;
824 }
825 
826 /*
827  * Create the appropriate buffers when given a page for data area and
828  * the size of each buffer.. Use the bh->b_this_page linked list to
829  * follow the buffers created.  Return NULL if unable to create more
830  * buffers.
831  *
832  * The retry flag is used to differentiate async IO (paging, swapping)
833  * which may not fail from ordinary buffer allocations.
834  */
835 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
836 		bool retry)
837 {
838 	struct buffer_head *bh, *head;
839 	gfp_t gfp = GFP_NOFS;
840 	long offset;
841 
842 	if (retry)
843 		gfp |= __GFP_NOFAIL;
844 
845 	head = NULL;
846 	offset = PAGE_SIZE;
847 	while ((offset -= size) >= 0) {
848 		bh = alloc_buffer_head(gfp);
849 		if (!bh)
850 			goto no_grow;
851 
852 		bh->b_this_page = head;
853 		bh->b_blocknr = -1;
854 		head = bh;
855 
856 		bh->b_size = size;
857 
858 		/* Link the buffer to its page */
859 		set_bh_page(bh, page, offset);
860 	}
861 	return head;
862 /*
863  * In case anything failed, we just free everything we got.
864  */
865 no_grow:
866 	if (head) {
867 		do {
868 			bh = head;
869 			head = head->b_this_page;
870 			free_buffer_head(bh);
871 		} while (head);
872 	}
873 
874 	return NULL;
875 }
876 EXPORT_SYMBOL_GPL(alloc_page_buffers);
877 
878 static inline void
879 link_dev_buffers(struct page *page, struct buffer_head *head)
880 {
881 	struct buffer_head *bh, *tail;
882 
883 	bh = head;
884 	do {
885 		tail = bh;
886 		bh = bh->b_this_page;
887 	} while (bh);
888 	tail->b_this_page = head;
889 	attach_page_buffers(page, head);
890 }
891 
892 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
893 {
894 	sector_t retval = ~((sector_t)0);
895 	loff_t sz = i_size_read(bdev->bd_inode);
896 
897 	if (sz) {
898 		unsigned int sizebits = blksize_bits(size);
899 		retval = (sz >> sizebits);
900 	}
901 	return retval;
902 }
903 
904 /*
905  * Initialise the state of a blockdev page's buffers.
906  */
907 static sector_t
908 init_page_buffers(struct page *page, struct block_device *bdev,
909 			sector_t block, int size)
910 {
911 	struct buffer_head *head = page_buffers(page);
912 	struct buffer_head *bh = head;
913 	int uptodate = PageUptodate(page);
914 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
915 
916 	do {
917 		if (!buffer_mapped(bh)) {
918 			bh->b_end_io = NULL;
919 			bh->b_private = NULL;
920 			bh->b_bdev = bdev;
921 			bh->b_blocknr = block;
922 			if (uptodate)
923 				set_buffer_uptodate(bh);
924 			if (block < end_block)
925 				set_buffer_mapped(bh);
926 		}
927 		block++;
928 		bh = bh->b_this_page;
929 	} while (bh != head);
930 
931 	/*
932 	 * Caller needs to validate requested block against end of device.
933 	 */
934 	return end_block;
935 }
936 
937 /*
938  * Create the page-cache page that contains the requested block.
939  *
940  * This is used purely for blockdev mappings.
941  */
942 static int
943 grow_dev_page(struct block_device *bdev, sector_t block,
944 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
945 {
946 	struct inode *inode = bdev->bd_inode;
947 	struct page *page;
948 	struct buffer_head *bh;
949 	sector_t end_block;
950 	int ret = 0;		/* Will call free_more_memory() */
951 	gfp_t gfp_mask;
952 
953 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
954 
955 	/*
956 	 * XXX: __getblk_slow() can not really deal with failure and
957 	 * will endlessly loop on improvised global reclaim.  Prefer
958 	 * looping in the allocator rather than here, at least that
959 	 * code knows what it's doing.
960 	 */
961 	gfp_mask |= __GFP_NOFAIL;
962 
963 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
964 
965 	BUG_ON(!PageLocked(page));
966 
967 	if (page_has_buffers(page)) {
968 		bh = page_buffers(page);
969 		if (bh->b_size == size) {
970 			end_block = init_page_buffers(page, bdev,
971 						(sector_t)index << sizebits,
972 						size);
973 			goto done;
974 		}
975 		if (!try_to_free_buffers(page))
976 			goto failed;
977 	}
978 
979 	/*
980 	 * Allocate some buffers for this page
981 	 */
982 	bh = alloc_page_buffers(page, size, true);
983 
984 	/*
985 	 * Link the page to the buffers and initialise them.  Take the
986 	 * lock to be atomic wrt __find_get_block(), which does not
987 	 * run under the page lock.
988 	 */
989 	spin_lock(&inode->i_mapping->private_lock);
990 	link_dev_buffers(page, bh);
991 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
992 			size);
993 	spin_unlock(&inode->i_mapping->private_lock);
994 done:
995 	ret = (block < end_block) ? 1 : -ENXIO;
996 failed:
997 	unlock_page(page);
998 	put_page(page);
999 	return ret;
1000 }
1001 
1002 /*
1003  * Create buffers for the specified block device block's page.  If
1004  * that page was dirty, the buffers are set dirty also.
1005  */
1006 static int
1007 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1008 {
1009 	pgoff_t index;
1010 	int sizebits;
1011 
1012 	sizebits = -1;
1013 	do {
1014 		sizebits++;
1015 	} while ((size << sizebits) < PAGE_SIZE);
1016 
1017 	index = block >> sizebits;
1018 
1019 	/*
1020 	 * Check for a block which wants to lie outside our maximum possible
1021 	 * pagecache index.  (this comparison is done using sector_t types).
1022 	 */
1023 	if (unlikely(index != block >> sizebits)) {
1024 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1025 			"device %pg\n",
1026 			__func__, (unsigned long long)block,
1027 			bdev);
1028 		return -EIO;
1029 	}
1030 
1031 	/* Create a page with the proper size buffers.. */
1032 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1033 }
1034 
1035 static struct buffer_head *
1036 __getblk_slow(struct block_device *bdev, sector_t block,
1037 	     unsigned size, gfp_t gfp)
1038 {
1039 	/* Size must be multiple of hard sectorsize */
1040 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1041 			(size < 512 || size > PAGE_SIZE))) {
1042 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1043 					size);
1044 		printk(KERN_ERR "logical block size: %d\n",
1045 					bdev_logical_block_size(bdev));
1046 
1047 		dump_stack();
1048 		return NULL;
1049 	}
1050 
1051 	for (;;) {
1052 		struct buffer_head *bh;
1053 		int ret;
1054 
1055 		bh = __find_get_block(bdev, block, size);
1056 		if (bh)
1057 			return bh;
1058 
1059 		ret = grow_buffers(bdev, block, size, gfp);
1060 		if (ret < 0)
1061 			return NULL;
1062 	}
1063 }
1064 
1065 /*
1066  * The relationship between dirty buffers and dirty pages:
1067  *
1068  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1069  * the page is tagged dirty in its radix tree.
1070  *
1071  * At all times, the dirtiness of the buffers represents the dirtiness of
1072  * subsections of the page.  If the page has buffers, the page dirty bit is
1073  * merely a hint about the true dirty state.
1074  *
1075  * When a page is set dirty in its entirety, all its buffers are marked dirty
1076  * (if the page has buffers).
1077  *
1078  * When a buffer is marked dirty, its page is dirtied, but the page's other
1079  * buffers are not.
1080  *
1081  * Also.  When blockdev buffers are explicitly read with bread(), they
1082  * individually become uptodate.  But their backing page remains not
1083  * uptodate - even if all of its buffers are uptodate.  A subsequent
1084  * block_read_full_page() against that page will discover all the uptodate
1085  * buffers, will set the page uptodate and will perform no I/O.
1086  */
1087 
1088 /**
1089  * mark_buffer_dirty - mark a buffer_head as needing writeout
1090  * @bh: the buffer_head to mark dirty
1091  *
1092  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1093  * backing page dirty, then tag the page as dirty in its address_space's radix
1094  * tree and then attach the address_space's inode to its superblock's dirty
1095  * inode list.
1096  *
1097  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1098  * mapping->tree_lock and mapping->host->i_lock.
1099  */
1100 void mark_buffer_dirty(struct buffer_head *bh)
1101 {
1102 	WARN_ON_ONCE(!buffer_uptodate(bh));
1103 
1104 	trace_block_dirty_buffer(bh);
1105 
1106 	/*
1107 	 * Very *carefully* optimize the it-is-already-dirty case.
1108 	 *
1109 	 * Don't let the final "is it dirty" escape to before we
1110 	 * perhaps modified the buffer.
1111 	 */
1112 	if (buffer_dirty(bh)) {
1113 		smp_mb();
1114 		if (buffer_dirty(bh))
1115 			return;
1116 	}
1117 
1118 	if (!test_set_buffer_dirty(bh)) {
1119 		struct page *page = bh->b_page;
1120 		struct address_space *mapping = NULL;
1121 
1122 		lock_page_memcg(page);
1123 		if (!TestSetPageDirty(page)) {
1124 			mapping = page_mapping(page);
1125 			if (mapping)
1126 				__set_page_dirty(page, mapping, 0);
1127 		}
1128 		unlock_page_memcg(page);
1129 		if (mapping)
1130 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1131 	}
1132 }
1133 EXPORT_SYMBOL(mark_buffer_dirty);
1134 
1135 void mark_buffer_write_io_error(struct buffer_head *bh)
1136 {
1137 	set_buffer_write_io_error(bh);
1138 	/* FIXME: do we need to set this in both places? */
1139 	if (bh->b_page && bh->b_page->mapping)
1140 		mapping_set_error(bh->b_page->mapping, -EIO);
1141 	if (bh->b_assoc_map)
1142 		mapping_set_error(bh->b_assoc_map, -EIO);
1143 }
1144 EXPORT_SYMBOL(mark_buffer_write_io_error);
1145 
1146 /*
1147  * Decrement a buffer_head's reference count.  If all buffers against a page
1148  * have zero reference count, are clean and unlocked, and if the page is clean
1149  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1150  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1151  * a page but it ends up not being freed, and buffers may later be reattached).
1152  */
1153 void __brelse(struct buffer_head * buf)
1154 {
1155 	if (atomic_read(&buf->b_count)) {
1156 		put_bh(buf);
1157 		return;
1158 	}
1159 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1160 }
1161 EXPORT_SYMBOL(__brelse);
1162 
1163 /*
1164  * bforget() is like brelse(), except it discards any
1165  * potentially dirty data.
1166  */
1167 void __bforget(struct buffer_head *bh)
1168 {
1169 	clear_buffer_dirty(bh);
1170 	if (bh->b_assoc_map) {
1171 		struct address_space *buffer_mapping = bh->b_page->mapping;
1172 
1173 		spin_lock(&buffer_mapping->private_lock);
1174 		list_del_init(&bh->b_assoc_buffers);
1175 		bh->b_assoc_map = NULL;
1176 		spin_unlock(&buffer_mapping->private_lock);
1177 	}
1178 	__brelse(bh);
1179 }
1180 EXPORT_SYMBOL(__bforget);
1181 
1182 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1183 {
1184 	lock_buffer(bh);
1185 	if (buffer_uptodate(bh)) {
1186 		unlock_buffer(bh);
1187 		return bh;
1188 	} else {
1189 		get_bh(bh);
1190 		bh->b_end_io = end_buffer_read_sync;
1191 		submit_bh(REQ_OP_READ, 0, bh);
1192 		wait_on_buffer(bh);
1193 		if (buffer_uptodate(bh))
1194 			return bh;
1195 	}
1196 	brelse(bh);
1197 	return NULL;
1198 }
1199 
1200 /*
1201  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1202  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1203  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1204  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1205  * CPU's LRUs at the same time.
