xref: /openbmc/linux/fs/buffer.c (revision 8851b9f1)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 static int sleep_on_buffer(void *word)
65 {
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84 
85 /*
86  * Returns if the page has dirty or writeback buffers. If all the buffers
87  * are unlocked and clean then the PageDirty information is stale. If
88  * any of the pages are locked, it is assumed they are locked for IO.
89  */
90 void buffer_check_dirty_writeback(struct page *page,
91 				     bool *dirty, bool *writeback)
92 {
93 	struct buffer_head *head, *bh;
94 	*dirty = false;
95 	*writeback = false;
96 
97 	BUG_ON(!PageLocked(page));
98 
99 	if (!page_has_buffers(page))
100 		return;
101 
102 	if (PageWriteback(page))
103 		*writeback = true;
104 
105 	head = page_buffers(page);
106 	bh = head;
107 	do {
108 		if (buffer_locked(bh))
109 			*writeback = true;
110 
111 		if (buffer_dirty(bh))
112 			*dirty = true;
113 
114 		bh = bh->b_this_page;
115 	} while (bh != head);
116 }
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
118 
119 /*
120  * Block until a buffer comes unlocked.  This doesn't stop it
121  * from becoming locked again - you have to lock it yourself
122  * if you want to preserve its state.
123  */
124 void __wait_on_buffer(struct buffer_head * bh)
125 {
126 	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
127 }
128 EXPORT_SYMBOL(__wait_on_buffer);
129 
130 static void
131 __clear_page_buffers(struct page *page)
132 {
133 	ClearPagePrivate(page);
134 	set_page_private(page, 0);
135 	page_cache_release(page);
136 }
137 
138 
139 static int quiet_error(struct buffer_head *bh)
140 {
141 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
142 		return 0;
143 	return 1;
144 }
145 
146 
147 static void buffer_io_error(struct buffer_head *bh)
148 {
149 	char b[BDEVNAME_SIZE];
150 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
151 			bdevname(bh->b_bdev, b),
152 			(unsigned long long)bh->b_blocknr);
153 }
154 
155 /*
156  * End-of-IO handler helper function which does not touch the bh after
157  * unlocking it.
158  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
159  * a race there is benign: unlock_buffer() only use the bh's address for
160  * hashing after unlocking the buffer, so it doesn't actually touch the bh
161  * itself.
162  */
163 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
164 {
165 	if (uptodate) {
166 		set_buffer_uptodate(bh);
167 	} else {
168 		/* This happens, due to failed READA attempts. */
169 		clear_buffer_uptodate(bh);
170 	}
171 	unlock_buffer(bh);
172 }
173 
174 /*
175  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
176  * unlock the buffer. This is what ll_rw_block uses too.
177  */
178 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
179 {
180 	__end_buffer_read_notouch(bh, uptodate);
181 	put_bh(bh);
182 }
183 EXPORT_SYMBOL(end_buffer_read_sync);
184 
185 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
186 {
187 	char b[BDEVNAME_SIZE];
188 
189 	if (uptodate) {
190 		set_buffer_uptodate(bh);
191 	} else {
192 		if (!quiet_error(bh)) {
193 			buffer_io_error(bh);
194 			printk(KERN_WARNING "lost page write due to "
195 					"I/O error on %s\n",
196 				       bdevname(bh->b_bdev, b));
197 		}
198 		set_buffer_write_io_error(bh);
199 		clear_buffer_uptodate(bh);
200 	}
201 	unlock_buffer(bh);
202 	put_bh(bh);
203 }
204 EXPORT_SYMBOL(end_buffer_write_sync);
205 
206 /*
207  * Various filesystems appear to want __find_get_block to be non-blocking.
208  * But it's the page lock which protects the buffers.  To get around this,
209  * we get exclusion from try_to_free_buffers with the blockdev mapping's
210  * private_lock.
211  *
212  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
213  * may be quite high.  This code could TryLock the page, and if that
214  * succeeds, there is no need to take private_lock. (But if
215  * private_lock is contended then so is mapping->tree_lock).
216  */
217 static struct buffer_head *
218 __find_get_block_slow(struct block_device *bdev, sector_t block)
219 {
220 	struct inode *bd_inode = bdev->bd_inode;
221 	struct address_space *bd_mapping = bd_inode->i_mapping;
222 	struct buffer_head *ret = NULL;
223 	pgoff_t index;
224 	struct buffer_head *bh;
225 	struct buffer_head *head;
226 	struct page *page;
227 	int all_mapped = 1;
228 
229 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
230 	page = find_get_page(bd_mapping, index);
231 	if (!page)
232 		goto out;
233 
234 	spin_lock(&bd_mapping->private_lock);
235 	if (!page_has_buffers(page))
236 		goto out_unlock;
237 	head = page_buffers(page);
238 	bh = head;
239 	do {
240 		if (!buffer_mapped(bh))
241 			all_mapped = 0;
242 		else if (bh->b_blocknr == block) {
243 			ret = bh;
244 			get_bh(bh);
245 			goto out_unlock;
246 		}
247 		bh = bh->b_this_page;
248 	} while (bh != head);
249 
250 	/* we might be here because some of the buffers on this page are
251 	 * not mapped.  This is due to various races between
252 	 * file io on the block device and getblk.  It gets dealt with
253 	 * elsewhere, don't buffer_error if we had some unmapped buffers
254 	 */
255 	if (all_mapped) {
256 		char b[BDEVNAME_SIZE];
257 
258 		printk("__find_get_block_slow() failed. "
259 			"block=%llu, b_blocknr=%llu\n",
260 			(unsigned long long)block,
261 			(unsigned long long)bh->b_blocknr);
262 		printk("b_state=0x%08lx, b_size=%zu\n",
263 			bh->b_state, bh->b_size);
264 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
265 			1 << bd_inode->i_blkbits);
266 	}
267 out_unlock:
268 	spin_unlock(&bd_mapping->private_lock);
269 	page_cache_release(page);
270 out:
271 	return ret;
272 }
273 
274 /*
275  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
276  */
277 static void free_more_memory(void)
278 {
279 	struct zone *zone;
280 	int nid;
281 
282 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
283 	yield();
284 
285 	for_each_online_node(nid) {
286 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
287 						gfp_zone(GFP_NOFS), NULL,
288 						&zone);
289 		if (zone)
290 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
291 						GFP_NOFS, NULL);
292 	}
293 }
294 
295 /*
296  * I/O completion handler for block_read_full_page() - pages
297  * which come unlocked at the end of I/O.
298  */
299 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
300 {
301 	unsigned long flags;
302 	struct buffer_head *first;
303 	struct buffer_head *tmp;
304 	struct page *page;
305 	int page_uptodate = 1;
306 
307 	BUG_ON(!buffer_async_read(bh));
308 
309 	page = bh->b_page;
310 	if (uptodate) {
311 		set_buffer_uptodate(bh);
312 	} else {
313 		clear_buffer_uptodate(bh);
314 		if (!quiet_error(bh))
315 			buffer_io_error(bh);
316 		SetPageError(page);
317 	}
318 
319 	/*
320 	 * Be _very_ careful from here on. Bad things can happen if
321 	 * two buffer heads end IO at almost the same time and both
322 	 * decide that the page is now completely done.
323 	 */
324 	first = page_buffers(page);
325 	local_irq_save(flags);
326 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
327 	clear_buffer_async_read(bh);
328 	unlock_buffer(bh);
329 	tmp = bh;
330 	do {
331 		if (!buffer_uptodate(tmp))
332 			page_uptodate = 0;
333 		if (buffer_async_read(tmp)) {
334 			BUG_ON(!buffer_locked(tmp));
335 			goto still_busy;
336 		}
337 		tmp = tmp->b_this_page;
338 	} while (tmp != bh);
339 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
340 	local_irq_restore(flags);
341 
342 	/*
343 	 * If none of the buffers had errors and they are all
344 	 * uptodate then we can set the page uptodate.
345 	 */
346 	if (page_uptodate && !PageError(page))
347 		SetPageUptodate(page);
348 	unlock_page(page);
349 	return;
350 
351 still_busy:
352 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 	local_irq_restore(flags);
354 	return;
355 }
356 
357 /*
358  * Completion handler for block_write_full_page() - pages which are unlocked
359  * during I/O, and which have PageWriteback cleared upon I/O completion.
360  */
361 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
362 {
363 	char b[BDEVNAME_SIZE];
364 	unsigned long flags;
365 	struct buffer_head *first;
366 	struct buffer_head *tmp;
367 	struct page *page;
368 
369 	BUG_ON(!buffer_async_write(bh));
370 
371 	page = bh->b_page;
372 	if (uptodate) {
373 		set_buffer_uptodate(bh);
374 	} else {
375 		if (!quiet_error(bh)) {
376 			buffer_io_error(bh);
377 			printk(KERN_WARNING "lost page write due to "
378 					"I/O error on %s\n",
379 			       bdevname(bh->b_bdev, b));
380 		}
381 		set_bit(AS_EIO, &page->mapping->flags);
382 		set_buffer_write_io_error(bh);
383 		clear_buffer_uptodate(bh);
384 		SetPageError(page);
385 	}
386 
387 	first = page_buffers(page);
388 	local_irq_save(flags);
389 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
390 
391 	clear_buffer_async_write(bh);
392 	unlock_buffer(bh);
393 	tmp = bh->b_this_page;
394 	while (tmp != bh) {
395 		if (buffer_async_write(tmp)) {
396 			BUG_ON(!buffer_locked(tmp));
397 			goto still_busy;
398 		}
399 		tmp = tmp->b_this_page;
400 	}
401 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
402 	local_irq_restore(flags);
403 	end_page_writeback(page);
404 	return;
405 
406 still_busy:
407 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 	local_irq_restore(flags);
409 	return;
410 }
411 EXPORT_SYMBOL(end_buffer_async_write);
412 
413 /*
414  * If a page's buffers are under async readin (end_buffer_async_read
415  * completion) then there is a possibility that another thread of
416  * control could lock one of the buffers after it has completed
417  * but while some of the other buffers have not completed.  This
418  * locked buffer would confuse end_buffer_async_read() into not unlocking
419  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
420  * that this buffer is not under async I/O.
421  *
422  * The page comes unlocked when it has no locked buffer_async buffers
423  * left.
424  *
425  * PageLocked prevents anyone starting new async I/O reads any of
426  * the buffers.
427  *
428  * PageWriteback is used to prevent simultaneous writeout of the same
429  * page.
430  *
431  * PageLocked prevents anyone from starting writeback of a page which is
432  * under read I/O (PageWriteback is only ever set against a locked page).
433  */
434 static void mark_buffer_async_read(struct buffer_head *bh)
435 {
436 	bh->b_end_io = end_buffer_async_read;
437 	set_buffer_async_read(bh);
438 }
439 
440 static void mark_buffer_async_write_endio(struct buffer_head *bh,
441 					  bh_end_io_t *handler)
442 {
443 	bh->b_end_io = handler;
444 	set_buffer_async_write(bh);
445 }
446 
447 void mark_buffer_async_write(struct buffer_head *bh)
448 {
449 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
450 }
451 EXPORT_SYMBOL(mark_buffer_async_write);
452 
453 
454 /*
455  * fs/buffer.c contains helper functions for buffer-backed address space's
456  * fsync functions.  A common requirement for buffer-based filesystems is
457  * that certain data from the backing blockdev needs to be written out for
458  * a successful fsync().  For example, ext2 indirect blocks need to be
459  * written back and waited upon before fsync() returns.
460  *
461  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
462  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
463  * management of a list of dependent buffers at ->i_mapping->private_list.
464  *
465  * Locking is a little subtle: try_to_free_buffers() will remove buffers
466  * from their controlling inode's queue when they are being freed.  But
467  * try_to_free_buffers() will be operating against the *blockdev* mapping
468  * at the time, not against the S_ISREG file which depends on those buffers.
469  * So the locking for private_list is via the private_lock in the address_space
470  * which backs the buffers.  Which is different from the address_space
471  * against which the buffers are listed.  So for a particular address_space,
472  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
473  * mapping->private_list will always be protected by the backing blockdev's
474  * ->private_lock.
475  *
476  * Which introduces a requirement: all buffers on an address_space's
477  * ->private_list must be from the same address_space: the blockdev's.
478  *
479  * address_spaces which do not place buffers at ->private_list via these
480  * utility functions are free to use private_lock and private_list for
481  * whatever they want.  The only requirement is that list_empty(private_list)
482  * be true at clear_inode() time.
483  *
484  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
485  * filesystems should do that.  invalidate_inode_buffers() should just go
486  * BUG_ON(!list_empty).
487  *
488  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
489  * take an address_space, not an inode.  And it should be called
490  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
491  * queued up.
492  *
493  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
494  * list if it is already on a list.  Because if the buffer is on a list,
495  * it *must* already be on the right one.  If not, the filesystem is being
496  * silly.  This will save a ton of locking.  But first we have to ensure
497  * that buffers are taken *off* the old inode's list when they are freed
498  * (presumably in truncate).  That requires careful auditing of all
499  * filesystems (do it inside bforget()).  It could also be done by bringing
500  * b_inode back.
501  */
502 
503 /*
504  * The buffer's backing address_space's private_lock must be held
505  */
506 static void __remove_assoc_queue(struct buffer_head *bh)
507 {
508 	list_del_init(&bh->b_assoc_buffers);
509 	WARN_ON(!bh->b_assoc_map);
510 	if (buffer_write_io_error(bh))
511 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
512 	bh->b_assoc_map = NULL;
513 }
514 
515 int inode_has_buffers(struct inode *inode)
516 {
517 	return !list_empty(&inode->i_data.private_list);
518 }
519 
520 /*
521  * osync is designed to support O_SYNC io.  It waits synchronously for
522  * all already-submitted IO to complete, but does not queue any new
523  * writes to the disk.
