xref: /openbmc/linux/fs/buffer.c (revision 8db70d3d)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93 
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97 	ClearPagePrivate(page);
98 	set_page_private(page, 0);
99 	page_cache_release(page);
100 }
101 
102 
103 static int quiet_error(struct buffer_head *bh)
104 {
105 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 		return 0;
107 	return 1;
108 }
109 
110 
111 static void buffer_io_error(struct buffer_head *bh)
112 {
113 	char b[BDEVNAME_SIZE];
114 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 			bdevname(bh->b_bdev, b),
116 			(unsigned long long)bh->b_blocknr);
117 }
118 
119 /*
120  * End-of-IO handler helper function which does not touch the bh after
121  * unlocking it.
122  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123  * a race there is benign: unlock_buffer() only use the bh's address for
124  * hashing after unlocking the buffer, so it doesn't actually touch the bh
125  * itself.
126  */
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
128 {
129 	if (uptodate) {
130 		set_buffer_uptodate(bh);
131 	} else {
132 		/* This happens, due to failed READA attempts. */
133 		clear_buffer_uptodate(bh);
134 	}
135 	unlock_buffer(bh);
136 }
137 
138 /*
139  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
140  * unlock the buffer. This is what ll_rw_block uses too.
141  */
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143 {
144 	__end_buffer_read_notouch(bh, uptodate);
145 	put_bh(bh);
146 }
147 
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149 {
150 	char b[BDEVNAME_SIZE];
151 
152 	if (uptodate) {
153 		set_buffer_uptodate(bh);
154 	} else {
155 		if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156 			buffer_io_error(bh);
157 			printk(KERN_WARNING "lost page write due to "
158 					"I/O error on %s\n",
159 				       bdevname(bh->b_bdev, b));
160 		}
161 		set_buffer_write_io_error(bh);
162 		clear_buffer_uptodate(bh);
163 	}
164 	unlock_buffer(bh);
165 	put_bh(bh);
166 }
167 
168 /*
169  * Various filesystems appear to want __find_get_block to be non-blocking.
170  * But it's the page lock which protects the buffers.  To get around this,
171  * we get exclusion from try_to_free_buffers with the blockdev mapping's
172  * private_lock.
173  *
174  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175  * may be quite high.  This code could TryLock the page, and if that
176  * succeeds, there is no need to take private_lock. (But if
177  * private_lock is contended then so is mapping->tree_lock).
178  */
179 static struct buffer_head *
180 __find_get_block_slow(struct block_device *bdev, sector_t block)
181 {
182 	struct inode *bd_inode = bdev->bd_inode;
183 	struct address_space *bd_mapping = bd_inode->i_mapping;
184 	struct buffer_head *ret = NULL;
185 	pgoff_t index;
186 	struct buffer_head *bh;
187 	struct buffer_head *head;
188 	struct page *page;
189 	int all_mapped = 1;
190 
191 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192 	page = find_get_page(bd_mapping, index);
193 	if (!page)
194 		goto out;
195 
196 	spin_lock(&bd_mapping->private_lock);
197 	if (!page_has_buffers(page))
198 		goto out_unlock;
199 	head = page_buffers(page);
200 	bh = head;
201 	do {
202 		if (!buffer_mapped(bh))
203 			all_mapped = 0;
204 		else if (bh->b_blocknr == block) {
205 			ret = bh;
206 			get_bh(bh);
207 			goto out_unlock;
208 		}
209 		bh = bh->b_this_page;
210 	} while (bh != head);
211 
212 	/* we might be here because some of the buffers on this page are
213 	 * not mapped.  This is due to various races between
214 	 * file io on the block device and getblk.  It gets dealt with
215 	 * elsewhere, don't buffer_error if we had some unmapped buffers
216 	 */
217 	if (all_mapped) {
218 		printk("__find_get_block_slow() failed. "
219 			"block=%llu, b_blocknr=%llu\n",
220 			(unsigned long long)block,
221 			(unsigned long long)bh->b_blocknr);
222 		printk("b_state=0x%08lx, b_size=%zu\n",
223 			bh->b_state, bh->b_size);
224 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
225 	}
226 out_unlock:
227 	spin_unlock(&bd_mapping->private_lock);
228 	page_cache_release(page);
229 out:
230 	return ret;
231 }
232 
233 /* If invalidate_buffers() will trash dirty buffers, it means some kind
234    of fs corruption is going on. Trashing dirty data always imply losing
235    information that was supposed to be just stored on the physical layer
236    by the user.
237 
238    Thus invalidate_buffers in general usage is not allwowed to trash
239    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240    be preserved.  These buffers are simply skipped.
241 
242    We also skip buffers which are still in use.  For example this can
243    happen if a userspace program is reading the block device.
244 
245    NOTE: In the case where the user removed a removable-media-disk even if
246    there's still dirty data not synced on disk (due a bug in the device driver
247    or due an error of the user), by not destroying the dirty buffers we could
248    generate corruption also on the next media inserted, thus a parameter is
249    necessary to handle this case in the most safe way possible (trying
250    to not corrupt also the new disk inserted with the data belonging to
251    the old now corrupted disk). Also for the ramdisk the natural thing
252    to do in order to release the ramdisk memory is to destroy dirty buffers.
253 
254    These are two special cases. Normal usage imply the device driver
255    to issue a sync on the device (without waiting I/O completion) and
256    then an invalidate_buffers call that doesn't trash dirty buffers.
257 
258    For handling cache coherency with the blkdev pagecache the 'update' case
259    is been introduced. It is needed to re-read from disk any pinned
260    buffer. NOTE: re-reading from disk is destructive so we can do it only
261    when we assume nobody is changing the buffercache under our I/O and when
262    we think the disk contains more recent information than the buffercache.
263    The update == 1 pass marks the buffers we need to update, the update == 2
264    pass does the actual I/O. */
265 void invalidate_bdev(struct block_device *bdev)
266 {
267 	struct address_space *mapping = bdev->bd_inode->i_mapping;
268 
269 	if (mapping->nrpages == 0)
270 		return;
271 
272 	invalidate_bh_lrus();
273 	invalidate_mapping_pages(mapping, 0, -1);
274 }
275 
276 /*
277  * Kick pdflush then try to free up some ZONE_NORMAL memory.
278  */
279 static void free_more_memory(void)
280 {
281 	struct zone *zone;
282 	int nid;
283 
284 	wakeup_pdflush(1024);
285 	yield();
286 
287 	for_each_online_node(nid) {
288 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289 						gfp_zone(GFP_NOFS), NULL,
290 						&zone);
291 		if (zone)
292 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
293 						GFP_NOFS, NULL);
294 	}
295 }
296 
297 /*
298  * I/O completion handler for block_read_full_page() - pages
299  * which come unlocked at the end of I/O.
300  */
301 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
302 {
303 	unsigned long flags;
304 	struct buffer_head *first;
305 	struct buffer_head *tmp;
306 	struct page *page;
307 	int page_uptodate = 1;
308 
309 	BUG_ON(!buffer_async_read(bh));
310 
311 	page = bh->b_page;
312 	if (uptodate) {
313 		set_buffer_uptodate(bh);
314 	} else {
315 		clear_buffer_uptodate(bh);
316 		if (!quiet_error(bh))
317 			buffer_io_error(bh);
318 		SetPageError(page);
319 	}
320 
321 	/*
322 	 * Be _very_ careful from here on. Bad things can happen if
323 	 * two buffer heads end IO at almost the same time and both
324 	 * decide that the page is now completely done.
325 	 */
326 	first = page_buffers(page);
327 	local_irq_save(flags);
328 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
329 	clear_buffer_async_read(bh);
330 	unlock_buffer(bh);
331 	tmp = bh;
332 	do {
333 		if (!buffer_uptodate(tmp))
334 			page_uptodate = 0;
335 		if (buffer_async_read(tmp)) {
336 			BUG_ON(!buffer_locked(tmp));
337 			goto still_busy;
338 		}
339 		tmp = tmp->b_this_page;
340 	} while (tmp != bh);
341 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342 	local_irq_restore(flags);
343 
344 	/*
345 	 * If none of the buffers had errors and they are all
346 	 * uptodate then we can set the page uptodate.
347 	 */
348 	if (page_uptodate && !PageError(page))
349 		SetPageUptodate(page);
350 	unlock_page(page);
351 	return;
352 
353 still_busy:
354 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 	local_irq_restore(flags);
356 	return;
357 }
358 
359 /*
360  * Completion handler for block_write_full_page() - pages which are unlocked
361  * during I/O, and which have PageWriteback cleared upon I/O completion.
362  */
363 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
364 {
365 	char b[BDEVNAME_SIZE];
366 	unsigned long flags;
367 	struct buffer_head *first;
368 	struct buffer_head *tmp;
369 	struct page *page;
370 
371 	BUG_ON(!buffer_async_write(bh));
372 
373 	page = bh->b_page;
374 	if (uptodate) {
375 		set_buffer_uptodate(bh);
376 	} else {
377 		if (!quiet_error(bh)) {
378 			buffer_io_error(bh);
379 			printk(KERN_WARNING "lost page write due to "
380 					"I/O error on %s\n",
381 			       bdevname(bh->b_bdev, b));
382 		}
383 		set_bit(AS_EIO, &page->mapping->flags);
384 		set_buffer_write_io_error(bh);
385 		clear_buffer_uptodate(bh);
386 		SetPageError(page);
387 	}
388 
389 	first = page_buffers(page);
390 	local_irq_save(flags);
391 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
392 
393 	clear_buffer_async_write(bh);
394 	unlock_buffer(bh);
395 	tmp = bh->b_this_page;
396 	while (tmp != bh) {
397 		if (buffer_async_write(tmp)) {
398 			BUG_ON(!buffer_locked(tmp));
399 			goto still_busy;
400 		}
401 		tmp = tmp->b_this_page;
402 	}
403 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404 	local_irq_restore(flags);
405 	end_page_writeback(page);
406 	return;
407 
408 still_busy:
409 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 	local_irq_restore(flags);
411 	return;
412 }
413 
414 /*
415  * If a page's buffers are under async readin (end_buffer_async_read
416  * completion) then there is a possibility that another thread of
417  * control could lock one of the buffers after it has completed
418  * but while some of the other buffers have not completed.  This
419  * locked buffer would confuse end_buffer_async_read() into not unlocking
420  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
421  * that this buffer is not under async I/O.
422  *
423  * The page comes unlocked when it has no locked buffer_async buffers
424  * left.
425  *
426  * PageLocked prevents anyone starting new async I/O reads any of
427  * the buffers.
428  *
429  * PageWriteback is used to prevent simultaneous writeout of the same
430  * page.
431  *
432  * PageLocked prevents anyone from starting writeback of a page which is
433  * under read I/O (PageWriteback is only ever set against a locked page).
434  */
435 static void mark_buffer_async_read(struct buffer_head *bh)
436 {
437 	bh->b_end_io = end_buffer_async_read;
438 	set_buffer_async_read(bh);
439 }
440 
441 void mark_buffer_async_write(struct buffer_head *bh)
442 {
443 	bh->b_end_io = end_buffer_async_write;
444 	set_buffer_async_write(bh);
445 }
446 EXPORT_SYMBOL(mark_buffer_async_write);
447 
448 
449 /*
450  * fs/buffer.c contains helper functions for buffer-backed address space's
451  * fsync functions.  A common requirement for buffer-based filesystems is
452  * that certain data from the backing blockdev needs to be written out for
453  * a successful fsync().  For example, ext2 indirect blocks need to be
454  * written back and waited upon before fsync() returns.
455  *
456  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
457  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
458  * management of a list of dependent buffers at ->i_mapping->private_list.
459  *
460  * Locking is a little subtle: try_to_free_buffers() will remove buffers
461  * from their controlling inode's queue when they are being freed.  But
462  * try_to_free_buffers() will be operating against the *blockdev* mapping
463  * at the time, not against the S_ISREG file which depends on those buffers.
464  * So the locking for private_list is via the private_lock in the address_space
465  * which backs the buffers.  Which is different from the address_space
466  * against which the buffers are listed.  So for a particular address_space,
467  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
468  * mapping->private_list will always be protected by the backing blockdev's
469  * ->private_lock.
470  *
471  * Which introduces a requirement: all buffers on an address_space's
472  * ->private_list must be from the same address_space: the blockdev's.
473  *
474  * address_spaces which do not place buffers at ->private_list via these
475  * utility functions are free to use private_lock and private_list for
476  * whatever they want.  The only requirement is that list_empty(private_list)
477  * be true at clear_inode() time.
478  *
479  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
480  * filesystems should do that.  invalidate_inode_buffers() should just go
481  * BUG_ON(!list_empty).
482  *
483  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
484  * take an address_space, not an inode.  And it should be called
485  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
486  * queued up.
487  *
488  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
489  * list if it is already on a list.  Because if the buffer is on a list,
490  * it *must* already be on the right one.  If not, the filesystem is being
491  * silly.  This will save a ton of locking.  But first we have to ensure
492  * that buffers are taken *off* the old inode's list when they are freed
493  * (presumably in truncate).  That requires careful auditing of all
494  * filesystems (do it inside bforget()).  It could also be done by bringing
495  * b_inode back.
496  */
497 
498 /*
499  * The buffer's backing address_space's private_lock must be held
500  */
501 static void __remove_assoc_queue(struct buffer_head *bh)
502 {
503 	list_del_init(&bh->b_assoc_buffers);
504 	WARN_ON(!bh->b_assoc_map);
505 	if (buffer_write_io_error(bh))
506 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
507 	bh->b_assoc_map = NULL;
508 }
509 
510 int inode_has_buffers(struct inode *inode)
511 {
512 	return !list_empty(&inode->i_data.private_list);
513 }
514 
515 /*
516  * osync is designed to support O_SYNC io.  It waits synchronously for
517  * all already-submitted IO to complete, but does not queue any new
518  * writes to the disk.
