1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/iomap.h> 25 #include <linux/mm.h> 26 #include <linux/percpu.h> 27 #include <linux/slab.h> 28 #include <linux/capability.h> 29 #include <linux/blkdev.h> 30 #include <linux/file.h> 31 #include <linux/quotaops.h> 32 #include <linux/highmem.h> 33 #include <linux/export.h> 34 #include <linux/backing-dev.h> 35 #include <linux/writeback.h> 36 #include <linux/hash.h> 37 #include <linux/suspend.h> 38 #include <linux/buffer_head.h> 39 #include <linux/task_io_accounting_ops.h> 40 #include <linux/bio.h> 41 #include <linux/notifier.h> 42 #include <linux/cpu.h> 43 #include <linux/bitops.h> 44 #include <linux/mpage.h> 45 #include <linux/bit_spinlock.h> 46 #include <trace/events/block.h> 47 48 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 49 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 50 unsigned long bio_flags, 51 struct writeback_control *wbc); 52 53 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 54 55 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 56 { 57 bh->b_end_io = handler; 58 bh->b_private = private; 59 } 60 EXPORT_SYMBOL(init_buffer); 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 mark_page_accessed(bh->b_page); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the page has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the PageDirty information is stale. If 86 * any of the pages are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct page *page, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!PageLocked(page)); 96 97 if (!page_has_buffers(page)) 98 return; 99 100 if (PageWriteback(page)) 101 *writeback = true; 102 103 head = page_buffers(page); 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 EXPORT_SYMBOL(buffer_check_dirty_writeback); 116 117 /* 118 * Block until a buffer comes unlocked. This doesn't stop it 119 * from becoming locked again - you have to lock it yourself 120 * if you want to preserve its state. 121 */ 122 void __wait_on_buffer(struct buffer_head * bh) 123 { 124 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 125 } 126 EXPORT_SYMBOL(__wait_on_buffer); 127 128 static void 129 __clear_page_buffers(struct page *page) 130 { 131 ClearPagePrivate(page); 132 set_page_private(page, 0); 133 put_page(page); 134 } 135 136 static void buffer_io_error(struct buffer_head *bh, char *msg) 137 { 138 if (!test_bit(BH_Quiet, &bh->b_state)) 139 printk_ratelimited(KERN_ERR 140 "Buffer I/O error on dev %pg, logical block %llu%s\n", 141 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 142 } 143 144 /* 145 * End-of-IO handler helper function which does not touch the bh after 146 * unlocking it. 147 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 148 * a race there is benign: unlock_buffer() only use the bh's address for 149 * hashing after unlocking the buffer, so it doesn't actually touch the bh 150 * itself. 151 */ 152 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 153 { 154 if (uptodate) { 155 set_buffer_uptodate(bh); 156 } else { 157 /* This happens, due to failed read-ahead attempts. */ 158 clear_buffer_uptodate(bh); 159 } 160 unlock_buffer(bh); 161 } 162 163 /* 164 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 165 * unlock the buffer. This is what ll_rw_block uses too. 166 */ 167 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 168 { 169 __end_buffer_read_notouch(bh, uptodate); 170 put_bh(bh); 171 } 172 EXPORT_SYMBOL(end_buffer_read_sync); 173 174 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 175 { 176 if (uptodate) { 177 set_buffer_uptodate(bh); 178 } else { 179 buffer_io_error(bh, ", lost sync page write"); 180 set_buffer_write_io_error(bh); 181 clear_buffer_uptodate(bh); 182 } 183 unlock_buffer(bh); 184 put_bh(bh); 185 } 186 EXPORT_SYMBOL(end_buffer_write_sync); 187 188 /* 189 * Various filesystems appear to want __find_get_block to be non-blocking. 190 * But it's the page lock which protects the buffers. To get around this, 191 * we get exclusion from try_to_free_buffers with the blockdev mapping's 192 * private_lock. 193 * 194 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 195 * may be quite high. This code could TryLock the page, and if that 196 * succeeds, there is no need to take private_lock. (But if 197 * private_lock is contended then so is mapping->tree_lock). 198 */ 199 static struct buffer_head * 200 __find_get_block_slow(struct block_device *bdev, sector_t block) 201 { 202 struct inode *bd_inode = bdev->bd_inode; 203 struct address_space *bd_mapping = bd_inode->i_mapping; 204 struct buffer_head *ret = NULL; 205 pgoff_t index; 206 struct buffer_head *bh; 207 struct buffer_head *head; 208 struct page *page; 209 int all_mapped = 1; 210 211 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 212 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 213 if (!page) 214 goto out; 215 216 spin_lock(&bd_mapping->private_lock); 217 if (!page_has_buffers(page)) 218 goto out_unlock; 219 head = page_buffers(page); 220 bh = head; 221 do { 222 if (!buffer_mapped(bh)) 223 all_mapped = 0; 224 else if (bh->b_blocknr == block) { 225 ret = bh; 226 get_bh(bh); 227 goto out_unlock; 228 } 229 bh = bh->b_this_page; 230 } while (bh != head); 231 232 /* we might be here because some of the buffers on this page are 233 * not mapped. This is due to various races between 234 * file io on the block device and getblk. It gets dealt with 235 * elsewhere, don't buffer_error if we had some unmapped buffers 236 */ 237 if (all_mapped) { 238 printk("__find_get_block_slow() failed. " 239 "block=%llu, b_blocknr=%llu\n", 240 (unsigned long long)block, 241 (unsigned long long)bh->b_blocknr); 242 printk("b_state=0x%08lx, b_size=%zu\n", 243 bh->b_state, bh->b_size); 244 printk("device %pg blocksize: %d\n", bdev, 245 1 << bd_inode->i_blkbits); 246 } 247 out_unlock: 248 spin_unlock(&bd_mapping->private_lock); 249 put_page(page); 250 out: 251 return ret; 252 } 253 254 /* 255 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 256 */ 257 static void free_more_memory(void) 258 { 259 struct zoneref *z; 260 int nid; 261 262 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 263 yield(); 264 265 for_each_online_node(nid) { 266 267 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 268 gfp_zone(GFP_NOFS), NULL); 269 if (z->zone) 270 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 271 GFP_NOFS, NULL); 272 } 273 } 274 275 /* 276 * I/O completion handler for block_read_full_page() - pages 277 * which come unlocked at the end of I/O. 278 */ 279 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 280 { 281 unsigned long flags; 282 struct buffer_head *first; 283 struct buffer_head *tmp; 284 struct page *page; 285 int page_uptodate = 1; 286 287 BUG_ON(!buffer_async_read(bh)); 288 289 page = bh->b_page; 290 if (uptodate) { 291 set_buffer_uptodate(bh); 292 } else { 293 clear_buffer_uptodate(bh); 294 buffer_io_error(bh, ", async page read"); 295 SetPageError(page); 296 } 297 298 /* 299 * Be _very_ careful from here on. Bad things can happen if 300 * two buffer heads end IO at almost the same time and both 301 * decide that the page is now completely done. 302 */ 303 first = page_buffers(page); 304 local_irq_save(flags); 305 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 306 clear_buffer_async_read(bh); 307 unlock_buffer(bh); 308 tmp = bh; 309 do { 310 if (!buffer_uptodate(tmp)) 311 page_uptodate = 0; 312 if (buffer_async_read(tmp)) { 313 BUG_ON(!buffer_locked(tmp)); 314 goto still_busy; 315 } 316 tmp = tmp->b_this_page; 317 } while (tmp != bh); 318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 319 local_irq_restore(flags); 320 321 /* 322 * If none of the buffers had errors and they are all 323 * uptodate then we can set the page uptodate. 324 */ 325 if (page_uptodate && !PageError(page)) 326 SetPageUptodate(page); 327 unlock_page(page); 328 return; 329 330 still_busy: 331 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 332 local_irq_restore(flags); 333 return; 334 } 335 336 /* 337 * Completion handler for block_write_full_page() - pages which are unlocked 338 * during I/O, and which have PageWriteback cleared upon I/O completion. 339 */ 340 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 341 { 342 unsigned long flags; 343 struct buffer_head *first; 344 struct buffer_head *tmp; 345 struct page *page; 346 347 BUG_ON(!buffer_async_write(bh)); 348 349 page = bh->b_page; 350 if (uptodate) { 351 set_buffer_uptodate(bh); 352 } else { 353 buffer_io_error(bh, ", lost async page write"); 354 set_bit(AS_EIO, &page->mapping->flags); 355 set_buffer_write_io_error(bh); 356 clear_buffer_uptodate(bh); 357 SetPageError(page); 358 } 359 360 first = page_buffers(page); 361 local_irq_save(flags); 362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 363 364 clear_buffer_async_write(bh); 365 unlock_buffer(bh); 366 tmp = bh->b_this_page; 367 while (tmp != bh) { 368 if (buffer_async_write(tmp)) { 369 BUG_ON(!buffer_locked(tmp)); 370 goto still_busy; 371 } 372 tmp = tmp->b_this_page; 373 } 374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 375 local_irq_restore(flags); 376 end_page_writeback(page); 377 return; 378 379 still_busy: 380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 381 local_irq_restore(flags); 382 return; 383 } 384 EXPORT_SYMBOL(end_buffer_async_write); 385 386 /* 387 * If a page's buffers are under async readin (end_buffer_async_read 388 * completion) then there is a possibility that another thread of 389 * control could lock one of the buffers after it has completed 390 * but while some of the other buffers have not completed. This 391 * locked buffer would confuse end_buffer_async_read() into not unlocking 392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 393 * that this buffer is not under async I/O. 394 * 395 * The page comes unlocked when it has no locked buffer_async buffers 396 * left. 397 * 398 * PageLocked prevents anyone starting new async I/O reads any of 399 * the buffers. 400 * 401 * PageWriteback is used to prevent simultaneous writeout of the same 402 * page. 403 * 404 * PageLocked prevents anyone from starting writeback of a page which is 405 * under read I/O (PageWriteback is only ever set against a locked page). 406 */ 407 static void mark_buffer_async_read(struct buffer_head *bh) 408 { 409 bh->b_end_io = end_buffer_async_read; 410 set_buffer_async_read(bh); 411 } 412 413 static void mark_buffer_async_write_endio(struct buffer_head *bh, 414 bh_end_io_t *handler) 415 { 416 bh->b_end_io = handler; 417 set_buffer_async_write(bh); 418 } 419 420 void mark_buffer_async_write(struct buffer_head *bh) 421 { 422 mark_buffer_async_write_endio(bh, end_buffer_async_write); 423 } 424 EXPORT_SYMBOL(mark_buffer_async_write); 425 426 427 /* 428 * fs/buffer.c contains helper functions for buffer-backed address space's 429 * fsync functions. A common requirement for buffer-based filesystems is 430 * that certain data from the backing blockdev needs to be written out for 431 * a successful fsync(). For example, ext2 indirect blocks need to be 432 * written back and waited upon before fsync() returns. 433 * 434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 436 * management of a list of dependent buffers at ->i_mapping->private_list. 437 * 438 * Locking is a little subtle: try_to_free_buffers() will remove buffers 439 * from their controlling inode's queue when they are being freed. But 440 * try_to_free_buffers() will be operating against the *blockdev* mapping 441 * at the time, not against the S_ISREG file which depends on those buffers. 442 * So the locking for private_list is via the private_lock in the address_space 443 * which backs the buffers. Which is different from the address_space 444 * against which the buffers are listed. So for a particular address_space, 445 * mapping->private_lock does *not* protect mapping->private_list! In fact, 446 * mapping->private_list will always be protected by the backing blockdev's 447 * ->private_lock. 448 * 449 * Which introduces a requirement: all buffers on an address_space's 450 * ->private_list must be from the same address_space: the blockdev's. 451 * 452 * address_spaces which do not place buffers at ->private_list via these 453 * utility functions are free to use private_lock and private_list for 454 * whatever they want. The only requirement is that list_empty(private_list) 455 * be true at clear_inode() time. 456 * 457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 458 * filesystems should do that. invalidate_inode_buffers() should just go 459 * BUG_ON(!list_empty). 