xref: /openbmc/linux/fs/buffer.c (revision 87c2ce3b)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53 	bh->b_end_io = handler;
54 	bh->b_private = private;
55 }
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80 	clear_buffer_locked(bh);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 	ClearPagePrivate(page);
99 	set_page_private(page, 0);
100 	page_cache_release(page);
101 }
102 
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 	char b[BDEVNAME_SIZE];
106 
107 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 			bdevname(bh->b_bdev, b),
109 			(unsigned long long)bh->b_blocknr);
110 }
111 
112 /*
113  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
114  * unlock the buffer. This is what ll_rw_block uses too.
115  */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118 	if (uptodate) {
119 		set_buffer_uptodate(bh);
120 	} else {
121 		/* This happens, due to failed READA attempts. */
122 		clear_buffer_uptodate(bh);
123 	}
124 	unlock_buffer(bh);
125 	put_bh(bh);
126 }
127 
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130 	char b[BDEVNAME_SIZE];
131 
132 	if (uptodate) {
133 		set_buffer_uptodate(bh);
134 	} else {
135 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 			buffer_io_error(bh);
137 			printk(KERN_WARNING "lost page write due to "
138 					"I/O error on %s\n",
139 				       bdevname(bh->b_bdev, b));
140 		}
141 		set_buffer_write_io_error(bh);
142 		clear_buffer_uptodate(bh);
143 	}
144 	unlock_buffer(bh);
145 	put_bh(bh);
146 }
147 
148 /*
149  * Write out and wait upon all the dirty data associated with a block
150  * device via its mapping.  Does not take the superblock lock.
151  */
152 int sync_blockdev(struct block_device *bdev)
153 {
154 	int ret = 0;
155 
156 	if (bdev)
157 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158 	return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161 
162 /*
163  * Write out and wait upon all dirty data associated with this
164  * superblock.  Filesystem data as well as the underlying block
165  * device.  Takes the superblock lock.
166  */
167 int fsync_super(struct super_block *sb)
168 {
169 	sync_inodes_sb(sb, 0);
170 	DQUOT_SYNC(sb);
171 	lock_super(sb);
172 	if (sb->s_dirt && sb->s_op->write_super)
173 		sb->s_op->write_super(sb);
174 	unlock_super(sb);
175 	if (sb->s_op->sync_fs)
176 		sb->s_op->sync_fs(sb, 1);
177 	sync_blockdev(sb->s_bdev);
178 	sync_inodes_sb(sb, 1);
179 
180 	return sync_blockdev(sb->s_bdev);
181 }
182 
183 /*
184  * Write out and wait upon all dirty data associated with this
185  * device.   Filesystem data as well as the underlying block
186  * device.  Takes the superblock lock.
187  */
188 int fsync_bdev(struct block_device *bdev)
189 {
190 	struct super_block *sb = get_super(bdev);
191 	if (sb) {
192 		int res = fsync_super(sb);
193 		drop_super(sb);
194 		return res;
195 	}
196 	return sync_blockdev(bdev);
197 }
198 
199 /**
200  * freeze_bdev  --  lock a filesystem and force it into a consistent state
201  * @bdev:	blockdevice to lock
202  *
203  * This takes the block device bd_mount_sem to make sure no new mounts
204  * happen on bdev until thaw_bdev() is called.
205  * If a superblock is found on this device, we take the s_umount semaphore
206  * on it to make sure nobody unmounts until the snapshot creation is done.
207  */
208 struct super_block *freeze_bdev(struct block_device *bdev)
209 {
210 	struct super_block *sb;
211 
212 	down(&bdev->bd_mount_sem);
213 	sb = get_super(bdev);
214 	if (sb && !(sb->s_flags & MS_RDONLY)) {
215 		sb->s_frozen = SB_FREEZE_WRITE;
216 		smp_wmb();
217 
218 		sync_inodes_sb(sb, 0);
219 		DQUOT_SYNC(sb);
220 
221 		lock_super(sb);
222 		if (sb->s_dirt && sb->s_op->write_super)
223 			sb->s_op->write_super(sb);
224 		unlock_super(sb);
225 
226 		if (sb->s_op->sync_fs)
227 			sb->s_op->sync_fs(sb, 1);
228 
229 		sync_blockdev(sb->s_bdev);
230 		sync_inodes_sb(sb, 1);
231 
232 		sb->s_frozen = SB_FREEZE_TRANS;
233 		smp_wmb();
234 
235 		sync_blockdev(sb->s_bdev);
236 
237 		if (sb->s_op->write_super_lockfs)
238 			sb->s_op->write_super_lockfs(sb);
239 	}
240 
241 	sync_blockdev(bdev);
242 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
243 }
244 EXPORT_SYMBOL(freeze_bdev);
245 
246 /**
247  * thaw_bdev  -- unlock filesystem
248  * @bdev:	blockdevice to unlock
249  * @sb:		associated superblock
250  *
251  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
252  */
253 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
254 {
255 	if (sb) {
256 		BUG_ON(sb->s_bdev != bdev);
257 
258 		if (sb->s_op->unlockfs)
259 			sb->s_op->unlockfs(sb);
260 		sb->s_frozen = SB_UNFROZEN;
261 		smp_wmb();
262 		wake_up(&sb->s_wait_unfrozen);
263 		drop_super(sb);
264 	}
265 
266 	up(&bdev->bd_mount_sem);
267 }
268 EXPORT_SYMBOL(thaw_bdev);
269 
270 /*
271  * sync everything.  Start out by waking pdflush, because that writes back
272  * all queues in parallel.
273  */
274 static void do_sync(unsigned long wait)
275 {
276 	wakeup_pdflush(0);
277 	sync_inodes(0);		/* All mappings, inodes and their blockdevs */
278 	DQUOT_SYNC(NULL);
279 	sync_supers();		/* Write the superblocks */
280 	sync_filesystems(0);	/* Start syncing the filesystems */
281 	sync_filesystems(wait);	/* Waitingly sync the filesystems */
282 	sync_inodes(wait);	/* Mappings, inodes and blockdevs, again. */
283 	if (!wait)
284 		printk("Emergency Sync complete\n");
285 	if (unlikely(laptop_mode))
286 		laptop_sync_completion();
287 }
288 
289 asmlinkage long sys_sync(void)
290 {
291 	do_sync(1);
292 	return 0;
293 }
294 
295 void emergency_sync(void)
296 {
297 	pdflush_operation(do_sync, 0);
298 }
299 
300 /*
301  * Generic function to fsync a file.
302  *
303  * filp may be NULL if called via the msync of a vma.
304  */
305 
306 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
307 {
308 	struct inode * inode = dentry->d_inode;
309 	struct super_block * sb;
310 	int ret, err;
311 
312 	/* sync the inode to buffers */
313 	ret = write_inode_now(inode, 0);
314 
315 	/* sync the superblock to buffers */
316 	sb = inode->i_sb;
317 	lock_super(sb);
318 	if (sb->s_op->write_super)
319 		sb->s_op->write_super(sb);
320 	unlock_super(sb);
321 
322 	/* .. finally sync the buffers to disk */
323 	err = sync_blockdev(sb->s_bdev);
324 	if (!ret)
325 		ret = err;
326 	return ret;
327 }
328 
329 static long do_fsync(unsigned int fd, int datasync)
330 {
331 	struct file * file;
332 	struct address_space *mapping;
333 	int ret, err;
334 
335 	ret = -EBADF;
336 	file = fget(fd);
337 	if (!file)
338 		goto out;
339 
340 	ret = -EINVAL;
341 	if (!file->f_op || !file->f_op->fsync) {
342 		/* Why?  We can still call filemap_fdatawrite */
343 		goto out_putf;
344 	}
345 
346 	mapping = file->f_mapping;
347 
348 	current->flags |= PF_SYNCWRITE;
349 	ret = filemap_fdatawrite(mapping);
350 
351 	/*
352 	 * We need to protect against concurrent writers,
353 	 * which could cause livelocks in fsync_buffers_list
354 	 */
355 	mutex_lock(&mapping->host->i_mutex);
356 	err = file->f_op->fsync(file, file->f_dentry, datasync);
357 	if (!ret)
358 		ret = err;
359 	mutex_unlock(&mapping->host->i_mutex);
360 	err = filemap_fdatawait(mapping);
361 	if (!ret)
362 		ret = err;
363 	current->flags &= ~PF_SYNCWRITE;
364 
365 out_putf:
366 	fput(file);
367 out:
368 	return ret;
369 }
370 
371 asmlinkage long sys_fsync(unsigned int fd)
372 {
373 	return do_fsync(fd, 0);
374 }
375 
376 asmlinkage long sys_fdatasync(unsigned int fd)
377 {
378 	return do_fsync(fd, 1);
379 }
380 
381 /*
382  * Various filesystems appear to want __find_get_block to be non-blocking.
383  * But it's the page lock which protects the buffers.  To get around this,
384  * we get exclusion from try_to_free_buffers with the blockdev mapping's
385  * private_lock.
386  *
387  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
388  * may be quite high.  This code could TryLock the page, and if that
389  * succeeds, there is no need to take private_lock. (But if
390  * private_lock is contended then so is mapping->tree_lock).
391  */
392 static struct buffer_head *
393 __find_get_block_slow(struct block_device *bdev, sector_t block)
394 {
395 	struct inode *bd_inode = bdev->bd_inode;
396 	struct address_space *bd_mapping = bd_inode->i_mapping;
397 	struct buffer_head *ret = NULL;
398 	pgoff_t index;
399 	struct buffer_head *bh;
400 	struct buffer_head *head;
401 	struct page *page;
402 	int all_mapped = 1;
403 
404 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
405 	page = find_get_page(bd_mapping, index);
406 	if (!page)
407 		goto out;
408 
409 	spin_lock(&bd_mapping->private_lock);
410 	if (!page_has_buffers(page))
411 		goto out_unlock;
412 	head = page_buffers(page);
413 	bh = head;
414 	do {
415 		if (bh->b_blocknr == block) {
416 			ret = bh;
417 			get_bh(bh);
418 			goto out_unlock;
419 		}
420 		if (!buffer_mapped(bh))
421 			all_mapped = 0;
422 		bh = bh->b_this_page;
423 	} while (bh != head);
424 
425 	/* we might be here because some of the buffers on this page are
426 	 * not mapped.  This is due to various races between
427 	 * file io on the block device and getblk.  It gets dealt with
428 	 * elsewhere, don't buffer_error if we had some unmapped buffers
429 	 */
430 	if (all_mapped) {
431 		printk("__find_get_block_slow() failed. "
432 			"block=%llu, b_blocknr=%llu\n",
433 			(unsigned long long)block, (unsigned long long)bh->b_blocknr);
434 		printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
435 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
436 	}
437 out_unlock:
438 	spin_unlock(&bd_mapping->private_lock);
439 	page_cache_release(page);
440 out:
441 	return ret;
442 }
443 
444 /* If invalidate_buffers() will trash dirty buffers, it means some kind
445    of fs corruption is going on. Trashing dirty data always imply losing
446    information that was supposed to be just stored on the physical layer
447    by the user.
448 
449    Thus invalidate_buffers in general usage is not allwowed to trash
450    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
451    be preserved.  These buffers are simply skipped.
452 
453    We also skip buffers which are still in use.  For example this can
454    happen if a userspace program is reading the block device.
455 
456    NOTE: In the case where the user removed a removable-media-disk even if
457    there's still dirty data not synced on disk (due a bug in the device driver
458    or due an error of the user), by not destroying the dirty buffers we could
459    generate corruption also on the next media inserted, thus a parameter is
460    necessary to handle this case in the most safe way possible (trying
461    to not corrupt also the new disk inserted with the data belonging to
462    the old now corrupted disk). Also for the ramdisk the natural thing
463    to do in order to release the ramdisk memory is to destroy dirty buffers.
464 
465    These are two special cases. Normal usage imply the device driver
466    to issue a sync on the device (without waiting I/O completion) and
467    then an invalidate_buffers call that doesn't trash dirty buffers.
468 
469    For handling cache coherency with the blkdev pagecache the 'update' case
470    is been introduced. It is needed to re-read from disk any pinned
471    buffer. NOTE: re-reading from disk is destructive so we can do it only
472    when we assume nobody is changing the buffercache under our I/O and when
473    we think the disk contains more recent information than the buffercache.
474    The update == 1 pass marks the buffers we need to update, the update == 2
475    pass does the actual I/O. */
476 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
477 {
478 	invalidate_bh_lrus();
479 	/*
480 	 * FIXME: what about destroy_dirty_buffers?
481 	 * We really want to use invalidate_inode_pages2() for
482 	 * that, but not until that's cleaned up.
483 	 */
484 	invalidate_inode_pages(bdev->bd_inode->i_mapping);
485 }
486 
487 /*
488  * Kick pdflush then try to free up some ZONE_NORMAL memory.
