1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 #include <trace/events/block.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 inline void touch_buffer(struct buffer_head *bh) 58 { 59 trace_block_touch_buffer(bh); 60 mark_page_accessed(bh->b_page); 61 } 62 EXPORT_SYMBOL(touch_buffer); 63 64 static int sleep_on_buffer(void *word) 65 { 66 io_schedule(); 67 return 0; 68 } 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 73 TASK_UNINTERRUPTIBLE); 74 } 75 EXPORT_SYMBOL(__lock_buffer); 76 77 void unlock_buffer(struct buffer_head *bh) 78 { 79 clear_bit_unlock(BH_Lock, &bh->b_state); 80 smp_mb__after_clear_bit(); 81 wake_up_bit(&bh->b_state, BH_Lock); 82 } 83 EXPORT_SYMBOL(unlock_buffer); 84 85 /* 86 * Block until a buffer comes unlocked. This doesn't stop it 87 * from becoming locked again - you have to lock it yourself 88 * if you want to preserve its state. 89 */ 90 void __wait_on_buffer(struct buffer_head * bh) 91 { 92 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 93 } 94 EXPORT_SYMBOL(__wait_on_buffer); 95 96 static void 97 __clear_page_buffers(struct page *page) 98 { 99 ClearPagePrivate(page); 100 set_page_private(page, 0); 101 page_cache_release(page); 102 } 103 104 105 static int quiet_error(struct buffer_head *bh) 106 { 107 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 108 return 0; 109 return 1; 110 } 111 112 113 static void buffer_io_error(struct buffer_head *bh) 114 { 115 char b[BDEVNAME_SIZE]; 116 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 117 bdevname(bh->b_bdev, b), 118 (unsigned long long)bh->b_blocknr); 119 } 120 121 /* 122 * End-of-IO handler helper function which does not touch the bh after 123 * unlocking it. 124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 125 * a race there is benign: unlock_buffer() only use the bh's address for 126 * hashing after unlocking the buffer, so it doesn't actually touch the bh 127 * itself. 128 */ 129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 130 { 131 if (uptodate) { 132 set_buffer_uptodate(bh); 133 } else { 134 /* This happens, due to failed READA attempts. */ 135 clear_buffer_uptodate(bh); 136 } 137 unlock_buffer(bh); 138 } 139 140 /* 141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 142 * unlock the buffer. This is what ll_rw_block uses too. 143 */ 144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 145 { 146 __end_buffer_read_notouch(bh, uptodate); 147 put_bh(bh); 148 } 149 EXPORT_SYMBOL(end_buffer_read_sync); 150 151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 152 { 153 char b[BDEVNAME_SIZE]; 154 155 if (uptodate) { 156 set_buffer_uptodate(bh); 157 } else { 158 if (!quiet_error(bh)) { 159 buffer_io_error(bh); 160 printk(KERN_WARNING "lost page write due to " 161 "I/O error on %s\n", 162 bdevname(bh->b_bdev, b)); 163 } 164 set_buffer_write_io_error(bh); 165 clear_buffer_uptodate(bh); 166 } 167 unlock_buffer(bh); 168 put_bh(bh); 169 } 170 EXPORT_SYMBOL(end_buffer_write_sync); 171 172 /* 173 * Various filesystems appear to want __find_get_block to be non-blocking. 174 * But it's the page lock which protects the buffers. To get around this, 175 * we get exclusion from try_to_free_buffers with the blockdev mapping's 176 * private_lock. 177 * 178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 179 * may be quite high. This code could TryLock the page, and if that 180 * succeeds, there is no need to take private_lock. (But if 181 * private_lock is contended then so is mapping->tree_lock). 182 */ 183 static struct buffer_head * 184 __find_get_block_slow(struct block_device *bdev, sector_t block) 185 { 186 struct inode *bd_inode = bdev->bd_inode; 187 struct address_space *bd_mapping = bd_inode->i_mapping; 188 struct buffer_head *ret = NULL; 189 pgoff_t index; 190 struct buffer_head *bh; 191 struct buffer_head *head; 192 struct page *page; 193 int all_mapped = 1; 194 195 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 196 page = find_get_page(bd_mapping, index); 197 if (!page) 198 goto out; 199 200 spin_lock(&bd_mapping->private_lock); 201 if (!page_has_buffers(page)) 202 goto out_unlock; 203 head = page_buffers(page); 204 bh = head; 205 do { 206 if (!buffer_mapped(bh)) 207 all_mapped = 0; 208 else if (bh->b_blocknr == block) { 209 ret = bh; 210 get_bh(bh); 211 goto out_unlock; 212 } 213 bh = bh->b_this_page; 214 } while (bh != head); 215 216 /* we might be here because some of the buffers on this page are 217 * not mapped. This is due to various races between 218 * file io on the block device and getblk. It gets dealt with 219 * elsewhere, don't buffer_error if we had some unmapped buffers 220 */ 221 if (all_mapped) { 222 char b[BDEVNAME_SIZE]; 223 224 printk("__find_get_block_slow() failed. " 225 "block=%llu, b_blocknr=%llu\n", 226 (unsigned long long)block, 227 (unsigned long long)bh->b_blocknr); 228 printk("b_state=0x%08lx, b_size=%zu\n", 229 bh->b_state, bh->b_size); 230 printk("device %s blocksize: %d\n", bdevname(bdev, b), 231 1 << bd_inode->i_blkbits); 232 } 233 out_unlock: 234 spin_unlock(&bd_mapping->private_lock); 235 page_cache_release(page); 236 out: 237 return ret; 238 } 239 240 /* 241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 242 */ 243 static void free_more_memory(void) 244 { 245 struct zone *zone; 246 int nid; 247 248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 249 yield(); 250 251 for_each_online_node(nid) { 252 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 253 gfp_zone(GFP_NOFS), NULL, 254 &zone); 255 if (zone) 256 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 257 GFP_NOFS, NULL); 258 } 259 } 260 261 /* 262 * I/O completion handler for block_read_full_page() - pages 263 * which come unlocked at the end of I/O. 264 */ 265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 266 { 267 unsigned long flags; 268 struct buffer_head *first; 269 struct buffer_head *tmp; 270 struct page *page; 271 int page_uptodate = 1; 272 273 BUG_ON(!buffer_async_read(bh)); 274 275 page = bh->b_page; 276 if (uptodate) { 277 set_buffer_uptodate(bh); 278 } else { 279 clear_buffer_uptodate(bh); 280 if (!quiet_error(bh)) 281 buffer_io_error(bh); 282 SetPageError(page); 283 } 284 285 /* 286 * Be _very_ careful from here on. Bad things can happen if 287 * two buffer heads end IO at almost the same time and both 288 * decide that the page is now completely done. 289 */ 290 first = page_buffers(page); 291 local_irq_save(flags); 292 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 293 clear_buffer_async_read(bh); 294 unlock_buffer(bh); 295 tmp = bh; 296 do { 297 if (!buffer_uptodate(tmp)) 298 page_uptodate = 0; 299 if (buffer_async_read(tmp)) { 300 BUG_ON(!buffer_locked(tmp)); 301 goto still_busy; 302 } 303 tmp = tmp->b_this_page; 304 } while (tmp != bh); 305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 306 local_irq_restore(flags); 307 308 /* 309 * If none of the buffers had errors and they are all 310 * uptodate then we can set the page uptodate. 311 */ 312 if (page_uptodate && !PageError(page)) 313 SetPageUptodate(page); 314 unlock_page(page); 315 return; 316 317 still_busy: 318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 319 local_irq_restore(flags); 320 return; 321 } 322 323 /* 324 * Completion handler for block_write_full_page() - pages which are unlocked 325 * during I/O, and which have PageWriteback cleared upon I/O completion. 326 */ 327 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 328 { 329 char b[BDEVNAME_SIZE]; 330 unsigned long flags; 331 struct buffer_head *first; 332 struct buffer_head *tmp; 333 struct page *page; 334 335 BUG_ON(!buffer_async_write(bh)); 336 337 page = bh->b_page; 338 if (uptodate) { 339 set_buffer_uptodate(bh); 340 } else { 341 if (!quiet_error(bh)) { 342 buffer_io_error(bh); 343 printk(KERN_WARNING "lost page write due to " 344 "I/O error on %s\n", 345 bdevname(bh->b_bdev, b)); 346 } 347 set_bit(AS_EIO, &page->mapping->flags); 348 set_buffer_write_io_error(bh); 349 clear_buffer_uptodate(bh); 350 SetPageError(page); 351 } 352 353 first = page_buffers(page); 354 local_irq_save(flags); 355 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 356 357 clear_buffer_async_write(bh); 358 unlock_buffer(bh); 359 tmp = bh->b_this_page; 360 while (tmp != bh) { 361 if (buffer_async_write(tmp)) { 362 BUG_ON(!buffer_locked(tmp)); 363 goto still_busy; 364 } 365 tmp = tmp->b_this_page; 366 } 367 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 368 local_irq_restore(flags); 369 end_page_writeback(page); 370 return; 371 372 still_busy: 373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 374 local_irq_restore(flags); 375 return; 376 } 377 EXPORT_SYMBOL(end_buffer_async_write); 378 379 /* 380 * If a page's buffers are under async readin (end_buffer_async_read 381 * completion) then there is a possibility that another thread of 382 * control could lock one of the buffers after it has completed 383 * but while some of the other buffers have not completed. This 384 * locked buffer would confuse end_buffer_async_read() into not unlocking 385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 386 * that this buffer is not under async I/O. 387 * 388 * The page comes unlocked when it has no locked buffer_async buffers 389 * left. 390 * 391 * PageLocked prevents anyone starting new async I/O reads any of 392 * the buffers. 393 * 394 * PageWriteback is used to prevent simultaneous writeout of the same 395 * page. 396 * 397 * PageLocked prevents anyone from starting writeback of a page which is 398 * under read I/O (PageWriteback is only ever set against a locked page). 399 */ 400 static void mark_buffer_async_read(struct buffer_head *bh) 401 { 402 bh->b_end_io = end_buffer_async_read; 403 set_buffer_async_read(bh); 404 } 405 406 static void mark_buffer_async_write_endio(struct buffer_head *bh, 407 bh_end_io_t *handler) 408 { 409 bh->b_end_io = handler; 410 set_buffer_async_write(bh); 411 } 412 413 void mark_buffer_async_write(struct buffer_head *bh) 414 { 415 mark_buffer_async_write_endio(bh, end_buffer_async_write); 416 } 417 EXPORT_SYMBOL(mark_buffer_async_write); 418 419 420 /* 421 * fs/buffer.c contains helper functions for buffer-backed address space's 422 * fsync functions. A common requirement for buffer-based filesystems is 423 * that certain data from the backing blockdev needs to be written out for 424 * a successful fsync(). For example, ext2 indirect blocks need to be 425 * written back and waited upon before fsync() returns. 426 * 427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 429 * management of a list of dependent buffers at ->i_mapping->private_list. 430 * 431 * Locking is a little subtle: try_to_free_buffers() will remove buffers 432 * from their controlling inode's queue when they are being freed. But 433 * try_to_free_buffers() will be operating against the *blockdev* mapping 434 * at the time, not against the S_ISREG file which depends on those buffers. 435 * So the locking for private_list is via the private_lock in the address_space 436 * which backs the buffers. Which is different from the address_space 437 * against which the buffers are listed. So for a particular address_space, 438 * mapping->private_lock does *not* protect mapping->private_list! In fact, 439 * mapping->private_list will always be protected by the backing blockdev's 440 * ->private_lock. 441 * 442 * Which introduces a requirement: all buffers on an address_space's 443 * ->private_list must be from the same address_space: the blockdev's. 444 * 445 * address_spaces which do not place buffers at ->private_list via these 446 * utility functions are free to use private_lock and private_list for 447 * whatever they want. The only requirement is that list_empty(private_list) 448 * be true at clear_inode() time. 449 * 450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 451 * filesystems should do that. invalidate_inode_buffers() should just go 452 * BUG_ON(!list_empty). 