460 * 461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 462 * take an address_space, not an inode. And it should be called 463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 464 * queued up. 465 * 466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 467 * list if it is already on a list. Because if the buffer is on a list, 468 * it *must* already be on the right one. If not, the filesystem is being 469 * silly. This will save a ton of locking. But first we have to ensure 470 * that buffers are taken *off* the old inode's list when they are freed 471 * (presumably in truncate). That requires careful auditing of all 472 * filesystems (do it inside bforget()). It could also be done by bringing 473 * b_inode back. 474 */ 475 476 /* 477 * The buffer's backing address_space's private_lock must be held 478 */ 479 static void __remove_assoc_queue(struct buffer_head *bh) 480 { 481 list_del_init(&bh->b_assoc_buffers); 482 WARN_ON(!bh->b_assoc_map); 483 if (buffer_write_io_error(bh)) 484 set_bit(AS_EIO, &bh->b_assoc_map->flags); 485 bh->b_assoc_map = NULL; 486 } 487 488 int inode_has_buffers(struct inode *inode) 489 { 490 return !list_empty(&inode->i_data.private_list); 491 } 492 493 /* 494 * osync is designed to support O_SYNC io. It waits synchronously for 495 * all already-submitted IO to complete, but does not queue any new 496 * writes to the disk. 497 * 498 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 499 * you dirty the buffers, and then use osync_inode_buffers to wait for 500 * completion. Any other dirty buffers which are not yet queued for 501 * write will not be flushed to disk by the osync. 502 */ 503 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 504 { 505 struct buffer_head *bh; 506 struct list_head *p; 507 int err = 0; 508 509 spin_lock(lock); 510 repeat: 511 list_for_each_prev(p, list) { 512 bh = BH_ENTRY(p); 513 if (buffer_locked(bh)) { 514 get_bh(bh); 515 spin_unlock(lock); 516 wait_on_buffer(bh); 517 if (!buffer_uptodate(bh)) 518 err = -EIO; 519 brelse(bh); 520 spin_lock(lock); 521 goto repeat; 522 } 523 } 524 spin_unlock(lock); 525 return err; 526 } 527 528 static void do_thaw_one(struct super_block *sb, void *unused) 529 { 530 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 531 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 532 } 533 534 static void do_thaw_all(struct work_struct *work) 535 { 536 iterate_supers(do_thaw_one, NULL); 537 kfree(work); 538 printk(KERN_WARNING "Emergency Thaw complete\n"); 539 } 540 541 /** 542 * emergency_thaw_all -- forcibly thaw every frozen filesystem 543 * 544 * Used for emergency unfreeze of all filesystems via SysRq 545 */ 546 void emergency_thaw_all(void) 547 { 548 struct work_struct *work; 549 550 work = kmalloc(sizeof(*work), GFP_ATOMIC); 551 if (work) { 552 INIT_WORK(work, do_thaw_all); 553 schedule_work(work); 554 } 555 } 556 557 /** 558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 559 * @mapping: the mapping which wants those buffers written 560 * 561 * Starts I/O against the buffers at mapping->private_list, and waits upon 562 * that I/O. 563 * 564 * Basically, this is a convenience function for fsync(). 565 * @mapping is a file or directory which needs those buffers to be written for 566 * a successful fsync(). 567 */ 568 int sync_mapping_buffers(struct address_space *mapping) 569 { 570 struct address_space *buffer_mapping = mapping->private_data; 571 572 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 573 return 0; 574 575 return fsync_buffers_list(&buffer_mapping->private_lock, 576 &mapping->private_list); 577 } 578 EXPORT_SYMBOL(sync_mapping_buffers); 579 580 /* 581 * Called when we've recently written block `bblock', and it is known that 582 * `bblock' was for a buffer_boundary() buffer. This means that the block at 583 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 584 * dirty, schedule it for IO. So that indirects merge nicely with their data. 585 */ 586 void write_boundary_block(struct block_device *bdev, 587 sector_t bblock, unsigned blocksize) 588 { 589 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 590 if (bh) { 591 if (buffer_dirty(bh)) 592 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 593 put_bh(bh); 594 } 595 } 596 597 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 598 { 599 struct address_space *mapping = inode->i_mapping; 600 struct address_space *buffer_mapping = bh->b_page->mapping; 601 602 mark_buffer_dirty(bh); 603 if (!mapping->private_data) { 604 mapping->private_data = buffer_mapping; 605 } else { 606 BUG_ON(mapping->private_data != buffer_mapping); 607 } 608 if (!bh->b_assoc_map) { 609 spin_lock(&buffer_mapping->private_lock); 610 list_move_tail(&bh->b_assoc_buffers, 611 &mapping->private_list); 612 bh->b_assoc_map = mapping; 613 spin_unlock(&buffer_mapping->private_lock); 614 } 615 } 616 EXPORT_SYMBOL(mark_buffer_dirty_inode); 617 618 /* 619 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 620 * dirty. 621 * 622 * If warn is true, then emit a warning if the page is not uptodate and has 623 * not been truncated. 624 * 625 * The caller must hold lock_page_memcg(). 626 */ 627 static void __set_page_dirty(struct page *page, struct address_space *mapping, 628 int warn) 629 { 630 unsigned long flags; 631 632 spin_lock_irqsave(&mapping->tree_lock, flags); 633 if (page->mapping) { /* Race with truncate? */ 634 WARN_ON_ONCE(warn && !PageUptodate(page)); 635 account_page_dirtied(page, mapping); 636 radix_tree_tag_set(&mapping->page_tree, 637 page_index(page), PAGECACHE_TAG_DIRTY); 638 } 639 spin_unlock_irqrestore(&mapping->tree_lock, flags); 640 } 641 642 /* 643 * Add a page to the dirty page list. 644 * 645 * It is a sad fact of life that this function is called from several places 646 * deeply under spinlocking. It may not sleep. 647 * 648 * If the page has buffers, the uptodate buffers are set dirty, to preserve 649 * dirty-state coherency between the page and the buffers. It the page does 650 * not have buffers then when they are later attached they will all be set 651 * dirty. 652 * 653 * The buffers are dirtied before the page is dirtied. There's a small race 654 * window in which a writepage caller may see the page cleanness but not the 655 * buffer dirtiness. That's fine. If this code were to set the page dirty 656 * before the buffers, a concurrent writepage caller could clear the page dirty 657 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 658 * page on the dirty page list. 659 * 660 * We use private_lock to lock against try_to_free_buffers while using the 661 * page's buffer list. Also use this to protect against clean buffers being 662 * added to the page after it was set dirty. 663 * 664 * FIXME: may need to call ->reservepage here as well. That's rather up to the 665 * address_space though. 666 */ 667 int __set_page_dirty_buffers(struct page *page) 668 { 669 int newly_dirty; 670 struct address_space *mapping = page_mapping(page); 671 672 if (unlikely(!mapping)) 673 return !TestSetPageDirty(page); 674 675 spin_lock(&mapping->private_lock); 676 if (page_has_buffers(page)) { 677 struct buffer_head *head = page_buffers(page); 678 struct buffer_head *bh = head; 679 680 do { 681 set_buffer_dirty(bh); 682 bh = bh->b_this_page; 683 } while (bh != head); 684 } 685 /* 686 * Lock out page->mem_cgroup migration to keep PageDirty 687 * synchronized with per-memcg dirty page counters. 688 */ 689 lock_page_memcg(page); 690 newly_dirty = !TestSetPageDirty(page); 691 spin_unlock(&mapping->private_lock); 692 693 if (newly_dirty) 694 __set_page_dirty(page, mapping, 1); 695 696 unlock_page_memcg(page); 697 698 if (newly_dirty) 699 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 700 701 return newly_dirty; 702 } 703 EXPORT_SYMBOL(__set_page_dirty_buffers); 704 705 /* 706 * Write out and wait upon a list of buffers. 707 * 708 * We have conflicting pressures: we want to make sure that all 709 * initially dirty buffers get waited on, but that any subsequently 710 * dirtied buffers don't. After all, we don't want fsync to last 711 * forever if somebody is actively writing to the file. 712 * 713 * Do this in two main stages: first we copy dirty buffers to a 714 * temporary inode list, queueing the writes as we go. Then we clean 715 * up, waiting for those writes to complete. 716 * 717 * During this second stage, any subsequent updates to the file may end 718 * up refiling the buffer on the original inode's dirty list again, so 719 * there is a chance we will end up with a buffer queued for write but 720 * not yet completed on that list. So, as a final cleanup we go through 721 * the osync code to catch these locked, dirty buffers without requeuing 722 * any newly dirty buffers for write. 723 */ 724 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 725 { 726 struct buffer_head *bh; 727 struct list_head tmp; 728 struct address_space *mapping; 729 int err = 0, err2; 730 struct blk_plug plug; 731 732 INIT_LIST_HEAD(&tmp); 733 blk_start_plug(&plug); 734 735 spin_lock(lock); 736 while (!list_empty(list)) { 737 bh = BH_ENTRY(list->next); 738 mapping = bh->b_assoc_map; 739 __remove_assoc_queue(bh); 740 /* Avoid race with mark_buffer_dirty_inode() which does 741 * a lockless check and we rely on seeing the dirty bit */ 742 smp_mb(); 743 if (buffer_dirty(bh) || buffer_locked(bh)) { 744 list_add(&bh->b_assoc_buffers, &tmp); 745 bh->b_assoc_map = mapping; 746 if (buffer_dirty(bh)) { 747 get_bh(bh); 748 spin_unlock(lock); 749 /* 750 * Ensure any pending I/O completes so that 751 * write_dirty_buffer() actually writes the 752 * current contents - it is a noop if I/O is 753 * still in flight on potentially older 754 * contents. 755 */ 756 write_dirty_buffer(bh, WRITE_SYNC); 757 758 /* 759 * Kick off IO for the previous mapping. Note 760 * that we will not run the very last mapping, 761 * wait_on_buffer() will do that for us 762 * through sync_buffer(). 763 */ 764 brelse(bh); 765 spin_lock(lock); 766 } 767 } 768 } 769 770 spin_unlock(lock); 771 blk_finish_plug(&plug); 772 spin_lock(lock); 773 774 while (!list_empty(&tmp)) { 775 bh = BH_ENTRY(tmp.prev); 776 get_bh(bh); 777 mapping = bh->b_assoc_map; 778 __remove_assoc_queue(bh); 779 /* Avoid race with mark_buffer_dirty_inode() which does 780 * a lockless check and we rely on seeing the dirty bit */ 781 smp_mb(); 782 if (buffer_dirty(bh)) { 783 list_add(&bh->b_assoc_buffers, 784 &mapping->private_list); 785 bh->b_assoc_map = mapping; 786 } 787 spin_unlock(lock); 788 wait_on_buffer(bh); 789 if (!buffer_uptodate(bh)) 790 err = -EIO; 791 brelse(bh); 792 spin_lock(lock); 793 } 794 795 spin_unlock(lock); 796 err2 = osync_buffers_list(lock, list); 797 if (err) 798 return err; 799 else 800 return err2; 801 } 802 803 /* 804 * Invalidate any and all dirty buffers on a given inode. We are 805 * probably unmounting the fs, but that doesn't mean we have already 806 * done a sync(). Just drop the buffers from the inode list. 807 * 808 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 809 * assumes that all the buffers are against the blockdev. Not true 810 * for reiserfs. 811 */ 812 void invalidate_inode_buffers(struct inode *inode) 813 { 814 if (inode_has_buffers(inode)) { 815 struct address_space *mapping = &inode->i_data; 816 struct list_head *list = &mapping->private_list; 817 struct address_space *buffer_mapping = mapping->private_data; 818 819 spin_lock(&buffer_mapping->private_lock); 820 while (!list_empty(list)) 821 __remove_assoc_queue(BH_ENTRY(list->next)); 822 spin_unlock(&buffer_mapping->private_lock); 823 } 824 } 825 EXPORT_SYMBOL(invalidate_inode_buffers); 826 827 /* 828 * Remove any clean buffers from the inode's buffer list. This is called 829 * when we're trying to free the inode itself. Those buffers can pin it. 830 * 831 * Returns true if all buffers were removed. 832 */ 833 int remove_inode_buffers(struct inode *inode) 834 { 835 int ret = 1; 836 837 if (inode_has_buffers(inode)) { 838 struct address_space *mapping = &inode->i_data; 839 struct list_head *list = &mapping->private_list; 840 struct address_space *buffer_mapping = mapping->private_data; 841 842 spin_lock(&buffer_mapping->private_lock); 843 while (!list_empty(list)) { 844 struct buffer_head *bh = BH_ENTRY(list->next); 845 if (buffer_dirty(bh)) { 846 ret = 0; 847 break; 848 } 849 __remove_assoc_queue(bh); 850 } 851 spin_unlock(&buffer_mapping->private_lock); 852 } 853 return ret; 854 } 855 856 /* 857 * Create the appropriate buffers when given a page for data area and 858 * the size of each buffer.. Use the bh->b_this_page linked list to 859 * follow the buffers created. Return NULL if unable to create more 860 * buffers. 