489  */
490 static void free_more_memory(void)
491 {
492 	struct zone **zones;
493 	pg_data_t *pgdat;
494 
495 	wakeup_pdflush(1024);
496 	yield();
497 
498 	for_each_pgdat(pgdat) {
499 		zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
500 		if (*zones)
501 			try_to_free_pages(zones, GFP_NOFS);
502 	}
503 }
504 
505 /*
506  * I/O completion handler for block_read_full_page() - pages
507  * which come unlocked at the end of I/O.
508  */
509 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
510 {
511 	unsigned long flags;
512 	struct buffer_head *first;
513 	struct buffer_head *tmp;
514 	struct page *page;
515 	int page_uptodate = 1;
516 
517 	BUG_ON(!buffer_async_read(bh));
518 
519 	page = bh->b_page;
520 	if (uptodate) {
521 		set_buffer_uptodate(bh);
522 	} else {
523 		clear_buffer_uptodate(bh);
524 		if (printk_ratelimit())
525 			buffer_io_error(bh);
526 		SetPageError(page);
527 	}
528 
529 	/*
530 	 * Be _very_ careful from here on. Bad things can happen if
531 	 * two buffer heads end IO at almost the same time and both
532 	 * decide that the page is now completely done.
533 	 */
534 	first = page_buffers(page);
535 	local_irq_save(flags);
536 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
537 	clear_buffer_async_read(bh);
538 	unlock_buffer(bh);
539 	tmp = bh;
540 	do {
541 		if (!buffer_uptodate(tmp))
542 			page_uptodate = 0;
543 		if (buffer_async_read(tmp)) {
544 			BUG_ON(!buffer_locked(tmp));
545 			goto still_busy;
546 		}
547 		tmp = tmp->b_this_page;
548 	} while (tmp != bh);
549 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
550 	local_irq_restore(flags);
551 
552 	/*
553 	 * If none of the buffers had errors and they are all
554 	 * uptodate then we can set the page uptodate.
555 	 */
556 	if (page_uptodate && !PageError(page))
557 		SetPageUptodate(page);
558 	unlock_page(page);
559 	return;
560 
561 still_busy:
562 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
563 	local_irq_restore(flags);
564 	return;
565 }
566 
567 /*
568  * Completion handler for block_write_full_page() - pages which are unlocked
569  * during I/O, and which have PageWriteback cleared upon I/O completion.
570  */
571 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
572 {
573 	char b[BDEVNAME_SIZE];
574 	unsigned long flags;
575 	struct buffer_head *first;
576 	struct buffer_head *tmp;
577 	struct page *page;
578 
579 	BUG_ON(!buffer_async_write(bh));
580 
581 	page = bh->b_page;
582 	if (uptodate) {
583 		set_buffer_uptodate(bh);
584 	} else {
585 		if (printk_ratelimit()) {
586 			buffer_io_error(bh);
587 			printk(KERN_WARNING "lost page write due to "
588 					"I/O error on %s\n",
589 			       bdevname(bh->b_bdev, b));
590 		}
591 		set_bit(AS_EIO, &page->mapping->flags);
592 		clear_buffer_uptodate(bh);
593 		SetPageError(page);
594 	}
595 
596 	first = page_buffers(page);
597 	local_irq_save(flags);
598 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
599 
600 	clear_buffer_async_write(bh);
601 	unlock_buffer(bh);
602 	tmp = bh->b_this_page;
603 	while (tmp != bh) {
604 		if (buffer_async_write(tmp)) {
605 			BUG_ON(!buffer_locked(tmp));
606 			goto still_busy;
607 		}
608 		tmp = tmp->b_this_page;
609 	}
610 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
611 	local_irq_restore(flags);
612 	end_page_writeback(page);
613 	return;
614 
615 still_busy:
616 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
617 	local_irq_restore(flags);
618 	return;
619 }
620 
621 /*
622  * If a page's buffers are under async readin (end_buffer_async_read
623  * completion) then there is a possibility that another thread of
624  * control could lock one of the buffers after it has completed
625  * but while some of the other buffers have not completed.  This
626  * locked buffer would confuse end_buffer_async_read() into not unlocking
627  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
628  * that this buffer is not under async I/O.
629  *
630  * The page comes unlocked when it has no locked buffer_async buffers
631  * left.
632  *
633  * PageLocked prevents anyone starting new async I/O reads any of
634  * the buffers.
635  *
636  * PageWriteback is used to prevent simultaneous writeout of the same
637  * page.
638  *
639  * PageLocked prevents anyone from starting writeback of a page which is
640  * under read I/O (PageWriteback is only ever set against a locked page).
641  */
642 static void mark_buffer_async_read(struct buffer_head *bh)
643 {
644 	bh->b_end_io = end_buffer_async_read;
645 	set_buffer_async_read(bh);
646 }
647 
648 void mark_buffer_async_write(struct buffer_head *bh)
649 {
650 	bh->b_end_io = end_buffer_async_write;
651 	set_buffer_async_write(bh);
652 }
653 EXPORT_SYMBOL(mark_buffer_async_write);
654 
655 
656 /*
657  * fs/buffer.c contains helper functions for buffer-backed address space's
658  * fsync functions.  A common requirement for buffer-based filesystems is
659  * that certain data from the backing blockdev needs to be written out for
660  * a successful fsync().  For example, ext2 indirect blocks need to be
661  * written back and waited upon before fsync() returns.
662  *
663  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
664  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
665  * management of a list of dependent buffers at ->i_mapping->private_list.
666  *
667  * Locking is a little subtle: try_to_free_buffers() will remove buffers
668  * from their controlling inode's queue when they are being freed.  But
669  * try_to_free_buffers() will be operating against the *blockdev* mapping
670  * at the time, not against the S_ISREG file which depends on those buffers.
671  * So the locking for private_list is via the private_lock in the address_space
672  * which backs the buffers.  Which is different from the address_space
673  * against which the buffers are listed.  So for a particular address_space,
674  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
675  * mapping->private_list will always be protected by the backing blockdev's
676  * ->private_lock.
677  *
678  * Which introduces a requirement: all buffers on an address_space's
679  * ->private_list must be from the same address_space: the blockdev's.
680  *
681  * address_spaces which do not place buffers at ->private_list via these
682  * utility functions are free to use private_lock and private_list for
683  * whatever they want.  The only requirement is that list_empty(private_list)
684  * be true at clear_inode() time.
685  *
686  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
687  * filesystems should do that.  invalidate_inode_buffers() should just go
688  * BUG_ON(!list_empty).
689  *
690  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
691  * take an address_space, not an inode.  And it should be called
692  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
693  * queued up.
694  *
695  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
696  * list if it is already on a list.  Because if the buffer is on a list,
697  * it *must* already be on the right one.  If not, the filesystem is being
698  * silly.  This will save a ton of locking.  But first we have to ensure
699  * that buffers are taken *off* the old inode's list when they are freed
700  * (presumably in truncate).  That requires careful auditing of all
701  * filesystems (do it inside bforget()).  It could also be done by bringing
702  * b_inode back.
703  */
704 
705 /*
706  * The buffer's backing address_space's private_lock must be held
707  */
708 static inline void __remove_assoc_queue(struct buffer_head *bh)
709 {
710 	list_del_init(&bh->b_assoc_buffers);
711 }
712 
713 int inode_has_buffers(struct inode *inode)
714 {
715 	return !list_empty(&inode->i_data.private_list);
716 }
717 
718 /*
719  * osync is designed to support O_SYNC io.  It waits synchronously for
720  * all already-submitted IO to complete, but does not queue any new
721  * writes to the disk.
722  *
723  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
724  * you dirty the buffers, and then use osync_inode_buffers to wait for
725  * completion.  Any other dirty buffers which are not yet queued for
726  * write will not be flushed to disk by the osync.
727  */
728 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
729 {
730 	struct buffer_head *bh;
731 	struct list_head *p;
732 	int err = 0;
733 
734 	spin_lock(lock);
735 repeat:
736 	list_for_each_prev(p, list) {
737 		bh = BH_ENTRY(p);
738 		if (buffer_locked(bh)) {
739 			get_bh(bh);
740 			spin_unlock(lock);
741 			wait_on_buffer(bh);
742 			if (!buffer_uptodate(bh))
743 				err = -EIO;
744 			brelse(bh);
745 			spin_lock(lock);
746 			goto repeat;
747 		}
748 	}
749 	spin_unlock(lock);
750 	return err;
751 }
752 
753 /**
754  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
755  *                        buffers
756  * @mapping: the mapping which wants those buffers written
757  *
758  * Starts I/O against the buffers at mapping->private_list, and waits upon
759  * that I/O.
760  *
761  * Basically, this is a convenience function for fsync().
762  * @mapping is a file or directory which needs those buffers to be written for
763  * a successful fsync().
764  */
765 int sync_mapping_buffers(struct address_space *mapping)
766 {
767 	struct address_space *buffer_mapping = mapping->assoc_mapping;
768 
769 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
770 		return 0;
771 
772 	return fsync_buffers_list(&buffer_mapping->private_lock,
773 					&mapping->private_list);
774 }
775 EXPORT_SYMBOL(sync_mapping_buffers);
776 
777 /*
778  * Called when we've recently written block `bblock', and it is known that
779  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
780  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
781  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
782  */
783 void write_boundary_block(struct block_device *bdev,
784 			sector_t bblock, unsigned blocksize)
785 {
786 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
787 	if (bh) {
788 		if (buffer_dirty(bh))
789 			ll_rw_block(WRITE, 1, &bh);
790 		put_bh(bh);
791 	}
792 }
793 
794 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
795 {
796 	struct address_space *mapping = inode->i_mapping;
797 	struct address_space *buffer_mapping = bh->b_page->mapping;
798 
799 	mark_buffer_dirty(bh);
800 	if (!mapping->assoc_mapping) {
801 		mapping->assoc_mapping = buffer_mapping;
802 	} else {
803 		if (mapping->assoc_mapping != buffer_mapping)
804 			BUG();
805 	}
806 	if (list_empty(&bh->b_assoc_buffers)) {
807 		spin_lock(&buffer_mapping->private_lock);
808 		list_move_tail(&bh->b_assoc_buffers,
809 				&mapping->private_list);
810 		spin_unlock(&buffer_mapping->private_lock);
811 	}
812 }
813 EXPORT_SYMBOL(mark_buffer_dirty_inode);
814 
815 /*
816  * Add a page to the dirty page list.
817  *
818  * It is a sad fact of life that this function is called from several places
819  * deeply under spinlocking.  It may not sleep.
820  *
821  * If the page has buffers, the uptodate buffers are set dirty, to preserve
822  * dirty-state coherency between the page and the buffers.  It the page does
823  * not have buffers then when they are later attached they will all be set
824  * dirty.
825  *
826  * The buffers are dirtied before the page is dirtied.  There's a small race
827  * window in which a writepage caller may see the page cleanness but not the
828  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
829  * before the buffers, a concurrent writepage caller could clear the page dirty
830  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
831  * page on the dirty page list.
832  *
833  * We use private_lock to lock against try_to_free_buffers while using the
834  * page's buffer list.  Also use this to protect against clean buffers being
835  * added to the page after it was set dirty.
836  *
837  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
838  * address_space though.
839  */
840 int __set_page_dirty_buffers(struct page *page)
841 {
842 	struct address_space * const mapping = page->mapping;
843 
844 	spin_lock(&mapping->private_lock);
845 	if (page_has_buffers(page)) {
846 		struct buffer_head *head = page_buffers(page);
847 		struct buffer_head *bh = head;
848 
849 		do {
850 			set_buffer_dirty(bh);
851 			bh = bh->b_this_page;
852 		} while (bh != head);
853 	}
854 	spin_unlock(&mapping->private_lock);
855 
856 	if (!TestSetPageDirty(page)) {
857 		write_lock_irq(&mapping->tree_lock);
858 		if (page->mapping) {	/* Race with truncate? */
859 			if (mapping_cap_account_dirty(mapping))
860 				inc_page_state(nr_dirty);
861 			radix_tree_tag_set(&mapping->page_tree,
862 						page_index(page),
863 						PAGECACHE_TAG_DIRTY);
864 		}
865 		write_unlock_irq(&mapping->tree_lock);
866 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
867 	}
868 
869 	return 0;
870 }
871 EXPORT_SYMBOL(__set_page_dirty_buffers);
872 
873 /*
874  * Write out and wait upon a list of buffers.
875  *
876  * We have conflicting pressures: we want to make sure that all
877  * initially dirty buffers get waited on, but that any subsequently
878  * dirtied buffers don't.  After all, we don't want fsync to last
879  * forever if somebody is actively writing to the file.
880  *
881  * Do this in two main stages: first we copy dirty buffers to a
882  * temporary inode list, queueing the writes as we go.  Then we clean
883  * up, waiting for those writes to complete.