1206  *
1207  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1208  * sb_find_get_block().
1209  *
1210  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1211  * a local interrupt disable for that.
1212  */
1213 
1214 #define BH_LRU_SIZE	16
1215 
1216 struct bh_lru {
1217 	struct buffer_head *bhs[BH_LRU_SIZE];
1218 };
1219 
1220 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1221 
1222 #ifdef CONFIG_SMP
1223 #define bh_lru_lock()	local_irq_disable()
1224 #define bh_lru_unlock()	local_irq_enable()
1225 #else
1226 #define bh_lru_lock()	preempt_disable()
1227 #define bh_lru_unlock()	preempt_enable()
1228 #endif
1229 
1230 static inline void check_irqs_on(void)
1231 {
1232 #ifdef irqs_disabled
1233 	BUG_ON(irqs_disabled());
1234 #endif
1235 }
1236 
1237 /*
1238  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1239  * inserted at the front, and the buffer_head at the back if any is evicted.
1240  * Or, if already in the LRU it is moved to the front.
1241  */
1242 static void bh_lru_install(struct buffer_head *bh)
1243 {
1244 	struct buffer_head *evictee = bh;
1245 	struct bh_lru *b;
1246 	int i;
1247 
1248 	check_irqs_on();
1249 	bh_lru_lock();
1250 
1251 	b = this_cpu_ptr(&bh_lrus);
1252 	for (i = 0; i < BH_LRU_SIZE; i++) {
1253 		swap(evictee, b->bhs[i]);
1254 		if (evictee == bh) {
1255 			bh_lru_unlock();
1256 			return;
1257 		}
1258 	}
1259 
1260 	get_bh(bh);
1261 	bh_lru_unlock();
1262 	brelse(evictee);
1263 }
1264 
1265 /*
1266  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1267  */
1268 static struct buffer_head *
1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1270 {
1271 	struct buffer_head *ret = NULL;
1272 	unsigned int i;
1273 
1274 	check_irqs_on();
1275 	bh_lru_lock();
1276 	for (i = 0; i < BH_LRU_SIZE; i++) {
1277 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1278 
1279 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1280 		    bh->b_size == size) {
1281 			if (i) {
1282 				while (i) {
1283 					__this_cpu_write(bh_lrus.bhs[i],
1284 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1285 					i--;
1286 				}
1287 				__this_cpu_write(bh_lrus.bhs[0], bh);
1288 			}
1289 			get_bh(bh);
1290 			ret = bh;
1291 			break;
1292 		}
1293 	}
1294 	bh_lru_unlock();
1295 	return ret;
1296 }
1297 
1298 /*
1299  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1300  * it in the LRU and mark it as accessed.  If it is not present then return
1301  * NULL
1302  */
1303 struct buffer_head *
1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1305 {
1306 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1307 
1308 	if (bh == NULL) {
1309 		/* __find_get_block_slow will mark the page accessed */
1310 		bh = __find_get_block_slow(bdev, block);
1311 		if (bh)
1312 			bh_lru_install(bh);
1313 	} else
1314 		touch_buffer(bh);
1315 
1316 	return bh;
1317 }
1318 EXPORT_SYMBOL(__find_get_block);
1319 
1320 /*
1321  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1322  * which corresponds to the passed block_device, block and size. The
1323  * returned buffer has its reference count incremented.
1324  *
1325  * __getblk_gfp() will lock up the machine if grow_dev_page's
1326  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1327  */
1328 struct buffer_head *
1329 __getblk_gfp(struct block_device *bdev, sector_t block,
1330 	     unsigned size, gfp_t gfp)
1331 {
1332 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1333 
1334 	might_sleep();
1335 	if (bh == NULL)
1336 		bh = __getblk_slow(bdev, block, size, gfp);
1337 	return bh;
1338 }
1339 EXPORT_SYMBOL(__getblk_gfp);
1340 
1341 /*
1342  * Do async read-ahead on a buffer..
1343  */
1344 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346 	struct buffer_head *bh = __getblk(bdev, block, size);
1347 	if (likely(bh)) {
1348 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1349 		brelse(bh);
1350 	}
1351 }
1352 EXPORT_SYMBOL(__breadahead);
1353 
1354 /**
1355  *  __bread_gfp() - reads a specified block and returns the bh
1356  *  @bdev: the block_device to read from
1357  *  @block: number of block
1358  *  @size: size (in bytes) to read
1359  *  @gfp: page allocation flag
1360  *
1361  *  Reads a specified block, and returns buffer head that contains it.
1362  *  The page cache can be allocated from non-movable area
1363  *  not to prevent page migration if you set gfp to zero.
1364  *  It returns NULL if the block was unreadable.
1365  */
1366 struct buffer_head *
1367 __bread_gfp(struct block_device *bdev, sector_t block,
1368 		   unsigned size, gfp_t gfp)
1369 {
1370 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1371 
1372 	if (likely(bh) && !buffer_uptodate(bh))
1373 		bh = __bread_slow(bh);
1374 	return bh;
1375 }
1376 EXPORT_SYMBOL(__bread_gfp);
1377 
1378 /*
1379  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1380  * This doesn't race because it runs in each cpu either in irq
1381  * or with preempt disabled.
1382  */
1383 static void invalidate_bh_lru(void *arg)
1384 {
1385 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1386 	int i;
1387 
1388 	for (i = 0; i < BH_LRU_SIZE; i++) {
1389 		brelse(b->bhs[i]);
1390 		b->bhs[i] = NULL;
1391 	}
1392 	put_cpu_var(bh_lrus);
1393 }
1394 
1395 static bool has_bh_in_lru(int cpu, void *dummy)
1396 {
1397 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1398 	int i;
1399 
1400 	for (i = 0; i < BH_LRU_SIZE; i++) {
1401 		if (b->bhs[i])
1402 			return 1;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 void invalidate_bh_lrus(void)
1409 {
1410 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1411 }
1412 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1413 
1414 void set_bh_page(struct buffer_head *bh,
1415 		struct page *page, unsigned long offset)
1416 {
1417 	bh->b_page = page;
1418 	BUG_ON(offset >= PAGE_SIZE);
1419 	if (PageHighMem(page))
1420 		/*
1421 		 * This catches illegal uses and preserves the offset:
1422 		 */
1423 		bh->b_data = (char *)(0 + offset);
1424 	else
1425 		bh->b_data = page_address(page) + offset;
1426 }
1427 EXPORT_SYMBOL(set_bh_page);
1428 
1429 /*
1430  * Called when truncating a buffer on a page completely.
1431  */
1432 
1433 /* Bits that are cleared during an invalidate */
1434 #define BUFFER_FLAGS_DISCARD \
1435 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1436 	 1 << BH_Delay | 1 << BH_Unwritten)
1437 
1438 static void discard_buffer(struct buffer_head * bh)
1439 {
1440 	unsigned long b_state, b_state_old;
1441 
1442 	lock_buffer(bh);
1443 	clear_buffer_dirty(bh);
1444 	bh->b_bdev = NULL;
1445 	b_state = bh->b_state;
1446 	for (;;) {
1447 		b_state_old = cmpxchg(&bh->b_state, b_state,
1448 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1449 		if (b_state_old == b_state)
1450 			break;
1451 		b_state = b_state_old;
1452 	}
1453 	unlock_buffer(bh);
1454 }
1455 
1456 /**
1457  * block_invalidatepage - invalidate part or all of a buffer-backed page
1458  *
1459  * @page: the page which is affected
1460  * @offset: start of the range to invalidate
1461  * @length: length of the range to invalidate
1462  *
1463  * block_invalidatepage() is called when all or part of the page has become
1464  * invalidated by a truncate operation.
1465  *
1466  * block_invalidatepage() does not have to release all buffers, but it must
1467  * ensure that no dirty buffer is left outside @offset and that no I/O
1468  * is underway against any of the blocks which are outside the truncation
1469  * point.  Because the caller is about to free (and possibly reuse) those
1470  * blocks on-disk.
1471  */
1472 void block_invalidatepage(struct page *page, unsigned int offset,
1473 			  unsigned int length)
1474 {
1475 	struct buffer_head *head, *bh, *next;
1476 	unsigned int curr_off = 0;
1477 	unsigned int stop = length + offset;
1478 
1479 	BUG_ON(!PageLocked(page));
1480 	if (!page_has_buffers(page))
1481 		goto out;
1482 
1483 	/*
1484 	 * Check for overflow
1485 	 */
1486 	BUG_ON(stop > PAGE_SIZE || stop < length);
1487 
1488 	head = page_buffers(page);
1489 	bh = head;
1490 	do {
1491 		unsigned int next_off = curr_off + bh->b_size;
1492 		next = bh->b_this_page;
1493 
1494 		/*
1495 		 * Are we still fully in range ?
1496 		 */
1497 		if (next_off > stop)
1498 			goto out;
1499 
1500 		/*
1501 		 * is this block fully invalidated?
1502 		 */
1503 		if (offset <= curr_off)
1504 			discard_buffer(bh);
1505 		curr_off = next_off;
1506 		bh = next;
1507 	} while (bh != head);
1508 
1509 	/*
1510 	 * We release buffers only if the entire page is being invalidated.
1511 	 * The get_block cached value has been unconditionally invalidated,
1512 	 * so real IO is not possible anymore.
1513 	 */
1514 	if (offset == 0)
1515 		try_to_release_page(page, 0);
1516 out:
1517 	return;
1518 }
1519 EXPORT_SYMBOL(block_invalidatepage);
1520 
1521 
1522 /*
1523  * We attach and possibly dirty the buffers atomically wrt
1524  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1525  * is already excluded via the page lock.
1526  */
1527 void create_empty_buffers(struct page *page,
1528 			unsigned long blocksize, unsigned long b_state)
1529 {
1530 	struct buffer_head *bh, *head, *tail;
1531 
1532 	head = alloc_page_buffers(page, blocksize, true);
1533 	bh = head;
1534 	do {
1535 		bh->b_state |= b_state;
1536 		tail = bh;
1537 		bh = bh->b_this_page;
1538 	} while (bh);
1539 	tail->b_this_page = head;
1540 
1541 	spin_lock(&page->mapping->private_lock);
1542 	if (PageUptodate(page) || PageDirty(page)) {
1543 		bh = head;
1544 		do {
1545 			if (PageDirty(page))
1546 				set_buffer_dirty(bh);
1547 			if (PageUptodate(page))
1548 				set_buffer_uptodate(bh);
1549 			bh = bh->b_this_page;
1550 		} while (bh != head);
1551 	}
1552 	attach_page_buffers(page, head);
1553 	spin_unlock(&page->mapping->private_lock);
1554 }
1555 EXPORT_SYMBOL(create_empty_buffers);
1556 
1557 /**
1558  * clean_bdev_aliases: clean a range of buffers in block device
1559  * @bdev: Block device to clean buffers in
1560  * @block: Start of a range of blocks to clean
1561  * @len: Number of blocks to clean
1562  *
1563  * We are taking a range of blocks for data and we don't want writeback of any
1564  * buffer-cache aliases starting from return from this function and until the
1565  * moment when something will explicitly mark the buffer dirty (hopefully that
1566  * will not happen until we will free that block ;-) We don't even need to mark
1567  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1568  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1569  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1570  * would confuse anyone who might pick it with bread() afterwards...