524  *
525  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
526  * you dirty the buffers, and then use osync_inode_buffers to wait for
527  * completion.  Any other dirty buffers which are not yet queued for
528  * write will not be flushed to disk by the osync.
529  */
530 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
531 {
532 	struct buffer_head *bh;
533 	struct list_head *p;
534 	int err = 0;
535 
536 	spin_lock(lock);
537 repeat:
538 	list_for_each_prev(p, list) {
539 		bh = BH_ENTRY(p);
540 		if (buffer_locked(bh)) {
541 			get_bh(bh);
542 			spin_unlock(lock);
543 			wait_on_buffer(bh);
544 			if (!buffer_uptodate(bh))
545 				err = -EIO;
546 			brelse(bh);
547 			spin_lock(lock);
548 			goto repeat;
549 		}
550 	}
551 	spin_unlock(lock);
552 	return err;
553 }
554 
555 static void do_thaw_one(struct super_block *sb, void *unused)
556 {
557 	char b[BDEVNAME_SIZE];
558 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
559 		printk(KERN_WARNING "Emergency Thaw on %s\n",
560 		       bdevname(sb->s_bdev, b));
561 }
562 
563 static void do_thaw_all(struct work_struct *work)
564 {
565 	iterate_supers(do_thaw_one, NULL);
566 	kfree(work);
567 	printk(KERN_WARNING "Emergency Thaw complete\n");
568 }
569 
570 /**
571  * emergency_thaw_all -- forcibly thaw every frozen filesystem
572  *
573  * Used for emergency unfreeze of all filesystems via SysRq
574  */
575 void emergency_thaw_all(void)
576 {
577 	struct work_struct *work;
578 
579 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
580 	if (work) {
581 		INIT_WORK(work, do_thaw_all);
582 		schedule_work(work);
583 	}
584 }
585 
586 /**
587  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
588  * @mapping: the mapping which wants those buffers written
589  *
590  * Starts I/O against the buffers at mapping->private_list, and waits upon
591  * that I/O.
592  *
593  * Basically, this is a convenience function for fsync().
594  * @mapping is a file or directory which needs those buffers to be written for
595  * a successful fsync().
596  */
597 int sync_mapping_buffers(struct address_space *mapping)
598 {
599 	struct address_space *buffer_mapping = mapping->private_data;
600 
601 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
602 		return 0;
603 
604 	return fsync_buffers_list(&buffer_mapping->private_lock,
605 					&mapping->private_list);
606 }
607 EXPORT_SYMBOL(sync_mapping_buffers);
608 
609 /*
610  * Called when we've recently written block `bblock', and it is known that
611  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
612  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
613  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
614  */
615 void write_boundary_block(struct block_device *bdev,
616 			sector_t bblock, unsigned blocksize)
617 {
618 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
619 	if (bh) {
620 		if (buffer_dirty(bh))
621 			ll_rw_block(WRITE, 1, &bh);
622 		put_bh(bh);
623 	}
624 }
625 
626 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
627 {
628 	struct address_space *mapping = inode->i_mapping;
629 	struct address_space *buffer_mapping = bh->b_page->mapping;
630 
631 	mark_buffer_dirty(bh);
632 	if (!mapping->private_data) {
633 		mapping->private_data = buffer_mapping;
634 	} else {
635 		BUG_ON(mapping->private_data != buffer_mapping);
636 	}
637 	if (!bh->b_assoc_map) {
638 		spin_lock(&buffer_mapping->private_lock);
639 		list_move_tail(&bh->b_assoc_buffers,
640 				&mapping->private_list);
641 		bh->b_assoc_map = mapping;
642 		spin_unlock(&buffer_mapping->private_lock);
643 	}
644 }
645 EXPORT_SYMBOL(mark_buffer_dirty_inode);
646 
647 /*
648  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
649  * dirty.
650  *
651  * If warn is true, then emit a warning if the page is not uptodate and has
652  * not been truncated.
653  */
654 static void __set_page_dirty(struct page *page,
655 		struct address_space *mapping, int warn)
656 {
657 	spin_lock_irq(&mapping->tree_lock);
658 	if (page->mapping) {	/* Race with truncate? */
659 		WARN_ON_ONCE(warn && !PageUptodate(page));
660 		account_page_dirtied(page, mapping);
661 		radix_tree_tag_set(&mapping->page_tree,
662 				page_index(page), PAGECACHE_TAG_DIRTY);
663 	}
664 	spin_unlock_irq(&mapping->tree_lock);
665 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
666 }
667 
668 /*
669  * Add a page to the dirty page list.
670  *
671  * It is a sad fact of life that this function is called from several places
672  * deeply under spinlocking.  It may not sleep.
673  *
674  * If the page has buffers, the uptodate buffers are set dirty, to preserve
675  * dirty-state coherency between the page and the buffers.  It the page does
676  * not have buffers then when they are later attached they will all be set
677  * dirty.
678  *
679  * The buffers are dirtied before the page is dirtied.  There's a small race
680  * window in which a writepage caller may see the page cleanness but not the
681  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
682  * before the buffers, a concurrent writepage caller could clear the page dirty
683  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
684  * page on the dirty page list.
685  *
686  * We use private_lock to lock against try_to_free_buffers while using the
687  * page's buffer list.  Also use this to protect against clean buffers being
688  * added to the page after it was set dirty.
689  *
690  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
691  * address_space though.
692  */
693 int __set_page_dirty_buffers(struct page *page)
694 {
695 	int newly_dirty;
696 	struct address_space *mapping = page_mapping(page);
697 
698 	if (unlikely(!mapping))
699 		return !TestSetPageDirty(page);
700 
701 	spin_lock(&mapping->private_lock);
702 	if (page_has_buffers(page)) {
703 		struct buffer_head *head = page_buffers(page);
704 		struct buffer_head *bh = head;
705 
706 		do {
707 			set_buffer_dirty(bh);
708 			bh = bh->b_this_page;
709 		} while (bh != head);
710 	}
711 	newly_dirty = !TestSetPageDirty(page);
712 	spin_unlock(&mapping->private_lock);
713 
714 	if (newly_dirty)
715 		__set_page_dirty(page, mapping, 1);
716 	return newly_dirty;
717 }
718 EXPORT_SYMBOL(__set_page_dirty_buffers);
719 
720 /*
721  * Write out and wait upon a list of buffers.
722  *
723  * We have conflicting pressures: we want to make sure that all
724  * initially dirty buffers get waited on, but that any subsequently
725  * dirtied buffers don't.  After all, we don't want fsync to last
726  * forever if somebody is actively writing to the file.
727  *
728  * Do this in two main stages: first we copy dirty buffers to a
729  * temporary inode list, queueing the writes as we go.  Then we clean
730  * up, waiting for those writes to complete.
731  *
732  * During this second stage, any subsequent updates to the file may end
733  * up refiling the buffer on the original inode's dirty list again, so
734  * there is a chance we will end up with a buffer queued for write but
735  * not yet completed on that list.  So, as a final cleanup we go through
736  * the osync code to catch these locked, dirty buffers without requeuing
737  * any newly dirty buffers for write.
738  */
739 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
740 {
741 	struct buffer_head *bh;
742 	struct list_head tmp;
743 	struct address_space *mapping;
744 	int err = 0, err2;
745 	struct blk_plug plug;
746 
747 	INIT_LIST_HEAD(&tmp);
748 	blk_start_plug(&plug);
749 
750 	spin_lock(lock);
751 	while (!list_empty(list)) {
752 		bh = BH_ENTRY(list->next);
753 		mapping = bh->b_assoc_map;
754 		__remove_assoc_queue(bh);
755 		/* Avoid race with mark_buffer_dirty_inode() which does
756 		 * a lockless check and we rely on seeing the dirty bit */
757 		smp_mb();
758 		if (buffer_dirty(bh) || buffer_locked(bh)) {
759 			list_add(&bh->b_assoc_buffers, &tmp);
760 			bh->b_assoc_map = mapping;
761 			if (buffer_dirty(bh)) {
762 				get_bh(bh);
763 				spin_unlock(lock);
764 				/*
765 				 * Ensure any pending I/O completes so that
766 				 * write_dirty_buffer() actually writes the
767 				 * current contents - it is a noop if I/O is
768 				 * still in flight on potentially older
769 				 * contents.
770 				 */
771 				write_dirty_buffer(bh, WRITE_SYNC);
772 
773 				/*
774 				 * Kick off IO for the previous mapping. Note
775 				 * that we will not run the very last mapping,
776 				 * wait_on_buffer() will do that for us
777 				 * through sync_buffer().
778 				 */
779 				brelse(bh);
780 				spin_lock(lock);
781 			}
782 		}
783 	}
784 
785 	spin_unlock(lock);
786 	blk_finish_plug(&plug);
787 	spin_lock(lock);
788 
789 	while (!list_empty(&tmp)) {
790 		bh = BH_ENTRY(tmp.prev);
791 		get_bh(bh);
792 		mapping = bh->b_assoc_map;
793 		__remove_assoc_queue(bh);
794 		/* Avoid race with mark_buffer_dirty_inode() which does
795 		 * a lockless check and we rely on seeing the dirty bit */
796 		smp_mb();
797 		if (buffer_dirty(bh)) {
798 			list_add(&bh->b_assoc_buffers,
799 				 &mapping->private_list);
800 			bh->b_assoc_map = mapping;
801 		}
802 		spin_unlock(lock);
803 		wait_on_buffer(bh);
804 		if (!buffer_uptodate(bh))
805 			err = -EIO;
806 		brelse(bh);
807 		spin_lock(lock);
808 	}
809 
810 	spin_unlock(lock);
811 	err2 = osync_buffers_list(lock, list);
812 	if (err)
813 		return err;
814 	else
815 		return err2;
816 }
817 
818 /*
819  * Invalidate any and all dirty buffers on a given inode.  We are
820  * probably unmounting the fs, but that doesn't mean we have already
821  * done a sync().  Just drop the buffers from the inode list.
822  *
823  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
824  * assumes that all the buffers are against the blockdev.  Not true
825  * for reiserfs.
826  */
827 void invalidate_inode_buffers(struct inode *inode)
828 {
829 	if (inode_has_buffers(inode)) {
830 		struct address_space *mapping = &inode->i_data;
831 		struct list_head *list = &mapping->private_list;
832 		struct address_space *buffer_mapping = mapping->private_data;
833 
834 		spin_lock(&buffer_mapping->private_lock);
835 		while (!list_empty(list))
836 			__remove_assoc_queue(BH_ENTRY(list->next));
837 		spin_unlock(&buffer_mapping->private_lock);
838 	}
839 }
840 EXPORT_SYMBOL(invalidate_inode_buffers);
841 
842 /*
843  * Remove any clean buffers from the inode's buffer list.  This is called
844  * when we're trying to free the inode itself.  Those buffers can pin it.
845  *
846  * Returns true if all buffers were removed.
847  */
848 int remove_inode_buffers(struct inode *inode)
849 {
850 	int ret = 1;
851 
852 	if (inode_has_buffers(inode)) {
853 		struct address_space *mapping = &inode->i_data;
854 		struct list_head *list = &mapping->private_list;
855 		struct address_space *buffer_mapping = mapping->private_data;
856 
857 		spin_lock(&buffer_mapping->private_lock);
858 		while (!list_empty(list)) {
859 			struct buffer_head *bh = BH_ENTRY(list->next);
860 			if (buffer_dirty(bh)) {
861 				ret = 0;
862 				break;
863 			}
864 			__remove_assoc_queue(bh);
865 		}
866 		spin_unlock(&buffer_mapping->private_lock);
867 	}
868 	return ret;
869 }
870 
871 /*
872  * Create the appropriate buffers when given a page for data area and
873  * the size of each buffer.. Use the bh->b_this_page linked list to
874  * follow the buffers created.  Return NULL if unable to create more
875  * buffers.
876  *
877  * The retry flag is used to differentiate async IO (paging, swapping)
878  * which may not fail from ordinary buffer allocations.
879  */
880 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
881 		int retry)
882 {
883 	struct buffer_head *bh, *head;
884 	long offset;
885 
886 try_again:
887 	head = NULL;
888 	offset = PAGE_SIZE;
889 	while ((offset -= size) >= 0) {
890 		bh = alloc_buffer_head(GFP_NOFS);
891 		if (!bh)
892 			goto no_grow;
893 
894 		bh->b_this_page = head;
895 		bh->b_blocknr = -1;
896 		head = bh;
897 
898 		bh->b_size = size;
899 
900 		/* Link the buffer to its page */
901 		set_bh_page(bh, page, offset);
902 	}
903 	return head;
904 /*
905  * In case anything failed, we just free everything we got.
906  */
907 no_grow:
908 	if (head) {
909 		do {
910 			bh = head;
911 			head = head->b_this_page;
912 			free_buffer_head(bh);
913 		} while (head);
914 	}
915 
916 	/*
917 	 * Return failure for non-async IO requests.  Async IO requests
918 	 * are not allowed to fail, so we have to wait until buffer heads
919 	 * become available.  But we don't want tasks sleeping with
920 	 * partially complete buffers, so all were released above.
921 	 */
922 	if (!retry)
923 		return NULL;
924 
925 	/* We're _really_ low on memory. Now we just
926 	 * wait for old buffer heads to become free due to
927 	 * finishing IO.  Since this is an async request and
928 	 * the reserve list is empty, we're sure there are
929 	 * async buffer heads in use.