453 * 454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 455 * take an address_space, not an inode. And it should be called 456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 457 * queued up. 458 * 459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 460 * list if it is already on a list. Because if the buffer is on a list, 461 * it *must* already be on the right one. If not, the filesystem is being 462 * silly. This will save a ton of locking. But first we have to ensure 463 * that buffers are taken *off* the old inode's list when they are freed 464 * (presumably in truncate). That requires careful auditing of all 465 * filesystems (do it inside bforget()). It could also be done by bringing 466 * b_inode back. 467 */ 468 469 /* 470 * The buffer's backing address_space's private_lock must be held 471 */ 472 static void __remove_assoc_queue(struct buffer_head *bh) 473 { 474 list_del_init(&bh->b_assoc_buffers); 475 WARN_ON(!bh->b_assoc_map); 476 if (buffer_write_io_error(bh)) 477 set_bit(AS_EIO, &bh->b_assoc_map->flags); 478 bh->b_assoc_map = NULL; 479 } 480 481 int inode_has_buffers(struct inode *inode) 482 { 483 return !list_empty(&inode->i_data.private_list); 484 } 485 486 /* 487 * osync is designed to support O_SYNC io. It waits synchronously for 488 * all already-submitted IO to complete, but does not queue any new 489 * writes to the disk. 490 * 491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 492 * you dirty the buffers, and then use osync_inode_buffers to wait for 493 * completion. Any other dirty buffers which are not yet queued for 494 * write will not be flushed to disk by the osync. 495 */ 496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 497 { 498 struct buffer_head *bh; 499 struct list_head *p; 500 int err = 0; 501 502 spin_lock(lock); 503 repeat: 504 list_for_each_prev(p, list) { 505 bh = BH_ENTRY(p); 506 if (buffer_locked(bh)) { 507 get_bh(bh); 508 spin_unlock(lock); 509 wait_on_buffer(bh); 510 if (!buffer_uptodate(bh)) 511 err = -EIO; 512 brelse(bh); 513 spin_lock(lock); 514 goto repeat; 515 } 516 } 517 spin_unlock(lock); 518 return err; 519 } 520 521 static void do_thaw_one(struct super_block *sb, void *unused) 522 { 523 char b[BDEVNAME_SIZE]; 524 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 525 printk(KERN_WARNING "Emergency Thaw on %s\n", 526 bdevname(sb->s_bdev, b)); 527 } 528 529 static void do_thaw_all(struct work_struct *work) 530 { 531 iterate_supers(do_thaw_one, NULL); 532 kfree(work); 533 printk(KERN_WARNING "Emergency Thaw complete\n"); 534 } 535 536 /** 537 * emergency_thaw_all -- forcibly thaw every frozen filesystem 538 * 539 * Used for emergency unfreeze of all filesystems via SysRq 540 */ 541 void emergency_thaw_all(void) 542 { 543 struct work_struct *work; 544 545 work = kmalloc(sizeof(*work), GFP_ATOMIC); 546 if (work) { 547 INIT_WORK(work, do_thaw_all); 548 schedule_work(work); 549 } 550 } 551 552 /** 553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 554 * @mapping: the mapping which wants those buffers written 555 * 556 * Starts I/O against the buffers at mapping->private_list, and waits upon 557 * that I/O. 558 * 559 * Basically, this is a convenience function for fsync(). 560 * @mapping is a file or directory which needs those buffers to be written for 561 * a successful fsync(). 562 */ 563 int sync_mapping_buffers(struct address_space *mapping) 564 { 565 struct address_space *buffer_mapping = mapping->private_data; 566 567 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 568 return 0; 569 570 return fsync_buffers_list(&buffer_mapping->private_lock, 571 &mapping->private_list); 572 } 573 EXPORT_SYMBOL(sync_mapping_buffers); 574 575 /* 576 * Called when we've recently written block `bblock', and it is known that 577 * `bblock' was for a buffer_boundary() buffer. This means that the block at 578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 579 * dirty, schedule it for IO. So that indirects merge nicely with their data. 580 */ 581 void write_boundary_block(struct block_device *bdev, 582 sector_t bblock, unsigned blocksize) 583 { 584 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 585 if (bh) { 586 if (buffer_dirty(bh)) 587 ll_rw_block(WRITE, 1, &bh); 588 put_bh(bh); 589 } 590 } 591 592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 593 { 594 struct address_space *mapping = inode->i_mapping; 595 struct address_space *buffer_mapping = bh->b_page->mapping; 596 597 mark_buffer_dirty(bh); 598 if (!mapping->private_data) { 599 mapping->private_data = buffer_mapping; 600 } else { 601 BUG_ON(mapping->private_data != buffer_mapping); 602 } 603 if (!bh->b_assoc_map) { 604 spin_lock(&buffer_mapping->private_lock); 605 list_move_tail(&bh->b_assoc_buffers, 606 &mapping->private_list); 607 bh->b_assoc_map = mapping; 608 spin_unlock(&buffer_mapping->private_lock); 609 } 610 } 611 EXPORT_SYMBOL(mark_buffer_dirty_inode); 612 613 /* 614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 615 * dirty. 616 * 617 * If warn is true, then emit a warning if the page is not uptodate and has 618 * not been truncated. 619 */ 620 static void __set_page_dirty(struct page *page, 621 struct address_space *mapping, int warn) 622 { 623 spin_lock_irq(&mapping->tree_lock); 624 if (page->mapping) { /* Race with truncate? */ 625 WARN_ON_ONCE(warn && !PageUptodate(page)); 626 account_page_dirtied(page, mapping); 627 radix_tree_tag_set(&mapping->page_tree, 628 page_index(page), PAGECACHE_TAG_DIRTY); 629 } 630 spin_unlock_irq(&mapping->tree_lock); 631 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 632 } 633 634 /* 635 * Add a page to the dirty page list. 636 * 637 * It is a sad fact of life that this function is called from several places 638 * deeply under spinlocking. It may not sleep. 639 * 640 * If the page has buffers, the uptodate buffers are set dirty, to preserve 641 * dirty-state coherency between the page and the buffers. It the page does 642 * not have buffers then when they are later attached they will all be set 643 * dirty. 644 * 645 * The buffers are dirtied before the page is dirtied. There's a small race 646 * window in which a writepage caller may see the page cleanness but not the 647 * buffer dirtiness. That's fine. If this code were to set the page dirty 648 * before the buffers, a concurrent writepage caller could clear the page dirty 649 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 650 * page on the dirty page list. 651 * 652 * We use private_lock to lock against try_to_free_buffers while using the 653 * page's buffer list. Also use this to protect against clean buffers being 654 * added to the page after it was set dirty. 655 * 656 * FIXME: may need to call ->reservepage here as well. That's rather up to the 657 * address_space though. 658 */ 659 int __set_page_dirty_buffers(struct page *page) 660 { 661 int newly_dirty; 662 struct address_space *mapping = page_mapping(page); 663 664 if (unlikely(!mapping)) 665 return !TestSetPageDirty(page); 666 667 spin_lock(&mapping->private_lock); 668 if (page_has_buffers(page)) { 669 struct buffer_head *head = page_buffers(page); 670 struct buffer_head *bh = head; 671 672 do { 673 set_buffer_dirty(bh); 674 bh = bh->b_this_page; 675 } while (bh != head); 676 } 677 newly_dirty = !TestSetPageDirty(page); 678 spin_unlock(&mapping->private_lock); 679 680 if (newly_dirty) 681 __set_page_dirty(page, mapping, 1); 682 return newly_dirty; 683 } 684 EXPORT_SYMBOL(__set_page_dirty_buffers); 685 686 /* 687 * Write out and wait upon a list of buffers. 688 * 689 * We have conflicting pressures: we want to make sure that all 690 * initially dirty buffers get waited on, but that any subsequently 691 * dirtied buffers don't. After all, we don't want fsync to last 692 * forever if somebody is actively writing to the file. 693 * 694 * Do this in two main stages: first we copy dirty buffers to a 695 * temporary inode list, queueing the writes as we go. Then we clean 696 * up, waiting for those writes to complete. 697 * 698 * During this second stage, any subsequent updates to the file may end 699 * up refiling the buffer on the original inode's dirty list again, so 700 * there is a chance we will end up with a buffer queued for write but 701 * not yet completed on that list. So, as a final cleanup we go through 702 * the osync code to catch these locked, dirty buffers without requeuing 703 * any newly dirty buffers for write. 704 */ 705 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 706 { 707 struct buffer_head *bh; 708 struct list_head tmp; 709 struct address_space *mapping; 710 int err = 0, err2; 711 struct blk_plug plug; 712 713 INIT_LIST_HEAD(&tmp); 714 blk_start_plug(&plug); 715 716 spin_lock(lock); 717 while (!list_empty(list)) { 718 bh = BH_ENTRY(list->next); 719 mapping = bh->b_assoc_map; 720 __remove_assoc_queue(bh); 721 /* Avoid race with mark_buffer_dirty_inode() which does 722 * a lockless check and we rely on seeing the dirty bit */ 723 smp_mb(); 724 if (buffer_dirty(bh) || buffer_locked(bh)) { 725 list_add(&bh->b_assoc_buffers, &tmp); 726 bh->b_assoc_map = mapping; 727 if (buffer_dirty(bh)) { 728 get_bh(bh); 729 spin_unlock(lock); 730 /* 731 * Ensure any pending I/O completes so that 732 * write_dirty_buffer() actually writes the 733 * current contents - it is a noop if I/O is 734 * still in flight on potentially older 735 * contents. 736 */ 737 write_dirty_buffer(bh, WRITE_SYNC); 738 739 /* 740 * Kick off IO for the previous mapping. Note 741 * that we will not run the very last mapping, 742 * wait_on_buffer() will do that for us 743 * through sync_buffer(). 744 */ 745 brelse(bh); 746 spin_lock(lock); 747 } 748 } 749 } 750 751 spin_unlock(lock); 752 blk_finish_plug(&plug); 753 spin_lock(lock); 754 755 while (!list_empty(&tmp)) { 756 bh = BH_ENTRY(tmp.prev); 757 get_bh(bh); 758 mapping = bh->b_assoc_map; 759 __remove_assoc_queue(bh); 760 /* Avoid race with mark_buffer_dirty_inode() which does 761 * a lockless check and we rely on seeing the dirty bit */ 762 smp_mb(); 763 if (buffer_dirty(bh)) { 764 list_add(&bh->b_assoc_buffers, 765 &mapping->private_list); 766 bh->b_assoc_map = mapping; 767 } 768 spin_unlock(lock); 769 wait_on_buffer(bh); 770 if (!buffer_uptodate(bh)) 771 err = -EIO; 772 brelse(bh); 773 spin_lock(lock); 774 } 775 776 spin_unlock(lock); 777 err2 = osync_buffers_list(lock, list); 778 if (err) 779 return err; 780 else 781 return err2; 782 } 783 784 /* 785 * Invalidate any and all dirty buffers on a given inode. We are 786 * probably unmounting the fs, but that doesn't mean we have already 787 * done a sync(). Just drop the buffers from the inode list. 788 * 789 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 790 * assumes that all the buffers are against the blockdev. Not true 791 * for reiserfs. 792 */ 793 void invalidate_inode_buffers(struct inode *inode) 794 { 795 if (inode_has_buffers(inode)) { 796 struct address_space *mapping = &inode->i_data; 797 struct list_head *list = &mapping->private_list; 798 struct address_space *buffer_mapping = mapping->private_data; 799 800 spin_lock(&buffer_mapping->private_lock); 801 while (!list_empty(list)) 802 __remove_assoc_queue(BH_ENTRY(list->next)); 803 spin_unlock(&buffer_mapping->private_lock); 804 } 805 } 806 EXPORT_SYMBOL(invalidate_inode_buffers); 807 808 /* 809 * Remove any clean buffers from the inode's buffer list. This is called 810 * when we're trying to free the inode itself. Those buffers can pin it. 811 * 812 * Returns true if all buffers were removed. 813 */ 814 int remove_inode_buffers(struct inode *inode) 815 { 816 int ret = 1; 817 818 if (inode_has_buffers(inode)) { 819 struct address_space *mapping = &inode->i_data; 820 struct list_head *list = &mapping->private_list; 821 struct address_space *buffer_mapping = mapping->private_data; 822 823 spin_lock(&buffer_mapping->private_lock); 824 while (!list_empty(list)) { 825 struct buffer_head *bh = BH_ENTRY(list->next); 826 if (buffer_dirty(bh)) { 827 ret = 0; 828 break; 829 } 830 __remove_assoc_queue(bh); 831 } 832 spin_unlock(&buffer_mapping->private_lock); 833 } 834 return ret; 835 } 836 837 /* 838 * Create the appropriate buffers when given a page for data area and 839 * the size of each buffer.. Use the bh->b_this_page linked list to 840 * follow the buffers created. Return NULL if unable to create more 841 * buffers. 