519  *
520  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
521  * you dirty the buffers, and then use osync_inode_buffers to wait for
522  * completion.  Any other dirty buffers which are not yet queued for
523  * write will not be flushed to disk by the osync.
524  */
525 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
526 {
527 	struct buffer_head *bh;
528 	struct list_head *p;
529 	int err = 0;
530 
531 	spin_lock(lock);
532 repeat:
533 	list_for_each_prev(p, list) {
534 		bh = BH_ENTRY(p);
535 		if (buffer_locked(bh)) {
536 			get_bh(bh);
537 			spin_unlock(lock);
538 			wait_on_buffer(bh);
539 			if (!buffer_uptodate(bh))
540 				err = -EIO;
541 			brelse(bh);
542 			spin_lock(lock);
543 			goto repeat;
544 		}
545 	}
546 	spin_unlock(lock);
547 	return err;
548 }
549 
550 void do_thaw_all(unsigned long unused)
551 {
552 	struct super_block *sb;
553 	char b[BDEVNAME_SIZE];
554 
555 	spin_lock(&sb_lock);
556 restart:
557 	list_for_each_entry(sb, &super_blocks, s_list) {
558 		sb->s_count++;
559 		spin_unlock(&sb_lock);
560 		down_read(&sb->s_umount);
561 		while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
562 			printk(KERN_WARNING "Emergency Thaw on %s\n",
563 			       bdevname(sb->s_bdev, b));
564 		up_read(&sb->s_umount);
565 		spin_lock(&sb_lock);
566 		if (__put_super_and_need_restart(sb))
567 			goto restart;
568 	}
569 	spin_unlock(&sb_lock);
570 	printk(KERN_WARNING "Emergency Thaw complete\n");
571 }
572 
573 /**
574  * emergency_thaw_all -- forcibly thaw every frozen filesystem
575  *
576  * Used for emergency unfreeze of all filesystems via SysRq
577  */
578 void emergency_thaw_all(void)
579 {
580 	pdflush_operation(do_thaw_all, 0);
581 }
582 
583 /**
584  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
585  * @mapping: the mapping which wants those buffers written
586  *
587  * Starts I/O against the buffers at mapping->private_list, and waits upon
588  * that I/O.
589  *
590  * Basically, this is a convenience function for fsync().
591  * @mapping is a file or directory which needs those buffers to be written for
592  * a successful fsync().
593  */
594 int sync_mapping_buffers(struct address_space *mapping)
595 {
596 	struct address_space *buffer_mapping = mapping->assoc_mapping;
597 
598 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
599 		return 0;
600 
601 	return fsync_buffers_list(&buffer_mapping->private_lock,
602 					&mapping->private_list);
603 }
604 EXPORT_SYMBOL(sync_mapping_buffers);
605 
606 /*
607  * Called when we've recently written block `bblock', and it is known that
608  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
609  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
610  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
611  */
612 void write_boundary_block(struct block_device *bdev,
613 			sector_t bblock, unsigned blocksize)
614 {
615 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
616 	if (bh) {
617 		if (buffer_dirty(bh))
618 			ll_rw_block(WRITE, 1, &bh);
619 		put_bh(bh);
620 	}
621 }
622 
623 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
624 {
625 	struct address_space *mapping = inode->i_mapping;
626 	struct address_space *buffer_mapping = bh->b_page->mapping;
627 
628 	mark_buffer_dirty(bh);
629 	if (!mapping->assoc_mapping) {
630 		mapping->assoc_mapping = buffer_mapping;
631 	} else {
632 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
633 	}
634 	if (!bh->b_assoc_map) {
635 		spin_lock(&buffer_mapping->private_lock);
636 		list_move_tail(&bh->b_assoc_buffers,
637 				&mapping->private_list);
638 		bh->b_assoc_map = mapping;
639 		spin_unlock(&buffer_mapping->private_lock);
640 	}
641 }
642 EXPORT_SYMBOL(mark_buffer_dirty_inode);
643 
644 /*
645  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
646  * dirty.
647  *
648  * If warn is true, then emit a warning if the page is not uptodate and has
649  * not been truncated.
650  */
651 static void __set_page_dirty(struct page *page,
652 		struct address_space *mapping, int warn)
653 {
654 	spin_lock_irq(&mapping->tree_lock);
655 	if (page->mapping) {	/* Race with truncate? */
656 		WARN_ON_ONCE(warn && !PageUptodate(page));
657 		account_page_dirtied(page, mapping);
658 		radix_tree_tag_set(&mapping->page_tree,
659 				page_index(page), PAGECACHE_TAG_DIRTY);
660 	}
661 	spin_unlock_irq(&mapping->tree_lock);
662 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
663 }
664 
665 /*
666  * Add a page to the dirty page list.
667  *
668  * It is a sad fact of life that this function is called from several places
669  * deeply under spinlocking.  It may not sleep.
670  *
671  * If the page has buffers, the uptodate buffers are set dirty, to preserve
672  * dirty-state coherency between the page and the buffers.  It the page does
673  * not have buffers then when they are later attached they will all be set
674  * dirty.
675  *
676  * The buffers are dirtied before the page is dirtied.  There's a small race
677  * window in which a writepage caller may see the page cleanness but not the
678  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
679  * before the buffers, a concurrent writepage caller could clear the page dirty
680  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
681  * page on the dirty page list.
682  *
683  * We use private_lock to lock against try_to_free_buffers while using the
684  * page's buffer list.  Also use this to protect against clean buffers being
685  * added to the page after it was set dirty.
686  *
687  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
688  * address_space though.
689  */
690 int __set_page_dirty_buffers(struct page *page)
691 {
692 	int newly_dirty;
693 	struct address_space *mapping = page_mapping(page);
694 
695 	if (unlikely(!mapping))
696 		return !TestSetPageDirty(page);
697 
698 	spin_lock(&mapping->private_lock);
699 	if (page_has_buffers(page)) {
700 		struct buffer_head *head = page_buffers(page);
701 		struct buffer_head *bh = head;
702 
703 		do {
704 			set_buffer_dirty(bh);
705 			bh = bh->b_this_page;
706 		} while (bh != head);
707 	}
708 	newly_dirty = !TestSetPageDirty(page);
709 	spin_unlock(&mapping->private_lock);
710 
711 	if (newly_dirty)
712 		__set_page_dirty(page, mapping, 1);
713 	return newly_dirty;
714 }
715 EXPORT_SYMBOL(__set_page_dirty_buffers);
716 
717 /*
718  * Write out and wait upon a list of buffers.
719  *
720  * We have conflicting pressures: we want to make sure that all
721  * initially dirty buffers get waited on, but that any subsequently
722  * dirtied buffers don't.  After all, we don't want fsync to last
723  * forever if somebody is actively writing to the file.
724  *
725  * Do this in two main stages: first we copy dirty buffers to a
726  * temporary inode list, queueing the writes as we go.  Then we clean
727  * up, waiting for those writes to complete.
728  *
729  * During this second stage, any subsequent updates to the file may end
730  * up refiling the buffer on the original inode's dirty list again, so
731  * there is a chance we will end up with a buffer queued for write but
732  * not yet completed on that list.  So, as a final cleanup we go through
733  * the osync code to catch these locked, dirty buffers without requeuing
734  * any newly dirty buffers for write.
735  */
736 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
737 {
738 	struct buffer_head *bh;
739 	struct list_head tmp;
740 	struct address_space *mapping, *prev_mapping = NULL;
741 	int err = 0, err2;
742 
743 	INIT_LIST_HEAD(&tmp);
744 
745 	spin_lock(lock);
746 	while (!list_empty(list)) {
747 		bh = BH_ENTRY(list->next);
748 		mapping = bh->b_assoc_map;
749 		__remove_assoc_queue(bh);
750 		/* Avoid race with mark_buffer_dirty_inode() which does
751 		 * a lockless check and we rely on seeing the dirty bit */
752 		smp_mb();
753 		if (buffer_dirty(bh) || buffer_locked(bh)) {
754 			list_add(&bh->b_assoc_buffers, &tmp);
755 			bh->b_assoc_map = mapping;
756 			if (buffer_dirty(bh)) {
757 				get_bh(bh);
758 				spin_unlock(lock);
759 				/*
760 				 * Ensure any pending I/O completes so that
761 				 * ll_rw_block() actually writes the current
762 				 * contents - it is a noop if I/O is still in
763 				 * flight on potentially older contents.
764 				 */
765 				ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
766 
767 				/*
768 				 * Kick off IO for the previous mapping. Note
769 				 * that we will not run the very last mapping,
770 				 * wait_on_buffer() will do that for us
771 				 * through sync_buffer().
772 				 */
773 				if (prev_mapping && prev_mapping != mapping)
774 					blk_run_address_space(prev_mapping);
775 				prev_mapping = mapping;
776 
777 				brelse(bh);
778 				spin_lock(lock);
779 			}
780 		}
781 	}
782 
783 	while (!list_empty(&tmp)) {
784 		bh = BH_ENTRY(tmp.prev);
785 		get_bh(bh);
786 		mapping = bh->b_assoc_map;
787 		__remove_assoc_queue(bh);
788 		/* Avoid race with mark_buffer_dirty_inode() which does
789 		 * a lockless check and we rely on seeing the dirty bit */
790 		smp_mb();
791 		if (buffer_dirty(bh)) {
792 			list_add(&bh->b_assoc_buffers,
793 				 &mapping->private_list);
794 			bh->b_assoc_map = mapping;
795 		}
796 		spin_unlock(lock);
797 		wait_on_buffer(bh);
798 		if (!buffer_uptodate(bh))
799 			err = -EIO;
800 		brelse(bh);
801 		spin_lock(lock);
802 	}
803 
804 	spin_unlock(lock);
805 	err2 = osync_buffers_list(lock, list);
806 	if (err)
807 		return err;
808 	else
809 		return err2;
810 }
811 
812 /*
813  * Invalidate any and all dirty buffers on a given inode.  We are
814  * probably unmounting the fs, but that doesn't mean we have already
815  * done a sync().  Just drop the buffers from the inode list.
816  *
817  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
818  * assumes that all the buffers are against the blockdev.  Not true
819  * for reiserfs.
820  */
821 void invalidate_inode_buffers(struct inode *inode)
822 {
823 	if (inode_has_buffers(inode)) {
824 		struct address_space *mapping = &inode->i_data;
825 		struct list_head *list = &mapping->private_list;
826 		struct address_space *buffer_mapping = mapping->assoc_mapping;
827 
828 		spin_lock(&buffer_mapping->private_lock);
829 		while (!list_empty(list))
830 			__remove_assoc_queue(BH_ENTRY(list->next));
831 		spin_unlock(&buffer_mapping->private_lock);
832 	}
833 }
834 EXPORT_SYMBOL(invalidate_inode_buffers);
835 
836 /*
837  * Remove any clean buffers from the inode's buffer list.  This is called
838  * when we're trying to free the inode itself.  Those buffers can pin it.
839  *
840  * Returns true if all buffers were removed.
841  */
842 int remove_inode_buffers(struct inode *inode)
843 {
844 	int ret = 1;
845 
846 	if (inode_has_buffers(inode)) {
847 		struct address_space *mapping = &inode->i_data;
848 		struct list_head *list = &mapping->private_list;
849 		struct address_space *buffer_mapping = mapping->assoc_mapping;
850 
851 		spin_lock(&buffer_mapping->private_lock);
852 		while (!list_empty(list)) {
853 			struct buffer_head *bh = BH_ENTRY(list->next);
854 			if (buffer_dirty(bh)) {
855 				ret = 0;
856 				break;
857 			}
858 			__remove_assoc_queue(bh);
859 		}
860 		spin_unlock(&buffer_mapping->private_lock);
861 	}
862 	return ret;
863 }
864 
865 /*
866  * Create the appropriate buffers when given a page for data area and
867  * the size of each buffer.. Use the bh->b_this_page linked list to
868  * follow the buffers created.  Return NULL if unable to create more
869  * buffers.
870  *
871  * The retry flag is used to differentiate async IO (paging, swapping)
872  * which may not fail from ordinary buffer allocations.
873  */
874 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
875 		int retry)
876 {
877 	struct buffer_head *bh, *head;
878 	long offset;
879 
880 try_again:
881 	head = NULL;
882 	offset = PAGE_SIZE;
883 	while ((offset -= size) >= 0) {
884 		bh = alloc_buffer_head(GFP_NOFS);
885 		if (!bh)
886 			goto no_grow;
887 
888 		bh->b_bdev = NULL;
889 		bh->b_this_page = head;
890 		bh->b_blocknr = -1;
891 		head = bh;
892 
893 		bh->b_state = 0;
894 		atomic_set(&bh->b_count, 0);
895 		bh->b_private = NULL;
896 		bh->b_size = size;
897 
898 		/* Link the buffer to its page */
899 		set_bh_page(bh, page, offset);
900 
901 		init_buffer(bh, NULL, NULL);
902 	}
903 	return head;
904 /*
905  * In case anything failed, we just free everything we got.
906  */
907 no_grow:
908 	if (head) {
909 		do {
910 			bh = head;
911 			head = head->b_this_page;
912 			free_buffer_head(bh);
913 		} while (head);
914 	}
915 
916 	/*
917 	 * Return failure for non-async IO requests.  Async IO requests
918 	 * are not allowed to fail, so we have to wait until buffer heads
919 	 * become available.  But we don't want tasks sleeping with
920 	 * partially complete buffers, so all were released above.