930 	 */
931 	free_more_memory();
932 	goto try_again;
933 }
934 EXPORT_SYMBOL_GPL(alloc_page_buffers);
935 
936 static inline void
937 link_dev_buffers(struct page *page, struct buffer_head *head)
938 {
939 	struct buffer_head *bh, *tail;
940 
941 	bh = head;
942 	do {
943 		tail = bh;
944 		bh = bh->b_this_page;
945 	} while (bh);
946 	tail->b_this_page = head;
947 	attach_page_buffers(page, head);
948 }
949 
950 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
951 {
952 	sector_t retval = ~((sector_t)0);
953 	loff_t sz = i_size_read(bdev->bd_inode);
954 
955 	if (sz) {
956 		unsigned int sizebits = blksize_bits(size);
957 		retval = (sz >> sizebits);
958 	}
959 	return retval;
960 }
961 
962 /*
963  * Initialise the state of a blockdev page's buffers.
964  */
965 static sector_t
966 init_page_buffers(struct page *page, struct block_device *bdev,
967 			sector_t block, int size)
968 {
969 	struct buffer_head *head = page_buffers(page);
970 	struct buffer_head *bh = head;
971 	int uptodate = PageUptodate(page);
972 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
973 
974 	do {
975 		if (!buffer_mapped(bh)) {
976 			init_buffer(bh, NULL, NULL);
977 			bh->b_bdev = bdev;
978 			bh->b_blocknr = block;
979 			if (uptodate)
980 				set_buffer_uptodate(bh);
981 			if (block < end_block)
982 				set_buffer_mapped(bh);
983 		}
984 		block++;
985 		bh = bh->b_this_page;
986 	} while (bh != head);
987 
988 	/*
989 	 * Caller needs to validate requested block against end of device.
990 	 */
991 	return end_block;
992 }
993 
994 /*
995  * Create the page-cache page that contains the requested block.
996  *
997  * This is used purely for blockdev mappings.
998  */
999 static int
1000 grow_dev_page(struct block_device *bdev, sector_t block,
1001 		pgoff_t index, int size, int sizebits)
1002 {
1003 	struct inode *inode = bdev->bd_inode;
1004 	struct page *page;
1005 	struct buffer_head *bh;
1006 	sector_t end_block;
1007 	int ret = 0;		/* Will call free_more_memory() */
1008 
1009 	page = find_or_create_page(inode->i_mapping, index,
1010 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1011 	if (!page)
1012 		return ret;
1013 
1014 	BUG_ON(!PageLocked(page));
1015 
1016 	if (page_has_buffers(page)) {
1017 		bh = page_buffers(page);
1018 		if (bh->b_size == size) {
1019 			end_block = init_page_buffers(page, bdev,
1020 						index << sizebits, size);
1021 			goto done;
1022 		}
1023 		if (!try_to_free_buffers(page))
1024 			goto failed;
1025 	}
1026 
1027 	/*
1028 	 * Allocate some buffers for this page
1029 	 */
1030 	bh = alloc_page_buffers(page, size, 0);
1031 	if (!bh)
1032 		goto failed;
1033 
1034 	/*
1035 	 * Link the page to the buffers and initialise them.  Take the
1036 	 * lock to be atomic wrt __find_get_block(), which does not
1037 	 * run under the page lock.
1038 	 */
1039 	spin_lock(&inode->i_mapping->private_lock);
1040 	link_dev_buffers(page, bh);
1041 	end_block = init_page_buffers(page, bdev, index << sizebits, size);
1042 	spin_unlock(&inode->i_mapping->private_lock);
1043 done:
1044 	ret = (block < end_block) ? 1 : -ENXIO;
1045 failed:
1046 	unlock_page(page);
1047 	page_cache_release(page);
1048 	return ret;
1049 }
1050 
1051 /*
1052  * Create buffers for the specified block device block's page.  If
1053  * that page was dirty, the buffers are set dirty also.
1054  */
1055 static int
1056 grow_buffers(struct block_device *bdev, sector_t block, int size)
1057 {
1058 	pgoff_t index;
1059 	int sizebits;
1060 
1061 	sizebits = -1;
1062 	do {
1063 		sizebits++;
1064 	} while ((size << sizebits) < PAGE_SIZE);
1065 
1066 	index = block >> sizebits;
1067 
1068 	/*
1069 	 * Check for a block which wants to lie outside our maximum possible
1070 	 * pagecache index.  (this comparison is done using sector_t types).
1071 	 */
1072 	if (unlikely(index != block >> sizebits)) {
1073 		char b[BDEVNAME_SIZE];
1074 
1075 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1076 			"device %s\n",
1077 			__func__, (unsigned long long)block,
1078 			bdevname(bdev, b));
1079 		return -EIO;
1080 	}
1081 
1082 	/* Create a page with the proper size buffers.. */
1083 	return grow_dev_page(bdev, block, index, size, sizebits);
1084 }
1085 
1086 static struct buffer_head *
1087 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1088 {
1089 	/* Size must be multiple of hard sectorsize */
1090 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1091 			(size < 512 || size > PAGE_SIZE))) {
1092 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1093 					size);
1094 		printk(KERN_ERR "logical block size: %d\n",
1095 					bdev_logical_block_size(bdev));
1096 
1097 		dump_stack();
1098 		return NULL;
1099 	}
1100 
1101 	for (;;) {
1102 		struct buffer_head *bh;
1103 		int ret;
1104 
1105 		bh = __find_get_block(bdev, block, size);
1106 		if (bh)
1107 			return bh;
1108 
1109 		ret = grow_buffers(bdev, block, size);
1110 		if (ret < 0)
1111 			return NULL;
1112 		if (ret == 0)
1113 			free_more_memory();
1114 	}
1115 }
1116 
1117 /*
1118  * The relationship between dirty buffers and dirty pages:
1119  *
1120  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1121  * the page is tagged dirty in its radix tree.
1122  *
1123  * At all times, the dirtiness of the buffers represents the dirtiness of
1124  * subsections of the page.  If the page has buffers, the page dirty bit is
1125  * merely a hint about the true dirty state.
1126  *
1127  * When a page is set dirty in its entirety, all its buffers are marked dirty
1128  * (if the page has buffers).
1129  *
1130  * When a buffer is marked dirty, its page is dirtied, but the page's other
1131  * buffers are not.
1132  *
1133  * Also.  When blockdev buffers are explicitly read with bread(), they
1134  * individually become uptodate.  But their backing page remains not
1135  * uptodate - even if all of its buffers are uptodate.  A subsequent
1136  * block_read_full_page() against that page will discover all the uptodate
1137  * buffers, will set the page uptodate and will perform no I/O.
1138  */
1139 
1140 /**
1141  * mark_buffer_dirty - mark a buffer_head as needing writeout
1142  * @bh: the buffer_head to mark dirty
1143  *
1144  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1145  * backing page dirty, then tag the page as dirty in its address_space's radix
1146  * tree and then attach the address_space's inode to its superblock's dirty
1147  * inode list.
1148  *
1149  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1150  * mapping->tree_lock and mapping->host->i_lock.
1151  */
1152 void mark_buffer_dirty(struct buffer_head *bh)
1153 {
1154 	WARN_ON_ONCE(!buffer_uptodate(bh));
1155 
1156 	trace_block_dirty_buffer(bh);
1157 
1158 	/*
1159 	 * Very *carefully* optimize the it-is-already-dirty case.
1160 	 *
1161 	 * Don't let the final "is it dirty" escape to before we
1162 	 * perhaps modified the buffer.
1163 	 */
1164 	if (buffer_dirty(bh)) {
1165 		smp_mb();
1166 		if (buffer_dirty(bh))
1167 			return;
1168 	}
1169 
1170 	if (!test_set_buffer_dirty(bh)) {
1171 		struct page *page = bh->b_page;
1172 		if (!TestSetPageDirty(page)) {
1173 			struct address_space *mapping = page_mapping(page);
1174 			if (mapping)
1175 				__set_page_dirty(page, mapping, 0);
1176 		}
1177 	}
1178 }
1179 EXPORT_SYMBOL(mark_buffer_dirty);
1180 
1181 /*
1182  * Decrement a buffer_head's reference count.  If all buffers against a page
1183  * have zero reference count, are clean and unlocked, and if the page is clean
1184  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1185  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1186  * a page but it ends up not being freed, and buffers may later be reattached).
1187  */
1188 void __brelse(struct buffer_head * buf)
1189 {
1190 	if (atomic_read(&buf->b_count)) {
1191 		put_bh(buf);
1192 		return;
1193 	}
1194 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1195 }
1196 EXPORT_SYMBOL(__brelse);
1197 
1198 /*
1199  * bforget() is like brelse(), except it discards any
1200  * potentially dirty data.
1201  */
1202 void __bforget(struct buffer_head *bh)
1203 {
1204 	clear_buffer_dirty(bh);
1205 	if (bh->b_assoc_map) {
1206 		struct address_space *buffer_mapping = bh->b_page->mapping;
1207 
1208 		spin_lock(&buffer_mapping->private_lock);
1209 		list_del_init(&bh->b_assoc_buffers);
1210 		bh->b_assoc_map = NULL;
1211 		spin_unlock(&buffer_mapping->private_lock);
1212 	}
1213 	__brelse(bh);
1214 }
1215 EXPORT_SYMBOL(__bforget);
1216 
1217 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1218 {
1219 	lock_buffer(bh);
1220 	if (buffer_uptodate(bh)) {
1221 		unlock_buffer(bh);
1222 		return bh;
1223 	} else {
1224 		get_bh(bh);
1225 		bh->b_end_io = end_buffer_read_sync;
1226 		submit_bh(READ, bh);
1227 		wait_on_buffer(bh);
1228 		if (buffer_uptodate(bh))
1229 			return bh;
1230 	}
1231 	brelse(bh);
1232 	return NULL;
1233 }
1234 
1235 /*
1236  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1237  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1238  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1239  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1240  * CPU's LRUs at the same time.
1241  *
1242  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1243  * sb_find_get_block().
1244  *
1245  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1246  * a local interrupt disable for that.
1247  */
1248 
1249 #define BH_LRU_SIZE	8
1250 
1251 struct bh_lru {
1252 	struct buffer_head *bhs[BH_LRU_SIZE];
1253 };
1254 
1255 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1256 
1257 #ifdef CONFIG_SMP
1258 #define bh_lru_lock()	local_irq_disable()
1259 #define bh_lru_unlock()	local_irq_enable()
1260 #else
1261 #define bh_lru_lock()	preempt_disable()
1262 #define bh_lru_unlock()	preempt_enable()
1263 #endif
1264 
1265 static inline void check_irqs_on(void)
1266 {
1267 #ifdef irqs_disabled
1268 	BUG_ON(irqs_disabled());
1269 #endif
1270 }
1271 
1272 /*
1273  * The LRU management algorithm is dopey-but-simple.  Sorry.
1274  */
1275 static void bh_lru_install(struct buffer_head *bh)
1276 {
1277 	struct buffer_head *evictee = NULL;
1278 
1279 	check_irqs_on();
1280 	bh_lru_lock();
1281 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1282 		struct buffer_head *bhs[BH_LRU_SIZE];
1283 		int in;
1284 		int out = 0;
1285 
1286 		get_bh(bh);
1287 		bhs[out++] = bh;
1288 		for (in = 0; in < BH_LRU_SIZE; in++) {
1289 			struct buffer_head *bh2 =
1290 				__this_cpu_read(bh_lrus.bhs[in]);
1291 
1292 			if (bh2 == bh) {
1293 				__brelse(bh2);
1294 			} else {
1295 				if (out >= BH_LRU_SIZE) {
1296 					BUG_ON(evictee != NULL);
1297 					evictee = bh2;
1298 				} else {
1299 					bhs[out++] = bh2;
1300 				}
1301 			}
1302 		}
1303 		while (out < BH_LRU_SIZE)
1304 			bhs[out++] = NULL;
1305 		memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1306 	}
1307 	bh_lru_unlock();
1308 
1309 	if (evictee)
1310 		__brelse(evictee);
1311 }
1312 
1313 /*
1314  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1315  */
1316 static struct buffer_head *
1317 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1318 {
1319 	struct buffer_head *ret = NULL;
1320 	unsigned int i;
1321 
1322 	check_irqs_on();
1323 	bh_lru_lock();
1324 	for (i = 0; i < BH_LRU_SIZE; i++) {
1325 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1326 
1327 		if (bh && bh->b_bdev == bdev &&
1328 				bh->b_blocknr == block && bh->b_size == size) {
1329 			if (i) {
1330 				while (i) {
1331 					__this_cpu_write(bh_lrus.bhs[i],
1332 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1333 					i--;
1334 				}
1335 				__this_cpu_write(bh_lrus.bhs[0], bh);
1336 			}
1337 			get_bh(bh);
1338 			ret = bh;
1339 			break;
1340 		}
1341 	}
1342 	bh_lru_unlock();
1343 	return ret;
1344 }
1345 
1346 /*
1347  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1348  * it in the LRU and mark it as accessed.  If it is not present then return
1349  * NULL
1350  */
1351 struct buffer_head *
1352 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1353 {
1354 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1355 
1356 	if (bh == NULL) {
1357 		bh = __find_get_block_slow(bdev, block);
1358 		if (bh)
1359 			bh_lru_install(bh);
1360 	}
1361 	if (bh)
1362 		touch_buffer(bh);
1363 	return bh;
1364 }
1365 EXPORT_SYMBOL(__find_get_block);
1366 
1367 /*
1368  * __getblk will locate (and, if necessary, create) the buffer_head
1369  * which corresponds to the passed block_device, block and size. The
1370  * returned buffer has its reference count incremented.
1371  *
1372  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1373  * attempt is failing.  FIXME, perhaps?