842 * 843 * The retry flag is used to differentiate async IO (paging, swapping) 844 * which may not fail from ordinary buffer allocations. 845 */ 846 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 847 int retry) 848 { 849 struct buffer_head *bh, *head; 850 long offset; 851 852 try_again: 853 head = NULL; 854 offset = PAGE_SIZE; 855 while ((offset -= size) >= 0) { 856 bh = alloc_buffer_head(GFP_NOFS); 857 if (!bh) 858 goto no_grow; 859 860 bh->b_this_page = head; 861 bh->b_blocknr = -1; 862 head = bh; 863 864 bh->b_size = size; 865 866 /* Link the buffer to its page */ 867 set_bh_page(bh, page, offset); 868 869 init_buffer(bh, NULL, NULL); 870 } 871 return head; 872 /* 873 * In case anything failed, we just free everything we got. 874 */ 875 no_grow: 876 if (head) { 877 do { 878 bh = head; 879 head = head->b_this_page; 880 free_buffer_head(bh); 881 } while (head); 882 } 883 884 /* 885 * Return failure for non-async IO requests. Async IO requests 886 * are not allowed to fail, so we have to wait until buffer heads 887 * become available. But we don't want tasks sleeping with 888 * partially complete buffers, so all were released above. 889 */ 890 if (!retry) 891 return NULL; 892 893 /* We're _really_ low on memory. Now we just 894 * wait for old buffer heads to become free due to 895 * finishing IO. Since this is an async request and 896 * the reserve list is empty, we're sure there are 897 * async buffer heads in use. 898 */ 899 free_more_memory(); 900 goto try_again; 901 } 902 EXPORT_SYMBOL_GPL(alloc_page_buffers); 903 904 static inline void 905 link_dev_buffers(struct page *page, struct buffer_head *head) 906 { 907 struct buffer_head *bh, *tail; 908 909 bh = head; 910 do { 911 tail = bh; 912 bh = bh->b_this_page; 913 } while (bh); 914 tail->b_this_page = head; 915 attach_page_buffers(page, head); 916 } 917 918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 919 { 920 sector_t retval = ~((sector_t)0); 921 loff_t sz = i_size_read(bdev->bd_inode); 922 923 if (sz) { 924 unsigned int sizebits = blksize_bits(size); 925 retval = (sz >> sizebits); 926 } 927 return retval; 928 } 929 930 /* 931 * Initialise the state of a blockdev page's buffers. 932 */ 933 static sector_t 934 init_page_buffers(struct page *page, struct block_device *bdev, 935 sector_t block, int size) 936 { 937 struct buffer_head *head = page_buffers(page); 938 struct buffer_head *bh = head; 939 int uptodate = PageUptodate(page); 940 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 941 942 do { 943 if (!buffer_mapped(bh)) { 944 init_buffer(bh, NULL, NULL); 945 bh->b_bdev = bdev; 946 bh->b_blocknr = block; 947 if (uptodate) 948 set_buffer_uptodate(bh); 949 if (block < end_block) 950 set_buffer_mapped(bh); 951 } 952 block++; 953 bh = bh->b_this_page; 954 } while (bh != head); 955 956 /* 957 * Caller needs to validate requested block against end of device. 958 */ 959 return end_block; 960 } 961 962 /* 963 * Create the page-cache page that contains the requested block. 964 * 965 * This is used purely for blockdev mappings. 966 */ 967 static int 968 grow_dev_page(struct block_device *bdev, sector_t block, 969 pgoff_t index, int size, int sizebits) 970 { 971 struct inode *inode = bdev->bd_inode; 972 struct page *page; 973 struct buffer_head *bh; 974 sector_t end_block; 975 int ret = 0; /* Will call free_more_memory() */ 976 977 page = find_or_create_page(inode->i_mapping, index, 978 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 979 if (!page) 980 return ret; 981 982 BUG_ON(!PageLocked(page)); 983 984 if (page_has_buffers(page)) { 985 bh = page_buffers(page); 986 if (bh->b_size == size) { 987 end_block = init_page_buffers(page, bdev, 988 index << sizebits, size); 989 goto done; 990 } 991 if (!try_to_free_buffers(page)) 992 goto failed; 993 } 994 995 /* 996 * Allocate some buffers for this page 997 */ 998 bh = alloc_page_buffers(page, size, 0); 999 if (!bh) 1000 goto failed; 1001 1002 /* 1003 * Link the page to the buffers and initialise them. Take the 1004 * lock to be atomic wrt __find_get_block(), which does not 1005 * run under the page lock. 1006 */ 1007 spin_lock(&inode->i_mapping->private_lock); 1008 link_dev_buffers(page, bh); 1009 end_block = init_page_buffers(page, bdev, index << sizebits, size); 1010 spin_unlock(&inode->i_mapping->private_lock); 1011 done: 1012 ret = (block < end_block) ? 1 : -ENXIO; 1013 failed: 1014 unlock_page(page); 1015 page_cache_release(page); 1016 return ret; 1017 } 1018 1019 /* 1020 * Create buffers for the specified block device block's page. If 1021 * that page was dirty, the buffers are set dirty also. 1022 */ 1023 static int 1024 grow_buffers(struct block_device *bdev, sector_t block, int size) 1025 { 1026 pgoff_t index; 1027 int sizebits; 1028 1029 sizebits = -1; 1030 do { 1031 sizebits++; 1032 } while ((size << sizebits) < PAGE_SIZE); 1033 1034 index = block >> sizebits; 1035 1036 /* 1037 * Check for a block which wants to lie outside our maximum possible 1038 * pagecache index. (this comparison is done using sector_t types). 1039 */ 1040 if (unlikely(index != block >> sizebits)) { 1041 char b[BDEVNAME_SIZE]; 1042 1043 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1044 "device %s\n", 1045 __func__, (unsigned long long)block, 1046 bdevname(bdev, b)); 1047 return -EIO; 1048 } 1049 1050 /* Create a page with the proper size buffers.. */ 1051 return grow_dev_page(bdev, block, index, size, sizebits); 1052 } 1053 1054 static struct buffer_head * 1055 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1056 { 1057 /* Size must be multiple of hard sectorsize */ 1058 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1059 (size < 512 || size > PAGE_SIZE))) { 1060 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1061 size); 1062 printk(KERN_ERR "logical block size: %d\n", 1063 bdev_logical_block_size(bdev)); 1064 1065 dump_stack(); 1066 return NULL; 1067 } 1068 1069 for (;;) { 1070 struct buffer_head *bh; 1071 int ret; 1072 1073 bh = __find_get_block(bdev, block, size); 1074 if (bh) 1075 return bh; 1076 1077 ret = grow_buffers(bdev, block, size); 1078 if (ret < 0) 1079 return NULL; 1080 if (ret == 0) 1081 free_more_memory(); 1082 } 1083 } 1084 1085 /* 1086 * The relationship between dirty buffers and dirty pages: 1087 * 1088 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1089 * the page is tagged dirty in its radix tree. 1090 * 1091 * At all times, the dirtiness of the buffers represents the dirtiness of 1092 * subsections of the page. If the page has buffers, the page dirty bit is 1093 * merely a hint about the true dirty state. 1094 * 1095 * When a page is set dirty in its entirety, all its buffers are marked dirty 1096 * (if the page has buffers). 1097 * 1098 * When a buffer is marked dirty, its page is dirtied, but the page's other 1099 * buffers are not. 1100 * 1101 * Also. When blockdev buffers are explicitly read with bread(), they 1102 * individually become uptodate. But their backing page remains not 1103 * uptodate - even if all of its buffers are uptodate. A subsequent 1104 * block_read_full_page() against that page will discover all the uptodate 1105 * buffers, will set the page uptodate and will perform no I/O. 1106 */ 1107 1108 /** 1109 * mark_buffer_dirty - mark a buffer_head as needing writeout 1110 * @bh: the buffer_head to mark dirty 1111 * 1112 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1113 * backing page dirty, then tag the page as dirty in its address_space's radix 1114 * tree and then attach the address_space's inode to its superblock's dirty 1115 * inode list. 1116 * 1117 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1118 * mapping->tree_lock and mapping->host->i_lock. 1119 */ 1120 void mark_buffer_dirty(struct buffer_head *bh) 1121 { 1122 WARN_ON_ONCE(!buffer_uptodate(bh)); 1123 1124 trace_block_dirty_buffer(bh); 1125 1126 /* 1127 * Very *carefully* optimize the it-is-already-dirty case. 1128 * 1129 * Don't let the final "is it dirty" escape to before we 1130 * perhaps modified the buffer. 1131 */ 1132 if (buffer_dirty(bh)) { 1133 smp_mb(); 1134 if (buffer_dirty(bh)) 1135 return; 1136 } 1137 1138 if (!test_set_buffer_dirty(bh)) { 1139 struct page *page = bh->b_page; 1140 if (!TestSetPageDirty(page)) { 1141 struct address_space *mapping = page_mapping(page); 1142 if (mapping) 1143 __set_page_dirty(page, mapping, 0); 1144 } 1145 } 1146 } 1147 EXPORT_SYMBOL(mark_buffer_dirty); 1148 1149 /* 1150 * Decrement a buffer_head's reference count. If all buffers against a page 1151 * have zero reference count, are clean and unlocked, and if the page is clean 1152 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1153 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1154 * a page but it ends up not being freed, and buffers may later be reattached). 1155 */ 1156 void __brelse(struct buffer_head * buf) 1157 { 1158 if (atomic_read(&buf->b_count)) { 1159 put_bh(buf); 1160 return; 1161 } 1162 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1163 } 1164 EXPORT_SYMBOL(__brelse); 1165 1166 /* 1167 * bforget() is like brelse(), except it discards any 1168 * potentially dirty data. 1169 */ 1170 void __bforget(struct buffer_head *bh) 1171 { 1172 clear_buffer_dirty(bh); 1173 if (bh->b_assoc_map) { 1174 struct address_space *buffer_mapping = bh->b_page->mapping; 1175 1176 spin_lock(&buffer_mapping->private_lock); 1177 list_del_init(&bh->b_assoc_buffers); 1178 bh->b_assoc_map = NULL; 1179 spin_unlock(&buffer_mapping->private_lock); 1180 } 1181 __brelse(bh); 1182 } 1183 EXPORT_SYMBOL(__bforget); 1184 1185 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1186 { 1187 lock_buffer(bh); 1188 if (buffer_uptodate(bh)) { 1189 unlock_buffer(bh); 1190 return bh; 1191 } else { 1192 get_bh(bh); 1193 bh->b_end_io = end_buffer_read_sync; 1194 submit_bh(READ, bh); 1195 wait_on_buffer(bh); 1196 if (buffer_uptodate(bh)) 1197 return bh; 1198 } 1199 brelse(bh); 1200 return NULL; 1201 } 1202 1203 /* 1204 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1205 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1206 * refcount elevated by one when they're in an LRU. A buffer can only appear 1207 * once in a particular CPU's LRU. A single buffer can be present in multiple 1208 * CPU's LRUs at the same time. 1209 * 1210 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1211 * sb_find_get_block(). 1212 * 1213 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1214 * a local interrupt disable for that. 1215 */ 1216 1217 #define BH_LRU_SIZE 8 1218 1219 struct bh_lru { 1220 struct buffer_head *bhs[BH_LRU_SIZE]; 1221 }; 1222 1223 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1224 1225 #ifdef CONFIG_SMP 1226 #define bh_lru_lock() local_irq_disable() 1227 #define bh_lru_unlock() local_irq_enable() 1228 #else 1229 #define bh_lru_lock() preempt_disable() 1230 #define bh_lru_unlock() preempt_enable() 1231 #endif 1232 1233 static inline void check_irqs_on(void) 1234 { 1235 #ifdef irqs_disabled 1236 BUG_ON(irqs_disabled()); 1237 #endif 1238 } 1239 1240 /* 1241 * The LRU management algorithm is dopey-but-simple. Sorry. 