921 	 */
922 	if (!retry)
923 		return NULL;
924 
925 	/* We're _really_ low on memory. Now we just
926 	 * wait for old buffer heads to become free due to
927 	 * finishing IO.  Since this is an async request and
928 	 * the reserve list is empty, we're sure there are
929 	 * async buffer heads in use.
930 	 */
931 	free_more_memory();
932 	goto try_again;
933 }
934 EXPORT_SYMBOL_GPL(alloc_page_buffers);
935 
936 static inline void
937 link_dev_buffers(struct page *page, struct buffer_head *head)
938 {
939 	struct buffer_head *bh, *tail;
940 
941 	bh = head;
942 	do {
943 		tail = bh;
944 		bh = bh->b_this_page;
945 	} while (bh);
946 	tail->b_this_page = head;
947 	attach_page_buffers(page, head);
948 }
949 
950 /*
951  * Initialise the state of a blockdev page's buffers.
952  */
953 static void
954 init_page_buffers(struct page *page, struct block_device *bdev,
955 			sector_t block, int size)
956 {
957 	struct buffer_head *head = page_buffers(page);
958 	struct buffer_head *bh = head;
959 	int uptodate = PageUptodate(page);
960 
961 	do {
962 		if (!buffer_mapped(bh)) {
963 			init_buffer(bh, NULL, NULL);
964 			bh->b_bdev = bdev;
965 			bh->b_blocknr = block;
966 			if (uptodate)
967 				set_buffer_uptodate(bh);
968 			set_buffer_mapped(bh);
969 		}
970 		block++;
971 		bh = bh->b_this_page;
972 	} while (bh != head);
973 }
974 
975 /*
976  * Create the page-cache page that contains the requested block.
977  *
978  * This is user purely for blockdev mappings.
979  */
980 static struct page *
981 grow_dev_page(struct block_device *bdev, sector_t block,
982 		pgoff_t index, int size)
983 {
984 	struct inode *inode = bdev->bd_inode;
985 	struct page *page;
986 	struct buffer_head *bh;
987 
988 	page = find_or_create_page(inode->i_mapping, index,
989 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
990 	if (!page)
991 		return NULL;
992 
993 	BUG_ON(!PageLocked(page));
994 
995 	if (page_has_buffers(page)) {
996 		bh = page_buffers(page);
997 		if (bh->b_size == size) {
998 			init_page_buffers(page, bdev, block, size);
999 			return page;
1000 		}
1001 		if (!try_to_free_buffers(page))
1002 			goto failed;
1003 	}
1004 
1005 	/*
1006 	 * Allocate some buffers for this page
1007 	 */
1008 	bh = alloc_page_buffers(page, size, 0);
1009 	if (!bh)
1010 		goto failed;
1011 
1012 	/*
1013 	 * Link the page to the buffers and initialise them.  Take the
1014 	 * lock to be atomic wrt __find_get_block(), which does not
1015 	 * run under the page lock.
1016 	 */
1017 	spin_lock(&inode->i_mapping->private_lock);
1018 	link_dev_buffers(page, bh);
1019 	init_page_buffers(page, bdev, block, size);
1020 	spin_unlock(&inode->i_mapping->private_lock);
1021 	return page;
1022 
1023 failed:
1024 	BUG();
1025 	unlock_page(page);
1026 	page_cache_release(page);
1027 	return NULL;
1028 }
1029 
1030 /*
1031  * Create buffers for the specified block device block's page.  If
1032  * that page was dirty, the buffers are set dirty also.
1033  */
1034 static int
1035 grow_buffers(struct block_device *bdev, sector_t block, int size)
1036 {
1037 	struct page *page;
1038 	pgoff_t index;
1039 	int sizebits;
1040 
1041 	sizebits = -1;
1042 	do {
1043 		sizebits++;
1044 	} while ((size << sizebits) < PAGE_SIZE);
1045 
1046 	index = block >> sizebits;
1047 
1048 	/*
1049 	 * Check for a block which wants to lie outside our maximum possible
1050 	 * pagecache index.  (this comparison is done using sector_t types).
1051 	 */
1052 	if (unlikely(index != block >> sizebits)) {
1053 		char b[BDEVNAME_SIZE];
1054 
1055 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1056 			"device %s\n",
1057 			__func__, (unsigned long long)block,
1058 			bdevname(bdev, b));
1059 		return -EIO;
1060 	}
1061 	block = index << sizebits;
1062 	/* Create a page with the proper size buffers.. */
1063 	page = grow_dev_page(bdev, block, index, size);
1064 	if (!page)
1065 		return 0;
1066 	unlock_page(page);
1067 	page_cache_release(page);
1068 	return 1;
1069 }
1070 
1071 static struct buffer_head *
1072 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1073 {
1074 	/* Size must be multiple of hard sectorsize */
1075 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1076 			(size < 512 || size > PAGE_SIZE))) {
1077 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1078 					size);
1079 		printk(KERN_ERR "hardsect size: %d\n",
1080 					bdev_hardsect_size(bdev));
1081 
1082 		dump_stack();
1083 		return NULL;
1084 	}
1085 
1086 	for (;;) {
1087 		struct buffer_head * bh;
1088 		int ret;
1089 
1090 		bh = __find_get_block(bdev, block, size);
1091 		if (bh)
1092 			return bh;
1093 
1094 		ret = grow_buffers(bdev, block, size);
1095 		if (ret < 0)
1096 			return NULL;
1097 		if (ret == 0)
1098 			free_more_memory();
1099 	}
1100 }
1101 
1102 /*
1103  * The relationship between dirty buffers and dirty pages:
1104  *
1105  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1106  * the page is tagged dirty in its radix tree.
1107  *
1108  * At all times, the dirtiness of the buffers represents the dirtiness of
1109  * subsections of the page.  If the page has buffers, the page dirty bit is
1110  * merely a hint about the true dirty state.
1111  *
1112  * When a page is set dirty in its entirety, all its buffers are marked dirty
1113  * (if the page has buffers).
1114  *
1115  * When a buffer is marked dirty, its page is dirtied, but the page's other
1116  * buffers are not.
1117  *
1118  * Also.  When blockdev buffers are explicitly read with bread(), they
1119  * individually become uptodate.  But their backing page remains not
1120  * uptodate - even if all of its buffers are uptodate.  A subsequent
1121  * block_read_full_page() against that page will discover all the uptodate
1122  * buffers, will set the page uptodate and will perform no I/O.
1123  */
1124 
1125 /**
1126  * mark_buffer_dirty - mark a buffer_head as needing writeout
1127  * @bh: the buffer_head to mark dirty
1128  *
1129  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1130  * backing page dirty, then tag the page as dirty in its address_space's radix
1131  * tree and then attach the address_space's inode to its superblock's dirty
1132  * inode list.
1133  *
1134  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1135  * mapping->tree_lock and the global inode_lock.
1136  */
1137 void mark_buffer_dirty(struct buffer_head *bh)
1138 {
1139 	WARN_ON_ONCE(!buffer_uptodate(bh));
1140 
1141 	/*
1142 	 * Very *carefully* optimize the it-is-already-dirty case.
1143 	 *
1144 	 * Don't let the final "is it dirty" escape to before we
1145 	 * perhaps modified the buffer.
1146 	 */
1147 	if (buffer_dirty(bh)) {
1148 		smp_mb();
1149 		if (buffer_dirty(bh))
1150 			return;
1151 	}
1152 
1153 	if (!test_set_buffer_dirty(bh)) {
1154 		struct page *page = bh->b_page;
1155 		if (!TestSetPageDirty(page))
1156 			__set_page_dirty(page, page_mapping(page), 0);
1157 	}
1158 }
1159 
1160 /*
1161  * Decrement a buffer_head's reference count.  If all buffers against a page
1162  * have zero reference count, are clean and unlocked, and if the page is clean
1163  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1164  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1165  * a page but it ends up not being freed, and buffers may later be reattached).
1166  */
1167 void __brelse(struct buffer_head * buf)
1168 {
1169 	if (atomic_read(&buf->b_count)) {
1170 		put_bh(buf);
1171 		return;
1172 	}
1173 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1174 }
1175 
1176 /*
1177  * bforget() is like brelse(), except it discards any
1178  * potentially dirty data.
1179  */
1180 void __bforget(struct buffer_head *bh)
1181 {
1182 	clear_buffer_dirty(bh);
1183 	if (bh->b_assoc_map) {
1184 		struct address_space *buffer_mapping = bh->b_page->mapping;
1185 
1186 		spin_lock(&buffer_mapping->private_lock);
1187 		list_del_init(&bh->b_assoc_buffers);
1188 		bh->b_assoc_map = NULL;
1189 		spin_unlock(&buffer_mapping->private_lock);
1190 	}
1191 	__brelse(bh);
1192 }
1193 
1194 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1195 {
1196 	lock_buffer(bh);
1197 	if (buffer_uptodate(bh)) {
1198 		unlock_buffer(bh);
1199 		return bh;
1200 	} else {
1201 		get_bh(bh);
1202 		bh->b_end_io = end_buffer_read_sync;
1203 		submit_bh(READ, bh);
1204 		wait_on_buffer(bh);
1205 		if (buffer_uptodate(bh))
1206 			return bh;
1207 	}
1208 	brelse(bh);
1209 	return NULL;
1210 }
1211 
1212 /*
1213  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1214  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1215  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1216  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1217  * CPU's LRUs at the same time.
1218  *
1219  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1220  * sb_find_get_block().
1221  *
1222  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1223  * a local interrupt disable for that.
1224  */
1225 
1226 #define BH_LRU_SIZE	8
1227 
1228 struct bh_lru {
1229 	struct buffer_head *bhs[BH_LRU_SIZE];
1230 };
1231 
1232 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1233 
1234 #ifdef CONFIG_SMP
1235 #define bh_lru_lock()	local_irq_disable()
1236 #define bh_lru_unlock()	local_irq_enable()
1237 #else
1238 #define bh_lru_lock()	preempt_disable()
1239 #define bh_lru_unlock()	preempt_enable()
1240 #endif
1241 
1242 static inline void check_irqs_on(void)
1243 {
1244 #ifdef irqs_disabled
1245 	BUG_ON(irqs_disabled());
1246 #endif
1247 }
1248 
1249 /*
1250  * The LRU management algorithm is dopey-but-simple.  Sorry.
1251  */
1252 static void bh_lru_install(struct buffer_head *bh)
1253 {
1254 	struct buffer_head *evictee = NULL;
1255 	struct bh_lru *lru;
1256 
1257 	check_irqs_on();
1258 	bh_lru_lock();
1259 	lru = &__get_cpu_var(bh_lrus);
1260 	if (lru->bhs[0] != bh) {
1261 		struct buffer_head *bhs[BH_LRU_SIZE];
1262 		int in;
1263 		int out = 0;
1264 
1265 		get_bh(bh);
1266 		bhs[out++] = bh;
1267 		for (in = 0; in < BH_LRU_SIZE; in++) {
1268 			struct buffer_head *bh2 = lru->bhs[in];
1269 
1270 			if (bh2 == bh) {
1271 				__brelse(bh2);
1272 			} else {
1273 				if (out >= BH_LRU_SIZE) {
1274 					BUG_ON(evictee != NULL);
1275 					evictee = bh2;
1276 				} else {
1277 					bhs[out++] = bh2;
1278 				}
1279 			}
1280 		}
1281 		while (out < BH_LRU_SIZE)
1282 			bhs[out++] = NULL;
1283 		memcpy(lru->bhs, bhs, sizeof(bhs));
1284 	}
1285 	bh_lru_unlock();
1286 
1287 	if (evictee)
1288 		__brelse(evictee);
1289 }
1290 
1291 /*
1292  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1293  */
1294 static struct buffer_head *
1295 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1296 {
1297 	struct buffer_head *ret = NULL;
1298 	struct bh_lru *lru;
1299 	unsigned int i;
1300 
1301 	check_irqs_on();
1302 	bh_lru_lock();
1303 	lru = &__get_cpu_var(bh_lrus);
1304 	for (i = 0; i < BH_LRU_SIZE; i++) {
1305 		struct buffer_head *bh = lru->bhs[i];
1306 
1307 		if (bh && bh->b_bdev == bdev &&
1308 				bh->b_blocknr == block && bh->b_size == size) {
1309 			if (i) {
1310 				while (i) {
1311 					lru->bhs[i] = lru->bhs[i - 1];
1312 					i--;
1313 				}
1314 				lru->bhs[0] = bh;
1315 			}
1316 			get_bh(bh);
1317 			ret = bh;
1318 			break;
1319 		}
1320 	}
1321 	bh_lru_unlock();
1322 	return ret;
1323 }
1324 
1325 /*
1326  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1327  * it in the LRU and mark it as accessed.  If it is not present then return
1328  * NULL
1329  */
1330 struct buffer_head *
1331 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1332 {
1333 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1334 
1335 	if (bh == NULL) {
1336 		bh = __find_get_block_slow(bdev, block);
1337 		if (bh)
1338 			bh_lru_install(bh);
1339 	}
1340 	if (bh)
1341 		touch_buffer(bh);
1342 	return bh;
1343 }
1344 EXPORT_SYMBOL(__find_get_block);
1345 
1346 /*
1347  * __getblk will locate (and, if necessary, create) the buffer_head
1348  * which corresponds to the passed block_device, block and size. The
1349  * returned buffer has its reference count incremented.
