xref: /openbmc/linux/fs/buffer.c (revision 79f382b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 #include "internal.h"
53 
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 			 enum rw_hint hint, struct writeback_control *wbc);
57 
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59 
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 	trace_block_touch_buffer(bh);
63 	mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66 
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72 
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 	clear_bit_unlock(BH_Lock, &bh->b_state);
76 	smp_mb__after_atomic();
77 	wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80 
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87 				     bool *dirty, bool *writeback)
88 {
89 	struct buffer_head *head, *bh;
90 	*dirty = false;
91 	*writeback = false;
92 
93 	BUG_ON(!PageLocked(page));
94 
95 	if (!page_has_buffers(page))
96 		return;
97 
98 	if (PageWriteback(page))
99 		*writeback = true;
100 
101 	head = page_buffers(page);
102 	bh = head;
103 	do {
104 		if (buffer_locked(bh))
105 			*writeback = true;
106 
107 		if (buffer_dirty(bh))
108 			*dirty = true;
109 
110 		bh = bh->b_this_page;
111 	} while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 	if (!test_bit(BH_Quiet, &bh->b_state))
129 		printk_ratelimited(KERN_ERR
130 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
131 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133 
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 	if (uptodate) {
145 		set_buffer_uptodate(bh);
146 	} else {
147 		/* This happens, due to failed read-ahead attempts. */
148 		clear_buffer_uptodate(bh);
149 	}
150 	unlock_buffer(bh);
151 }
152 
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 	__end_buffer_read_notouch(bh, uptodate);
160 	put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163 
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 	if (uptodate) {
167 		set_buffer_uptodate(bh);
168 	} else {
169 		buffer_io_error(bh, ", lost sync page write");
170 		mark_buffer_write_io_error(bh);
171 		clear_buffer_uptodate(bh);
172 	}
173 	unlock_buffer(bh);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177 
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 	struct inode *bd_inode = bdev->bd_inode;
192 	struct address_space *bd_mapping = bd_inode->i_mapping;
193 	struct buffer_head *ret = NULL;
194 	pgoff_t index;
195 	struct buffer_head *bh;
196 	struct buffer_head *head;
197 	struct page *page;
198 	int all_mapped = 1;
199 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200 
201 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 	if (!page)
204 		goto out;
205 
206 	spin_lock(&bd_mapping->private_lock);
207 	if (!page_has_buffers(page))
208 		goto out_unlock;
209 	head = page_buffers(page);
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << bd_inode->i_blkbits);
236 	}
237 out_unlock:
238 	spin_unlock(&bd_mapping->private_lock);
239 	put_page(page);
240 out:
241 	return ret;
242 }
243 
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 	unsigned long flags;
247 	struct buffer_head *first;
248 	struct buffer_head *tmp;
249 	struct page *page;
250 	int page_uptodate = 1;
251 
252 	BUG_ON(!buffer_async_read(bh));
253 
254 	page = bh->b_page;
255 	if (uptodate) {
256 		set_buffer_uptodate(bh);
257 	} else {
258 		clear_buffer_uptodate(bh);
259 		buffer_io_error(bh, ", async page read");
260 		SetPageError(page);
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = page_buffers(page);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			page_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	/*
285 	 * If none of the buffers had errors and they are all
286 	 * uptodate then we can set the page uptodate.
287 	 */
288 	if (page_uptodate && !PageError(page))
289 		SetPageUptodate(page);
290 	unlock_page(page);
291 	return;
292 
293 still_busy:
294 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 	return;
296 }
297 
298 struct decrypt_bh_ctx {
299 	struct work_struct work;
300 	struct buffer_head *bh;
301 };
302 
303 static void decrypt_bh(struct work_struct *work)
304 {
305 	struct decrypt_bh_ctx *ctx =
306 		container_of(work, struct decrypt_bh_ctx, work);
307 	struct buffer_head *bh = ctx->bh;
308 	int err;
309 
310 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 					       bh_offset(bh));
312 	end_buffer_async_read(bh, err == 0);
313 	kfree(ctx);
314 }
315 
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 	/* Decrypt if needed */
323 	if (uptodate &&
324 	    fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326 
327 		if (ctx) {
328 			INIT_WORK(&ctx->work, decrypt_bh);
329 			ctx->bh = bh;
330 			fscrypt_enqueue_decrypt_work(&ctx->work);
331 			return;
332 		}
333 		uptodate = 0;
334 	}
335 	end_buffer_async_read(bh, uptodate);
336 }
337 
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 	unsigned long flags;
345 	struct buffer_head *first;
346 	struct buffer_head *tmp;
347 	struct page *page;
348 
349 	BUG_ON(!buffer_async_write(bh));
350 
351 	page = bh->b_page;
352 	if (uptodate) {
353 		set_buffer_uptodate(bh);
354 	} else {
355 		buffer_io_error(bh, ", lost async page write");
356 		mark_buffer_write_io_error(bh);
357 		clear_buffer_uptodate(bh);
358 		SetPageError(page);
359 	}
360 
361 	first = page_buffers(page);
362 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
363 
364 	clear_buffer_async_write(bh);
365 	unlock_buffer(bh);
366 	tmp = bh->b_this_page;
367 	while (tmp != bh) {
368 		if (buffer_async_write(tmp)) {
369 			BUG_ON(!buffer_locked(tmp));
370 			goto still_busy;
371 		}
372 		tmp = tmp->b_this_page;
373 	}
374 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 	end_page_writeback(page);
376 	return;
377 
378 still_busy:
379 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 	return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383 
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 	bh->b_end_io = end_buffer_async_read_io;
408 	set_buffer_async_read(bh);
409 }
410 
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 					  bh_end_io_t *handler)
413 {
414 	bh->b_end_io = handler;
415 	set_buffer_async_write(bh);
416 }
417 
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423 
424 
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473 
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 	list_del_init(&bh->b_assoc_buffers);
480 	WARN_ON(!bh->b_assoc_map);
481 	bh->b_assoc_map = NULL;
482 }
483 
484 int inode_has_buffers(struct inode *inode)
485 {
486 	return !list_empty(&inode->i_data.private_list);
487 }
488 
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 	struct buffer_head *bh;
502 	struct list_head *p;
503 	int err = 0;
504 
505 	spin_lock(lock);
506 repeat:
507 	list_for_each_prev(p, list) {
508 		bh = BH_ENTRY(p);
509 		if (buffer_locked(bh)) {
510 			get_bh(bh);
511 			spin_unlock(lock);
512 			wait_on_buffer(bh);
513 			if (!buffer_uptodate(bh))
514 				err = -EIO;
515 			brelse(bh);
516 			spin_lock(lock);
517 			goto repeat;
518 		}
519 	}
520 	spin_unlock(lock);
521 	return err;
522 }
523 
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529 
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 	struct address_space *buffer_mapping = mapping->private_data;
544 
545 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 		return 0;
547 
548 	return fsync_buffers_list(&buffer_mapping->private_lock,
549 					&mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552 
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560 			sector_t bblock, unsigned blocksize)
561 {
562 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 	if (bh) {
564 		if (buffer_dirty(bh))
565 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 		put_bh(bh);
567 	}
568 }
569 
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 	struct address_space *mapping = inode->i_mapping;
573 	struct address_space *buffer_mapping = bh->b_page->mapping;
574 
575 	mark_buffer_dirty(bh);
576 	if (!mapping->private_data) {
577 		mapping->private_data = buffer_mapping;
578 	} else {
579 		BUG_ON(mapping->private_data != buffer_mapping);
580 	}
581 	if (!bh->b_assoc_map) {
582 		spin_lock(&buffer_mapping->private_lock);
583 		list_move_tail(&bh->b_assoc_buffers,
584 				&mapping->private_list);
585 		bh->b_assoc_map = mapping;
586 		spin_unlock(&buffer_mapping->private_lock);
587 	}
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590 
591 /*
592  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593  * dirty.
594  *
595  * If warn is true, then emit a warning if the page is not uptodate and has
596  * not been truncated.
597  *
598  * The caller must hold lock_page_memcg().
599  */
600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601 			     int warn)
602 {
603 	unsigned long flags;
604 
605 	xa_lock_irqsave(&mapping->i_pages, flags);
606 	if (page->mapping) {	/* Race with truncate? */
607 		WARN_ON_ONCE(warn && !PageUptodate(page));
608 		account_page_dirtied(page, mapping);
609 		__xa_set_mark(&mapping->i_pages, page_index(page),
610 				PAGECACHE_TAG_DIRTY);
611 	}
612 	xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615 
616 /*
617  * Add a page to the dirty page list.
618  *
619  * It is a sad fact of life that this function is called from several places
620  * deeply under spinlocking.  It may not sleep.
621  *
622  * If the page has buffers, the uptodate buffers are set dirty, to preserve
623  * dirty-state coherency between the page and the buffers.  It the page does
624  * not have buffers then when they are later attached they will all be set
625  * dirty.
626  *
627  * The buffers are dirtied before the page is dirtied.  There's a small race
628  * window in which a writepage caller may see the page cleanness but not the
629  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
630  * before the buffers, a concurrent writepage caller could clear the page dirty
631  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632  * page on the dirty page list.
633  *
634  * We use private_lock to lock against try_to_free_buffers while using the
635  * page's buffer list.  Also use this to protect against clean buffers being
636  * added to the page after it was set dirty.
637  *
638  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
639  * address_space though.
640  */
641 int __set_page_dirty_buffers(struct page *page)
642 {
643 	int newly_dirty;
644 	struct address_space *mapping = page_mapping(page);
645 
646 	if (unlikely(!mapping))
647 		return !TestSetPageDirty(page);
648 
649 	spin_lock(&mapping->private_lock);
650 	if (page_has_buffers(page)) {
651 		struct buffer_head *head = page_buffers(page);
652 		struct buffer_head *bh = head;
653 
654 		do {
655 			set_buffer_dirty(bh);
656 			bh = bh->b_this_page;
657 		} while (bh != head);
658 	}
659 	/*
660 	 * Lock out page's memcg migration to keep PageDirty
661 	 * synchronized with per-memcg dirty page counters.
662 	 */
663 	lock_page_memcg(page);
664 	newly_dirty = !TestSetPageDirty(page);
665 	spin_unlock(&mapping->private_lock);
666 
667 	if (newly_dirty)
668 		__set_page_dirty(page, mapping, 1);
669 
670 	unlock_page_memcg(page);
671 
672 	if (newly_dirty)
673 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674 
675 	return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678 
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  *
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 	struct buffer_head *bh;
701 	struct list_head tmp;
702 	struct address_space *mapping;
703 	int err = 0, err2;
704 	struct blk_plug plug;
705 
706 	INIT_LIST_HEAD(&tmp);
707 	blk_start_plug(&plug);
708 
709 	spin_lock(lock);
710 	while (!list_empty(list)) {
711 		bh = BH_ENTRY(list->next);
712 		mapping = bh->b_assoc_map;
713 		__remove_assoc_queue(bh);
714 		/* Avoid race with mark_buffer_dirty_inode() which does
715 		 * a lockless check and we rely on seeing the dirty bit */
716 		smp_mb();
717 		if (buffer_dirty(bh) || buffer_locked(bh)) {
718 			list_add(&bh->b_assoc_buffers, &tmp);
719 			bh->b_assoc_map = mapping;
720 			if (buffer_dirty(bh)) {
721 				get_bh(bh);
722 				spin_unlock(lock);
723 				/*
724 				 * Ensure any pending I/O completes so that
725 				 * write_dirty_buffer() actually writes the
726 				 * current contents - it is a noop if I/O is
727 				 * still in flight on potentially older
728 				 * contents.
729 				 */
730 				write_dirty_buffer(bh, REQ_SYNC);
731 
732 				/*
733 				 * Kick off IO for the previous mapping. Note
734 				 * that we will not run the very last mapping,
735 				 * wait_on_buffer() will do that for us
736 				 * through sync_buffer().