1242 */ 1243 static void bh_lru_install(struct buffer_head *bh) 1244 { 1245 struct buffer_head *evictee = NULL; 1246 1247 check_irqs_on(); 1248 bh_lru_lock(); 1249 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1250 struct buffer_head *bhs[BH_LRU_SIZE]; 1251 int in; 1252 int out = 0; 1253 1254 get_bh(bh); 1255 bhs[out++] = bh; 1256 for (in = 0; in < BH_LRU_SIZE; in++) { 1257 struct buffer_head *bh2 = 1258 __this_cpu_read(bh_lrus.bhs[in]); 1259 1260 if (bh2 == bh) { 1261 __brelse(bh2); 1262 } else { 1263 if (out >= BH_LRU_SIZE) { 1264 BUG_ON(evictee != NULL); 1265 evictee = bh2; 1266 } else { 1267 bhs[out++] = bh2; 1268 } 1269 } 1270 } 1271 while (out < BH_LRU_SIZE) 1272 bhs[out++] = NULL; 1273 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1274 } 1275 bh_lru_unlock(); 1276 1277 if (evictee) 1278 __brelse(evictee); 1279 } 1280 1281 /* 1282 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1283 */ 1284 static struct buffer_head * 1285 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1286 { 1287 struct buffer_head *ret = NULL; 1288 unsigned int i; 1289 1290 check_irqs_on(); 1291 bh_lru_lock(); 1292 for (i = 0; i < BH_LRU_SIZE; i++) { 1293 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1294 1295 if (bh && bh->b_bdev == bdev && 1296 bh->b_blocknr == block && bh->b_size == size) { 1297 if (i) { 1298 while (i) { 1299 __this_cpu_write(bh_lrus.bhs[i], 1300 __this_cpu_read(bh_lrus.bhs[i - 1])); 1301 i--; 1302 } 1303 __this_cpu_write(bh_lrus.bhs[0], bh); 1304 } 1305 get_bh(bh); 1306 ret = bh; 1307 break; 1308 } 1309 } 1310 bh_lru_unlock(); 1311 return ret; 1312 } 1313 1314 /* 1315 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1316 * it in the LRU and mark it as accessed. If it is not present then return 1317 * NULL 1318 */ 1319 struct buffer_head * 1320 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1321 { 1322 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1323 1324 if (bh == NULL) { 1325 bh = __find_get_block_slow(bdev, block); 1326 if (bh) 1327 bh_lru_install(bh); 1328 } 1329 if (bh) 1330 touch_buffer(bh); 1331 return bh; 1332 } 1333 EXPORT_SYMBOL(__find_get_block); 1334 1335 /* 1336 * __getblk will locate (and, if necessary, create) the buffer_head 1337 * which corresponds to the passed block_device, block and size. The 1338 * returned buffer has its reference count incremented. 1339 * 1340 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1341 * attempt is failing. FIXME, perhaps? 1342 */ 1343 struct buffer_head * 1344 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1345 { 1346 struct buffer_head *bh = __find_get_block(bdev, block, size); 1347 1348 might_sleep(); 1349 if (bh == NULL) 1350 bh = __getblk_slow(bdev, block, size); 1351 return bh; 1352 } 1353 EXPORT_SYMBOL(__getblk); 1354 1355 /* 1356 * Do async read-ahead on a buffer.. 1357 */ 1358 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1359 { 1360 struct buffer_head *bh = __getblk(bdev, block, size); 1361 if (likely(bh)) { 1362 ll_rw_block(READA, 1, &bh); 1363 brelse(bh); 1364 } 1365 } 1366 EXPORT_SYMBOL(__breadahead); 1367 1368 /** 1369 * __bread() - reads a specified block and returns the bh 1370 * @bdev: the block_device to read from 1371 * @block: number of block 1372 * @size: size (in bytes) to read 1373 * 1374 * Reads a specified block, and returns buffer head that contains it. 1375 * It returns NULL if the block was unreadable. 1376 */ 1377 struct buffer_head * 1378 __bread(struct block_device *bdev, sector_t block, unsigned size) 1379 { 1380 struct buffer_head *bh = __getblk(bdev, block, size); 1381 1382 if (likely(bh) && !buffer_uptodate(bh)) 1383 bh = __bread_slow(bh); 1384 return bh; 1385 } 1386 EXPORT_SYMBOL(__bread); 1387 1388 /* 1389 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1390 * This doesn't race because it runs in each cpu either in irq 1391 * or with preempt disabled. 1392 */ 1393 static void invalidate_bh_lru(void *arg) 1394 { 1395 struct bh_lru *b = &get_cpu_var(bh_lrus); 1396 int i; 1397 1398 for (i = 0; i < BH_LRU_SIZE; i++) { 1399 brelse(b->bhs[i]); 1400 b->bhs[i] = NULL; 1401 } 1402 put_cpu_var(bh_lrus); 1403 } 1404 1405 static bool has_bh_in_lru(int cpu, void *dummy) 1406 { 1407 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1408 int i; 1409 1410 for (i = 0; i < BH_LRU_SIZE; i++) { 1411 if (b->bhs[i]) 1412 return 1; 1413 } 1414 1415 return 0; 1416 } 1417 1418 void invalidate_bh_lrus(void) 1419 { 1420 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1421 } 1422 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1423 1424 void set_bh_page(struct buffer_head *bh, 1425 struct page *page, unsigned long offset) 1426 { 1427 bh->b_page = page; 1428 BUG_ON(offset >= PAGE_SIZE); 1429 if (PageHighMem(page)) 1430 /* 1431 * This catches illegal uses and preserves the offset: 1432 */ 1433 bh->b_data = (char *)(0 + offset); 1434 else 1435 bh->b_data = page_address(page) + offset; 1436 } 1437 EXPORT_SYMBOL(set_bh_page); 1438 1439 /* 1440 * Called when truncating a buffer on a page completely. 1441 */ 1442 static void discard_buffer(struct buffer_head * bh) 1443 { 1444 lock_buffer(bh); 1445 clear_buffer_dirty(bh); 1446 bh->b_bdev = NULL; 1447 clear_buffer_mapped(bh); 1448 clear_buffer_req(bh); 1449 clear_buffer_new(bh); 1450 clear_buffer_delay(bh); 1451 clear_buffer_unwritten(bh); 1452 unlock_buffer(bh); 1453 } 1454 1455 /** 1456 * block_invalidatepage - invalidate part or all of a buffer-backed page 1457 * 1458 * @page: the page which is affected 1459 * @offset: the index of the truncation point 1460 * 1461 * block_invalidatepage() is called when all or part of the page has become 1462 * invalidated by a truncate operation. 1463 * 1464 * block_invalidatepage() does not have to release all buffers, but it must 1465 * ensure that no dirty buffer is left outside @offset and that no I/O 1466 * is underway against any of the blocks which are outside the truncation 1467 * point. Because the caller is about to free (and possibly reuse) those 1468 * blocks on-disk. 1469 */ 1470 void block_invalidatepage(struct page *page, unsigned long offset) 1471 { 1472 struct buffer_head *head, *bh, *next; 1473 unsigned int curr_off = 0; 1474 1475 BUG_ON(!PageLocked(page)); 1476 if (!page_has_buffers(page)) 1477 goto out; 1478 1479 head = page_buffers(page); 1480 bh = head; 1481 do { 1482 unsigned int next_off = curr_off + bh->b_size; 1483 next = bh->b_this_page; 1484 1485 /* 1486 * is this block fully invalidated? 1487 */ 1488 if (offset <= curr_off) 1489 discard_buffer(bh); 1490 curr_off = next_off; 1491 bh = next; 1492 } while (bh != head); 1493 1494 /* 1495 * We release buffers only if the entire page is being invalidated. 1496 * The get_block cached value has been unconditionally invalidated, 1497 * so real IO is not possible anymore. 1498 */ 1499 if (offset == 0) 1500 try_to_release_page(page, 0); 1501 out: 1502 return; 1503 } 1504 EXPORT_SYMBOL(block_invalidatepage); 1505 1506 /* 1507 * We attach and possibly dirty the buffers atomically wrt 1508 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1509 * is already excluded via the page lock. 1510 */ 1511 void create_empty_buffers(struct page *page, 1512 unsigned long blocksize, unsigned long b_state) 1513 { 1514 struct buffer_head *bh, *head, *tail; 1515 1516 head = alloc_page_buffers(page, blocksize, 1); 1517 bh = head; 1518 do { 1519 bh->b_state |= b_state; 1520 tail = bh; 1521 bh = bh->b_this_page; 1522 } while (bh); 1523 tail->b_this_page = head; 1524 1525 spin_lock(&page->mapping->private_lock); 1526 if (PageUptodate(page) || PageDirty(page)) { 1527 bh = head; 1528 do { 1529 if (PageDirty(page)) 1530 set_buffer_dirty(bh); 1531 if (PageUptodate(page)) 1532 set_buffer_uptodate(bh); 1533 bh = bh->b_this_page; 1534 } while (bh != head); 1535 } 1536 attach_page_buffers(page, head); 1537 spin_unlock(&page->mapping->private_lock); 1538 } 1539 EXPORT_SYMBOL(create_empty_buffers); 1540 1541 /* 1542 * We are taking a block for data and we don't want any output from any 1543 * buffer-cache aliases starting from return from that function and 1544 * until the moment when something will explicitly mark the buffer 1545 * dirty (hopefully that will not happen until we will free that block ;-) 1546 * We don't even need to mark it not-uptodate - nobody can expect 1547 * anything from a newly allocated buffer anyway. We used to used 1548 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1549 * don't want to mark the alias unmapped, for example - it would confuse 1550 * anyone who might pick it with bread() afterwards... 1551 * 1552 * Also.. Note that bforget() doesn't lock the buffer. So there can 1553 * be writeout I/O going on against recently-freed buffers. We don't 1554 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1555 * only if we really need to. That happens here. 1556 */ 1557 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1558 { 1559 struct buffer_head *old_bh; 1560 1561 might_sleep(); 1562 1563 old_bh = __find_get_block_slow(bdev, block); 1564 if (old_bh) { 1565 clear_buffer_dirty(old_bh); 1566 wait_on_buffer(old_bh); 1567 clear_buffer_req(old_bh); 1568 __brelse(old_bh); 1569 } 1570 } 1571 EXPORT_SYMBOL(unmap_underlying_metadata); 1572 1573 /* 1574 * Size is a power-of-two in the range 512..PAGE_SIZE, 1575 * and the case we care about most is PAGE_SIZE. 1576 * 1577 * So this *could* possibly be written with those 1578 * constraints in mind (relevant mostly if some 1579 * architecture has a slow bit-scan instruction) 1580 */ 1581 static inline int block_size_bits(unsigned int blocksize) 1582 { 1583 return ilog2(blocksize); 1584 } 1585 1586 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1587 { 1588 BUG_ON(!PageLocked(page)); 1589 1590 if (!page_has_buffers(page)) 1591 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1592 return page_buffers(page); 1593 } 1594 1595 /* 1596 * NOTE! All mapped/uptodate combinations are valid: 1597 * 1598 * Mapped Uptodate Meaning 1599 * 1600 * No No "unknown" - must do get_block() 1601 * No Yes "hole" - zero-filled 1602 * Yes No "allocated" - allocated on disk, not read in 1603 * Yes Yes "valid" - allocated and up-to-date in memory. 1604 * 1605 * "Dirty" is valid only with the last case (mapped+uptodate). 1606 */ 1607 1608 /* 1609 * While block_write_full_page is writing back the dirty buffers under 1610 * the page lock, whoever dirtied the buffers may decide to clean them 1611 * again at any time. We handle that by only looking at the buffer 1612 * state inside lock_buffer(). 1613 * 1614 * If block_write_full_page() is called for regular writeback 1615 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1616 * locked buffer. This only can happen if someone has written the buffer 1617 * directly, with submit_bh(). At the address_space level PageWriteback 1618 * prevents this contention from occurring. 1619 * 1620 * If block_write_full_page() is called with wbc->sync_mode == 1621 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1622 * causes the writes to be flagged as synchronous writes. 1623 */ 1624 static int __block_write_full_page(struct inode *inode, struct page *page, 1625 get_block_t *get_block, struct writeback_control *wbc, 1626 bh_end_io_t *handler) 1627 { 1628 int err; 1629 sector_t block; 1630 sector_t last_block; 1631 struct buffer_head *bh, *head; 1632 unsigned int blocksize, bbits; 1633 int nr_underway = 0; 1634 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1635 WRITE_SYNC : WRITE); 1636 1637 head = create_page_buffers(page, inode, 1638 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1639 1640 /* 1641 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1642 * here, and the (potentially unmapped) buffers may become dirty at 1643 * any time. If a buffer becomes dirty here after we've inspected it 1644 * then we just miss that fact, and the page stays dirty. 1645 * 1646 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1647 * handle that here by just cleaning them. 1648 */ 1649 1650 bh = head; 1651 blocksize = bh->b_size; 1652 bbits = block_size_bits(blocksize); 1653 1654 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1655 last_block = (i_size_read(inode) - 1) >> bbits; 1656 1657 /* 1658 * Get all the dirty buffers mapped to disk addresses and 1659 * handle any aliases from the underlying blockdev's mapping. 1660 */ 1661 do { 1662 if (block > last_block) { 1663 /* 1664 * mapped buffers outside i_size will occur, because 1665 * this page can be outside i_size when there is a 1666 * truncate in progress. 1667 */ 1668 /* 1669 * The buffer was zeroed by block_write_full_page() 1670 */ 1671 clear_buffer_dirty(bh); 1672 set_buffer_uptodate(bh); 1673 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1674 buffer_dirty(bh)) { 1675 WARN_ON(bh->b_size != blocksize); 1676 err = get_block(inode, block, bh, 1); 1677 if (err) 1678 goto recover; 1679 clear_buffer_delay(bh); 1680 if (buffer_new(bh)) { 1681 /* blockdev mappings never come here */ 1682 clear_buffer_new(bh); 1683 unmap_underlying_metadata(bh->b_bdev, 1684 bh->b_blocknr); 1685 } 1686 } 1687 bh = bh->b_this_page; 1688 block++; 1689 } while (bh != head); 1690 1691 do { 1692 if (!buffer_mapped(bh)) 1693 continue; 1694 /* 1695 * If it's a fully non-blocking write attempt and we cannot 1696 * lock the buffer then redirty the page. Note that this can 1697 * potentially cause a busy-wait loop from writeback threads 1698 * and kswapd activity, but those code paths have their own 1699 * higher-level throttling. 