861 * 862 * The retry flag is used to differentiate async IO (paging, swapping) 863 * which may not fail from ordinary buffer allocations. 864 */ 865 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 866 int retry) 867 { 868 struct buffer_head *bh, *head; 869 long offset; 870 871 try_again: 872 head = NULL; 873 offset = PAGE_SIZE; 874 while ((offset -= size) >= 0) { 875 bh = alloc_buffer_head(GFP_NOFS); 876 if (!bh) 877 goto no_grow; 878 879 bh->b_this_page = head; 880 bh->b_blocknr = -1; 881 head = bh; 882 883 bh->b_size = size; 884 885 /* Link the buffer to its page */ 886 set_bh_page(bh, page, offset); 887 } 888 return head; 889 /* 890 * In case anything failed, we just free everything we got. 891 */ 892 no_grow: 893 if (head) { 894 do { 895 bh = head; 896 head = head->b_this_page; 897 free_buffer_head(bh); 898 } while (head); 899 } 900 901 /* 902 * Return failure for non-async IO requests. Async IO requests 903 * are not allowed to fail, so we have to wait until buffer heads 904 * become available. But we don't want tasks sleeping with 905 * partially complete buffers, so all were released above. 906 */ 907 if (!retry) 908 return NULL; 909 910 /* We're _really_ low on memory. Now we just 911 * wait for old buffer heads to become free due to 912 * finishing IO. Since this is an async request and 913 * the reserve list is empty, we're sure there are 914 * async buffer heads in use. 915 */ 916 free_more_memory(); 917 goto try_again; 918 } 919 EXPORT_SYMBOL_GPL(alloc_page_buffers); 920 921 static inline void 922 link_dev_buffers(struct page *page, struct buffer_head *head) 923 { 924 struct buffer_head *bh, *tail; 925 926 bh = head; 927 do { 928 tail = bh; 929 bh = bh->b_this_page; 930 } while (bh); 931 tail->b_this_page = head; 932 attach_page_buffers(page, head); 933 } 934 935 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 936 { 937 sector_t retval = ~((sector_t)0); 938 loff_t sz = i_size_read(bdev->bd_inode); 939 940 if (sz) { 941 unsigned int sizebits = blksize_bits(size); 942 retval = (sz >> sizebits); 943 } 944 return retval; 945 } 946 947 /* 948 * Initialise the state of a blockdev page's buffers. 949 */ 950 static sector_t 951 init_page_buffers(struct page *page, struct block_device *bdev, 952 sector_t block, int size) 953 { 954 struct buffer_head *head = page_buffers(page); 955 struct buffer_head *bh = head; 956 int uptodate = PageUptodate(page); 957 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 958 959 do { 960 if (!buffer_mapped(bh)) { 961 init_buffer(bh, NULL, NULL); 962 bh->b_bdev = bdev; 963 bh->b_blocknr = block; 964 if (uptodate) 965 set_buffer_uptodate(bh); 966 if (block < end_block) 967 set_buffer_mapped(bh); 968 } 969 block++; 970 bh = bh->b_this_page; 971 } while (bh != head); 972 973 /* 974 * Caller needs to validate requested block against end of device. 975 */ 976 return end_block; 977 } 978 979 /* 980 * Create the page-cache page that contains the requested block. 981 * 982 * This is used purely for blockdev mappings. 983 */ 984 static int 985 grow_dev_page(struct block_device *bdev, sector_t block, 986 pgoff_t index, int size, int sizebits, gfp_t gfp) 987 { 988 struct inode *inode = bdev->bd_inode; 989 struct page *page; 990 struct buffer_head *bh; 991 sector_t end_block; 992 int ret = 0; /* Will call free_more_memory() */ 993 gfp_t gfp_mask; 994 995 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 996 997 /* 998 * XXX: __getblk_slow() can not really deal with failure and 999 * will endlessly loop on improvised global reclaim. Prefer 1000 * looping in the allocator rather than here, at least that 1001 * code knows what it's doing. 1002 */ 1003 gfp_mask |= __GFP_NOFAIL; 1004 1005 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 1006 if (!page) 1007 return ret; 1008 1009 BUG_ON(!PageLocked(page)); 1010 1011 if (page_has_buffers(page)) { 1012 bh = page_buffers(page); 1013 if (bh->b_size == size) { 1014 end_block = init_page_buffers(page, bdev, 1015 (sector_t)index << sizebits, 1016 size); 1017 goto done; 1018 } 1019 if (!try_to_free_buffers(page)) 1020 goto failed; 1021 } 1022 1023 /* 1024 * Allocate some buffers for this page 1025 */ 1026 bh = alloc_page_buffers(page, size, 0); 1027 if (!bh) 1028 goto failed; 1029 1030 /* 1031 * Link the page to the buffers and initialise them. Take the 1032 * lock to be atomic wrt __find_get_block(), which does not 1033 * run under the page lock. 1034 */ 1035 spin_lock(&inode->i_mapping->private_lock); 1036 link_dev_buffers(page, bh); 1037 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1038 size); 1039 spin_unlock(&inode->i_mapping->private_lock); 1040 done: 1041 ret = (block < end_block) ? 1 : -ENXIO; 1042 failed: 1043 unlock_page(page); 1044 put_page(page); 1045 return ret; 1046 } 1047 1048 /* 1049 * Create buffers for the specified block device block's page. If 1050 * that page was dirty, the buffers are set dirty also. 1051 */ 1052 static int 1053 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1054 { 1055 pgoff_t index; 1056 int sizebits; 1057 1058 sizebits = -1; 1059 do { 1060 sizebits++; 1061 } while ((size << sizebits) < PAGE_SIZE); 1062 1063 index = block >> sizebits; 1064 1065 /* 1066 * Check for a block which wants to lie outside our maximum possible 1067 * pagecache index. (this comparison is done using sector_t types). 1068 */ 1069 if (unlikely(index != block >> sizebits)) { 1070 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1071 "device %pg\n", 1072 __func__, (unsigned long long)block, 1073 bdev); 1074 return -EIO; 1075 } 1076 1077 /* Create a page with the proper size buffers.. */ 1078 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1079 } 1080 1081 struct buffer_head * 1082 __getblk_slow(struct block_device *bdev, sector_t block, 1083 unsigned size, gfp_t gfp) 1084 { 1085 /* Size must be multiple of hard sectorsize */ 1086 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1087 (size < 512 || size > PAGE_SIZE))) { 1088 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1089 size); 1090 printk(KERN_ERR "logical block size: %d\n", 1091 bdev_logical_block_size(bdev)); 1092 1093 dump_stack(); 1094 return NULL; 1095 } 1096 1097 for (;;) { 1098 struct buffer_head *bh; 1099 int ret; 1100 1101 bh = __find_get_block(bdev, block, size); 1102 if (bh) 1103 return bh; 1104 1105 ret = grow_buffers(bdev, block, size, gfp); 1106 if (ret < 0) 1107 return NULL; 1108 if (ret == 0) 1109 free_more_memory(); 1110 } 1111 } 1112 EXPORT_SYMBOL(__getblk_slow); 1113 1114 /* 1115 * The relationship between dirty buffers and dirty pages: 1116 * 1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1118 * the page is tagged dirty in its radix tree. 1119 * 1120 * At all times, the dirtiness of the buffers represents the dirtiness of 1121 * subsections of the page. If the page has buffers, the page dirty bit is 1122 * merely a hint about the true dirty state. 1123 * 1124 * When a page is set dirty in its entirety, all its buffers are marked dirty 1125 * (if the page has buffers). 1126 * 1127 * When a buffer is marked dirty, its page is dirtied, but the page's other 1128 * buffers are not. 1129 * 1130 * Also. When blockdev buffers are explicitly read with bread(), they 1131 * individually become uptodate. But their backing page remains not 1132 * uptodate - even if all of its buffers are uptodate. A subsequent 1133 * block_read_full_page() against that page will discover all the uptodate 1134 * buffers, will set the page uptodate and will perform no I/O. 1135 */ 1136 1137 /** 1138 * mark_buffer_dirty - mark a buffer_head as needing writeout 1139 * @bh: the buffer_head to mark dirty 1140 * 1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1142 * backing page dirty, then tag the page as dirty in its address_space's radix 1143 * tree and then attach the address_space's inode to its superblock's dirty 1144 * inode list. 1145 * 1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1147 * mapping->tree_lock and mapping->host->i_lock. 1148 */ 1149 void mark_buffer_dirty(struct buffer_head *bh) 1150 { 1151 WARN_ON_ONCE(!buffer_uptodate(bh)); 1152 1153 trace_block_dirty_buffer(bh); 1154 1155 /* 1156 * Very *carefully* optimize the it-is-already-dirty case. 1157 * 1158 * Don't let the final "is it dirty" escape to before we 1159 * perhaps modified the buffer. 1160 */ 1161 if (buffer_dirty(bh)) { 1162 smp_mb(); 1163 if (buffer_dirty(bh)) 1164 return; 1165 } 1166 1167 if (!test_set_buffer_dirty(bh)) { 1168 struct page *page = bh->b_page; 1169 struct address_space *mapping = NULL; 1170 1171 lock_page_memcg(page); 1172 if (!TestSetPageDirty(page)) { 1173 mapping = page_mapping(page); 1174 if (mapping) 1175 __set_page_dirty(page, mapping, 0); 1176 } 1177 unlock_page_memcg(page); 1178 if (mapping) 1179 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1180 } 1181 } 1182 EXPORT_SYMBOL(mark_buffer_dirty); 1183 1184 /* 1185 * Decrement a buffer_head's reference count. If all buffers against a page 1186 * have zero reference count, are clean and unlocked, and if the page is clean 1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1189 * a page but it ends up not being freed, and buffers may later be reattached). 1190 */ 1191 void __brelse(struct buffer_head * buf) 1192 { 1193 if (atomic_read(&buf->b_count)) { 1194 put_bh(buf); 1195 return; 1196 } 1197 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1198 } 1199 EXPORT_SYMBOL(__brelse); 1200 1201 /* 1202 * bforget() is like brelse(), except it discards any 1203 * potentially dirty data. 1204 */ 1205 void __bforget(struct buffer_head *bh) 1206 { 1207 clear_buffer_dirty(bh); 1208 if (bh->b_assoc_map) { 1209 struct address_space *buffer_mapping = bh->b_page->mapping; 1210 1211 spin_lock(&buffer_mapping->private_lock); 1212 list_del_init(&bh->b_assoc_buffers); 1213 bh->b_assoc_map = NULL; 1214 spin_unlock(&buffer_mapping->private_lock); 1215 } 1216 __brelse(bh); 1217 } 1218 EXPORT_SYMBOL(__bforget); 1219 1220 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1221 { 1222 lock_buffer(bh); 1223 if (buffer_uptodate(bh)) { 1224 unlock_buffer(bh); 1225 return bh; 1226 } else { 1227 get_bh(bh); 1228 bh->b_end_io = end_buffer_read_sync; 1229 submit_bh(REQ_OP_READ, 0, bh); 1230 wait_on_buffer(bh); 1231 if (buffer_uptodate(bh)) 1232 return bh; 1233 } 1234 brelse(bh); 1235 return NULL; 1236 } 1237 1238 /* 1239 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1240 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1241 * refcount elevated by one when they're in an LRU. A buffer can only appear 1242 * once in a particular CPU's LRU. A single buffer can be present in multiple 1243 * CPU's LRUs at the same time. 1244 * 1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1246 * sb_find_get_block(). 1247 * 1248 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1249 * a local interrupt disable for that. 1250 */ 1251 1252 #define BH_LRU_SIZE 16 1253 1254 struct bh_lru { 1255 struct buffer_head *bhs[BH_LRU_SIZE]; 1256 }; 1257 1258 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1259 1260 #ifdef CONFIG_SMP 1261 #define bh_lru_lock() local_irq_disable() 1262 #define bh_lru_unlock() local_irq_enable() 1263 #else 1264 #define bh_lru_lock() preempt_disable() 1265 #define bh_lru_unlock() preempt_enable() 1266 #endif 1267 1268 static inline void check_irqs_on(void) 1269 { 1270 #ifdef irqs_disabled 1271 BUG_ON(irqs_disabled()); 1272 #endif 1273 } 1274 1275 /* 1276 * The LRU management algorithm is dopey-but-simple. Sorry. 