1374  */
1375 struct buffer_head *
1376 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1377 {
1378 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1379 
1380 	might_sleep();
1381 	if (bh == NULL)
1382 		bh = __getblk_slow(bdev, block, size);
1383 	return bh;
1384 }
1385 EXPORT_SYMBOL(__getblk);
1386 
1387 /*
1388  * Do async read-ahead on a buffer..
1389  */
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1391 {
1392 	struct buffer_head *bh = __getblk(bdev, block, size);
1393 	if (likely(bh)) {
1394 		ll_rw_block(READA, 1, &bh);
1395 		brelse(bh);
1396 	}
1397 }
1398 EXPORT_SYMBOL(__breadahead);
1399 
1400 /**
1401  *  __bread() - reads a specified block and returns the bh
1402  *  @bdev: the block_device to read from
1403  *  @block: number of block
1404  *  @size: size (in bytes) to read
1405  *
1406  *  Reads a specified block, and returns buffer head that contains it.
1407  *  It returns NULL if the block was unreadable.
1408  */
1409 struct buffer_head *
1410 __bread(struct block_device *bdev, sector_t block, unsigned size)
1411 {
1412 	struct buffer_head *bh = __getblk(bdev, block, size);
1413 
1414 	if (likely(bh) && !buffer_uptodate(bh))
1415 		bh = __bread_slow(bh);
1416 	return bh;
1417 }
1418 EXPORT_SYMBOL(__bread);
1419 
1420 /*
1421  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1422  * This doesn't race because it runs in each cpu either in irq
1423  * or with preempt disabled.
1424  */
1425 static void invalidate_bh_lru(void *arg)
1426 {
1427 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1428 	int i;
1429 
1430 	for (i = 0; i < BH_LRU_SIZE; i++) {
1431 		brelse(b->bhs[i]);
1432 		b->bhs[i] = NULL;
1433 	}
1434 	put_cpu_var(bh_lrus);
1435 }
1436 
1437 static bool has_bh_in_lru(int cpu, void *dummy)
1438 {
1439 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1440 	int i;
1441 
1442 	for (i = 0; i < BH_LRU_SIZE; i++) {
1443 		if (b->bhs[i])
1444 			return 1;
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 void invalidate_bh_lrus(void)
1451 {
1452 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1453 }
1454 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1455 
1456 void set_bh_page(struct buffer_head *bh,
1457 		struct page *page, unsigned long offset)
1458 {
1459 	bh->b_page = page;
1460 	BUG_ON(offset >= PAGE_SIZE);
1461 	if (PageHighMem(page))
1462 		/*
1463 		 * This catches illegal uses and preserves the offset:
1464 		 */
1465 		bh->b_data = (char *)(0 + offset);
1466 	else
1467 		bh->b_data = page_address(page) + offset;
1468 }
1469 EXPORT_SYMBOL(set_bh_page);
1470 
1471 /*
1472  * Called when truncating a buffer on a page completely.
1473  */
1474 static void discard_buffer(struct buffer_head * bh)
1475 {
1476 	lock_buffer(bh);
1477 	clear_buffer_dirty(bh);
1478 	bh->b_bdev = NULL;
1479 	clear_buffer_mapped(bh);
1480 	clear_buffer_req(bh);
1481 	clear_buffer_new(bh);
1482 	clear_buffer_delay(bh);
1483 	clear_buffer_unwritten(bh);
1484 	unlock_buffer(bh);
1485 }
1486 
1487 /**
1488  * block_invalidatepage - invalidate part or all of a buffer-backed page
1489  *
1490  * @page: the page which is affected
1491  * @offset: start of the range to invalidate
1492  * @length: length of the range to invalidate
1493  *
1494  * block_invalidatepage() is called when all or part of the page has become
1495  * invalidated by a truncate operation.
1496  *
1497  * block_invalidatepage() does not have to release all buffers, but it must
1498  * ensure that no dirty buffer is left outside @offset and that no I/O
1499  * is underway against any of the blocks which are outside the truncation
1500  * point.  Because the caller is about to free (and possibly reuse) those
1501  * blocks on-disk.
1502  */
1503 void block_invalidatepage(struct page *page, unsigned int offset,
1504 			  unsigned int length)
1505 {
1506 	struct buffer_head *head, *bh, *next;
1507 	unsigned int curr_off = 0;
1508 	unsigned int stop = length + offset;
1509 
1510 	BUG_ON(!PageLocked(page));
1511 	if (!page_has_buffers(page))
1512 		goto out;
1513 
1514 	/*
1515 	 * Check for overflow
1516 	 */
1517 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1518 
1519 	head = page_buffers(page);
1520 	bh = head;
1521 	do {
1522 		unsigned int next_off = curr_off + bh->b_size;
1523 		next = bh->b_this_page;
1524 
1525 		/*
1526 		 * Are we still fully in range ?
1527 		 */
1528 		if (next_off > stop)
1529 			goto out;
1530 
1531 		/*
1532 		 * is this block fully invalidated?
1533 		 */
1534 		if (offset <= curr_off)
1535 			discard_buffer(bh);
1536 		curr_off = next_off;
1537 		bh = next;
1538 	} while (bh != head);
1539 
1540 	/*
1541 	 * We release buffers only if the entire page is being invalidated.
1542 	 * The get_block cached value has been unconditionally invalidated,
1543 	 * so real IO is not possible anymore.
1544 	 */
1545 	if (offset == 0)
1546 		try_to_release_page(page, 0);
1547 out:
1548 	return;
1549 }
1550 EXPORT_SYMBOL(block_invalidatepage);
1551 
1552 
1553 /*
1554  * We attach and possibly dirty the buffers atomically wrt
1555  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1556  * is already excluded via the page lock.
1557  */
1558 void create_empty_buffers(struct page *page,
1559 			unsigned long blocksize, unsigned long b_state)
1560 {
1561 	struct buffer_head *bh, *head, *tail;
1562 
1563 	head = alloc_page_buffers(page, blocksize, 1);
1564 	bh = head;
1565 	do {
1566 		bh->b_state |= b_state;
1567 		tail = bh;
1568 		bh = bh->b_this_page;
1569 	} while (bh);
1570 	tail->b_this_page = head;
1571 
1572 	spin_lock(&page->mapping->private_lock);
1573 	if (PageUptodate(page) || PageDirty(page)) {
1574 		bh = head;
1575 		do {
1576 			if (PageDirty(page))
1577 				set_buffer_dirty(bh);
1578 			if (PageUptodate(page))
1579 				set_buffer_uptodate(bh);
1580 			bh = bh->b_this_page;
1581 		} while (bh != head);
1582 	}
1583 	attach_page_buffers(page, head);
1584 	spin_unlock(&page->mapping->private_lock);
1585 }
1586 EXPORT_SYMBOL(create_empty_buffers);
1587 
1588 /*
1589  * We are taking a block for data and we don't want any output from any
1590  * buffer-cache aliases starting from return from that function and
1591  * until the moment when something will explicitly mark the buffer
1592  * dirty (hopefully that will not happen until we will free that block ;-)
1593  * We don't even need to mark it not-uptodate - nobody can expect
1594  * anything from a newly allocated buffer anyway. We used to used
1595  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1596  * don't want to mark the alias unmapped, for example - it would confuse
1597  * anyone who might pick it with bread() afterwards...
1598  *
1599  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1600  * be writeout I/O going on against recently-freed buffers.  We don't
1601  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1602  * only if we really need to.  That happens here.
1603  */
1604 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1605 {
1606 	struct buffer_head *old_bh;
1607 
1608 	might_sleep();
1609 
1610 	old_bh = __find_get_block_slow(bdev, block);
1611 	if (old_bh) {
1612 		clear_buffer_dirty(old_bh);
1613 		wait_on_buffer(old_bh);
1614 		clear_buffer_req(old_bh);
1615 		__brelse(old_bh);
1616 	}
1617 }
1618 EXPORT_SYMBOL(unmap_underlying_metadata);
1619 
1620 /*
1621  * Size is a power-of-two in the range 512..PAGE_SIZE,
1622  * and the case we care about most is PAGE_SIZE.
1623  *
1624  * So this *could* possibly be written with those
1625  * constraints in mind (relevant mostly if some
1626  * architecture has a slow bit-scan instruction)
1627  */
1628 static inline int block_size_bits(unsigned int blocksize)
1629 {
1630 	return ilog2(blocksize);
1631 }
1632 
1633 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1634 {
1635 	BUG_ON(!PageLocked(page));
1636 
1637 	if (!page_has_buffers(page))
1638 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1639 	return page_buffers(page);
1640 }
1641 
1642 /*
1643  * NOTE! All mapped/uptodate combinations are valid:
1644  *
1645  *	Mapped	Uptodate	Meaning
1646  *
1647  *	No	No		"unknown" - must do get_block()
1648  *	No	Yes		"hole" - zero-filled
1649  *	Yes	No		"allocated" - allocated on disk, not read in
1650  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1651  *
1652  * "Dirty" is valid only with the last case (mapped+uptodate).
1653  */
1654 
1655 /*
1656  * While block_write_full_page is writing back the dirty buffers under
1657  * the page lock, whoever dirtied the buffers may decide to clean them
1658  * again at any time.  We handle that by only looking at the buffer
1659  * state inside lock_buffer().
1660  *
1661  * If block_write_full_page() is called for regular writeback
1662  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1663  * locked buffer.   This only can happen if someone has written the buffer
1664  * directly, with submit_bh().  At the address_space level PageWriteback
1665  * prevents this contention from occurring.
1666  *
1667  * If block_write_full_page() is called with wbc->sync_mode ==
1668  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1669  * causes the writes to be flagged as synchronous writes.
1670  */
1671 static int __block_write_full_page(struct inode *inode, struct page *page,
1672 			get_block_t *get_block, struct writeback_control *wbc,
1673 			bh_end_io_t *handler)
1674 {
1675 	int err;
1676 	sector_t block;
1677 	sector_t last_block;
1678 	struct buffer_head *bh, *head;
1679 	unsigned int blocksize, bbits;
1680 	int nr_underway = 0;
1681 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1682 			WRITE_SYNC : WRITE);
1683 
1684 	head = create_page_buffers(page, inode,
1685 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1686 
1687 	/*
1688 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1689 	 * here, and the (potentially unmapped) buffers may become dirty at
1690 	 * any time.  If a buffer becomes dirty here after we've inspected it
1691 	 * then we just miss that fact, and the page stays dirty.
1692 	 *
1693 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1694 	 * handle that here by just cleaning them.
1695 	 */
1696 
1697 	bh = head;
1698 	blocksize = bh->b_size;
1699 	bbits = block_size_bits(blocksize);
1700 
1701 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1702 	last_block = (i_size_read(inode) - 1) >> bbits;
1703 
1704 	/*
1705 	 * Get all the dirty buffers mapped to disk addresses and
1706 	 * handle any aliases from the underlying blockdev's mapping.
1707 	 */
1708 	do {
1709 		if (block > last_block) {
1710 			/*
1711 			 * mapped buffers outside i_size will occur, because
1712 			 * this page can be outside i_size when there is a
1713 			 * truncate in progress.
1714 			 */
1715 			/*
1716 			 * The buffer was zeroed by block_write_full_page()
1717 			 */
1718 			clear_buffer_dirty(bh);
1719 			set_buffer_uptodate(bh);
1720 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1721 			   buffer_dirty(bh)) {
1722 			WARN_ON(bh->b_size != blocksize);
1723 			err = get_block(inode, block, bh, 1);
1724 			if (err)
1725 				goto recover;
1726 			clear_buffer_delay(bh);
1727 			if (buffer_new(bh)) {
1728 				/* blockdev mappings never come here */
1729 				clear_buffer_new(bh);
1730 				unmap_underlying_metadata(bh->b_bdev,
1731 							bh->b_blocknr);
1732 			}
1733 		}
1734 		bh = bh->b_this_page;
1735 		block++;
1736 	} while (bh != head);
1737 
1738 	do {
1739 		if (!buffer_mapped(bh))
1740 			continue;
1741 		/*
1742 		 * If it's a fully non-blocking write attempt and we cannot
1743 		 * lock the buffer then redirty the page.  Note that this can
1744 		 * potentially cause a busy-wait loop from writeback threads
1745 		 * and kswapd activity, but those code paths have their own
1746 		 * higher-level throttling.
1747 		 */
1748 		if (wbc->sync_mode != WB_SYNC_NONE) {
1749 			lock_buffer(bh);
1750 		} else if (!trylock_buffer(bh)) {
1751 			redirty_page_for_writepage(wbc, page);
1752 			continue;
1753 		}
1754 		if (test_clear_buffer_dirty(bh)) {
1755 			mark_buffer_async_write_endio(bh, handler);
1756 		} else {
1757 			unlock_buffer(bh);
1758 		}
1759 	} while ((bh = bh->b_this_page) != head);
1760 
1761 	/*
1762 	 * The page and its buffers are protected by PageWriteback(), so we can
1763 	 * drop the bh refcounts early.
1764 	 */
1765 	BUG_ON(PageWriteback(page));
1766 	set_page_writeback(page);
1767 
1768 	do {
1769 		struct buffer_head *next = bh->b_this_page;
1770 		if (buffer_async_write(bh)) {
1771 			submit_bh(write_op, bh);
1772 			nr_underway++;
1773 		}
1774 		bh = next;
1775 	} while (bh != head);
1776 	unlock_page(page);
1777 
1778 	err = 0;
1779 done:
1780 	if (nr_underway == 0) {
1781 		/*
1782 		 * The page was marked dirty, but the buffers were
1783 		 * clean.  Someone wrote them back by hand with
1784 		 * ll_rw_block/submit_bh.  A rare case.