884  *
885  * During this second stage, any subsequent updates to the file may end
886  * up refiling the buffer on the original inode's dirty list again, so
887  * there is a chance we will end up with a buffer queued for write but
888  * not yet completed on that list.  So, as a final cleanup we go through
889  * the osync code to catch these locked, dirty buffers without requeuing
890  * any newly dirty buffers for write.
891  */
892 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
893 {
894 	struct buffer_head *bh;
895 	struct list_head tmp;
896 	int err = 0, err2;
897 
898 	INIT_LIST_HEAD(&tmp);
899 
900 	spin_lock(lock);
901 	while (!list_empty(list)) {
902 		bh = BH_ENTRY(list->next);
903 		list_del_init(&bh->b_assoc_buffers);
904 		if (buffer_dirty(bh) || buffer_locked(bh)) {
905 			list_add(&bh->b_assoc_buffers, &tmp);
906 			if (buffer_dirty(bh)) {
907 				get_bh(bh);
908 				spin_unlock(lock);
909 				/*
910 				 * Ensure any pending I/O completes so that
911 				 * ll_rw_block() actually writes the current
912 				 * contents - it is a noop if I/O is still in
913 				 * flight on potentially older contents.
914 				 */
915 				ll_rw_block(SWRITE, 1, &bh);
916 				brelse(bh);
917 				spin_lock(lock);
918 			}
919 		}
920 	}
921 
922 	while (!list_empty(&tmp)) {
923 		bh = BH_ENTRY(tmp.prev);
924 		__remove_assoc_queue(bh);
925 		get_bh(bh);
926 		spin_unlock(lock);
927 		wait_on_buffer(bh);
928 		if (!buffer_uptodate(bh))
929 			err = -EIO;
930 		brelse(bh);
931 		spin_lock(lock);
932 	}
933 
934 	spin_unlock(lock);
935 	err2 = osync_buffers_list(lock, list);
936 	if (err)
937 		return err;
938 	else
939 		return err2;
940 }
941 
942 /*
943  * Invalidate any and all dirty buffers on a given inode.  We are
944  * probably unmounting the fs, but that doesn't mean we have already
945  * done a sync().  Just drop the buffers from the inode list.
946  *
947  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
948  * assumes that all the buffers are against the blockdev.  Not true
949  * for reiserfs.
950  */
951 void invalidate_inode_buffers(struct inode *inode)
952 {
953 	if (inode_has_buffers(inode)) {
954 		struct address_space *mapping = &inode->i_data;
955 		struct list_head *list = &mapping->private_list;
956 		struct address_space *buffer_mapping = mapping->assoc_mapping;
957 
958 		spin_lock(&buffer_mapping->private_lock);
959 		while (!list_empty(list))
960 			__remove_assoc_queue(BH_ENTRY(list->next));
961 		spin_unlock(&buffer_mapping->private_lock);
962 	}
963 }
964 
965 /*
966  * Remove any clean buffers from the inode's buffer list.  This is called
967  * when we're trying to free the inode itself.  Those buffers can pin it.
968  *
969  * Returns true if all buffers were removed.
970  */
971 int remove_inode_buffers(struct inode *inode)
972 {
973 	int ret = 1;
974 
975 	if (inode_has_buffers(inode)) {
976 		struct address_space *mapping = &inode->i_data;
977 		struct list_head *list = &mapping->private_list;
978 		struct address_space *buffer_mapping = mapping->assoc_mapping;
979 
980 		spin_lock(&buffer_mapping->private_lock);
981 		while (!list_empty(list)) {
982 			struct buffer_head *bh = BH_ENTRY(list->next);
983 			if (buffer_dirty(bh)) {
984 				ret = 0;
985 				break;
986 			}
987 			__remove_assoc_queue(bh);
988 		}
989 		spin_unlock(&buffer_mapping->private_lock);
990 	}
991 	return ret;
992 }
993 
994 /*
995  * Create the appropriate buffers when given a page for data area and
996  * the size of each buffer.. Use the bh->b_this_page linked list to
997  * follow the buffers created.  Return NULL if unable to create more
998  * buffers.
999  *
1000  * The retry flag is used to differentiate async IO (paging, swapping)
1001  * which may not fail from ordinary buffer allocations.
1002  */
1003 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1004 		int retry)
1005 {
1006 	struct buffer_head *bh, *head;
1007 	long offset;
1008 
1009 try_again:
1010 	head = NULL;
1011 	offset = PAGE_SIZE;
1012 	while ((offset -= size) >= 0) {
1013 		bh = alloc_buffer_head(GFP_NOFS);
1014 		if (!bh)
1015 			goto no_grow;
1016 
1017 		bh->b_bdev = NULL;
1018 		bh->b_this_page = head;
1019 		bh->b_blocknr = -1;
1020 		head = bh;
1021 
1022 		bh->b_state = 0;
1023 		atomic_set(&bh->b_count, 0);
1024 		bh->b_size = size;
1025 
1026 		/* Link the buffer to its page */
1027 		set_bh_page(bh, page, offset);
1028 
1029 		bh->b_end_io = NULL;
1030 	}
1031 	return head;
1032 /*
1033  * In case anything failed, we just free everything we got.
1034  */
1035 no_grow:
1036 	if (head) {
1037 		do {
1038 			bh = head;
1039 			head = head->b_this_page;
1040 			free_buffer_head(bh);
1041 		} while (head);
1042 	}
1043 
1044 	/*
1045 	 * Return failure for non-async IO requests.  Async IO requests
1046 	 * are not allowed to fail, so we have to wait until buffer heads
1047 	 * become available.  But we don't want tasks sleeping with
1048 	 * partially complete buffers, so all were released above.
1049 	 */
1050 	if (!retry)
1051 		return NULL;
1052 
1053 	/* We're _really_ low on memory. Now we just
1054 	 * wait for old buffer heads to become free due to
1055 	 * finishing IO.  Since this is an async request and
1056 	 * the reserve list is empty, we're sure there are
1057 	 * async buffer heads in use.
1058 	 */
1059 	free_more_memory();
1060 	goto try_again;
1061 }
1062 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1063 
1064 static inline void
1065 link_dev_buffers(struct page *page, struct buffer_head *head)
1066 {
1067 	struct buffer_head *bh, *tail;
1068 
1069 	bh = head;
1070 	do {
1071 		tail = bh;
1072 		bh = bh->b_this_page;
1073 	} while (bh);
1074 	tail->b_this_page = head;
1075 	attach_page_buffers(page, head);
1076 }
1077 
1078 /*
1079  * Initialise the state of a blockdev page's buffers.
1080  */
1081 static void
1082 init_page_buffers(struct page *page, struct block_device *bdev,
1083 			sector_t block, int size)
1084 {
1085 	struct buffer_head *head = page_buffers(page);
1086 	struct buffer_head *bh = head;
1087 	int uptodate = PageUptodate(page);
1088 
1089 	do {
1090 		if (!buffer_mapped(bh)) {
1091 			init_buffer(bh, NULL, NULL);
1092 			bh->b_bdev = bdev;
1093 			bh->b_blocknr = block;
1094 			if (uptodate)
1095 				set_buffer_uptodate(bh);
1096 			set_buffer_mapped(bh);
1097 		}
1098 		block++;
1099 		bh = bh->b_this_page;
1100 	} while (bh != head);
1101 }
1102 
1103 /*
1104  * Create the page-cache page that contains the requested block.
1105  *
1106  * This is user purely for blockdev mappings.
1107  */
1108 static struct page *
1109 grow_dev_page(struct block_device *bdev, sector_t block,
1110 		pgoff_t index, int size)
1111 {
1112 	struct inode *inode = bdev->bd_inode;
1113 	struct page *page;
1114 	struct buffer_head *bh;
1115 
1116 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1117 	if (!page)
1118 		return NULL;
1119 
1120 	if (!PageLocked(page))
1121 		BUG();
1122 
1123 	if (page_has_buffers(page)) {
1124 		bh = page_buffers(page);
1125 		if (bh->b_size == size) {
1126 			init_page_buffers(page, bdev, block, size);
1127 			return page;
1128 		}
1129 		if (!try_to_free_buffers(page))
1130 			goto failed;
1131 	}
1132 
1133 	/*
1134 	 * Allocate some buffers for this page
1135 	 */
1136 	bh = alloc_page_buffers(page, size, 0);
1137 	if (!bh)
1138 		goto failed;
1139 
1140 	/*
1141 	 * Link the page to the buffers and initialise them.  Take the
1142 	 * lock to be atomic wrt __find_get_block(), which does not
1143 	 * run under the page lock.
1144 	 */
1145 	spin_lock(&inode->i_mapping->private_lock);
1146 	link_dev_buffers(page, bh);
1147 	init_page_buffers(page, bdev, block, size);
1148 	spin_unlock(&inode->i_mapping->private_lock);
1149 	return page;
1150 
1151 failed:
1152 	BUG();
1153 	unlock_page(page);
1154 	page_cache_release(page);
1155 	return NULL;
1156 }
1157 
1158 /*
1159  * Create buffers for the specified block device block's page.  If
1160  * that page was dirty, the buffers are set dirty also.
1161  *
1162  * Except that's a bug.  Attaching dirty buffers to a dirty
1163  * blockdev's page can result in filesystem corruption, because
1164  * some of those buffers may be aliases of filesystem data.
1165  * grow_dev_page() will go BUG() if this happens.
1166  */
1167 static inline int
1168 grow_buffers(struct block_device *bdev, sector_t block, int size)
1169 {
1170 	struct page *page;
1171 	pgoff_t index;
1172 	int sizebits;
1173 
1174 	sizebits = -1;
1175 	do {
1176 		sizebits++;
1177 	} while ((size << sizebits) < PAGE_SIZE);
1178 
1179 	index = block >> sizebits;
1180 	block = index << sizebits;
1181 
1182 	/* Create a page with the proper size buffers.. */
1183 	page = grow_dev_page(bdev, block, index, size);
1184 	if (!page)
1185 		return 0;
1186 	unlock_page(page);
1187 	page_cache_release(page);
1188 	return 1;
1189 }
1190 
1191 static struct buffer_head *
1192 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1193 {
1194 	/* Size must be multiple of hard sectorsize */
1195 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1196 			(size < 512 || size > PAGE_SIZE))) {
1197 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1198 					size);
1199 		printk(KERN_ERR "hardsect size: %d\n",
1200 					bdev_hardsect_size(bdev));
1201 
1202 		dump_stack();
1203 		return NULL;
1204 	}
1205 
1206 	for (;;) {
1207 		struct buffer_head * bh;
1208 
1209 		bh = __find_get_block(bdev, block, size);
1210 		if (bh)
1211 			return bh;
1212 
1213 		if (!grow_buffers(bdev, block, size))
1214 			free_more_memory();
1215 	}
1216 }
1217 
1218 /*
1219  * The relationship between dirty buffers and dirty pages:
1220  *
1221  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1222  * the page is tagged dirty in its radix tree.
1223  *
1224  * At all times, the dirtiness of the buffers represents the dirtiness of
1225  * subsections of the page.  If the page has buffers, the page dirty bit is
1226  * merely a hint about the true dirty state.
1227  *
1228  * When a page is set dirty in its entirety, all its buffers are marked dirty
1229  * (if the page has buffers).
1230  *
1231  * When a buffer is marked dirty, its page is dirtied, but the page's other
1232  * buffers are not.
1233  *
1234  * Also.  When blockdev buffers are explicitly read with bread(), they
1235  * individually become uptodate.  But their backing page remains not
1236  * uptodate - even if all of its buffers are uptodate.  A subsequent
1237  * block_read_full_page() against that page will discover all the uptodate
1238  * buffers, will set the page uptodate and will perform no I/O.
1239  */
1240 
1241 /**
1242  * mark_buffer_dirty - mark a buffer_head as needing writeout
1243  * @bh: the buffer_head to mark dirty
1244  *
1245  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1246  * backing page dirty, then tag the page as dirty in its address_space's radix
1247  * tree and then attach the address_space's inode to its superblock's dirty
1248  * inode list.
1249  *
1250  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1251  * mapping->tree_lock and the global inode_lock.
1252  */
1253 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1254 {
1255 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1256 		__set_page_dirty_nobuffers(bh->b_page);
1257 }
1258 
1259 /*
1260  * Decrement a buffer_head's reference count.  If all buffers against a page
1261  * have zero reference count, are clean and unlocked, and if the page is clean
1262  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1263  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1264  * a page but it ends up not being freed, and buffers may later be reattached).
1265  */
1266 void __brelse(struct buffer_head * buf)
1267 {
1268 	if (atomic_read(&buf->b_count)) {
1269 		put_bh(buf);
1270 		return;
1271 	}
1272 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1273 	WARN_ON(1);
1274 }
1275 
1276 /*
1277  * bforget() is like brelse(), except it discards any
1278  * potentially dirty data.