1277 */ 1278 static void bh_lru_install(struct buffer_head *bh) 1279 { 1280 struct buffer_head *evictee = NULL; 1281 1282 check_irqs_on(); 1283 bh_lru_lock(); 1284 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1285 struct buffer_head *bhs[BH_LRU_SIZE]; 1286 int in; 1287 int out = 0; 1288 1289 get_bh(bh); 1290 bhs[out++] = bh; 1291 for (in = 0; in < BH_LRU_SIZE; in++) { 1292 struct buffer_head *bh2 = 1293 __this_cpu_read(bh_lrus.bhs[in]); 1294 1295 if (bh2 == bh) { 1296 __brelse(bh2); 1297 } else { 1298 if (out >= BH_LRU_SIZE) { 1299 BUG_ON(evictee != NULL); 1300 evictee = bh2; 1301 } else { 1302 bhs[out++] = bh2; 1303 } 1304 } 1305 } 1306 while (out < BH_LRU_SIZE) 1307 bhs[out++] = NULL; 1308 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1309 } 1310 bh_lru_unlock(); 1311 1312 if (evictee) 1313 __brelse(evictee); 1314 } 1315 1316 /* 1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1318 */ 1319 static struct buffer_head * 1320 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1321 { 1322 struct buffer_head *ret = NULL; 1323 unsigned int i; 1324 1325 check_irqs_on(); 1326 bh_lru_lock(); 1327 for (i = 0; i < BH_LRU_SIZE; i++) { 1328 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1329 1330 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1331 bh->b_size == size) { 1332 if (i) { 1333 while (i) { 1334 __this_cpu_write(bh_lrus.bhs[i], 1335 __this_cpu_read(bh_lrus.bhs[i - 1])); 1336 i--; 1337 } 1338 __this_cpu_write(bh_lrus.bhs[0], bh); 1339 } 1340 get_bh(bh); 1341 ret = bh; 1342 break; 1343 } 1344 } 1345 bh_lru_unlock(); 1346 return ret; 1347 } 1348 1349 /* 1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1351 * it in the LRU and mark it as accessed. If it is not present then return 1352 * NULL 1353 */ 1354 struct buffer_head * 1355 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1356 { 1357 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1358 1359 if (bh == NULL) { 1360 /* __find_get_block_slow will mark the page accessed */ 1361 bh = __find_get_block_slow(bdev, block); 1362 if (bh) 1363 bh_lru_install(bh); 1364 } else 1365 touch_buffer(bh); 1366 1367 return bh; 1368 } 1369 EXPORT_SYMBOL(__find_get_block); 1370 1371 /* 1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1373 * which corresponds to the passed block_device, block and size. The 1374 * returned buffer has its reference count incremented. 1375 * 1376 * __getblk_gfp() will lock up the machine if grow_dev_page's 1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1378 */ 1379 struct buffer_head * 1380 __getblk_gfp(struct block_device *bdev, sector_t block, 1381 unsigned size, gfp_t gfp) 1382 { 1383 struct buffer_head *bh = __find_get_block(bdev, block, size); 1384 1385 might_sleep(); 1386 if (bh == NULL) 1387 bh = __getblk_slow(bdev, block, size, gfp); 1388 return bh; 1389 } 1390 EXPORT_SYMBOL(__getblk_gfp); 1391 1392 /* 1393 * Do async read-ahead on a buffer.. 1394 */ 1395 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1396 { 1397 struct buffer_head *bh = __getblk(bdev, block, size); 1398 if (likely(bh)) { 1399 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1400 brelse(bh); 1401 } 1402 } 1403 EXPORT_SYMBOL(__breadahead); 1404 1405 /** 1406 * __bread_gfp() - reads a specified block and returns the bh 1407 * @bdev: the block_device to read from 1408 * @block: number of block 1409 * @size: size (in bytes) to read 1410 * @gfp: page allocation flag 1411 * 1412 * Reads a specified block, and returns buffer head that contains it. 1413 * The page cache can be allocated from non-movable area 1414 * not to prevent page migration if you set gfp to zero. 1415 * It returns NULL if the block was unreadable. 1416 */ 1417 struct buffer_head * 1418 __bread_gfp(struct block_device *bdev, sector_t block, 1419 unsigned size, gfp_t gfp) 1420 { 1421 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1422 1423 if (likely(bh) && !buffer_uptodate(bh)) 1424 bh = __bread_slow(bh); 1425 return bh; 1426 } 1427 EXPORT_SYMBOL(__bread_gfp); 1428 1429 /* 1430 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1431 * This doesn't race because it runs in each cpu either in irq 1432 * or with preempt disabled. 1433 */ 1434 static void invalidate_bh_lru(void *arg) 1435 { 1436 struct bh_lru *b = &get_cpu_var(bh_lrus); 1437 int i; 1438 1439 for (i = 0; i < BH_LRU_SIZE; i++) { 1440 brelse(b->bhs[i]); 1441 b->bhs[i] = NULL; 1442 } 1443 put_cpu_var(bh_lrus); 1444 } 1445 1446 static bool has_bh_in_lru(int cpu, void *dummy) 1447 { 1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1449 int i; 1450 1451 for (i = 0; i < BH_LRU_SIZE; i++) { 1452 if (b->bhs[i]) 1453 return 1; 1454 } 1455 1456 return 0; 1457 } 1458 1459 void invalidate_bh_lrus(void) 1460 { 1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1462 } 1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1464 1465 void set_bh_page(struct buffer_head *bh, 1466 struct page *page, unsigned long offset) 1467 { 1468 bh->b_page = page; 1469 BUG_ON(offset >= PAGE_SIZE); 1470 if (PageHighMem(page)) 1471 /* 1472 * This catches illegal uses and preserves the offset: 1473 */ 1474 bh->b_data = (char *)(0 + offset); 1475 else 1476 bh->b_data = page_address(page) + offset; 1477 } 1478 EXPORT_SYMBOL(set_bh_page); 1479 1480 /* 1481 * Called when truncating a buffer on a page completely. 1482 */ 1483 1484 /* Bits that are cleared during an invalidate */ 1485 #define BUFFER_FLAGS_DISCARD \ 1486 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1487 1 << BH_Delay | 1 << BH_Unwritten) 1488 1489 static void discard_buffer(struct buffer_head * bh) 1490 { 1491 unsigned long b_state, b_state_old; 1492 1493 lock_buffer(bh); 1494 clear_buffer_dirty(bh); 1495 bh->b_bdev = NULL; 1496 b_state = bh->b_state; 1497 for (;;) { 1498 b_state_old = cmpxchg(&bh->b_state, b_state, 1499 (b_state & ~BUFFER_FLAGS_DISCARD)); 1500 if (b_state_old == b_state) 1501 break; 1502 b_state = b_state_old; 1503 } 1504 unlock_buffer(bh); 1505 } 1506 1507 /** 1508 * block_invalidatepage - invalidate part or all of a buffer-backed page 1509 * 1510 * @page: the page which is affected 1511 * @offset: start of the range to invalidate 1512 * @length: length of the range to invalidate 1513 * 1514 * block_invalidatepage() is called when all or part of the page has become 1515 * invalidated by a truncate operation. 1516 * 1517 * block_invalidatepage() does not have to release all buffers, but it must 1518 * ensure that no dirty buffer is left outside @offset and that no I/O 1519 * is underway against any of the blocks which are outside the truncation 1520 * point. Because the caller is about to free (and possibly reuse) those 1521 * blocks on-disk. 1522 */ 1523 void block_invalidatepage(struct page *page, unsigned int offset, 1524 unsigned int length) 1525 { 1526 struct buffer_head *head, *bh, *next; 1527 unsigned int curr_off = 0; 1528 unsigned int stop = length + offset; 1529 1530 BUG_ON(!PageLocked(page)); 1531 if (!page_has_buffers(page)) 1532 goto out; 1533 1534 /* 1535 * Check for overflow 1536 */ 1537 BUG_ON(stop > PAGE_SIZE || stop < length); 1538 1539 head = page_buffers(page); 1540 bh = head; 1541 do { 1542 unsigned int next_off = curr_off + bh->b_size; 1543 next = bh->b_this_page; 1544 1545 /* 1546 * Are we still fully in range ? 1547 */ 1548 if (next_off > stop) 1549 goto out; 1550 1551 /* 1552 * is this block fully invalidated? 1553 */ 1554 if (offset <= curr_off) 1555 discard_buffer(bh); 1556 curr_off = next_off; 1557 bh = next; 1558 } while (bh != head); 1559 1560 /* 1561 * We release buffers only if the entire page is being invalidated. 1562 * The get_block cached value has been unconditionally invalidated, 1563 * so real IO is not possible anymore. 1564 */ 1565 if (offset == 0) 1566 try_to_release_page(page, 0); 1567 out: 1568 return; 1569 } 1570 EXPORT_SYMBOL(block_invalidatepage); 1571 1572 1573 /* 1574 * We attach and possibly dirty the buffers atomically wrt 1575 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1576 * is already excluded via the page lock. 1577 */ 1578 void create_empty_buffers(struct page *page, 1579 unsigned long blocksize, unsigned long b_state) 1580 { 1581 struct buffer_head *bh, *head, *tail; 1582 1583 head = alloc_page_buffers(page, blocksize, 1); 1584 bh = head; 1585 do { 1586 bh->b_state |= b_state; 1587 tail = bh; 1588 bh = bh->b_this_page; 1589 } while (bh); 1590 tail->b_this_page = head; 1591 1592 spin_lock(&page->mapping->private_lock); 1593 if (PageUptodate(page) || PageDirty(page)) { 1594 bh = head; 1595 do { 1596 if (PageDirty(page)) 1597 set_buffer_dirty(bh); 1598 if (PageUptodate(page)) 1599 set_buffer_uptodate(bh); 1600 bh = bh->b_this_page; 1601 } while (bh != head); 1602 } 1603 attach_page_buffers(page, head); 1604 spin_unlock(&page->mapping->private_lock); 1605 } 1606 EXPORT_SYMBOL(create_empty_buffers); 1607 1608 /* 1609 * We are taking a block for data and we don't want any output from any 1610 * buffer-cache aliases starting from return from that function and 1611 * until the moment when something will explicitly mark the buffer 1612 * dirty (hopefully that will not happen until we will free that block ;-) 1613 * We don't even need to mark it not-uptodate - nobody can expect 1614 * anything from a newly allocated buffer anyway. We used to used 1615 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1616 * don't want to mark the alias unmapped, for example - it would confuse 1617 * anyone who might pick it with bread() afterwards... 1618 * 1619 * Also.. Note that bforget() doesn't lock the buffer. So there can 1620 * be writeout I/O going on against recently-freed buffers. We don't 1621 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1622 * only if we really need to. That happens here. 1623 */ 1624 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1625 { 1626 struct buffer_head *old_bh; 1627 1628 might_sleep(); 1629 1630 old_bh = __find_get_block_slow(bdev, block); 1631 if (old_bh) { 1632 clear_buffer_dirty(old_bh); 1633 wait_on_buffer(old_bh); 1634 clear_buffer_req(old_bh); 1635 __brelse(old_bh); 1636 } 1637 } 1638 EXPORT_SYMBOL(unmap_underlying_metadata); 1639 1640 /* 1641 * Size is a power-of-two in the range 512..PAGE_SIZE, 1642 * and the case we care about most is PAGE_SIZE. 1643 * 1644 * So this *could* possibly be written with those 1645 * constraints in mind (relevant mostly if some 1646 * architecture has a slow bit-scan instruction) 1647 */ 1648 static inline int block_size_bits(unsigned int blocksize) 1649 { 1650 return ilog2(blocksize); 1651 } 1652 1653 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1654 { 1655 BUG_ON(!PageLocked(page)); 1656 1657 if (!page_has_buffers(page)) 1658 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1659 return page_buffers(page); 1660 } 1661 1662 /* 1663 * NOTE! All mapped/uptodate combinations are valid: 1664 * 1665 * Mapped Uptodate Meaning 1666 * 1667 * No No "unknown" - must do get_block() 1668 * No Yes "hole" - zero-filled 1669 * Yes No "allocated" - allocated on disk, not read in 1670 * Yes Yes "valid" - allocated and up-to-date in memory. 1671 * 1672 * "Dirty" is valid only with the last case (mapped+uptodate). 1673 */ 1674 1675 /* 1676 * While block_write_full_page is writing back the dirty buffers under 1677 * the page lock, whoever dirtied the buffers may decide to clean them 1678 * again at any time. We handle that by only looking at the buffer 1679 * state inside lock_buffer(). 1680 * 1681 * If block_write_full_page() is called for regular writeback 1682 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1683 * locked buffer. This only can happen if someone has written the buffer 1684 * directly, with submit_bh(). At the address_space level PageWriteback 1685 * prevents this contention from occurring. 1686 * 1687 * If block_write_full_page() is called with wbc->sync_mode == 1688 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1689 * causes the writes to be flagged as synchronous writes. 1690 */ 1691 int __block_write_full_page(struct inode *inode, struct page *page, 1692 get_block_t *get_block, struct writeback_control *wbc, 1693 bh_end_io_t *handler) 1694 { 1695 int err; 1696 sector_t block; 1697 sector_t last_block; 1698 struct buffer_head *bh, *head; 1699 unsigned int blocksize, bbits; 1700 int nr_underway = 0; 1701 int write_flags = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : 0); 1702 1703 head = create_page_buffers(page, inode, 1704 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1705 1706 /* 1707 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1708 * here, and the (potentially unmapped) buffers may become dirty at 1709 * any time. If a buffer becomes dirty here after we've inspected it 1710 * then we just miss that fact, and the page stays dirty. 1711 * 1712 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1713 * handle that here by just cleaning them. 1714 */ 1715 1716 bh = head; 1717 blocksize = bh->b_size; 1718 bbits = block_size_bits(blocksize); 1719 1720 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1721 last_block = (i_size_read(inode) - 1) >> bbits; 1722 1723 /* 1724 * Get all the dirty buffers mapped to disk addresses and 1725 * handle any aliases from the underlying blockdev's mapping. 1726 */ 1727 do { 1728 if (block > last_block) { 1729 /* 1730 * mapped buffers outside i_size will occur, because 1731 * this page can be outside i_size when there is a 1732 * truncate in progress. 