1571  *
1572  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1573  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1574  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1575  * need to.  That happens here.
1576  */
1577 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1578 {
1579 	struct inode *bd_inode = bdev->bd_inode;
1580 	struct address_space *bd_mapping = bd_inode->i_mapping;
1581 	struct pagevec pvec;
1582 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1583 	pgoff_t end;
1584 	int i, count;
1585 	struct buffer_head *bh;
1586 	struct buffer_head *head;
1587 
1588 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1589 	pagevec_init(&pvec);
1590 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1591 		count = pagevec_count(&pvec);
1592 		for (i = 0; i < count; i++) {
1593 			struct page *page = pvec.pages[i];
1594 
1595 			if (!page_has_buffers(page))
1596 				continue;
1597 			/*
1598 			 * We use page lock instead of bd_mapping->private_lock
1599 			 * to pin buffers here since we can afford to sleep and
1600 			 * it scales better than a global spinlock lock.
1601 			 */
1602 			lock_page(page);
1603 			/* Recheck when the page is locked which pins bhs */
1604 			if (!page_has_buffers(page))
1605 				goto unlock_page;
1606 			head = page_buffers(page);
1607 			bh = head;
1608 			do {
1609 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1610 					goto next;
1611 				if (bh->b_blocknr >= block + len)
1612 					break;
1613 				clear_buffer_dirty(bh);
1614 				wait_on_buffer(bh);
1615 				clear_buffer_req(bh);
1616 next:
1617 				bh = bh->b_this_page;
1618 			} while (bh != head);
1619 unlock_page:
1620 			unlock_page(page);
1621 		}
1622 		pagevec_release(&pvec);
1623 		cond_resched();
1624 		/* End of range already reached? */
1625 		if (index > end || !index)
1626 			break;
1627 	}
1628 }
1629 EXPORT_SYMBOL(clean_bdev_aliases);
1630 
1631 /*
1632  * Size is a power-of-two in the range 512..PAGE_SIZE,
1633  * and the case we care about most is PAGE_SIZE.
1634  *
1635  * So this *could* possibly be written with those
1636  * constraints in mind (relevant mostly if some
1637  * architecture has a slow bit-scan instruction)
1638  */
1639 static inline int block_size_bits(unsigned int blocksize)
1640 {
1641 	return ilog2(blocksize);
1642 }
1643 
1644 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1645 {
1646 	BUG_ON(!PageLocked(page));
1647 
1648 	if (!page_has_buffers(page))
1649 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1650 				     b_state);
1651 	return page_buffers(page);
1652 }
1653 
1654 /*
1655  * NOTE! All mapped/uptodate combinations are valid:
1656  *
1657  *	Mapped	Uptodate	Meaning
1658  *
1659  *	No	No		"unknown" - must do get_block()
1660  *	No	Yes		"hole" - zero-filled
1661  *	Yes	No		"allocated" - allocated on disk, not read in
1662  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1663  *
1664  * "Dirty" is valid only with the last case (mapped+uptodate).
1665  */
1666 
1667 /*
1668  * While block_write_full_page is writing back the dirty buffers under
1669  * the page lock, whoever dirtied the buffers may decide to clean them
1670  * again at any time.  We handle that by only looking at the buffer
1671  * state inside lock_buffer().
1672  *
1673  * If block_write_full_page() is called for regular writeback
1674  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1675  * locked buffer.   This only can happen if someone has written the buffer
1676  * directly, with submit_bh().  At the address_space level PageWriteback
1677  * prevents this contention from occurring.
1678  *
1679  * If block_write_full_page() is called with wbc->sync_mode ==
1680  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1681  * causes the writes to be flagged as synchronous writes.
1682  */
1683 int __block_write_full_page(struct inode *inode, struct page *page,
1684 			get_block_t *get_block, struct writeback_control *wbc,
1685 			bh_end_io_t *handler)
1686 {
1687 	int err;
1688 	sector_t block;
1689 	sector_t last_block;
1690 	struct buffer_head *bh, *head;
1691 	unsigned int blocksize, bbits;
1692 	int nr_underway = 0;
1693 	int write_flags = wbc_to_write_flags(wbc);
1694 
1695 	head = create_page_buffers(page, inode,
1696 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1697 
1698 	/*
1699 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1700 	 * here, and the (potentially unmapped) buffers may become dirty at
1701 	 * any time.  If a buffer becomes dirty here after we've inspected it
1702 	 * then we just miss that fact, and the page stays dirty.
1703 	 *
1704 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1705 	 * handle that here by just cleaning them.
1706 	 */
1707 
1708 	bh = head;
1709 	blocksize = bh->b_size;
1710 	bbits = block_size_bits(blocksize);
1711 
1712 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1713 	last_block = (i_size_read(inode) - 1) >> bbits;
1714 
1715 	/*
1716 	 * Get all the dirty buffers mapped to disk addresses and
1717 	 * handle any aliases from the underlying blockdev's mapping.
1718 	 */
1719 	do {
1720 		if (block > last_block) {
1721 			/*
1722 			 * mapped buffers outside i_size will occur, because
1723 			 * this page can be outside i_size when there is a
1724 			 * truncate in progress.
1725 			 */
1726 			/*
1727 			 * The buffer was zeroed by block_write_full_page()
1728 			 */
1729 			clear_buffer_dirty(bh);
1730 			set_buffer_uptodate(bh);
1731 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1732 			   buffer_dirty(bh)) {
1733 			WARN_ON(bh->b_size != blocksize);
1734 			err = get_block(inode, block, bh, 1);
1735 			if (err)
1736 				goto recover;
1737 			clear_buffer_delay(bh);
1738 			if (buffer_new(bh)) {
1739 				/* blockdev mappings never come here */
1740 				clear_buffer_new(bh);
1741 				clean_bdev_bh_alias(bh);
1742 			}
1743 		}
1744 		bh = bh->b_this_page;
1745 		block++;
1746 	} while (bh != head);
1747 
1748 	do {
1749 		if (!buffer_mapped(bh))
1750 			continue;
1751 		/*
1752 		 * If it's a fully non-blocking write attempt and we cannot
1753 		 * lock the buffer then redirty the page.  Note that this can
1754 		 * potentially cause a busy-wait loop from writeback threads
1755 		 * and kswapd activity, but those code paths have their own
1756 		 * higher-level throttling.
1757 		 */
1758 		if (wbc->sync_mode != WB_SYNC_NONE) {
1759 			lock_buffer(bh);
1760 		} else if (!trylock_buffer(bh)) {
1761 			redirty_page_for_writepage(wbc, page);
1762 			continue;
1763 		}
1764 		if (test_clear_buffer_dirty(bh)) {
1765 			mark_buffer_async_write_endio(bh, handler);
1766 		} else {
1767 			unlock_buffer(bh);
1768 		}
1769 	} while ((bh = bh->b_this_page) != head);
1770 
1771 	/*
1772 	 * The page and its buffers are protected by PageWriteback(), so we can
1773 	 * drop the bh refcounts early.
1774 	 */
1775 	BUG_ON(PageWriteback(page));
1776 	set_page_writeback(page);
1777 
1778 	do {
1779 		struct buffer_head *next = bh->b_this_page;
1780 		if (buffer_async_write(bh)) {
1781 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1782 					inode->i_write_hint, wbc);
1783 			nr_underway++;
1784 		}
1785 		bh = next;
1786 	} while (bh != head);
1787 	unlock_page(page);
1788 
1789 	err = 0;
1790 done:
1791 	if (nr_underway == 0) {
1792 		/*
1793 		 * The page was marked dirty, but the buffers were
1794 		 * clean.  Someone wrote them back by hand with
1795 		 * ll_rw_block/submit_bh.  A rare case.
1796 		 */
1797 		end_page_writeback(page);
1798 
1799 		/*
1800 		 * The page and buffer_heads can be released at any time from
1801 		 * here on.
1802 		 */
1803 	}
1804 	return err;
1805 
1806 recover:
1807 	/*
1808 	 * ENOSPC, or some other error.  We may already have added some
1809 	 * blocks to the file, so we need to write these out to avoid
1810 	 * exposing stale data.
1811 	 * The page is currently locked and not marked for writeback
1812 	 */
1813 	bh = head;
1814 	/* Recovery: lock and submit the mapped buffers */
1815 	do {
1816 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1817 		    !buffer_delay(bh)) {
1818 			lock_buffer(bh);
1819 			mark_buffer_async_write_endio(bh, handler);
1820 		} else {
1821 			/*
1822 			 * The buffer may have been set dirty during
1823 			 * attachment to a dirty page.
1824 			 */
1825 			clear_buffer_dirty(bh);
1826 		}
1827 	} while ((bh = bh->b_this_page) != head);
1828 	SetPageError(page);
1829 	BUG_ON(PageWriteback(page));
1830 	mapping_set_error(page->mapping, err);
1831 	set_page_writeback(page);
1832 	do {
1833 		struct buffer_head *next = bh->b_this_page;
1834 		if (buffer_async_write(bh)) {
1835 			clear_buffer_dirty(bh);
1836 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1837 					inode->i_write_hint, wbc);
1838 			nr_underway++;
1839 		}
1840 		bh = next;
1841 	} while (bh != head);
1842 	unlock_page(page);
1843 	goto done;
1844 }
1845 EXPORT_SYMBOL(__block_write_full_page);
1846 
1847 /*
1848  * If a page has any new buffers, zero them out here, and mark them uptodate
1849  * and dirty so they'll be written out (in order to prevent uninitialised
1850  * block data from leaking). And clear the new bit.
1851  */
1852 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1853 {
1854 	unsigned int block_start, block_end;
1855 	struct buffer_head *head, *bh;
1856 
1857 	BUG_ON(!PageLocked(page));
1858 	if (!page_has_buffers(page))
1859 		return;
1860 
1861 	bh = head = page_buffers(page);
1862 	block_start = 0;
1863 	do {
1864 		block_end = block_start + bh->b_size;
1865 
1866 		if (buffer_new(bh)) {
1867 			if (block_end > from && block_start < to) {
1868 				if (!PageUptodate(page)) {
1869 					unsigned start, size;
1870 
1871 					start = max(from, block_start);
1872 					size = min(to, block_end) - start;
1873 
1874 					zero_user(page, start, size);
1875 					set_buffer_uptodate(bh);
1876 				}
1877 
1878 				clear_buffer_new(bh);
1879 				mark_buffer_dirty(bh);
1880 			}
1881 		}
1882 
1883 		block_start = block_end;
1884 		bh = bh->b_this_page;
1885 	} while (bh != head);
1886 }
1887 EXPORT_SYMBOL(page_zero_new_buffers);
1888 
1889 static void
1890 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1891 		struct iomap *iomap)
1892 {
1893 	loff_t offset = block << inode->i_blkbits;
1894 
1895 	bh->b_bdev = iomap->bdev;
1896 
1897 	/*
1898 	 * Block points to offset in file we need to map, iomap contains
1899 	 * the offset at which the map starts. If the map ends before the
1900 	 * current block, then do not map the buffer and let the caller
1901 	 * handle it.
