xref: /openbmc/linux/fs/buffer.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 #include "internal.h"
53 
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 			 enum rw_hint hint, struct writeback_control *wbc);
57 
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59 
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 	trace_block_touch_buffer(bh);
63 	mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66 
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72 
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 	clear_bit_unlock(BH_Lock, &bh->b_state);
76 	smp_mb__after_atomic();
77 	wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80 
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87 				     bool *dirty, bool *writeback)
88 {
89 	struct buffer_head *head, *bh;
90 	*dirty = false;
91 	*writeback = false;
92 
93 	BUG_ON(!PageLocked(page));
94 
95 	if (!page_has_buffers(page))
96 		return;
97 
98 	if (PageWriteback(page))
99 		*writeback = true;
100 
101 	head = page_buffers(page);
102 	bh = head;
103 	do {
104 		if (buffer_locked(bh))
105 			*writeback = true;
106 
107 		if (buffer_dirty(bh))
108 			*dirty = true;
109 
110 		bh = bh->b_this_page;
111 	} while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 	if (!test_bit(BH_Quiet, &bh->b_state))
129 		printk_ratelimited(KERN_ERR
130 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
131 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133 
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 	if (uptodate) {
145 		set_buffer_uptodate(bh);
146 	} else {
147 		/* This happens, due to failed read-ahead attempts. */
148 		clear_buffer_uptodate(bh);
149 	}
150 	unlock_buffer(bh);
151 }
152 
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 	__end_buffer_read_notouch(bh, uptodate);
160 	put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163 
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 	if (uptodate) {
167 		set_buffer_uptodate(bh);
168 	} else {
169 		buffer_io_error(bh, ", lost sync page write");
170 		mark_buffer_write_io_error(bh);
171 		clear_buffer_uptodate(bh);
172 	}
173 	unlock_buffer(bh);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177 
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 	struct inode *bd_inode = bdev->bd_inode;
192 	struct address_space *bd_mapping = bd_inode->i_mapping;
193 	struct buffer_head *ret = NULL;
194 	pgoff_t index;
195 	struct buffer_head *bh;
196 	struct buffer_head *head;
197 	struct page *page;
198 	int all_mapped = 1;
199 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200 
201 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 	if (!page)
204 		goto out;
205 
206 	spin_lock(&bd_mapping->private_lock);
207 	if (!page_has_buffers(page))
208 		goto out_unlock;
209 	head = page_buffers(page);
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << bd_inode->i_blkbits);
236 	}
237 out_unlock:
238 	spin_unlock(&bd_mapping->private_lock);
239 	put_page(page);
240 out:
241 	return ret;
242 }
243 
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 	unsigned long flags;
247 	struct buffer_head *first;
248 	struct buffer_head *tmp;
249 	struct page *page;
250 	int page_uptodate = 1;
251 
252 	BUG_ON(!buffer_async_read(bh));
253 
254 	page = bh->b_page;
255 	if (uptodate) {
256 		set_buffer_uptodate(bh);
257 	} else {
258 		clear_buffer_uptodate(bh);
259 		buffer_io_error(bh, ", async page read");
260 		SetPageError(page);
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = page_buffers(page);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			page_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	/*
285 	 * If none of the buffers had errors and they are all
286 	 * uptodate then we can set the page uptodate.
287 	 */
288 	if (page_uptodate && !PageError(page))
289 		SetPageUptodate(page);
290 	unlock_page(page);
291 	return;
292 
293 still_busy:
294 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 	return;
296 }
297 
298 struct decrypt_bh_ctx {
299 	struct work_struct work;
300 	struct buffer_head *bh;
301 };
302 
303 static void decrypt_bh(struct work_struct *work)
304 {
305 	struct decrypt_bh_ctx *ctx =
306 		container_of(work, struct decrypt_bh_ctx, work);
307 	struct buffer_head *bh = ctx->bh;
308 	int err;
309 
310 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 					       bh_offset(bh));
312 	end_buffer_async_read(bh, err == 0);
313 	kfree(ctx);
314 }
315 
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 	/* Decrypt if needed */
323 	if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
324 	    IS_ENCRYPTED(bh->b_page->mapping->host) &&
325 	    S_ISREG(bh->b_page->mapping->host->i_mode)) {
326 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
327 
328 		if (ctx) {
329 			INIT_WORK(&ctx->work, decrypt_bh);
330 			ctx->bh = bh;
331 			fscrypt_enqueue_decrypt_work(&ctx->work);
332 			return;
333 		}
334 		uptodate = 0;
335 	}
336 	end_buffer_async_read(bh, uptodate);
337 }
338 
339 /*
340  * Completion handler for block_write_full_page() - pages which are unlocked
341  * during I/O, and which have PageWriteback cleared upon I/O completion.