1733 */ 1734 /* 1735 * The buffer was zeroed by block_write_full_page() 1736 */ 1737 clear_buffer_dirty(bh); 1738 set_buffer_uptodate(bh); 1739 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1740 buffer_dirty(bh)) { 1741 WARN_ON(bh->b_size != blocksize); 1742 err = get_block(inode, block, bh, 1); 1743 if (err) 1744 goto recover; 1745 clear_buffer_delay(bh); 1746 if (buffer_new(bh)) { 1747 /* blockdev mappings never come here */ 1748 clear_buffer_new(bh); 1749 unmap_underlying_metadata(bh->b_bdev, 1750 bh->b_blocknr); 1751 } 1752 } 1753 bh = bh->b_this_page; 1754 block++; 1755 } while (bh != head); 1756 1757 do { 1758 if (!buffer_mapped(bh)) 1759 continue; 1760 /* 1761 * If it's a fully non-blocking write attempt and we cannot 1762 * lock the buffer then redirty the page. Note that this can 1763 * potentially cause a busy-wait loop from writeback threads 1764 * and kswapd activity, but those code paths have their own 1765 * higher-level throttling. 1766 */ 1767 if (wbc->sync_mode != WB_SYNC_NONE) { 1768 lock_buffer(bh); 1769 } else if (!trylock_buffer(bh)) { 1770 redirty_page_for_writepage(wbc, page); 1771 continue; 1772 } 1773 if (test_clear_buffer_dirty(bh)) { 1774 mark_buffer_async_write_endio(bh, handler); 1775 } else { 1776 unlock_buffer(bh); 1777 } 1778 } while ((bh = bh->b_this_page) != head); 1779 1780 /* 1781 * The page and its buffers are protected by PageWriteback(), so we can 1782 * drop the bh refcounts early. 1783 */ 1784 BUG_ON(PageWriteback(page)); 1785 set_page_writeback(page); 1786 1787 do { 1788 struct buffer_head *next = bh->b_this_page; 1789 if (buffer_async_write(bh)) { 1790 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc); 1791 nr_underway++; 1792 } 1793 bh = next; 1794 } while (bh != head); 1795 unlock_page(page); 1796 1797 err = 0; 1798 done: 1799 if (nr_underway == 0) { 1800 /* 1801 * The page was marked dirty, but the buffers were 1802 * clean. Someone wrote them back by hand with 1803 * ll_rw_block/submit_bh. A rare case. 1804 */ 1805 end_page_writeback(page); 1806 1807 /* 1808 * The page and buffer_heads can be released at any time from 1809 * here on. 1810 */ 1811 } 1812 return err; 1813 1814 recover: 1815 /* 1816 * ENOSPC, or some other error. We may already have added some 1817 * blocks to the file, so we need to write these out to avoid 1818 * exposing stale data. 1819 * The page is currently locked and not marked for writeback 1820 */ 1821 bh = head; 1822 /* Recovery: lock and submit the mapped buffers */ 1823 do { 1824 if (buffer_mapped(bh) && buffer_dirty(bh) && 1825 !buffer_delay(bh)) { 1826 lock_buffer(bh); 1827 mark_buffer_async_write_endio(bh, handler); 1828 } else { 1829 /* 1830 * The buffer may have been set dirty during 1831 * attachment to a dirty page. 1832 */ 1833 clear_buffer_dirty(bh); 1834 } 1835 } while ((bh = bh->b_this_page) != head); 1836 SetPageError(page); 1837 BUG_ON(PageWriteback(page)); 1838 mapping_set_error(page->mapping, err); 1839 set_page_writeback(page); 1840 do { 1841 struct buffer_head *next = bh->b_this_page; 1842 if (buffer_async_write(bh)) { 1843 clear_buffer_dirty(bh); 1844 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc); 1845 nr_underway++; 1846 } 1847 bh = next; 1848 } while (bh != head); 1849 unlock_page(page); 1850 goto done; 1851 } 1852 EXPORT_SYMBOL(__block_write_full_page); 1853 1854 /* 1855 * If a page has any new buffers, zero them out here, and mark them uptodate 1856 * and dirty so they'll be written out (in order to prevent uninitialised 1857 * block data from leaking). And clear the new bit. 1858 */ 1859 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1860 { 1861 unsigned int block_start, block_end; 1862 struct buffer_head *head, *bh; 1863 1864 BUG_ON(!PageLocked(page)); 1865 if (!page_has_buffers(page)) 1866 return; 1867 1868 bh = head = page_buffers(page); 1869 block_start = 0; 1870 do { 1871 block_end = block_start + bh->b_size; 1872 1873 if (buffer_new(bh)) { 1874 if (block_end > from && block_start < to) { 1875 if (!PageUptodate(page)) { 1876 unsigned start, size; 1877 1878 start = max(from, block_start); 1879 size = min(to, block_end) - start; 1880 1881 zero_user(page, start, size); 1882 set_buffer_uptodate(bh); 1883 } 1884 1885 clear_buffer_new(bh); 1886 mark_buffer_dirty(bh); 1887 } 1888 } 1889 1890 block_start = block_end; 1891 bh = bh->b_this_page; 1892 } while (bh != head); 1893 } 1894 EXPORT_SYMBOL(page_zero_new_buffers); 1895 1896 static void 1897 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1898 struct iomap *iomap) 1899 { 1900 loff_t offset = block << inode->i_blkbits; 1901 1902 bh->b_bdev = iomap->bdev; 1903 1904 /* 1905 * Block points to offset in file we need to map, iomap contains 1906 * the offset at which the map starts. If the map ends before the 1907 * current block, then do not map the buffer and let the caller 1908 * handle it. 1909 */ 1910 BUG_ON(offset >= iomap->offset + iomap->length); 1911 1912 switch (iomap->type) { 1913 case IOMAP_HOLE: 1914 /* 1915 * If the buffer is not up to date or beyond the current EOF, 1916 * we need to mark it as new to ensure sub-block zeroing is 1917 * executed if necessary. 1918 */ 1919 if (!buffer_uptodate(bh) || 1920 (offset >= i_size_read(inode))) 1921 set_buffer_new(bh); 1922 break; 1923 case IOMAP_DELALLOC: 1924 if (!buffer_uptodate(bh) || 1925 (offset >= i_size_read(inode))) 1926 set_buffer_new(bh); 1927 set_buffer_uptodate(bh); 1928 set_buffer_mapped(bh); 1929 set_buffer_delay(bh); 1930 break; 1931 case IOMAP_UNWRITTEN: 1932 /* 1933 * For unwritten regions, we always need to ensure that 1934 * sub-block writes cause the regions in the block we are not 1935 * writing to are zeroed. Set the buffer as new to ensure this. 1936 */ 1937 set_buffer_new(bh); 1938 set_buffer_unwritten(bh); 1939 /* FALLTHRU */ 1940 case IOMAP_MAPPED: 1941 if (offset >= i_size_read(inode)) 1942 set_buffer_new(bh); 1943 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) + 1944 ((offset - iomap->offset) >> inode->i_blkbits); 1945 set_buffer_mapped(bh); 1946 break; 1947 } 1948 } 1949 1950 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1951 get_block_t *get_block, struct iomap *iomap) 1952 { 1953 unsigned from = pos & (PAGE_SIZE - 1); 1954 unsigned to = from + len; 1955 struct inode *inode = page->mapping->host; 1956 unsigned block_start, block_end; 1957 sector_t block; 1958 int err = 0; 1959 unsigned blocksize, bbits; 1960 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1961 1962 BUG_ON(!PageLocked(page)); 1963 BUG_ON(from > PAGE_SIZE); 1964 BUG_ON(to > PAGE_SIZE); 1965 BUG_ON(from > to); 1966 1967 head = create_page_buffers(page, inode, 0); 1968 blocksize = head->b_size; 1969 bbits = block_size_bits(blocksize); 1970 1971 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1972 1973 for(bh = head, block_start = 0; bh != head || !block_start; 1974 block++, block_start=block_end, bh = bh->b_this_page) { 1975 block_end = block_start + blocksize; 1976 if (block_end <= from || block_start >= to) { 1977 if (PageUptodate(page)) { 1978 if (!buffer_uptodate(bh)) 1979 set_buffer_uptodate(bh); 1980 } 1981 continue; 1982 } 1983 if (buffer_new(bh)) 1984 clear_buffer_new(bh); 1985 if (!buffer_mapped(bh)) { 1986 WARN_ON(bh->b_size != blocksize); 1987 if (get_block) { 1988 err = get_block(inode, block, bh, 1); 1989 if (err) 1990 break; 1991 } else { 1992 iomap_to_bh(inode, block, bh, iomap); 1993 } 1994 1995 if (buffer_new(bh)) { 1996 unmap_underlying_metadata(bh->b_bdev, 1997 bh->b_blocknr); 1998 if (PageUptodate(page)) { 1999 clear_buffer_new(bh); 2000 set_buffer_uptodate(bh); 2001 mark_buffer_dirty(bh); 2002 continue; 2003 } 2004 if (block_end > to || block_start < from) 2005 zero_user_segments(page, 2006 to, block_end, 2007 block_start, from); 2008 continue; 2009 } 2010 } 2011 if (PageUptodate(page)) { 2012 if (!buffer_uptodate(bh)) 2013 set_buffer_uptodate(bh); 2014 continue; 2015 } 2016 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2017 !buffer_unwritten(bh) && 2018 (block_start < from || block_end > to)) { 2019 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2020 *wait_bh++=bh; 2021 } 2022 } 2023 /* 2024 * If we issued read requests - let them complete. 2025 */ 2026 while(wait_bh > wait) { 2027 wait_on_buffer(*--wait_bh); 2028 if (!buffer_uptodate(*wait_bh)) 2029 err = -EIO; 2030 } 2031 if (unlikely(err)) 2032 page_zero_new_buffers(page, from, to); 2033 return err; 2034 } 2035 2036 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2037 get_block_t *get_block) 2038 { 2039 return __block_write_begin_int(page, pos, len, get_block, NULL); 2040 } 2041 EXPORT_SYMBOL(__block_write_begin); 2042 2043 static int __block_commit_write(struct inode *inode, struct page *page, 2044 unsigned from, unsigned to) 2045 { 2046 unsigned block_start, block_end; 2047 int partial = 0; 2048 unsigned blocksize; 2049 struct buffer_head *bh, *head; 2050 2051 bh = head = page_buffers(page); 2052 blocksize = bh->b_size; 2053 2054 block_start = 0; 2055 do { 2056 block_end = block_start + blocksize; 2057 if (block_end <= from || block_start >= to) { 2058 if (!buffer_uptodate(bh)) 2059 partial = 1; 2060 } else { 2061 set_buffer_uptodate(bh); 2062 mark_buffer_dirty(bh); 2063 } 2064 clear_buffer_new(bh); 2065 2066 block_start = block_end; 2067 bh = bh->b_this_page; 2068 } while (bh != head); 2069 2070 /* 2071 * If this is a partial write which happened to make all buffers 2072 * uptodate then we can optimize away a bogus readpage() for 2073 * the next read(). Here we 'discover' whether the page went 2074 * uptodate as a result of this (potentially partial) write. 2075 */ 2076 if (!partial) 2077 SetPageUptodate(page); 2078 return 0; 2079 } 2080 2081 /* 2082 * block_write_begin takes care of the basic task of block allocation and 2083 * bringing partial write blocks uptodate first. 2084 * 2085 * The filesystem needs to handle block truncation upon failure. 2086 */ 2087 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2088 unsigned flags, struct page **pagep, get_block_t *get_block) 2089 { 2090 pgoff_t index = pos >> PAGE_SHIFT; 2091 struct page *page; 2092 int status; 2093 2094 page = grab_cache_page_write_begin(mapping, index, flags); 2095 if (!page) 2096 return -ENOMEM; 2097 2098 status = __block_write_begin(page, pos, len, get_block); 2099 if (unlikely(status)) { 2100 unlock_page(page); 2101 put_page(page); 2102 page = NULL; 2103 } 2104 2105 *pagep = page; 2106 return status; 2107 } 2108 EXPORT_SYMBOL(block_write_begin); 2109 2110 int block_write_end(struct file *file, struct address_space *mapping, 2111 loff_t pos, unsigned len, unsigned copied, 2112 struct page *page, void *fsdata) 2113 { 2114 struct inode *inode = mapping->host; 2115 unsigned start; 2116 2117 start = pos & (PAGE_SIZE - 1); 2118 2119 if (unlikely(copied < len)) { 2120 /* 2121 * The buffers that were written will now be uptodate, so we 2122 * don't have to worry about a readpage reading them and 2123 * overwriting a partial write. However if we have encountered 2124 * a short write and only partially written into a buffer, it 2125 * will not be marked uptodate, so a readpage might come in and 2126 * destroy our partial write. 2127 * 2128 * Do the simplest thing, and just treat any short write to a 2129 * non uptodate page as a zero-length write, and force the 2130 * caller to redo the whole thing. 2131 */ 2132 if (!PageUptodate(page)) 2133 copied = 0; 2134 2135 page_zero_new_buffers(page, start+copied, start+len); 2136 } 2137 flush_dcache_page(page); 2138 2139 /* This could be a short (even 0-length) commit */ 2140 __block_commit_write(inode, page, start, start+copied); 2141 2142 return copied; 2143 } 2144 EXPORT_SYMBOL(block_write_end); 2145 2146 int generic_write_end(struct file *file, struct address_space *mapping, 2147 loff_t pos, unsigned len, unsigned copied, 2148 struct page *page, void *fsdata) 2149 { 2150 struct inode *inode = mapping->host; 2151 loff_t old_size = inode->i_size; 2152 int i_size_changed = 0; 2153 2154 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2155 2156 /* 2157 * No need to use i_size_read() here, the i_size 2158 * cannot change under us because we hold i_mutex. 2159 * 2160 * But it's important to update i_size while still holding page lock: 2161 * page writeout could otherwise come in and zero beyond i_size. 2162 */ 2163 if (pos+copied > inode->i_size) { 2164 i_size_write(inode, pos+copied); 2165 i_size_changed = 1; 2166 } 2167 2168 unlock_page(page); 2169 put_page(page); 2170 2171 if (old_size < pos) 2172 pagecache_isize_extended(inode, old_size, pos); 2173 /* 2174 * Don't mark the inode dirty under page lock. First, it unnecessarily 2175 * makes the holding time of page lock longer. Second, it forces lock 2176 * ordering of page lock and transaction start for journaling 2177 * filesystems. 