1785 		 */
1786 		end_page_writeback(page);
1787 
1788 		/*
1789 		 * The page and buffer_heads can be released at any time from
1790 		 * here on.
1791 		 */
1792 	}
1793 	return err;
1794 
1795 recover:
1796 	/*
1797 	 * ENOSPC, or some other error.  We may already have added some
1798 	 * blocks to the file, so we need to write these out to avoid
1799 	 * exposing stale data.
1800 	 * The page is currently locked and not marked for writeback
1801 	 */
1802 	bh = head;
1803 	/* Recovery: lock and submit the mapped buffers */
1804 	do {
1805 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1806 		    !buffer_delay(bh)) {
1807 			lock_buffer(bh);
1808 			mark_buffer_async_write_endio(bh, handler);
1809 		} else {
1810 			/*
1811 			 * The buffer may have been set dirty during
1812 			 * attachment to a dirty page.
1813 			 */
1814 			clear_buffer_dirty(bh);
1815 		}
1816 	} while ((bh = bh->b_this_page) != head);
1817 	SetPageError(page);
1818 	BUG_ON(PageWriteback(page));
1819 	mapping_set_error(page->mapping, err);
1820 	set_page_writeback(page);
1821 	do {
1822 		struct buffer_head *next = bh->b_this_page;
1823 		if (buffer_async_write(bh)) {
1824 			clear_buffer_dirty(bh);
1825 			submit_bh(write_op, bh);
1826 			nr_underway++;
1827 		}
1828 		bh = next;
1829 	} while (bh != head);
1830 	unlock_page(page);
1831 	goto done;
1832 }
1833 
1834 /*
1835  * If a page has any new buffers, zero them out here, and mark them uptodate
1836  * and dirty so they'll be written out (in order to prevent uninitialised
1837  * block data from leaking). And clear the new bit.
1838  */
1839 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1840 {
1841 	unsigned int block_start, block_end;
1842 	struct buffer_head *head, *bh;
1843 
1844 	BUG_ON(!PageLocked(page));
1845 	if (!page_has_buffers(page))
1846 		return;
1847 
1848 	bh = head = page_buffers(page);
1849 	block_start = 0;
1850 	do {
1851 		block_end = block_start + bh->b_size;
1852 
1853 		if (buffer_new(bh)) {
1854 			if (block_end > from && block_start < to) {
1855 				if (!PageUptodate(page)) {
1856 					unsigned start, size;
1857 
1858 					start = max(from, block_start);
1859 					size = min(to, block_end) - start;
1860 
1861 					zero_user(page, start, size);
1862 					set_buffer_uptodate(bh);
1863 				}
1864 
1865 				clear_buffer_new(bh);
1866 				mark_buffer_dirty(bh);
1867 			}
1868 		}
1869 
1870 		block_start = block_end;
1871 		bh = bh->b_this_page;
1872 	} while (bh != head);
1873 }
1874 EXPORT_SYMBOL(page_zero_new_buffers);
1875 
1876 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1877 		get_block_t *get_block)
1878 {
1879 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1880 	unsigned to = from + len;
1881 	struct inode *inode = page->mapping->host;
1882 	unsigned block_start, block_end;
1883 	sector_t block;
1884 	int err = 0;
1885 	unsigned blocksize, bbits;
1886 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1887 
1888 	BUG_ON(!PageLocked(page));
1889 	BUG_ON(from > PAGE_CACHE_SIZE);
1890 	BUG_ON(to > PAGE_CACHE_SIZE);
1891 	BUG_ON(from > to);
1892 
1893 	head = create_page_buffers(page, inode, 0);
1894 	blocksize = head->b_size;
1895 	bbits = block_size_bits(blocksize);
1896 
1897 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1898 
1899 	for(bh = head, block_start = 0; bh != head || !block_start;
1900 	    block++, block_start=block_end, bh = bh->b_this_page) {
1901 		block_end = block_start + blocksize;
1902 		if (block_end <= from || block_start >= to) {
1903 			if (PageUptodate(page)) {
1904 				if (!buffer_uptodate(bh))
1905 					set_buffer_uptodate(bh);
1906 			}
1907 			continue;
1908 		}
1909 		if (buffer_new(bh))
1910 			clear_buffer_new(bh);
1911 		if (!buffer_mapped(bh)) {
1912 			WARN_ON(bh->b_size != blocksize);
1913 			err = get_block(inode, block, bh, 1);
1914 			if (err)
1915 				break;
1916 			if (buffer_new(bh)) {
1917 				unmap_underlying_metadata(bh->b_bdev,
1918 							bh->b_blocknr);
1919 				if (PageUptodate(page)) {
1920 					clear_buffer_new(bh);
1921 					set_buffer_uptodate(bh);
1922 					mark_buffer_dirty(bh);
1923 					continue;
1924 				}
1925 				if (block_end > to || block_start < from)
1926 					zero_user_segments(page,
1927 						to, block_end,
1928 						block_start, from);
1929 				continue;
1930 			}
1931 		}
1932 		if (PageUptodate(page)) {
1933 			if (!buffer_uptodate(bh))
1934 				set_buffer_uptodate(bh);
1935 			continue;
1936 		}
1937 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1938 		    !buffer_unwritten(bh) &&
1939 		     (block_start < from || block_end > to)) {
1940 			ll_rw_block(READ, 1, &bh);
1941 			*wait_bh++=bh;
1942 		}
1943 	}
1944 	/*
1945 	 * If we issued read requests - let them complete.
1946 	 */
1947 	while(wait_bh > wait) {
1948 		wait_on_buffer(*--wait_bh);
1949 		if (!buffer_uptodate(*wait_bh))
1950 			err = -EIO;
1951 	}
1952 	if (unlikely(err))
1953 		page_zero_new_buffers(page, from, to);
1954 	return err;
1955 }
1956 EXPORT_SYMBOL(__block_write_begin);
1957 
1958 static int __block_commit_write(struct inode *inode, struct page *page,
1959 		unsigned from, unsigned to)
1960 {
1961 	unsigned block_start, block_end;
1962 	int partial = 0;
1963 	unsigned blocksize;
1964 	struct buffer_head *bh, *head;
1965 
1966 	bh = head = page_buffers(page);
1967 	blocksize = bh->b_size;
1968 
1969 	block_start = 0;
1970 	do {
1971 		block_end = block_start + blocksize;
1972 		if (block_end <= from || block_start >= to) {
1973 			if (!buffer_uptodate(bh))
1974 				partial = 1;
1975 		} else {
1976 			set_buffer_uptodate(bh);
1977 			mark_buffer_dirty(bh);
1978 		}
1979 		clear_buffer_new(bh);
1980 
1981 		block_start = block_end;
1982 		bh = bh->b_this_page;
1983 	} while (bh != head);
1984 
1985 	/*
1986 	 * If this is a partial write which happened to make all buffers
1987 	 * uptodate then we can optimize away a bogus readpage() for
1988 	 * the next read(). Here we 'discover' whether the page went
1989 	 * uptodate as a result of this (potentially partial) write.
1990 	 */
1991 	if (!partial)
1992 		SetPageUptodate(page);
1993 	return 0;
1994 }
1995 
1996 /*
1997  * block_write_begin takes care of the basic task of block allocation and
1998  * bringing partial write blocks uptodate first.
1999  *
2000  * The filesystem needs to handle block truncation upon failure.
2001  */
2002 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2003 		unsigned flags, struct page **pagep, get_block_t *get_block)
2004 {
2005 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2006 	struct page *page;
2007 	int status;
2008 
2009 	page = grab_cache_page_write_begin(mapping, index, flags);
2010 	if (!page)
2011 		return -ENOMEM;
2012 
2013 	status = __block_write_begin(page, pos, len, get_block);
2014 	if (unlikely(status)) {
2015 		unlock_page(page);
2016 		page_cache_release(page);
2017 		page = NULL;
2018 	}
2019 
2020 	*pagep = page;
2021 	return status;
2022 }
2023 EXPORT_SYMBOL(block_write_begin);
2024 
2025 int block_write_end(struct file *file, struct address_space *mapping,
2026 			loff_t pos, unsigned len, unsigned copied,
2027 			struct page *page, void *fsdata)
2028 {
2029 	struct inode *inode = mapping->host;
2030 	unsigned start;
2031 
2032 	start = pos & (PAGE_CACHE_SIZE - 1);
2033 
2034 	if (unlikely(copied < len)) {
2035 		/*
2036 		 * The buffers that were written will now be uptodate, so we
2037 		 * don't have to worry about a readpage reading them and
2038 		 * overwriting a partial write. However if we have encountered
2039 		 * a short write and only partially written into a buffer, it
2040 		 * will not be marked uptodate, so a readpage might come in and
2041 		 * destroy our partial write.
2042 		 *
2043 		 * Do the simplest thing, and just treat any short write to a
2044 		 * non uptodate page as a zero-length write, and force the
2045 		 * caller to redo the whole thing.
2046 		 */
2047 		if (!PageUptodate(page))
2048 			copied = 0;
2049 
2050 		page_zero_new_buffers(page, start+copied, start+len);
2051 	}
2052 	flush_dcache_page(page);
2053 
2054 	/* This could be a short (even 0-length) commit */
2055 	__block_commit_write(inode, page, start, start+copied);
2056 
2057 	return copied;
2058 }
2059 EXPORT_SYMBOL(block_write_end);
2060 
2061 int generic_write_end(struct file *file, struct address_space *mapping,
2062 			loff_t pos, unsigned len, unsigned copied,
2063 			struct page *page, void *fsdata)
2064 {
2065 	struct inode *inode = mapping->host;
2066 	int i_size_changed = 0;
2067 
2068 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2069 
2070 	/*
2071 	 * No need to use i_size_read() here, the i_size
2072 	 * cannot change under us because we hold i_mutex.
2073 	 *
2074 	 * But it's important to update i_size while still holding page lock:
2075 	 * page writeout could otherwise come in and zero beyond i_size.
2076 	 */
2077 	if (pos+copied > inode->i_size) {
2078 		i_size_write(inode, pos+copied);
2079 		i_size_changed = 1;
2080 	}
2081 
2082 	unlock_page(page);
2083 	page_cache_release(page);
2084 
2085 	/*
2086 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2087 	 * makes the holding time of page lock longer. Second, it forces lock
2088 	 * ordering of page lock and transaction start for journaling
2089 	 * filesystems.
2090 	 */
2091 	if (i_size_changed)
2092 		mark_inode_dirty(inode);
2093 
2094 	return copied;
2095 }
2096 EXPORT_SYMBOL(generic_write_end);
2097 
2098 /*
2099  * block_is_partially_uptodate checks whether buffers within a page are
2100  * uptodate or not.
2101  *
2102  * Returns true if all buffers which correspond to a file portion
2103  * we want to read are uptodate.
2104  */
2105 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2106 					unsigned long from)
2107 {
2108 	unsigned block_start, block_end, blocksize;
2109 	unsigned to;
2110 	struct buffer_head *bh, *head;
2111 	int ret = 1;
2112 
2113 	if (!page_has_buffers(page))
2114 		return 0;
2115 
2116 	head = page_buffers(page);
2117 	blocksize = head->b_size;
2118 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2119 	to = from + to;
2120 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2121 		return 0;
2122 
2123 	bh = head;
2124 	block_start = 0;
2125 	do {
2126 		block_end = block_start + blocksize;
2127 		if (block_end > from && block_start < to) {
2128 			if (!buffer_uptodate(bh)) {
2129 				ret = 0;
2130 				break;
2131 			}
2132 			if (block_end >= to)
2133 				break;
2134 		}
2135 		block_start = block_end;
2136 		bh = bh->b_this_page;
2137 	} while (bh != head);
2138 
2139 	return ret;
2140 }
2141 EXPORT_SYMBOL(block_is_partially_uptodate);
2142 
2143 /*
2144  * Generic "read page" function for block devices that have the normal
2145  * get_block functionality. This is most of the block device filesystems.
2146  * Reads the page asynchronously --- the unlock_buffer() and
2147  * set/clear_buffer_uptodate() functions propagate buffer state into the
2148  * page struct once IO has completed.
2149  */
2150 int block_read_full_page(struct page *page, get_block_t *get_block)
2151 {
2152 	struct inode *inode = page->mapping->host;
2153 	sector_t iblock, lblock;
2154 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2155 	unsigned int blocksize, bbits;
2156 	int nr, i;
2157 	int fully_mapped = 1;
2158 
2159 	head = create_page_buffers(page, inode, 0);
2160 	blocksize = head->b_size;
2161 	bbits = block_size_bits(blocksize);
2162 
2163 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2164 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2165 	bh = head;
2166 	nr = 0;
2167 	i = 0;
2168 
2169 	do {
2170 		if (buffer_uptodate(bh))
2171 			continue;
2172 
2173 		if (!buffer_mapped(bh)) {
2174 			int err = 0;
2175 
2176 			fully_mapped = 0;
2177 			if (iblock < lblock) {
2178 				WARN_ON(bh->b_size != blocksize);
2179 				err = get_block(inode, iblock, bh, 0);
2180 				if (err)
2181 					SetPageError(page);
2182 			}
2183 			if (!buffer_mapped(bh)) {
2184 				zero_user(page, i * blocksize, blocksize);
2185 				if (!err)
2186 					set_buffer_uptodate(bh);
2187 				continue;
2188 			}
2189 			/*
2190 			 * get_block() might have updated the buffer
2191 			 * synchronously
2192 			 */
2193 			if (buffer_uptodate(bh))
2194 				continue;
2195 		}
2196 		arr[nr++] = bh;
2197 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2198 
2199 	if (fully_mapped)
2200 		SetPageMappedToDisk(page);
2201 
2202 	if (!nr) {
2203 		/*
2204 		 * All buffers are uptodate - we can set the page uptodate
2205 		 * as well. But not if get_block() returned an error.