737 				 */
738 				brelse(bh);
739 				spin_lock(lock);
740 			}
741 		}
742 	}
743 
744 	spin_unlock(lock);
745 	blk_finish_plug(&plug);
746 	spin_lock(lock);
747 
748 	while (!list_empty(&tmp)) {
749 		bh = BH_ENTRY(tmp.prev);
750 		get_bh(bh);
751 		mapping = bh->b_assoc_map;
752 		__remove_assoc_queue(bh);
753 		/* Avoid race with mark_buffer_dirty_inode() which does
754 		 * a lockless check and we rely on seeing the dirty bit */
755 		smp_mb();
756 		if (buffer_dirty(bh)) {
757 			list_add(&bh->b_assoc_buffers,
758 				 &mapping->private_list);
759 			bh->b_assoc_map = mapping;
760 		}
761 		spin_unlock(lock);
762 		wait_on_buffer(bh);
763 		if (!buffer_uptodate(bh))
764 			err = -EIO;
765 		brelse(bh);
766 		spin_lock(lock);
767 	}
768 
769 	spin_unlock(lock);
770 	err2 = osync_buffers_list(lock, list);
771 	if (err)
772 		return err;
773 	else
774 		return err2;
775 }
776 
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 	if (inode_has_buffers(inode)) {
789 		struct address_space *mapping = &inode->i_data;
790 		struct list_head *list = &mapping->private_list;
791 		struct address_space *buffer_mapping = mapping->private_data;
792 
793 		spin_lock(&buffer_mapping->private_lock);
794 		while (!list_empty(list))
795 			__remove_assoc_queue(BH_ENTRY(list->next));
796 		spin_unlock(&buffer_mapping->private_lock);
797 	}
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800 
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
807 int remove_inode_buffers(struct inode *inode)
808 {
809 	int ret = 1;
810 
811 	if (inode_has_buffers(inode)) {
812 		struct address_space *mapping = &inode->i_data;
813 		struct list_head *list = &mapping->private_list;
814 		struct address_space *buffer_mapping = mapping->private_data;
815 
816 		spin_lock(&buffer_mapping->private_lock);
817 		while (!list_empty(list)) {
818 			struct buffer_head *bh = BH_ENTRY(list->next);
819 			if (buffer_dirty(bh)) {
820 				ret = 0;
821 				break;
822 			}
823 			__remove_assoc_queue(bh);
824 		}
825 		spin_unlock(&buffer_mapping->private_lock);
826 	}
827 	return ret;
828 }
829 
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 		bool retry)
841 {
842 	struct buffer_head *bh, *head;
843 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844 	long offset;
845 	struct mem_cgroup *memcg, *old_memcg;
846 
847 	if (retry)
848 		gfp |= __GFP_NOFAIL;
849 
850 	/* The page lock pins the memcg */
851 	memcg = page_memcg(page);
852 	old_memcg = set_active_memcg(memcg);
853 
854 	head = NULL;
855 	offset = PAGE_SIZE;
856 	while ((offset -= size) >= 0) {
857 		bh = alloc_buffer_head(gfp);
858 		if (!bh)
859 			goto no_grow;
860 
861 		bh->b_this_page = head;
862 		bh->b_blocknr = -1;
863 		head = bh;
864 
865 		bh->b_size = size;
866 
867 		/* Link the buffer to its page */
868 		set_bh_page(bh, page, offset);
869 	}
870 out:
871 	set_active_memcg(old_memcg);
872 	return head;
873 /*
874  * In case anything failed, we just free everything we got.
875  */
876 no_grow:
877 	if (head) {
878 		do {
879 			bh = head;
880 			head = head->b_this_page;
881 			free_buffer_head(bh);
882 		} while (head);
883 	}
884 
885 	goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888 
889 static inline void
890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892 	struct buffer_head *bh, *tail;
893 
894 	bh = head;
895 	do {
896 		tail = bh;
897 		bh = bh->b_this_page;
898 	} while (bh);
899 	tail->b_this_page = head;
900 	attach_page_private(page, head);
901 }
902 
903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905 	sector_t retval = ~((sector_t)0);
906 	loff_t sz = i_size_read(bdev->bd_inode);
907 
908 	if (sz) {
909 		unsigned int sizebits = blksize_bits(size);
910 		retval = (sz >> sizebits);
911 	}
912 	return retval;
913 }
914 
915 /*
916  * Initialise the state of a blockdev page's buffers.
917  */
918 static sector_t
919 init_page_buffers(struct page *page, struct block_device *bdev,
920 			sector_t block, int size)
921 {
922 	struct buffer_head *head = page_buffers(page);
923 	struct buffer_head *bh = head;
924 	int uptodate = PageUptodate(page);
925 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926 
927 	do {
928 		if (!buffer_mapped(bh)) {
929 			bh->b_end_io = NULL;
930 			bh->b_private = NULL;
931 			bh->b_bdev = bdev;
932 			bh->b_blocknr = block;
933 			if (uptodate)
934 				set_buffer_uptodate(bh);
935 			if (block < end_block)
936 				set_buffer_mapped(bh);
937 		}
938 		block++;
939 		bh = bh->b_this_page;
940 	} while (bh != head);
941 
942 	/*
943 	 * Caller needs to validate requested block against end of device.
944 	 */
945 	return end_block;
946 }
947 
948 /*
949  * Create the page-cache page that contains the requested block.
950  *
951  * This is used purely for blockdev mappings.
952  */
953 static int
954 grow_dev_page(struct block_device *bdev, sector_t block,
955 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957 	struct inode *inode = bdev->bd_inode;
958 	struct page *page;
959 	struct buffer_head *bh;
960 	sector_t end_block;
961 	int ret = 0;
962 	gfp_t gfp_mask;
963 
964 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965 
966 	/*
967 	 * XXX: __getblk_slow() can not really deal with failure and
968 	 * will endlessly loop on improvised global reclaim.  Prefer
969 	 * looping in the allocator rather than here, at least that
970 	 * code knows what it's doing.
971 	 */
972 	gfp_mask |= __GFP_NOFAIL;
973 
974 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975 
976 	BUG_ON(!PageLocked(page));
977 
978 	if (page_has_buffers(page)) {
979 		bh = page_buffers(page);
980 		if (bh->b_size == size) {
981 			end_block = init_page_buffers(page, bdev,
982 						(sector_t)index << sizebits,
983 						size);
984 			goto done;
985 		}
986 		if (!try_to_free_buffers(page))
987 			goto failed;
988 	}
989 
990 	/*
991 	 * Allocate some buffers for this page
992 	 */
993 	bh = alloc_page_buffers(page, size, true);
994 
995 	/*
996 	 * Link the page to the buffers and initialise them.  Take the
997 	 * lock to be atomic wrt __find_get_block(), which does not
998 	 * run under the page lock.
999 	 */
1000 	spin_lock(&inode->i_mapping->private_lock);
1001 	link_dev_buffers(page, bh);
1002 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003 			size);
1004 	spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006 	ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008 	unlock_page(page);
1009 	put_page(page);
1010 	return ret;
1011 }
1012 
1013 /*
1014  * Create buffers for the specified block device block's page.  If
1015  * that page was dirty, the buffers are set dirty also.
1016  */
1017 static int
1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020 	pgoff_t index;
1021 	int sizebits;
1022 
1023 	sizebits = -1;
1024 	do {
1025 		sizebits++;
1026 	} while ((size << sizebits) < PAGE_SIZE);
1027 
1028 	index = block >> sizebits;
1029 
1030 	/*
1031 	 * Check for a block which wants to lie outside our maximum possible
1032 	 * pagecache index.  (this comparison is done using sector_t types).
1033 	 */
1034 	if (unlikely(index != block >> sizebits)) {
1035 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1036 			"device %pg\n",
1037 			__func__, (unsigned long long)block,
1038 			bdev);
1039 		return -EIO;
1040 	}
1041 
1042 	/* Create a page with the proper size buffers.. */
1043 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1044 }
1045 
1046 static struct buffer_head *
1047 __getblk_slow(struct block_device *bdev, sector_t block,
1048 	     unsigned size, gfp_t gfp)
1049 {
1050 	/* Size must be multiple of hard sectorsize */
1051 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1052 			(size < 512 || size > PAGE_SIZE))) {
1053 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1054 					size);
1055 		printk(KERN_ERR "logical block size: %d\n",
1056 					bdev_logical_block_size(bdev));
1057 
1058 		dump_stack();
1059 		return NULL;
1060 	}
1061 
1062 	for (;;) {
1063 		struct buffer_head *bh;
1064 		int ret;
1065 
1066 		bh = __find_get_block(bdev, block, size);
1067 		if (bh)
1068 			return bh;
1069 
1070 		ret = grow_buffers(bdev, block, size, gfp);
1071 		if (ret < 0)
1072 			return NULL;
1073 	}
1074 }
1075 
1076 /*
1077  * The relationship between dirty buffers and dirty pages:
1078  *
1079  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1080  * the page is tagged dirty in the page cache.
1081  *
1082  * At all times, the dirtiness of the buffers represents the dirtiness of
1083  * subsections of the page.  If the page has buffers, the page dirty bit is
1084  * merely a hint about the true dirty state.
1085  *
1086  * When a page is set dirty in its entirety, all its buffers are marked dirty
1087  * (if the page has buffers).
1088  *
1089  * When a buffer is marked dirty, its page is dirtied, but the page's other
1090  * buffers are not.
1091  *
1092  * Also.  When blockdev buffers are explicitly read with bread(), they
1093  * individually become uptodate.  But their backing page remains not
1094  * uptodate - even if all of its buffers are uptodate.  A subsequent
1095  * block_read_full_page() against that page will discover all the uptodate
1096  * buffers, will set the page uptodate and will perform no I/O.
1097  */
1098 
1099 /**
1100  * mark_buffer_dirty - mark a buffer_head as needing writeout
1101  * @bh: the buffer_head to mark dirty
1102  *
1103  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1104  * its backing page dirty, then tag the page as dirty in the page cache
1105  * and then attach the address_space's inode to its superblock's dirty
1106  * inode list.
1107  *
1108  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1109  * i_pages lock and mapping->host->i_lock.
1110  */
1111 void mark_buffer_dirty(struct buffer_head *bh)
1112 {
1113 	WARN_ON_ONCE(!buffer_uptodate(bh));
1114 
1115 	trace_block_dirty_buffer(bh);
1116 
1117 	/*
1118 	 * Very *carefully* optimize the it-is-already-dirty case.
1119 	 *
1120 	 * Don't let the final "is it dirty" escape to before we
1121 	 * perhaps modified the buffer.
1122 	 */
1123 	if (buffer_dirty(bh)) {
1124 		smp_mb();
1125 		if (buffer_dirty(bh))
1126 			return;
1127 	}
1128 
1129 	if (!test_set_buffer_dirty(bh)) {
1130 		struct page *page = bh->b_page;
1131 		struct address_space *mapping = NULL;
1132 
1133 		lock_page_memcg(page);
1134 		if (!TestSetPageDirty(page)) {
1135 			mapping = page_mapping(page);
1136 			if (mapping)
1137 				__set_page_dirty(page, mapping, 0);
1138 		}
1139 		unlock_page_memcg(page);
1140 		if (mapping)
1141 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1142 	}
1143 }
1144 EXPORT_SYMBOL(mark_buffer_dirty);
1145 
1146 void mark_buffer_write_io_error(struct buffer_head *bh)
1147 {
1148 	struct super_block *sb;
1149 
1150 	set_buffer_write_io_error(bh);
1151 	/* FIXME: do we need to set this in both places? */
1152 	if (bh->b_page && bh->b_page->mapping)
1153 		mapping_set_error(bh->b_page->mapping, -EIO);
1154 	if (bh->b_assoc_map)
1155 		mapping_set_error(bh->b_assoc_map, -EIO);
1156 	rcu_read_lock();
1157 	sb = READ_ONCE(bh->b_bdev->bd_super);
1158 	if (sb)
1159 		errseq_set(&sb->s_wb_err, -EIO);
1160 	rcu_read_unlock();
1161 }
1162 EXPORT_SYMBOL(mark_buffer_write_io_error);
1163 
1164 /*
1165  * Decrement a buffer_head's reference count.  If all buffers against a page
1166  * have zero reference count, are clean and unlocked, and if the page is clean
1167  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169  * a page but it ends up not being freed, and buffers may later be reattached).
1170  */
1171 void __brelse(struct buffer_head * buf)
1172 {
1173 	if (atomic_read(&buf->b_count)) {
1174 		put_bh(buf);
1175 		return;
1176 	}
1177 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1178 }
1179 EXPORT_SYMBOL(__brelse);
1180 
1181 /*
1182  * bforget() is like brelse(), except it discards any
1183  * potentially dirty data.