1350  *
1351  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1352  * illegal block number, __getblk() will happily return a buffer_head
1353  * which represents the non-existent block.  Very weird.
1354  *
1355  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1356  * attempt is failing.  FIXME, perhaps?
1357  */
1358 struct buffer_head *
1359 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1360 {
1361 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1362 
1363 	might_sleep();
1364 	if (bh == NULL)
1365 		bh = __getblk_slow(bdev, block, size);
1366 	return bh;
1367 }
1368 EXPORT_SYMBOL(__getblk);
1369 
1370 /*
1371  * Do async read-ahead on a buffer..
1372  */
1373 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1374 {
1375 	struct buffer_head *bh = __getblk(bdev, block, size);
1376 	if (likely(bh)) {
1377 		ll_rw_block(READA, 1, &bh);
1378 		brelse(bh);
1379 	}
1380 }
1381 EXPORT_SYMBOL(__breadahead);
1382 
1383 /**
1384  *  __bread() - reads a specified block and returns the bh
1385  *  @bdev: the block_device to read from
1386  *  @block: number of block
1387  *  @size: size (in bytes) to read
1388  *
1389  *  Reads a specified block, and returns buffer head that contains it.
1390  *  It returns NULL if the block was unreadable.
1391  */
1392 struct buffer_head *
1393 __bread(struct block_device *bdev, sector_t block, unsigned size)
1394 {
1395 	struct buffer_head *bh = __getblk(bdev, block, size);
1396 
1397 	if (likely(bh) && !buffer_uptodate(bh))
1398 		bh = __bread_slow(bh);
1399 	return bh;
1400 }
1401 EXPORT_SYMBOL(__bread);
1402 
1403 /*
1404  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1405  * This doesn't race because it runs in each cpu either in irq
1406  * or with preempt disabled.
1407  */
1408 static void invalidate_bh_lru(void *arg)
1409 {
1410 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1411 	int i;
1412 
1413 	for (i = 0; i < BH_LRU_SIZE; i++) {
1414 		brelse(b->bhs[i]);
1415 		b->bhs[i] = NULL;
1416 	}
1417 	put_cpu_var(bh_lrus);
1418 }
1419 
1420 void invalidate_bh_lrus(void)
1421 {
1422 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1423 }
1424 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1425 
1426 void set_bh_page(struct buffer_head *bh,
1427 		struct page *page, unsigned long offset)
1428 {
1429 	bh->b_page = page;
1430 	BUG_ON(offset >= PAGE_SIZE);
1431 	if (PageHighMem(page))
1432 		/*
1433 		 * This catches illegal uses and preserves the offset:
1434 		 */
1435 		bh->b_data = (char *)(0 + offset);
1436 	else
1437 		bh->b_data = page_address(page) + offset;
1438 }
1439 EXPORT_SYMBOL(set_bh_page);
1440 
1441 /*
1442  * Called when truncating a buffer on a page completely.
1443  */
1444 static void discard_buffer(struct buffer_head * bh)
1445 {
1446 	lock_buffer(bh);
1447 	clear_buffer_dirty(bh);
1448 	bh->b_bdev = NULL;
1449 	clear_buffer_mapped(bh);
1450 	clear_buffer_req(bh);
1451 	clear_buffer_new(bh);
1452 	clear_buffer_delay(bh);
1453 	clear_buffer_unwritten(bh);
1454 	unlock_buffer(bh);
1455 }
1456 
1457 /**
1458  * block_invalidatepage - invalidate part of all of a buffer-backed page
1459  *
1460  * @page: the page which is affected
1461  * @offset: the index of the truncation point
1462  *
1463  * block_invalidatepage() is called when all or part of the page has become
1464  * invalidatedby a truncate operation.
1465  *
1466  * block_invalidatepage() does not have to release all buffers, but it must
1467  * ensure that no dirty buffer is left outside @offset and that no I/O
1468  * is underway against any of the blocks which are outside the truncation
1469  * point.  Because the caller is about to free (and possibly reuse) those
1470  * blocks on-disk.
1471  */
1472 void block_invalidatepage(struct page *page, unsigned long offset)
1473 {
1474 	struct buffer_head *head, *bh, *next;
1475 	unsigned int curr_off = 0;
1476 
1477 	BUG_ON(!PageLocked(page));
1478 	if (!page_has_buffers(page))
1479 		goto out;
1480 
1481 	head = page_buffers(page);
1482 	bh = head;
1483 	do {
1484 		unsigned int next_off = curr_off + bh->b_size;
1485 		next = bh->b_this_page;
1486 
1487 		/*
1488 		 * is this block fully invalidated?
1489 		 */
1490 		if (offset <= curr_off)
1491 			discard_buffer(bh);
1492 		curr_off = next_off;
1493 		bh = next;
1494 	} while (bh != head);
1495 
1496 	/*
1497 	 * We release buffers only if the entire page is being invalidated.
1498 	 * The get_block cached value has been unconditionally invalidated,
1499 	 * so real IO is not possible anymore.
1500 	 */
1501 	if (offset == 0)
1502 		try_to_release_page(page, 0);
1503 out:
1504 	return;
1505 }
1506 EXPORT_SYMBOL(block_invalidatepage);
1507 
1508 /*
1509  * We attach and possibly dirty the buffers atomically wrt
1510  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1511  * is already excluded via the page lock.
1512  */
1513 void create_empty_buffers(struct page *page,
1514 			unsigned long blocksize, unsigned long b_state)
1515 {
1516 	struct buffer_head *bh, *head, *tail;
1517 
1518 	head = alloc_page_buffers(page, blocksize, 1);
1519 	bh = head;
1520 	do {
1521 		bh->b_state |= b_state;
1522 		tail = bh;
1523 		bh = bh->b_this_page;
1524 	} while (bh);
1525 	tail->b_this_page = head;
1526 
1527 	spin_lock(&page->mapping->private_lock);
1528 	if (PageUptodate(page) || PageDirty(page)) {
1529 		bh = head;
1530 		do {
1531 			if (PageDirty(page))
1532 				set_buffer_dirty(bh);
1533 			if (PageUptodate(page))
1534 				set_buffer_uptodate(bh);
1535 			bh = bh->b_this_page;
1536 		} while (bh != head);
1537 	}
1538 	attach_page_buffers(page, head);
1539 	spin_unlock(&page->mapping->private_lock);
1540 }
1541 EXPORT_SYMBOL(create_empty_buffers);
1542 
1543 /*
1544  * We are taking a block for data and we don't want any output from any
1545  * buffer-cache aliases starting from return from that function and
1546  * until the moment when something will explicitly mark the buffer
1547  * dirty (hopefully that will not happen until we will free that block ;-)
1548  * We don't even need to mark it not-uptodate - nobody can expect
1549  * anything from a newly allocated buffer anyway. We used to used
1550  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1551  * don't want to mark the alias unmapped, for example - it would confuse
1552  * anyone who might pick it with bread() afterwards...
1553  *
1554  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1555  * be writeout I/O going on against recently-freed buffers.  We don't
1556  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1557  * only if we really need to.  That happens here.
1558  */
1559 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1560 {
1561 	struct buffer_head *old_bh;
1562 
1563 	might_sleep();
1564 
1565 	old_bh = __find_get_block_slow(bdev, block);
1566 	if (old_bh) {
1567 		clear_buffer_dirty(old_bh);
1568 		wait_on_buffer(old_bh);
1569 		clear_buffer_req(old_bh);
1570 		__brelse(old_bh);
1571 	}
1572 }
1573 EXPORT_SYMBOL(unmap_underlying_metadata);
1574 
1575 /*
1576  * NOTE! All mapped/uptodate combinations are valid:
1577  *
1578  *	Mapped	Uptodate	Meaning
1579  *
1580  *	No	No		"unknown" - must do get_block()
1581  *	No	Yes		"hole" - zero-filled
1582  *	Yes	No		"allocated" - allocated on disk, not read in
1583  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1584  *
1585  * "Dirty" is valid only with the last case (mapped+uptodate).
1586  */
1587 
1588 /*
1589  * While block_write_full_page is writing back the dirty buffers under
1590  * the page lock, whoever dirtied the buffers may decide to clean them
1591  * again at any time.  We handle that by only looking at the buffer
1592  * state inside lock_buffer().
1593  *
1594  * If block_write_full_page() is called for regular writeback
1595  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1596  * locked buffer.   This only can happen if someone has written the buffer
1597  * directly, with submit_bh().  At the address_space level PageWriteback
1598  * prevents this contention from occurring.
1599  *
1600  * If block_write_full_page() is called with wbc->sync_mode ==
1601  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1602  * causes the writes to be flagged as synchronous writes, but the
1603  * block device queue will NOT be unplugged, since usually many pages
1604  * will be pushed to the out before the higher-level caller actually
1605  * waits for the writes to be completed.  The various wait functions,
1606  * such as wait_on_writeback_range() will ultimately call sync_page()
1607  * which will ultimately call blk_run_backing_dev(), which will end up
1608  * unplugging the device queue.
1609  */
1610 static int __block_write_full_page(struct inode *inode, struct page *page,
1611 			get_block_t *get_block, struct writeback_control *wbc)
1612 {
1613 	int err;
1614 	sector_t block;
1615 	sector_t last_block;
1616 	struct buffer_head *bh, *head;
1617 	const unsigned blocksize = 1 << inode->i_blkbits;
1618 	int nr_underway = 0;
1619 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1620 			WRITE_SYNC_PLUG : WRITE);
1621 
1622 	BUG_ON(!PageLocked(page));
1623 
1624 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1625 
1626 	if (!page_has_buffers(page)) {
1627 		create_empty_buffers(page, blocksize,
1628 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1629 	}
1630 
1631 	/*
1632 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1633 	 * here, and the (potentially unmapped) buffers may become dirty at
1634 	 * any time.  If a buffer becomes dirty here after we've inspected it
1635 	 * then we just miss that fact, and the page stays dirty.
1636 	 *
1637 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1638 	 * handle that here by just cleaning them.
1639 	 */
1640 
1641 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1642 	head = page_buffers(page);
1643 	bh = head;
1644 
1645 	/*
1646 	 * Get all the dirty buffers mapped to disk addresses and
1647 	 * handle any aliases from the underlying blockdev's mapping.
1648 	 */
1649 	do {
1650 		if (block > last_block) {
1651 			/*
1652 			 * mapped buffers outside i_size will occur, because
1653 			 * this page can be outside i_size when there is a
1654 			 * truncate in progress.
1655 			 */
1656 			/*
1657 			 * The buffer was zeroed by block_write_full_page()
1658 			 */
1659 			clear_buffer_dirty(bh);
1660 			set_buffer_uptodate(bh);
1661 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1662 			   buffer_dirty(bh)) {
1663 			WARN_ON(bh->b_size != blocksize);
1664 			err = get_block(inode, block, bh, 1);
1665 			if (err)
1666 				goto recover;
1667 			clear_buffer_delay(bh);
1668 			if (buffer_new(bh)) {
1669 				/* blockdev mappings never come here */
1670 				clear_buffer_new(bh);
1671 				unmap_underlying_metadata(bh->b_bdev,
1672 							bh->b_blocknr);
1673 			}
1674 		}
1675 		bh = bh->b_this_page;
1676 		block++;
1677 	} while (bh != head);
1678 
1679 	do {
1680 		if (!buffer_mapped(bh))
1681 			continue;
1682 		/*
1683 		 * If it's a fully non-blocking write attempt and we cannot
1684 		 * lock the buffer then redirty the page.  Note that this can
1685 		 * potentially cause a busy-wait loop from pdflush and kswapd
1686 		 * activity, but those code paths have their own higher-level
1687 		 * throttling.
1688 		 */
1689 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1690 			lock_buffer(bh);
1691 		} else if (!trylock_buffer(bh)) {
1692 			redirty_page_for_writepage(wbc, page);
1693 			continue;
1694 		}
1695 		if (test_clear_buffer_dirty(bh)) {
1696 			mark_buffer_async_write(bh);
1697 		} else {
1698 			unlock_buffer(bh);
1699 		}
1700 	} while ((bh = bh->b_this_page) != head);
1701 
1702 	/*
1703 	 * The page and its buffers are protected by PageWriteback(), so we can
1704 	 * drop the bh refcounts early.
1705 	 */
1706 	BUG_ON(PageWriteback(page));
1707 	set_page_writeback(page);
1708 
1709 	do {
1710 		struct buffer_head *next = bh->b_this_page;
1711 		if (buffer_async_write(bh)) {
1712 			submit_bh(write_op, bh);
1713 			nr_underway++;
1714 		}
1715 		bh = next;
1716 	} while (bh != head);
1717 	unlock_page(page);
1718 
1719 	err = 0;
1720 done:
1721 	if (nr_underway == 0) {
1722 		/*
1723 		 * The page was marked dirty, but the buffers were
1724 		 * clean.  Someone wrote them back by hand with
1725 		 * ll_rw_block/submit_bh.  A rare case.
1726 		 */
1727 		end_page_writeback(page);
1728 
1729 		/*
1730 		 * The page and buffer_heads can be released at any time from
1731 		 * here on.
1732 		 */
1733 	}
1734 	return err;
1735 
1736 recover:
1737 	/*
1738 	 * ENOSPC, or some other error.  We may already have added some
1739 	 * blocks to the file, so we need to write these out to avoid
1740 	 * exposing stale data.