1279  */
1280 void __bforget(struct buffer_head *bh)
1281 {
1282 	clear_buffer_dirty(bh);
1283 	if (!list_empty(&bh->b_assoc_buffers)) {
1284 		struct address_space *buffer_mapping = bh->b_page->mapping;
1285 
1286 		spin_lock(&buffer_mapping->private_lock);
1287 		list_del_init(&bh->b_assoc_buffers);
1288 		spin_unlock(&buffer_mapping->private_lock);
1289 	}
1290 	__brelse(bh);
1291 }
1292 
1293 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1294 {
1295 	lock_buffer(bh);
1296 	if (buffer_uptodate(bh)) {
1297 		unlock_buffer(bh);
1298 		return bh;
1299 	} else {
1300 		get_bh(bh);
1301 		bh->b_end_io = end_buffer_read_sync;
1302 		submit_bh(READ, bh);
1303 		wait_on_buffer(bh);
1304 		if (buffer_uptodate(bh))
1305 			return bh;
1306 	}
1307 	brelse(bh);
1308 	return NULL;
1309 }
1310 
1311 /*
1312  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1313  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1314  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1315  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1316  * CPU's LRUs at the same time.
1317  *
1318  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1319  * sb_find_get_block().
1320  *
1321  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1322  * a local interrupt disable for that.
1323  */
1324 
1325 #define BH_LRU_SIZE	8
1326 
1327 struct bh_lru {
1328 	struct buffer_head *bhs[BH_LRU_SIZE];
1329 };
1330 
1331 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1332 
1333 #ifdef CONFIG_SMP
1334 #define bh_lru_lock()	local_irq_disable()
1335 #define bh_lru_unlock()	local_irq_enable()
1336 #else
1337 #define bh_lru_lock()	preempt_disable()
1338 #define bh_lru_unlock()	preempt_enable()
1339 #endif
1340 
1341 static inline void check_irqs_on(void)
1342 {
1343 #ifdef irqs_disabled
1344 	BUG_ON(irqs_disabled());
1345 #endif
1346 }
1347 
1348 /*
1349  * The LRU management algorithm is dopey-but-simple.  Sorry.
1350  */
1351 static void bh_lru_install(struct buffer_head *bh)
1352 {
1353 	struct buffer_head *evictee = NULL;
1354 	struct bh_lru *lru;
1355 
1356 	check_irqs_on();
1357 	bh_lru_lock();
1358 	lru = &__get_cpu_var(bh_lrus);
1359 	if (lru->bhs[0] != bh) {
1360 		struct buffer_head *bhs[BH_LRU_SIZE];
1361 		int in;
1362 		int out = 0;
1363 
1364 		get_bh(bh);
1365 		bhs[out++] = bh;
1366 		for (in = 0; in < BH_LRU_SIZE; in++) {
1367 			struct buffer_head *bh2 = lru->bhs[in];
1368 
1369 			if (bh2 == bh) {
1370 				__brelse(bh2);
1371 			} else {
1372 				if (out >= BH_LRU_SIZE) {
1373 					BUG_ON(evictee != NULL);
1374 					evictee = bh2;
1375 				} else {
1376 					bhs[out++] = bh2;
1377 				}
1378 			}
1379 		}
1380 		while (out < BH_LRU_SIZE)
1381 			bhs[out++] = NULL;
1382 		memcpy(lru->bhs, bhs, sizeof(bhs));
1383 	}
1384 	bh_lru_unlock();
1385 
1386 	if (evictee)
1387 		__brelse(evictee);
1388 }
1389 
1390 /*
1391  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1392  */
1393 static inline struct buffer_head *
1394 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1395 {
1396 	struct buffer_head *ret = NULL;
1397 	struct bh_lru *lru;
1398 	int i;
1399 
1400 	check_irqs_on();
1401 	bh_lru_lock();
1402 	lru = &__get_cpu_var(bh_lrus);
1403 	for (i = 0; i < BH_LRU_SIZE; i++) {
1404 		struct buffer_head *bh = lru->bhs[i];
1405 
1406 		if (bh && bh->b_bdev == bdev &&
1407 				bh->b_blocknr == block && bh->b_size == size) {
1408 			if (i) {
1409 				while (i) {
1410 					lru->bhs[i] = lru->bhs[i - 1];
1411 					i--;
1412 				}
1413 				lru->bhs[0] = bh;
1414 			}
1415 			get_bh(bh);
1416 			ret = bh;
1417 			break;
1418 		}
1419 	}
1420 	bh_lru_unlock();
1421 	return ret;
1422 }
1423 
1424 /*
1425  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1426  * it in the LRU and mark it as accessed.  If it is not present then return
1427  * NULL
1428  */
1429 struct buffer_head *
1430 __find_get_block(struct block_device *bdev, sector_t block, int size)
1431 {
1432 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1433 
1434 	if (bh == NULL) {
1435 		bh = __find_get_block_slow(bdev, block);
1436 		if (bh)
1437 			bh_lru_install(bh);
1438 	}
1439 	if (bh)
1440 		touch_buffer(bh);
1441 	return bh;
1442 }
1443 EXPORT_SYMBOL(__find_get_block);
1444 
1445 /*
1446  * __getblk will locate (and, if necessary, create) the buffer_head
1447  * which corresponds to the passed block_device, block and size. The
1448  * returned buffer has its reference count incremented.
1449  *
1450  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1451  * illegal block number, __getblk() will happily return a buffer_head
1452  * which represents the non-existent block.  Very weird.
1453  *
1454  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1455  * attempt is failing.  FIXME, perhaps?
1456  */
1457 struct buffer_head *
1458 __getblk(struct block_device *bdev, sector_t block, int size)
1459 {
1460 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1461 
1462 	might_sleep();
1463 	if (bh == NULL)
1464 		bh = __getblk_slow(bdev, block, size);
1465 	return bh;
1466 }
1467 EXPORT_SYMBOL(__getblk);
1468 
1469 /*
1470  * Do async read-ahead on a buffer..
1471  */
1472 void __breadahead(struct block_device *bdev, sector_t block, int size)
1473 {
1474 	struct buffer_head *bh = __getblk(bdev, block, size);
1475 	if (likely(bh)) {
1476 		ll_rw_block(READA, 1, &bh);
1477 		brelse(bh);
1478 	}
1479 }
1480 EXPORT_SYMBOL(__breadahead);
1481 
1482 /**
1483  *  __bread() - reads a specified block and returns the bh
1484  *  @bdev: the block_device to read from
1485  *  @block: number of block
1486  *  @size: size (in bytes) to read
1487  *
1488  *  Reads a specified block, and returns buffer head that contains it.
1489  *  It returns NULL if the block was unreadable.
1490  */
1491 struct buffer_head *
1492 __bread(struct block_device *bdev, sector_t block, int size)
1493 {
1494 	struct buffer_head *bh = __getblk(bdev, block, size);
1495 
1496 	if (likely(bh) && !buffer_uptodate(bh))
1497 		bh = __bread_slow(bh);
1498 	return bh;
1499 }
1500 EXPORT_SYMBOL(__bread);
1501 
1502 /*
1503  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1504  * This doesn't race because it runs in each cpu either in irq
1505  * or with preempt disabled.
1506  */
1507 static void invalidate_bh_lru(void *arg)
1508 {
1509 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1510 	int i;
1511 
1512 	for (i = 0; i < BH_LRU_SIZE; i++) {
1513 		brelse(b->bhs[i]);
1514 		b->bhs[i] = NULL;
1515 	}
1516 	put_cpu_var(bh_lrus);
1517 }
1518 
1519 static void invalidate_bh_lrus(void)
1520 {
1521 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1522 }
1523 
1524 void set_bh_page(struct buffer_head *bh,
1525 		struct page *page, unsigned long offset)
1526 {
1527 	bh->b_page = page;
1528 	if (offset >= PAGE_SIZE)
1529 		BUG();
1530 	if (PageHighMem(page))
1531 		/*
1532 		 * This catches illegal uses and preserves the offset:
1533 		 */
1534 		bh->b_data = (char *)(0 + offset);
1535 	else
1536 		bh->b_data = page_address(page) + offset;
1537 }
1538 EXPORT_SYMBOL(set_bh_page);
1539 
1540 /*
1541  * Called when truncating a buffer on a page completely.
1542  */
1543 static inline void discard_buffer(struct buffer_head * bh)
1544 {
1545 	lock_buffer(bh);
1546 	clear_buffer_dirty(bh);
1547 	bh->b_bdev = NULL;
1548 	clear_buffer_mapped(bh);
1549 	clear_buffer_req(bh);
1550 	clear_buffer_new(bh);
1551 	clear_buffer_delay(bh);
1552 	unlock_buffer(bh);
1553 }
1554 
1555 /**
1556  * try_to_release_page() - release old fs-specific metadata on a page
1557  *
1558  * @page: the page which the kernel is trying to free
1559  * @gfp_mask: memory allocation flags (and I/O mode)
1560  *
1561  * The address_space is to try to release any data against the page
1562  * (presumably at page->private).  If the release was successful, return `1'.
1563  * Otherwise return zero.
1564  *
1565  * The @gfp_mask argument specifies whether I/O may be performed to release
1566  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1567  *
1568  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1569  */
1570 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1571 {
1572 	struct address_space * const mapping = page->mapping;
1573 
1574 	BUG_ON(!PageLocked(page));
1575 	if (PageWriteback(page))
1576 		return 0;
1577 
1578 	if (mapping && mapping->a_ops->releasepage)
1579 		return mapping->a_ops->releasepage(page, gfp_mask);
1580 	return try_to_free_buffers(page);
1581 }
1582 EXPORT_SYMBOL(try_to_release_page);
1583 
1584 /**
1585  * block_invalidatepage - invalidate part of all of a buffer-backed page
1586  *
1587  * @page: the page which is affected
1588  * @offset: the index of the truncation point
1589  *
1590  * block_invalidatepage() is called when all or part of the page has become
1591  * invalidatedby a truncate operation.
1592  *
1593  * block_invalidatepage() does not have to release all buffers, but it must
1594  * ensure that no dirty buffer is left outside @offset and that no I/O
1595  * is underway against any of the blocks which are outside the truncation
1596  * point.  Because the caller is about to free (and possibly reuse) those
1597  * blocks on-disk.
1598  */
1599 int block_invalidatepage(struct page *page, unsigned long offset)
1600 {
1601 	struct buffer_head *head, *bh, *next;
1602 	unsigned int curr_off = 0;
1603 	int ret = 1;
1604 
1605 	BUG_ON(!PageLocked(page));
1606 	if (!page_has_buffers(page))
1607 		goto out;
1608 
1609 	head = page_buffers(page);
1610 	bh = head;
1611 	do {
1612 		unsigned int next_off = curr_off + bh->b_size;
1613 		next = bh->b_this_page;
1614 
1615 		/*
1616 		 * is this block fully invalidated?
1617 		 */
1618 		if (offset <= curr_off)
1619 			discard_buffer(bh);
1620 		curr_off = next_off;
1621 		bh = next;
1622 	} while (bh != head);
1623 
1624 	/*
1625 	 * We release buffers only if the entire page is being invalidated.
1626 	 * The get_block cached value has been unconditionally invalidated,
1627 	 * so real IO is not possible anymore.
1628 	 */
1629 	if (offset == 0)
1630 		ret = try_to_release_page(page, 0);
1631 out:
1632 	return ret;
1633 }
1634 EXPORT_SYMBOL(block_invalidatepage);
1635 
1636 int do_invalidatepage(struct page *page, unsigned long offset)
1637 {
1638 	int (*invalidatepage)(struct page *, unsigned long);
1639 	invalidatepage = page->mapping->a_ops->invalidatepage;
1640 	if (invalidatepage == NULL)
1641 		invalidatepage = block_invalidatepage;
1642 	return (*invalidatepage)(page, offset);
1643 }
1644 
1645 /*
1646  * We attach and possibly dirty the buffers atomically wrt
1647  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1648  * is already excluded via the page lock.
1649  */
1650 void create_empty_buffers(struct page *page,
1651 			unsigned long blocksize, unsigned long b_state)
1652 {
1653 	struct buffer_head *bh, *head, *tail;
1654 
1655 	head = alloc_page_buffers(page, blocksize, 1);
1656 	bh = head;
1657 	do {
1658 		bh->b_state |= b_state;
1659 		tail = bh;
1660 		bh = bh->b_this_page;
1661 	} while (bh);
1662 	tail->b_this_page = head;
1663 
1664 	spin_lock(&page->mapping->private_lock);
1665 	if (PageUptodate(page) || PageDirty(page)) {
1666 		bh = head;
1667 		do {
1668 			if (PageDirty(page))
1669 				set_buffer_dirty(bh);
1670 			if (PageUptodate(page))
1671 				set_buffer_uptodate(bh);
1672 			bh = bh->b_this_page;
1673 		} while (bh != head);
1674 	}
1675 	attach_page_buffers(page, head);
1676 	spin_unlock(&page->mapping->private_lock);
1677 }
1678 EXPORT_SYMBOL(create_empty_buffers);
1679 
1680 /*
1681  * We are taking a block for data and we don't want any output from any
1682  * buffer-cache aliases starting from return from that function and
1683  * until the moment when something will explicitly mark the buffer
1684  * dirty (hopefully that will not happen until we will free that block ;-)
1685  * We don't even need to mark it not-uptodate - nobody can expect
1686  * anything from a newly allocated buffer anyway. We used to used
1687  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1688  * don't want to mark the alias unmapped, for example - it would confuse
1689  * anyone who might pick it with bread() afterwards...