2178 */ 2179 if (i_size_changed) 2180 mark_inode_dirty(inode); 2181 2182 return copied; 2183 } 2184 EXPORT_SYMBOL(generic_write_end); 2185 2186 /* 2187 * block_is_partially_uptodate checks whether buffers within a page are 2188 * uptodate or not. 2189 * 2190 * Returns true if all buffers which correspond to a file portion 2191 * we want to read are uptodate. 2192 */ 2193 int block_is_partially_uptodate(struct page *page, unsigned long from, 2194 unsigned long count) 2195 { 2196 unsigned block_start, block_end, blocksize; 2197 unsigned to; 2198 struct buffer_head *bh, *head; 2199 int ret = 1; 2200 2201 if (!page_has_buffers(page)) 2202 return 0; 2203 2204 head = page_buffers(page); 2205 blocksize = head->b_size; 2206 to = min_t(unsigned, PAGE_SIZE - from, count); 2207 to = from + to; 2208 if (from < blocksize && to > PAGE_SIZE - blocksize) 2209 return 0; 2210 2211 bh = head; 2212 block_start = 0; 2213 do { 2214 block_end = block_start + blocksize; 2215 if (block_end > from && block_start < to) { 2216 if (!buffer_uptodate(bh)) { 2217 ret = 0; 2218 break; 2219 } 2220 if (block_end >= to) 2221 break; 2222 } 2223 block_start = block_end; 2224 bh = bh->b_this_page; 2225 } while (bh != head); 2226 2227 return ret; 2228 } 2229 EXPORT_SYMBOL(block_is_partially_uptodate); 2230 2231 /* 2232 * Generic "read page" function for block devices that have the normal 2233 * get_block functionality. This is most of the block device filesystems. 2234 * Reads the page asynchronously --- the unlock_buffer() and 2235 * set/clear_buffer_uptodate() functions propagate buffer state into the 2236 * page struct once IO has completed. 2237 */ 2238 int block_read_full_page(struct page *page, get_block_t *get_block) 2239 { 2240 struct inode *inode = page->mapping->host; 2241 sector_t iblock, lblock; 2242 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2243 unsigned int blocksize, bbits; 2244 int nr, i; 2245 int fully_mapped = 1; 2246 2247 head = create_page_buffers(page, inode, 0); 2248 blocksize = head->b_size; 2249 bbits = block_size_bits(blocksize); 2250 2251 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2252 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2253 bh = head; 2254 nr = 0; 2255 i = 0; 2256 2257 do { 2258 if (buffer_uptodate(bh)) 2259 continue; 2260 2261 if (!buffer_mapped(bh)) { 2262 int err = 0; 2263 2264 fully_mapped = 0; 2265 if (iblock < lblock) { 2266 WARN_ON(bh->b_size != blocksize); 2267 err = get_block(inode, iblock, bh, 0); 2268 if (err) 2269 SetPageError(page); 2270 } 2271 if (!buffer_mapped(bh)) { 2272 zero_user(page, i * blocksize, blocksize); 2273 if (!err) 2274 set_buffer_uptodate(bh); 2275 continue; 2276 } 2277 /* 2278 * get_block() might have updated the buffer 2279 * synchronously 2280 */ 2281 if (buffer_uptodate(bh)) 2282 continue; 2283 } 2284 arr[nr++] = bh; 2285 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2286 2287 if (fully_mapped) 2288 SetPageMappedToDisk(page); 2289 2290 if (!nr) { 2291 /* 2292 * All buffers are uptodate - we can set the page uptodate 2293 * as well. But not if get_block() returned an error. 2294 */ 2295 if (!PageError(page)) 2296 SetPageUptodate(page); 2297 unlock_page(page); 2298 return 0; 2299 } 2300 2301 /* Stage two: lock the buffers */ 2302 for (i = 0; i < nr; i++) { 2303 bh = arr[i]; 2304 lock_buffer(bh); 2305 mark_buffer_async_read(bh); 2306 } 2307 2308 /* 2309 * Stage 3: start the IO. Check for uptodateness 2310 * inside the buffer lock in case another process reading 2311 * the underlying blockdev brought it uptodate (the sct fix). 2312 */ 2313 for (i = 0; i < nr; i++) { 2314 bh = arr[i]; 2315 if (buffer_uptodate(bh)) 2316 end_buffer_async_read(bh, 1); 2317 else 2318 submit_bh(REQ_OP_READ, 0, bh); 2319 } 2320 return 0; 2321 } 2322 EXPORT_SYMBOL(block_read_full_page); 2323 2324 /* utility function for filesystems that need to do work on expanding 2325 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2326 * deal with the hole. 2327 */ 2328 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2329 { 2330 struct address_space *mapping = inode->i_mapping; 2331 struct page *page; 2332 void *fsdata; 2333 int err; 2334 2335 err = inode_newsize_ok(inode, size); 2336 if (err) 2337 goto out; 2338 2339 err = pagecache_write_begin(NULL, mapping, size, 0, 2340 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2341 &page, &fsdata); 2342 if (err) 2343 goto out; 2344 2345 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2346 BUG_ON(err > 0); 2347 2348 out: 2349 return err; 2350 } 2351 EXPORT_SYMBOL(generic_cont_expand_simple); 2352 2353 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2354 loff_t pos, loff_t *bytes) 2355 { 2356 struct inode *inode = mapping->host; 2357 unsigned blocksize = 1 << inode->i_blkbits; 2358 struct page *page; 2359 void *fsdata; 2360 pgoff_t index, curidx; 2361 loff_t curpos; 2362 unsigned zerofrom, offset, len; 2363 int err = 0; 2364 2365 index = pos >> PAGE_SHIFT; 2366 offset = pos & ~PAGE_MASK; 2367 2368 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2369 zerofrom = curpos & ~PAGE_MASK; 2370 if (zerofrom & (blocksize-1)) { 2371 *bytes |= (blocksize-1); 2372 (*bytes)++; 2373 } 2374 len = PAGE_SIZE - zerofrom; 2375 2376 err = pagecache_write_begin(file, mapping, curpos, len, 2377 AOP_FLAG_UNINTERRUPTIBLE, 2378 &page, &fsdata); 2379 if (err) 2380 goto out; 2381 zero_user(page, zerofrom, len); 2382 err = pagecache_write_end(file, mapping, curpos, len, len, 2383 page, fsdata); 2384 if (err < 0) 2385 goto out; 2386 BUG_ON(err != len); 2387 err = 0; 2388 2389 balance_dirty_pages_ratelimited(mapping); 2390 2391 if (unlikely(fatal_signal_pending(current))) { 2392 err = -EINTR; 2393 goto out; 2394 } 2395 } 2396 2397 /* page covers the boundary, find the boundary offset */ 2398 if (index == curidx) { 2399 zerofrom = curpos & ~PAGE_MASK; 2400 /* if we will expand the thing last block will be filled */ 2401 if (offset <= zerofrom) { 2402 goto out; 2403 } 2404 if (zerofrom & (blocksize-1)) { 2405 *bytes |= (blocksize-1); 2406 (*bytes)++; 2407 } 2408 len = offset - zerofrom; 2409 2410 err = pagecache_write_begin(file, mapping, curpos, len, 2411 AOP_FLAG_UNINTERRUPTIBLE, 2412 &page, &fsdata); 2413 if (err) 2414 goto out; 2415 zero_user(page, zerofrom, len); 2416 err = pagecache_write_end(file, mapping, curpos, len, len, 2417 page, fsdata); 2418 if (err < 0) 2419 goto out; 2420 BUG_ON(err != len); 2421 err = 0; 2422 } 2423 out: 2424 return err; 2425 } 2426 2427 /* 2428 * For moronic filesystems that do not allow holes in file. 2429 * We may have to extend the file. 2430 */ 2431 int cont_write_begin(struct file *file, struct address_space *mapping, 2432 loff_t pos, unsigned len, unsigned flags, 2433 struct page **pagep, void **fsdata, 2434 get_block_t *get_block, loff_t *bytes) 2435 { 2436 struct inode *inode = mapping->host; 2437 unsigned blocksize = 1 << inode->i_blkbits; 2438 unsigned zerofrom; 2439 int err; 2440 2441 err = cont_expand_zero(file, mapping, pos, bytes); 2442 if (err) 2443 return err; 2444 2445 zerofrom = *bytes & ~PAGE_MASK; 2446 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2447 *bytes |= (blocksize-1); 2448 (*bytes)++; 2449 } 2450 2451 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2452 } 2453 EXPORT_SYMBOL(cont_write_begin); 2454 2455 int block_commit_write(struct page *page, unsigned from, unsigned to) 2456 { 2457 struct inode *inode = page->mapping->host; 2458 __block_commit_write(inode,page,from,to); 2459 return 0; 2460 } 2461 EXPORT_SYMBOL(block_commit_write); 2462 2463 /* 2464 * block_page_mkwrite() is not allowed to change the file size as it gets 2465 * called from a page fault handler when a page is first dirtied. Hence we must 2466 * be careful to check for EOF conditions here. We set the page up correctly 2467 * for a written page which means we get ENOSPC checking when writing into 2468 * holes and correct delalloc and unwritten extent mapping on filesystems that 2469 * support these features. 2470 * 2471 * We are not allowed to take the i_mutex here so we have to play games to 2472 * protect against truncate races as the page could now be beyond EOF. Because 2473 * truncate writes the inode size before removing pages, once we have the 2474 * page lock we can determine safely if the page is beyond EOF. If it is not 2475 * beyond EOF, then the page is guaranteed safe against truncation until we 2476 * unlock the page. 2477 * 2478 * Direct callers of this function should protect against filesystem freezing 2479 * using sb_start_pagefault() - sb_end_pagefault() functions. 2480 */ 2481 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2482 get_block_t get_block) 2483 { 2484 struct page *page = vmf->page; 2485 struct inode *inode = file_inode(vma->vm_file); 2486 unsigned long end; 2487 loff_t size; 2488 int ret; 2489 2490 lock_page(page); 2491 size = i_size_read(inode); 2492 if ((page->mapping != inode->i_mapping) || 2493 (page_offset(page) > size)) { 2494 /* We overload EFAULT to mean page got truncated */ 2495 ret = -EFAULT; 2496 goto out_unlock; 2497 } 2498 2499 /* page is wholly or partially inside EOF */ 2500 if (((page->index + 1) << PAGE_SHIFT) > size) 2501 end = size & ~PAGE_MASK; 2502 else 2503 end = PAGE_SIZE; 2504 2505 ret = __block_write_begin(page, 0, end, get_block); 2506 if (!ret) 2507 ret = block_commit_write(page, 0, end); 2508 2509 if (unlikely(ret < 0)) 2510 goto out_unlock; 2511 set_page_dirty(page); 2512 wait_for_stable_page(page); 2513 return 0; 2514 out_unlock: 2515 unlock_page(page); 2516 return ret; 2517 } 2518 EXPORT_SYMBOL(block_page_mkwrite); 2519 2520 /* 2521 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2522 * immediately, while under the page lock. So it needs a special end_io 2523 * handler which does not touch the bh after unlocking it. 2524 */ 2525 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2526 { 2527 __end_buffer_read_notouch(bh, uptodate); 2528 } 2529 2530 /* 2531 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2532 * the page (converting it to circular linked list and taking care of page 2533 * dirty races). 2534 */ 2535 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2536 { 2537 struct buffer_head *bh; 2538 2539 BUG_ON(!PageLocked(page)); 2540 2541 spin_lock(&page->mapping->private_lock); 2542 bh = head; 2543 do { 2544 if (PageDirty(page)) 2545 set_buffer_dirty(bh); 2546 if (!bh->b_this_page) 2547 bh->b_this_page = head; 2548 bh = bh->b_this_page; 2549 } while (bh != head); 2550 attach_page_buffers(page, head); 2551 spin_unlock(&page->mapping->private_lock); 2552 } 2553 2554 /* 2555 * On entry, the page is fully not uptodate. 2556 * On exit the page is fully uptodate in the areas outside (from,to) 2557 * The filesystem needs to handle block truncation upon failure. 2558 */ 2559 int nobh_write_begin(struct address_space *mapping, 2560 loff_t pos, unsigned len, unsigned flags, 2561 struct page **pagep, void **fsdata, 2562 get_block_t *get_block) 2563 { 2564 struct inode *inode = mapping->host; 2565 const unsigned blkbits = inode->i_blkbits; 2566 const unsigned blocksize = 1 << blkbits; 2567 struct buffer_head *head, *bh; 2568 struct page *page; 2569 pgoff_t index; 2570 unsigned from, to; 2571 unsigned block_in_page; 2572 unsigned block_start, block_end; 2573 sector_t block_in_file; 2574 int nr_reads = 0; 2575 int ret = 0; 2576 int is_mapped_to_disk = 1; 2577 2578 index = pos >> PAGE_SHIFT; 2579 from = pos & (PAGE_SIZE - 1); 2580 to = from + len; 2581 2582 page = grab_cache_page_write_begin(mapping, index, flags); 2583 if (!page) 2584 return -ENOMEM; 2585 *pagep = page; 2586 *fsdata = NULL; 2587 2588 if (page_has_buffers(page)) { 2589 ret = __block_write_begin(page, pos, len, get_block); 2590 if (unlikely(ret)) 2591 goto out_release; 2592 return ret; 2593 } 2594 2595 if (PageMappedToDisk(page)) 2596 return 0; 2597 2598 /* 2599 * Allocate buffers so that we can keep track of state, and potentially 2600 * attach them to the page if an error occurs. In the common case of 2601 * no error, they will just be freed again without ever being attached 2602 * to the page (which is all OK, because we're under the page lock). 