1184  */
1185 void __bforget(struct buffer_head *bh)
1186 {
1187 	clear_buffer_dirty(bh);
1188 	if (bh->b_assoc_map) {
1189 		struct address_space *buffer_mapping = bh->b_page->mapping;
1190 
1191 		spin_lock(&buffer_mapping->private_lock);
1192 		list_del_init(&bh->b_assoc_buffers);
1193 		bh->b_assoc_map = NULL;
1194 		spin_unlock(&buffer_mapping->private_lock);
1195 	}
1196 	__brelse(bh);
1197 }
1198 EXPORT_SYMBOL(__bforget);
1199 
1200 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1201 {
1202 	lock_buffer(bh);
1203 	if (buffer_uptodate(bh)) {
1204 		unlock_buffer(bh);
1205 		return bh;
1206 	} else {
1207 		get_bh(bh);
1208 		bh->b_end_io = end_buffer_read_sync;
1209 		submit_bh(REQ_OP_READ, 0, bh);
1210 		wait_on_buffer(bh);
1211 		if (buffer_uptodate(bh))
1212 			return bh;
1213 	}
1214 	brelse(bh);
1215 	return NULL;
1216 }
1217 
1218 /*
1219  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1220  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1221  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1222  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1223  * CPU's LRUs at the same time.
1224  *
1225  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226  * sb_find_get_block().
1227  *
1228  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1229  * a local interrupt disable for that.
1230  */
1231 
1232 #define BH_LRU_SIZE	16
1233 
1234 struct bh_lru {
1235 	struct buffer_head *bhs[BH_LRU_SIZE];
1236 };
1237 
1238 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1239 
1240 #ifdef CONFIG_SMP
1241 #define bh_lru_lock()	local_irq_disable()
1242 #define bh_lru_unlock()	local_irq_enable()
1243 #else
1244 #define bh_lru_lock()	preempt_disable()
1245 #define bh_lru_unlock()	preempt_enable()
1246 #endif
1247 
1248 static inline void check_irqs_on(void)
1249 {
1250 #ifdef irqs_disabled
1251 	BUG_ON(irqs_disabled());
1252 #endif
1253 }
1254 
1255 /*
1256  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1257  * inserted at the front, and the buffer_head at the back if any is evicted.
1258  * Or, if already in the LRU it is moved to the front.
1259  */
1260 static void bh_lru_install(struct buffer_head *bh)
1261 {
1262 	struct buffer_head *evictee = bh;
1263 	struct bh_lru *b;
1264 	int i;
1265 
1266 	check_irqs_on();
1267 	bh_lru_lock();
1268 
1269 	b = this_cpu_ptr(&bh_lrus);
1270 	for (i = 0; i < BH_LRU_SIZE; i++) {
1271 		swap(evictee, b->bhs[i]);
1272 		if (evictee == bh) {
1273 			bh_lru_unlock();
1274 			return;
1275 		}
1276 	}
1277 
1278 	get_bh(bh);
1279 	bh_lru_unlock();
1280 	brelse(evictee);
1281 }
1282 
1283 /*
1284  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1285  */
1286 static struct buffer_head *
1287 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1288 {
1289 	struct buffer_head *ret = NULL;
1290 	unsigned int i;
1291 
1292 	check_irqs_on();
1293 	bh_lru_lock();
1294 	for (i = 0; i < BH_LRU_SIZE; i++) {
1295 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1296 
1297 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1298 		    bh->b_size == size) {
1299 			if (i) {
1300 				while (i) {
1301 					__this_cpu_write(bh_lrus.bhs[i],
1302 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1303 					i--;
1304 				}
1305 				__this_cpu_write(bh_lrus.bhs[0], bh);
1306 			}
1307 			get_bh(bh);
1308 			ret = bh;
1309 			break;
1310 		}
1311 	}
1312 	bh_lru_unlock();
1313 	return ret;
1314 }
1315 
1316 /*
1317  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1318  * it in the LRU and mark it as accessed.  If it is not present then return
1319  * NULL
1320  */
1321 struct buffer_head *
1322 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1323 {
1324 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1325 
1326 	if (bh == NULL) {
1327 		/* __find_get_block_slow will mark the page accessed */
1328 		bh = __find_get_block_slow(bdev, block);
1329 		if (bh)
1330 			bh_lru_install(bh);
1331 	} else
1332 		touch_buffer(bh);
1333 
1334 	return bh;
1335 }
1336 EXPORT_SYMBOL(__find_get_block);
1337 
1338 /*
1339  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1340  * which corresponds to the passed block_device, block and size. The
1341  * returned buffer has its reference count incremented.
1342  *
1343  * __getblk_gfp() will lock up the machine if grow_dev_page's
1344  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1345  */
1346 struct buffer_head *
1347 __getblk_gfp(struct block_device *bdev, sector_t block,
1348 	     unsigned size, gfp_t gfp)
1349 {
1350 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1351 
1352 	might_sleep();
1353 	if (bh == NULL)
1354 		bh = __getblk_slow(bdev, block, size, gfp);
1355 	return bh;
1356 }
1357 EXPORT_SYMBOL(__getblk_gfp);
1358 
1359 /*
1360  * Do async read-ahead on a buffer..
1361  */
1362 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1363 {
1364 	struct buffer_head *bh = __getblk(bdev, block, size);
1365 	if (likely(bh)) {
1366 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1367 		brelse(bh);
1368 	}
1369 }
1370 EXPORT_SYMBOL(__breadahead);
1371 
1372 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1373 		      gfp_t gfp)
1374 {
1375 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1376 	if (likely(bh)) {
1377 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1378 		brelse(bh);
1379 	}
1380 }
1381 EXPORT_SYMBOL(__breadahead_gfp);
1382 
1383 /**
1384  *  __bread_gfp() - reads a specified block and returns the bh
1385  *  @bdev: the block_device to read from
1386  *  @block: number of block
1387  *  @size: size (in bytes) to read
1388  *  @gfp: page allocation flag
1389  *
1390  *  Reads a specified block, and returns buffer head that contains it.
1391  *  The page cache can be allocated from non-movable area
1392  *  not to prevent page migration if you set gfp to zero.
1393  *  It returns NULL if the block was unreadable.
1394  */
1395 struct buffer_head *
1396 __bread_gfp(struct block_device *bdev, sector_t block,
1397 		   unsigned size, gfp_t gfp)
1398 {
1399 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1400 
1401 	if (likely(bh) && !buffer_uptodate(bh))
1402 		bh = __bread_slow(bh);
1403 	return bh;
1404 }
1405 EXPORT_SYMBOL(__bread_gfp);
1406 
1407 /*
1408  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1409  * This doesn't race because it runs in each cpu either in irq
1410  * or with preempt disabled.
1411  */
1412 static void invalidate_bh_lru(void *arg)
1413 {
1414 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1415 	int i;
1416 
1417 	for (i = 0; i < BH_LRU_SIZE; i++) {
1418 		brelse(b->bhs[i]);
1419 		b->bhs[i] = NULL;
1420 	}
1421 	put_cpu_var(bh_lrus);
1422 }
1423 
1424 static bool has_bh_in_lru(int cpu, void *dummy)
1425 {
1426 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1427 	int i;
1428 
1429 	for (i = 0; i < BH_LRU_SIZE; i++) {
1430 		if (b->bhs[i])
1431 			return true;
1432 	}
1433 
1434 	return false;
1435 }
1436 
1437 void invalidate_bh_lrus(void)
1438 {
1439 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1440 }
1441 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1442 
1443 void set_bh_page(struct buffer_head *bh,
1444 		struct page *page, unsigned long offset)
1445 {
1446 	bh->b_page = page;
1447 	BUG_ON(offset >= PAGE_SIZE);
1448 	if (PageHighMem(page))
1449 		/*
1450 		 * This catches illegal uses and preserves the offset:
1451 		 */
1452 		bh->b_data = (char *)(0 + offset);
1453 	else
1454 		bh->b_data = page_address(page) + offset;
1455 }
1456 EXPORT_SYMBOL(set_bh_page);
1457 
1458 /*
1459  * Called when truncating a buffer on a page completely.
1460  */
1461 
1462 /* Bits that are cleared during an invalidate */
1463 #define BUFFER_FLAGS_DISCARD \
1464 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1465 	 1 << BH_Delay | 1 << BH_Unwritten)
1466 
1467 static void discard_buffer(struct buffer_head * bh)
1468 {
1469 	unsigned long b_state, b_state_old;
1470 
1471 	lock_buffer(bh);
1472 	clear_buffer_dirty(bh);
1473 	bh->b_bdev = NULL;
1474 	b_state = bh->b_state;
1475 	for (;;) {
1476 		b_state_old = cmpxchg(&bh->b_state, b_state,
1477 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1478 		if (b_state_old == b_state)
1479 			break;
1480 		b_state = b_state_old;
1481 	}
1482 	unlock_buffer(bh);
1483 }
1484 
1485 /**
1486  * block_invalidatepage - invalidate part or all of a buffer-backed page
1487  *
1488  * @page: the page which is affected
1489  * @offset: start of the range to invalidate
1490  * @length: length of the range to invalidate
1491  *
1492  * block_invalidatepage() is called when all or part of the page has become
1493  * invalidated by a truncate operation.
1494  *
1495  * block_invalidatepage() does not have to release all buffers, but it must
1496  * ensure that no dirty buffer is left outside @offset and that no I/O
1497  * is underway against any of the blocks which are outside the truncation
1498  * point.  Because the caller is about to free (and possibly reuse) those
1499  * blocks on-disk.
1500  */
1501 void block_invalidatepage(struct page *page, unsigned int offset,
1502 			  unsigned int length)
1503 {
1504 	struct buffer_head *head, *bh, *next;
1505 	unsigned int curr_off = 0;
1506 	unsigned int stop = length + offset;
1507 
1508 	BUG_ON(!PageLocked(page));
1509 	if (!page_has_buffers(page))
1510 		goto out;
1511 
1512 	/*
1513 	 * Check for overflow
1514 	 */
1515 	BUG_ON(stop > PAGE_SIZE || stop < length);
1516 
1517 	head = page_buffers(page);
1518 	bh = head;
1519 	do {
1520 		unsigned int next_off = curr_off + bh->b_size;
1521 		next = bh->b_this_page;
1522 
1523 		/*
1524 		 * Are we still fully in range ?
1525 		 */
1526 		if (next_off > stop)
1527 			goto out;
1528 
1529 		/*
1530 		 * is this block fully invalidated?
1531 		 */
1532 		if (offset <= curr_off)
1533 			discard_buffer(bh);
1534 		curr_off = next_off;
1535 		bh = next;
1536 	} while (bh != head);
1537 
1538 	/*
1539 	 * We release buffers only if the entire page is being invalidated.
1540 	 * The get_block cached value has been unconditionally invalidated,
1541 	 * so real IO is not possible anymore.
1542 	 */
1543 	if (length == PAGE_SIZE)
1544 		try_to_release_page(page, 0);
1545 out:
1546 	return;
1547 }
1548 EXPORT_SYMBOL(block_invalidatepage);
1549 
1550 
1551 /*
1552  * We attach and possibly dirty the buffers atomically wrt
1553  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1554  * is already excluded via the page lock.
1555  */
1556 void create_empty_buffers(struct page *page,
1557 			unsigned long blocksize, unsigned long b_state)
1558 {
1559 	struct buffer_head *bh, *head, *tail;
1560 
1561 	head = alloc_page_buffers(page, blocksize, true);
1562 	bh = head;
1563 	do {
1564 		bh->b_state |= b_state;
1565 		tail = bh;
1566 		bh = bh->b_this_page;
1567 	} while (bh);
1568 	tail->b_this_page = head;
1569 
1570 	spin_lock(&page->mapping->private_lock);
1571 	if (PageUptodate(page) || PageDirty(page)) {
1572 		bh = head;
1573 		do {
1574 			if (PageDirty(page))
1575 				set_buffer_dirty(bh);
1576 			if (PageUptodate(page))
1577 				set_buffer_uptodate(bh);
1578 			bh = bh->b_this_page;
1579 		} while (bh != head);
1580 	}
1581 	attach_page_private(page, head);
1582 	spin_unlock(&page->mapping->private_lock);
1583 }
1584 EXPORT_SYMBOL(create_empty_buffers);
1585 
1586 /**
1587  * clean_bdev_aliases: clean a range of buffers in block device
1588  * @bdev: Block device to clean buffers in
1589  * @block: Start of a range of blocks to clean
1590  * @len: Number of blocks to clean
1591  *
1592  * We are taking a range of blocks for data and we don't want writeback of any
1593  * buffer-cache aliases starting from return from this function and until the
1594  * moment when something will explicitly mark the buffer dirty (hopefully that
1595  * will not happen until we will free that block ;-) We don't even need to mark
1596  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1597  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1598  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1599  * would confuse anyone who might pick it with bread() afterwards...