1741 	 * The page is currently locked and not marked for writeback
1742 	 */
1743 	bh = head;
1744 	/* Recovery: lock and submit the mapped buffers */
1745 	do {
1746 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1747 		    !buffer_delay(bh)) {
1748 			lock_buffer(bh);
1749 			mark_buffer_async_write(bh);
1750 		} else {
1751 			/*
1752 			 * The buffer may have been set dirty during
1753 			 * attachment to a dirty page.
1754 			 */
1755 			clear_buffer_dirty(bh);
1756 		}
1757 	} while ((bh = bh->b_this_page) != head);
1758 	SetPageError(page);
1759 	BUG_ON(PageWriteback(page));
1760 	mapping_set_error(page->mapping, err);
1761 	set_page_writeback(page);
1762 	do {
1763 		struct buffer_head *next = bh->b_this_page;
1764 		if (buffer_async_write(bh)) {
1765 			clear_buffer_dirty(bh);
1766 			submit_bh(write_op, bh);
1767 			nr_underway++;
1768 		}
1769 		bh = next;
1770 	} while (bh != head);
1771 	unlock_page(page);
1772 	goto done;
1773 }
1774 
1775 /*
1776  * If a page has any new buffers, zero them out here, and mark them uptodate
1777  * and dirty so they'll be written out (in order to prevent uninitialised
1778  * block data from leaking). And clear the new bit.
1779  */
1780 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1781 {
1782 	unsigned int block_start, block_end;
1783 	struct buffer_head *head, *bh;
1784 
1785 	BUG_ON(!PageLocked(page));
1786 	if (!page_has_buffers(page))
1787 		return;
1788 
1789 	bh = head = page_buffers(page);
1790 	block_start = 0;
1791 	do {
1792 		block_end = block_start + bh->b_size;
1793 
1794 		if (buffer_new(bh)) {
1795 			if (block_end > from && block_start < to) {
1796 				if (!PageUptodate(page)) {
1797 					unsigned start, size;
1798 
1799 					start = max(from, block_start);
1800 					size = min(to, block_end) - start;
1801 
1802 					zero_user(page, start, size);
1803 					set_buffer_uptodate(bh);
1804 				}
1805 
1806 				clear_buffer_new(bh);
1807 				mark_buffer_dirty(bh);
1808 			}
1809 		}
1810 
1811 		block_start = block_end;
1812 		bh = bh->b_this_page;
1813 	} while (bh != head);
1814 }
1815 EXPORT_SYMBOL(page_zero_new_buffers);
1816 
1817 static int __block_prepare_write(struct inode *inode, struct page *page,
1818 		unsigned from, unsigned to, get_block_t *get_block)
1819 {
1820 	unsigned block_start, block_end;
1821 	sector_t block;
1822 	int err = 0;
1823 	unsigned blocksize, bbits;
1824 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1825 
1826 	BUG_ON(!PageLocked(page));
1827 	BUG_ON(from > PAGE_CACHE_SIZE);
1828 	BUG_ON(to > PAGE_CACHE_SIZE);
1829 	BUG_ON(from > to);
1830 
1831 	blocksize = 1 << inode->i_blkbits;
1832 	if (!page_has_buffers(page))
1833 		create_empty_buffers(page, blocksize, 0);
1834 	head = page_buffers(page);
1835 
1836 	bbits = inode->i_blkbits;
1837 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1838 
1839 	for(bh = head, block_start = 0; bh != head || !block_start;
1840 	    block++, block_start=block_end, bh = bh->b_this_page) {
1841 		block_end = block_start + blocksize;
1842 		if (block_end <= from || block_start >= to) {
1843 			if (PageUptodate(page)) {
1844 				if (!buffer_uptodate(bh))
1845 					set_buffer_uptodate(bh);
1846 			}
1847 			continue;
1848 		}
1849 		if (buffer_new(bh))
1850 			clear_buffer_new(bh);
1851 		if (!buffer_mapped(bh)) {
1852 			WARN_ON(bh->b_size != blocksize);
1853 			err = get_block(inode, block, bh, 1);
1854 			if (err)
1855 				break;
1856 			if (buffer_new(bh)) {
1857 				unmap_underlying_metadata(bh->b_bdev,
1858 							bh->b_blocknr);
1859 				if (PageUptodate(page)) {
1860 					clear_buffer_new(bh);
1861 					set_buffer_uptodate(bh);
1862 					mark_buffer_dirty(bh);
1863 					continue;
1864 				}
1865 				if (block_end > to || block_start < from)
1866 					zero_user_segments(page,
1867 						to, block_end,
1868 						block_start, from);
1869 				continue;
1870 			}
1871 		}
1872 		if (PageUptodate(page)) {
1873 			if (!buffer_uptodate(bh))
1874 				set_buffer_uptodate(bh);
1875 			continue;
1876 		}
1877 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1878 		    !buffer_unwritten(bh) &&
1879 		     (block_start < from || block_end > to)) {
1880 			ll_rw_block(READ, 1, &bh);
1881 			*wait_bh++=bh;
1882 		}
1883 	}
1884 	/*
1885 	 * If we issued read requests - let them complete.
1886 	 */
1887 	while(wait_bh > wait) {
1888 		wait_on_buffer(*--wait_bh);
1889 		if (!buffer_uptodate(*wait_bh))
1890 			err = -EIO;
1891 	}
1892 	if (unlikely(err))
1893 		page_zero_new_buffers(page, from, to);
1894 	return err;
1895 }
1896 
1897 static int __block_commit_write(struct inode *inode, struct page *page,
1898 		unsigned from, unsigned to)
1899 {
1900 	unsigned block_start, block_end;
1901 	int partial = 0;
1902 	unsigned blocksize;
1903 	struct buffer_head *bh, *head;
1904 
1905 	blocksize = 1 << inode->i_blkbits;
1906 
1907 	for(bh = head = page_buffers(page), block_start = 0;
1908 	    bh != head || !block_start;
1909 	    block_start=block_end, bh = bh->b_this_page) {
1910 		block_end = block_start + blocksize;
1911 		if (block_end <= from || block_start >= to) {
1912 			if (!buffer_uptodate(bh))
1913 				partial = 1;
1914 		} else {
1915 			set_buffer_uptodate(bh);
1916 			mark_buffer_dirty(bh);
1917 		}
1918 		clear_buffer_new(bh);
1919 	}
1920 
1921 	/*
1922 	 * If this is a partial write which happened to make all buffers
1923 	 * uptodate then we can optimize away a bogus readpage() for
1924 	 * the next read(). Here we 'discover' whether the page went
1925 	 * uptodate as a result of this (potentially partial) write.
1926 	 */
1927 	if (!partial)
1928 		SetPageUptodate(page);
1929 	return 0;
1930 }
1931 
1932 /*
1933  * block_write_begin takes care of the basic task of block allocation and
1934  * bringing partial write blocks uptodate first.
1935  *
1936  * If *pagep is not NULL, then block_write_begin uses the locked page
1937  * at *pagep rather than allocating its own. In this case, the page will
1938  * not be unlocked or deallocated on failure.
1939  */
1940 int block_write_begin(struct file *file, struct address_space *mapping,
1941 			loff_t pos, unsigned len, unsigned flags,
1942 			struct page **pagep, void **fsdata,
1943 			get_block_t *get_block)
1944 {
1945 	struct inode *inode = mapping->host;
1946 	int status = 0;
1947 	struct page *page;
1948 	pgoff_t index;
1949 	unsigned start, end;
1950 	int ownpage = 0;
1951 
1952 	index = pos >> PAGE_CACHE_SHIFT;
1953 	start = pos & (PAGE_CACHE_SIZE - 1);
1954 	end = start + len;
1955 
1956 	page = *pagep;
1957 	if (page == NULL) {
1958 		ownpage = 1;
1959 		page = grab_cache_page_write_begin(mapping, index, flags);
1960 		if (!page) {
1961 			status = -ENOMEM;
1962 			goto out;
1963 		}
1964 		*pagep = page;
1965 	} else
1966 		BUG_ON(!PageLocked(page));
1967 
1968 	status = __block_prepare_write(inode, page, start, end, get_block);
1969 	if (unlikely(status)) {
1970 		ClearPageUptodate(page);
1971 
1972 		if (ownpage) {
1973 			unlock_page(page);
1974 			page_cache_release(page);
1975 			*pagep = NULL;
1976 
1977 			/*
1978 			 * prepare_write() may have instantiated a few blocks
1979 			 * outside i_size.  Trim these off again. Don't need
1980 			 * i_size_read because we hold i_mutex.
1981 			 */
1982 			if (pos + len > inode->i_size)
1983 				vmtruncate(inode, inode->i_size);
1984 		}
1985 	}
1986 
1987 out:
1988 	return status;
1989 }
1990 EXPORT_SYMBOL(block_write_begin);
1991 
1992 int block_write_end(struct file *file, struct address_space *mapping,
1993 			loff_t pos, unsigned len, unsigned copied,
1994 			struct page *page, void *fsdata)
1995 {
1996 	struct inode *inode = mapping->host;
1997 	unsigned start;
1998 
1999 	start = pos & (PAGE_CACHE_SIZE - 1);
2000 
2001 	if (unlikely(copied < len)) {
2002 		/*
2003 		 * The buffers that were written will now be uptodate, so we
2004 		 * don't have to worry about a readpage reading them and
2005 		 * overwriting a partial write. However if we have encountered
2006 		 * a short write and only partially written into a buffer, it
2007 		 * will not be marked uptodate, so a readpage might come in and
2008 		 * destroy our partial write.
2009 		 *
2010 		 * Do the simplest thing, and just treat any short write to a
2011 		 * non uptodate page as a zero-length write, and force the
2012 		 * caller to redo the whole thing.
2013 		 */
2014 		if (!PageUptodate(page))
2015 			copied = 0;
2016 
2017 		page_zero_new_buffers(page, start+copied, start+len);
2018 	}
2019 	flush_dcache_page(page);
2020 
2021 	/* This could be a short (even 0-length) commit */
2022 	__block_commit_write(inode, page, start, start+copied);
2023 
2024 	return copied;
2025 }
2026 EXPORT_SYMBOL(block_write_end);
2027 
2028 int generic_write_end(struct file *file, struct address_space *mapping,
2029 			loff_t pos, unsigned len, unsigned copied,
2030 			struct page *page, void *fsdata)
2031 {
2032 	struct inode *inode = mapping->host;
2033 	int i_size_changed = 0;
2034 
2035 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2036 
2037 	/*
2038 	 * No need to use i_size_read() here, the i_size
2039 	 * cannot change under us because we hold i_mutex.
2040 	 *
2041 	 * But it's important to update i_size while still holding page lock:
2042 	 * page writeout could otherwise come in and zero beyond i_size.
2043 	 */
2044 	if (pos+copied > inode->i_size) {
2045 		i_size_write(inode, pos+copied);
2046 		i_size_changed = 1;
2047 	}
2048 
2049 	unlock_page(page);
2050 	page_cache_release(page);
2051 
2052 	/*
2053 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2054 	 * makes the holding time of page lock longer. Second, it forces lock
2055 	 * ordering of page lock and transaction start for journaling
2056 	 * filesystems.
2057 	 */
2058 	if (i_size_changed)
2059 		mark_inode_dirty(inode);
2060 
2061 	return copied;
2062 }
2063 EXPORT_SYMBOL(generic_write_end);
2064 
2065 /*
2066  * block_is_partially_uptodate checks whether buffers within a page are
2067  * uptodate or not.
2068  *
2069  * Returns true if all buffers which correspond to a file portion
2070  * we want to read are uptodate.
2071  */
2072 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2073 					unsigned long from)
2074 {
2075 	struct inode *inode = page->mapping->host;
2076 	unsigned block_start, block_end, blocksize;
2077 	unsigned to;
2078 	struct buffer_head *bh, *head;
2079 	int ret = 1;
2080 
2081 	if (!page_has_buffers(page))
2082 		return 0;
2083 
2084 	blocksize = 1 << inode->i_blkbits;
2085 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2086 	to = from + to;
2087 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2088 		return 0;
2089 
2090 	head = page_buffers(page);
2091 	bh = head;
2092 	block_start = 0;
2093 	do {
2094 		block_end = block_start + blocksize;
2095 		if (block_end > from && block_start < to) {
2096 			if (!buffer_uptodate(bh)) {
2097 				ret = 0;
2098 				break;
2099 			}
2100 			if (block_end >= to)
2101 				break;
2102 		}
2103 		block_start = block_end;
2104 		bh = bh->b_this_page;
2105 	} while (bh != head);
2106 
2107 	return ret;
2108 }
2109 EXPORT_SYMBOL(block_is_partially_uptodate);
2110 
2111 /*
2112  * Generic "read page" function for block devices that have the normal
2113  * get_block functionality. This is most of the block device filesystems.
2114  * Reads the page asynchronously --- the unlock_buffer() and
2115  * set/clear_buffer_uptodate() functions propagate buffer state into the
2116  * page struct once IO has completed.