2206 		 */
2207 		if (!PageError(page))
2208 			SetPageUptodate(page);
2209 		unlock_page(page);
2210 		return 0;
2211 	}
2212 
2213 	/* Stage two: lock the buffers */
2214 	for (i = 0; i < nr; i++) {
2215 		bh = arr[i];
2216 		lock_buffer(bh);
2217 		mark_buffer_async_read(bh);
2218 	}
2219 
2220 	/*
2221 	 * Stage 3: start the IO.  Check for uptodateness
2222 	 * inside the buffer lock in case another process reading
2223 	 * the underlying blockdev brought it uptodate (the sct fix).
2224 	 */
2225 	for (i = 0; i < nr; i++) {
2226 		bh = arr[i];
2227 		if (buffer_uptodate(bh))
2228 			end_buffer_async_read(bh, 1);
2229 		else
2230 			submit_bh(READ, bh);
2231 	}
2232 	return 0;
2233 }
2234 EXPORT_SYMBOL(block_read_full_page);
2235 
2236 /* utility function for filesystems that need to do work on expanding
2237  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2238  * deal with the hole.
2239  */
2240 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2241 {
2242 	struct address_space *mapping = inode->i_mapping;
2243 	struct page *page;
2244 	void *fsdata;
2245 	int err;
2246 
2247 	err = inode_newsize_ok(inode, size);
2248 	if (err)
2249 		goto out;
2250 
2251 	err = pagecache_write_begin(NULL, mapping, size, 0,
2252 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2253 				&page, &fsdata);
2254 	if (err)
2255 		goto out;
2256 
2257 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2258 	BUG_ON(err > 0);
2259 
2260 out:
2261 	return err;
2262 }
2263 EXPORT_SYMBOL(generic_cont_expand_simple);
2264 
2265 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2266 			    loff_t pos, loff_t *bytes)
2267 {
2268 	struct inode *inode = mapping->host;
2269 	unsigned blocksize = 1 << inode->i_blkbits;
2270 	struct page *page;
2271 	void *fsdata;
2272 	pgoff_t index, curidx;
2273 	loff_t curpos;
2274 	unsigned zerofrom, offset, len;
2275 	int err = 0;
2276 
2277 	index = pos >> PAGE_CACHE_SHIFT;
2278 	offset = pos & ~PAGE_CACHE_MASK;
2279 
2280 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2281 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2282 		if (zerofrom & (blocksize-1)) {
2283 			*bytes |= (blocksize-1);
2284 			(*bytes)++;
2285 		}
2286 		len = PAGE_CACHE_SIZE - zerofrom;
2287 
2288 		err = pagecache_write_begin(file, mapping, curpos, len,
2289 						AOP_FLAG_UNINTERRUPTIBLE,
2290 						&page, &fsdata);
2291 		if (err)
2292 			goto out;
2293 		zero_user(page, zerofrom, len);
2294 		err = pagecache_write_end(file, mapping, curpos, len, len,
2295 						page, fsdata);
2296 		if (err < 0)
2297 			goto out;
2298 		BUG_ON(err != len);
2299 		err = 0;
2300 
2301 		balance_dirty_pages_ratelimited(mapping);
2302 	}
2303 
2304 	/* page covers the boundary, find the boundary offset */
2305 	if (index == curidx) {
2306 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2307 		/* if we will expand the thing last block will be filled */
2308 		if (offset <= zerofrom) {
2309 			goto out;
2310 		}
2311 		if (zerofrom & (blocksize-1)) {
2312 			*bytes |= (blocksize-1);
2313 			(*bytes)++;
2314 		}
2315 		len = offset - zerofrom;
2316 
2317 		err = pagecache_write_begin(file, mapping, curpos, len,
2318 						AOP_FLAG_UNINTERRUPTIBLE,
2319 						&page, &fsdata);
2320 		if (err)
2321 			goto out;
2322 		zero_user(page, zerofrom, len);
2323 		err = pagecache_write_end(file, mapping, curpos, len, len,
2324 						page, fsdata);
2325 		if (err < 0)
2326 			goto out;
2327 		BUG_ON(err != len);
2328 		err = 0;
2329 	}
2330 out:
2331 	return err;
2332 }
2333 
2334 /*
2335  * For moronic filesystems that do not allow holes in file.
2336  * We may have to extend the file.
2337  */
2338 int cont_write_begin(struct file *file, struct address_space *mapping,
2339 			loff_t pos, unsigned len, unsigned flags,
2340 			struct page **pagep, void **fsdata,
2341 			get_block_t *get_block, loff_t *bytes)
2342 {
2343 	struct inode *inode = mapping->host;
2344 	unsigned blocksize = 1 << inode->i_blkbits;
2345 	unsigned zerofrom;
2346 	int err;
2347 
2348 	err = cont_expand_zero(file, mapping, pos, bytes);
2349 	if (err)
2350 		return err;
2351 
2352 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2353 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2354 		*bytes |= (blocksize-1);
2355 		(*bytes)++;
2356 	}
2357 
2358 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2359 }
2360 EXPORT_SYMBOL(cont_write_begin);
2361 
2362 int block_commit_write(struct page *page, unsigned from, unsigned to)
2363 {
2364 	struct inode *inode = page->mapping->host;
2365 	__block_commit_write(inode,page,from,to);
2366 	return 0;
2367 }
2368 EXPORT_SYMBOL(block_commit_write);
2369 
2370 /*
2371  * block_page_mkwrite() is not allowed to change the file size as it gets
2372  * called from a page fault handler when a page is first dirtied. Hence we must
2373  * be careful to check for EOF conditions here. We set the page up correctly
2374  * for a written page which means we get ENOSPC checking when writing into
2375  * holes and correct delalloc and unwritten extent mapping on filesystems that
2376  * support these features.
2377  *
2378  * We are not allowed to take the i_mutex here so we have to play games to
2379  * protect against truncate races as the page could now be beyond EOF.  Because
2380  * truncate writes the inode size before removing pages, once we have the
2381  * page lock we can determine safely if the page is beyond EOF. If it is not
2382  * beyond EOF, then the page is guaranteed safe against truncation until we
2383  * unlock the page.
2384  *
2385  * Direct callers of this function should protect against filesystem freezing
2386  * using sb_start_write() - sb_end_write() functions.
2387  */
2388 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2389 			 get_block_t get_block)
2390 {
2391 	struct page *page = vmf->page;
2392 	struct inode *inode = file_inode(vma->vm_file);
2393 	unsigned long end;
2394 	loff_t size;
2395 	int ret;
2396 
2397 	lock_page(page);
2398 	size = i_size_read(inode);
2399 	if ((page->mapping != inode->i_mapping) ||
2400 	    (page_offset(page) > size)) {
2401 		/* We overload EFAULT to mean page got truncated */
2402 		ret = -EFAULT;
2403 		goto out_unlock;
2404 	}
2405 
2406 	/* page is wholly or partially inside EOF */
2407 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2408 		end = size & ~PAGE_CACHE_MASK;
2409 	else
2410 		end = PAGE_CACHE_SIZE;
2411 
2412 	ret = __block_write_begin(page, 0, end, get_block);
2413 	if (!ret)
2414 		ret = block_commit_write(page, 0, end);
2415 
2416 	if (unlikely(ret < 0))
2417 		goto out_unlock;
2418 	set_page_dirty(page);
2419 	wait_for_stable_page(page);
2420 	return 0;
2421 out_unlock:
2422 	unlock_page(page);
2423 	return ret;
2424 }
2425 EXPORT_SYMBOL(__block_page_mkwrite);
2426 
2427 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2428 		   get_block_t get_block)
2429 {
2430 	int ret;
2431 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2432 
2433 	sb_start_pagefault(sb);
2434 
2435 	/*
2436 	 * Update file times before taking page lock. We may end up failing the
2437 	 * fault so this update may be superfluous but who really cares...
2438 	 */
2439 	file_update_time(vma->vm_file);
2440 
2441 	ret = __block_page_mkwrite(vma, vmf, get_block);
2442 	sb_end_pagefault(sb);
2443 	return block_page_mkwrite_return(ret);
2444 }
2445 EXPORT_SYMBOL(block_page_mkwrite);
2446 
2447 /*
2448  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2449  * immediately, while under the page lock.  So it needs a special end_io
2450  * handler which does not touch the bh after unlocking it.
2451  */
2452 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2453 {
2454 	__end_buffer_read_notouch(bh, uptodate);
2455 }
2456 
2457 /*
2458  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2459  * the page (converting it to circular linked list and taking care of page
2460  * dirty races).
2461  */
2462 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2463 {
2464 	struct buffer_head *bh;
2465 
2466 	BUG_ON(!PageLocked(page));
2467 
2468 	spin_lock(&page->mapping->private_lock);
2469 	bh = head;
2470 	do {
2471 		if (PageDirty(page))
2472 			set_buffer_dirty(bh);
2473 		if (!bh->b_this_page)
2474 			bh->b_this_page = head;
2475 		bh = bh->b_this_page;
2476 	} while (bh != head);
2477 	attach_page_buffers(page, head);
2478 	spin_unlock(&page->mapping->private_lock);
2479 }
2480 
2481 /*
2482  * On entry, the page is fully not uptodate.
2483  * On exit the page is fully uptodate in the areas outside (from,to)
2484  * The filesystem needs to handle block truncation upon failure.
2485  */
2486 int nobh_write_begin(struct address_space *mapping,
2487 			loff_t pos, unsigned len, unsigned flags,
2488 			struct page **pagep, void **fsdata,
2489 			get_block_t *get_block)
2490 {
2491 	struct inode *inode = mapping->host;
2492 	const unsigned blkbits = inode->i_blkbits;
2493 	const unsigned blocksize = 1 << blkbits;
2494 	struct buffer_head *head, *bh;
2495 	struct page *page;
2496 	pgoff_t index;
2497 	unsigned from, to;
2498 	unsigned block_in_page;
2499 	unsigned block_start, block_end;
2500 	sector_t block_in_file;
2501 	int nr_reads = 0;
2502 	int ret = 0;
2503 	int is_mapped_to_disk = 1;
2504 
2505 	index = pos >> PAGE_CACHE_SHIFT;
2506 	from = pos & (PAGE_CACHE_SIZE - 1);
2507 	to = from + len;
2508 
2509 	page = grab_cache_page_write_begin(mapping, index, flags);
2510 	if (!page)
2511 		return -ENOMEM;
2512 	*pagep = page;
2513 	*fsdata = NULL;
2514 
2515 	if (page_has_buffers(page)) {
2516 		ret = __block_write_begin(page, pos, len, get_block);
2517 		if (unlikely(ret))
2518 			goto out_release;
2519 		return ret;
2520 	}
2521 
2522 	if (PageMappedToDisk(page))
2523 		return 0;
2524 
2525 	/*
2526 	 * Allocate buffers so that we can keep track of state, and potentially
2527 	 * attach them to the page if an error occurs. In the common case of
2528 	 * no error, they will just be freed again without ever being attached
2529 	 * to the page (which is all OK, because we're under the page lock).
2530 	 *
2531 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2532 	 * than the circular one we're used to.
2533 	 */
2534 	head = alloc_page_buffers(page, blocksize, 0);
2535 	if (!head) {
2536 		ret = -ENOMEM;
2537 		goto out_release;
2538 	}
2539 
2540 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2541 
2542 	/*
2543 	 * We loop across all blocks in the page, whether or not they are
2544 	 * part of the affected region.  This is so we can discover if the
2545 	 * page is fully mapped-to-disk.
2546 	 */
2547 	for (block_start = 0, block_in_page = 0, bh = head;
2548 		  block_start < PAGE_CACHE_SIZE;
2549 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2550 		int create;
2551 
2552 		block_end = block_start + blocksize;
2553 		bh->b_state = 0;
2554 		create = 1;
2555 		if (block_start >= to)
2556 			create = 0;
2557 		ret = get_block(inode, block_in_file + block_in_page,
2558 					bh, create);
2559 		if (ret)
2560 			goto failed;
2561 		if (!buffer_mapped(bh))
2562 			is_mapped_to_disk = 0;
2563 		if (buffer_new(bh))
2564 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2565 		if (PageUptodate(page)) {
2566 			set_buffer_uptodate(bh);
2567 			continue;
2568 		}
2569 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2570 			zero_user_segments(page, block_start, from,
2571 							to, block_end);
2572 			continue;
2573 		}
2574 		if (buffer_uptodate(bh))
2575 			continue;	/* reiserfs does this */
2576 		if (block_start < from || block_end > to) {
2577 			lock_buffer(bh);
2578 			bh->b_end_io = end_buffer_read_nobh;
2579 			submit_bh(READ, bh);
2580 			nr_reads++;
2581 		}
2582 	}
2583 
2584 	if (nr_reads) {
2585 		/*
2586 		 * The page is locked, so these buffers are protected from
2587 		 * any VM or truncate activity.  Hence we don't need to care
2588 		 * for the buffer_head refcounts.
2589 		 */
2590 		for (bh = head; bh; bh = bh->b_this_page) {
2591 			wait_on_buffer(bh);
2592 			if (!buffer_uptodate(bh))
2593 				ret = -EIO;
2594 		}
2595 		if (ret)
2596 			goto failed;
2597 	}
2598 
2599 	if (is_mapped_to_disk)
2600 		SetPageMappedToDisk(page);
2601 
2602 	*fsdata = head; /* to be released by nobh_write_end */
2603 
2604 	return 0;
2605 
2606 failed:
2607 	BUG_ON(!ret);
2608 	/*
2609 	 * Error recovery is a bit difficult. We need to zero out blocks that
2610 	 * were newly allocated, and dirty them to ensure they get written out.