1700 */ 1701 if (wbc->sync_mode != WB_SYNC_NONE) { 1702 lock_buffer(bh); 1703 } else if (!trylock_buffer(bh)) { 1704 redirty_page_for_writepage(wbc, page); 1705 continue; 1706 } 1707 if (test_clear_buffer_dirty(bh)) { 1708 mark_buffer_async_write_endio(bh, handler); 1709 } else { 1710 unlock_buffer(bh); 1711 } 1712 } while ((bh = bh->b_this_page) != head); 1713 1714 /* 1715 * The page and its buffers are protected by PageWriteback(), so we can 1716 * drop the bh refcounts early. 1717 */ 1718 BUG_ON(PageWriteback(page)); 1719 set_page_writeback(page); 1720 1721 do { 1722 struct buffer_head *next = bh->b_this_page; 1723 if (buffer_async_write(bh)) { 1724 submit_bh(write_op, bh); 1725 nr_underway++; 1726 } 1727 bh = next; 1728 } while (bh != head); 1729 unlock_page(page); 1730 1731 err = 0; 1732 done: 1733 if (nr_underway == 0) { 1734 /* 1735 * The page was marked dirty, but the buffers were 1736 * clean. Someone wrote them back by hand with 1737 * ll_rw_block/submit_bh. A rare case. 1738 */ 1739 end_page_writeback(page); 1740 1741 /* 1742 * The page and buffer_heads can be released at any time from 1743 * here on. 1744 */ 1745 } 1746 return err; 1747 1748 recover: 1749 /* 1750 * ENOSPC, or some other error. We may already have added some 1751 * blocks to the file, so we need to write these out to avoid 1752 * exposing stale data. 1753 * The page is currently locked and not marked for writeback 1754 */ 1755 bh = head; 1756 /* Recovery: lock and submit the mapped buffers */ 1757 do { 1758 if (buffer_mapped(bh) && buffer_dirty(bh) && 1759 !buffer_delay(bh)) { 1760 lock_buffer(bh); 1761 mark_buffer_async_write_endio(bh, handler); 1762 } else { 1763 /* 1764 * The buffer may have been set dirty during 1765 * attachment to a dirty page. 1766 */ 1767 clear_buffer_dirty(bh); 1768 } 1769 } while ((bh = bh->b_this_page) != head); 1770 SetPageError(page); 1771 BUG_ON(PageWriteback(page)); 1772 mapping_set_error(page->mapping, err); 1773 set_page_writeback(page); 1774 do { 1775 struct buffer_head *next = bh->b_this_page; 1776 if (buffer_async_write(bh)) { 1777 clear_buffer_dirty(bh); 1778 submit_bh(write_op, bh); 1779 nr_underway++; 1780 } 1781 bh = next; 1782 } while (bh != head); 1783 unlock_page(page); 1784 goto done; 1785 } 1786 1787 /* 1788 * If a page has any new buffers, zero them out here, and mark them uptodate 1789 * and dirty so they'll be written out (in order to prevent uninitialised 1790 * block data from leaking). And clear the new bit. 1791 */ 1792 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1793 { 1794 unsigned int block_start, block_end; 1795 struct buffer_head *head, *bh; 1796 1797 BUG_ON(!PageLocked(page)); 1798 if (!page_has_buffers(page)) 1799 return; 1800 1801 bh = head = page_buffers(page); 1802 block_start = 0; 1803 do { 1804 block_end = block_start + bh->b_size; 1805 1806 if (buffer_new(bh)) { 1807 if (block_end > from && block_start < to) { 1808 if (!PageUptodate(page)) { 1809 unsigned start, size; 1810 1811 start = max(from, block_start); 1812 size = min(to, block_end) - start; 1813 1814 zero_user(page, start, size); 1815 set_buffer_uptodate(bh); 1816 } 1817 1818 clear_buffer_new(bh); 1819 mark_buffer_dirty(bh); 1820 } 1821 } 1822 1823 block_start = block_end; 1824 bh = bh->b_this_page; 1825 } while (bh != head); 1826 } 1827 EXPORT_SYMBOL(page_zero_new_buffers); 1828 1829 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1830 get_block_t *get_block) 1831 { 1832 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1833 unsigned to = from + len; 1834 struct inode *inode = page->mapping->host; 1835 unsigned block_start, block_end; 1836 sector_t block; 1837 int err = 0; 1838 unsigned blocksize, bbits; 1839 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1840 1841 BUG_ON(!PageLocked(page)); 1842 BUG_ON(from > PAGE_CACHE_SIZE); 1843 BUG_ON(to > PAGE_CACHE_SIZE); 1844 BUG_ON(from > to); 1845 1846 head = create_page_buffers(page, inode, 0); 1847 blocksize = head->b_size; 1848 bbits = block_size_bits(blocksize); 1849 1850 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1851 1852 for(bh = head, block_start = 0; bh != head || !block_start; 1853 block++, block_start=block_end, bh = bh->b_this_page) { 1854 block_end = block_start + blocksize; 1855 if (block_end <= from || block_start >= to) { 1856 if (PageUptodate(page)) { 1857 if (!buffer_uptodate(bh)) 1858 set_buffer_uptodate(bh); 1859 } 1860 continue; 1861 } 1862 if (buffer_new(bh)) 1863 clear_buffer_new(bh); 1864 if (!buffer_mapped(bh)) { 1865 WARN_ON(bh->b_size != blocksize); 1866 err = get_block(inode, block, bh, 1); 1867 if (err) 1868 break; 1869 if (buffer_new(bh)) { 1870 unmap_underlying_metadata(bh->b_bdev, 1871 bh->b_blocknr); 1872 if (PageUptodate(page)) { 1873 clear_buffer_new(bh); 1874 set_buffer_uptodate(bh); 1875 mark_buffer_dirty(bh); 1876 continue; 1877 } 1878 if (block_end > to || block_start < from) 1879 zero_user_segments(page, 1880 to, block_end, 1881 block_start, from); 1882 continue; 1883 } 1884 } 1885 if (PageUptodate(page)) { 1886 if (!buffer_uptodate(bh)) 1887 set_buffer_uptodate(bh); 1888 continue; 1889 } 1890 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1891 !buffer_unwritten(bh) && 1892 (block_start < from || block_end > to)) { 1893 ll_rw_block(READ, 1, &bh); 1894 *wait_bh++=bh; 1895 } 1896 } 1897 /* 1898 * If we issued read requests - let them complete. 1899 */ 1900 while(wait_bh > wait) { 1901 wait_on_buffer(*--wait_bh); 1902 if (!buffer_uptodate(*wait_bh)) 1903 err = -EIO; 1904 } 1905 if (unlikely(err)) 1906 page_zero_new_buffers(page, from, to); 1907 return err; 1908 } 1909 EXPORT_SYMBOL(__block_write_begin); 1910 1911 static int __block_commit_write(struct inode *inode, struct page *page, 1912 unsigned from, unsigned to) 1913 { 1914 unsigned block_start, block_end; 1915 int partial = 0; 1916 unsigned blocksize; 1917 struct buffer_head *bh, *head; 1918 1919 bh = head = page_buffers(page); 1920 blocksize = bh->b_size; 1921 1922 block_start = 0; 1923 do { 1924 block_end = block_start + blocksize; 1925 if (block_end <= from || block_start >= to) { 1926 if (!buffer_uptodate(bh)) 1927 partial = 1; 1928 } else { 1929 set_buffer_uptodate(bh); 1930 mark_buffer_dirty(bh); 1931 } 1932 clear_buffer_new(bh); 1933 1934 block_start = block_end; 1935 bh = bh->b_this_page; 1936 } while (bh != head); 1937 1938 /* 1939 * If this is a partial write which happened to make all buffers 1940 * uptodate then we can optimize away a bogus readpage() for 1941 * the next read(). Here we 'discover' whether the page went 1942 * uptodate as a result of this (potentially partial) write. 1943 */ 1944 if (!partial) 1945 SetPageUptodate(page); 1946 return 0; 1947 } 1948 1949 /* 1950 * block_write_begin takes care of the basic task of block allocation and 1951 * bringing partial write blocks uptodate first. 1952 * 1953 * The filesystem needs to handle block truncation upon failure. 1954 */ 1955 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1956 unsigned flags, struct page **pagep, get_block_t *get_block) 1957 { 1958 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1959 struct page *page; 1960 int status; 1961 1962 page = grab_cache_page_write_begin(mapping, index, flags); 1963 if (!page) 1964 return -ENOMEM; 1965 1966 status = __block_write_begin(page, pos, len, get_block); 1967 if (unlikely(status)) { 1968 unlock_page(page); 1969 page_cache_release(page); 1970 page = NULL; 1971 } 1972 1973 *pagep = page; 1974 return status; 1975 } 1976 EXPORT_SYMBOL(block_write_begin); 1977 1978 int block_write_end(struct file *file, struct address_space *mapping, 1979 loff_t pos, unsigned len, unsigned copied, 1980 struct page *page, void *fsdata) 1981 { 1982 struct inode *inode = mapping->host; 1983 unsigned start; 1984 1985 start = pos & (PAGE_CACHE_SIZE - 1); 1986 1987 if (unlikely(copied < len)) { 1988 /* 1989 * The buffers that were written will now be uptodate, so we 1990 * don't have to worry about a readpage reading them and 1991 * overwriting a partial write. However if we have encountered 1992 * a short write and only partially written into a buffer, it 1993 * will not be marked uptodate, so a readpage might come in and 1994 * destroy our partial write. 1995 * 1996 * Do the simplest thing, and just treat any short write to a 1997 * non uptodate page as a zero-length write, and force the 1998 * caller to redo the whole thing. 1999 */ 2000 if (!PageUptodate(page)) 2001 copied = 0; 2002 2003 page_zero_new_buffers(page, start+copied, start+len); 2004 } 2005 flush_dcache_page(page); 2006 2007 /* This could be a short (even 0-length) commit */ 2008 __block_commit_write(inode, page, start, start+copied); 2009 2010 return copied; 2011 } 2012 EXPORT_SYMBOL(block_write_end); 2013 2014 int generic_write_end(struct file *file, struct address_space *mapping, 2015 loff_t pos, unsigned len, unsigned copied, 2016 struct page *page, void *fsdata) 2017 { 2018 struct inode *inode = mapping->host; 2019 int i_size_changed = 0; 2020 2021 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2022 2023 /* 2024 * No need to use i_size_read() here, the i_size 2025 * cannot change under us because we hold i_mutex. 2026 * 2027 * But it's important to update i_size while still holding page lock: 2028 * page writeout could otherwise come in and zero beyond i_size. 2029 */ 2030 if (pos+copied > inode->i_size) { 2031 i_size_write(inode, pos+copied); 2032 i_size_changed = 1; 2033 } 2034 2035 unlock_page(page); 2036 page_cache_release(page); 2037 2038 /* 2039 * Don't mark the inode dirty under page lock. First, it unnecessarily 2040 * makes the holding time of page lock longer. Second, it forces lock 2041 * ordering of page lock and transaction start for journaling 2042 * filesystems. 2043 */ 2044 if (i_size_changed) 2045 mark_inode_dirty(inode); 2046 2047 return copied; 2048 } 2049 EXPORT_SYMBOL(generic_write_end); 2050 2051 /* 2052 * block_is_partially_uptodate checks whether buffers within a page are 2053 * uptodate or not. 2054 * 2055 * Returns true if all buffers which correspond to a file portion 2056 * we want to read are uptodate. 2057 */ 2058 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2059 unsigned long from) 2060 { 2061 unsigned block_start, block_end, blocksize; 2062 unsigned to; 2063 struct buffer_head *bh, *head; 2064 int ret = 1; 2065 2066 if (!page_has_buffers(page)) 2067 return 0; 2068 2069 head = page_buffers(page); 2070 blocksize = head->b_size; 2071 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2072 to = from + to; 2073 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2074 return 0; 2075 2076 bh = head; 2077 block_start = 0; 2078 do { 2079 block_end = block_start + blocksize; 2080 if (block_end > from && block_start < to) { 2081 if (!buffer_uptodate(bh)) { 2082 ret = 0; 2083 break; 2084 } 2085 if (block_end >= to) 2086 break; 2087 } 2088 block_start = block_end; 2089 bh = bh->b_this_page; 2090 } while (bh != head); 2091 2092 return ret; 2093 } 2094 EXPORT_SYMBOL(block_is_partially_uptodate); 2095 2096 /* 2097 * Generic "read page" function for block devices that have the normal 2098 * get_block functionality. This is most of the block device filesystems. 2099 * Reads the page asynchronously --- the unlock_buffer() and 2100 * set/clear_buffer_uptodate() functions propagate buffer state into the 2101 * page struct once IO has completed. 