2603 * 2604 * Be careful: the buffer linked list is a NULL terminated one, rather 2605 * than the circular one we're used to. 2606 */ 2607 head = alloc_page_buffers(page, blocksize, 0); 2608 if (!head) { 2609 ret = -ENOMEM; 2610 goto out_release; 2611 } 2612 2613 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2614 2615 /* 2616 * We loop across all blocks in the page, whether or not they are 2617 * part of the affected region. This is so we can discover if the 2618 * page is fully mapped-to-disk. 2619 */ 2620 for (block_start = 0, block_in_page = 0, bh = head; 2621 block_start < PAGE_SIZE; 2622 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2623 int create; 2624 2625 block_end = block_start + blocksize; 2626 bh->b_state = 0; 2627 create = 1; 2628 if (block_start >= to) 2629 create = 0; 2630 ret = get_block(inode, block_in_file + block_in_page, 2631 bh, create); 2632 if (ret) 2633 goto failed; 2634 if (!buffer_mapped(bh)) 2635 is_mapped_to_disk = 0; 2636 if (buffer_new(bh)) 2637 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2638 if (PageUptodate(page)) { 2639 set_buffer_uptodate(bh); 2640 continue; 2641 } 2642 if (buffer_new(bh) || !buffer_mapped(bh)) { 2643 zero_user_segments(page, block_start, from, 2644 to, block_end); 2645 continue; 2646 } 2647 if (buffer_uptodate(bh)) 2648 continue; /* reiserfs does this */ 2649 if (block_start < from || block_end > to) { 2650 lock_buffer(bh); 2651 bh->b_end_io = end_buffer_read_nobh; 2652 submit_bh(REQ_OP_READ, 0, bh); 2653 nr_reads++; 2654 } 2655 } 2656 2657 if (nr_reads) { 2658 /* 2659 * The page is locked, so these buffers are protected from 2660 * any VM or truncate activity. Hence we don't need to care 2661 * for the buffer_head refcounts. 2662 */ 2663 for (bh = head; bh; bh = bh->b_this_page) { 2664 wait_on_buffer(bh); 2665 if (!buffer_uptodate(bh)) 2666 ret = -EIO; 2667 } 2668 if (ret) 2669 goto failed; 2670 } 2671 2672 if (is_mapped_to_disk) 2673 SetPageMappedToDisk(page); 2674 2675 *fsdata = head; /* to be released by nobh_write_end */ 2676 2677 return 0; 2678 2679 failed: 2680 BUG_ON(!ret); 2681 /* 2682 * Error recovery is a bit difficult. We need to zero out blocks that 2683 * were newly allocated, and dirty them to ensure they get written out. 2684 * Buffers need to be attached to the page at this point, otherwise 2685 * the handling of potential IO errors during writeout would be hard 2686 * (could try doing synchronous writeout, but what if that fails too?) 2687 */ 2688 attach_nobh_buffers(page, head); 2689 page_zero_new_buffers(page, from, to); 2690 2691 out_release: 2692 unlock_page(page); 2693 put_page(page); 2694 *pagep = NULL; 2695 2696 return ret; 2697 } 2698 EXPORT_SYMBOL(nobh_write_begin); 2699 2700 int nobh_write_end(struct file *file, struct address_space *mapping, 2701 loff_t pos, unsigned len, unsigned copied, 2702 struct page *page, void *fsdata) 2703 { 2704 struct inode *inode = page->mapping->host; 2705 struct buffer_head *head = fsdata; 2706 struct buffer_head *bh; 2707 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2708 2709 if (unlikely(copied < len) && head) 2710 attach_nobh_buffers(page, head); 2711 if (page_has_buffers(page)) 2712 return generic_write_end(file, mapping, pos, len, 2713 copied, page, fsdata); 2714 2715 SetPageUptodate(page); 2716 set_page_dirty(page); 2717 if (pos+copied > inode->i_size) { 2718 i_size_write(inode, pos+copied); 2719 mark_inode_dirty(inode); 2720 } 2721 2722 unlock_page(page); 2723 put_page(page); 2724 2725 while (head) { 2726 bh = head; 2727 head = head->b_this_page; 2728 free_buffer_head(bh); 2729 } 2730 2731 return copied; 2732 } 2733 EXPORT_SYMBOL(nobh_write_end); 2734 2735 /* 2736 * nobh_writepage() - based on block_full_write_page() except 2737 * that it tries to operate without attaching bufferheads to 2738 * the page. 2739 */ 2740 int nobh_writepage(struct page *page, get_block_t *get_block, 2741 struct writeback_control *wbc) 2742 { 2743 struct inode * const inode = page->mapping->host; 2744 loff_t i_size = i_size_read(inode); 2745 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2746 unsigned offset; 2747 int ret; 2748 2749 /* Is the page fully inside i_size? */ 2750 if (page->index < end_index) 2751 goto out; 2752 2753 /* Is the page fully outside i_size? (truncate in progress) */ 2754 offset = i_size & (PAGE_SIZE-1); 2755 if (page->index >= end_index+1 || !offset) { 2756 /* 2757 * The page may have dirty, unmapped buffers. For example, 2758 * they may have been added in ext3_writepage(). Make them 2759 * freeable here, so the page does not leak. 2760 */ 2761 #if 0 2762 /* Not really sure about this - do we need this ? */ 2763 if (page->mapping->a_ops->invalidatepage) 2764 page->mapping->a_ops->invalidatepage(page, offset); 2765 #endif 2766 unlock_page(page); 2767 return 0; /* don't care */ 2768 } 2769 2770 /* 2771 * The page straddles i_size. It must be zeroed out on each and every 2772 * writepage invocation because it may be mmapped. "A file is mapped 2773 * in multiples of the page size. For a file that is not a multiple of 2774 * the page size, the remaining memory is zeroed when mapped, and 2775 * writes to that region are not written out to the file." 2776 */ 2777 zero_user_segment(page, offset, PAGE_SIZE); 2778 out: 2779 ret = mpage_writepage(page, get_block, wbc); 2780 if (ret == -EAGAIN) 2781 ret = __block_write_full_page(inode, page, get_block, wbc, 2782 end_buffer_async_write); 2783 return ret; 2784 } 2785 EXPORT_SYMBOL(nobh_writepage); 2786 2787 int nobh_truncate_page(struct address_space *mapping, 2788 loff_t from, get_block_t *get_block) 2789 { 2790 pgoff_t index = from >> PAGE_SHIFT; 2791 unsigned offset = from & (PAGE_SIZE-1); 2792 unsigned blocksize; 2793 sector_t iblock; 2794 unsigned length, pos; 2795 struct inode *inode = mapping->host; 2796 struct page *page; 2797 struct buffer_head map_bh; 2798 int err; 2799 2800 blocksize = 1 << inode->i_blkbits; 2801 length = offset & (blocksize - 1); 2802 2803 /* Block boundary? Nothing to do */ 2804 if (!length) 2805 return 0; 2806 2807 length = blocksize - length; 2808 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2809 2810 page = grab_cache_page(mapping, index); 2811 err = -ENOMEM; 2812 if (!page) 2813 goto out; 2814 2815 if (page_has_buffers(page)) { 2816 has_buffers: 2817 unlock_page(page); 2818 put_page(page); 2819 return block_truncate_page(mapping, from, get_block); 2820 } 2821 2822 /* Find the buffer that contains "offset" */ 2823 pos = blocksize; 2824 while (offset >= pos) { 2825 iblock++; 2826 pos += blocksize; 2827 } 2828 2829 map_bh.b_size = blocksize; 2830 map_bh.b_state = 0; 2831 err = get_block(inode, iblock, &map_bh, 0); 2832 if (err) 2833 goto unlock; 2834 /* unmapped? It's a hole - nothing to do */ 2835 if (!buffer_mapped(&map_bh)) 2836 goto unlock; 2837 2838 /* Ok, it's mapped. Make sure it's up-to-date */ 2839 if (!PageUptodate(page)) { 2840 err = mapping->a_ops->readpage(NULL, page); 2841 if (err) { 2842 put_page(page); 2843 goto out; 2844 } 2845 lock_page(page); 2846 if (!PageUptodate(page)) { 2847 err = -EIO; 2848 goto unlock; 2849 } 2850 if (page_has_buffers(page)) 2851 goto has_buffers; 2852 } 2853 zero_user(page, offset, length); 2854 set_page_dirty(page); 2855 err = 0; 2856 2857 unlock: 2858 unlock_page(page); 2859 put_page(page); 2860 out: 2861 return err; 2862 } 2863 EXPORT_SYMBOL(nobh_truncate_page); 2864 2865 int block_truncate_page(struct address_space *mapping, 2866 loff_t from, get_block_t *get_block) 2867 { 2868 pgoff_t index = from >> PAGE_SHIFT; 2869 unsigned offset = from & (PAGE_SIZE-1); 2870 unsigned blocksize; 2871 sector_t iblock; 2872 unsigned length, pos; 2873 struct inode *inode = mapping->host; 2874 struct page *page; 2875 struct buffer_head *bh; 2876 int err; 2877 2878 blocksize = 1 << inode->i_blkbits; 2879 length = offset & (blocksize - 1); 2880 2881 /* Block boundary? Nothing to do */ 2882 if (!length) 2883 return 0; 2884 2885 length = blocksize - length; 2886 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2887 2888 page = grab_cache_page(mapping, index); 2889 err = -ENOMEM; 2890 if (!page) 2891 goto out; 2892 2893 if (!page_has_buffers(page)) 2894 create_empty_buffers(page, blocksize, 0); 2895 2896 /* Find the buffer that contains "offset" */ 2897 bh = page_buffers(page); 2898 pos = blocksize; 2899 while (offset >= pos) { 2900 bh = bh->b_this_page; 2901 iblock++; 2902 pos += blocksize; 2903 } 2904 2905 err = 0; 2906 if (!buffer_mapped(bh)) { 2907 WARN_ON(bh->b_size != blocksize); 2908 err = get_block(inode, iblock, bh, 0); 2909 if (err) 2910 goto unlock; 2911 /* unmapped? It's a hole - nothing to do */ 2912 if (!buffer_mapped(bh)) 2913 goto unlock; 2914 } 2915 2916 /* Ok, it's mapped. Make sure it's up-to-date */ 2917 if (PageUptodate(page)) 2918 set_buffer_uptodate(bh); 2919 2920 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2921 err = -EIO; 2922 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2923 wait_on_buffer(bh); 2924 /* Uhhuh. Read error. Complain and punt. */ 2925 if (!buffer_uptodate(bh)) 2926 goto unlock; 2927 } 2928 2929 zero_user(page, offset, length); 2930 mark_buffer_dirty(bh); 2931 err = 0; 2932 2933 unlock: 2934 unlock_page(page); 2935 put_page(page); 2936 out: 2937 return err; 2938 } 2939 EXPORT_SYMBOL(block_truncate_page); 2940 2941 /* 2942 * The generic ->writepage function for buffer-backed address_spaces 2943 */ 2944 int block_write_full_page(struct page *page, get_block_t *get_block, 2945 struct writeback_control *wbc) 2946 { 2947 struct inode * const inode = page->mapping->host; 2948 loff_t i_size = i_size_read(inode); 2949 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2950 unsigned offset; 2951 2952 /* Is the page fully inside i_size? */ 2953 if (page->index < end_index) 2954 return __block_write_full_page(inode, page, get_block, wbc, 2955 end_buffer_async_write); 2956 2957 /* Is the page fully outside i_size? (truncate in progress) */ 2958 offset = i_size & (PAGE_SIZE-1); 2959 if (page->index >= end_index+1 || !offset) { 2960 /* 2961 * The page may have dirty, unmapped buffers. For example, 2962 * they may have been added in ext3_writepage(). Make them 2963 * freeable here, so the page does not leak. 2964 */ 2965 do_invalidatepage(page, 0, PAGE_SIZE); 2966 unlock_page(page); 2967 return 0; /* don't care */ 2968 } 2969 2970 /* 2971 * The page straddles i_size. It must be zeroed out on each and every 2972 * writepage invocation because it may be mmapped. "A file is mapped 2973 * in multiples of the page size. For a file that is not a multiple of 2974 * the page size, the remaining memory is zeroed when mapped, and 2975 * writes to that region are not written out to the file." 2976 */ 2977 zero_user_segment(page, offset, PAGE_SIZE); 2978 return __block_write_full_page(inode, page, get_block, wbc, 2979 end_buffer_async_write); 2980 } 2981 EXPORT_SYMBOL(block_write_full_page); 2982 2983 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2984 get_block_t *get_block) 2985 { 2986 struct buffer_head tmp; 2987 struct inode *inode = mapping->host; 2988 tmp.b_state = 0; 2989 tmp.b_blocknr = 0; 2990 tmp.b_size = 1 << inode->i_blkbits; 2991 get_block(inode, block, &tmp, 0); 2992 return tmp.b_blocknr; 2993 } 2994 EXPORT_SYMBOL(generic_block_bmap); 2995 2996 static void end_bio_bh_io_sync(struct bio *bio) 2997 { 2998 struct buffer_head *bh = bio->bi_private; 2999 3000 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3001 set_bit(BH_Quiet, &bh->b_state); 3002 3003 bh->b_end_io(bh, !bio->bi_error); 3004 bio_put(bio); 3005 } 3006 3007 /* 3008 * This allows us to do IO even on the odd last sectors 3009 * of a device, even if the block size is some multiple 3010 * of the physical sector size. 3011 * 3012 * We'll just truncate the bio to the size of the device, 3013 * and clear the end of the buffer head manually. 