1690  *
1691  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1692  * be writeout I/O going on against recently-freed buffers.  We don't
1693  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1694  * only if we really need to.  That happens here.
1695  */
1696 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1697 {
1698 	struct buffer_head *old_bh;
1699 
1700 	might_sleep();
1701 
1702 	old_bh = __find_get_block_slow(bdev, block);
1703 	if (old_bh) {
1704 		clear_buffer_dirty(old_bh);
1705 		wait_on_buffer(old_bh);
1706 		clear_buffer_req(old_bh);
1707 		__brelse(old_bh);
1708 	}
1709 }
1710 EXPORT_SYMBOL(unmap_underlying_metadata);
1711 
1712 /*
1713  * NOTE! All mapped/uptodate combinations are valid:
1714  *
1715  *	Mapped	Uptodate	Meaning
1716  *
1717  *	No	No		"unknown" - must do get_block()
1718  *	No	Yes		"hole" - zero-filled
1719  *	Yes	No		"allocated" - allocated on disk, not read in
1720  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1721  *
1722  * "Dirty" is valid only with the last case (mapped+uptodate).
1723  */
1724 
1725 /*
1726  * While block_write_full_page is writing back the dirty buffers under
1727  * the page lock, whoever dirtied the buffers may decide to clean them
1728  * again at any time.  We handle that by only looking at the buffer
1729  * state inside lock_buffer().
1730  *
1731  * If block_write_full_page() is called for regular writeback
1732  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1733  * locked buffer.   This only can happen if someone has written the buffer
1734  * directly, with submit_bh().  At the address_space level PageWriteback
1735  * prevents this contention from occurring.
1736  */
1737 static int __block_write_full_page(struct inode *inode, struct page *page,
1738 			get_block_t *get_block, struct writeback_control *wbc)
1739 {
1740 	int err;
1741 	sector_t block;
1742 	sector_t last_block;
1743 	struct buffer_head *bh, *head;
1744 	int nr_underway = 0;
1745 
1746 	BUG_ON(!PageLocked(page));
1747 
1748 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1749 
1750 	if (!page_has_buffers(page)) {
1751 		create_empty_buffers(page, 1 << inode->i_blkbits,
1752 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1753 	}
1754 
1755 	/*
1756 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1757 	 * here, and the (potentially unmapped) buffers may become dirty at
1758 	 * any time.  If a buffer becomes dirty here after we've inspected it
1759 	 * then we just miss that fact, and the page stays dirty.
1760 	 *
1761 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1762 	 * handle that here by just cleaning them.
1763 	 */
1764 
1765 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1766 	head = page_buffers(page);
1767 	bh = head;
1768 
1769 	/*
1770 	 * Get all the dirty buffers mapped to disk addresses and
1771 	 * handle any aliases from the underlying blockdev's mapping.
1772 	 */
1773 	do {
1774 		if (block > last_block) {
1775 			/*
1776 			 * mapped buffers outside i_size will occur, because
1777 			 * this page can be outside i_size when there is a
1778 			 * truncate in progress.
1779 			 */
1780 			/*
1781 			 * The buffer was zeroed by block_write_full_page()
1782 			 */
1783 			clear_buffer_dirty(bh);
1784 			set_buffer_uptodate(bh);
1785 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1786 			err = get_block(inode, block, bh, 1);
1787 			if (err)
1788 				goto recover;
1789 			if (buffer_new(bh)) {
1790 				/* blockdev mappings never come here */
1791 				clear_buffer_new(bh);
1792 				unmap_underlying_metadata(bh->b_bdev,
1793 							bh->b_blocknr);
1794 			}
1795 		}
1796 		bh = bh->b_this_page;
1797 		block++;
1798 	} while (bh != head);
1799 
1800 	do {
1801 		if (!buffer_mapped(bh))
1802 			continue;
1803 		/*
1804 		 * If it's a fully non-blocking write attempt and we cannot
1805 		 * lock the buffer then redirty the page.  Note that this can
1806 		 * potentially cause a busy-wait loop from pdflush and kswapd
1807 		 * activity, but those code paths have their own higher-level
1808 		 * throttling.
1809 		 */
1810 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1811 			lock_buffer(bh);
1812 		} else if (test_set_buffer_locked(bh)) {
1813 			redirty_page_for_writepage(wbc, page);
1814 			continue;
1815 		}
1816 		if (test_clear_buffer_dirty(bh)) {
1817 			mark_buffer_async_write(bh);
1818 		} else {
1819 			unlock_buffer(bh);
1820 		}
1821 	} while ((bh = bh->b_this_page) != head);
1822 
1823 	/*
1824 	 * The page and its buffers are protected by PageWriteback(), so we can
1825 	 * drop the bh refcounts early.
1826 	 */
1827 	BUG_ON(PageWriteback(page));
1828 	set_page_writeback(page);
1829 
1830 	do {
1831 		struct buffer_head *next = bh->b_this_page;
1832 		if (buffer_async_write(bh)) {
1833 			submit_bh(WRITE, bh);
1834 			nr_underway++;
1835 		}
1836 		bh = next;
1837 	} while (bh != head);
1838 	unlock_page(page);
1839 
1840 	err = 0;
1841 done:
1842 	if (nr_underway == 0) {
1843 		/*
1844 		 * The page was marked dirty, but the buffers were
1845 		 * clean.  Someone wrote them back by hand with
1846 		 * ll_rw_block/submit_bh.  A rare case.
1847 		 */
1848 		int uptodate = 1;
1849 		do {
1850 			if (!buffer_uptodate(bh)) {
1851 				uptodate = 0;
1852 				break;
1853 			}
1854 			bh = bh->b_this_page;
1855 		} while (bh != head);
1856 		if (uptodate)
1857 			SetPageUptodate(page);
1858 		end_page_writeback(page);
1859 		/*
1860 		 * The page and buffer_heads can be released at any time from
1861 		 * here on.
1862 		 */
1863 		wbc->pages_skipped++;	/* We didn't write this page */
1864 	}
1865 	return err;
1866 
1867 recover:
1868 	/*
1869 	 * ENOSPC, or some other error.  We may already have added some
1870 	 * blocks to the file, so we need to write these out to avoid
1871 	 * exposing stale data.
1872 	 * The page is currently locked and not marked for writeback
1873 	 */
1874 	bh = head;
1875 	/* Recovery: lock and submit the mapped buffers */
1876 	do {
1877 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1878 			lock_buffer(bh);
1879 			mark_buffer_async_write(bh);
1880 		} else {
1881 			/*
1882 			 * The buffer may have been set dirty during
1883 			 * attachment to a dirty page.
1884 			 */
1885 			clear_buffer_dirty(bh);
1886 		}
1887 	} while ((bh = bh->b_this_page) != head);
1888 	SetPageError(page);
1889 	BUG_ON(PageWriteback(page));
1890 	set_page_writeback(page);
1891 	unlock_page(page);
1892 	do {
1893 		struct buffer_head *next = bh->b_this_page;
1894 		if (buffer_async_write(bh)) {
1895 			clear_buffer_dirty(bh);
1896 			submit_bh(WRITE, bh);
1897 			nr_underway++;
1898 		}
1899 		bh = next;
1900 	} while (bh != head);
1901 	goto done;
1902 }
1903 
1904 static int __block_prepare_write(struct inode *inode, struct page *page,
1905 		unsigned from, unsigned to, get_block_t *get_block)
1906 {
1907 	unsigned block_start, block_end;
1908 	sector_t block;
1909 	int err = 0;
1910 	unsigned blocksize, bbits;
1911 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1912 
1913 	BUG_ON(!PageLocked(page));
1914 	BUG_ON(from > PAGE_CACHE_SIZE);
1915 	BUG_ON(to > PAGE_CACHE_SIZE);
1916 	BUG_ON(from > to);
1917 
1918 	blocksize = 1 << inode->i_blkbits;
1919 	if (!page_has_buffers(page))
1920 		create_empty_buffers(page, blocksize, 0);
1921 	head = page_buffers(page);
1922 
1923 	bbits = inode->i_blkbits;
1924 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1925 
1926 	for(bh = head, block_start = 0; bh != head || !block_start;
1927 	    block++, block_start=block_end, bh = bh->b_this_page) {
1928 		block_end = block_start + blocksize;
1929 		if (block_end <= from || block_start >= to) {
1930 			if (PageUptodate(page)) {
1931 				if (!buffer_uptodate(bh))
1932 					set_buffer_uptodate(bh);
1933 			}
1934 			continue;
1935 		}
1936 		if (buffer_new(bh))
1937 			clear_buffer_new(bh);
1938 		if (!buffer_mapped(bh)) {
1939 			err = get_block(inode, block, bh, 1);
1940 			if (err)
1941 				break;
1942 			if (buffer_new(bh)) {
1943 				unmap_underlying_metadata(bh->b_bdev,
1944 							bh->b_blocknr);
1945 				if (PageUptodate(page)) {
1946 					set_buffer_uptodate(bh);
1947 					continue;
1948 				}
1949 				if (block_end > to || block_start < from) {
1950 					void *kaddr;
1951 
1952 					kaddr = kmap_atomic(page, KM_USER0);
1953 					if (block_end > to)
1954 						memset(kaddr+to, 0,
1955 							block_end-to);
1956 					if (block_start < from)
1957 						memset(kaddr+block_start,
1958 							0, from-block_start);
1959 					flush_dcache_page(page);
1960 					kunmap_atomic(kaddr, KM_USER0);
1961 				}
1962 				continue;
1963 			}
1964 		}
1965 		if (PageUptodate(page)) {
1966 			if (!buffer_uptodate(bh))
1967 				set_buffer_uptodate(bh);
1968 			continue;
1969 		}
1970 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1971 		     (block_start < from || block_end > to)) {
1972 			ll_rw_block(READ, 1, &bh);
1973 			*wait_bh++=bh;
1974 		}
1975 	}
1976 	/*
1977 	 * If we issued read requests - let them complete.
1978 	 */
1979 	while(wait_bh > wait) {
1980 		wait_on_buffer(*--wait_bh);
1981 		if (!buffer_uptodate(*wait_bh))
1982 			err = -EIO;
1983 	}
1984 	if (!err) {
1985 		bh = head;
1986 		do {
1987 			if (buffer_new(bh))
1988 				clear_buffer_new(bh);
1989 		} while ((bh = bh->b_this_page) != head);
1990 		return 0;
1991 	}
1992 	/* Error case: */
1993 	/*
1994 	 * Zero out any newly allocated blocks to avoid exposing stale
1995 	 * data.  If BH_New is set, we know that the block was newly
1996 	 * allocated in the above loop.
1997 	 */
1998 	bh = head;
1999 	block_start = 0;
2000 	do {
2001 		block_end = block_start+blocksize;
2002 		if (block_end <= from)
2003 			goto next_bh;
2004 		if (block_start >= to)
2005 			break;
2006 		if (buffer_new(bh)) {
2007 			void *kaddr;
2008 
2009 			clear_buffer_new(bh);
2010 			kaddr = kmap_atomic(page, KM_USER0);
2011 			memset(kaddr+block_start, 0, bh->b_size);
2012 			kunmap_atomic(kaddr, KM_USER0);
2013 			set_buffer_uptodate(bh);
2014 			mark_buffer_dirty(bh);
2015 		}
2016 next_bh:
2017 		block_start = block_end;
2018 		bh = bh->b_this_page;
2019 	} while (bh != head);
2020 	return err;
2021 }
2022 
2023 static int __block_commit_write(struct inode *inode, struct page *page,
2024 		unsigned from, unsigned to)
2025 {
2026 	unsigned block_start, block_end;
2027 	int partial = 0;
2028 	unsigned blocksize;
2029 	struct buffer_head *bh, *head;
2030 
2031 	blocksize = 1 << inode->i_blkbits;
2032 
2033 	for(bh = head = page_buffers(page), block_start = 0;
2034 	    bh != head || !block_start;
2035 	    block_start=block_end, bh = bh->b_this_page) {
2036 		block_end = block_start + blocksize;
2037 		if (block_end <= from || block_start >= to) {
2038 			if (!buffer_uptodate(bh))
2039 				partial = 1;
2040 		} else {
2041 			set_buffer_uptodate(bh);
2042 			mark_buffer_dirty(bh);
2043 		}
2044 	}
2045 
2046 	/*
2047 	 * If this is a partial write which happened to make all buffers
2048 	 * uptodate then we can optimize away a bogus readpage() for
2049 	 * the next read(). Here we 'discover' whether the page went
2050 	 * uptodate as a result of this (potentially partial) write.