2611 	 * Buffers need to be attached to the page at this point, otherwise
2612 	 * the handling of potential IO errors during writeout would be hard
2613 	 * (could try doing synchronous writeout, but what if that fails too?)
2614 	 */
2615 	attach_nobh_buffers(page, head);
2616 	page_zero_new_buffers(page, from, to);
2617 
2618 out_release:
2619 	unlock_page(page);
2620 	page_cache_release(page);
2621 	*pagep = NULL;
2622 
2623 	return ret;
2624 }
2625 EXPORT_SYMBOL(nobh_write_begin);
2626 
2627 int nobh_write_end(struct file *file, struct address_space *mapping,
2628 			loff_t pos, unsigned len, unsigned copied,
2629 			struct page *page, void *fsdata)
2630 {
2631 	struct inode *inode = page->mapping->host;
2632 	struct buffer_head *head = fsdata;
2633 	struct buffer_head *bh;
2634 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2635 
2636 	if (unlikely(copied < len) && head)
2637 		attach_nobh_buffers(page, head);
2638 	if (page_has_buffers(page))
2639 		return generic_write_end(file, mapping, pos, len,
2640 					copied, page, fsdata);
2641 
2642 	SetPageUptodate(page);
2643 	set_page_dirty(page);
2644 	if (pos+copied > inode->i_size) {
2645 		i_size_write(inode, pos+copied);
2646 		mark_inode_dirty(inode);
2647 	}
2648 
2649 	unlock_page(page);
2650 	page_cache_release(page);
2651 
2652 	while (head) {
2653 		bh = head;
2654 		head = head->b_this_page;
2655 		free_buffer_head(bh);
2656 	}
2657 
2658 	return copied;
2659 }
2660 EXPORT_SYMBOL(nobh_write_end);
2661 
2662 /*
2663  * nobh_writepage() - based on block_full_write_page() except
2664  * that it tries to operate without attaching bufferheads to
2665  * the page.
2666  */
2667 int nobh_writepage(struct page *page, get_block_t *get_block,
2668 			struct writeback_control *wbc)
2669 {
2670 	struct inode * const inode = page->mapping->host;
2671 	loff_t i_size = i_size_read(inode);
2672 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2673 	unsigned offset;
2674 	int ret;
2675 
2676 	/* Is the page fully inside i_size? */
2677 	if (page->index < end_index)
2678 		goto out;
2679 
2680 	/* Is the page fully outside i_size? (truncate in progress) */
2681 	offset = i_size & (PAGE_CACHE_SIZE-1);
2682 	if (page->index >= end_index+1 || !offset) {
2683 		/*
2684 		 * The page may have dirty, unmapped buffers.  For example,
2685 		 * they may have been added in ext3_writepage().  Make them
2686 		 * freeable here, so the page does not leak.
2687 		 */
2688 #if 0
2689 		/* Not really sure about this  - do we need this ? */
2690 		if (page->mapping->a_ops->invalidatepage)
2691 			page->mapping->a_ops->invalidatepage(page, offset);
2692 #endif
2693 		unlock_page(page);
2694 		return 0; /* don't care */
2695 	}
2696 
2697 	/*
2698 	 * The page straddles i_size.  It must be zeroed out on each and every
2699 	 * writepage invocation because it may be mmapped.  "A file is mapped
2700 	 * in multiples of the page size.  For a file that is not a multiple of
2701 	 * the  page size, the remaining memory is zeroed when mapped, and
2702 	 * writes to that region are not written out to the file."
2703 	 */
2704 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2705 out:
2706 	ret = mpage_writepage(page, get_block, wbc);
2707 	if (ret == -EAGAIN)
2708 		ret = __block_write_full_page(inode, page, get_block, wbc,
2709 					      end_buffer_async_write);
2710 	return ret;
2711 }
2712 EXPORT_SYMBOL(nobh_writepage);
2713 
2714 int nobh_truncate_page(struct address_space *mapping,
2715 			loff_t from, get_block_t *get_block)
2716 {
2717 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2718 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2719 	unsigned blocksize;
2720 	sector_t iblock;
2721 	unsigned length, pos;
2722 	struct inode *inode = mapping->host;
2723 	struct page *page;
2724 	struct buffer_head map_bh;
2725 	int err;
2726 
2727 	blocksize = 1 << inode->i_blkbits;
2728 	length = offset & (blocksize - 1);
2729 
2730 	/* Block boundary? Nothing to do */
2731 	if (!length)
2732 		return 0;
2733 
2734 	length = blocksize - length;
2735 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2736 
2737 	page = grab_cache_page(mapping, index);
2738 	err = -ENOMEM;
2739 	if (!page)
2740 		goto out;
2741 
2742 	if (page_has_buffers(page)) {
2743 has_buffers:
2744 		unlock_page(page);
2745 		page_cache_release(page);
2746 		return block_truncate_page(mapping, from, get_block);
2747 	}
2748 
2749 	/* Find the buffer that contains "offset" */
2750 	pos = blocksize;
2751 	while (offset >= pos) {
2752 		iblock++;
2753 		pos += blocksize;
2754 	}
2755 
2756 	map_bh.b_size = blocksize;
2757 	map_bh.b_state = 0;
2758 	err = get_block(inode, iblock, &map_bh, 0);
2759 	if (err)
2760 		goto unlock;
2761 	/* unmapped? It's a hole - nothing to do */
2762 	if (!buffer_mapped(&map_bh))
2763 		goto unlock;
2764 
2765 	/* Ok, it's mapped. Make sure it's up-to-date */
2766 	if (!PageUptodate(page)) {
2767 		err = mapping->a_ops->readpage(NULL, page);
2768 		if (err) {
2769 			page_cache_release(page);
2770 			goto out;
2771 		}
2772 		lock_page(page);
2773 		if (!PageUptodate(page)) {
2774 			err = -EIO;
2775 			goto unlock;
2776 		}
2777 		if (page_has_buffers(page))
2778 			goto has_buffers;
2779 	}
2780 	zero_user(page, offset, length);
2781 	set_page_dirty(page);
2782 	err = 0;
2783 
2784 unlock:
2785 	unlock_page(page);
2786 	page_cache_release(page);
2787 out:
2788 	return err;
2789 }
2790 EXPORT_SYMBOL(nobh_truncate_page);
2791 
2792 int block_truncate_page(struct address_space *mapping,
2793 			loff_t from, get_block_t *get_block)
2794 {
2795 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2796 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2797 	unsigned blocksize;
2798 	sector_t iblock;
2799 	unsigned length, pos;
2800 	struct inode *inode = mapping->host;
2801 	struct page *page;
2802 	struct buffer_head *bh;
2803 	int err;
2804 
2805 	blocksize = 1 << inode->i_blkbits;
2806 	length = offset & (blocksize - 1);
2807 
2808 	/* Block boundary? Nothing to do */
2809 	if (!length)
2810 		return 0;
2811 
2812 	length = blocksize - length;
2813 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2814 
2815 	page = grab_cache_page(mapping, index);
2816 	err = -ENOMEM;
2817 	if (!page)
2818 		goto out;
2819 
2820 	if (!page_has_buffers(page))
2821 		create_empty_buffers(page, blocksize, 0);
2822 
2823 	/* Find the buffer that contains "offset" */
2824 	bh = page_buffers(page);
2825 	pos = blocksize;
2826 	while (offset >= pos) {
2827 		bh = bh->b_this_page;
2828 		iblock++;
2829 		pos += blocksize;
2830 	}
2831 
2832 	err = 0;
2833 	if (!buffer_mapped(bh)) {
2834 		WARN_ON(bh->b_size != blocksize);
2835 		err = get_block(inode, iblock, bh, 0);
2836 		if (err)
2837 			goto unlock;
2838 		/* unmapped? It's a hole - nothing to do */
2839 		if (!buffer_mapped(bh))
2840 			goto unlock;
2841 	}
2842 
2843 	/* Ok, it's mapped. Make sure it's up-to-date */
2844 	if (PageUptodate(page))
2845 		set_buffer_uptodate(bh);
2846 
2847 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2848 		err = -EIO;
2849 		ll_rw_block(READ, 1, &bh);
2850 		wait_on_buffer(bh);
2851 		/* Uhhuh. Read error. Complain and punt. */
2852 		if (!buffer_uptodate(bh))
2853 			goto unlock;
2854 	}
2855 
2856 	zero_user(page, offset, length);
2857 	mark_buffer_dirty(bh);
2858 	err = 0;
2859 
2860 unlock:
2861 	unlock_page(page);
2862 	page_cache_release(page);
2863 out:
2864 	return err;
2865 }
2866 EXPORT_SYMBOL(block_truncate_page);
2867 
2868 /*
2869  * The generic ->writepage function for buffer-backed address_spaces
2870  * this form passes in the end_io handler used to finish the IO.
2871  */
2872 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2873 			struct writeback_control *wbc, bh_end_io_t *handler)
2874 {
2875 	struct inode * const inode = page->mapping->host;
2876 	loff_t i_size = i_size_read(inode);
2877 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2878 	unsigned offset;
2879 
2880 	/* Is the page fully inside i_size? */
2881 	if (page->index < end_index)
2882 		return __block_write_full_page(inode, page, get_block, wbc,
2883 					       handler);
2884 
2885 	/* Is the page fully outside i_size? (truncate in progress) */
2886 	offset = i_size & (PAGE_CACHE_SIZE-1);
2887 	if (page->index >= end_index+1 || !offset) {
2888 		/*
2889 		 * The page may have dirty, unmapped buffers.  For example,
2890 		 * they may have been added in ext3_writepage().  Make them
2891 		 * freeable here, so the page does not leak.
2892 		 */
2893 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2894 		unlock_page(page);
2895 		return 0; /* don't care */
2896 	}
2897 
2898 	/*
2899 	 * The page straddles i_size.  It must be zeroed out on each and every
2900 	 * writepage invocation because it may be mmapped.  "A file is mapped
2901 	 * in multiples of the page size.  For a file that is not a multiple of
2902 	 * the  page size, the remaining memory is zeroed when mapped, and
2903 	 * writes to that region are not written out to the file."
2904 	 */
2905 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2906 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2907 }
2908 EXPORT_SYMBOL(block_write_full_page_endio);
2909 
2910 /*
2911  * The generic ->writepage function for buffer-backed address_spaces
2912  */
2913 int block_write_full_page(struct page *page, get_block_t *get_block,
2914 			struct writeback_control *wbc)
2915 {
2916 	return block_write_full_page_endio(page, get_block, wbc,
2917 					   end_buffer_async_write);
2918 }
2919 EXPORT_SYMBOL(block_write_full_page);
2920 
2921 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2922 			    get_block_t *get_block)
2923 {
2924 	struct buffer_head tmp;
2925 	struct inode *inode = mapping->host;
2926 	tmp.b_state = 0;
2927 	tmp.b_blocknr = 0;
2928 	tmp.b_size = 1 << inode->i_blkbits;
2929 	get_block(inode, block, &tmp, 0);
2930 	return tmp.b_blocknr;
2931 }
2932 EXPORT_SYMBOL(generic_block_bmap);
2933 
2934 static void end_bio_bh_io_sync(struct bio *bio, int err)
2935 {
2936 	struct buffer_head *bh = bio->bi_private;
2937 
2938 	if (err == -EOPNOTSUPP) {
2939 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2940 	}
2941 
2942 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2943 		set_bit(BH_Quiet, &bh->b_state);
2944 
2945 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2946 	bio_put(bio);
2947 }
2948 
2949 /*
2950  * This allows us to do IO even on the odd last sectors
2951  * of a device, even if the bh block size is some multiple
2952  * of the physical sector size.
2953  *
2954  * We'll just truncate the bio to the size of the device,
2955  * and clear the end of the buffer head manually.
2956  *
2957  * Truly out-of-range accesses will turn into actual IO
2958  * errors, this only handles the "we need to be able to
2959  * do IO at the final sector" case.
2960  */
2961 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2962 {
2963 	sector_t maxsector;
2964 	unsigned bytes;
2965 
2966 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2967 	if (!maxsector)
2968 		return;
2969 
2970 	/*
2971 	 * If the *whole* IO is past the end of the device,
2972 	 * let it through, and the IO layer will turn it into
2973 	 * an EIO.