1902 	 */
1903 	BUG_ON(offset >= iomap->offset + iomap->length);
1904 
1905 	switch (iomap->type) {
1906 	case IOMAP_HOLE:
1907 		/*
1908 		 * If the buffer is not up to date or beyond the current EOF,
1909 		 * we need to mark it as new to ensure sub-block zeroing is
1910 		 * executed if necessary.
1911 		 */
1912 		if (!buffer_uptodate(bh) ||
1913 		    (offset >= i_size_read(inode)))
1914 			set_buffer_new(bh);
1915 		break;
1916 	case IOMAP_DELALLOC:
1917 		if (!buffer_uptodate(bh) ||
1918 		    (offset >= i_size_read(inode)))
1919 			set_buffer_new(bh);
1920 		set_buffer_uptodate(bh);
1921 		set_buffer_mapped(bh);
1922 		set_buffer_delay(bh);
1923 		break;
1924 	case IOMAP_UNWRITTEN:
1925 		/*
1926 		 * For unwritten regions, we always need to ensure that
1927 		 * sub-block writes cause the regions in the block we are not
1928 		 * writing to are zeroed. Set the buffer as new to ensure this.
1929 		 */
1930 		set_buffer_new(bh);
1931 		set_buffer_unwritten(bh);
1932 		/* FALLTHRU */
1933 	case IOMAP_MAPPED:
1934 		if (offset >= i_size_read(inode))
1935 			set_buffer_new(bh);
1936 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1937 				inode->i_blkbits;
1938 		set_buffer_mapped(bh);
1939 		break;
1940 	}
1941 }
1942 
1943 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1944 		get_block_t *get_block, struct iomap *iomap)
1945 {
1946 	unsigned from = pos & (PAGE_SIZE - 1);
1947 	unsigned to = from + len;
1948 	struct inode *inode = page->mapping->host;
1949 	unsigned block_start, block_end;
1950 	sector_t block;
1951 	int err = 0;
1952 	unsigned blocksize, bbits;
1953 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1954 
1955 	BUG_ON(!PageLocked(page));
1956 	BUG_ON(from > PAGE_SIZE);
1957 	BUG_ON(to > PAGE_SIZE);
1958 	BUG_ON(from > to);
1959 
1960 	head = create_page_buffers(page, inode, 0);
1961 	blocksize = head->b_size;
1962 	bbits = block_size_bits(blocksize);
1963 
1964 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1965 
1966 	for(bh = head, block_start = 0; bh != head || !block_start;
1967 	    block++, block_start=block_end, bh = bh->b_this_page) {
1968 		block_end = block_start + blocksize;
1969 		if (block_end <= from || block_start >= to) {
1970 			if (PageUptodate(page)) {
1971 				if (!buffer_uptodate(bh))
1972 					set_buffer_uptodate(bh);
1973 			}
1974 			continue;
1975 		}
1976 		if (buffer_new(bh))
1977 			clear_buffer_new(bh);
1978 		if (!buffer_mapped(bh)) {
1979 			WARN_ON(bh->b_size != blocksize);
1980 			if (get_block) {
1981 				err = get_block(inode, block, bh, 1);
1982 				if (err)
1983 					break;
1984 			} else {
1985 				iomap_to_bh(inode, block, bh, iomap);
1986 			}
1987 
1988 			if (buffer_new(bh)) {
1989 				clean_bdev_bh_alias(bh);
1990 				if (PageUptodate(page)) {
1991 					clear_buffer_new(bh);
1992 					set_buffer_uptodate(bh);
1993 					mark_buffer_dirty(bh);
1994 					continue;
1995 				}
1996 				if (block_end > to || block_start < from)
1997 					zero_user_segments(page,
1998 						to, block_end,
1999 						block_start, from);
2000 				continue;
2001 			}
2002 		}
2003 		if (PageUptodate(page)) {
2004 			if (!buffer_uptodate(bh))
2005 				set_buffer_uptodate(bh);
2006 			continue;
2007 		}
2008 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2009 		    !buffer_unwritten(bh) &&
2010 		     (block_start < from || block_end > to)) {
2011 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2012 			*wait_bh++=bh;
2013 		}
2014 	}
2015 	/*
2016 	 * If we issued read requests - let them complete.
2017 	 */
2018 	while(wait_bh > wait) {
2019 		wait_on_buffer(*--wait_bh);
2020 		if (!buffer_uptodate(*wait_bh))
2021 			err = -EIO;
2022 	}
2023 	if (unlikely(err))
2024 		page_zero_new_buffers(page, from, to);
2025 	return err;
2026 }
2027 
2028 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2029 		get_block_t *get_block)
2030 {
2031 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2032 }
2033 EXPORT_SYMBOL(__block_write_begin);
2034 
2035 static int __block_commit_write(struct inode *inode, struct page *page,
2036 		unsigned from, unsigned to)
2037 {
2038 	unsigned block_start, block_end;
2039 	int partial = 0;
2040 	unsigned blocksize;
2041 	struct buffer_head *bh, *head;
2042 
2043 	bh = head = page_buffers(page);
2044 	blocksize = bh->b_size;
2045 
2046 	block_start = 0;
2047 	do {
2048 		block_end = block_start + blocksize;
2049 		if (block_end <= from || block_start >= to) {
2050 			if (!buffer_uptodate(bh))
2051 				partial = 1;
2052 		} else {
2053 			set_buffer_uptodate(bh);
2054 			mark_buffer_dirty(bh);
2055 		}
2056 		clear_buffer_new(bh);
2057 
2058 		block_start = block_end;
2059 		bh = bh->b_this_page;
2060 	} while (bh != head);
2061 
2062 	/*
2063 	 * If this is a partial write which happened to make all buffers
2064 	 * uptodate then we can optimize away a bogus readpage() for
2065 	 * the next read(). Here we 'discover' whether the page went
2066 	 * uptodate as a result of this (potentially partial) write.
2067 	 */
2068 	if (!partial)
2069 		SetPageUptodate(page);
2070 	return 0;
2071 }
2072 
2073 /*
2074  * block_write_begin takes care of the basic task of block allocation and
2075  * bringing partial write blocks uptodate first.
2076  *
2077  * The filesystem needs to handle block truncation upon failure.
2078  */
2079 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2080 		unsigned flags, struct page **pagep, get_block_t *get_block)
2081 {
2082 	pgoff_t index = pos >> PAGE_SHIFT;
2083 	struct page *page;
2084 	int status;
2085 
2086 	page = grab_cache_page_write_begin(mapping, index, flags);
2087 	if (!page)
2088 		return -ENOMEM;
2089 
2090 	status = __block_write_begin(page, pos, len, get_block);
2091 	if (unlikely(status)) {
2092 		unlock_page(page);
2093 		put_page(page);
2094 		page = NULL;
2095 	}
2096 
2097 	*pagep = page;
2098 	return status;
2099 }
2100 EXPORT_SYMBOL(block_write_begin);
2101 
2102 int block_write_end(struct file *file, struct address_space *mapping,
2103 			loff_t pos, unsigned len, unsigned copied,
2104 			struct page *page, void *fsdata)
2105 {
2106 	struct inode *inode = mapping->host;
2107 	unsigned start;
2108 
2109 	start = pos & (PAGE_SIZE - 1);
2110 
2111 	if (unlikely(copied < len)) {
2112 		/*
2113 		 * The buffers that were written will now be uptodate, so we
2114 		 * don't have to worry about a readpage reading them and
2115 		 * overwriting a partial write. However if we have encountered
2116 		 * a short write and only partially written into a buffer, it
2117 		 * will not be marked uptodate, so a readpage might come in and
2118 		 * destroy our partial write.
2119 		 *
2120 		 * Do the simplest thing, and just treat any short write to a
2121 		 * non uptodate page as a zero-length write, and force the
2122 		 * caller to redo the whole thing.
2123 		 */
2124 		if (!PageUptodate(page))
2125 			copied = 0;
2126 
2127 		page_zero_new_buffers(page, start+copied, start+len);
2128 	}
2129 	flush_dcache_page(page);
2130 
2131 	/* This could be a short (even 0-length) commit */
2132 	__block_commit_write(inode, page, start, start+copied);
2133 
2134 	return copied;
2135 }
2136 EXPORT_SYMBOL(block_write_end);
2137 
2138 int generic_write_end(struct file *file, struct address_space *mapping,
2139 			loff_t pos, unsigned len, unsigned copied,
2140 			struct page *page, void *fsdata)
2141 {
2142 	struct inode *inode = mapping->host;
2143 	loff_t old_size = inode->i_size;
2144 	int i_size_changed = 0;
2145 
2146 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2147 
2148 	/*
2149 	 * No need to use i_size_read() here, the i_size
2150 	 * cannot change under us because we hold i_mutex.
2151 	 *
2152 	 * But it's important to update i_size while still holding page lock:
2153 	 * page writeout could otherwise come in and zero beyond i_size.
2154 	 */
2155 	if (pos+copied > inode->i_size) {
2156 		i_size_write(inode, pos+copied);
2157 		i_size_changed = 1;
2158 	}
2159 
2160 	unlock_page(page);
2161 	put_page(page);
2162 
2163 	if (old_size < pos)
2164 		pagecache_isize_extended(inode, old_size, pos);
2165 	/*
2166 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2167 	 * makes the holding time of page lock longer. Second, it forces lock
2168 	 * ordering of page lock and transaction start for journaling
2169 	 * filesystems.
2170 	 */
2171 	if (i_size_changed)
2172 		mark_inode_dirty(inode);
2173 
2174 	return copied;
2175 }
2176 EXPORT_SYMBOL(generic_write_end);
2177 
2178 /*
2179  * block_is_partially_uptodate checks whether buffers within a page are
2180  * uptodate or not.
2181  *
2182  * Returns true if all buffers which correspond to a file portion
2183  * we want to read are uptodate.
2184  */
2185 int block_is_partially_uptodate(struct page *page, unsigned long from,
2186 					unsigned long count)
2187 {
2188 	unsigned block_start, block_end, blocksize;
2189 	unsigned to;
2190 	struct buffer_head *bh, *head;
2191 	int ret = 1;
2192 
2193 	if (!page_has_buffers(page))
2194 		return 0;
2195 
2196 	head = page_buffers(page);
2197 	blocksize = head->b_size;
2198 	to = min_t(unsigned, PAGE_SIZE - from, count);
2199 	to = from + to;
2200 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2201 		return 0;
2202 
2203 	bh = head;
2204 	block_start = 0;
2205 	do {
2206 		block_end = block_start + blocksize;
2207 		if (block_end > from && block_start < to) {
2208 			if (!buffer_uptodate(bh)) {
2209 				ret = 0;
2210 				break;
2211 			}
2212 			if (block_end >= to)
2213 				break;
2214 		}
2215 		block_start = block_end;
2216 		bh = bh->b_this_page;
2217 	} while (bh != head);
2218 
2219 	return ret;
2220 }
2221 EXPORT_SYMBOL(block_is_partially_uptodate);
2222 
2223 /*
2224  * Generic "read page" function for block devices that have the normal
2225  * get_block functionality. This is most of the block device filesystems.