2102 */ 2103 int block_read_full_page(struct page *page, get_block_t *get_block) 2104 { 2105 struct inode *inode = page->mapping->host; 2106 sector_t iblock, lblock; 2107 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2108 unsigned int blocksize, bbits; 2109 int nr, i; 2110 int fully_mapped = 1; 2111 2112 head = create_page_buffers(page, inode, 0); 2113 blocksize = head->b_size; 2114 bbits = block_size_bits(blocksize); 2115 2116 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 2117 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2118 bh = head; 2119 nr = 0; 2120 i = 0; 2121 2122 do { 2123 if (buffer_uptodate(bh)) 2124 continue; 2125 2126 if (!buffer_mapped(bh)) { 2127 int err = 0; 2128 2129 fully_mapped = 0; 2130 if (iblock < lblock) { 2131 WARN_ON(bh->b_size != blocksize); 2132 err = get_block(inode, iblock, bh, 0); 2133 if (err) 2134 SetPageError(page); 2135 } 2136 if (!buffer_mapped(bh)) { 2137 zero_user(page, i * blocksize, blocksize); 2138 if (!err) 2139 set_buffer_uptodate(bh); 2140 continue; 2141 } 2142 /* 2143 * get_block() might have updated the buffer 2144 * synchronously 2145 */ 2146 if (buffer_uptodate(bh)) 2147 continue; 2148 } 2149 arr[nr++] = bh; 2150 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2151 2152 if (fully_mapped) 2153 SetPageMappedToDisk(page); 2154 2155 if (!nr) { 2156 /* 2157 * All buffers are uptodate - we can set the page uptodate 2158 * as well. But not if get_block() returned an error. 2159 */ 2160 if (!PageError(page)) 2161 SetPageUptodate(page); 2162 unlock_page(page); 2163 return 0; 2164 } 2165 2166 /* Stage two: lock the buffers */ 2167 for (i = 0; i < nr; i++) { 2168 bh = arr[i]; 2169 lock_buffer(bh); 2170 mark_buffer_async_read(bh); 2171 } 2172 2173 /* 2174 * Stage 3: start the IO. Check for uptodateness 2175 * inside the buffer lock in case another process reading 2176 * the underlying blockdev brought it uptodate (the sct fix). 2177 */ 2178 for (i = 0; i < nr; i++) { 2179 bh = arr[i]; 2180 if (buffer_uptodate(bh)) 2181 end_buffer_async_read(bh, 1); 2182 else 2183 submit_bh(READ, bh); 2184 } 2185 return 0; 2186 } 2187 EXPORT_SYMBOL(block_read_full_page); 2188 2189 /* utility function for filesystems that need to do work on expanding 2190 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2191 * deal with the hole. 2192 */ 2193 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2194 { 2195 struct address_space *mapping = inode->i_mapping; 2196 struct page *page; 2197 void *fsdata; 2198 int err; 2199 2200 err = inode_newsize_ok(inode, size); 2201 if (err) 2202 goto out; 2203 2204 err = pagecache_write_begin(NULL, mapping, size, 0, 2205 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2206 &page, &fsdata); 2207 if (err) 2208 goto out; 2209 2210 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2211 BUG_ON(err > 0); 2212 2213 out: 2214 return err; 2215 } 2216 EXPORT_SYMBOL(generic_cont_expand_simple); 2217 2218 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2219 loff_t pos, loff_t *bytes) 2220 { 2221 struct inode *inode = mapping->host; 2222 unsigned blocksize = 1 << inode->i_blkbits; 2223 struct page *page; 2224 void *fsdata; 2225 pgoff_t index, curidx; 2226 loff_t curpos; 2227 unsigned zerofrom, offset, len; 2228 int err = 0; 2229 2230 index = pos >> PAGE_CACHE_SHIFT; 2231 offset = pos & ~PAGE_CACHE_MASK; 2232 2233 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2234 zerofrom = curpos & ~PAGE_CACHE_MASK; 2235 if (zerofrom & (blocksize-1)) { 2236 *bytes |= (blocksize-1); 2237 (*bytes)++; 2238 } 2239 len = PAGE_CACHE_SIZE - zerofrom; 2240 2241 err = pagecache_write_begin(file, mapping, curpos, len, 2242 AOP_FLAG_UNINTERRUPTIBLE, 2243 &page, &fsdata); 2244 if (err) 2245 goto out; 2246 zero_user(page, zerofrom, len); 2247 err = pagecache_write_end(file, mapping, curpos, len, len, 2248 page, fsdata); 2249 if (err < 0) 2250 goto out; 2251 BUG_ON(err != len); 2252 err = 0; 2253 2254 balance_dirty_pages_ratelimited(mapping); 2255 } 2256 2257 /* page covers the boundary, find the boundary offset */ 2258 if (index == curidx) { 2259 zerofrom = curpos & ~PAGE_CACHE_MASK; 2260 /* if we will expand the thing last block will be filled */ 2261 if (offset <= zerofrom) { 2262 goto out; 2263 } 2264 if (zerofrom & (blocksize-1)) { 2265 *bytes |= (blocksize-1); 2266 (*bytes)++; 2267 } 2268 len = offset - zerofrom; 2269 2270 err = pagecache_write_begin(file, mapping, curpos, len, 2271 AOP_FLAG_UNINTERRUPTIBLE, 2272 &page, &fsdata); 2273 if (err) 2274 goto out; 2275 zero_user(page, zerofrom, len); 2276 err = pagecache_write_end(file, mapping, curpos, len, len, 2277 page, fsdata); 2278 if (err < 0) 2279 goto out; 2280 BUG_ON(err != len); 2281 err = 0; 2282 } 2283 out: 2284 return err; 2285 } 2286 2287 /* 2288 * For moronic filesystems that do not allow holes in file. 2289 * We may have to extend the file. 2290 */ 2291 int cont_write_begin(struct file *file, struct address_space *mapping, 2292 loff_t pos, unsigned len, unsigned flags, 2293 struct page **pagep, void **fsdata, 2294 get_block_t *get_block, loff_t *bytes) 2295 { 2296 struct inode *inode = mapping->host; 2297 unsigned blocksize = 1 << inode->i_blkbits; 2298 unsigned zerofrom; 2299 int err; 2300 2301 err = cont_expand_zero(file, mapping, pos, bytes); 2302 if (err) 2303 return err; 2304 2305 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2306 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2307 *bytes |= (blocksize-1); 2308 (*bytes)++; 2309 } 2310 2311 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2312 } 2313 EXPORT_SYMBOL(cont_write_begin); 2314 2315 int block_commit_write(struct page *page, unsigned from, unsigned to) 2316 { 2317 struct inode *inode = page->mapping->host; 2318 __block_commit_write(inode,page,from,to); 2319 return 0; 2320 } 2321 EXPORT_SYMBOL(block_commit_write); 2322 2323 /* 2324 * block_page_mkwrite() is not allowed to change the file size as it gets 2325 * called from a page fault handler when a page is first dirtied. Hence we must 2326 * be careful to check for EOF conditions here. We set the page up correctly 2327 * for a written page which means we get ENOSPC checking when writing into 2328 * holes and correct delalloc and unwritten extent mapping on filesystems that 2329 * support these features. 2330 * 2331 * We are not allowed to take the i_mutex here so we have to play games to 2332 * protect against truncate races as the page could now be beyond EOF. Because 2333 * truncate writes the inode size before removing pages, once we have the 2334 * page lock we can determine safely if the page is beyond EOF. If it is not 2335 * beyond EOF, then the page is guaranteed safe against truncation until we 2336 * unlock the page. 2337 * 2338 * Direct callers of this function should protect against filesystem freezing 2339 * using sb_start_write() - sb_end_write() functions. 2340 */ 2341 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2342 get_block_t get_block) 2343 { 2344 struct page *page = vmf->page; 2345 struct inode *inode = file_inode(vma->vm_file); 2346 unsigned long end; 2347 loff_t size; 2348 int ret; 2349 2350 lock_page(page); 2351 size = i_size_read(inode); 2352 if ((page->mapping != inode->i_mapping) || 2353 (page_offset(page) > size)) { 2354 /* We overload EFAULT to mean page got truncated */ 2355 ret = -EFAULT; 2356 goto out_unlock; 2357 } 2358 2359 /* page is wholly or partially inside EOF */ 2360 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2361 end = size & ~PAGE_CACHE_MASK; 2362 else 2363 end = PAGE_CACHE_SIZE; 2364 2365 ret = __block_write_begin(page, 0, end, get_block); 2366 if (!ret) 2367 ret = block_commit_write(page, 0, end); 2368 2369 if (unlikely(ret < 0)) 2370 goto out_unlock; 2371 set_page_dirty(page); 2372 wait_for_stable_page(page); 2373 return 0; 2374 out_unlock: 2375 unlock_page(page); 2376 return ret; 2377 } 2378 EXPORT_SYMBOL(__block_page_mkwrite); 2379 2380 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2381 get_block_t get_block) 2382 { 2383 int ret; 2384 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 2385 2386 sb_start_pagefault(sb); 2387 2388 /* 2389 * Update file times before taking page lock. We may end up failing the 2390 * fault so this update may be superfluous but who really cares... 2391 */ 2392 file_update_time(vma->vm_file); 2393 2394 ret = __block_page_mkwrite(vma, vmf, get_block); 2395 sb_end_pagefault(sb); 2396 return block_page_mkwrite_return(ret); 2397 } 2398 EXPORT_SYMBOL(block_page_mkwrite); 2399 2400 /* 2401 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2402 * immediately, while under the page lock. So it needs a special end_io 2403 * handler which does not touch the bh after unlocking it. 2404 */ 2405 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2406 { 2407 __end_buffer_read_notouch(bh, uptodate); 2408 } 2409 2410 /* 2411 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2412 * the page (converting it to circular linked list and taking care of page 2413 * dirty races). 2414 */ 2415 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2416 { 2417 struct buffer_head *bh; 2418 2419 BUG_ON(!PageLocked(page)); 2420 2421 spin_lock(&page->mapping->private_lock); 2422 bh = head; 2423 do { 2424 if (PageDirty(page)) 2425 set_buffer_dirty(bh); 2426 if (!bh->b_this_page) 2427 bh->b_this_page = head; 2428 bh = bh->b_this_page; 2429 } while (bh != head); 2430 attach_page_buffers(page, head); 2431 spin_unlock(&page->mapping->private_lock); 2432 } 2433 2434 /* 2435 * On entry, the page is fully not uptodate. 2436 * On exit the page is fully uptodate in the areas outside (from,to) 2437 * The filesystem needs to handle block truncation upon failure. 2438 */ 2439 int nobh_write_begin(struct address_space *mapping, 2440 loff_t pos, unsigned len, unsigned flags, 2441 struct page **pagep, void **fsdata, 2442 get_block_t *get_block) 2443 { 2444 struct inode *inode = mapping->host; 2445 const unsigned blkbits = inode->i_blkbits; 2446 const unsigned blocksize = 1 << blkbits; 2447 struct buffer_head *head, *bh; 2448 struct page *page; 2449 pgoff_t index; 2450 unsigned from, to; 2451 unsigned block_in_page; 2452 unsigned block_start, block_end; 2453 sector_t block_in_file; 2454 int nr_reads = 0; 2455 int ret = 0; 2456 int is_mapped_to_disk = 1; 2457 2458 index = pos >> PAGE_CACHE_SHIFT; 2459 from = pos & (PAGE_CACHE_SIZE - 1); 2460 to = from + len; 2461 2462 page = grab_cache_page_write_begin(mapping, index, flags); 2463 if (!page) 2464 return -ENOMEM; 2465 *pagep = page; 2466 *fsdata = NULL; 2467 2468 if (page_has_buffers(page)) { 2469 ret = __block_write_begin(page, pos, len, get_block); 2470 if (unlikely(ret)) 2471 goto out_release; 2472 return ret; 2473 } 2474 2475 if (PageMappedToDisk(page)) 2476 return 0; 2477 2478 /* 2479 * Allocate buffers so that we can keep track of state, and potentially 2480 * attach them to the page if an error occurs. In the common case of 2481 * no error, they will just be freed again without ever being attached 2482 * to the page (which is all OK, because we're under the page lock). 2483 * 2484 * Be careful: the buffer linked list is a NULL terminated one, rather 2485 * than the circular one we're used to. 2486 */ 2487 head = alloc_page_buffers(page, blocksize, 0); 2488 if (!head) { 2489 ret = -ENOMEM; 2490 goto out_release; 2491 } 2492 2493 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2494 2495 /* 2496 * We loop across all blocks in the page, whether or not they are 2497 * part of the affected region. This is so we can discover if the 2498 * page is fully mapped-to-disk. 2499 */ 2500 for (block_start = 0, block_in_page = 0, bh = head; 2501 block_start < PAGE_CACHE_SIZE; 2502 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2503 int create; 2504 2505 block_end = block_start + blocksize; 2506 bh->b_state = 0; 2507 create = 1; 2508 if (block_start >= to) 2509 create = 0; 2510 ret = get_block(inode, block_in_file + block_in_page, 2511 bh, create); 2512 if (ret) 2513 goto failed; 2514 if (!buffer_mapped(bh)) 2515 is_mapped_to_disk = 0; 2516 if (buffer_new(bh)) 2517 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2518 if (PageUptodate(page)) { 2519 set_buffer_uptodate(bh); 2520 continue; 2521 } 2522 if (buffer_new(bh) || !buffer_mapped(bh)) { 2523 zero_user_segments(page, block_start, from, 2524 to, block_end); 2525 continue; 2526 } 2527 if (buffer_uptodate(bh)) 2528 continue; /* reiserfs does this */ 2529 if (block_start < from || block_end > to) { 2530 lock_buffer(bh); 2531 bh->b_end_io = end_buffer_read_nobh; 2532 submit_bh(READ, bh); 2533 nr_reads++; 2534 } 2535 } 2536 2537 if (nr_reads) { 2538 /* 2539 * The page is locked, so these buffers are protected from 2540 * any VM or truncate activity. Hence we don't need to care 2541 * for the buffer_head refcounts. 