2051 	 */
2052 	if (!partial)
2053 		SetPageUptodate(page);
2054 	return 0;
2055 }
2056 
2057 /*
2058  * Generic "read page" function for block devices that have the normal
2059  * get_block functionality. This is most of the block device filesystems.
2060  * Reads the page asynchronously --- the unlock_buffer() and
2061  * set/clear_buffer_uptodate() functions propagate buffer state into the
2062  * page struct once IO has completed.
2063  */
2064 int block_read_full_page(struct page *page, get_block_t *get_block)
2065 {
2066 	struct inode *inode = page->mapping->host;
2067 	sector_t iblock, lblock;
2068 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2069 	unsigned int blocksize;
2070 	int nr, i;
2071 	int fully_mapped = 1;
2072 
2073 	BUG_ON(!PageLocked(page));
2074 	blocksize = 1 << inode->i_blkbits;
2075 	if (!page_has_buffers(page))
2076 		create_empty_buffers(page, blocksize, 0);
2077 	head = page_buffers(page);
2078 
2079 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2080 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2081 	bh = head;
2082 	nr = 0;
2083 	i = 0;
2084 
2085 	do {
2086 		if (buffer_uptodate(bh))
2087 			continue;
2088 
2089 		if (!buffer_mapped(bh)) {
2090 			int err = 0;
2091 
2092 			fully_mapped = 0;
2093 			if (iblock < lblock) {
2094 				err = get_block(inode, iblock, bh, 0);
2095 				if (err)
2096 					SetPageError(page);
2097 			}
2098 			if (!buffer_mapped(bh)) {
2099 				void *kaddr = kmap_atomic(page, KM_USER0);
2100 				memset(kaddr + i * blocksize, 0, blocksize);
2101 				flush_dcache_page(page);
2102 				kunmap_atomic(kaddr, KM_USER0);
2103 				if (!err)
2104 					set_buffer_uptodate(bh);
2105 				continue;
2106 			}
2107 			/*
2108 			 * get_block() might have updated the buffer
2109 			 * synchronously
2110 			 */
2111 			if (buffer_uptodate(bh))
2112 				continue;
2113 		}
2114 		arr[nr++] = bh;
2115 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2116 
2117 	if (fully_mapped)
2118 		SetPageMappedToDisk(page);
2119 
2120 	if (!nr) {
2121 		/*
2122 		 * All buffers are uptodate - we can set the page uptodate
2123 		 * as well. But not if get_block() returned an error.
2124 		 */
2125 		if (!PageError(page))
2126 			SetPageUptodate(page);
2127 		unlock_page(page);
2128 		return 0;
2129 	}
2130 
2131 	/* Stage two: lock the buffers */
2132 	for (i = 0; i < nr; i++) {
2133 		bh = arr[i];
2134 		lock_buffer(bh);
2135 		mark_buffer_async_read(bh);
2136 	}
2137 
2138 	/*
2139 	 * Stage 3: start the IO.  Check for uptodateness
2140 	 * inside the buffer lock in case another process reading
2141 	 * the underlying blockdev brought it uptodate (the sct fix).
2142 	 */
2143 	for (i = 0; i < nr; i++) {
2144 		bh = arr[i];
2145 		if (buffer_uptodate(bh))
2146 			end_buffer_async_read(bh, 1);
2147 		else
2148 			submit_bh(READ, bh);
2149 	}
2150 	return 0;
2151 }
2152 
2153 /* utility function for filesystems that need to do work on expanding
2154  * truncates.  Uses prepare/commit_write to allow the filesystem to
2155  * deal with the hole.
2156  */
2157 static int __generic_cont_expand(struct inode *inode, loff_t size,
2158 				 pgoff_t index, unsigned int offset)
2159 {
2160 	struct address_space *mapping = inode->i_mapping;
2161 	struct page *page;
2162 	unsigned long limit;
2163 	int err;
2164 
2165 	err = -EFBIG;
2166         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2167 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2168 		send_sig(SIGXFSZ, current, 0);
2169 		goto out;
2170 	}
2171 	if (size > inode->i_sb->s_maxbytes)
2172 		goto out;
2173 
2174 	err = -ENOMEM;
2175 	page = grab_cache_page(mapping, index);
2176 	if (!page)
2177 		goto out;
2178 	err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2179 	if (err) {
2180 		/*
2181 		 * ->prepare_write() may have instantiated a few blocks
2182 		 * outside i_size.  Trim these off again.
2183 		 */
2184 		unlock_page(page);
2185 		page_cache_release(page);
2186 		vmtruncate(inode, inode->i_size);
2187 		goto out;
2188 	}
2189 
2190 	err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2191 
2192 	unlock_page(page);
2193 	page_cache_release(page);
2194 	if (err > 0)
2195 		err = 0;
2196 out:
2197 	return err;
2198 }
2199 
2200 int generic_cont_expand(struct inode *inode, loff_t size)
2201 {
2202 	pgoff_t index;
2203 	unsigned int offset;
2204 
2205 	offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2206 
2207 	/* ugh.  in prepare/commit_write, if from==to==start of block, we
2208 	** skip the prepare.  make sure we never send an offset for the start
2209 	** of a block
2210 	*/
2211 	if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2212 		/* caller must handle this extra byte. */
2213 		offset++;
2214 	}
2215 	index = size >> PAGE_CACHE_SHIFT;
2216 
2217 	return __generic_cont_expand(inode, size, index, offset);
2218 }
2219 
2220 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2221 {
2222 	loff_t pos = size - 1;
2223 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2224 	unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2225 
2226 	/* prepare/commit_write can handle even if from==to==start of block. */
2227 	return __generic_cont_expand(inode, size, index, offset);
2228 }
2229 
2230 /*
2231  * For moronic filesystems that do not allow holes in file.
2232  * We may have to extend the file.
2233  */
2234 
2235 int cont_prepare_write(struct page *page, unsigned offset,
2236 		unsigned to, get_block_t *get_block, loff_t *bytes)
2237 {
2238 	struct address_space *mapping = page->mapping;
2239 	struct inode *inode = mapping->host;
2240 	struct page *new_page;
2241 	pgoff_t pgpos;
2242 	long status;
2243 	unsigned zerofrom;
2244 	unsigned blocksize = 1 << inode->i_blkbits;
2245 	void *kaddr;
2246 
2247 	while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2248 		status = -ENOMEM;
2249 		new_page = grab_cache_page(mapping, pgpos);
2250 		if (!new_page)
2251 			goto out;
2252 		/* we might sleep */
2253 		if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2254 			unlock_page(new_page);
2255 			page_cache_release(new_page);
2256 			continue;
2257 		}
2258 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2259 		if (zerofrom & (blocksize-1)) {
2260 			*bytes |= (blocksize-1);
2261 			(*bytes)++;
2262 		}
2263 		status = __block_prepare_write(inode, new_page, zerofrom,
2264 						PAGE_CACHE_SIZE, get_block);
2265 		if (status)
2266 			goto out_unmap;
2267 		kaddr = kmap_atomic(new_page, KM_USER0);
2268 		memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2269 		flush_dcache_page(new_page);
2270 		kunmap_atomic(kaddr, KM_USER0);
2271 		generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2272 		unlock_page(new_page);
2273 		page_cache_release(new_page);
2274 	}
2275 
2276 	if (page->index < pgpos) {
2277 		/* completely inside the area */
2278 		zerofrom = offset;
2279 	} else {
2280 		/* page covers the boundary, find the boundary offset */
2281 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2282 
2283 		/* if we will expand the thing last block will be filled */
2284 		if (to > zerofrom && (zerofrom & (blocksize-1))) {
2285 			*bytes |= (blocksize-1);
2286 			(*bytes)++;
2287 		}
2288 
2289 		/* starting below the boundary? Nothing to zero out */
2290 		if (offset <= zerofrom)
2291 			zerofrom = offset;
2292 	}
2293 	status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2294 	if (status)
2295 		goto out1;
2296 	if (zerofrom < offset) {
2297 		kaddr = kmap_atomic(page, KM_USER0);
2298 		memset(kaddr+zerofrom, 0, offset-zerofrom);
2299 		flush_dcache_page(page);
2300 		kunmap_atomic(kaddr, KM_USER0);
2301 		__block_commit_write(inode, page, zerofrom, offset);
2302 	}
2303 	return 0;
2304 out1:
2305 	ClearPageUptodate(page);
2306 	return status;
2307 
2308 out_unmap:
2309 	ClearPageUptodate(new_page);
2310 	unlock_page(new_page);
2311 	page_cache_release(new_page);
2312 out:
2313 	return status;
2314 }
2315 
2316 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2317 			get_block_t *get_block)
2318 {
2319 	struct inode *inode = page->mapping->host;
2320 	int err = __block_prepare_write(inode, page, from, to, get_block);
2321 	if (err)
2322 		ClearPageUptodate(page);
2323 	return err;
2324 }
2325 
2326 int block_commit_write(struct page *page, unsigned from, unsigned to)
2327 {
2328 	struct inode *inode = page->mapping->host;
2329 	__block_commit_write(inode,page,from,to);
2330 	return 0;
2331 }
2332 
2333 int generic_commit_write(struct file *file, struct page *page,
2334 		unsigned from, unsigned to)
2335 {
2336 	struct inode *inode = page->mapping->host;
2337 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2338 	__block_commit_write(inode,page,from,to);
2339 	/*
2340 	 * No need to use i_size_read() here, the i_size
2341 	 * cannot change under us because we hold i_mutex.
2342 	 */
2343 	if (pos > inode->i_size) {
2344 		i_size_write(inode, pos);
2345 		mark_inode_dirty(inode);
2346 	}
2347 	return 0;
2348 }
2349 
2350 
2351 /*
2352  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2353  * immediately, while under the page lock.  So it needs a special end_io
2354  * handler which does not touch the bh after unlocking it.
2355  *
2356  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2357  * a race there is benign: unlock_buffer() only use the bh's address for
2358  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2359  * itself.
2360  */
2361 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2362 {
2363 	if (uptodate) {
2364 		set_buffer_uptodate(bh);
2365 	} else {
2366 		/* This happens, due to failed READA attempts. */
2367 		clear_buffer_uptodate(bh);
2368 	}
2369 	unlock_buffer(bh);
2370 }
2371 
2372 /*
2373  * On entry, the page is fully not uptodate.
2374  * On exit the page is fully uptodate in the areas outside (from,to)
2375  */
2376 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2377 			get_block_t *get_block)
2378 {
2379 	struct inode *inode = page->mapping->host;
2380 	const unsigned blkbits = inode->i_blkbits;
2381 	const unsigned blocksize = 1 << blkbits;
2382 	struct buffer_head map_bh;
2383 	struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2384 	unsigned block_in_page;
2385 	unsigned block_start;
2386 	sector_t block_in_file;
2387 	char *kaddr;
2388 	int nr_reads = 0;
2389 	int i;
2390 	int ret = 0;
2391 	int is_mapped_to_disk = 1;
2392 	int dirtied_it = 0;
2393 
2394 	if (PageMappedToDisk(page))
2395 		return 0;
2396 
2397 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2398 	map_bh.b_page = page;
2399 
2400 	/*
2401 	 * We loop across all blocks in the page, whether or not they are
2402 	 * part of the affected region.  This is so we can discover if the
2403 	 * page is fully mapped-to-disk.
2404 	 */
2405 	for (block_start = 0, block_in_page = 0;
2406 		  block_start < PAGE_CACHE_SIZE;
2407 		  block_in_page++, block_start += blocksize) {
2408 		unsigned block_end = block_start + blocksize;
2409 		int create;
2410 
2411 		map_bh.b_state = 0;
2412 		create = 1;
2413 		if (block_start >= to)
2414 			create = 0;
2415 		ret = get_block(inode, block_in_file + block_in_page,
2416 					&map_bh, create);
2417 		if (ret)
2418 			goto failed;
2419 		if (!buffer_mapped(&map_bh))
2420 			is_mapped_to_disk = 0;
2421 		if (buffer_new(&map_bh))
2422 			unmap_underlying_metadata(map_bh.b_bdev,
2423 							map_bh.b_blocknr);
2424 		if (PageUptodate(page))
2425 			continue;
2426 		if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2427 			kaddr = kmap_atomic(page, KM_USER0);
2428 			if (block_start < from) {
2429 				memset(kaddr+block_start, 0, from-block_start);
2430 				dirtied_it = 1;
2431 			}
2432 			if (block_end > to) {
2433 				memset(kaddr + to, 0, block_end - to);
2434 				dirtied_it = 1;
2435 			}
2436 			flush_dcache_page(page);
2437 			kunmap_atomic(kaddr, KM_USER0);
2438 			continue;
2439 		}
2440 		if (buffer_uptodate(&map_bh))
2441 			continue;	/* reiserfs does this */
2442 		if (block_start < from || block_end > to) {
2443 			struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2444 
2445 			if (!bh) {
2446 				ret = -ENOMEM;
2447 				goto failed;
2448 			}
2449 			bh->b_state = map_bh.b_state;
2450 			atomic_set(&bh->b_count, 0);
2451 			bh->b_this_page = NULL;
2452 			bh->b_page = page;
2453 			bh->b_blocknr = map_bh.b_blocknr;
2454 			bh->b_size = blocksize;
2455 			bh->b_data = (char *)(long)block_start;
2456 			bh->b_bdev = map_bh.b_bdev;
2457 			bh->b_private = NULL;
2458 			read_bh[nr_reads++] = bh;
2459 		}
2460 	}
2461 
2462 	if (nr_reads) {
2463 		struct buffer_head *bh;
2464 
2465 		/*
2466 		 * The page is locked, so these buffers are protected from
2467 		 * any VM or truncate activity.  Hence we don't need to care
2468 		 * for the buffer_head refcounts.