1600  *
1601  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1602  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1603  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1604  * need to.  That happens here.
1605  */
1606 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1607 {
1608 	struct inode *bd_inode = bdev->bd_inode;
1609 	struct address_space *bd_mapping = bd_inode->i_mapping;
1610 	struct pagevec pvec;
1611 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1612 	pgoff_t end;
1613 	int i, count;
1614 	struct buffer_head *bh;
1615 	struct buffer_head *head;
1616 
1617 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1618 	pagevec_init(&pvec);
1619 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1620 		count = pagevec_count(&pvec);
1621 		for (i = 0; i < count; i++) {
1622 			struct page *page = pvec.pages[i];
1623 
1624 			if (!page_has_buffers(page))
1625 				continue;
1626 			/*
1627 			 * We use page lock instead of bd_mapping->private_lock
1628 			 * to pin buffers here since we can afford to sleep and
1629 			 * it scales better than a global spinlock lock.
1630 			 */
1631 			lock_page(page);
1632 			/* Recheck when the page is locked which pins bhs */
1633 			if (!page_has_buffers(page))
1634 				goto unlock_page;
1635 			head = page_buffers(page);
1636 			bh = head;
1637 			do {
1638 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1639 					goto next;
1640 				if (bh->b_blocknr >= block + len)
1641 					break;
1642 				clear_buffer_dirty(bh);
1643 				wait_on_buffer(bh);
1644 				clear_buffer_req(bh);
1645 next:
1646 				bh = bh->b_this_page;
1647 			} while (bh != head);
1648 unlock_page:
1649 			unlock_page(page);
1650 		}
1651 		pagevec_release(&pvec);
1652 		cond_resched();
1653 		/* End of range already reached? */
1654 		if (index > end || !index)
1655 			break;
1656 	}
1657 }
1658 EXPORT_SYMBOL(clean_bdev_aliases);
1659 
1660 /*
1661  * Size is a power-of-two in the range 512..PAGE_SIZE,
1662  * and the case we care about most is PAGE_SIZE.
1663  *
1664  * So this *could* possibly be written with those
1665  * constraints in mind (relevant mostly if some
1666  * architecture has a slow bit-scan instruction)
1667  */
1668 static inline int block_size_bits(unsigned int blocksize)
1669 {
1670 	return ilog2(blocksize);
1671 }
1672 
1673 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1674 {
1675 	BUG_ON(!PageLocked(page));
1676 
1677 	if (!page_has_buffers(page))
1678 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1679 				     b_state);
1680 	return page_buffers(page);
1681 }
1682 
1683 /*
1684  * NOTE! All mapped/uptodate combinations are valid:
1685  *
1686  *	Mapped	Uptodate	Meaning
1687  *
1688  *	No	No		"unknown" - must do get_block()
1689  *	No	Yes		"hole" - zero-filled
1690  *	Yes	No		"allocated" - allocated on disk, not read in
1691  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1692  *
1693  * "Dirty" is valid only with the last case (mapped+uptodate).
1694  */
1695 
1696 /*
1697  * While block_write_full_page is writing back the dirty buffers under
1698  * the page lock, whoever dirtied the buffers may decide to clean them
1699  * again at any time.  We handle that by only looking at the buffer
1700  * state inside lock_buffer().
1701  *
1702  * If block_write_full_page() is called for regular writeback
1703  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1704  * locked buffer.   This only can happen if someone has written the buffer
1705  * directly, with submit_bh().  At the address_space level PageWriteback
1706  * prevents this contention from occurring.
1707  *
1708  * If block_write_full_page() is called with wbc->sync_mode ==
1709  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1710  * causes the writes to be flagged as synchronous writes.
1711  */
1712 int __block_write_full_page(struct inode *inode, struct page *page,
1713 			get_block_t *get_block, struct writeback_control *wbc,
1714 			bh_end_io_t *handler)
1715 {
1716 	int err;
1717 	sector_t block;
1718 	sector_t last_block;
1719 	struct buffer_head *bh, *head;
1720 	unsigned int blocksize, bbits;
1721 	int nr_underway = 0;
1722 	int write_flags = wbc_to_write_flags(wbc);
1723 
1724 	head = create_page_buffers(page, inode,
1725 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1726 
1727 	/*
1728 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1729 	 * here, and the (potentially unmapped) buffers may become dirty at
1730 	 * any time.  If a buffer becomes dirty here after we've inspected it
1731 	 * then we just miss that fact, and the page stays dirty.
1732 	 *
1733 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1734 	 * handle that here by just cleaning them.
1735 	 */
1736 
1737 	bh = head;
1738 	blocksize = bh->b_size;
1739 	bbits = block_size_bits(blocksize);
1740 
1741 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1742 	last_block = (i_size_read(inode) - 1) >> bbits;
1743 
1744 	/*
1745 	 * Get all the dirty buffers mapped to disk addresses and
1746 	 * handle any aliases from the underlying blockdev's mapping.
1747 	 */
1748 	do {
1749 		if (block > last_block) {
1750 			/*
1751 			 * mapped buffers outside i_size will occur, because
1752 			 * this page can be outside i_size when there is a
1753 			 * truncate in progress.
1754 			 */
1755 			/*
1756 			 * The buffer was zeroed by block_write_full_page()
1757 			 */
1758 			clear_buffer_dirty(bh);
1759 			set_buffer_uptodate(bh);
1760 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1761 			   buffer_dirty(bh)) {
1762 			WARN_ON(bh->b_size != blocksize);
1763 			err = get_block(inode, block, bh, 1);
1764 			if (err)
1765 				goto recover;
1766 			clear_buffer_delay(bh);
1767 			if (buffer_new(bh)) {
1768 				/* blockdev mappings never come here */
1769 				clear_buffer_new(bh);
1770 				clean_bdev_bh_alias(bh);
1771 			}
1772 		}
1773 		bh = bh->b_this_page;
1774 		block++;
1775 	} while (bh != head);
1776 
1777 	do {
1778 		if (!buffer_mapped(bh))
1779 			continue;
1780 		/*
1781 		 * If it's a fully non-blocking write attempt and we cannot
1782 		 * lock the buffer then redirty the page.  Note that this can
1783 		 * potentially cause a busy-wait loop from writeback threads
1784 		 * and kswapd activity, but those code paths have their own
1785 		 * higher-level throttling.
1786 		 */
1787 		if (wbc->sync_mode != WB_SYNC_NONE) {
1788 			lock_buffer(bh);
1789 		} else if (!trylock_buffer(bh)) {
1790 			redirty_page_for_writepage(wbc, page);
1791 			continue;
1792 		}
1793 		if (test_clear_buffer_dirty(bh)) {
1794 			mark_buffer_async_write_endio(bh, handler);
1795 		} else {
1796 			unlock_buffer(bh);
1797 		}
1798 	} while ((bh = bh->b_this_page) != head);
1799 
1800 	/*
1801 	 * The page and its buffers are protected by PageWriteback(), so we can
1802 	 * drop the bh refcounts early.
1803 	 */
1804 	BUG_ON(PageWriteback(page));
1805 	set_page_writeback(page);
1806 
1807 	do {
1808 		struct buffer_head *next = bh->b_this_page;
1809 		if (buffer_async_write(bh)) {
1810 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1811 					inode->i_write_hint, wbc);
1812 			nr_underway++;
1813 		}
1814 		bh = next;
1815 	} while (bh != head);
1816 	unlock_page(page);
1817 
1818 	err = 0;
1819 done:
1820 	if (nr_underway == 0) {
1821 		/*
1822 		 * The page was marked dirty, but the buffers were
1823 		 * clean.  Someone wrote them back by hand with
1824 		 * ll_rw_block/submit_bh.  A rare case.
1825 		 */
1826 		end_page_writeback(page);
1827 
1828 		/*
1829 		 * The page and buffer_heads can be released at any time from
1830 		 * here on.
1831 		 */
1832 	}
1833 	return err;
1834 
1835 recover:
1836 	/*
1837 	 * ENOSPC, or some other error.  We may already have added some
1838 	 * blocks to the file, so we need to write these out to avoid
1839 	 * exposing stale data.
1840 	 * The page is currently locked and not marked for writeback
1841 	 */
1842 	bh = head;
1843 	/* Recovery: lock and submit the mapped buffers */
1844 	do {
1845 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1846 		    !buffer_delay(bh)) {
1847 			lock_buffer(bh);
1848 			mark_buffer_async_write_endio(bh, handler);
1849 		} else {
1850 			/*
1851 			 * The buffer may have been set dirty during
1852 			 * attachment to a dirty page.
1853 			 */
1854 			clear_buffer_dirty(bh);
1855 		}
1856 	} while ((bh = bh->b_this_page) != head);
1857 	SetPageError(page);
1858 	BUG_ON(PageWriteback(page));
1859 	mapping_set_error(page->mapping, err);
1860 	set_page_writeback(page);
1861 	do {
1862 		struct buffer_head *next = bh->b_this_page;
1863 		if (buffer_async_write(bh)) {
1864 			clear_buffer_dirty(bh);
1865 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1866 					inode->i_write_hint, wbc);
1867 			nr_underway++;
1868 		}
1869 		bh = next;
1870 	} while (bh != head);
1871 	unlock_page(page);
1872 	goto done;
1873 }
1874 EXPORT_SYMBOL(__block_write_full_page);
1875 
1876 /*
1877  * If a page has any new buffers, zero them out here, and mark them uptodate
1878  * and dirty so they'll be written out (in order to prevent uninitialised
1879  * block data from leaking). And clear the new bit.
1880  */
1881 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1882 {
1883 	unsigned int block_start, block_end;
1884 	struct buffer_head *head, *bh;
1885 
1886 	BUG_ON(!PageLocked(page));
1887 	if (!page_has_buffers(page))
1888 		return;
1889 
1890 	bh = head = page_buffers(page);
1891 	block_start = 0;
1892 	do {
1893 		block_end = block_start + bh->b_size;
1894 
1895 		if (buffer_new(bh)) {
1896 			if (block_end > from && block_start < to) {
1897 				if (!PageUptodate(page)) {
1898 					unsigned start, size;
1899 
1900 					start = max(from, block_start);
1901 					size = min(to, block_end) - start;
1902 
1903 					zero_user(page, start, size);
1904 					set_buffer_uptodate(bh);
1905 				}
1906 
1907 				clear_buffer_new(bh);
1908 				mark_buffer_dirty(bh);
1909 			}
1910 		}
1911 
1912 		block_start = block_end;
1913 		bh = bh->b_this_page;
1914 	} while (bh != head);
1915 }
1916 EXPORT_SYMBOL(page_zero_new_buffers);
1917 
1918 static void
1919 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1920 		struct iomap *iomap)
1921 {
1922 	loff_t offset = block << inode->i_blkbits;
1923 
1924 	bh->b_bdev = iomap->bdev;
1925 
1926 	/*
1927 	 * Block points to offset in file we need to map, iomap contains
1928 	 * the offset at which the map starts. If the map ends before the
1929 	 * current block, then do not map the buffer and let the caller
1930 	 * handle it.
1931 	 */
1932 	BUG_ON(offset >= iomap->offset + iomap->length);
1933 
1934 	switch (iomap->type) {
1935 	case IOMAP_HOLE:
1936 		/*
1937 		 * If the buffer is not up to date or beyond the current EOF,
1938 		 * we need to mark it as new to ensure sub-block zeroing is
1939 		 * executed if necessary.
1940 		 */
1941 		if (!buffer_uptodate(bh) ||
1942 		    (offset >= i_size_read(inode)))
1943 			set_buffer_new(bh);
1944 		break;
1945 	case IOMAP_DELALLOC:
1946 		if (!buffer_uptodate(bh) ||
1947 		    (offset >= i_size_read(inode)))
1948 			set_buffer_new(bh);
1949 		set_buffer_uptodate(bh);
1950 		set_buffer_mapped(bh);
1951 		set_buffer_delay(bh);
1952 		break;
1953 	case IOMAP_UNWRITTEN:
1954 		/*
1955 		 * For unwritten regions, we always need to ensure that regions
1956 		 * in the block we are not writing to are zeroed. Mark the
1957 		 * buffer as new to ensure this.