2542 */ 2543 for (bh = head; bh; bh = bh->b_this_page) { 2544 wait_on_buffer(bh); 2545 if (!buffer_uptodate(bh)) 2546 ret = -EIO; 2547 } 2548 if (ret) 2549 goto failed; 2550 } 2551 2552 if (is_mapped_to_disk) 2553 SetPageMappedToDisk(page); 2554 2555 *fsdata = head; /* to be released by nobh_write_end */ 2556 2557 return 0; 2558 2559 failed: 2560 BUG_ON(!ret); 2561 /* 2562 * Error recovery is a bit difficult. We need to zero out blocks that 2563 * were newly allocated, and dirty them to ensure they get written out. 2564 * Buffers need to be attached to the page at this point, otherwise 2565 * the handling of potential IO errors during writeout would be hard 2566 * (could try doing synchronous writeout, but what if that fails too?) 2567 */ 2568 attach_nobh_buffers(page, head); 2569 page_zero_new_buffers(page, from, to); 2570 2571 out_release: 2572 unlock_page(page); 2573 page_cache_release(page); 2574 *pagep = NULL; 2575 2576 return ret; 2577 } 2578 EXPORT_SYMBOL(nobh_write_begin); 2579 2580 int nobh_write_end(struct file *file, struct address_space *mapping, 2581 loff_t pos, unsigned len, unsigned copied, 2582 struct page *page, void *fsdata) 2583 { 2584 struct inode *inode = page->mapping->host; 2585 struct buffer_head *head = fsdata; 2586 struct buffer_head *bh; 2587 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2588 2589 if (unlikely(copied < len) && head) 2590 attach_nobh_buffers(page, head); 2591 if (page_has_buffers(page)) 2592 return generic_write_end(file, mapping, pos, len, 2593 copied, page, fsdata); 2594 2595 SetPageUptodate(page); 2596 set_page_dirty(page); 2597 if (pos+copied > inode->i_size) { 2598 i_size_write(inode, pos+copied); 2599 mark_inode_dirty(inode); 2600 } 2601 2602 unlock_page(page); 2603 page_cache_release(page); 2604 2605 while (head) { 2606 bh = head; 2607 head = head->b_this_page; 2608 free_buffer_head(bh); 2609 } 2610 2611 return copied; 2612 } 2613 EXPORT_SYMBOL(nobh_write_end); 2614 2615 /* 2616 * nobh_writepage() - based on block_full_write_page() except 2617 * that it tries to operate without attaching bufferheads to 2618 * the page. 2619 */ 2620 int nobh_writepage(struct page *page, get_block_t *get_block, 2621 struct writeback_control *wbc) 2622 { 2623 struct inode * const inode = page->mapping->host; 2624 loff_t i_size = i_size_read(inode); 2625 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2626 unsigned offset; 2627 int ret; 2628 2629 /* Is the page fully inside i_size? */ 2630 if (page->index < end_index) 2631 goto out; 2632 2633 /* Is the page fully outside i_size? (truncate in progress) */ 2634 offset = i_size & (PAGE_CACHE_SIZE-1); 2635 if (page->index >= end_index+1 || !offset) { 2636 /* 2637 * The page may have dirty, unmapped buffers. For example, 2638 * they may have been added in ext3_writepage(). Make them 2639 * freeable here, so the page does not leak. 2640 */ 2641 #if 0 2642 /* Not really sure about this - do we need this ? */ 2643 if (page->mapping->a_ops->invalidatepage) 2644 page->mapping->a_ops->invalidatepage(page, offset); 2645 #endif 2646 unlock_page(page); 2647 return 0; /* don't care */ 2648 } 2649 2650 /* 2651 * The page straddles i_size. It must be zeroed out on each and every 2652 * writepage invocation because it may be mmapped. "A file is mapped 2653 * in multiples of the page size. For a file that is not a multiple of 2654 * the page size, the remaining memory is zeroed when mapped, and 2655 * writes to that region are not written out to the file." 2656 */ 2657 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2658 out: 2659 ret = mpage_writepage(page, get_block, wbc); 2660 if (ret == -EAGAIN) 2661 ret = __block_write_full_page(inode, page, get_block, wbc, 2662 end_buffer_async_write); 2663 return ret; 2664 } 2665 EXPORT_SYMBOL(nobh_writepage); 2666 2667 int nobh_truncate_page(struct address_space *mapping, 2668 loff_t from, get_block_t *get_block) 2669 { 2670 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2671 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2672 unsigned blocksize; 2673 sector_t iblock; 2674 unsigned length, pos; 2675 struct inode *inode = mapping->host; 2676 struct page *page; 2677 struct buffer_head map_bh; 2678 int err; 2679 2680 blocksize = 1 << inode->i_blkbits; 2681 length = offset & (blocksize - 1); 2682 2683 /* Block boundary? Nothing to do */ 2684 if (!length) 2685 return 0; 2686 2687 length = blocksize - length; 2688 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2689 2690 page = grab_cache_page(mapping, index); 2691 err = -ENOMEM; 2692 if (!page) 2693 goto out; 2694 2695 if (page_has_buffers(page)) { 2696 has_buffers: 2697 unlock_page(page); 2698 page_cache_release(page); 2699 return block_truncate_page(mapping, from, get_block); 2700 } 2701 2702 /* Find the buffer that contains "offset" */ 2703 pos = blocksize; 2704 while (offset >= pos) { 2705 iblock++; 2706 pos += blocksize; 2707 } 2708 2709 map_bh.b_size = blocksize; 2710 map_bh.b_state = 0; 2711 err = get_block(inode, iblock, &map_bh, 0); 2712 if (err) 2713 goto unlock; 2714 /* unmapped? It's a hole - nothing to do */ 2715 if (!buffer_mapped(&map_bh)) 2716 goto unlock; 2717 2718 /* Ok, it's mapped. Make sure it's up-to-date */ 2719 if (!PageUptodate(page)) { 2720 err = mapping->a_ops->readpage(NULL, page); 2721 if (err) { 2722 page_cache_release(page); 2723 goto out; 2724 } 2725 lock_page(page); 2726 if (!PageUptodate(page)) { 2727 err = -EIO; 2728 goto unlock; 2729 } 2730 if (page_has_buffers(page)) 2731 goto has_buffers; 2732 } 2733 zero_user(page, offset, length); 2734 set_page_dirty(page); 2735 err = 0; 2736 2737 unlock: 2738 unlock_page(page); 2739 page_cache_release(page); 2740 out: 2741 return err; 2742 } 2743 EXPORT_SYMBOL(nobh_truncate_page); 2744 2745 int block_truncate_page(struct address_space *mapping, 2746 loff_t from, get_block_t *get_block) 2747 { 2748 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2749 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2750 unsigned blocksize; 2751 sector_t iblock; 2752 unsigned length, pos; 2753 struct inode *inode = mapping->host; 2754 struct page *page; 2755 struct buffer_head *bh; 2756 int err; 2757 2758 blocksize = 1 << inode->i_blkbits; 2759 length = offset & (blocksize - 1); 2760 2761 /* Block boundary? Nothing to do */ 2762 if (!length) 2763 return 0; 2764 2765 length = blocksize - length; 2766 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2767 2768 page = grab_cache_page(mapping, index); 2769 err = -ENOMEM; 2770 if (!page) 2771 goto out; 2772 2773 if (!page_has_buffers(page)) 2774 create_empty_buffers(page, blocksize, 0); 2775 2776 /* Find the buffer that contains "offset" */ 2777 bh = page_buffers(page); 2778 pos = blocksize; 2779 while (offset >= pos) { 2780 bh = bh->b_this_page; 2781 iblock++; 2782 pos += blocksize; 2783 } 2784 2785 err = 0; 2786 if (!buffer_mapped(bh)) { 2787 WARN_ON(bh->b_size != blocksize); 2788 err = get_block(inode, iblock, bh, 0); 2789 if (err) 2790 goto unlock; 2791 /* unmapped? It's a hole - nothing to do */ 2792 if (!buffer_mapped(bh)) 2793 goto unlock; 2794 } 2795 2796 /* Ok, it's mapped. Make sure it's up-to-date */ 2797 if (PageUptodate(page)) 2798 set_buffer_uptodate(bh); 2799 2800 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2801 err = -EIO; 2802 ll_rw_block(READ, 1, &bh); 2803 wait_on_buffer(bh); 2804 /* Uhhuh. Read error. Complain and punt. */ 2805 if (!buffer_uptodate(bh)) 2806 goto unlock; 2807 } 2808 2809 zero_user(page, offset, length); 2810 mark_buffer_dirty(bh); 2811 err = 0; 2812 2813 unlock: 2814 unlock_page(page); 2815 page_cache_release(page); 2816 out: 2817 return err; 2818 } 2819 EXPORT_SYMBOL(block_truncate_page); 2820 2821 /* 2822 * The generic ->writepage function for buffer-backed address_spaces 2823 * this form passes in the end_io handler used to finish the IO. 2824 */ 2825 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2826 struct writeback_control *wbc, bh_end_io_t *handler) 2827 { 2828 struct inode * const inode = page->mapping->host; 2829 loff_t i_size = i_size_read(inode); 2830 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2831 unsigned offset; 2832 2833 /* Is the page fully inside i_size? */ 2834 if (page->index < end_index) 2835 return __block_write_full_page(inode, page, get_block, wbc, 2836 handler); 2837 2838 /* Is the page fully outside i_size? (truncate in progress) */ 2839 offset = i_size & (PAGE_CACHE_SIZE-1); 2840 if (page->index >= end_index+1 || !offset) { 2841 /* 2842 * The page may have dirty, unmapped buffers. For example, 2843 * they may have been added in ext3_writepage(). Make them 2844 * freeable here, so the page does not leak. 2845 */ 2846 do_invalidatepage(page, 0); 2847 unlock_page(page); 2848 return 0; /* don't care */ 2849 } 2850 2851 /* 2852 * The page straddles i_size. It must be zeroed out on each and every 2853 * writepage invocation because it may be mmapped. "A file is mapped 2854 * in multiples of the page size. For a file that is not a multiple of 2855 * the page size, the remaining memory is zeroed when mapped, and 2856 * writes to that region are not written out to the file." 2857 */ 2858 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2859 return __block_write_full_page(inode, page, get_block, wbc, handler); 2860 } 2861 EXPORT_SYMBOL(block_write_full_page_endio); 2862 2863 /* 2864 * The generic ->writepage function for buffer-backed address_spaces 2865 */ 2866 int block_write_full_page(struct page *page, get_block_t *get_block, 2867 struct writeback_control *wbc) 2868 { 2869 return block_write_full_page_endio(page, get_block, wbc, 2870 end_buffer_async_write); 2871 } 2872 EXPORT_SYMBOL(block_write_full_page); 2873 2874 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2875 get_block_t *get_block) 2876 { 2877 struct buffer_head tmp; 2878 struct inode *inode = mapping->host; 2879 tmp.b_state = 0; 2880 tmp.b_blocknr = 0; 2881 tmp.b_size = 1 << inode->i_blkbits; 2882 get_block(inode, block, &tmp, 0); 2883 return tmp.b_blocknr; 2884 } 2885 EXPORT_SYMBOL(generic_block_bmap); 2886 2887 static void end_bio_bh_io_sync(struct bio *bio, int err) 2888 { 2889 struct buffer_head *bh = bio->bi_private; 2890 2891 if (err == -EOPNOTSUPP) { 2892 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2893 } 2894 2895 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2896 set_bit(BH_Quiet, &bh->b_state); 2897 2898 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2899 bio_put(bio); 2900 } 2901 2902 /* 2903 * This allows us to do IO even on the odd last sectors 2904 * of a device, even if the bh block size is some multiple 2905 * of the physical sector size. 2906 * 2907 * We'll just truncate the bio to the size of the device, 2908 * and clear the end of the buffer head manually. 