2974 	 */
2975 	if (unlikely(bio->bi_sector >= maxsector))
2976 		return;
2977 
2978 	maxsector -= bio->bi_sector;
2979 	bytes = bio->bi_size;
2980 	if (likely((bytes >> 9) <= maxsector))
2981 		return;
2982 
2983 	/* Uhhuh. We've got a bh that straddles the device size! */
2984 	bytes = maxsector << 9;
2985 
2986 	/* Truncate the bio.. */
2987 	bio->bi_size = bytes;
2988 	bio->bi_io_vec[0].bv_len = bytes;
2989 
2990 	/* ..and clear the end of the buffer for reads */
2991 	if ((rw & RW_MASK) == READ) {
2992 		void *kaddr = kmap_atomic(bh->b_page);
2993 		memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2994 		kunmap_atomic(kaddr);
2995 		flush_dcache_page(bh->b_page);
2996 	}
2997 }
2998 
2999 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3000 {
3001 	struct bio *bio;
3002 	int ret = 0;
3003 
3004 	BUG_ON(!buffer_locked(bh));
3005 	BUG_ON(!buffer_mapped(bh));
3006 	BUG_ON(!bh->b_end_io);
3007 	BUG_ON(buffer_delay(bh));
3008 	BUG_ON(buffer_unwritten(bh));
3009 
3010 	/*
3011 	 * Only clear out a write error when rewriting
3012 	 */
3013 	if (test_set_buffer_req(bh) && (rw & WRITE))
3014 		clear_buffer_write_io_error(bh);
3015 
3016 	/*
3017 	 * from here on down, it's all bio -- do the initial mapping,
3018 	 * submit_bio -> generic_make_request may further map this bio around
3019 	 */
3020 	bio = bio_alloc(GFP_NOIO, 1);
3021 
3022 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3023 	bio->bi_bdev = bh->b_bdev;
3024 	bio->bi_io_vec[0].bv_page = bh->b_page;
3025 	bio->bi_io_vec[0].bv_len = bh->b_size;
3026 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3027 
3028 	bio->bi_vcnt = 1;
3029 	bio->bi_size = bh->b_size;
3030 
3031 	bio->bi_end_io = end_bio_bh_io_sync;
3032 	bio->bi_private = bh;
3033 	bio->bi_flags |= bio_flags;
3034 
3035 	/* Take care of bh's that straddle the end of the device */
3036 	guard_bh_eod(rw, bio, bh);
3037 
3038 	if (buffer_meta(bh))
3039 		rw |= REQ_META;
3040 	if (buffer_prio(bh))
3041 		rw |= REQ_PRIO;
3042 
3043 	bio_get(bio);
3044 	submit_bio(rw, bio);
3045 
3046 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3047 		ret = -EOPNOTSUPP;
3048 
3049 	bio_put(bio);
3050 	return ret;
3051 }
3052 EXPORT_SYMBOL_GPL(_submit_bh);
3053 
3054 int submit_bh(int rw, struct buffer_head *bh)
3055 {
3056 	return _submit_bh(rw, bh, 0);
3057 }
3058 EXPORT_SYMBOL(submit_bh);
3059 
3060 /**
3061  * ll_rw_block: low-level access to block devices (DEPRECATED)
3062  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3063  * @nr: number of &struct buffer_heads in the array
3064  * @bhs: array of pointers to &struct buffer_head
3065  *
3066  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3067  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3068  * %READA option is described in the documentation for generic_make_request()
3069  * which ll_rw_block() calls.
3070  *
3071  * This function drops any buffer that it cannot get a lock on (with the
3072  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3073  * request, and any buffer that appears to be up-to-date when doing read
3074  * request.  Further it marks as clean buffers that are processed for
3075  * writing (the buffer cache won't assume that they are actually clean
3076  * until the buffer gets unlocked).
3077  *
3078  * ll_rw_block sets b_end_io to simple completion handler that marks
3079  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3080  * any waiters.
3081  *
3082  * All of the buffers must be for the same device, and must also be a
3083  * multiple of the current approved size for the device.
3084  */
3085 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3086 {
3087 	int i;
3088 
3089 	for (i = 0; i < nr; i++) {
3090 		struct buffer_head *bh = bhs[i];
3091 
3092 		if (!trylock_buffer(bh))
3093 			continue;
3094 		if (rw == WRITE) {
3095 			if (test_clear_buffer_dirty(bh)) {
3096 				bh->b_end_io = end_buffer_write_sync;
3097 				get_bh(bh);
3098 				submit_bh(WRITE, bh);
3099 				continue;
3100 			}
3101 		} else {
3102 			if (!buffer_uptodate(bh)) {
3103 				bh->b_end_io = end_buffer_read_sync;
3104 				get_bh(bh);
3105 				submit_bh(rw, bh);
3106 				continue;
3107 			}
3108 		}
3109 		unlock_buffer(bh);
3110 	}
3111 }
3112 EXPORT_SYMBOL(ll_rw_block);
3113 
3114 void write_dirty_buffer(struct buffer_head *bh, int rw)
3115 {
3116 	lock_buffer(bh);
3117 	if (!test_clear_buffer_dirty(bh)) {
3118 		unlock_buffer(bh);
3119 		return;
3120 	}
3121 	bh->b_end_io = end_buffer_write_sync;
3122 	get_bh(bh);
3123 	submit_bh(rw, bh);
3124 }
3125 EXPORT_SYMBOL(write_dirty_buffer);
3126 
3127 /*
3128  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3129  * and then start new I/O and then wait upon it.  The caller must have a ref on
3130  * the buffer_head.
3131  */
3132 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3133 {
3134 	int ret = 0;
3135 
3136 	WARN_ON(atomic_read(&bh->b_count) < 1);
3137 	lock_buffer(bh);
3138 	if (test_clear_buffer_dirty(bh)) {
3139 		get_bh(bh);
3140 		bh->b_end_io = end_buffer_write_sync;
3141 		ret = submit_bh(rw, bh);
3142 		wait_on_buffer(bh);
3143 		if (!ret && !buffer_uptodate(bh))
3144 			ret = -EIO;
3145 	} else {
3146 		unlock_buffer(bh);
3147 	}
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL(__sync_dirty_buffer);
3151 
3152 int sync_dirty_buffer(struct buffer_head *bh)
3153 {
3154 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3155 }
3156 EXPORT_SYMBOL(sync_dirty_buffer);
3157 
3158 /*
3159  * try_to_free_buffers() checks if all the buffers on this particular page
3160  * are unused, and releases them if so.
3161  *
3162  * Exclusion against try_to_free_buffers may be obtained by either
3163  * locking the page or by holding its mapping's private_lock.
3164  *
3165  * If the page is dirty but all the buffers are clean then we need to
3166  * be sure to mark the page clean as well.  This is because the page
3167  * may be against a block device, and a later reattachment of buffers
3168  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3169  * filesystem data on the same device.
3170  *
3171  * The same applies to regular filesystem pages: if all the buffers are
3172  * clean then we set the page clean and proceed.  To do that, we require
3173  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3174  * private_lock.
3175  *
3176  * try_to_free_buffers() is non-blocking.
3177  */
3178 static inline int buffer_busy(struct buffer_head *bh)
3179 {
3180 	return atomic_read(&bh->b_count) |
3181 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3182 }
3183 
3184 static int
3185 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3186 {
3187 	struct buffer_head *head = page_buffers(page);
3188 	struct buffer_head *bh;
3189 
3190 	bh = head;
3191 	do {
3192 		if (buffer_write_io_error(bh) && page->mapping)
3193 			set_bit(AS_EIO, &page->mapping->flags);
3194 		if (buffer_busy(bh))
3195 			goto failed;
3196 		bh = bh->b_this_page;
3197 	} while (bh != head);
3198 
3199 	do {
3200 		struct buffer_head *next = bh->b_this_page;
3201 
3202 		if (bh->b_assoc_map)
3203 			__remove_assoc_queue(bh);
3204 		bh = next;
3205 	} while (bh != head);
3206 	*buffers_to_free = head;
3207 	__clear_page_buffers(page);
3208 	return 1;
3209 failed:
3210 	return 0;
3211 }
3212 
3213 int try_to_free_buffers(struct page *page)
3214 {
3215 	struct address_space * const mapping = page->mapping;
3216 	struct buffer_head *buffers_to_free = NULL;
3217 	int ret = 0;
3218 
3219 	BUG_ON(!PageLocked(page));
3220 	if (PageWriteback(page))
3221 		return 0;
3222 
3223 	if (mapping == NULL) {		/* can this still happen? */
3224 		ret = drop_buffers(page, &buffers_to_free);
3225 		goto out;
3226 	}
3227 
3228 	spin_lock(&mapping->private_lock);
3229 	ret = drop_buffers(page, &buffers_to_free);
3230 
3231 	/*
3232 	 * If the filesystem writes its buffers by hand (eg ext3)
3233 	 * then we can have clean buffers against a dirty page.  We
3234 	 * clean the page here; otherwise the VM will never notice
3235 	 * that the filesystem did any IO at all.
3236 	 *
3237 	 * Also, during truncate, discard_buffer will have marked all
3238 	 * the page's buffers clean.  We discover that here and clean
3239 	 * the page also.
3240 	 *
3241 	 * private_lock must be held over this entire operation in order
3242 	 * to synchronise against __set_page_dirty_buffers and prevent the
3243 	 * dirty bit from being lost.
3244 	 */
3245 	if (ret)
3246 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3247 	spin_unlock(&mapping->private_lock);
3248 out:
3249 	if (buffers_to_free) {
3250 		struct buffer_head *bh = buffers_to_free;
3251 
3252 		do {
3253 			struct buffer_head *next = bh->b_this_page;
3254 			free_buffer_head(bh);
3255 			bh = next;
3256 		} while (bh != buffers_to_free);
3257 	}
3258 	return ret;
3259 }
3260 EXPORT_SYMBOL(try_to_free_buffers);
3261 
3262 /*
3263  * There are no bdflush tunables left.  But distributions are
3264  * still running obsolete flush daemons, so we terminate them here.
3265  *
3266  * Use of bdflush() is deprecated and will be removed in a future kernel.
3267  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3268  */
3269 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3270 {
3271 	static int msg_count;
3272 
3273 	if (!capable(CAP_SYS_ADMIN))
3274 		return -EPERM;
3275 
3276 	if (msg_count < 5) {
3277 		msg_count++;
3278 		printk(KERN_INFO
3279 			"warning: process `%s' used the obsolete bdflush"
3280 			" system call\n", current->comm);
3281 		printk(KERN_INFO "Fix your initscripts?\n");
3282 	}
3283 
3284 	if (func == 1)
3285 		do_exit(0);
3286 	return 0;
3287 }
3288 
3289 /*
3290  * Buffer-head allocation
3291  */
3292 static struct kmem_cache *bh_cachep __read_mostly;
3293 
3294 /*
3295  * Once the number of bh's in the machine exceeds this level, we start
3296  * stripping them in writeback.
3297  */
3298 static unsigned long max_buffer_heads;
3299 
3300 int buffer_heads_over_limit;
3301 
3302 struct bh_accounting {
3303 	int nr;			/* Number of live bh's */
3304 	int ratelimit;		/* Limit cacheline bouncing */
3305 };
3306 
3307 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3308 
3309 static void recalc_bh_state(void)
3310 {
3311 	int i;
3312 	int tot = 0;
3313 
3314 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3315 		return;
3316 	__this_cpu_write(bh_accounting.ratelimit, 0);
3317 	for_each_online_cpu(i)
3318 		tot += per_cpu(bh_accounting, i).nr;
3319 	buffer_heads_over_limit = (tot > max_buffer_heads);
3320 }
3321 
3322 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3323 {
3324 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3325 	if (ret) {
3326 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3327 		preempt_disable();
3328 		__this_cpu_inc(bh_accounting.nr);
3329 		recalc_bh_state();
3330 		preempt_enable();
3331 	}
3332 	return ret;
3333 }
3334 EXPORT_SYMBOL(alloc_buffer_head);
3335 
3336 void free_buffer_head(struct buffer_head *bh)
3337 {
3338 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3339 	kmem_cache_free(bh_cachep, bh);
3340 	preempt_disable();
3341 	__this_cpu_dec(bh_accounting.nr);
3342 	recalc_bh_state();
3343 	preempt_enable();
3344 }
3345 EXPORT_SYMBOL(free_buffer_head);
3346 
3347 static void buffer_exit_cpu(int cpu)
3348 {
3349 	int i;
3350 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3351 
3352 	for (i = 0; i < BH_LRU_SIZE; i++) {
3353 		brelse(b->bhs[i]);
3354 		b->bhs[i] = NULL;
3355 	}
3356 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3357 	per_cpu(bh_accounting, cpu).nr = 0;
3358 }
3359 
3360 static int buffer_cpu_notify(struct notifier_block *self,
3361 			      unsigned long action, void *hcpu)
3362 {
3363 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3364 		buffer_exit_cpu((unsigned long)hcpu);
3365 	return NOTIFY_OK;
3366 }
3367 
3368 /**
3369  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3370  * @bh: struct buffer_head
3371  *
3372  * Return true if the buffer is up-to-date and false,
3373  * with the buffer locked, if not.
3374  */
3375 int bh_uptodate_or_lock(struct buffer_head *bh)
3376 {
3377 	if (!buffer_uptodate(bh)) {
3378 		lock_buffer(bh);
3379 		if (!buffer_uptodate(bh))
3380 			return 0;
3381 		unlock_buffer(bh);
3382 	}
3383 	return 1;
3384 }
3385 EXPORT_SYMBOL(bh_uptodate_or_lock);
3386 
3387 /**
3388  * bh_submit_read - Submit a locked buffer for reading
3389  * @bh: struct buffer_head
3390  *
3391  * Returns zero on success and -EIO on error.
3392  */
3393 int bh_submit_read(struct buffer_head *bh)
3394 {
3395 	BUG_ON(!buffer_locked(bh));
3396 
3397 	if (buffer_uptodate(bh)) {
3398 		unlock_buffer(bh);
3399 		return 0;
3400 	}
3401 
3402 	get_bh(bh);
3403 	bh->b_end_io = end_buffer_read_sync;
3404 	submit_bh(READ, bh);
3405 	wait_on_buffer(bh);
3406 	if (buffer_uptodate(bh))
3407 		return 0;
3408 	return -EIO;
3409 }
3410 EXPORT_SYMBOL(bh_submit_read);
3411 
3412 void __init buffer_init(void)
3413 {
3414 	unsigned long nrpages;
3415 
3416 	bh_cachep = kmem_cache_create("buffer_head",
3417 			sizeof(struct buffer_head), 0,
3418 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3419 				SLAB_MEM_SPREAD),
3420 				NULL);
3421 
3422 	/*
3423 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3424 	 */
3425 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3426 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3427 	hotcpu_notifier(buffer_cpu_notify, 0);
3428 }
3429