2469 		 */
2470 		for (i = 0; i < nr_reads; i++) {
2471 			bh = read_bh[i];
2472 			lock_buffer(bh);
2473 			bh->b_end_io = end_buffer_read_nobh;
2474 			submit_bh(READ, bh);
2475 		}
2476 		for (i = 0; i < nr_reads; i++) {
2477 			bh = read_bh[i];
2478 			wait_on_buffer(bh);
2479 			if (!buffer_uptodate(bh))
2480 				ret = -EIO;
2481 			free_buffer_head(bh);
2482 			read_bh[i] = NULL;
2483 		}
2484 		if (ret)
2485 			goto failed;
2486 	}
2487 
2488 	if (is_mapped_to_disk)
2489 		SetPageMappedToDisk(page);
2490 	SetPageUptodate(page);
2491 
2492 	/*
2493 	 * Setting the page dirty here isn't necessary for the prepare_write
2494 	 * function - commit_write will do that.  But if/when this function is
2495 	 * used within the pagefault handler to ensure that all mmapped pages
2496 	 * have backing space in the filesystem, we will need to dirty the page
2497 	 * if its contents were altered.
2498 	 */
2499 	if (dirtied_it)
2500 		set_page_dirty(page);
2501 
2502 	return 0;
2503 
2504 failed:
2505 	for (i = 0; i < nr_reads; i++) {
2506 		if (read_bh[i])
2507 			free_buffer_head(read_bh[i]);
2508 	}
2509 
2510 	/*
2511 	 * Error recovery is pretty slack.  Clear the page and mark it dirty
2512 	 * so we'll later zero out any blocks which _were_ allocated.
2513 	 */
2514 	kaddr = kmap_atomic(page, KM_USER0);
2515 	memset(kaddr, 0, PAGE_CACHE_SIZE);
2516 	kunmap_atomic(kaddr, KM_USER0);
2517 	SetPageUptodate(page);
2518 	set_page_dirty(page);
2519 	return ret;
2520 }
2521 EXPORT_SYMBOL(nobh_prepare_write);
2522 
2523 int nobh_commit_write(struct file *file, struct page *page,
2524 		unsigned from, unsigned to)
2525 {
2526 	struct inode *inode = page->mapping->host;
2527 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2528 
2529 	set_page_dirty(page);
2530 	if (pos > inode->i_size) {
2531 		i_size_write(inode, pos);
2532 		mark_inode_dirty(inode);
2533 	}
2534 	return 0;
2535 }
2536 EXPORT_SYMBOL(nobh_commit_write);
2537 
2538 /*
2539  * nobh_writepage() - based on block_full_write_page() except
2540  * that it tries to operate without attaching bufferheads to
2541  * the page.
2542  */
2543 int nobh_writepage(struct page *page, get_block_t *get_block,
2544 			struct writeback_control *wbc)
2545 {
2546 	struct inode * const inode = page->mapping->host;
2547 	loff_t i_size = i_size_read(inode);
2548 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2549 	unsigned offset;
2550 	void *kaddr;
2551 	int ret;
2552 
2553 	/* Is the page fully inside i_size? */
2554 	if (page->index < end_index)
2555 		goto out;
2556 
2557 	/* Is the page fully outside i_size? (truncate in progress) */
2558 	offset = i_size & (PAGE_CACHE_SIZE-1);
2559 	if (page->index >= end_index+1 || !offset) {
2560 		/*
2561 		 * The page may have dirty, unmapped buffers.  For example,
2562 		 * they may have been added in ext3_writepage().  Make them
2563 		 * freeable here, so the page does not leak.
2564 		 */
2565 #if 0
2566 		/* Not really sure about this  - do we need this ? */
2567 		if (page->mapping->a_ops->invalidatepage)
2568 			page->mapping->a_ops->invalidatepage(page, offset);
2569 #endif
2570 		unlock_page(page);
2571 		return 0; /* don't care */
2572 	}
2573 
2574 	/*
2575 	 * The page straddles i_size.  It must be zeroed out on each and every
2576 	 * writepage invocation because it may be mmapped.  "A file is mapped
2577 	 * in multiples of the page size.  For a file that is not a multiple of
2578 	 * the  page size, the remaining memory is zeroed when mapped, and
2579 	 * writes to that region are not written out to the file."
2580 	 */
2581 	kaddr = kmap_atomic(page, KM_USER0);
2582 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2583 	flush_dcache_page(page);
2584 	kunmap_atomic(kaddr, KM_USER0);
2585 out:
2586 	ret = mpage_writepage(page, get_block, wbc);
2587 	if (ret == -EAGAIN)
2588 		ret = __block_write_full_page(inode, page, get_block, wbc);
2589 	return ret;
2590 }
2591 EXPORT_SYMBOL(nobh_writepage);
2592 
2593 /*
2594  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2595  */
2596 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2597 {
2598 	struct inode *inode = mapping->host;
2599 	unsigned blocksize = 1 << inode->i_blkbits;
2600 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2601 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2602 	unsigned to;
2603 	struct page *page;
2604 	struct address_space_operations *a_ops = mapping->a_ops;
2605 	char *kaddr;
2606 	int ret = 0;
2607 
2608 	if ((offset & (blocksize - 1)) == 0)
2609 		goto out;
2610 
2611 	ret = -ENOMEM;
2612 	page = grab_cache_page(mapping, index);
2613 	if (!page)
2614 		goto out;
2615 
2616 	to = (offset + blocksize) & ~(blocksize - 1);
2617 	ret = a_ops->prepare_write(NULL, page, offset, to);
2618 	if (ret == 0) {
2619 		kaddr = kmap_atomic(page, KM_USER0);
2620 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2621 		flush_dcache_page(page);
2622 		kunmap_atomic(kaddr, KM_USER0);
2623 		set_page_dirty(page);
2624 	}
2625 	unlock_page(page);
2626 	page_cache_release(page);
2627 out:
2628 	return ret;
2629 }
2630 EXPORT_SYMBOL(nobh_truncate_page);
2631 
2632 int block_truncate_page(struct address_space *mapping,
2633 			loff_t from, get_block_t *get_block)
2634 {
2635 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2636 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2637 	unsigned blocksize;
2638 	sector_t iblock;
2639 	unsigned length, pos;
2640 	struct inode *inode = mapping->host;
2641 	struct page *page;
2642 	struct buffer_head *bh;
2643 	void *kaddr;
2644 	int err;
2645 
2646 	blocksize = 1 << inode->i_blkbits;
2647 	length = offset & (blocksize - 1);
2648 
2649 	/* Block boundary? Nothing to do */
2650 	if (!length)
2651 		return 0;
2652 
2653 	length = blocksize - length;
2654 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2655 
2656 	page = grab_cache_page(mapping, index);
2657 	err = -ENOMEM;
2658 	if (!page)
2659 		goto out;
2660 
2661 	if (!page_has_buffers(page))
2662 		create_empty_buffers(page, blocksize, 0);
2663 
2664 	/* Find the buffer that contains "offset" */
2665 	bh = page_buffers(page);
2666 	pos = blocksize;
2667 	while (offset >= pos) {
2668 		bh = bh->b_this_page;
2669 		iblock++;
2670 		pos += blocksize;
2671 	}
2672 
2673 	err = 0;
2674 	if (!buffer_mapped(bh)) {
2675 		err = get_block(inode, iblock, bh, 0);
2676 		if (err)
2677 			goto unlock;
2678 		/* unmapped? It's a hole - nothing to do */
2679 		if (!buffer_mapped(bh))
2680 			goto unlock;
2681 	}
2682 
2683 	/* Ok, it's mapped. Make sure it's up-to-date */
2684 	if (PageUptodate(page))
2685 		set_buffer_uptodate(bh);
2686 
2687 	if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2688 		err = -EIO;
2689 		ll_rw_block(READ, 1, &bh);
2690 		wait_on_buffer(bh);
2691 		/* Uhhuh. Read error. Complain and punt. */
2692 		if (!buffer_uptodate(bh))
2693 			goto unlock;
2694 	}
2695 
2696 	kaddr = kmap_atomic(page, KM_USER0);
2697 	memset(kaddr + offset, 0, length);
2698 	flush_dcache_page(page);
2699 	kunmap_atomic(kaddr, KM_USER0);
2700 
2701 	mark_buffer_dirty(bh);
2702 	err = 0;
2703 
2704 unlock:
2705 	unlock_page(page);
2706 	page_cache_release(page);
2707 out:
2708 	return err;
2709 }
2710 
2711 /*
2712  * The generic ->writepage function for buffer-backed address_spaces
2713  */
2714 int block_write_full_page(struct page *page, get_block_t *get_block,
2715 			struct writeback_control *wbc)
2716 {
2717 	struct inode * const inode = page->mapping->host;
2718 	loff_t i_size = i_size_read(inode);
2719 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2720 	unsigned offset;
2721 	void *kaddr;
2722 
2723 	/* Is the page fully inside i_size? */
2724 	if (page->index < end_index)
2725 		return __block_write_full_page(inode, page, get_block, wbc);
2726 
2727 	/* Is the page fully outside i_size? (truncate in progress) */
2728 	offset = i_size & (PAGE_CACHE_SIZE-1);
2729 	if (page->index >= end_index+1 || !offset) {
2730 		/*
2731 		 * The page may have dirty, unmapped buffers.  For example,
2732 		 * they may have been added in ext3_writepage().  Make them
2733 		 * freeable here, so the page does not leak.
2734 		 */
2735 		do_invalidatepage(page, 0);
2736 		unlock_page(page);
2737 		return 0; /* don't care */
2738 	}
2739 
2740 	/*
2741 	 * The page straddles i_size.  It must be zeroed out on each and every
2742 	 * writepage invokation because it may be mmapped.  "A file is mapped
2743 	 * in multiples of the page size.  For a file that is not a multiple of
2744 	 * the  page size, the remaining memory is zeroed when mapped, and
2745 	 * writes to that region are not written out to the file."
2746 	 */
2747 	kaddr = kmap_atomic(page, KM_USER0);
2748 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2749 	flush_dcache_page(page);
2750 	kunmap_atomic(kaddr, KM_USER0);
2751 	return __block_write_full_page(inode, page, get_block, wbc);
2752 }
2753 
2754 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2755 			    get_block_t *get_block)
2756 {
2757 	struct buffer_head tmp;
2758 	struct inode *inode = mapping->host;
2759 	tmp.b_state = 0;
2760 	tmp.b_blocknr = 0;
2761 	get_block(inode, block, &tmp, 0);
2762 	return tmp.b_blocknr;
2763 }
2764 
2765 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2766 {
2767 	struct buffer_head *bh = bio->bi_private;
2768 
2769 	if (bio->bi_size)
2770 		return 1;
2771 
2772 	if (err == -EOPNOTSUPP) {
2773 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2774 		set_bit(BH_Eopnotsupp, &bh->b_state);
2775 	}
2776 
2777 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2778 	bio_put(bio);
2779 	return 0;
2780 }
2781 
2782 int submit_bh(int rw, struct buffer_head * bh)
2783 {
2784 	struct bio *bio;
2785 	int ret = 0;
2786 
2787 	BUG_ON(!buffer_locked(bh));
2788 	BUG_ON(!buffer_mapped(bh));
2789 	BUG_ON(!bh->b_end_io);
2790 
2791 	if (buffer_ordered(bh) && (rw == WRITE))
2792 		rw = WRITE_BARRIER;
2793 
2794 	/*
2795 	 * Only clear out a write error when rewriting, should this
2796 	 * include WRITE_SYNC as well?