2226  * Reads the page asynchronously --- the unlock_buffer() and
2227  * set/clear_buffer_uptodate() functions propagate buffer state into the
2228  * page struct once IO has completed.
2229  */
2230 int block_read_full_page(struct page *page, get_block_t *get_block)
2231 {
2232 	struct inode *inode = page->mapping->host;
2233 	sector_t iblock, lblock;
2234 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2235 	unsigned int blocksize, bbits;
2236 	int nr, i;
2237 	int fully_mapped = 1;
2238 
2239 	head = create_page_buffers(page, inode, 0);
2240 	blocksize = head->b_size;
2241 	bbits = block_size_bits(blocksize);
2242 
2243 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2244 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2245 	bh = head;
2246 	nr = 0;
2247 	i = 0;
2248 
2249 	do {
2250 		if (buffer_uptodate(bh))
2251 			continue;
2252 
2253 		if (!buffer_mapped(bh)) {
2254 			int err = 0;
2255 
2256 			fully_mapped = 0;
2257 			if (iblock < lblock) {
2258 				WARN_ON(bh->b_size != blocksize);
2259 				err = get_block(inode, iblock, bh, 0);
2260 				if (err)
2261 					SetPageError(page);
2262 			}
2263 			if (!buffer_mapped(bh)) {
2264 				zero_user(page, i * blocksize, blocksize);
2265 				if (!err)
2266 					set_buffer_uptodate(bh);
2267 				continue;
2268 			}
2269 			/*
2270 			 * get_block() might have updated the buffer
2271 			 * synchronously
2272 			 */
2273 			if (buffer_uptodate(bh))
2274 				continue;
2275 		}
2276 		arr[nr++] = bh;
2277 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2278 
2279 	if (fully_mapped)
2280 		SetPageMappedToDisk(page);
2281 
2282 	if (!nr) {
2283 		/*
2284 		 * All buffers are uptodate - we can set the page uptodate
2285 		 * as well. But not if get_block() returned an error.
2286 		 */
2287 		if (!PageError(page))
2288 			SetPageUptodate(page);
2289 		unlock_page(page);
2290 		return 0;
2291 	}
2292 
2293 	/* Stage two: lock the buffers */
2294 	for (i = 0; i < nr; i++) {
2295 		bh = arr[i];
2296 		lock_buffer(bh);
2297 		mark_buffer_async_read(bh);
2298 	}
2299 
2300 	/*
2301 	 * Stage 3: start the IO.  Check for uptodateness
2302 	 * inside the buffer lock in case another process reading
2303 	 * the underlying blockdev brought it uptodate (the sct fix).
2304 	 */
2305 	for (i = 0; i < nr; i++) {
2306 		bh = arr[i];
2307 		if (buffer_uptodate(bh))
2308 			end_buffer_async_read(bh, 1);
2309 		else
2310 			submit_bh(REQ_OP_READ, 0, bh);
2311 	}
2312 	return 0;
2313 }
2314 EXPORT_SYMBOL(block_read_full_page);
2315 
2316 /* utility function for filesystems that need to do work on expanding
2317  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2318  * deal with the hole.
2319  */
2320 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2321 {
2322 	struct address_space *mapping = inode->i_mapping;
2323 	struct page *page;
2324 	void *fsdata;
2325 	int err;
2326 
2327 	err = inode_newsize_ok(inode, size);
2328 	if (err)
2329 		goto out;
2330 
2331 	err = pagecache_write_begin(NULL, mapping, size, 0,
2332 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2333 	if (err)
2334 		goto out;
2335 
2336 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2337 	BUG_ON(err > 0);
2338 
2339 out:
2340 	return err;
2341 }
2342 EXPORT_SYMBOL(generic_cont_expand_simple);
2343 
2344 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2345 			    loff_t pos, loff_t *bytes)
2346 {
2347 	struct inode *inode = mapping->host;
2348 	unsigned int blocksize = i_blocksize(inode);
2349 	struct page *page;
2350 	void *fsdata;
2351 	pgoff_t index, curidx;
2352 	loff_t curpos;
2353 	unsigned zerofrom, offset, len;
2354 	int err = 0;
2355 
2356 	index = pos >> PAGE_SHIFT;
2357 	offset = pos & ~PAGE_MASK;
2358 
2359 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2360 		zerofrom = curpos & ~PAGE_MASK;
2361 		if (zerofrom & (blocksize-1)) {
2362 			*bytes |= (blocksize-1);
2363 			(*bytes)++;
2364 		}
2365 		len = PAGE_SIZE - zerofrom;
2366 
2367 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2368 					    &page, &fsdata);
2369 		if (err)
2370 			goto out;
2371 		zero_user(page, zerofrom, len);
2372 		err = pagecache_write_end(file, mapping, curpos, len, len,
2373 						page, fsdata);
2374 		if (err < 0)
2375 			goto out;
2376 		BUG_ON(err != len);
2377 		err = 0;
2378 
2379 		balance_dirty_pages_ratelimited(mapping);
2380 
2381 		if (unlikely(fatal_signal_pending(current))) {
2382 			err = -EINTR;
2383 			goto out;
2384 		}
2385 	}
2386 
2387 	/* page covers the boundary, find the boundary offset */
2388 	if (index == curidx) {
2389 		zerofrom = curpos & ~PAGE_MASK;
2390 		/* if we will expand the thing last block will be filled */
2391 		if (offset <= zerofrom) {
2392 			goto out;
2393 		}
2394 		if (zerofrom & (blocksize-1)) {
2395 			*bytes |= (blocksize-1);
2396 			(*bytes)++;
2397 		}
2398 		len = offset - zerofrom;
2399 
2400 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2401 					    &page, &fsdata);
2402 		if (err)
2403 			goto out;
2404 		zero_user(page, zerofrom, len);
2405 		err = pagecache_write_end(file, mapping, curpos, len, len,
2406 						page, fsdata);
2407 		if (err < 0)
2408 			goto out;
2409 		BUG_ON(err != len);
2410 		err = 0;
2411 	}
2412 out:
2413 	return err;
2414 }
2415 
2416 /*
2417  * For moronic filesystems that do not allow holes in file.
2418  * We may have to extend the file.
2419  */
2420 int cont_write_begin(struct file *file, struct address_space *mapping,
2421 			loff_t pos, unsigned len, unsigned flags,
2422 			struct page **pagep, void **fsdata,
2423 			get_block_t *get_block, loff_t *bytes)
2424 {
2425 	struct inode *inode = mapping->host;
2426 	unsigned int blocksize = i_blocksize(inode);
2427 	unsigned int zerofrom;
2428 	int err;
2429 
2430 	err = cont_expand_zero(file, mapping, pos, bytes);
2431 	if (err)
2432 		return err;
2433 
2434 	zerofrom = *bytes & ~PAGE_MASK;
2435 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2436 		*bytes |= (blocksize-1);
2437 		(*bytes)++;
2438 	}
2439 
2440 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2441 }
2442 EXPORT_SYMBOL(cont_write_begin);
2443 
2444 int block_commit_write(struct page *page, unsigned from, unsigned to)
2445 {
2446 	struct inode *inode = page->mapping->host;
2447 	__block_commit_write(inode,page,from,to);
2448 	return 0;
2449 }
2450 EXPORT_SYMBOL(block_commit_write);
2451 
2452 /*
2453  * block_page_mkwrite() is not allowed to change the file size as it gets
2454  * called from a page fault handler when a page is first dirtied. Hence we must
2455  * be careful to check for EOF conditions here. We set the page up correctly
2456  * for a written page which means we get ENOSPC checking when writing into
2457  * holes and correct delalloc and unwritten extent mapping on filesystems that
2458  * support these features.
2459  *
2460  * We are not allowed to take the i_mutex here so we have to play games to
2461  * protect against truncate races as the page could now be beyond EOF.  Because
2462  * truncate writes the inode size before removing pages, once we have the
2463  * page lock we can determine safely if the page is beyond EOF. If it is not
2464  * beyond EOF, then the page is guaranteed safe against truncation until we
2465  * unlock the page.
2466  *
2467  * Direct callers of this function should protect against filesystem freezing
2468  * using sb_start_pagefault() - sb_end_pagefault() functions.
2469  */
2470 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2471 			 get_block_t get_block)
2472 {
2473 	struct page *page = vmf->page;
2474 	struct inode *inode = file_inode(vma->vm_file);
2475 	unsigned long end;
2476 	loff_t size;
2477 	int ret;
2478 
2479 	lock_page(page);
2480 	size = i_size_read(inode);
2481 	if ((page->mapping != inode->i_mapping) ||
2482 	    (page_offset(page) > size)) {
2483 		/* We overload EFAULT to mean page got truncated */
2484 		ret = -EFAULT;
2485 		goto out_unlock;
2486 	}
2487 
2488 	/* page is wholly or partially inside EOF */
2489 	if (((page->index + 1) << PAGE_SHIFT) > size)
2490 		end = size & ~PAGE_MASK;
2491 	else
2492 		end = PAGE_SIZE;
2493 
2494 	ret = __block_write_begin(page, 0, end, get_block);
2495 	if (!ret)
2496 		ret = block_commit_write(page, 0, end);
2497 
2498 	if (unlikely(ret < 0))
2499 		goto out_unlock;
2500 	set_page_dirty(page);
2501 	wait_for_stable_page(page);
2502 	return 0;
2503 out_unlock:
2504 	unlock_page(page);
2505 	return ret;
2506 }
2507 EXPORT_SYMBOL(block_page_mkwrite);
2508 
2509 /*
2510  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2511  * immediately, while under the page lock.  So it needs a special end_io
2512  * handler which does not touch the bh after unlocking it.
2513  */
2514 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2515 {
2516 	__end_buffer_read_notouch(bh, uptodate);
2517 }
2518 
2519 /*
2520  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2521  * the page (converting it to circular linked list and taking care of page
2522  * dirty races).
2523  */
2524 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2525 {
2526 	struct buffer_head *bh;
2527 
2528 	BUG_ON(!PageLocked(page));
2529 
2530 	spin_lock(&page->mapping->private_lock);
2531 	bh = head;
2532 	do {
2533 		if (PageDirty(page))
2534 			set_buffer_dirty(bh);
2535 		if (!bh->b_this_page)
2536 			bh->b_this_page = head;
2537 		bh = bh->b_this_page;
2538 	} while (bh != head);
2539 	attach_page_buffers(page, head);
2540 	spin_unlock(&page->mapping->private_lock);
2541 }
2542 
2543 /*
2544  * On entry, the page is fully not uptodate.
2545  * On exit the page is fully uptodate in the areas outside (from,to)
2546  * The filesystem needs to handle block truncation upon failure.