342  */
343 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
344 {
345 	unsigned long flags;
346 	struct buffer_head *first;
347 	struct buffer_head *tmp;
348 	struct page *page;
349 
350 	BUG_ON(!buffer_async_write(bh));
351 
352 	page = bh->b_page;
353 	if (uptodate) {
354 		set_buffer_uptodate(bh);
355 	} else {
356 		buffer_io_error(bh, ", lost async page write");
357 		mark_buffer_write_io_error(bh);
358 		clear_buffer_uptodate(bh);
359 		SetPageError(page);
360 	}
361 
362 	first = page_buffers(page);
363 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
364 
365 	clear_buffer_async_write(bh);
366 	unlock_buffer(bh);
367 	tmp = bh->b_this_page;
368 	while (tmp != bh) {
369 		if (buffer_async_write(tmp)) {
370 			BUG_ON(!buffer_locked(tmp));
371 			goto still_busy;
372 		}
373 		tmp = tmp->b_this_page;
374 	}
375 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
376 	end_page_writeback(page);
377 	return;
378 
379 still_busy:
380 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
381 	return;
382 }
383 EXPORT_SYMBOL(end_buffer_async_write);
384 
385 /*
386  * If a page's buffers are under async readin (end_buffer_async_read
387  * completion) then there is a possibility that another thread of
388  * control could lock one of the buffers after it has completed
389  * but while some of the other buffers have not completed.  This
390  * locked buffer would confuse end_buffer_async_read() into not unlocking
391  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
392  * that this buffer is not under async I/O.
393  *
394  * The page comes unlocked when it has no locked buffer_async buffers
395  * left.
396  *
397  * PageLocked prevents anyone starting new async I/O reads any of
398  * the buffers.
399  *
400  * PageWriteback is used to prevent simultaneous writeout of the same
401  * page.
402  *
403  * PageLocked prevents anyone from starting writeback of a page which is
404  * under read I/O (PageWriteback is only ever set against a locked page).
405  */
406 static void mark_buffer_async_read(struct buffer_head *bh)
407 {
408 	bh->b_end_io = end_buffer_async_read_io;
409 	set_buffer_async_read(bh);
410 }
411 
412 static void mark_buffer_async_write_endio(struct buffer_head *bh,
413 					  bh_end_io_t *handler)
414 {
415 	bh->b_end_io = handler;
416 	set_buffer_async_write(bh);
417 }
418 
419 void mark_buffer_async_write(struct buffer_head *bh)
420 {
421 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
422 }
423 EXPORT_SYMBOL(mark_buffer_async_write);
424 
425 
426 /*
427  * fs/buffer.c contains helper functions for buffer-backed address space's
428  * fsync functions.  A common requirement for buffer-based filesystems is
429  * that certain data from the backing blockdev needs to be written out for
430  * a successful fsync().  For example, ext2 indirect blocks need to be
431  * written back and waited upon before fsync() returns.
432  *
433  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435  * management of a list of dependent buffers at ->i_mapping->private_list.
436  *
437  * Locking is a little subtle: try_to_free_buffers() will remove buffers
438  * from their controlling inode's queue when they are being freed.  But
439  * try_to_free_buffers() will be operating against the *blockdev* mapping
440  * at the time, not against the S_ISREG file which depends on those buffers.
441  * So the locking for private_list is via the private_lock in the address_space
442  * which backs the buffers.  Which is different from the address_space
443  * against which the buffers are listed.  So for a particular address_space,
444  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
445  * mapping->private_list will always be protected by the backing blockdev's
446  * ->private_lock.
447  *
448  * Which introduces a requirement: all buffers on an address_space's
449  * ->private_list must be from the same address_space: the blockdev's.
450  *
451  * address_spaces which do not place buffers at ->private_list via these
452  * utility functions are free to use private_lock and private_list for
453  * whatever they want.  The only requirement is that list_empty(private_list)
454  * be true at clear_inode() time.
455  *
456  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
457  * filesystems should do that.  invalidate_inode_buffers() should just go
458  * BUG_ON(!list_empty).
459  *
460  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
461  * take an address_space, not an inode.  And it should be called
462  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463  * queued up.
464  *
465  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466  * list if it is already on a list.  Because if the buffer is on a list,
467  * it *must* already be on the right one.  If not, the filesystem is being
468  * silly.  This will save a ton of locking.  But first we have to ensure
469  * that buffers are taken *off* the old inode's list when they are freed
470  * (presumably in truncate).  That requires careful auditing of all
471  * filesystems (do it inside bforget()).  It could also be done by bringing
472  * b_inode back.