1958 		 */
1959 		set_buffer_new(bh);
1960 		set_buffer_unwritten(bh);
1961 		fallthrough;
1962 	case IOMAP_MAPPED:
1963 		if ((iomap->flags & IOMAP_F_NEW) ||
1964 		    offset >= i_size_read(inode))
1965 			set_buffer_new(bh);
1966 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1967 				inode->i_blkbits;
1968 		set_buffer_mapped(bh);
1969 		break;
1970 	}
1971 }
1972 
1973 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1974 		get_block_t *get_block, struct iomap *iomap)
1975 {
1976 	unsigned from = pos & (PAGE_SIZE - 1);
1977 	unsigned to = from + len;
1978 	struct inode *inode = page->mapping->host;
1979 	unsigned block_start, block_end;
1980 	sector_t block;
1981 	int err = 0;
1982 	unsigned blocksize, bbits;
1983 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1984 
1985 	BUG_ON(!PageLocked(page));
1986 	BUG_ON(from > PAGE_SIZE);
1987 	BUG_ON(to > PAGE_SIZE);
1988 	BUG_ON(from > to);
1989 
1990 	head = create_page_buffers(page, inode, 0);
1991 	blocksize = head->b_size;
1992 	bbits = block_size_bits(blocksize);
1993 
1994 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1995 
1996 	for(bh = head, block_start = 0; bh != head || !block_start;
1997 	    block++, block_start=block_end, bh = bh->b_this_page) {
1998 		block_end = block_start + blocksize;
1999 		if (block_end <= from || block_start >= to) {
2000 			if (PageUptodate(page)) {
2001 				if (!buffer_uptodate(bh))
2002 					set_buffer_uptodate(bh);
2003 			}
2004 			continue;
2005 		}
2006 		if (buffer_new(bh))
2007 			clear_buffer_new(bh);
2008 		if (!buffer_mapped(bh)) {
2009 			WARN_ON(bh->b_size != blocksize);
2010 			if (get_block) {
2011 				err = get_block(inode, block, bh, 1);
2012 				if (err)
2013 					break;
2014 			} else {
2015 				iomap_to_bh(inode, block, bh, iomap);
2016 			}
2017 
2018 			if (buffer_new(bh)) {
2019 				clean_bdev_bh_alias(bh);
2020 				if (PageUptodate(page)) {
2021 					clear_buffer_new(bh);
2022 					set_buffer_uptodate(bh);
2023 					mark_buffer_dirty(bh);
2024 					continue;
2025 				}
2026 				if (block_end > to || block_start < from)
2027 					zero_user_segments(page,
2028 						to, block_end,
2029 						block_start, from);
2030 				continue;
2031 			}
2032 		}
2033 		if (PageUptodate(page)) {
2034 			if (!buffer_uptodate(bh))
2035 				set_buffer_uptodate(bh);
2036 			continue;
2037 		}
2038 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2039 		    !buffer_unwritten(bh) &&
2040 		     (block_start < from || block_end > to)) {
2041 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2042 			*wait_bh++=bh;
2043 		}
2044 	}
2045 	/*
2046 	 * If we issued read requests - let them complete.
2047 	 */
2048 	while(wait_bh > wait) {
2049 		wait_on_buffer(*--wait_bh);
2050 		if (!buffer_uptodate(*wait_bh))
2051 			err = -EIO;
2052 	}
2053 	if (unlikely(err))
2054 		page_zero_new_buffers(page, from, to);
2055 	return err;
2056 }
2057 
2058 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2059 		get_block_t *get_block)
2060 {
2061 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2062 }
2063 EXPORT_SYMBOL(__block_write_begin);
2064 
2065 static int __block_commit_write(struct inode *inode, struct page *page,
2066 		unsigned from, unsigned to)
2067 {
2068 	unsigned block_start, block_end;
2069 	int partial = 0;
2070 	unsigned blocksize;
2071 	struct buffer_head *bh, *head;
2072 
2073 	bh = head = page_buffers(page);
2074 	blocksize = bh->b_size;
2075 
2076 	block_start = 0;
2077 	do {
2078 		block_end = block_start + blocksize;
2079 		if (block_end <= from || block_start >= to) {
2080 			if (!buffer_uptodate(bh))
2081 				partial = 1;
2082 		} else {
2083 			set_buffer_uptodate(bh);
2084 			mark_buffer_dirty(bh);
2085 		}
2086 		if (buffer_new(bh))
2087 			clear_buffer_new(bh);
2088 
2089 		block_start = block_end;
2090 		bh = bh->b_this_page;
2091 	} while (bh != head);
2092 
2093 	/*
2094 	 * If this is a partial write which happened to make all buffers
2095 	 * uptodate then we can optimize away a bogus readpage() for
2096 	 * the next read(). Here we 'discover' whether the page went
2097 	 * uptodate as a result of this (potentially partial) write.
2098 	 */
2099 	if (!partial)
2100 		SetPageUptodate(page);
2101 	return 0;
2102 }
2103 
2104 /*
2105  * block_write_begin takes care of the basic task of block allocation and
2106  * bringing partial write blocks uptodate first.
2107  *
2108  * The filesystem needs to handle block truncation upon failure.
2109  */
2110 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2111 		unsigned flags, struct page **pagep, get_block_t *get_block)
2112 {
2113 	pgoff_t index = pos >> PAGE_SHIFT;
2114 	struct page *page;
2115 	int status;
2116 
2117 	page = grab_cache_page_write_begin(mapping, index, flags);
2118 	if (!page)
2119 		return -ENOMEM;
2120 
2121 	status = __block_write_begin(page, pos, len, get_block);
2122 	if (unlikely(status)) {
2123 		unlock_page(page);
2124 		put_page(page);
2125 		page = NULL;
2126 	}
2127 
2128 	*pagep = page;
2129 	return status;
2130 }
2131 EXPORT_SYMBOL(block_write_begin);
2132 
2133 int block_write_end(struct file *file, struct address_space *mapping,
2134 			loff_t pos, unsigned len, unsigned copied,
2135 			struct page *page, void *fsdata)
2136 {
2137 	struct inode *inode = mapping->host;
2138 	unsigned start;
2139 
2140 	start = pos & (PAGE_SIZE - 1);
2141 
2142 	if (unlikely(copied < len)) {
2143 		/*
2144 		 * The buffers that were written will now be uptodate, so we
2145 		 * don't have to worry about a readpage reading them and
2146 		 * overwriting a partial write. However if we have encountered
2147 		 * a short write and only partially written into a buffer, it
2148 		 * will not be marked uptodate, so a readpage might come in and
2149 		 * destroy our partial write.
2150 		 *
2151 		 * Do the simplest thing, and just treat any short write to a
2152 		 * non uptodate page as a zero-length write, and force the
2153 		 * caller to redo the whole thing.
2154 		 */
2155 		if (!PageUptodate(page))
2156 			copied = 0;
2157 
2158 		page_zero_new_buffers(page, start+copied, start+len);
2159 	}
2160 	flush_dcache_page(page);
2161 
2162 	/* This could be a short (even 0-length) commit */
2163 	__block_commit_write(inode, page, start, start+copied);
2164 
2165 	return copied;
2166 }
2167 EXPORT_SYMBOL(block_write_end);
2168 
2169 int generic_write_end(struct file *file, struct address_space *mapping,
2170 			loff_t pos, unsigned len, unsigned copied,
2171 			struct page *page, void *fsdata)
2172 {
2173 	struct inode *inode = mapping->host;
2174 	loff_t old_size = inode->i_size;
2175 	bool i_size_changed = false;
2176 
2177 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2178 
2179 	/*
2180 	 * No need to use i_size_read() here, the i_size cannot change under us
2181 	 * because we hold i_rwsem.
2182 	 *
2183 	 * But it's important to update i_size while still holding page lock:
2184 	 * page writeout could otherwise come in and zero beyond i_size.
2185 	 */
2186 	if (pos + copied > inode->i_size) {
2187 		i_size_write(inode, pos + copied);
2188 		i_size_changed = true;
2189 	}
2190 
2191 	unlock_page(page);
2192 	put_page(page);
2193 
2194 	if (old_size < pos)
2195 		pagecache_isize_extended(inode, old_size, pos);
2196 	/*
2197 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2198 	 * makes the holding time of page lock longer. Second, it forces lock
2199 	 * ordering of page lock and transaction start for journaling
2200 	 * filesystems.
2201 	 */
2202 	if (i_size_changed)
2203 		mark_inode_dirty(inode);
2204 	return copied;
2205 }
2206 EXPORT_SYMBOL(generic_write_end);
2207 
2208 /*
2209  * block_is_partially_uptodate checks whether buffers within a page are
2210  * uptodate or not.
2211  *
2212  * Returns true if all buffers which correspond to a file portion
2213  * we want to read are uptodate.
2214  */
2215 int block_is_partially_uptodate(struct page *page, unsigned long from,
2216 					unsigned long count)
2217 {
2218 	unsigned block_start, block_end, blocksize;
2219 	unsigned to;
2220 	struct buffer_head *bh, *head;
2221 	int ret = 1;
2222 
2223 	if (!page_has_buffers(page))
2224 		return 0;
2225 
2226 	head = page_buffers(page);
2227 	blocksize = head->b_size;
2228 	to = min_t(unsigned, PAGE_SIZE - from, count);
2229 	to = from + to;
2230 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2231 		return 0;
2232 
2233 	bh = head;
2234 	block_start = 0;
2235 	do {
2236 		block_end = block_start + blocksize;
2237 		if (block_end > from && block_start < to) {
2238 			if (!buffer_uptodate(bh)) {
2239 				ret = 0;
2240 				break;
2241 			}
2242 			if (block_end >= to)
2243 				break;
2244 		}
2245 		block_start = block_end;
2246 		bh = bh->b_this_page;
2247 	} while (bh != head);
2248 
2249 	return ret;
2250 }
2251 EXPORT_SYMBOL(block_is_partially_uptodate);
2252 
2253 /*
2254  * Generic "read page" function for block devices that have the normal
2255  * get_block functionality. This is most of the block device filesystems.
2256  * Reads the page asynchronously --- the unlock_buffer() and
2257  * set/clear_buffer_uptodate() functions propagate buffer state into the
2258  * page struct once IO has completed.
2259  */
2260 int block_read_full_page(struct page *page, get_block_t *get_block)
2261 {
2262 	struct inode *inode = page->mapping->host;
2263 	sector_t iblock, lblock;
2264 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2265 	unsigned int blocksize, bbits;
2266 	int nr, i;
2267 	int fully_mapped = 1;
2268 
2269 	head = create_page_buffers(page, inode, 0);
2270 	blocksize = head->b_size;
2271 	bbits = block_size_bits(blocksize);
2272 
2273 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2274 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2275 	bh = head;
2276 	nr = 0;
2277 	i = 0;
2278 
2279 	do {
2280 		if (buffer_uptodate(bh))
2281 			continue;
2282 
2283 		if (!buffer_mapped(bh)) {
2284 			int err = 0;
2285 
2286 			fully_mapped = 0;
2287 			if (iblock < lblock) {
2288 				WARN_ON(bh->b_size != blocksize);
2289 				err = get_block(inode, iblock, bh, 0);
2290 				if (err)
2291 					SetPageError(page);
2292 			}
2293 			if (!buffer_mapped(bh)) {
2294 				zero_user(page, i * blocksize, blocksize);
2295 				if (!err)
2296 					set_buffer_uptodate(bh);
2297 				continue;
2298 			}
2299 			/*
2300 			 * get_block() might have updated the buffer
2301 			 * synchronously
2302 			 */
2303 			if (buffer_uptodate(bh))
2304 				continue;
2305 		}
2306 		arr[nr++] = bh;
2307 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2308 
2309 	if (fully_mapped)
2310 		SetPageMappedToDisk(page);
2311 
2312 	if (!nr) {
2313 		/*
2314 		 * All buffers are uptodate - we can set the page uptodate
2315 		 * as well. But not if get_block() returned an error.