2547  */
2548 int nobh_write_begin(struct address_space *mapping,
2549 			loff_t pos, unsigned len, unsigned flags,
2550 			struct page **pagep, void **fsdata,
2551 			get_block_t *get_block)
2552 {
2553 	struct inode *inode = mapping->host;
2554 	const unsigned blkbits = inode->i_blkbits;
2555 	const unsigned blocksize = 1 << blkbits;
2556 	struct buffer_head *head, *bh;
2557 	struct page *page;
2558 	pgoff_t index;
2559 	unsigned from, to;
2560 	unsigned block_in_page;
2561 	unsigned block_start, block_end;
2562 	sector_t block_in_file;
2563 	int nr_reads = 0;
2564 	int ret = 0;
2565 	int is_mapped_to_disk = 1;
2566 
2567 	index = pos >> PAGE_SHIFT;
2568 	from = pos & (PAGE_SIZE - 1);
2569 	to = from + len;
2570 
2571 	page = grab_cache_page_write_begin(mapping, index, flags);
2572 	if (!page)
2573 		return -ENOMEM;
2574 	*pagep = page;
2575 	*fsdata = NULL;
2576 
2577 	if (page_has_buffers(page)) {
2578 		ret = __block_write_begin(page, pos, len, get_block);
2579 		if (unlikely(ret))
2580 			goto out_release;
2581 		return ret;
2582 	}
2583 
2584 	if (PageMappedToDisk(page))
2585 		return 0;
2586 
2587 	/*
2588 	 * Allocate buffers so that we can keep track of state, and potentially
2589 	 * attach them to the page if an error occurs. In the common case of
2590 	 * no error, they will just be freed again without ever being attached
2591 	 * to the page (which is all OK, because we're under the page lock).
2592 	 *
2593 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2594 	 * than the circular one we're used to.
2595 	 */
2596 	head = alloc_page_buffers(page, blocksize, false);
2597 	if (!head) {
2598 		ret = -ENOMEM;
2599 		goto out_release;
2600 	}
2601 
2602 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2603 
2604 	/*
2605 	 * We loop across all blocks in the page, whether or not they are
2606 	 * part of the affected region.  This is so we can discover if the
2607 	 * page is fully mapped-to-disk.
2608 	 */
2609 	for (block_start = 0, block_in_page = 0, bh = head;
2610 		  block_start < PAGE_SIZE;
2611 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2612 		int create;
2613 
2614 		block_end = block_start + blocksize;
2615 		bh->b_state = 0;
2616 		create = 1;
2617 		if (block_start >= to)
2618 			create = 0;
2619 		ret = get_block(inode, block_in_file + block_in_page,
2620 					bh, create);
2621 		if (ret)
2622 			goto failed;
2623 		if (!buffer_mapped(bh))
2624 			is_mapped_to_disk = 0;
2625 		if (buffer_new(bh))
2626 			clean_bdev_bh_alias(bh);
2627 		if (PageUptodate(page)) {
2628 			set_buffer_uptodate(bh);
2629 			continue;
2630 		}
2631 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2632 			zero_user_segments(page, block_start, from,
2633 							to, block_end);
2634 			continue;
2635 		}
2636 		if (buffer_uptodate(bh))
2637 			continue;	/* reiserfs does this */
2638 		if (block_start < from || block_end > to) {
2639 			lock_buffer(bh);
2640 			bh->b_end_io = end_buffer_read_nobh;
2641 			submit_bh(REQ_OP_READ, 0, bh);
2642 			nr_reads++;
2643 		}
2644 	}
2645 
2646 	if (nr_reads) {
2647 		/*
2648 		 * The page is locked, so these buffers are protected from
2649 		 * any VM or truncate activity.  Hence we don't need to care
2650 		 * for the buffer_head refcounts.
2651 		 */
2652 		for (bh = head; bh; bh = bh->b_this_page) {
2653 			wait_on_buffer(bh);
2654 			if (!buffer_uptodate(bh))
2655 				ret = -EIO;
2656 		}
2657 		if (ret)
2658 			goto failed;
2659 	}
2660 
2661 	if (is_mapped_to_disk)
2662 		SetPageMappedToDisk(page);
2663 
2664 	*fsdata = head; /* to be released by nobh_write_end */
2665 
2666 	return 0;
2667 
2668 failed:
2669 	BUG_ON(!ret);
2670 	/*
2671 	 * Error recovery is a bit difficult. We need to zero out blocks that
2672 	 * were newly allocated, and dirty them to ensure they get written out.
2673 	 * Buffers need to be attached to the page at this point, otherwise
2674 	 * the handling of potential IO errors during writeout would be hard
2675 	 * (could try doing synchronous writeout, but what if that fails too?)
2676 	 */
2677 	attach_nobh_buffers(page, head);
2678 	page_zero_new_buffers(page, from, to);
2679 
2680 out_release:
2681 	unlock_page(page);
2682 	put_page(page);
2683 	*pagep = NULL;
2684 
2685 	return ret;
2686 }
2687 EXPORT_SYMBOL(nobh_write_begin);
2688 
2689 int nobh_write_end(struct file *file, struct address_space *mapping,
2690 			loff_t pos, unsigned len, unsigned copied,
2691 			struct page *page, void *fsdata)
2692 {
2693 	struct inode *inode = page->mapping->host;
2694 	struct buffer_head *head = fsdata;
2695 	struct buffer_head *bh;
2696 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2697 
2698 	if (unlikely(copied < len) && head)
2699 		attach_nobh_buffers(page, head);
2700 	if (page_has_buffers(page))
2701 		return generic_write_end(file, mapping, pos, len,
2702 					copied, page, fsdata);
2703 
2704 	SetPageUptodate(page);
2705 	set_page_dirty(page);
2706 	if (pos+copied > inode->i_size) {
2707 		i_size_write(inode, pos+copied);
2708 		mark_inode_dirty(inode);
2709 	}
2710 
2711 	unlock_page(page);
2712 	put_page(page);
2713 
2714 	while (head) {
2715 		bh = head;
2716 		head = head->b_this_page;
2717 		free_buffer_head(bh);
2718 	}
2719 
2720 	return copied;
2721 }
2722 EXPORT_SYMBOL(nobh_write_end);
2723 
2724 /*
2725  * nobh_writepage() - based on block_full_write_page() except
2726  * that it tries to operate without attaching bufferheads to
2727  * the page.
2728  */
2729 int nobh_writepage(struct page *page, get_block_t *get_block,
2730 			struct writeback_control *wbc)
2731 {
2732 	struct inode * const inode = page->mapping->host;
2733 	loff_t i_size = i_size_read(inode);
2734 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2735 	unsigned offset;
2736 	int ret;
2737 
2738 	/* Is the page fully inside i_size? */
2739 	if (page->index < end_index)
2740 		goto out;
2741 
2742 	/* Is the page fully outside i_size? (truncate in progress) */
2743 	offset = i_size & (PAGE_SIZE-1);
2744 	if (page->index >= end_index+1 || !offset) {
2745 		/*
2746 		 * The page may have dirty, unmapped buffers.  For example,
2747 		 * they may have been added in ext3_writepage().  Make them
2748 		 * freeable here, so the page does not leak.
2749 		 */
2750 #if 0
2751 		/* Not really sure about this  - do we need this ? */
2752 		if (page->mapping->a_ops->invalidatepage)
2753 			page->mapping->a_ops->invalidatepage(page, offset);
2754 #endif
2755 		unlock_page(page);
2756 		return 0; /* don't care */
2757 	}
2758 
2759 	/*
2760 	 * The page straddles i_size.  It must be zeroed out on each and every
2761 	 * writepage invocation because it may be mmapped.  "A file is mapped
2762 	 * in multiples of the page size.  For a file that is not a multiple of
2763 	 * the  page size, the remaining memory is zeroed when mapped, and
2764 	 * writes to that region are not written out to the file."
2765 	 */
2766 	zero_user_segment(page, offset, PAGE_SIZE);
2767 out:
2768 	ret = mpage_writepage(page, get_block, wbc);
2769 	if (ret == -EAGAIN)
2770 		ret = __block_write_full_page(inode, page, get_block, wbc,
2771 					      end_buffer_async_write);
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL(nobh_writepage);
2775 
2776 int nobh_truncate_page(struct address_space *mapping,
2777 			loff_t from, get_block_t *get_block)
2778 {
2779 	pgoff_t index = from >> PAGE_SHIFT;
2780 	unsigned offset = from & (PAGE_SIZE-1);
2781 	unsigned blocksize;
2782 	sector_t iblock;
2783 	unsigned length, pos;
2784 	struct inode *inode = mapping->host;
2785 	struct page *page;
2786 	struct buffer_head map_bh;
2787 	int err;
2788 
2789 	blocksize = i_blocksize(inode);
2790 	length = offset & (blocksize - 1);
2791 
2792 	/* Block boundary? Nothing to do */
2793 	if (!length)
2794 		return 0;
2795 
2796 	length = blocksize - length;
2797 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2798 
2799 	page = grab_cache_page(mapping, index);
2800 	err = -ENOMEM;
2801 	if (!page)
2802 		goto out;
2803 
2804 	if (page_has_buffers(page)) {
2805 has_buffers:
2806 		unlock_page(page);
2807 		put_page(page);
2808 		return block_truncate_page(mapping, from, get_block);
2809 	}
2810 
2811 	/* Find the buffer that contains "offset" */
2812 	pos = blocksize;
2813 	while (offset >= pos) {
2814 		iblock++;
2815 		pos += blocksize;
2816 	}
2817 
2818 	map_bh.b_size = blocksize;
2819 	map_bh.b_state = 0;
2820 	err = get_block(inode, iblock, &map_bh, 0);
2821 	if (err)
2822 		goto unlock;
2823 	/* unmapped? It's a hole - nothing to do */
2824 	if (!buffer_mapped(&map_bh))
2825 		goto unlock;
2826 
2827 	/* Ok, it's mapped. Make sure it's up-to-date */
2828 	if (!PageUptodate(page)) {
2829 		err = mapping->a_ops->readpage(NULL, page);
2830 		if (err) {
2831 			put_page(page);
2832 			goto out;
2833 		}
2834 		lock_page(page);
2835 		if (!PageUptodate(page)) {
2836 			err = -EIO;
2837 			goto unlock;
2838 		}
2839 		if (page_has_buffers(page))
2840 			goto has_buffers;
2841 	}
2842 	zero_user(page, offset, length);
2843 	set_page_dirty(page);
2844 	err = 0;
2845 
2846 unlock:
2847 	unlock_page(page);
2848 	put_page(page);
2849 out:
2850 	return err;
2851 }
2852 EXPORT_SYMBOL(nobh_truncate_page);
2853 
2854 int block_truncate_page(struct address_space *mapping,
2855 			loff_t from, get_block_t *get_block)
2856 {
2857 	pgoff_t index = from >> PAGE_SHIFT;
2858 	unsigned offset = from & (PAGE_SIZE-1);
2859 	unsigned blocksize;
2860 	sector_t iblock;
2861 	unsigned length, pos;
2862 	struct inode *inode = mapping->host;
2863 	struct page *page;
2864 	struct buffer_head *bh;
2865 	int err;
2866 
2867 	blocksize = i_blocksize(inode);
2868 	length = offset & (blocksize - 1);
2869 
2870 	/* Block boundary? Nothing to do */
2871 	if (!length)
2872 		return 0;
2873 
2874 	length = blocksize - length;
2875 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2876 
2877 	page = grab_cache_page(mapping, index);
2878 	err = -ENOMEM;
2879 	if (!page)
2880 		goto out;
2881 
2882 	if (!page_has_buffers(page))
2883 		create_empty_buffers(page, blocksize, 0);
2884 
2885 	/* Find the buffer that contains "offset" */
2886 	bh = page_buffers(page);
2887 	pos = blocksize;
2888 	while (offset >= pos) {
2889 		bh = bh->b_this_page;
2890 		iblock++;
2891 		pos += blocksize;
2892 	}
2893 
2894 	err = 0;
2895 	if (!buffer_mapped(bh)) {
2896 		WARN_ON(bh->b_size != blocksize);
2897 		err = get_block(inode, iblock, bh, 0);
2898 		if (err)
2899 			goto unlock;
2900 		/* unmapped? It's a hole - nothing to do */
2901 		if (!buffer_mapped(bh))
2902 			goto unlock;
2903 	}
2904 
2905 	/* Ok, it's mapped. Make sure it's up-to-date */
2906 	if (PageUptodate(page))
2907 		set_buffer_uptodate(bh);
2908 
2909 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2910 		err = -EIO;
2911 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2912 		wait_on_buffer(bh);
2913 		/* Uhhuh. Read error. Complain and punt. */
2914 		if (!buffer_uptodate(bh))
2915 			goto unlock;
2916 	}
2917 
2918 	zero_user(page, offset, length);
2919 	mark_buffer_dirty(bh);
2920 	err = 0;
2921 
2922 unlock:
2923 	unlock_page(page);
2924 	put_page(page);
2925 out:
2926 	return err;
2927 }
2928 EXPORT_SYMBOL(block_truncate_page);
2929 
2930 /*
2931  * The generic ->writepage function for buffer-backed address_spaces
2932  */
2933 int block_write_full_page(struct page *page, get_block_t *get_block,
2934 			struct writeback_control *wbc)
2935 {
2936 	struct inode * const inode = page->mapping->host;
2937 	loff_t i_size = i_size_read(inode);
2938 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2939 	unsigned offset;
2940 
2941 	/* Is the page fully inside i_size? */
2942 	if (page->index < end_index)
2943 		return __block_write_full_page(inode, page, get_block, wbc,
2944 					       end_buffer_async_write);
2945 
2946 	/* Is the page fully outside i_size? (truncate in progress) */
2947 	offset = i_size & (PAGE_SIZE-1);
2948 	if (page->index >= end_index+1 || !offset) {
2949 		/*
2950 		 * The page may have dirty, unmapped buffers.  For example,
2951 		 * they may have been added in ext3_writepage().  Make them
2952 		 * freeable here, so the page does not leak.