473  */
474 
475 /*
476  * The buffer's backing address_space's private_lock must be held
477  */
478 static void __remove_assoc_queue(struct buffer_head *bh)
479 {
480 	list_del_init(&bh->b_assoc_buffers);
481 	WARN_ON(!bh->b_assoc_map);
482 	bh->b_assoc_map = NULL;
483 }
484 
485 int inode_has_buffers(struct inode *inode)
486 {
487 	return !list_empty(&inode->i_data.private_list);
488 }
489 
490 /*
491  * osync is designed to support O_SYNC io.  It waits synchronously for
492  * all already-submitted IO to complete, but does not queue any new
493  * writes to the disk.
494  *
495  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
496  * you dirty the buffers, and then use osync_inode_buffers to wait for
497  * completion.  Any other dirty buffers which are not yet queued for
498  * write will not be flushed to disk by the osync.
499  */
500 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
501 {
502 	struct buffer_head *bh;
503 	struct list_head *p;
504 	int err = 0;
505 
506 	spin_lock(lock);
507 repeat:
508 	list_for_each_prev(p, list) {
509 		bh = BH_ENTRY(p);
510 		if (buffer_locked(bh)) {
511 			get_bh(bh);
512 			spin_unlock(lock);
513 			wait_on_buffer(bh);
514 			if (!buffer_uptodate(bh))
515 				err = -EIO;
516 			brelse(bh);
517 			spin_lock(lock);
518 			goto repeat;
519 		}
520 	}
521 	spin_unlock(lock);
522 	return err;
523 }
524 
525 void emergency_thaw_bdev(struct super_block *sb)
526 {
527 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
528 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
529 }
530 
531 /**
532  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
533  * @mapping: the mapping which wants those buffers written
534  *
535  * Starts I/O against the buffers at mapping->private_list, and waits upon
536  * that I/O.
537  *
538  * Basically, this is a convenience function for fsync().
539  * @mapping is a file or directory which needs those buffers to be written for
540  * a successful fsync().
541  */
542 int sync_mapping_buffers(struct address_space *mapping)
543 {
544 	struct address_space *buffer_mapping = mapping->private_data;
545 
546 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
547 		return 0;
548 
549 	return fsync_buffers_list(&buffer_mapping->private_lock,
550 					&mapping->private_list);
551 }
552 EXPORT_SYMBOL(sync_mapping_buffers);
553 
554 /*
555  * Called when we've recently written block `bblock', and it is known that
556  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
557  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
558  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
559  */
560 void write_boundary_block(struct block_device *bdev,
561 			sector_t bblock, unsigned blocksize)
562 {
563 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
564 	if (bh) {
565 		if (buffer_dirty(bh))
566 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
567 		put_bh(bh);
568 	}
569 }
570 
571 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
572 {
573 	struct address_space *mapping = inode->i_mapping;
574 	struct address_space *buffer_mapping = bh->b_page->mapping;
575 
576 	mark_buffer_dirty(bh);
577 	if (!mapping->private_data) {
578 		mapping->private_data = buffer_mapping;
579 	} else {
580 		BUG_ON(mapping->private_data != buffer_mapping);
581 	}
582 	if (!bh->b_assoc_map) {
583 		spin_lock(&buffer_mapping->private_lock);
584 		list_move_tail(&bh->b_assoc_buffers,
585 				&mapping->private_list);
586 		bh->b_assoc_map = mapping;
587 		spin_unlock(&buffer_mapping->private_lock);
588 	}
589 }
590 EXPORT_SYMBOL(mark_buffer_dirty_inode);
591 
592 /*
593  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
594  * dirty.
595  *
596  * If warn is true, then emit a warning if the page is not uptodate and has
597  * not been truncated.
598  *
599  * The caller must hold lock_page_memcg().
600  */
601 void __set_page_dirty(struct page *page, struct address_space *mapping,
602 			     int warn)
603 {
604 	unsigned long flags;
605 
606 	xa_lock_irqsave(&mapping->i_pages, flags);
607 	if (page->mapping) {	/* Race with truncate? */
608 		WARN_ON_ONCE(warn && !PageUptodate(page));
609 		account_page_dirtied(page, mapping);
610 		__xa_set_mark(&mapping->i_pages, page_index(page),
611 				PAGECACHE_TAG_DIRTY);
612 	}
613 	xa_unlock_irqrestore(&mapping->i_pages, flags);
614 }
615 EXPORT_SYMBOL_GPL(__set_page_dirty);
616 
617 /*
618  * Add a page to the dirty page list.
619  *
620  * It is a sad fact of life that this function is called from several places
621  * deeply under spinlocking.  It may not sleep.
622  *
623  * If the page has buffers, the uptodate buffers are set dirty, to preserve
624  * dirty-state coherency between the page and the buffers.  It the page does
625  * not have buffers then when they are later attached they will all be set
626  * dirty.