2316 		 */
2317 		if (!PageError(page))
2318 			SetPageUptodate(page);
2319 		unlock_page(page);
2320 		return 0;
2321 	}
2322 
2323 	/* Stage two: lock the buffers */
2324 	for (i = 0; i < nr; i++) {
2325 		bh = arr[i];
2326 		lock_buffer(bh);
2327 		mark_buffer_async_read(bh);
2328 	}
2329 
2330 	/*
2331 	 * Stage 3: start the IO.  Check for uptodateness
2332 	 * inside the buffer lock in case another process reading
2333 	 * the underlying blockdev brought it uptodate (the sct fix).
2334 	 */
2335 	for (i = 0; i < nr; i++) {
2336 		bh = arr[i];
2337 		if (buffer_uptodate(bh))
2338 			end_buffer_async_read(bh, 1);
2339 		else
2340 			submit_bh(REQ_OP_READ, 0, bh);
2341 	}
2342 	return 0;
2343 }
2344 EXPORT_SYMBOL(block_read_full_page);
2345 
2346 /* utility function for filesystems that need to do work on expanding
2347  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2348  * deal with the hole.
2349  */
2350 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2351 {
2352 	struct address_space *mapping = inode->i_mapping;
2353 	struct page *page;
2354 	void *fsdata;
2355 	int err;
2356 
2357 	err = inode_newsize_ok(inode, size);
2358 	if (err)
2359 		goto out;
2360 
2361 	err = pagecache_write_begin(NULL, mapping, size, 0,
2362 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2363 	if (err)
2364 		goto out;
2365 
2366 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2367 	BUG_ON(err > 0);
2368 
2369 out:
2370 	return err;
2371 }
2372 EXPORT_SYMBOL(generic_cont_expand_simple);
2373 
2374 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2375 			    loff_t pos, loff_t *bytes)
2376 {
2377 	struct inode *inode = mapping->host;
2378 	unsigned int blocksize = i_blocksize(inode);
2379 	struct page *page;
2380 	void *fsdata;
2381 	pgoff_t index, curidx;
2382 	loff_t curpos;
2383 	unsigned zerofrom, offset, len;
2384 	int err = 0;
2385 
2386 	index = pos >> PAGE_SHIFT;
2387 	offset = pos & ~PAGE_MASK;
2388 
2389 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2390 		zerofrom = curpos & ~PAGE_MASK;
2391 		if (zerofrom & (blocksize-1)) {
2392 			*bytes |= (blocksize-1);
2393 			(*bytes)++;
2394 		}
2395 		len = PAGE_SIZE - zerofrom;
2396 
2397 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2398 					    &page, &fsdata);
2399 		if (err)
2400 			goto out;
2401 		zero_user(page, zerofrom, len);
2402 		err = pagecache_write_end(file, mapping, curpos, len, len,
2403 						page, fsdata);
2404 		if (err < 0)
2405 			goto out;
2406 		BUG_ON(err != len);
2407 		err = 0;
2408 
2409 		balance_dirty_pages_ratelimited(mapping);
2410 
2411 		if (fatal_signal_pending(current)) {
2412 			err = -EINTR;
2413 			goto out;
2414 		}
2415 	}
2416 
2417 	/* page covers the boundary, find the boundary offset */
2418 	if (index == curidx) {
2419 		zerofrom = curpos & ~PAGE_MASK;
2420 		/* if we will expand the thing last block will be filled */
2421 		if (offset <= zerofrom) {
2422 			goto out;
2423 		}
2424 		if (zerofrom & (blocksize-1)) {
2425 			*bytes |= (blocksize-1);
2426 			(*bytes)++;
2427 		}
2428 		len = offset - zerofrom;
2429 
2430 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2431 					    &page, &fsdata);
2432 		if (err)
2433 			goto out;
2434 		zero_user(page, zerofrom, len);
2435 		err = pagecache_write_end(file, mapping, curpos, len, len,
2436 						page, fsdata);
2437 		if (err < 0)
2438 			goto out;
2439 		BUG_ON(err != len);
2440 		err = 0;
2441 	}
2442 out:
2443 	return err;
2444 }
2445 
2446 /*
2447  * For moronic filesystems that do not allow holes in file.
2448  * We may have to extend the file.
2449  */
2450 int cont_write_begin(struct file *file, struct address_space *mapping,
2451 			loff_t pos, unsigned len, unsigned flags,
2452 			struct page **pagep, void **fsdata,
2453 			get_block_t *get_block, loff_t *bytes)
2454 {
2455 	struct inode *inode = mapping->host;
2456 	unsigned int blocksize = i_blocksize(inode);
2457 	unsigned int zerofrom;
2458 	int err;
2459 
2460 	err = cont_expand_zero(file, mapping, pos, bytes);
2461 	if (err)
2462 		return err;
2463 
2464 	zerofrom = *bytes & ~PAGE_MASK;
2465 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2466 		*bytes |= (blocksize-1);
2467 		(*bytes)++;
2468 	}
2469 
2470 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2471 }
2472 EXPORT_SYMBOL(cont_write_begin);
2473 
2474 int block_commit_write(struct page *page, unsigned from, unsigned to)
2475 {
2476 	struct inode *inode = page->mapping->host;
2477 	__block_commit_write(inode,page,from,to);
2478 	return 0;
2479 }
2480 EXPORT_SYMBOL(block_commit_write);
2481 
2482 /*
2483  * block_page_mkwrite() is not allowed to change the file size as it gets
2484  * called from a page fault handler when a page is first dirtied. Hence we must
2485  * be careful to check for EOF conditions here. We set the page up correctly
2486  * for a written page which means we get ENOSPC checking when writing into
2487  * holes and correct delalloc and unwritten extent mapping on filesystems that
2488  * support these features.
2489  *
2490  * We are not allowed to take the i_mutex here so we have to play games to
2491  * protect against truncate races as the page could now be beyond EOF.  Because
2492  * truncate writes the inode size before removing pages, once we have the
2493  * page lock we can determine safely if the page is beyond EOF. If it is not
2494  * beyond EOF, then the page is guaranteed safe against truncation until we
2495  * unlock the page.
2496  *
2497  * Direct callers of this function should protect against filesystem freezing
2498  * using sb_start_pagefault() - sb_end_pagefault() functions.
2499  */
2500 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2501 			 get_block_t get_block)
2502 {
2503 	struct page *page = vmf->page;
2504 	struct inode *inode = file_inode(vma->vm_file);
2505 	unsigned long end;
2506 	loff_t size;
2507 	int ret;
2508 
2509 	lock_page(page);
2510 	size = i_size_read(inode);
2511 	if ((page->mapping != inode->i_mapping) ||
2512 	    (page_offset(page) > size)) {
2513 		/* We overload EFAULT to mean page got truncated */
2514 		ret = -EFAULT;
2515 		goto out_unlock;
2516 	}
2517 
2518 	/* page is wholly or partially inside EOF */
2519 	if (((page->index + 1) << PAGE_SHIFT) > size)
2520 		end = size & ~PAGE_MASK;
2521 	else
2522 		end = PAGE_SIZE;
2523 
2524 	ret = __block_write_begin(page, 0, end, get_block);
2525 	if (!ret)
2526 		ret = block_commit_write(page, 0, end);
2527 
2528 	if (unlikely(ret < 0))
2529 		goto out_unlock;
2530 	set_page_dirty(page);
2531 	wait_for_stable_page(page);
2532 	return 0;
2533 out_unlock:
2534 	unlock_page(page);
2535 	return ret;
2536 }
2537 EXPORT_SYMBOL(block_page_mkwrite);
2538 
2539 /*
2540  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2541  * immediately, while under the page lock.  So it needs a special end_io
2542  * handler which does not touch the bh after unlocking it.
2543  */
2544 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2545 {
2546 	__end_buffer_read_notouch(bh, uptodate);
2547 }
2548 
2549 /*
2550  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2551  * the page (converting it to circular linked list and taking care of page
2552  * dirty races).
2553  */
2554 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2555 {
2556 	struct buffer_head *bh;
2557 
2558 	BUG_ON(!PageLocked(page));
2559 
2560 	spin_lock(&page->mapping->private_lock);
2561 	bh = head;
2562 	do {
2563 		if (PageDirty(page))
2564 			set_buffer_dirty(bh);
2565 		if (!bh->b_this_page)
2566 			bh->b_this_page = head;
2567 		bh = bh->b_this_page;
2568 	} while (bh != head);
2569 	attach_page_private(page, head);
2570 	spin_unlock(&page->mapping->private_lock);
2571 }
2572 
2573 /*
2574  * On entry, the page is fully not uptodate.
2575  * On exit the page is fully uptodate in the areas outside (from,to)
2576  * The filesystem needs to handle block truncation upon failure.
2577  */
2578 int nobh_write_begin(struct address_space *mapping,
2579 			loff_t pos, unsigned len, unsigned flags,
2580 			struct page **pagep, void **fsdata,
2581 			get_block_t *get_block)
2582 {
2583 	struct inode *inode = mapping->host;
2584 	const unsigned blkbits = inode->i_blkbits;
2585 	const unsigned blocksize = 1 << blkbits;
2586 	struct buffer_head *head, *bh;
2587 	struct page *page;
2588 	pgoff_t index;
2589 	unsigned from, to;
2590 	unsigned block_in_page;
2591 	unsigned block_start, block_end;
2592 	sector_t block_in_file;
2593 	int nr_reads = 0;
2594 	int ret = 0;
2595 	int is_mapped_to_disk = 1;
2596 
2597 	index = pos >> PAGE_SHIFT;
2598 	from = pos & (PAGE_SIZE - 1);
2599 	to = from + len;
2600 
2601 	page = grab_cache_page_write_begin(mapping, index, flags);
2602 	if (!page)
2603 		return -ENOMEM;
2604 	*pagep = page;
2605 	*fsdata = NULL;
2606 
2607 	if (page_has_buffers(page)) {
2608 		ret = __block_write_begin(page, pos, len, get_block);
2609 		if (unlikely(ret))
2610 			goto out_release;
2611 		return ret;
2612 	}
2613 
2614 	if (PageMappedToDisk(page))
2615 		return 0;
2616 
2617 	/*
2618 	 * Allocate buffers so that we can keep track of state, and potentially
2619 	 * attach them to the page if an error occurs. In the common case of
2620 	 * no error, they will just be freed again without ever being attached
2621 	 * to the page (which is all OK, because we're under the page lock).
2622 	 *
2623 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2624 	 * than the circular one we're used to.
2625 	 */
2626 	head = alloc_page_buffers(page, blocksize, false);
2627 	if (!head) {
2628 		ret = -ENOMEM;
2629 		goto out_release;
2630 	}
2631 
2632 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2633 
2634 	/*
2635 	 * We loop across all blocks in the page, whether or not they are
2636 	 * part of the affected region.  This is so we can discover if the
2637 	 * page is fully mapped-to-disk.
2638 	 */
2639 	for (block_start = 0, block_in_page = 0, bh = head;
2640 		  block_start < PAGE_SIZE;
2641 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2642 		int create;
2643 
2644 		block_end = block_start + blocksize;
2645 		bh->b_state = 0;
2646 		create = 1;
2647 		if (block_start >= to)
2648 			create = 0;
2649 		ret = get_block(inode, block_in_file + block_in_page,
2650 					bh, create);
2651 		if (ret)
2652 			goto failed;
2653 		if (!buffer_mapped(bh))
2654 			is_mapped_to_disk = 0;
2655 		if (buffer_new(bh))
2656 			clean_bdev_bh_alias(bh);
2657 		if (PageUptodate(page)) {
2658 			set_buffer_uptodate(bh);
2659 			continue;
2660 		}
2661 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2662 			zero_user_segments(page, block_start, from,
2663 							to, block_end);
2664 			continue;
2665 		}
2666 		if (buffer_uptodate(bh))
2667 			continue;	/* reiserfs does this */
2668 		if (block_start < from || block_end > to) {
2669 			lock_buffer(bh);
2670 			bh->b_end_io = end_buffer_read_nobh;
2671 			submit_bh(REQ_OP_READ, 0, bh);
2672 			nr_reads++;
2673 		}
2674 	}
2675 
2676 	if (nr_reads) {
2677 		/*
2678 		 * The page is locked, so these buffers are protected from
2679 		 * any VM or truncate activity.  Hence we don't need to care
2680 		 * for the buffer_head refcounts.