2953 		 */
2954 		do_invalidatepage(page, 0, PAGE_SIZE);
2955 		unlock_page(page);
2956 		return 0; /* don't care */
2957 	}
2958 
2959 	/*
2960 	 * The page straddles i_size.  It must be zeroed out on each and every
2961 	 * writepage invocation because it may be mmapped.  "A file is mapped
2962 	 * in multiples of the page size.  For a file that is not a multiple of
2963 	 * the  page size, the remaining memory is zeroed when mapped, and
2964 	 * writes to that region are not written out to the file."
2965 	 */
2966 	zero_user_segment(page, offset, PAGE_SIZE);
2967 	return __block_write_full_page(inode, page, get_block, wbc,
2968 							end_buffer_async_write);
2969 }
2970 EXPORT_SYMBOL(block_write_full_page);
2971 
2972 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2973 			    get_block_t *get_block)
2974 {
2975 	struct inode *inode = mapping->host;
2976 	struct buffer_head tmp = {
2977 		.b_size = i_blocksize(inode),
2978 	};
2979 
2980 	get_block(inode, block, &tmp, 0);
2981 	return tmp.b_blocknr;
2982 }
2983 EXPORT_SYMBOL(generic_block_bmap);
2984 
2985 static void end_bio_bh_io_sync(struct bio *bio)
2986 {
2987 	struct buffer_head *bh = bio->bi_private;
2988 
2989 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2990 		set_bit(BH_Quiet, &bh->b_state);
2991 
2992 	bh->b_end_io(bh, !bio->bi_status);
2993 	bio_put(bio);
2994 }
2995 
2996 /*
2997  * This allows us to do IO even on the odd last sectors
2998  * of a device, even if the block size is some multiple
2999  * of the physical sector size.
3000  *
3001  * We'll just truncate the bio to the size of the device,
3002  * and clear the end of the buffer head manually.
3003  *
3004  * Truly out-of-range accesses will turn into actual IO
3005  * errors, this only handles the "we need to be able to
3006  * do IO at the final sector" case.
3007  */
3008 void guard_bio_eod(int op, struct bio *bio)
3009 {
3010 	sector_t maxsector;
3011 	struct bio_vec *bvec = bio_last_bvec_all(bio);
3012 	unsigned truncated_bytes;
3013 	struct hd_struct *part;
3014 
3015 	rcu_read_lock();
3016 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3017 	if (part)
3018 		maxsector = part_nr_sects_read(part);
3019 	else
3020 		maxsector = get_capacity(bio->bi_disk);
3021 	rcu_read_unlock();
3022 
3023 	if (!maxsector)
3024 		return;
3025 
3026 	/*
3027 	 * If the *whole* IO is past the end of the device,
3028 	 * let it through, and the IO layer will turn it into
3029 	 * an EIO.
3030 	 */
3031 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3032 		return;
3033 
3034 	maxsector -= bio->bi_iter.bi_sector;
3035 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3036 		return;
3037 
3038 	/* Uhhuh. We've got a bio that straddles the device size! */
3039 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3040 
3041 	/* Truncate the bio.. */
3042 	bio->bi_iter.bi_size -= truncated_bytes;
3043 	bvec->bv_len -= truncated_bytes;
3044 
3045 	/* ..and clear the end of the buffer for reads */
3046 	if (op == REQ_OP_READ) {
3047 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3048 				truncated_bytes);
3049 	}
3050 }
3051 
3052 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3053 			 enum rw_hint write_hint, struct writeback_control *wbc)
3054 {
3055 	struct bio *bio;
3056 
3057 	BUG_ON(!buffer_locked(bh));
3058 	BUG_ON(!buffer_mapped(bh));
3059 	BUG_ON(!bh->b_end_io);
3060 	BUG_ON(buffer_delay(bh));
3061 	BUG_ON(buffer_unwritten(bh));
3062 
3063 	/*
3064 	 * Only clear out a write error when rewriting
3065 	 */
3066 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3067 		clear_buffer_write_io_error(bh);
3068 
3069 	/*
3070 	 * from here on down, it's all bio -- do the initial mapping,
3071 	 * submit_bio -> generic_make_request may further map this bio around
3072 	 */
3073 	bio = bio_alloc(GFP_NOIO, 1);
3074 
3075 	if (wbc) {
3076 		wbc_init_bio(wbc, bio);
3077 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3078 	}
3079 
3080 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3081 	bio_set_dev(bio, bh->b_bdev);
3082 	bio->bi_write_hint = write_hint;
3083 
3084 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3085 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3086 
3087 	bio->bi_end_io = end_bio_bh_io_sync;
3088 	bio->bi_private = bh;
3089 
3090 	/* Take care of bh's that straddle the end of the device */
3091 	guard_bio_eod(op, bio);
3092 
3093 	if (buffer_meta(bh))
3094 		op_flags |= REQ_META;
3095 	if (buffer_prio(bh))
3096 		op_flags |= REQ_PRIO;
3097 	bio_set_op_attrs(bio, op, op_flags);
3098 
3099 	submit_bio(bio);
3100 	return 0;
3101 }
3102 
3103 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3104 {
3105 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3106 }
3107 EXPORT_SYMBOL(submit_bh);
3108 
3109 /**
3110  * ll_rw_block: low-level access to block devices (DEPRECATED)
3111  * @op: whether to %READ or %WRITE
3112  * @op_flags: req_flag_bits
3113  * @nr: number of &struct buffer_heads in the array
3114  * @bhs: array of pointers to &struct buffer_head
3115  *
3116  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3117  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3118  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3119  * %REQ_RAHEAD.
3120  *
3121  * This function drops any buffer that it cannot get a lock on (with the
3122  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3123  * request, and any buffer that appears to be up-to-date when doing read
3124  * request.  Further it marks as clean buffers that are processed for
3125  * writing (the buffer cache won't assume that they are actually clean
3126  * until the buffer gets unlocked).
3127  *
3128  * ll_rw_block sets b_end_io to simple completion handler that marks
3129  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3130  * any waiters.
3131  *
3132  * All of the buffers must be for the same device, and must also be a
3133  * multiple of the current approved size for the device.
3134  */
3135 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3136 {
3137 	int i;
3138 
3139 	for (i = 0; i < nr; i++) {
3140 		struct buffer_head *bh = bhs[i];
3141 
3142 		if (!trylock_buffer(bh))
3143 			continue;
3144 		if (op == WRITE) {
3145 			if (test_clear_buffer_dirty(bh)) {
3146 				bh->b_end_io = end_buffer_write_sync;
3147 				get_bh(bh);
3148 				submit_bh(op, op_flags, bh);
3149 				continue;
3150 			}
3151 		} else {
3152 			if (!buffer_uptodate(bh)) {
3153 				bh->b_end_io = end_buffer_read_sync;
3154 				get_bh(bh);
3155 				submit_bh(op, op_flags, bh);
3156 				continue;
3157 			}
3158 		}
3159 		unlock_buffer(bh);
3160 	}
3161 }
3162 EXPORT_SYMBOL(ll_rw_block);
3163 
3164 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3165 {
3166 	lock_buffer(bh);
3167 	if (!test_clear_buffer_dirty(bh)) {
3168 		unlock_buffer(bh);
3169 		return;
3170 	}
3171 	bh->b_end_io = end_buffer_write_sync;
3172 	get_bh(bh);
3173 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3174 }
3175 EXPORT_SYMBOL(write_dirty_buffer);
3176 
3177 /*
3178  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3179  * and then start new I/O and then wait upon it.  The caller must have a ref on
3180  * the buffer_head.
3181  */
3182 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3183 {
3184 	int ret = 0;
3185 
3186 	WARN_ON(atomic_read(&bh->b_count) < 1);
3187 	lock_buffer(bh);
3188 	if (test_clear_buffer_dirty(bh)) {
3189 		get_bh(bh);
3190 		bh->b_end_io = end_buffer_write_sync;
3191 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3192 		wait_on_buffer(bh);
3193 		if (!ret && !buffer_uptodate(bh))
3194 			ret = -EIO;
3195 	} else {
3196 		unlock_buffer(bh);
3197 	}
3198 	return ret;
3199 }
3200 EXPORT_SYMBOL(__sync_dirty_buffer);
3201 
3202 int sync_dirty_buffer(struct buffer_head *bh)
3203 {
3204 	return __sync_dirty_buffer(bh, REQ_SYNC);
3205 }
3206 EXPORT_SYMBOL(sync_dirty_buffer);
3207 
3208 /*
3209  * try_to_free_buffers() checks if all the buffers on this particular page
3210  * are unused, and releases them if so.
3211  *
3212  * Exclusion against try_to_free_buffers may be obtained by either
3213  * locking the page or by holding its mapping's private_lock.
3214  *
3215  * If the page is dirty but all the buffers are clean then we need to
3216  * be sure to mark the page clean as well.  This is because the page
3217  * may be against a block device, and a later reattachment of buffers
3218  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3219  * filesystem data on the same device.
3220  *
3221  * The same applies to regular filesystem pages: if all the buffers are
3222  * clean then we set the page clean and proceed.  To do that, we require
3223  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3224  * private_lock.