2797 	 */
2798 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2799 		clear_buffer_write_io_error(bh);
2800 
2801 	/*
2802 	 * from here on down, it's all bio -- do the initial mapping,
2803 	 * submit_bio -> generic_make_request may further map this bio around
2804 	 */
2805 	bio = bio_alloc(GFP_NOIO, 1);
2806 
2807 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2808 	bio->bi_bdev = bh->b_bdev;
2809 	bio->bi_io_vec[0].bv_page = bh->b_page;
2810 	bio->bi_io_vec[0].bv_len = bh->b_size;
2811 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2812 
2813 	bio->bi_vcnt = 1;
2814 	bio->bi_idx = 0;
2815 	bio->bi_size = bh->b_size;
2816 
2817 	bio->bi_end_io = end_bio_bh_io_sync;
2818 	bio->bi_private = bh;
2819 
2820 	bio_get(bio);
2821 	submit_bio(rw, bio);
2822 
2823 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2824 		ret = -EOPNOTSUPP;
2825 
2826 	bio_put(bio);
2827 	return ret;
2828 }
2829 
2830 /**
2831  * ll_rw_block: low-level access to block devices (DEPRECATED)
2832  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2833  * @nr: number of &struct buffer_heads in the array
2834  * @bhs: array of pointers to &struct buffer_head
2835  *
2836  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2837  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2838  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2839  * are sent to disk. The fourth %READA option is described in the documentation
2840  * for generic_make_request() which ll_rw_block() calls.
2841  *
2842  * This function drops any buffer that it cannot get a lock on (with the
2843  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2844  * clean when doing a write request, and any buffer that appears to be
2845  * up-to-date when doing read request.  Further it marks as clean buffers that
2846  * are processed for writing (the buffer cache won't assume that they are
2847  * actually clean until the buffer gets unlocked).
2848  *
2849  * ll_rw_block sets b_end_io to simple completion handler that marks
2850  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2851  * any waiters.
2852  *
2853  * All of the buffers must be for the same device, and must also be a
2854  * multiple of the current approved size for the device.
2855  */
2856 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2857 {
2858 	int i;
2859 
2860 	for (i = 0; i < nr; i++) {
2861 		struct buffer_head *bh = bhs[i];
2862 
2863 		if (rw == SWRITE)
2864 			lock_buffer(bh);
2865 		else if (test_set_buffer_locked(bh))
2866 			continue;
2867 
2868 		get_bh(bh);
2869 		if (rw == WRITE || rw == SWRITE) {
2870 			if (test_clear_buffer_dirty(bh)) {
2871 				bh->b_end_io = end_buffer_write_sync;
2872 				submit_bh(WRITE, bh);
2873 				continue;
2874 			}
2875 		} else {
2876 			if (!buffer_uptodate(bh)) {
2877 				bh->b_end_io = end_buffer_read_sync;
2878 				submit_bh(rw, bh);
2879 				continue;
2880 			}
2881 		}
2882 		unlock_buffer(bh);
2883 		put_bh(bh);
2884 	}
2885 }
2886 
2887 /*
2888  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2889  * and then start new I/O and then wait upon it.  The caller must have a ref on
2890  * the buffer_head.
2891  */
2892 int sync_dirty_buffer(struct buffer_head *bh)
2893 {
2894 	int ret = 0;
2895 
2896 	WARN_ON(atomic_read(&bh->b_count) < 1);
2897 	lock_buffer(bh);
2898 	if (test_clear_buffer_dirty(bh)) {
2899 		get_bh(bh);
2900 		bh->b_end_io = end_buffer_write_sync;
2901 		ret = submit_bh(WRITE, bh);
2902 		wait_on_buffer(bh);
2903 		if (buffer_eopnotsupp(bh)) {
2904 			clear_buffer_eopnotsupp(bh);
2905 			ret = -EOPNOTSUPP;
2906 		}
2907 		if (!ret && !buffer_uptodate(bh))
2908 			ret = -EIO;
2909 	} else {
2910 		unlock_buffer(bh);
2911 	}
2912 	return ret;
2913 }
2914 
2915 /*
2916  * try_to_free_buffers() checks if all the buffers on this particular page
2917  * are unused, and releases them if so.
2918  *
2919  * Exclusion against try_to_free_buffers may be obtained by either
2920  * locking the page or by holding its mapping's private_lock.
2921  *
2922  * If the page is dirty but all the buffers are clean then we need to
2923  * be sure to mark the page clean as well.  This is because the page
2924  * may be against a block device, and a later reattachment of buffers
2925  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2926  * filesystem data on the same device.
2927  *
2928  * The same applies to regular filesystem pages: if all the buffers are
2929  * clean then we set the page clean and proceed.  To do that, we require
2930  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2931  * private_lock.
2932  *
2933  * try_to_free_buffers() is non-blocking.
2934  */
2935 static inline int buffer_busy(struct buffer_head *bh)
2936 {
2937 	return atomic_read(&bh->b_count) |
2938 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2939 }
2940 
2941 static int
2942 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2943 {
2944 	struct buffer_head *head = page_buffers(page);
2945 	struct buffer_head *bh;
2946 
2947 	bh = head;
2948 	do {
2949 		if (buffer_write_io_error(bh) && page->mapping)
2950 			set_bit(AS_EIO, &page->mapping->flags);
2951 		if (buffer_busy(bh))
2952 			goto failed;
2953 		bh = bh->b_this_page;
2954 	} while (bh != head);
2955 
2956 	do {
2957 		struct buffer_head *next = bh->b_this_page;
2958 
2959 		if (!list_empty(&bh->b_assoc_buffers))
2960 			__remove_assoc_queue(bh);
2961 		bh = next;
2962 	} while (bh != head);
2963 	*buffers_to_free = head;
2964 	__clear_page_buffers(page);
2965 	return 1;
2966 failed:
2967 	return 0;
2968 }
2969 
2970 int try_to_free_buffers(struct page *page)
2971 {
2972 	struct address_space * const mapping = page->mapping;
2973 	struct buffer_head *buffers_to_free = NULL;
2974 	int ret = 0;
2975 
2976 	BUG_ON(!PageLocked(page));
2977 	if (PageWriteback(page))
2978 		return 0;
2979 
2980 	if (mapping == NULL) {		/* can this still happen? */
2981 		ret = drop_buffers(page, &buffers_to_free);
2982 		goto out;
2983 	}
2984 
2985 	spin_lock(&mapping->private_lock);
2986 	ret = drop_buffers(page, &buffers_to_free);
2987 	if (ret) {
2988 		/*
2989 		 * If the filesystem writes its buffers by hand (eg ext3)
2990 		 * then we can have clean buffers against a dirty page.  We
2991 		 * clean the page here; otherwise later reattachment of buffers
2992 		 * could encounter a non-uptodate page, which is unresolvable.
2993 		 * This only applies in the rare case where try_to_free_buffers
2994 		 * succeeds but the page is not freed.
2995 		 */
2996 		clear_page_dirty(page);
2997 	}
2998 	spin_unlock(&mapping->private_lock);
2999 out:
3000 	if (buffers_to_free) {
3001 		struct buffer_head *bh = buffers_to_free;
3002 
3003 		do {
3004 			struct buffer_head *next = bh->b_this_page;
3005 			free_buffer_head(bh);
3006 			bh = next;
3007 		} while (bh != buffers_to_free);
3008 	}
3009 	return ret;
3010 }
3011 EXPORT_SYMBOL(try_to_free_buffers);
3012 
3013 int block_sync_page(struct page *page)
3014 {
3015 	struct address_space *mapping;
3016 
3017 	smp_mb();
3018 	mapping = page_mapping(page);
3019 	if (mapping)
3020 		blk_run_backing_dev(mapping->backing_dev_info, page);
3021 	return 0;
3022 }
3023 
3024 /*
3025  * There are no bdflush tunables left.  But distributions are
3026  * still running obsolete flush daemons, so we terminate them here.
3027  *
3028  * Use of bdflush() is deprecated and will be removed in a future kernel.
3029  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3030  */
3031 asmlinkage long sys_bdflush(int func, long data)
3032 {
3033 	static int msg_count;
3034 
3035 	if (!capable(CAP_SYS_ADMIN))
3036 		return -EPERM;
3037 
3038 	if (msg_count < 5) {
3039 		msg_count++;
3040 		printk(KERN_INFO
3041 			"warning: process `%s' used the obsolete bdflush"
3042 			" system call\n", current->comm);
3043 		printk(KERN_INFO "Fix your initscripts?\n");
3044 	}
3045 
3046 	if (func == 1)
3047 		do_exit(0);
3048 	return 0;
3049 }
3050 
3051 /*
3052  * Buffer-head allocation
3053  */
3054 static kmem_cache_t *bh_cachep;
3055 
3056 /*
3057  * Once the number of bh's in the machine exceeds this level, we start
3058  * stripping them in writeback.
3059  */
3060 static int max_buffer_heads;
3061 
3062 int buffer_heads_over_limit;
3063 
3064 struct bh_accounting {
3065 	int nr;			/* Number of live bh's */
3066 	int ratelimit;		/* Limit cacheline bouncing */
3067 };
3068 
3069 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3070 
3071 static void recalc_bh_state(void)
3072 {
3073 	int i;
3074 	int tot = 0;
3075 
3076 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3077 		return;
3078 	__get_cpu_var(bh_accounting).ratelimit = 0;
3079 	for_each_cpu(i)
3080 		tot += per_cpu(bh_accounting, i).nr;
3081 	buffer_heads_over_limit = (tot > max_buffer_heads);
3082 }
3083 
3084 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3085 {
3086 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3087 	if (ret) {
3088 		get_cpu_var(bh_accounting).nr++;
3089 		recalc_bh_state();
3090 		put_cpu_var(bh_accounting);
3091 	}
3092 	return ret;
3093 }
3094 EXPORT_SYMBOL(alloc_buffer_head);
3095 
3096 void free_buffer_head(struct buffer_head *bh)
3097 {
3098 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3099 	kmem_cache_free(bh_cachep, bh);
3100 	get_cpu_var(bh_accounting).nr--;
3101 	recalc_bh_state();
3102 	put_cpu_var(bh_accounting);
3103 }
3104 EXPORT_SYMBOL(free_buffer_head);
3105 
3106 static void
3107 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3108 {
3109 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3110 			    SLAB_CTOR_CONSTRUCTOR) {
3111 		struct buffer_head * bh = (struct buffer_head *)data;
3112 
3113 		memset(bh, 0, sizeof(*bh));
3114 		INIT_LIST_HEAD(&bh->b_assoc_buffers);
3115 	}
3116 }
3117 
3118 #ifdef CONFIG_HOTPLUG_CPU
3119 static void buffer_exit_cpu(int cpu)
3120 {
3121 	int i;
3122 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3123 
3124 	for (i = 0; i < BH_LRU_SIZE; i++) {
3125 		brelse(b->bhs[i]);
3126 		b->bhs[i] = NULL;
3127 	}
3128 }
3129 
3130 static int buffer_cpu_notify(struct notifier_block *self,
3131 			      unsigned long action, void *hcpu)
3132 {
3133 	if (action == CPU_DEAD)
3134 		buffer_exit_cpu((unsigned long)hcpu);
3135 	return NOTIFY_OK;
3136 }
3137 #endif /* CONFIG_HOTPLUG_CPU */
3138 
3139 void __init buffer_init(void)
3140 {
3141 	int nrpages;
3142 
3143 	bh_cachep = kmem_cache_create("buffer_head",
3144 			sizeof(struct buffer_head), 0,
3145 			SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
3146 
3147 	/*
3148 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3149 	 */
3150 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3151 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3152 	hotcpu_notifier(buffer_cpu_notify, 0);
3153 }
3154 
3155 EXPORT_SYMBOL(__bforget);
3156 EXPORT_SYMBOL(__brelse);
3157 EXPORT_SYMBOL(__wait_on_buffer);
3158 EXPORT_SYMBOL(block_commit_write);
3159 EXPORT_SYMBOL(block_prepare_write);
3160 EXPORT_SYMBOL(block_read_full_page);
3161 EXPORT_SYMBOL(block_sync_page);
3162 EXPORT_SYMBOL(block_truncate_page);
3163 EXPORT_SYMBOL(block_write_full_page);
3164 EXPORT_SYMBOL(cont_prepare_write);
3165 EXPORT_SYMBOL(end_buffer_async_write);
3166 EXPORT_SYMBOL(end_buffer_read_sync);
3167 EXPORT_SYMBOL(end_buffer_write_sync);
3168 EXPORT_SYMBOL(file_fsync);
3169 EXPORT_SYMBOL(fsync_bdev);
3170 EXPORT_SYMBOL(generic_block_bmap);
3171 EXPORT_SYMBOL(generic_commit_write);
3172 EXPORT_SYMBOL(generic_cont_expand);
3173 EXPORT_SYMBOL(generic_cont_expand_simple);
3174 EXPORT_SYMBOL(init_buffer);
3175 EXPORT_SYMBOL(invalidate_bdev);
3176 EXPORT_SYMBOL(ll_rw_block);
3177 EXPORT_SYMBOL(mark_buffer_dirty);
3178 EXPORT_SYMBOL(submit_bh);
3179 EXPORT_SYMBOL(sync_dirty_buffer);
3180 EXPORT_SYMBOL(unlock_buffer);
3181