2117  */
2118 int block_read_full_page(struct page *page, get_block_t *get_block)
2119 {
2120 	struct inode *inode = page->mapping->host;
2121 	sector_t iblock, lblock;
2122 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2123 	unsigned int blocksize;
2124 	int nr, i;
2125 	int fully_mapped = 1;
2126 
2127 	BUG_ON(!PageLocked(page));
2128 	blocksize = 1 << inode->i_blkbits;
2129 	if (!page_has_buffers(page))
2130 		create_empty_buffers(page, blocksize, 0);
2131 	head = page_buffers(page);
2132 
2133 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2134 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2135 	bh = head;
2136 	nr = 0;
2137 	i = 0;
2138 
2139 	do {
2140 		if (buffer_uptodate(bh))
2141 			continue;
2142 
2143 		if (!buffer_mapped(bh)) {
2144 			int err = 0;
2145 
2146 			fully_mapped = 0;
2147 			if (iblock < lblock) {
2148 				WARN_ON(bh->b_size != blocksize);
2149 				err = get_block(inode, iblock, bh, 0);
2150 				if (err)
2151 					SetPageError(page);
2152 			}
2153 			if (!buffer_mapped(bh)) {
2154 				zero_user(page, i * blocksize, blocksize);
2155 				if (!err)
2156 					set_buffer_uptodate(bh);
2157 				continue;
2158 			}
2159 			/*
2160 			 * get_block() might have updated the buffer
2161 			 * synchronously
2162 			 */
2163 			if (buffer_uptodate(bh))
2164 				continue;
2165 		}
2166 		arr[nr++] = bh;
2167 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2168 
2169 	if (fully_mapped)
2170 		SetPageMappedToDisk(page);
2171 
2172 	if (!nr) {
2173 		/*
2174 		 * All buffers are uptodate - we can set the page uptodate
2175 		 * as well. But not if get_block() returned an error.
2176 		 */
2177 		if (!PageError(page))
2178 			SetPageUptodate(page);
2179 		unlock_page(page);
2180 		return 0;
2181 	}
2182 
2183 	/* Stage two: lock the buffers */
2184 	for (i = 0; i < nr; i++) {
2185 		bh = arr[i];
2186 		lock_buffer(bh);
2187 		mark_buffer_async_read(bh);
2188 	}
2189 
2190 	/*
2191 	 * Stage 3: start the IO.  Check for uptodateness
2192 	 * inside the buffer lock in case another process reading
2193 	 * the underlying blockdev brought it uptodate (the sct fix).
2194 	 */
2195 	for (i = 0; i < nr; i++) {
2196 		bh = arr[i];
2197 		if (buffer_uptodate(bh))
2198 			end_buffer_async_read(bh, 1);
2199 		else
2200 			submit_bh(READ, bh);
2201 	}
2202 	return 0;
2203 }
2204 
2205 /* utility function for filesystems that need to do work on expanding
2206  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2207  * deal with the hole.
2208  */
2209 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2210 {
2211 	struct address_space *mapping = inode->i_mapping;
2212 	struct page *page;
2213 	void *fsdata;
2214 	unsigned long limit;
2215 	int err;
2216 
2217 	err = -EFBIG;
2218         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2219 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2220 		send_sig(SIGXFSZ, current, 0);
2221 		goto out;
2222 	}
2223 	if (size > inode->i_sb->s_maxbytes)
2224 		goto out;
2225 
2226 	err = pagecache_write_begin(NULL, mapping, size, 0,
2227 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2228 				&page, &fsdata);
2229 	if (err)
2230 		goto out;
2231 
2232 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2233 	BUG_ON(err > 0);
2234 
2235 out:
2236 	return err;
2237 }
2238 
2239 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2240 			    loff_t pos, loff_t *bytes)
2241 {
2242 	struct inode *inode = mapping->host;
2243 	unsigned blocksize = 1 << inode->i_blkbits;
2244 	struct page *page;
2245 	void *fsdata;
2246 	pgoff_t index, curidx;
2247 	loff_t curpos;
2248 	unsigned zerofrom, offset, len;
2249 	int err = 0;
2250 
2251 	index = pos >> PAGE_CACHE_SHIFT;
2252 	offset = pos & ~PAGE_CACHE_MASK;
2253 
2254 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2255 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2256 		if (zerofrom & (blocksize-1)) {
2257 			*bytes |= (blocksize-1);
2258 			(*bytes)++;
2259 		}
2260 		len = PAGE_CACHE_SIZE - zerofrom;
2261 
2262 		err = pagecache_write_begin(file, mapping, curpos, len,
2263 						AOP_FLAG_UNINTERRUPTIBLE,
2264 						&page, &fsdata);
2265 		if (err)
2266 			goto out;
2267 		zero_user(page, zerofrom, len);
2268 		err = pagecache_write_end(file, mapping, curpos, len, len,
2269 						page, fsdata);
2270 		if (err < 0)
2271 			goto out;
2272 		BUG_ON(err != len);
2273 		err = 0;
2274 
2275 		balance_dirty_pages_ratelimited(mapping);
2276 	}
2277 
2278 	/* page covers the boundary, find the boundary offset */
2279 	if (index == curidx) {
2280 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2281 		/* if we will expand the thing last block will be filled */
2282 		if (offset <= zerofrom) {
2283 			goto out;
2284 		}
2285 		if (zerofrom & (blocksize-1)) {
2286 			*bytes |= (blocksize-1);
2287 			(*bytes)++;
2288 		}
2289 		len = offset - zerofrom;
2290 
2291 		err = pagecache_write_begin(file, mapping, curpos, len,
2292 						AOP_FLAG_UNINTERRUPTIBLE,
2293 						&page, &fsdata);
2294 		if (err)
2295 			goto out;
2296 		zero_user(page, zerofrom, len);
2297 		err = pagecache_write_end(file, mapping, curpos, len, len,
2298 						page, fsdata);
2299 		if (err < 0)
2300 			goto out;
2301 		BUG_ON(err != len);
2302 		err = 0;
2303 	}
2304 out:
2305 	return err;
2306 }
2307 
2308 /*
2309  * For moronic filesystems that do not allow holes in file.
2310  * We may have to extend the file.
2311  */
2312 int cont_write_begin(struct file *file, struct address_space *mapping,
2313 			loff_t pos, unsigned len, unsigned flags,
2314 			struct page **pagep, void **fsdata,
2315 			get_block_t *get_block, loff_t *bytes)
2316 {
2317 	struct inode *inode = mapping->host;
2318 	unsigned blocksize = 1 << inode->i_blkbits;
2319 	unsigned zerofrom;
2320 	int err;
2321 
2322 	err = cont_expand_zero(file, mapping, pos, bytes);
2323 	if (err)
2324 		goto out;
2325 
2326 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2327 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2328 		*bytes |= (blocksize-1);
2329 		(*bytes)++;
2330 	}
2331 
2332 	*pagep = NULL;
2333 	err = block_write_begin(file, mapping, pos, len,
2334 				flags, pagep, fsdata, get_block);
2335 out:
2336 	return err;
2337 }
2338 
2339 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2340 			get_block_t *get_block)
2341 {
2342 	struct inode *inode = page->mapping->host;
2343 	int err = __block_prepare_write(inode, page, from, to, get_block);
2344 	if (err)
2345 		ClearPageUptodate(page);
2346 	return err;
2347 }
2348 
2349 int block_commit_write(struct page *page, unsigned from, unsigned to)
2350 {
2351 	struct inode *inode = page->mapping->host;
2352 	__block_commit_write(inode,page,from,to);
2353 	return 0;
2354 }
2355 
2356 /*
2357  * block_page_mkwrite() is not allowed to change the file size as it gets
2358  * called from a page fault handler when a page is first dirtied. Hence we must
2359  * be careful to check for EOF conditions here. We set the page up correctly
2360  * for a written page which means we get ENOSPC checking when writing into
2361  * holes and correct delalloc and unwritten extent mapping on filesystems that
2362  * support these features.
2363  *
2364  * We are not allowed to take the i_mutex here so we have to play games to
2365  * protect against truncate races as the page could now be beyond EOF.  Because
2366  * vmtruncate() writes the inode size before removing pages, once we have the
2367  * page lock we can determine safely if the page is beyond EOF. If it is not
2368  * beyond EOF, then the page is guaranteed safe against truncation until we
2369  * unlock the page.
2370  */
2371 int
2372 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2373 		   get_block_t get_block)
2374 {
2375 	struct page *page = vmf->page;
2376 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2377 	unsigned long end;
2378 	loff_t size;
2379 	int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2380 
2381 	lock_page(page);
2382 	size = i_size_read(inode);
2383 	if ((page->mapping != inode->i_mapping) ||
2384 	    (page_offset(page) > size)) {
2385 		/* page got truncated out from underneath us */
2386 		goto out_unlock;
2387 	}
2388 
2389 	/* page is wholly or partially inside EOF */
2390 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2391 		end = size & ~PAGE_CACHE_MASK;
2392 	else
2393 		end = PAGE_CACHE_SIZE;
2394 
2395 	ret = block_prepare_write(page, 0, end, get_block);
2396 	if (!ret)
2397 		ret = block_commit_write(page, 0, end);
2398 
2399 	if (unlikely(ret)) {
2400 		if (ret == -ENOMEM)
2401 			ret = VM_FAULT_OOM;
2402 		else /* -ENOSPC, -EIO, etc */
2403 			ret = VM_FAULT_SIGBUS;
2404 	}
2405 
2406 out_unlock:
2407 	unlock_page(page);
2408 	return ret;
2409 }
2410 
2411 /*
2412  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2413  * immediately, while under the page lock.  So it needs a special end_io
2414  * handler which does not touch the bh after unlocking it.
2415  */
2416 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2417 {
2418 	__end_buffer_read_notouch(bh, uptodate);
2419 }
2420 
2421 /*
2422  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2423  * the page (converting it to circular linked list and taking care of page
2424  * dirty races).
2425  */
2426 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2427 {
2428 	struct buffer_head *bh;
2429 
2430 	BUG_ON(!PageLocked(page));
2431 
2432 	spin_lock(&page->mapping->private_lock);
2433 	bh = head;
2434 	do {
2435 		if (PageDirty(page))
2436 			set_buffer_dirty(bh);
2437 		if (!bh->b_this_page)
2438 			bh->b_this_page = head;
2439 		bh = bh->b_this_page;
2440 	} while (bh != head);
2441 	attach_page_buffers(page, head);
2442 	spin_unlock(&page->mapping->private_lock);
2443 }
2444 
2445 /*
2446  * On entry, the page is fully not uptodate.
2447  * On exit the page is fully uptodate in the areas outside (from,to)
2448  */
2449 int nobh_write_begin(struct file *file, struct address_space *mapping,
2450 			loff_t pos, unsigned len, unsigned flags,
2451 			struct page **pagep, void **fsdata,
2452 			get_block_t *get_block)
2453 {
2454 	struct inode *inode = mapping->host;
2455 	const unsigned blkbits = inode->i_blkbits;
2456 	const unsigned blocksize = 1 << blkbits;
2457 	struct buffer_head *head, *bh;
2458 	struct page *page;
2459 	pgoff_t index;
2460 	unsigned from, to;
2461 	unsigned block_in_page;
2462 	unsigned block_start, block_end;
2463 	sector_t block_in_file;
2464 	int nr_reads = 0;
2465 	int ret = 0;
2466 	int is_mapped_to_disk = 1;
2467 
2468 	index = pos >> PAGE_CACHE_SHIFT;
2469 	from = pos & (PAGE_CACHE_SIZE - 1);
2470 	to = from + len;
2471 
2472 	page = grab_cache_page_write_begin(mapping, index, flags);
2473 	if (!page)
2474 		return -ENOMEM;
2475 	*pagep = page;
2476 	*fsdata = NULL;
2477 
2478 	if (page_has_buffers(page)) {
2479 		unlock_page(page);
2480 		page_cache_release(page);
2481 		*pagep = NULL;
2482 		return block_write_begin(file, mapping, pos, len, flags, pagep,
2483 					fsdata, get_block);
2484 	}
2485 
2486 	if (PageMappedToDisk(page))
2487 		return 0;
2488 
2489 	/*
2490 	 * Allocate buffers so that we can keep track of state, and potentially
2491 	 * attach them to the page if an error occurs. In the common case of
2492 	 * no error, they will just be freed again without ever being attached
2493 	 * to the page (which is all OK, because we're under the page lock).
2494 	 *
2495 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2496 	 * than the circular one we're used to.
2497 	 */
2498 	head = alloc_page_buffers(page, blocksize, 0);
2499 	if (!head) {
2500 		ret = -ENOMEM;
2501 		goto out_release;
2502 	}
2503 
2504 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2505 
2506 	/*
2507 	 * We loop across all blocks in the page, whether or not they are
2508 	 * part of the affected region.  This is so we can discover if the
2509 	 * page is fully mapped-to-disk.
2510 	 */
2511 	for (block_start = 0, block_in_page = 0, bh = head;
2512 		  block_start < PAGE_CACHE_SIZE;
2513 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2514 		int create;
2515 
2516 		block_end = block_start + blocksize;
2517 		bh->b_state = 0;
2518 		create = 1;
2519 		if (block_start >= to)
2520 			create = 0;
2521 		ret = get_block(inode, block_in_file + block_in_page,
2522 					bh, create);
2523 		if (ret)
2524 			goto failed;
2525 		if (!buffer_mapped(bh))
2526 			is_mapped_to_disk = 0;
2527 		if (buffer_new(bh))
2528 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2529 		if (PageUptodate(page)) {
2530 			set_buffer_uptodate(bh);
2531 			continue;
2532 		}
2533 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2534 			zero_user_segments(page, block_start, from,
2535 							to, block_end);
2536 			continue;
2537 		}
2538 		if (buffer_uptodate(bh))
2539 			continue;	/* reiserfs does this */
2540 		if (block_start < from || block_end > to) {
2541 			lock_buffer(bh);
2542 			bh->b_end_io = end_buffer_read_nobh;
2543 			submit_bh(READ, bh);
2544 			nr_reads++;
2545 		}
2546 	}
2547 
2548 	if (nr_reads) {
2549 		/*
2550 		 * The page is locked, so these buffers are protected from
2551 		 * any VM or truncate activity.  Hence we don't need to care
2552 		 * for the buffer_head refcounts.