3225  *
3226  * try_to_free_buffers() is non-blocking.
3227  */
3228 static inline int buffer_busy(struct buffer_head *bh)
3229 {
3230 	return atomic_read(&bh->b_count) |
3231 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3232 }
3233 
3234 static int
3235 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3236 {
3237 	struct buffer_head *head = page_buffers(page);
3238 	struct buffer_head *bh;
3239 
3240 	bh = head;
3241 	do {
3242 		if (buffer_busy(bh))
3243 			goto failed;
3244 		bh = bh->b_this_page;
3245 	} while (bh != head);
3246 
3247 	do {
3248 		struct buffer_head *next = bh->b_this_page;
3249 
3250 		if (bh->b_assoc_map)
3251 			__remove_assoc_queue(bh);
3252 		bh = next;
3253 	} while (bh != head);
3254 	*buffers_to_free = head;
3255 	__clear_page_buffers(page);
3256 	return 1;
3257 failed:
3258 	return 0;
3259 }
3260 
3261 int try_to_free_buffers(struct page *page)
3262 {
3263 	struct address_space * const mapping = page->mapping;
3264 	struct buffer_head *buffers_to_free = NULL;
3265 	int ret = 0;
3266 
3267 	BUG_ON(!PageLocked(page));
3268 	if (PageWriteback(page))
3269 		return 0;
3270 
3271 	if (mapping == NULL) {		/* can this still happen? */
3272 		ret = drop_buffers(page, &buffers_to_free);
3273 		goto out;
3274 	}
3275 
3276 	spin_lock(&mapping->private_lock);
3277 	ret = drop_buffers(page, &buffers_to_free);
3278 
3279 	/*
3280 	 * If the filesystem writes its buffers by hand (eg ext3)
3281 	 * then we can have clean buffers against a dirty page.  We
3282 	 * clean the page here; otherwise the VM will never notice
3283 	 * that the filesystem did any IO at all.
3284 	 *
3285 	 * Also, during truncate, discard_buffer will have marked all
3286 	 * the page's buffers clean.  We discover that here and clean
3287 	 * the page also.
3288 	 *
3289 	 * private_lock must be held over this entire operation in order
3290 	 * to synchronise against __set_page_dirty_buffers and prevent the
3291 	 * dirty bit from being lost.
3292 	 */
3293 	if (ret)
3294 		cancel_dirty_page(page);
3295 	spin_unlock(&mapping->private_lock);
3296 out:
3297 	if (buffers_to_free) {
3298 		struct buffer_head *bh = buffers_to_free;
3299 
3300 		do {
3301 			struct buffer_head *next = bh->b_this_page;
3302 			free_buffer_head(bh);
3303 			bh = next;
3304 		} while (bh != buffers_to_free);
3305 	}
3306 	return ret;
3307 }
3308 EXPORT_SYMBOL(try_to_free_buffers);
3309 
3310 /*
3311  * There are no bdflush tunables left.  But distributions are
3312  * still running obsolete flush daemons, so we terminate them here.
3313  *
3314  * Use of bdflush() is deprecated and will be removed in a future kernel.
3315  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3316  */
3317 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3318 {
3319 	static int msg_count;
3320 
3321 	if (!capable(CAP_SYS_ADMIN))
3322 		return -EPERM;
3323 
3324 	if (msg_count < 5) {
3325 		msg_count++;
3326 		printk(KERN_INFO
3327 			"warning: process `%s' used the obsolete bdflush"
3328 			" system call\n", current->comm);
3329 		printk(KERN_INFO "Fix your initscripts?\n");
3330 	}
3331 
3332 	if (func == 1)
3333 		do_exit(0);
3334 	return 0;
3335 }
3336 
3337 /*
3338  * Buffer-head allocation
3339  */
3340 static struct kmem_cache *bh_cachep __read_mostly;
3341 
3342 /*
3343  * Once the number of bh's in the machine exceeds this level, we start
3344  * stripping them in writeback.
3345  */
3346 static unsigned long max_buffer_heads;
3347 
3348 int buffer_heads_over_limit;
3349 
3350 struct bh_accounting {
3351 	int nr;			/* Number of live bh's */
3352 	int ratelimit;		/* Limit cacheline bouncing */
3353 };
3354 
3355 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3356 
3357 static void recalc_bh_state(void)
3358 {
3359 	int i;
3360 	int tot = 0;
3361 
3362 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3363 		return;
3364 	__this_cpu_write(bh_accounting.ratelimit, 0);
3365 	for_each_online_cpu(i)
3366 		tot += per_cpu(bh_accounting, i).nr;
3367 	buffer_heads_over_limit = (tot > max_buffer_heads);
3368 }
3369 
3370 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3371 {
3372 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3373 	if (ret) {
3374 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3375 		preempt_disable();
3376 		__this_cpu_inc(bh_accounting.nr);
3377 		recalc_bh_state();
3378 		preempt_enable();
3379 	}
3380 	return ret;
3381 }
3382 EXPORT_SYMBOL(alloc_buffer_head);
3383 
3384 void free_buffer_head(struct buffer_head *bh)
3385 {
3386 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3387 	kmem_cache_free(bh_cachep, bh);
3388 	preempt_disable();
3389 	__this_cpu_dec(bh_accounting.nr);
3390 	recalc_bh_state();
3391 	preempt_enable();
3392 }
3393 EXPORT_SYMBOL(free_buffer_head);
3394 
3395 static int buffer_exit_cpu_dead(unsigned int cpu)
3396 {
3397 	int i;
3398 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3399 
3400 	for (i = 0; i < BH_LRU_SIZE; i++) {
3401 		brelse(b->bhs[i]);
3402 		b->bhs[i] = NULL;
3403 	}
3404 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3405 	per_cpu(bh_accounting, cpu).nr = 0;
3406 	return 0;
3407 }
3408 
3409 /**
3410  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3411  * @bh: struct buffer_head
3412  *
3413  * Return true if the buffer is up-to-date and false,
3414  * with the buffer locked, if not.
3415  */
3416 int bh_uptodate_or_lock(struct buffer_head *bh)
3417 {
3418 	if (!buffer_uptodate(bh)) {
3419 		lock_buffer(bh);
3420 		if (!buffer_uptodate(bh))
3421 			return 0;
3422 		unlock_buffer(bh);
3423 	}
3424 	return 1;
3425 }
3426 EXPORT_SYMBOL(bh_uptodate_or_lock);
3427 
3428 /**
3429  * bh_submit_read - Submit a locked buffer for reading
3430  * @bh: struct buffer_head
3431  *
3432  * Returns zero on success and -EIO on error.
3433  */
3434 int bh_submit_read(struct buffer_head *bh)
3435 {
3436 	BUG_ON(!buffer_locked(bh));
3437 
3438 	if (buffer_uptodate(bh)) {
3439 		unlock_buffer(bh);
3440 		return 0;
3441 	}
3442 
3443 	get_bh(bh);
3444 	bh->b_end_io = end_buffer_read_sync;
3445 	submit_bh(REQ_OP_READ, 0, bh);
3446 	wait_on_buffer(bh);
3447 	if (buffer_uptodate(bh))
3448 		return 0;
3449 	return -EIO;
3450 }
3451 EXPORT_SYMBOL(bh_submit_read);
3452 
3453 /*
3454  * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3455  *
3456  * Returns the offset within the file on success, and -ENOENT otherwise.
3457  */
3458 static loff_t
3459 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3460 {
3461 	loff_t offset = page_offset(page);
3462 	struct buffer_head *bh, *head;
3463 	bool seek_data = whence == SEEK_DATA;
3464 
3465 	if (lastoff < offset)
3466 		lastoff = offset;
3467 
3468 	bh = head = page_buffers(page);
3469 	do {
3470 		offset += bh->b_size;
3471 		if (lastoff >= offset)
3472 			continue;
3473 
3474 		/*
3475 		 * Unwritten extents that have data in the page cache covering
3476 		 * them can be identified by the BH_Unwritten state flag.
3477 		 * Pages with multiple buffers might have a mix of holes, data
3478 		 * and unwritten extents - any buffer with valid data in it
3479 		 * should have BH_Uptodate flag set on it.
3480 		 */
3481 
3482 		if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3483 			return lastoff;
3484 
3485 		lastoff = offset;
3486 	} while ((bh = bh->b_this_page) != head);
3487 	return -ENOENT;
3488 }
3489 
3490 /*
3491  * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3492  *
3493  * Within unwritten extents, the page cache determines which parts are holes
3494  * and which are data: unwritten and uptodate buffer heads count as data;
3495  * everything else counts as a hole.
3496  *
3497  * Returns the resulting offset on successs, and -ENOENT otherwise.
3498  */
3499 loff_t
3500 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3501 			  int whence)
3502 {
3503 	pgoff_t index = offset >> PAGE_SHIFT;
3504 	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3505 	loff_t lastoff = offset;
3506 	struct pagevec pvec;
3507 
3508 	if (length <= 0)
3509 		return -ENOENT;
3510 
3511 	pagevec_init(&pvec);
3512 
3513 	do {
3514 		unsigned nr_pages, i;
3515 
3516 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3517 						end - 1);
3518 		if (nr_pages == 0)
3519 			break;
3520 
3521 		for (i = 0; i < nr_pages; i++) {
3522 			struct page *page = pvec.pages[i];
3523 
3524 			/*
3525 			 * At this point, the page may be truncated or
3526 			 * invalidated (changing page->mapping to NULL), or
3527 			 * even swizzled back from swapper_space to tmpfs file
3528 			 * mapping.  However, page->index will not change
3529 			 * because we have a reference on the page.
3530                          *
3531 			 * If current page offset is beyond where we've ended,
3532 			 * we've found a hole.
3533                          */
3534 			if (whence == SEEK_HOLE &&
3535 			    lastoff < page_offset(page))
3536 				goto check_range;
3537 
3538 			lock_page(page);
3539 			if (likely(page->mapping == inode->i_mapping) &&
3540 			    page_has_buffers(page)) {
3541 				lastoff = page_seek_hole_data(page, lastoff, whence);
3542 				if (lastoff >= 0) {
3543 					unlock_page(page);
3544 					goto check_range;
3545 				}
3546 			}
3547 			unlock_page(page);
3548 			lastoff = page_offset(page) + PAGE_SIZE;
3549 		}
3550 		pagevec_release(&pvec);
3551 	} while (index < end);
3552 
3553 	/* When no page at lastoff and we are not done, we found a hole. */
3554 	if (whence != SEEK_HOLE)
3555 		goto not_found;
3556 
3557 check_range:
3558 	if (lastoff < offset + length)
3559 		goto out;
3560 not_found:
3561 	lastoff = -ENOENT;
3562 out:
3563 	pagevec_release(&pvec);
3564 	return lastoff;
3565 }
3566 
3567 void __init buffer_init(void)
3568 {
3569 	unsigned long nrpages;
3570 	int ret;
3571 
3572 	bh_cachep = kmem_cache_create("buffer_head",
3573 			sizeof(struct buffer_head), 0,
3574 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3575 				SLAB_MEM_SPREAD),
3576 				NULL);
3577 
3578 	/*
3579 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3580 	 */
3581 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3582 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3583 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3584 					NULL, buffer_exit_cpu_dead);
3585 	WARN_ON(ret < 0);
3586 }
3587