2681 		 */
2682 		for (bh = head; bh; bh = bh->b_this_page) {
2683 			wait_on_buffer(bh);
2684 			if (!buffer_uptodate(bh))
2685 				ret = -EIO;
2686 		}
2687 		if (ret)
2688 			goto failed;
2689 	}
2690 
2691 	if (is_mapped_to_disk)
2692 		SetPageMappedToDisk(page);
2693 
2694 	*fsdata = head; /* to be released by nobh_write_end */
2695 
2696 	return 0;
2697 
2698 failed:
2699 	BUG_ON(!ret);
2700 	/*
2701 	 * Error recovery is a bit difficult. We need to zero out blocks that
2702 	 * were newly allocated, and dirty them to ensure they get written out.
2703 	 * Buffers need to be attached to the page at this point, otherwise
2704 	 * the handling of potential IO errors during writeout would be hard
2705 	 * (could try doing synchronous writeout, but what if that fails too?)
2706 	 */
2707 	attach_nobh_buffers(page, head);
2708 	page_zero_new_buffers(page, from, to);
2709 
2710 out_release:
2711 	unlock_page(page);
2712 	put_page(page);
2713 	*pagep = NULL;
2714 
2715 	return ret;
2716 }
2717 EXPORT_SYMBOL(nobh_write_begin);
2718 
2719 int nobh_write_end(struct file *file, struct address_space *mapping,
2720 			loff_t pos, unsigned len, unsigned copied,
2721 			struct page *page, void *fsdata)
2722 {
2723 	struct inode *inode = page->mapping->host;
2724 	struct buffer_head *head = fsdata;
2725 	struct buffer_head *bh;
2726 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2727 
2728 	if (unlikely(copied < len) && head)
2729 		attach_nobh_buffers(page, head);
2730 	if (page_has_buffers(page))
2731 		return generic_write_end(file, mapping, pos, len,
2732 					copied, page, fsdata);
2733 
2734 	SetPageUptodate(page);
2735 	set_page_dirty(page);
2736 	if (pos+copied > inode->i_size) {
2737 		i_size_write(inode, pos+copied);
2738 		mark_inode_dirty(inode);
2739 	}
2740 
2741 	unlock_page(page);
2742 	put_page(page);
2743 
2744 	while (head) {
2745 		bh = head;
2746 		head = head->b_this_page;
2747 		free_buffer_head(bh);
2748 	}
2749 
2750 	return copied;
2751 }
2752 EXPORT_SYMBOL(nobh_write_end);
2753 
2754 /*
2755  * nobh_writepage() - based on block_full_write_page() except
2756  * that it tries to operate without attaching bufferheads to
2757  * the page.
2758  */
2759 int nobh_writepage(struct page *page, get_block_t *get_block,
2760 			struct writeback_control *wbc)
2761 {
2762 	struct inode * const inode = page->mapping->host;
2763 	loff_t i_size = i_size_read(inode);
2764 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2765 	unsigned offset;
2766 	int ret;
2767 
2768 	/* Is the page fully inside i_size? */
2769 	if (page->index < end_index)
2770 		goto out;
2771 
2772 	/* Is the page fully outside i_size? (truncate in progress) */
2773 	offset = i_size & (PAGE_SIZE-1);
2774 	if (page->index >= end_index+1 || !offset) {
2775 		unlock_page(page);
2776 		return 0; /* don't care */
2777 	}
2778 
2779 	/*
2780 	 * The page straddles i_size.  It must be zeroed out on each and every
2781 	 * writepage invocation because it may be mmapped.  "A file is mapped
2782 	 * in multiples of the page size.  For a file that is not a multiple of
2783 	 * the  page size, the remaining memory is zeroed when mapped, and
2784 	 * writes to that region are not written out to the file."
2785 	 */
2786 	zero_user_segment(page, offset, PAGE_SIZE);
2787 out:
2788 	ret = mpage_writepage(page, get_block, wbc);
2789 	if (ret == -EAGAIN)
2790 		ret = __block_write_full_page(inode, page, get_block, wbc,
2791 					      end_buffer_async_write);
2792 	return ret;
2793 }
2794 EXPORT_SYMBOL(nobh_writepage);
2795 
2796 int nobh_truncate_page(struct address_space *mapping,
2797 			loff_t from, get_block_t *get_block)
2798 {
2799 	pgoff_t index = from >> PAGE_SHIFT;
2800 	unsigned offset = from & (PAGE_SIZE-1);
2801 	unsigned blocksize;
2802 	sector_t iblock;
2803 	unsigned length, pos;
2804 	struct inode *inode = mapping->host;
2805 	struct page *page;
2806 	struct buffer_head map_bh;
2807 	int err;
2808 
2809 	blocksize = i_blocksize(inode);
2810 	length = offset & (blocksize - 1);
2811 
2812 	/* Block boundary? Nothing to do */
2813 	if (!length)
2814 		return 0;
2815 
2816 	length = blocksize - length;
2817 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2818 
2819 	page = grab_cache_page(mapping, index);
2820 	err = -ENOMEM;
2821 	if (!page)
2822 		goto out;
2823 
2824 	if (page_has_buffers(page)) {
2825 has_buffers:
2826 		unlock_page(page);
2827 		put_page(page);
2828 		return block_truncate_page(mapping, from, get_block);
2829 	}
2830 
2831 	/* Find the buffer that contains "offset" */
2832 	pos = blocksize;
2833 	while (offset >= pos) {
2834 		iblock++;
2835 		pos += blocksize;
2836 	}
2837 
2838 	map_bh.b_size = blocksize;
2839 	map_bh.b_state = 0;
2840 	err = get_block(inode, iblock, &map_bh, 0);
2841 	if (err)
2842 		goto unlock;
2843 	/* unmapped? It's a hole - nothing to do */
2844 	if (!buffer_mapped(&map_bh))
2845 		goto unlock;
2846 
2847 	/* Ok, it's mapped. Make sure it's up-to-date */
2848 	if (!PageUptodate(page)) {
2849 		err = mapping->a_ops->readpage(NULL, page);
2850 		if (err) {
2851 			put_page(page);
2852 			goto out;
2853 		}
2854 		lock_page(page);
2855 		if (!PageUptodate(page)) {
2856 			err = -EIO;
2857 			goto unlock;
2858 		}
2859 		if (page_has_buffers(page))
2860 			goto has_buffers;
2861 	}
2862 	zero_user(page, offset, length);
2863 	set_page_dirty(page);
2864 	err = 0;
2865 
2866 unlock:
2867 	unlock_page(page);
2868 	put_page(page);
2869 out:
2870 	return err;
2871 }
2872 EXPORT_SYMBOL(nobh_truncate_page);
2873 
2874 int block_truncate_page(struct address_space *mapping,
2875 			loff_t from, get_block_t *get_block)
2876 {
2877 	pgoff_t index = from >> PAGE_SHIFT;
2878 	unsigned offset = from & (PAGE_SIZE-1);
2879 	unsigned blocksize;
2880 	sector_t iblock;
2881 	unsigned length, pos;
2882 	struct inode *inode = mapping->host;
2883 	struct page *page;
2884 	struct buffer_head *bh;
2885 	int err;
2886 
2887 	blocksize = i_blocksize(inode);
2888 	length = offset & (blocksize - 1);
2889 
2890 	/* Block boundary? Nothing to do */
2891 	if (!length)
2892 		return 0;
2893 
2894 	length = blocksize - length;
2895 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2896 
2897 	page = grab_cache_page(mapping, index);
2898 	err = -ENOMEM;
2899 	if (!page)
2900 		goto out;
2901 
2902 	if (!page_has_buffers(page))
2903 		create_empty_buffers(page, blocksize, 0);
2904 
2905 	/* Find the buffer that contains "offset" */
2906 	bh = page_buffers(page);
2907 	pos = blocksize;
2908 	while (offset >= pos) {
2909 		bh = bh->b_this_page;
2910 		iblock++;
2911 		pos += blocksize;
2912 	}
2913 
2914 	err = 0;
2915 	if (!buffer_mapped(bh)) {
2916 		WARN_ON(bh->b_size != blocksize);
2917 		err = get_block(inode, iblock, bh, 0);
2918 		if (err)
2919 			goto unlock;
2920 		/* unmapped? It's a hole - nothing to do */
2921 		if (!buffer_mapped(bh))
2922 			goto unlock;
2923 	}
2924 
2925 	/* Ok, it's mapped. Make sure it's up-to-date */
2926 	if (PageUptodate(page))
2927 		set_buffer_uptodate(bh);
2928 
2929 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2930 		err = -EIO;
2931 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2932 		wait_on_buffer(bh);
2933 		/* Uhhuh. Read error. Complain and punt. */
2934 		if (!buffer_uptodate(bh))
2935 			goto unlock;
2936 	}
2937 
2938 	zero_user(page, offset, length);
2939 	mark_buffer_dirty(bh);
2940 	err = 0;
2941 
2942 unlock:
2943 	unlock_page(page);
2944 	put_page(page);
2945 out:
2946 	return err;
2947 }
2948 EXPORT_SYMBOL(block_truncate_page);
2949 
2950 /*
2951  * The generic ->writepage function for buffer-backed address_spaces
2952  */
2953 int block_write_full_page(struct page *page, get_block_t *get_block,
2954 			struct writeback_control *wbc)
2955 {
2956 	struct inode * const inode = page->mapping->host;
2957 	loff_t i_size = i_size_read(inode);
2958 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2959 	unsigned offset;
2960 
2961 	/* Is the page fully inside i_size? */
2962 	if (page->index < end_index)
2963 		return __block_write_full_page(inode, page, get_block, wbc,
2964 					       end_buffer_async_write);
2965 
2966 	/* Is the page fully outside i_size? (truncate in progress) */
2967 	offset = i_size & (PAGE_SIZE-1);
2968 	if (page->index >= end_index+1 || !offset) {
2969 		unlock_page(page);
2970 		return 0; /* don't care */
2971 	}
2972 
2973 	/*
2974 	 * The page straddles i_size.  It must be zeroed out on each and every
2975 	 * writepage invocation because it may be mmapped.  "A file is mapped
2976 	 * in multiples of the page size.  For a file that is not a multiple of
2977 	 * the  page size, the remaining memory is zeroed when mapped, and
2978 	 * writes to that region are not written out to the file."
2979 	 */
2980 	zero_user_segment(page, offset, PAGE_SIZE);
2981 	return __block_write_full_page(inode, page, get_block, wbc,
2982 							end_buffer_async_write);
2983 }
2984 EXPORT_SYMBOL(block_write_full_page);
2985 
2986 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2987 			    get_block_t *get_block)
2988 {
2989 	struct inode *inode = mapping->host;
2990 	struct buffer_head tmp = {
2991 		.b_size = i_blocksize(inode),
2992 	};
2993 
2994 	get_block(inode, block, &tmp, 0);
2995 	return tmp.b_blocknr;
2996 }
2997 EXPORT_SYMBOL(generic_block_bmap);
2998 
2999 static void end_bio_bh_io_sync(struct bio *bio)
3000 {
3001 	struct buffer_head *bh = bio->bi_private;
3002 
3003 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3004 		set_bit(BH_Quiet, &bh->b_state);
3005 
3006 	bh->b_end_io(bh, !bio->bi_status);
3007 	bio_put(bio);
3008 }
3009 
3010 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3011 			 enum rw_hint write_hint, struct writeback_control *wbc)
3012 {
3013 	struct bio *bio;
3014 
3015 	BUG_ON(!buffer_locked(bh));
3016 	BUG_ON(!buffer_mapped(bh));
3017 	BUG_ON(!bh->b_end_io);
3018 	BUG_ON(buffer_delay(bh));
3019 	BUG_ON(buffer_unwritten(bh));
3020 
3021 	/*
3022 	 * Only clear out a write error when rewriting
3023 	 */
3024 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3025 		clear_buffer_write_io_error(bh);
3026 
3027 	bio = bio_alloc(GFP_NOIO, 1);
3028 
3029 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3030 
3031 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3032 	bio_set_dev(bio, bh->b_bdev);
3033 	bio->bi_write_hint = write_hint;
3034 
3035 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3036 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3037 
3038 	bio->bi_end_io = end_bio_bh_io_sync;
3039 	bio->bi_private = bh;
3040 
3041 	if (buffer_meta(bh))
3042 		op_flags |= REQ_META;
3043 	if (buffer_prio(bh))
3044 		op_flags |= REQ_PRIO;
3045 	bio_set_op_attrs(bio, op, op_flags);
3046 
3047 	/* Take care of bh's that straddle the end of the device */
3048 	guard_bio_eod(bio);
3049 
3050 	if (wbc) {
3051 		wbc_init_bio(wbc, bio);
3052 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3053 	}
3054 
3055 	submit_bio(bio);
3056 	return 0;
3057 }
3058 
3059 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3060 {
3061 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3062 }
3063 EXPORT_SYMBOL(submit_bh);
3064 
3065 /**
3066  * ll_rw_block: low-level access to block devices (DEPRECATED)
3067  * @op: whether to %READ or %WRITE
3068  * @op_flags: req_flag_bits
3069  * @nr: number of &struct buffer_heads in the array
3070  * @bhs: array of pointers to &struct buffer_head
3071  *
3072  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3073  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3074  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3075  * %REQ_RAHEAD.