3014 * 3015 * Truly out-of-range accesses will turn into actual IO 3016 * errors, this only handles the "we need to be able to 3017 * do IO at the final sector" case. 3018 */ 3019 void guard_bio_eod(int op, struct bio *bio) 3020 { 3021 sector_t maxsector; 3022 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 3023 unsigned truncated_bytes; 3024 3025 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 3026 if (!maxsector) 3027 return; 3028 3029 /* 3030 * If the *whole* IO is past the end of the device, 3031 * let it through, and the IO layer will turn it into 3032 * an EIO. 3033 */ 3034 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3035 return; 3036 3037 maxsector -= bio->bi_iter.bi_sector; 3038 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3039 return; 3040 3041 /* Uhhuh. We've got a bio that straddles the device size! */ 3042 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3043 3044 /* Truncate the bio.. */ 3045 bio->bi_iter.bi_size -= truncated_bytes; 3046 bvec->bv_len -= truncated_bytes; 3047 3048 /* ..and clear the end of the buffer for reads */ 3049 if (op == REQ_OP_READ) { 3050 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3051 truncated_bytes); 3052 } 3053 } 3054 3055 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3056 unsigned long bio_flags, struct writeback_control *wbc) 3057 { 3058 struct bio *bio; 3059 3060 BUG_ON(!buffer_locked(bh)); 3061 BUG_ON(!buffer_mapped(bh)); 3062 BUG_ON(!bh->b_end_io); 3063 BUG_ON(buffer_delay(bh)); 3064 BUG_ON(buffer_unwritten(bh)); 3065 3066 /* 3067 * Only clear out a write error when rewriting 3068 */ 3069 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3070 clear_buffer_write_io_error(bh); 3071 3072 /* 3073 * from here on down, it's all bio -- do the initial mapping, 3074 * submit_bio -> generic_make_request may further map this bio around 3075 */ 3076 bio = bio_alloc(GFP_NOIO, 1); 3077 3078 if (wbc) { 3079 wbc_init_bio(wbc, bio); 3080 wbc_account_io(wbc, bh->b_page, bh->b_size); 3081 } 3082 3083 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3084 bio->bi_bdev = bh->b_bdev; 3085 3086 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3087 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3088 3089 bio->bi_end_io = end_bio_bh_io_sync; 3090 bio->bi_private = bh; 3091 bio->bi_flags |= bio_flags; 3092 3093 /* Take care of bh's that straddle the end of the device */ 3094 guard_bio_eod(op, bio); 3095 3096 if (buffer_meta(bh)) 3097 op_flags |= REQ_META; 3098 if (buffer_prio(bh)) 3099 op_flags |= REQ_PRIO; 3100 bio_set_op_attrs(bio, op, op_flags); 3101 3102 submit_bio(bio); 3103 return 0; 3104 } 3105 3106 int _submit_bh(int op, int op_flags, struct buffer_head *bh, 3107 unsigned long bio_flags) 3108 { 3109 return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL); 3110 } 3111 EXPORT_SYMBOL_GPL(_submit_bh); 3112 3113 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3114 { 3115 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3116 } 3117 EXPORT_SYMBOL(submit_bh); 3118 3119 /** 3120 * ll_rw_block: low-level access to block devices (DEPRECATED) 3121 * @op: whether to %READ or %WRITE 3122 * @op_flags: rq_flag_bits 3123 * @nr: number of &struct buffer_heads in the array 3124 * @bhs: array of pointers to &struct buffer_head 3125 * 3126 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3127 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3128 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3129 * %REQ_RAHEAD. 3130 * 3131 * This function drops any buffer that it cannot get a lock on (with the 3132 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3133 * request, and any buffer that appears to be up-to-date when doing read 3134 * request. Further it marks as clean buffers that are processed for 3135 * writing (the buffer cache won't assume that they are actually clean 3136 * until the buffer gets unlocked). 3137 * 3138 * ll_rw_block sets b_end_io to simple completion handler that marks 3139 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3140 * any waiters. 3141 * 3142 * All of the buffers must be for the same device, and must also be a 3143 * multiple of the current approved size for the device. 3144 */ 3145 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3146 { 3147 int i; 3148 3149 for (i = 0; i < nr; i++) { 3150 struct buffer_head *bh = bhs[i]; 3151 3152 if (!trylock_buffer(bh)) 3153 continue; 3154 if (op == WRITE) { 3155 if (test_clear_buffer_dirty(bh)) { 3156 bh->b_end_io = end_buffer_write_sync; 3157 get_bh(bh); 3158 submit_bh(op, op_flags, bh); 3159 continue; 3160 } 3161 } else { 3162 if (!buffer_uptodate(bh)) { 3163 bh->b_end_io = end_buffer_read_sync; 3164 get_bh(bh); 3165 submit_bh(op, op_flags, bh); 3166 continue; 3167 } 3168 } 3169 unlock_buffer(bh); 3170 } 3171 } 3172 EXPORT_SYMBOL(ll_rw_block); 3173 3174 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3175 { 3176 lock_buffer(bh); 3177 if (!test_clear_buffer_dirty(bh)) { 3178 unlock_buffer(bh); 3179 return; 3180 } 3181 bh->b_end_io = end_buffer_write_sync; 3182 get_bh(bh); 3183 submit_bh(REQ_OP_WRITE, op_flags, bh); 3184 } 3185 EXPORT_SYMBOL(write_dirty_buffer); 3186 3187 /* 3188 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3189 * and then start new I/O and then wait upon it. The caller must have a ref on 3190 * the buffer_head. 3191 */ 3192 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3193 { 3194 int ret = 0; 3195 3196 WARN_ON(atomic_read(&bh->b_count) < 1); 3197 lock_buffer(bh); 3198 if (test_clear_buffer_dirty(bh)) { 3199 get_bh(bh); 3200 bh->b_end_io = end_buffer_write_sync; 3201 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3202 wait_on_buffer(bh); 3203 if (!ret && !buffer_uptodate(bh)) 3204 ret = -EIO; 3205 } else { 3206 unlock_buffer(bh); 3207 } 3208 return ret; 3209 } 3210 EXPORT_SYMBOL(__sync_dirty_buffer); 3211 3212 int sync_dirty_buffer(struct buffer_head *bh) 3213 { 3214 return __sync_dirty_buffer(bh, WRITE_SYNC); 3215 } 3216 EXPORT_SYMBOL(sync_dirty_buffer); 3217 3218 /* 3219 * try_to_free_buffers() checks if all the buffers on this particular page 3220 * are unused, and releases them if so. 3221 * 3222 * Exclusion against try_to_free_buffers may be obtained by either 3223 * locking the page or by holding its mapping's private_lock. 3224 * 3225 * If the page is dirty but all the buffers are clean then we need to 3226 * be sure to mark the page clean as well. This is because the page 3227 * may be against a block device, and a later reattachment of buffers 3228 * to a dirty page will set *all* buffers dirty. Which would corrupt 3229 * filesystem data on the same device. 3230 * 3231 * The same applies to regular filesystem pages: if all the buffers are 3232 * clean then we set the page clean and proceed. To do that, we require 3233 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3234 * private_lock. 3235 * 3236 * try_to_free_buffers() is non-blocking. 3237 */ 3238 static inline int buffer_busy(struct buffer_head *bh) 3239 { 3240 return atomic_read(&bh->b_count) | 3241 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3242 } 3243 3244 static int 3245 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3246 { 3247 struct buffer_head *head = page_buffers(page); 3248 struct buffer_head *bh; 3249 3250 bh = head; 3251 do { 3252 if (buffer_write_io_error(bh) && page->mapping) 3253 set_bit(AS_EIO, &page->mapping->flags); 3254 if (buffer_busy(bh)) 3255 goto failed; 3256 bh = bh->b_this_page; 3257 } while (bh != head); 3258 3259 do { 3260 struct buffer_head *next = bh->b_this_page; 3261 3262 if (bh->b_assoc_map) 3263 __remove_assoc_queue(bh); 3264 bh = next; 3265 } while (bh != head); 3266 *buffers_to_free = head; 3267 __clear_page_buffers(page); 3268 return 1; 3269 failed: 3270 return 0; 3271 } 3272 3273 int try_to_free_buffers(struct page *page) 3274 { 3275 struct address_space * const mapping = page->mapping; 3276 struct buffer_head *buffers_to_free = NULL; 3277 int ret = 0; 3278 3279 BUG_ON(!PageLocked(page)); 3280 if (PageWriteback(page)) 3281 return 0; 3282 3283 if (mapping == NULL) { /* can this still happen? */ 3284 ret = drop_buffers(page, &buffers_to_free); 3285 goto out; 3286 } 3287 3288 spin_lock(&mapping->private_lock); 3289 ret = drop_buffers(page, &buffers_to_free); 3290 3291 /* 3292 * If the filesystem writes its buffers by hand (eg ext3) 3293 * then we can have clean buffers against a dirty page. We 3294 * clean the page here; otherwise the VM will never notice 3295 * that the filesystem did any IO at all. 3296 * 3297 * Also, during truncate, discard_buffer will have marked all 3298 * the page's buffers clean. We discover that here and clean 3299 * the page also. 3300 * 3301 * private_lock must be held over this entire operation in order 3302 * to synchronise against __set_page_dirty_buffers and prevent the 3303 * dirty bit from being lost. 3304 */ 3305 if (ret) 3306 cancel_dirty_page(page); 3307 spin_unlock(&mapping->private_lock); 3308 out: 3309 if (buffers_to_free) { 3310 struct buffer_head *bh = buffers_to_free; 3311 3312 do { 3313 struct buffer_head *next = bh->b_this_page; 3314 free_buffer_head(bh); 3315 bh = next; 3316 } while (bh != buffers_to_free); 3317 } 3318 return ret; 3319 } 3320 EXPORT_SYMBOL(try_to_free_buffers); 3321 3322 /* 3323 * There are no bdflush tunables left. But distributions are 3324 * still running obsolete flush daemons, so we terminate them here. 3325 * 3326 * Use of bdflush() is deprecated and will be removed in a future kernel. 3327 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3328 */ 3329 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3330 { 3331 static int msg_count; 3332 3333 if (!capable(CAP_SYS_ADMIN)) 3334 return -EPERM; 3335 3336 if (msg_count < 5) { 3337 msg_count++; 3338 printk(KERN_INFO 3339 "warning: process `%s' used the obsolete bdflush" 3340 " system call\n", current->comm); 3341 printk(KERN_INFO "Fix your initscripts?\n"); 3342 } 3343 3344 if (func == 1) 3345 do_exit(0); 3346 return 0; 3347 } 3348 3349 /* 3350 * Buffer-head allocation 3351 */ 3352 static struct kmem_cache *bh_cachep __read_mostly; 3353 3354 /* 3355 * Once the number of bh's in the machine exceeds this level, we start 3356 * stripping them in writeback. 3357 */ 3358 static unsigned long max_buffer_heads; 3359 3360 int buffer_heads_over_limit; 3361 3362 struct bh_accounting { 3363 int nr; /* Number of live bh's */ 3364 int ratelimit; /* Limit cacheline bouncing */ 3365 }; 3366 3367 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3368 3369 static void recalc_bh_state(void) 3370 { 3371 int i; 3372 int tot = 0; 3373 3374 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3375 return; 3376 __this_cpu_write(bh_accounting.ratelimit, 0); 3377 for_each_online_cpu(i) 3378 tot += per_cpu(bh_accounting, i).nr; 3379 buffer_heads_over_limit = (tot > max_buffer_heads); 3380 } 3381 3382 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3383 { 3384 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3385 if (ret) { 3386 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3387 preempt_disable(); 3388 __this_cpu_inc(bh_accounting.nr); 3389 recalc_bh_state(); 3390 preempt_enable(); 3391 } 3392 return ret; 3393 } 3394 EXPORT_SYMBOL(alloc_buffer_head); 3395 3396 void free_buffer_head(struct buffer_head *bh) 3397 { 3398 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3399 kmem_cache_free(bh_cachep, bh); 3400 preempt_disable(); 3401 __this_cpu_dec(bh_accounting.nr); 3402 recalc_bh_state(); 3403 preempt_enable(); 3404 } 3405 EXPORT_SYMBOL(free_buffer_head); 3406 3407 static void buffer_exit_cpu(int cpu) 3408 { 3409 int i; 3410 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3411 3412 for (i = 0; i < BH_LRU_SIZE; i++) { 3413 brelse(b->bhs[i]); 3414 b->bhs[i] = NULL; 3415 } 3416 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3417 per_cpu(bh_accounting, cpu).nr = 0; 3418 } 3419 3420 static int buffer_cpu_notify(struct notifier_block *self, 3421 unsigned long action, void *hcpu) 3422 { 3423 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3424 buffer_exit_cpu((unsigned long)hcpu); 3425 return NOTIFY_OK; 3426 } 3427 3428 /** 3429 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3430 * @bh: struct buffer_head 3431 * 3432 * Return true if the buffer is up-to-date and false, 3433 * with the buffer locked, if not. 3434 */ 3435 int bh_uptodate_or_lock(struct buffer_head *bh) 3436 { 3437 if (!buffer_uptodate(bh)) { 3438 lock_buffer(bh); 3439 if (!buffer_uptodate(bh)) 3440 return 0; 3441 unlock_buffer(bh); 3442 } 3443 return 1; 3444 } 3445 EXPORT_SYMBOL(bh_uptodate_or_lock); 3446 3447 /** 3448 * bh_submit_read - Submit a locked buffer for reading 3449 * @bh: struct buffer_head 3450 * 3451 * Returns zero on success and -EIO on error. 3452 */ 3453 int bh_submit_read(struct buffer_head *bh) 3454 { 3455 BUG_ON(!buffer_locked(bh)); 3456 3457 if (buffer_uptodate(bh)) { 3458 unlock_buffer(bh); 3459 return 0; 3460 } 3461 3462 get_bh(bh); 3463 bh->b_end_io = end_buffer_read_sync; 3464 submit_bh(REQ_OP_READ, 0, bh); 3465 wait_on_buffer(bh); 3466 if (buffer_uptodate(bh)) 3467 return 0; 3468 return -EIO; 3469 } 3470 EXPORT_SYMBOL(bh_submit_read); 3471 3472 void __init buffer_init(void) 3473 { 3474 unsigned long nrpages; 3475 3476 bh_cachep = kmem_cache_create("buffer_head", 3477 sizeof(struct buffer_head), 0, 3478 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3479 SLAB_MEM_SPREAD), 3480 NULL); 3481 3482 /* 3483 * Limit the bh occupancy to 10% of ZONE_NORMAL 3484 */ 3485 nrpages = (nr_free_buffer_pages() * 10) / 100; 3486 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3487 hotcpu_notifier(buffer_cpu_notify, 0); 3488 } 3489