2909 * 2910 * Truly out-of-range accesses will turn into actual IO 2911 * errors, this only handles the "we need to be able to 2912 * do IO at the final sector" case. 2913 */ 2914 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh) 2915 { 2916 sector_t maxsector; 2917 unsigned bytes; 2918 2919 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2920 if (!maxsector) 2921 return; 2922 2923 /* 2924 * If the *whole* IO is past the end of the device, 2925 * let it through, and the IO layer will turn it into 2926 * an EIO. 2927 */ 2928 if (unlikely(bio->bi_sector >= maxsector)) 2929 return; 2930 2931 maxsector -= bio->bi_sector; 2932 bytes = bio->bi_size; 2933 if (likely((bytes >> 9) <= maxsector)) 2934 return; 2935 2936 /* Uhhuh. We've got a bh that straddles the device size! */ 2937 bytes = maxsector << 9; 2938 2939 /* Truncate the bio.. */ 2940 bio->bi_size = bytes; 2941 bio->bi_io_vec[0].bv_len = bytes; 2942 2943 /* ..and clear the end of the buffer for reads */ 2944 if ((rw & RW_MASK) == READ) { 2945 void *kaddr = kmap_atomic(bh->b_page); 2946 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes); 2947 kunmap_atomic(kaddr); 2948 flush_dcache_page(bh->b_page); 2949 } 2950 } 2951 2952 int submit_bh(int rw, struct buffer_head * bh) 2953 { 2954 struct bio *bio; 2955 int ret = 0; 2956 2957 BUG_ON(!buffer_locked(bh)); 2958 BUG_ON(!buffer_mapped(bh)); 2959 BUG_ON(!bh->b_end_io); 2960 BUG_ON(buffer_delay(bh)); 2961 BUG_ON(buffer_unwritten(bh)); 2962 2963 /* 2964 * Only clear out a write error when rewriting 2965 */ 2966 if (test_set_buffer_req(bh) && (rw & WRITE)) 2967 clear_buffer_write_io_error(bh); 2968 2969 /* 2970 * from here on down, it's all bio -- do the initial mapping, 2971 * submit_bio -> generic_make_request may further map this bio around 2972 */ 2973 bio = bio_alloc(GFP_NOIO, 1); 2974 2975 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2976 bio->bi_bdev = bh->b_bdev; 2977 bio->bi_io_vec[0].bv_page = bh->b_page; 2978 bio->bi_io_vec[0].bv_len = bh->b_size; 2979 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2980 2981 bio->bi_vcnt = 1; 2982 bio->bi_idx = 0; 2983 bio->bi_size = bh->b_size; 2984 2985 bio->bi_end_io = end_bio_bh_io_sync; 2986 bio->bi_private = bh; 2987 2988 /* Take care of bh's that straddle the end of the device */ 2989 guard_bh_eod(rw, bio, bh); 2990 2991 bio_get(bio); 2992 submit_bio(rw, bio); 2993 2994 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2995 ret = -EOPNOTSUPP; 2996 2997 bio_put(bio); 2998 return ret; 2999 } 3000 EXPORT_SYMBOL(submit_bh); 3001 3002 /** 3003 * ll_rw_block: low-level access to block devices (DEPRECATED) 3004 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 3005 * @nr: number of &struct buffer_heads in the array 3006 * @bhs: array of pointers to &struct buffer_head 3007 * 3008 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3009 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3010 * %READA option is described in the documentation for generic_make_request() 3011 * which ll_rw_block() calls. 3012 * 3013 * This function drops any buffer that it cannot get a lock on (with the 3014 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3015 * request, and any buffer that appears to be up-to-date when doing read 3016 * request. Further it marks as clean buffers that are processed for 3017 * writing (the buffer cache won't assume that they are actually clean 3018 * until the buffer gets unlocked). 3019 * 3020 * ll_rw_block sets b_end_io to simple completion handler that marks 3021 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 3022 * any waiters. 3023 * 3024 * All of the buffers must be for the same device, and must also be a 3025 * multiple of the current approved size for the device. 3026 */ 3027 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3028 { 3029 int i; 3030 3031 for (i = 0; i < nr; i++) { 3032 struct buffer_head *bh = bhs[i]; 3033 3034 if (!trylock_buffer(bh)) 3035 continue; 3036 if (rw == WRITE) { 3037 if (test_clear_buffer_dirty(bh)) { 3038 bh->b_end_io = end_buffer_write_sync; 3039 get_bh(bh); 3040 submit_bh(WRITE, bh); 3041 continue; 3042 } 3043 } else { 3044 if (!buffer_uptodate(bh)) { 3045 bh->b_end_io = end_buffer_read_sync; 3046 get_bh(bh); 3047 submit_bh(rw, bh); 3048 continue; 3049 } 3050 } 3051 unlock_buffer(bh); 3052 } 3053 } 3054 EXPORT_SYMBOL(ll_rw_block); 3055 3056 void write_dirty_buffer(struct buffer_head *bh, int rw) 3057 { 3058 lock_buffer(bh); 3059 if (!test_clear_buffer_dirty(bh)) { 3060 unlock_buffer(bh); 3061 return; 3062 } 3063 bh->b_end_io = end_buffer_write_sync; 3064 get_bh(bh); 3065 submit_bh(rw, bh); 3066 } 3067 EXPORT_SYMBOL(write_dirty_buffer); 3068 3069 /* 3070 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3071 * and then start new I/O and then wait upon it. The caller must have a ref on 3072 * the buffer_head. 3073 */ 3074 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3075 { 3076 int ret = 0; 3077 3078 WARN_ON(atomic_read(&bh->b_count) < 1); 3079 lock_buffer(bh); 3080 if (test_clear_buffer_dirty(bh)) { 3081 get_bh(bh); 3082 bh->b_end_io = end_buffer_write_sync; 3083 ret = submit_bh(rw, bh); 3084 wait_on_buffer(bh); 3085 if (!ret && !buffer_uptodate(bh)) 3086 ret = -EIO; 3087 } else { 3088 unlock_buffer(bh); 3089 } 3090 return ret; 3091 } 3092 EXPORT_SYMBOL(__sync_dirty_buffer); 3093 3094 int sync_dirty_buffer(struct buffer_head *bh) 3095 { 3096 return __sync_dirty_buffer(bh, WRITE_SYNC); 3097 } 3098 EXPORT_SYMBOL(sync_dirty_buffer); 3099 3100 /* 3101 * try_to_free_buffers() checks if all the buffers on this particular page 3102 * are unused, and releases them if so. 3103 * 3104 * Exclusion against try_to_free_buffers may be obtained by either 3105 * locking the page or by holding its mapping's private_lock. 3106 * 3107 * If the page is dirty but all the buffers are clean then we need to 3108 * be sure to mark the page clean as well. This is because the page 3109 * may be against a block device, and a later reattachment of buffers 3110 * to a dirty page will set *all* buffers dirty. Which would corrupt 3111 * filesystem data on the same device. 3112 * 3113 * The same applies to regular filesystem pages: if all the buffers are 3114 * clean then we set the page clean and proceed. To do that, we require 3115 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3116 * private_lock. 3117 * 3118 * try_to_free_buffers() is non-blocking. 3119 */ 3120 static inline int buffer_busy(struct buffer_head *bh) 3121 { 3122 return atomic_read(&bh->b_count) | 3123 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3124 } 3125 3126 static int 3127 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3128 { 3129 struct buffer_head *head = page_buffers(page); 3130 struct buffer_head *bh; 3131 3132 bh = head; 3133 do { 3134 if (buffer_write_io_error(bh) && page->mapping) 3135 set_bit(AS_EIO, &page->mapping->flags); 3136 if (buffer_busy(bh)) 3137 goto failed; 3138 bh = bh->b_this_page; 3139 } while (bh != head); 3140 3141 do { 3142 struct buffer_head *next = bh->b_this_page; 3143 3144 if (bh->b_assoc_map) 3145 __remove_assoc_queue(bh); 3146 bh = next; 3147 } while (bh != head); 3148 *buffers_to_free = head; 3149 __clear_page_buffers(page); 3150 return 1; 3151 failed: 3152 return 0; 3153 } 3154 3155 int try_to_free_buffers(struct page *page) 3156 { 3157 struct address_space * const mapping = page->mapping; 3158 struct buffer_head *buffers_to_free = NULL; 3159 int ret = 0; 3160 3161 BUG_ON(!PageLocked(page)); 3162 if (PageWriteback(page)) 3163 return 0; 3164 3165 if (mapping == NULL) { /* can this still happen? */ 3166 ret = drop_buffers(page, &buffers_to_free); 3167 goto out; 3168 } 3169 3170 spin_lock(&mapping->private_lock); 3171 ret = drop_buffers(page, &buffers_to_free); 3172 3173 /* 3174 * If the filesystem writes its buffers by hand (eg ext3) 3175 * then we can have clean buffers against a dirty page. We 3176 * clean the page here; otherwise the VM will never notice 3177 * that the filesystem did any IO at all. 3178 * 3179 * Also, during truncate, discard_buffer will have marked all 3180 * the page's buffers clean. We discover that here and clean 3181 * the page also. 3182 * 3183 * private_lock must be held over this entire operation in order 3184 * to synchronise against __set_page_dirty_buffers and prevent the 3185 * dirty bit from being lost. 3186 */ 3187 if (ret) 3188 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3189 spin_unlock(&mapping->private_lock); 3190 out: 3191 if (buffers_to_free) { 3192 struct buffer_head *bh = buffers_to_free; 3193 3194 do { 3195 struct buffer_head *next = bh->b_this_page; 3196 free_buffer_head(bh); 3197 bh = next; 3198 } while (bh != buffers_to_free); 3199 } 3200 return ret; 3201 } 3202 EXPORT_SYMBOL(try_to_free_buffers); 3203 3204 /* 3205 * There are no bdflush tunables left. But distributions are 3206 * still running obsolete flush daemons, so we terminate them here. 3207 * 3208 * Use of bdflush() is deprecated and will be removed in a future kernel. 3209 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3210 */ 3211 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3212 { 3213 static int msg_count; 3214 3215 if (!capable(CAP_SYS_ADMIN)) 3216 return -EPERM; 3217 3218 if (msg_count < 5) { 3219 msg_count++; 3220 printk(KERN_INFO 3221 "warning: process `%s' used the obsolete bdflush" 3222 " system call\n", current->comm); 3223 printk(KERN_INFO "Fix your initscripts?\n"); 3224 } 3225 3226 if (func == 1) 3227 do_exit(0); 3228 return 0; 3229 } 3230 3231 /* 3232 * Buffer-head allocation 3233 */ 3234 static struct kmem_cache *bh_cachep __read_mostly; 3235 3236 /* 3237 * Once the number of bh's in the machine exceeds this level, we start 3238 * stripping them in writeback. 3239 */ 3240 static unsigned long max_buffer_heads; 3241 3242 int buffer_heads_over_limit; 3243 3244 struct bh_accounting { 3245 int nr; /* Number of live bh's */ 3246 int ratelimit; /* Limit cacheline bouncing */ 3247 }; 3248 3249 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3250 3251 static void recalc_bh_state(void) 3252 { 3253 int i; 3254 int tot = 0; 3255 3256 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3257 return; 3258 __this_cpu_write(bh_accounting.ratelimit, 0); 3259 for_each_online_cpu(i) 3260 tot += per_cpu(bh_accounting, i).nr; 3261 buffer_heads_over_limit = (tot > max_buffer_heads); 3262 } 3263 3264 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3265 { 3266 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3267 if (ret) { 3268 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3269 preempt_disable(); 3270 __this_cpu_inc(bh_accounting.nr); 3271 recalc_bh_state(); 3272 preempt_enable(); 3273 } 3274 return ret; 3275 } 3276 EXPORT_SYMBOL(alloc_buffer_head); 3277 3278 void free_buffer_head(struct buffer_head *bh) 3279 { 3280 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3281 kmem_cache_free(bh_cachep, bh); 3282 preempt_disable(); 3283 __this_cpu_dec(bh_accounting.nr); 3284 recalc_bh_state(); 3285 preempt_enable(); 3286 } 3287 EXPORT_SYMBOL(free_buffer_head); 3288 3289 static void buffer_exit_cpu(int cpu) 3290 { 3291 int i; 3292 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3293 3294 for (i = 0; i < BH_LRU_SIZE; i++) { 3295 brelse(b->bhs[i]); 3296 b->bhs[i] = NULL; 3297 } 3298 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3299 per_cpu(bh_accounting, cpu).nr = 0; 3300 } 3301 3302 static int buffer_cpu_notify(struct notifier_block *self, 3303 unsigned long action, void *hcpu) 3304 { 3305 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3306 buffer_exit_cpu((unsigned long)hcpu); 3307 return NOTIFY_OK; 3308 } 3309 3310 /** 3311 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3312 * @bh: struct buffer_head 3313 * 3314 * Return true if the buffer is up-to-date and false, 3315 * with the buffer locked, if not. 3316 */ 3317 int bh_uptodate_or_lock(struct buffer_head *bh) 3318 { 3319 if (!buffer_uptodate(bh)) { 3320 lock_buffer(bh); 3321 if (!buffer_uptodate(bh)) 3322 return 0; 3323 unlock_buffer(bh); 3324 } 3325 return 1; 3326 } 3327 EXPORT_SYMBOL(bh_uptodate_or_lock); 3328 3329 /** 3330 * bh_submit_read - Submit a locked buffer for reading 3331 * @bh: struct buffer_head 3332 * 3333 * Returns zero on success and -EIO on error. 3334 */ 3335 int bh_submit_read(struct buffer_head *bh) 3336 { 3337 BUG_ON(!buffer_locked(bh)); 3338 3339 if (buffer_uptodate(bh)) { 3340 unlock_buffer(bh); 3341 return 0; 3342 } 3343 3344 get_bh(bh); 3345 bh->b_end_io = end_buffer_read_sync; 3346 submit_bh(READ, bh); 3347 wait_on_buffer(bh); 3348 if (buffer_uptodate(bh)) 3349 return 0; 3350 return -EIO; 3351 } 3352 EXPORT_SYMBOL(bh_submit_read); 3353 3354 void __init buffer_init(void) 3355 { 3356 unsigned long nrpages; 3357 3358 bh_cachep = kmem_cache_create("buffer_head", 3359 sizeof(struct buffer_head), 0, 3360 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3361 SLAB_MEM_SPREAD), 3362 NULL); 3363 3364 /* 3365 * Limit the bh occupancy to 10% of ZONE_NORMAL 3366 */ 3367 nrpages = (nr_free_buffer_pages() * 10) / 100; 3368 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3369 hotcpu_notifier(buffer_cpu_notify, 0); 3370 } 3371