3076  *
3077  * This function drops any buffer that it cannot get a lock on (with the
3078  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3079  * request, and any buffer that appears to be up-to-date when doing read
3080  * request.  Further it marks as clean buffers that are processed for
3081  * writing (the buffer cache won't assume that they are actually clean
3082  * until the buffer gets unlocked).
3083  *
3084  * ll_rw_block sets b_end_io to simple completion handler that marks
3085  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3086  * any waiters.
3087  *
3088  * All of the buffers must be for the same device, and must also be a
3089  * multiple of the current approved size for the device.
3090  */
3091 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3092 {
3093 	int i;
3094 
3095 	for (i = 0; i < nr; i++) {
3096 		struct buffer_head *bh = bhs[i];
3097 
3098 		if (!trylock_buffer(bh))
3099 			continue;
3100 		if (op == WRITE) {
3101 			if (test_clear_buffer_dirty(bh)) {
3102 				bh->b_end_io = end_buffer_write_sync;
3103 				get_bh(bh);
3104 				submit_bh(op, op_flags, bh);
3105 				continue;
3106 			}
3107 		} else {
3108 			if (!buffer_uptodate(bh)) {
3109 				bh->b_end_io = end_buffer_read_sync;
3110 				get_bh(bh);
3111 				submit_bh(op, op_flags, bh);
3112 				continue;
3113 			}
3114 		}
3115 		unlock_buffer(bh);
3116 	}
3117 }
3118 EXPORT_SYMBOL(ll_rw_block);
3119 
3120 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3121 {
3122 	lock_buffer(bh);
3123 	if (!test_clear_buffer_dirty(bh)) {
3124 		unlock_buffer(bh);
3125 		return;
3126 	}
3127 	bh->b_end_io = end_buffer_write_sync;
3128 	get_bh(bh);
3129 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3130 }
3131 EXPORT_SYMBOL(write_dirty_buffer);
3132 
3133 /*
3134  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3135  * and then start new I/O and then wait upon it.  The caller must have a ref on
3136  * the buffer_head.
3137  */
3138 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3139 {
3140 	int ret = 0;
3141 
3142 	WARN_ON(atomic_read(&bh->b_count) < 1);
3143 	lock_buffer(bh);
3144 	if (test_clear_buffer_dirty(bh)) {
3145 		/*
3146 		 * The bh should be mapped, but it might not be if the
3147 		 * device was hot-removed. Not much we can do but fail the I/O.
3148 		 */
3149 		if (!buffer_mapped(bh)) {
3150 			unlock_buffer(bh);
3151 			return -EIO;
3152 		}
3153 
3154 		get_bh(bh);
3155 		bh->b_end_io = end_buffer_write_sync;
3156 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3157 		wait_on_buffer(bh);
3158 		if (!ret && !buffer_uptodate(bh))
3159 			ret = -EIO;
3160 	} else {
3161 		unlock_buffer(bh);
3162 	}
3163 	return ret;
3164 }
3165 EXPORT_SYMBOL(__sync_dirty_buffer);
3166 
3167 int sync_dirty_buffer(struct buffer_head *bh)
3168 {
3169 	return __sync_dirty_buffer(bh, REQ_SYNC);
3170 }
3171 EXPORT_SYMBOL(sync_dirty_buffer);
3172 
3173 /*
3174  * try_to_free_buffers() checks if all the buffers on this particular page
3175  * are unused, and releases them if so.
3176  *
3177  * Exclusion against try_to_free_buffers may be obtained by either
3178  * locking the page or by holding its mapping's private_lock.
3179  *
3180  * If the page is dirty but all the buffers are clean then we need to
3181  * be sure to mark the page clean as well.  This is because the page
3182  * may be against a block device, and a later reattachment of buffers
3183  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3184  * filesystem data on the same device.
3185  *
3186  * The same applies to regular filesystem pages: if all the buffers are
3187  * clean then we set the page clean and proceed.  To do that, we require
3188  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3189  * private_lock.
3190  *
3191  * try_to_free_buffers() is non-blocking.
3192  */
3193 static inline int buffer_busy(struct buffer_head *bh)
3194 {
3195 	return atomic_read(&bh->b_count) |
3196 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3197 }
3198 
3199 static int
3200 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3201 {
3202 	struct buffer_head *head = page_buffers(page);
3203 	struct buffer_head *bh;
3204 
3205 	bh = head;
3206 	do {
3207 		if (buffer_busy(bh))
3208 			goto failed;
3209 		bh = bh->b_this_page;
3210 	} while (bh != head);
3211 
3212 	do {
3213 		struct buffer_head *next = bh->b_this_page;
3214 
3215 		if (bh->b_assoc_map)
3216 			__remove_assoc_queue(bh);
3217 		bh = next;
3218 	} while (bh != head);
3219 	*buffers_to_free = head;
3220 	detach_page_private(page);
3221 	return 1;
3222 failed:
3223 	return 0;
3224 }
3225 
3226 int try_to_free_buffers(struct page *page)
3227 {
3228 	struct address_space * const mapping = page->mapping;
3229 	struct buffer_head *buffers_to_free = NULL;
3230 	int ret = 0;
3231 
3232 	BUG_ON(!PageLocked(page));
3233 	if (PageWriteback(page))
3234 		return 0;
3235 
3236 	if (mapping == NULL) {		/* can this still happen? */
3237 		ret = drop_buffers(page, &buffers_to_free);
3238 		goto out;
3239 	}
3240 
3241 	spin_lock(&mapping->private_lock);
3242 	ret = drop_buffers(page, &buffers_to_free);
3243 
3244 	/*
3245 	 * If the filesystem writes its buffers by hand (eg ext3)
3246 	 * then we can have clean buffers against a dirty page.  We
3247 	 * clean the page here; otherwise the VM will never notice
3248 	 * that the filesystem did any IO at all.
3249 	 *
3250 	 * Also, during truncate, discard_buffer will have marked all
3251 	 * the page's buffers clean.  We discover that here and clean
3252 	 * the page also.
3253 	 *
3254 	 * private_lock must be held over this entire operation in order
3255 	 * to synchronise against __set_page_dirty_buffers and prevent the
3256 	 * dirty bit from being lost.
3257 	 */
3258 	if (ret)
3259 		cancel_dirty_page(page);
3260 	spin_unlock(&mapping->private_lock);
3261 out:
3262 	if (buffers_to_free) {
3263 		struct buffer_head *bh = buffers_to_free;
3264 
3265 		do {
3266 			struct buffer_head *next = bh->b_this_page;
3267 			free_buffer_head(bh);
3268 			bh = next;
3269 		} while (bh != buffers_to_free);
3270 	}
3271 	return ret;
3272 }
3273 EXPORT_SYMBOL(try_to_free_buffers);
3274 
3275 /*
3276  * There are no bdflush tunables left.  But distributions are
3277  * still running obsolete flush daemons, so we terminate them here.
3278  *
3279  * Use of bdflush() is deprecated and will be removed in a future kernel.
3280  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3281  */
3282 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3283 {
3284 	static int msg_count;
3285 
3286 	if (!capable(CAP_SYS_ADMIN))
3287 		return -EPERM;
3288 
3289 	if (msg_count < 5) {
3290 		msg_count++;
3291 		printk(KERN_INFO
3292 			"warning: process `%s' used the obsolete bdflush"
3293 			" system call\n", current->comm);
3294 		printk(KERN_INFO "Fix your initscripts?\n");
3295 	}
3296 
3297 	if (func == 1)
3298 		do_exit(0);
3299 	return 0;
3300 }
3301 
3302 /*
3303  * Buffer-head allocation
3304  */
3305 static struct kmem_cache *bh_cachep __read_mostly;
3306 
3307 /*
3308  * Once the number of bh's in the machine exceeds this level, we start
3309  * stripping them in writeback.
3310  */
3311 static unsigned long max_buffer_heads;
3312 
3313 int buffer_heads_over_limit;
3314 
3315 struct bh_accounting {
3316 	int nr;			/* Number of live bh's */
3317 	int ratelimit;		/* Limit cacheline bouncing */
3318 };
3319 
3320 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3321 
3322 static void recalc_bh_state(void)
3323 {
3324 	int i;
3325 	int tot = 0;
3326 
3327 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3328 		return;
3329 	__this_cpu_write(bh_accounting.ratelimit, 0);
3330 	for_each_online_cpu(i)
3331 		tot += per_cpu(bh_accounting, i).nr;
3332 	buffer_heads_over_limit = (tot > max_buffer_heads);
3333 }
3334 
3335 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3336 {
3337 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3338 	if (ret) {
3339 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3340 		spin_lock_init(&ret->b_uptodate_lock);
3341 		preempt_disable();
3342 		__this_cpu_inc(bh_accounting.nr);
3343 		recalc_bh_state();
3344 		preempt_enable();
3345 	}
3346 	return ret;
3347 }
3348 EXPORT_SYMBOL(alloc_buffer_head);
3349 
3350 void free_buffer_head(struct buffer_head *bh)
3351 {
3352 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3353 	kmem_cache_free(bh_cachep, bh);
3354 	preempt_disable();
3355 	__this_cpu_dec(bh_accounting.nr);
3356 	recalc_bh_state();
3357 	preempt_enable();
3358 }
3359 EXPORT_SYMBOL(free_buffer_head);
3360 
3361 static int buffer_exit_cpu_dead(unsigned int cpu)
3362 {
3363 	int i;
3364 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3365 
3366 	for (i = 0; i < BH_LRU_SIZE; i++) {
3367 		brelse(b->bhs[i]);
3368 		b->bhs[i] = NULL;
3369 	}
3370 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3371 	per_cpu(bh_accounting, cpu).nr = 0;
3372 	return 0;
3373 }
3374 
3375 /**
3376  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3377  * @bh: struct buffer_head
3378  *
3379  * Return true if the buffer is up-to-date and false,
3380  * with the buffer locked, if not.
3381  */
3382 int bh_uptodate_or_lock(struct buffer_head *bh)
3383 {
3384 	if (!buffer_uptodate(bh)) {
3385 		lock_buffer(bh);
3386 		if (!buffer_uptodate(bh))
3387 			return 0;
3388 		unlock_buffer(bh);
3389 	}
3390 	return 1;
3391 }
3392 EXPORT_SYMBOL(bh_uptodate_or_lock);
3393 
3394 /**
3395  * bh_submit_read - Submit a locked buffer for reading
3396  * @bh: struct buffer_head
3397  *
3398  * Returns zero on success and -EIO on error.
3399  */
3400 int bh_submit_read(struct buffer_head *bh)
3401 {
3402 	BUG_ON(!buffer_locked(bh));
3403 
3404 	if (buffer_uptodate(bh)) {
3405 		unlock_buffer(bh);
3406 		return 0;
3407 	}
3408 
3409 	get_bh(bh);
3410 	bh->b_end_io = end_buffer_read_sync;
3411 	submit_bh(REQ_OP_READ, 0, bh);
3412 	wait_on_buffer(bh);
3413 	if (buffer_uptodate(bh))
3414 		return 0;
3415 	return -EIO;
3416 }
3417 EXPORT_SYMBOL(bh_submit_read);
3418 
3419 void __init buffer_init(void)
3420 {
3421 	unsigned long nrpages;
3422 	int ret;
3423 
3424 	bh_cachep = kmem_cache_create("buffer_head",
3425 			sizeof(struct buffer_head), 0,
3426 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3427 				SLAB_MEM_SPREAD),
3428 				NULL);
3429 
3430 	/*
3431 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3432 	 */
3433 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3434 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3435 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3436 					NULL, buffer_exit_cpu_dead);
3437 	WARN_ON(ret < 0);
3438 }
3439