2553 		 */
2554 		for (bh = head; bh; bh = bh->b_this_page) {
2555 			wait_on_buffer(bh);
2556 			if (!buffer_uptodate(bh))
2557 				ret = -EIO;
2558 		}
2559 		if (ret)
2560 			goto failed;
2561 	}
2562 
2563 	if (is_mapped_to_disk)
2564 		SetPageMappedToDisk(page);
2565 
2566 	*fsdata = head; /* to be released by nobh_write_end */
2567 
2568 	return 0;
2569 
2570 failed:
2571 	BUG_ON(!ret);
2572 	/*
2573 	 * Error recovery is a bit difficult. We need to zero out blocks that
2574 	 * were newly allocated, and dirty them to ensure they get written out.
2575 	 * Buffers need to be attached to the page at this point, otherwise
2576 	 * the handling of potential IO errors during writeout would be hard
2577 	 * (could try doing synchronous writeout, but what if that fails too?)
2578 	 */
2579 	attach_nobh_buffers(page, head);
2580 	page_zero_new_buffers(page, from, to);
2581 
2582 out_release:
2583 	unlock_page(page);
2584 	page_cache_release(page);
2585 	*pagep = NULL;
2586 
2587 	if (pos + len > inode->i_size)
2588 		vmtruncate(inode, inode->i_size);
2589 
2590 	return ret;
2591 }
2592 EXPORT_SYMBOL(nobh_write_begin);
2593 
2594 int nobh_write_end(struct file *file, struct address_space *mapping,
2595 			loff_t pos, unsigned len, unsigned copied,
2596 			struct page *page, void *fsdata)
2597 {
2598 	struct inode *inode = page->mapping->host;
2599 	struct buffer_head *head = fsdata;
2600 	struct buffer_head *bh;
2601 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2602 
2603 	if (unlikely(copied < len) && head)
2604 		attach_nobh_buffers(page, head);
2605 	if (page_has_buffers(page))
2606 		return generic_write_end(file, mapping, pos, len,
2607 					copied, page, fsdata);
2608 
2609 	SetPageUptodate(page);
2610 	set_page_dirty(page);
2611 	if (pos+copied > inode->i_size) {
2612 		i_size_write(inode, pos+copied);
2613 		mark_inode_dirty(inode);
2614 	}
2615 
2616 	unlock_page(page);
2617 	page_cache_release(page);
2618 
2619 	while (head) {
2620 		bh = head;
2621 		head = head->b_this_page;
2622 		free_buffer_head(bh);
2623 	}
2624 
2625 	return copied;
2626 }
2627 EXPORT_SYMBOL(nobh_write_end);
2628 
2629 /*
2630  * nobh_writepage() - based on block_full_write_page() except
2631  * that it tries to operate without attaching bufferheads to
2632  * the page.
2633  */
2634 int nobh_writepage(struct page *page, get_block_t *get_block,
2635 			struct writeback_control *wbc)
2636 {
2637 	struct inode * const inode = page->mapping->host;
2638 	loff_t i_size = i_size_read(inode);
2639 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2640 	unsigned offset;
2641 	int ret;
2642 
2643 	/* Is the page fully inside i_size? */
2644 	if (page->index < end_index)
2645 		goto out;
2646 
2647 	/* Is the page fully outside i_size? (truncate in progress) */
2648 	offset = i_size & (PAGE_CACHE_SIZE-1);
2649 	if (page->index >= end_index+1 || !offset) {
2650 		/*
2651 		 * The page may have dirty, unmapped buffers.  For example,
2652 		 * they may have been added in ext3_writepage().  Make them
2653 		 * freeable here, so the page does not leak.
2654 		 */
2655 #if 0
2656 		/* Not really sure about this  - do we need this ? */
2657 		if (page->mapping->a_ops->invalidatepage)
2658 			page->mapping->a_ops->invalidatepage(page, offset);
2659 #endif
2660 		unlock_page(page);
2661 		return 0; /* don't care */
2662 	}
2663 
2664 	/*
2665 	 * The page straddles i_size.  It must be zeroed out on each and every
2666 	 * writepage invocation because it may be mmapped.  "A file is mapped
2667 	 * in multiples of the page size.  For a file that is not a multiple of
2668 	 * the  page size, the remaining memory is zeroed when mapped, and
2669 	 * writes to that region are not written out to the file."
2670 	 */
2671 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2672 out:
2673 	ret = mpage_writepage(page, get_block, wbc);
2674 	if (ret == -EAGAIN)
2675 		ret = __block_write_full_page(inode, page, get_block, wbc);
2676 	return ret;
2677 }
2678 EXPORT_SYMBOL(nobh_writepage);
2679 
2680 int nobh_truncate_page(struct address_space *mapping,
2681 			loff_t from, get_block_t *get_block)
2682 {
2683 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2684 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2685 	unsigned blocksize;
2686 	sector_t iblock;
2687 	unsigned length, pos;
2688 	struct inode *inode = mapping->host;
2689 	struct page *page;
2690 	struct buffer_head map_bh;
2691 	int err;
2692 
2693 	blocksize = 1 << inode->i_blkbits;
2694 	length = offset & (blocksize - 1);
2695 
2696 	/* Block boundary? Nothing to do */
2697 	if (!length)
2698 		return 0;
2699 
2700 	length = blocksize - length;
2701 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2702 
2703 	page = grab_cache_page(mapping, index);
2704 	err = -ENOMEM;
2705 	if (!page)
2706 		goto out;
2707 
2708 	if (page_has_buffers(page)) {
2709 has_buffers:
2710 		unlock_page(page);
2711 		page_cache_release(page);
2712 		return block_truncate_page(mapping, from, get_block);
2713 	}
2714 
2715 	/* Find the buffer that contains "offset" */
2716 	pos = blocksize;
2717 	while (offset >= pos) {
2718 		iblock++;
2719 		pos += blocksize;
2720 	}
2721 
2722 	err = get_block(inode, iblock, &map_bh, 0);
2723 	if (err)
2724 		goto unlock;
2725 	/* unmapped? It's a hole - nothing to do */
2726 	if (!buffer_mapped(&map_bh))
2727 		goto unlock;
2728 
2729 	/* Ok, it's mapped. Make sure it's up-to-date */
2730 	if (!PageUptodate(page)) {
2731 		err = mapping->a_ops->readpage(NULL, page);
2732 		if (err) {
2733 			page_cache_release(page);
2734 			goto out;
2735 		}
2736 		lock_page(page);
2737 		if (!PageUptodate(page)) {
2738 			err = -EIO;
2739 			goto unlock;
2740 		}
2741 		if (page_has_buffers(page))
2742 			goto has_buffers;
2743 	}
2744 	zero_user(page, offset, length);
2745 	set_page_dirty(page);
2746 	err = 0;
2747 
2748 unlock:
2749 	unlock_page(page);
2750 	page_cache_release(page);
2751 out:
2752 	return err;
2753 }
2754 EXPORT_SYMBOL(nobh_truncate_page);
2755 
2756 int block_truncate_page(struct address_space *mapping,
2757 			loff_t from, get_block_t *get_block)
2758 {
2759 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2760 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2761 	unsigned blocksize;
2762 	sector_t iblock;
2763 	unsigned length, pos;
2764 	struct inode *inode = mapping->host;
2765 	struct page *page;
2766 	struct buffer_head *bh;
2767 	int err;
2768 
2769 	blocksize = 1 << inode->i_blkbits;
2770 	length = offset & (blocksize - 1);
2771 
2772 	/* Block boundary? Nothing to do */
2773 	if (!length)
2774 		return 0;
2775 
2776 	length = blocksize - length;
2777 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2778 
2779 	page = grab_cache_page(mapping, index);
2780 	err = -ENOMEM;
2781 	if (!page)
2782 		goto out;
2783 
2784 	if (!page_has_buffers(page))
2785 		create_empty_buffers(page, blocksize, 0);
2786 
2787 	/* Find the buffer that contains "offset" */
2788 	bh = page_buffers(page);
2789 	pos = blocksize;
2790 	while (offset >= pos) {
2791 		bh = bh->b_this_page;
2792 		iblock++;
2793 		pos += blocksize;
2794 	}
2795 
2796 	err = 0;
2797 	if (!buffer_mapped(bh)) {
2798 		WARN_ON(bh->b_size != blocksize);
2799 		err = get_block(inode, iblock, bh, 0);
2800 		if (err)
2801 			goto unlock;
2802 		/* unmapped? It's a hole - nothing to do */
2803 		if (!buffer_mapped(bh))
2804 			goto unlock;
2805 	}
2806 
2807 	/* Ok, it's mapped. Make sure it's up-to-date */
2808 	if (PageUptodate(page))
2809 		set_buffer_uptodate(bh);
2810 
2811 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2812 		err = -EIO;
2813 		ll_rw_block(READ, 1, &bh);
2814 		wait_on_buffer(bh);
2815 		/* Uhhuh. Read error. Complain and punt. */
2816 		if (!buffer_uptodate(bh))
2817 			goto unlock;
2818 	}
2819 
2820 	zero_user(page, offset, length);
2821 	mark_buffer_dirty(bh);
2822 	err = 0;
2823 
2824 unlock:
2825 	unlock_page(page);
2826 	page_cache_release(page);
2827 out:
2828 	return err;
2829 }
2830 
2831 /*
2832  * The generic ->writepage function for buffer-backed address_spaces
2833  */
2834 int block_write_full_page(struct page *page, get_block_t *get_block,
2835 			struct writeback_control *wbc)
2836 {
2837 	struct inode * const inode = page->mapping->host;
2838 	loff_t i_size = i_size_read(inode);
2839 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2840 	unsigned offset;
2841 
2842 	/* Is the page fully inside i_size? */
2843 	if (page->index < end_index)
2844 		return __block_write_full_page(inode, page, get_block, wbc);
2845 
2846 	/* Is the page fully outside i_size? (truncate in progress) */
2847 	offset = i_size & (PAGE_CACHE_SIZE-1);
2848 	if (page->index >= end_index+1 || !offset) {
2849 		/*
2850 		 * The page may have dirty, unmapped buffers.  For example,
2851 		 * they may have been added in ext3_writepage().  Make them
2852 		 * freeable here, so the page does not leak.
2853 		 */
2854 		do_invalidatepage(page, 0);
2855 		unlock_page(page);
2856 		return 0; /* don't care */
2857 	}
2858 
2859 	/*
2860 	 * The page straddles i_size.  It must be zeroed out on each and every
2861 	 * writepage invokation because it may be mmapped.  "A file is mapped
2862 	 * in multiples of the page size.  For a file that is not a multiple of
2863 	 * the  page size, the remaining memory is zeroed when mapped, and
2864 	 * writes to that region are not written out to the file."
2865 	 */
2866 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2867 	return __block_write_full_page(inode, page, get_block, wbc);
2868 }
2869 
2870 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2871 			    get_block_t *get_block)
2872 {
2873 	struct buffer_head tmp;
2874 	struct inode *inode = mapping->host;
2875 	tmp.b_state = 0;
2876 	tmp.b_blocknr = 0;
2877 	tmp.b_size = 1 << inode->i_blkbits;
2878 	get_block(inode, block, &tmp, 0);
2879 	return tmp.b_blocknr;
2880 }
2881 
2882 static void end_bio_bh_io_sync(struct bio *bio, int err)
2883 {
2884 	struct buffer_head *bh = bio->bi_private;
2885 
2886 	if (err == -EOPNOTSUPP) {
2887 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2888 		set_bit(BH_Eopnotsupp, &bh->b_state);
2889 	}
2890 
2891 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2892 		set_bit(BH_Quiet, &bh->b_state);
2893 
2894 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2895 	bio_put(bio);
2896 }
2897 
2898 int submit_bh(int rw, struct buffer_head * bh)
2899 {
2900 	struct bio *bio;
2901 	int ret = 0;
2902 
2903 	BUG_ON(!buffer_locked(bh));
2904 	BUG_ON(!buffer_mapped(bh));
2905 	BUG_ON(!bh->b_end_io);
2906 
2907 	/*
2908 	 * Mask in barrier bit for a write (could be either a WRITE or a
2909 	 * WRITE_SYNC
2910 	 */
2911 	if (buffer_ordered(bh) && (rw & WRITE))
2912 		rw |= WRITE_BARRIER;
2913 
2914 	/*
2915 	 * Only clear out a write error when rewriting
2916 	 */
2917 	if (test_set_buffer_req(bh) && (rw & WRITE))
2918 		clear_buffer_write_io_error(bh);
2919 
2920 	/*
2921 	 * from here on down, it's all bio -- do the initial mapping,
2922 	 * submit_bio -> generic_make_request may further map this bio around
2923 	 */
2924 	bio = bio_alloc(GFP_NOIO, 1);
2925 
2926 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2927 	bio->bi_bdev = bh->b_bdev;
2928 	bio->bi_io_vec[0].bv_page = bh->b_page;
2929 	bio->bi_io_vec[0].bv_len = bh->b_size;
2930 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2931 
2932 	bio->bi_vcnt = 1;
2933 	bio->bi_idx = 0;
2934 	bio->bi_size = bh->b_size;
2935 
2936 	bio->bi_end_io = end_bio_bh_io_sync;
2937 	bio->bi_private = bh;
2938 
2939 	bio_get(bio);
2940 	submit_bio(rw, bio);
2941 
2942 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2943 		ret = -EOPNOTSUPP;
2944 
2945 	bio_put(bio);
2946 	return ret;
2947 }
2948 
2949 /**
2950  * ll_rw_block: low-level access to block devices (DEPRECATED)
2951  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2952  * @nr: number of &struct buffer_heads in the array
2953  * @bhs: array of pointers to &struct buffer_head
2954  *
2955  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2956  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2957  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2958  * are sent to disk. The fourth %READA option is described in the documentation
2959  * for generic_make_request() which ll_rw_block() calls.
2960  *
2961  * This function drops any buffer that it cannot get a lock on (with the
2962  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2963  * clean when doing a write request, and any buffer that appears to be
2964  * up-to-date when doing read request.  Further it marks as clean buffers that
2965  * are processed for writing (the buffer cache won't assume that they are
2966  * actually clean until the buffer gets unlocked).
2967  *
2968  * ll_rw_block sets b_end_io to simple completion handler that marks
2969  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2970  * any waiters.
2971  *
2972  * All of the buffers must be for the same device, and must also be a
2973  * multiple of the current approved size for the device.
2974  */
2975 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2976 {
2977 	int i;
2978 
2979 	for (i = 0; i < nr; i++) {
2980 		struct buffer_head *bh = bhs[i];
2981 
2982 		if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
2983 			lock_buffer(bh);
2984 		else if (!trylock_buffer(bh))
2985 			continue;
2986 
2987 		if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
2988 		    rw == SWRITE_SYNC_PLUG) {
2989 			if (test_clear_buffer_dirty(bh)) {
2990 				bh->b_end_io = end_buffer_write_sync;
2991 				get_bh(bh);
2992 				if (rw == SWRITE_SYNC)
2993 					submit_bh(WRITE_SYNC, bh);
2994 				else
2995 					submit_bh(WRITE, bh);
2996 				continue;
2997 			}
2998 		} else {
2999 			if (!buffer_uptodate(bh)) {
3000 				bh->b_end_io = end_buffer_read_sync;
3001 				get_bh(bh);
3002 				submit_bh(rw, bh);
3003 				continue;
3004 			}
3005 		}
3006 		unlock_buffer(bh);
3007 	}
3008 }
3009 
3010 /*
3011  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3012  * and then start new I/O and then wait upon it.  The caller must have a ref on
3013  * the buffer_head.
3014  */
3015 int sync_dirty_buffer(struct buffer_head *bh)
3016 {
3017 	int ret = 0;
3018 
3019 	WARN_ON(atomic_read(&bh->b_count) < 1);
3020 	lock_buffer(bh);
3021 	if (test_clear_buffer_dirty(bh)) {
3022 		get_bh(bh);
3023 		bh->b_end_io = end_buffer_write_sync;
3024 		ret = submit_bh(WRITE_SYNC, bh);
3025 		wait_on_buffer(bh);
3026 		if (buffer_eopnotsupp(bh)) {
3027 			clear_buffer_eopnotsupp(bh);
3028 			ret = -EOPNOTSUPP;
3029 		}
3030 		if (!ret && !buffer_uptodate(bh))
3031 			ret = -EIO;
3032 	} else {
3033 		unlock_buffer(bh);
3034 	}
3035 	return ret;
3036 }
3037 
3038 /*
3039  * try_to_free_buffers() checks if all the buffers on this particular page
3040  * are unused, and releases them if so.
3041  *
3042  * Exclusion against try_to_free_buffers may be obtained by either
3043  * locking the page or by holding its mapping's private_lock.
3044  *
3045  * If the page is dirty but all the buffers are clean then we need to
3046  * be sure to mark the page clean as well.  This is because the page
3047  * may be against a block device, and a later reattachment of buffers
3048  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3049  * filesystem data on the same device.
3050  *
3051  * The same applies to regular filesystem pages: if all the buffers are
3052  * clean then we set the page clean and proceed.  To do that, we require
3053  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3054  * private_lock.
3055  *
3056  * try_to_free_buffers() is non-blocking.
3057  */
3058 static inline int buffer_busy(struct buffer_head *bh)
3059 {
3060 	return atomic_read(&bh->b_count) |
3061 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3062 }
3063 
3064 static int
3065 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3066 {
3067 	struct buffer_head *head = page_buffers(page);
3068 	struct buffer_head *bh;
3069 
3070 	bh = head;
3071 	do {
3072 		if (buffer_write_io_error(bh) && page->mapping)
3073 			set_bit(AS_EIO, &page->mapping->flags);
3074 		if (buffer_busy(bh))
3075 			goto failed;
3076 		bh = bh->b_this_page;
3077 	} while (bh != head);
3078 
3079 	do {
3080 		struct buffer_head *next = bh->b_this_page;
3081 
3082 		if (bh->b_assoc_map)
3083 			__remove_assoc_queue(bh);
3084 		bh = next;
3085 	} while (bh != head);
3086 	*buffers_to_free = head;
3087 	__clear_page_buffers(page);
3088 	return 1;
3089 failed:
3090 	return 0;
3091 }
3092 
3093 int try_to_free_buffers(struct page *page)
3094 {
3095 	struct address_space * const mapping = page->mapping;
3096 	struct buffer_head *buffers_to_free = NULL;
3097 	int ret = 0;
3098 
3099 	BUG_ON(!PageLocked(page));
3100 	if (PageWriteback(page))
3101 		return 0;
3102 
3103 	if (mapping == NULL) {		/* can this still happen? */
3104 		ret = drop_buffers(page, &buffers_to_free);
3105 		goto out;
3106 	}
3107 
3108 	spin_lock(&mapping->private_lock);
3109 	ret = drop_buffers(page, &buffers_to_free);
3110 
3111 	/*
3112 	 * If the filesystem writes its buffers by hand (eg ext3)
3113 	 * then we can have clean buffers against a dirty page.  We
3114 	 * clean the page here; otherwise the VM will never notice
3115 	 * that the filesystem did any IO at all.
3116 	 *
3117 	 * Also, during truncate, discard_buffer will have marked all
3118 	 * the page's buffers clean.  We discover that here and clean
3119 	 * the page also.
3120 	 *
3121 	 * private_lock must be held over this entire operation in order
3122 	 * to synchronise against __set_page_dirty_buffers and prevent the
3123 	 * dirty bit from being lost.
3124 	 */
3125 	if (ret)
3126 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3127 	spin_unlock(&mapping->private_lock);
3128 out:
3129 	if (buffers_to_free) {
3130 		struct buffer_head *bh = buffers_to_free;
3131 
3132 		do {
3133 			struct buffer_head *next = bh->b_this_page;
3134 			free_buffer_head(bh);
3135 			bh = next;
3136 		} while (bh != buffers_to_free);
3137 	}
3138 	return ret;
3139 }
3140 EXPORT_SYMBOL(try_to_free_buffers);
3141 
3142 void block_sync_page(struct page *page)
3143 {
3144 	struct address_space *mapping;
3145 
3146 	smp_mb();
3147 	mapping = page_mapping(page);
3148 	if (mapping)
3149 		blk_run_backing_dev(mapping->backing_dev_info, page);
3150 }
3151 
3152 /*
3153  * There are no bdflush tunables left.  But distributions are
3154  * still running obsolete flush daemons, so we terminate them here.
3155  *
3156  * Use of bdflush() is deprecated and will be removed in a future kernel.
3157  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3158  */
3159 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3160 {
3161 	static int msg_count;
3162 
3163 	if (!capable(CAP_SYS_ADMIN))
3164 		return -EPERM;
3165 
3166 	if (msg_count < 5) {
3167 		msg_count++;
3168 		printk(KERN_INFO
3169 			"warning: process `%s' used the obsolete bdflush"
3170 			" system call\n", current->comm);
3171 		printk(KERN_INFO "Fix your initscripts?\n");
3172 	}
3173 
3174 	if (func == 1)
3175 		do_exit(0);
3176 	return 0;
3177 }
3178 
3179 /*
3180  * Buffer-head allocation
3181  */
3182 static struct kmem_cache *bh_cachep;
3183 
3184 /*
3185  * Once the number of bh's in the machine exceeds this level, we start
3186  * stripping them in writeback.
3187  */
3188 static int max_buffer_heads;
3189 
3190 int buffer_heads_over_limit;
3191 
3192 struct bh_accounting {
3193 	int nr;			/* Number of live bh's */
3194 	int ratelimit;		/* Limit cacheline bouncing */
3195 };
3196 
3197 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3198 
3199 static void recalc_bh_state(void)
3200 {
3201 	int i;
3202 	int tot = 0;
3203 
3204 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3205 		return;
3206 	__get_cpu_var(bh_accounting).ratelimit = 0;
3207 	for_each_online_cpu(i)
3208 		tot += per_cpu(bh_accounting, i).nr;
3209 	buffer_heads_over_limit = (tot > max_buffer_heads);
3210 }
3211 
3212 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3213 {
3214 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3215 	if (ret) {
3216 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3217 		get_cpu_var(bh_accounting).nr++;
3218 		recalc_bh_state();
3219 		put_cpu_var(bh_accounting);
3220 	}
3221 	return ret;
3222 }
3223 EXPORT_SYMBOL(alloc_buffer_head);
3224 
3225 void free_buffer_head(struct buffer_head *bh)
3226 {
3227 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3228 	kmem_cache_free(bh_cachep, bh);
3229 	get_cpu_var(bh_accounting).nr--;
3230 	recalc_bh_state();
3231 	put_cpu_var(bh_accounting);
3232 }
3233 EXPORT_SYMBOL(free_buffer_head);
3234 
3235 static void buffer_exit_cpu(int cpu)
3236 {
3237 	int i;
3238 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3239 
3240 	for (i = 0; i < BH_LRU_SIZE; i++) {
3241 		brelse(b->bhs[i]);
3242 		b->bhs[i] = NULL;
3243 	}
3244 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3245 	per_cpu(bh_accounting, cpu).nr = 0;
3246 	put_cpu_var(bh_accounting);
3247 }
3248 
3249 static int buffer_cpu_notify(struct notifier_block *self,
3250 			      unsigned long action, void *hcpu)
3251 {
3252 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3253 		buffer_exit_cpu((unsigned long)hcpu);
3254 	return NOTIFY_OK;
3255 }
3256 
3257 /**
3258  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3259  * @bh: struct buffer_head
3260  *
3261  * Return true if the buffer is up-to-date and false,
3262  * with the buffer locked, if not.
3263  */
3264 int bh_uptodate_or_lock(struct buffer_head *bh)
3265 {
3266 	if (!buffer_uptodate(bh)) {
3267 		lock_buffer(bh);
3268 		if (!buffer_uptodate(bh))
3269 			return 0;
3270 		unlock_buffer(bh);
3271 	}
3272 	return 1;
3273 }
3274 EXPORT_SYMBOL(bh_uptodate_or_lock);
3275 
3276 /**
3277  * bh_submit_read - Submit a locked buffer for reading
3278  * @bh: struct buffer_head
3279  *
3280  * Returns zero on success and -EIO on error.
3281  */
3282 int bh_submit_read(struct buffer_head *bh)
3283 {
3284 	BUG_ON(!buffer_locked(bh));
3285 
3286 	if (buffer_uptodate(bh)) {
3287 		unlock_buffer(bh);
3288 		return 0;
3289 	}
3290 
3291 	get_bh(bh);
3292 	bh->b_end_io = end_buffer_read_sync;
3293 	submit_bh(READ, bh);
3294 	wait_on_buffer(bh);
3295 	if (buffer_uptodate(bh))
3296 		return 0;
3297 	return -EIO;
3298 }
3299 EXPORT_SYMBOL(bh_submit_read);
3300 
3301 static void
3302 init_buffer_head(void *data)
3303 {
3304 	struct buffer_head *bh = data;
3305 
3306 	memset(bh, 0, sizeof(*bh));
3307 	INIT_LIST_HEAD(&bh->b_assoc_buffers);
3308 }
3309 
3310 void __init buffer_init(void)
3311 {
3312 	int nrpages;
3313 
3314 	bh_cachep = kmem_cache_create("buffer_head",
3315 			sizeof(struct buffer_head), 0,
3316 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3317 				SLAB_MEM_SPREAD),
3318 				init_buffer_head);
3319 
3320 	/*
3321 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3322 	 */
3323 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3324 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3325 	hotcpu_notifier(buffer_cpu_notify, 0);
3326 }
3327 
3328 EXPORT_SYMBOL(__bforget);
3329 EXPORT_SYMBOL(__brelse);
3330 EXPORT_SYMBOL(__wait_on_buffer);
3331 EXPORT_SYMBOL(block_commit_write);
3332 EXPORT_SYMBOL(block_prepare_write);
3333 EXPORT_SYMBOL(block_page_mkwrite);
3334 EXPORT_SYMBOL(block_read_full_page);
3335 EXPORT_SYMBOL(block_sync_page);
3336 EXPORT_SYMBOL(block_truncate_page);
3337 EXPORT_SYMBOL(block_write_full_page);
3338 EXPORT_SYMBOL(cont_write_begin);
3339 EXPORT_SYMBOL(end_buffer_read_sync);
3340 EXPORT_SYMBOL(end_buffer_write_sync);
3341 EXPORT_SYMBOL(file_fsync);
3342 EXPORT_SYMBOL(generic_block_bmap);
3343 EXPORT_SYMBOL(generic_cont_expand_simple);
3344 EXPORT_SYMBOL(init_buffer);
3345 EXPORT_SYMBOL(invalidate_bdev);
3346 EXPORT_SYMBOL(ll_rw_block);
3347 EXPORT_SYMBOL(mark_buffer_dirty);
3348 EXPORT_SYMBOL(submit_bh);
3349 EXPORT_SYMBOL(sync_dirty_buffer);
3350 EXPORT_SYMBOL(unlock_buffer);
3351