627  *
628  * The buffers are dirtied before the page is dirtied.  There's a small race
629  * window in which a writepage caller may see the page cleanness but not the
630  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
631  * before the buffers, a concurrent writepage caller could clear the page dirty
632  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
633  * page on the dirty page list.
634  *
635  * We use private_lock to lock against try_to_free_buffers while using the
636  * page's buffer list.  Also use this to protect against clean buffers being
637  * added to the page after it was set dirty.
638  *
639  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
640  * address_space though.
641  */
642 int __set_page_dirty_buffers(struct page *page)
643 {
644 	int newly_dirty;
645 	struct address_space *mapping = page_mapping(page);
646 
647 	if (unlikely(!mapping))
648 		return !TestSetPageDirty(page);
649 
650 	spin_lock(&mapping->private_lock);
651 	if (page_has_buffers(page)) {
652 		struct buffer_head *head = page_buffers(page);
653 		struct buffer_head *bh = head;
654 
655 		do {
656 			set_buffer_dirty(bh);
657 			bh = bh->b_this_page;
658 		} while (bh != head);
659 	}
660 	/*
661 	 * Lock out page->mem_cgroup migration to keep PageDirty
662 	 * synchronized with per-memcg dirty page counters.
663 	 */
664 	lock_page_memcg(page);
665 	newly_dirty = !TestSetPageDirty(page);
666 	spin_unlock(&mapping->private_lock);
667 
668 	if (newly_dirty)
669 		__set_page_dirty(page, mapping, 1);
670 
671 	unlock_page_memcg(page);
672 
673 	if (newly_dirty)
674 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 
676 	return newly_dirty;
677 }
678 EXPORT_SYMBOL(__set_page_dirty_buffers);
679 
680 /*
681  * Write out and wait upon a list of buffers.
682  *
683  * We have conflicting pressures: we want to make sure that all
684  * initially dirty buffers get waited on, but that any subsequently
685  * dirtied buffers don't.  After all, we don't want fsync to last
686  * forever if somebody is actively writing to the file.
687  *
688  * Do this in two main stages: first we copy dirty buffers to a
689  * temporary inode list, queueing the writes as we go.  Then we clean
690  * up, waiting for those writes to complete.
691  *
692  * During this second stage, any subsequent updates to the file may end
693  * up refiling the buffer on the original inode's dirty list again, so
694  * there is a chance we will end up with a buffer queued for write but
695  * not yet completed on that list.  So, as a final cleanup we go through
696  * the osync code to catch these locked, dirty buffers without requeuing
697  * any newly dirty buffers for write.
698  */
699 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
700 {
701 	struct buffer_head *bh;
702 	struct list_head tmp;
703 	struct address_space *mapping;
704 	int err = 0, err2;
705 	struct blk_plug plug;
706 
707 	INIT_LIST_HEAD(&tmp);
708 	blk_start_plug(&plug);
709 
710 	spin_lock(lock);
711 	while (!list_empty(list)) {
712 		bh = BH_ENTRY(list->next);
713 		mapping = bh->b_assoc_map;
714 		__remove_assoc_queue(bh);
715 		/* Avoid race with mark_buffer_dirty_inode() which does
716 		 * a lockless check and we rely on seeing the dirty bit */
717 		smp_mb();
718 		if (buffer_dirty(bh) || buffer_locked(bh)) {
719 			list_add(&bh->b_assoc_buffers, &tmp);
720 			bh->b_assoc_map = mapping;
721 			if (buffer_dirty(bh)) {
722 				get_bh(bh);
723 				spin_unlock(lock);
724 				/*
725 				 * Ensure any pending I/O completes so that
726 				 * write_dirty_buffer() actually writes the
727 				 * current contents - it is a noop if I/O is
728 				 * still in flight on potentially older
729 				 * contents.
730 				 */
731 				write_dirty_buffer(bh, REQ_SYNC);
732 
733 				/*
734 				 * Kick off IO for the previous mapping. Note
735 				 * that we will not run the very last mapping,
736 				 * wait_on_buffer() will do that for us
737 				 * through sync_buffer().
738 				 */
739 				brelse(bh);
740 				spin_lock(lock);
741 			}
742 		}
743 	}
744 
745 	spin_unlock(lock);
746 	blk_finish_plug(&plug);
747 	spin_lock(lock);
748 
749 	while (!list_empty(&tmp)) {
750 		bh = BH_ENTRY(tmp.prev);
751 		get_bh(bh);
752 		mapping = bh->b_assoc_map;
753 		__remove_assoc_queue(bh);
754 		/* Avoid race with mark_buffer_dirty_inode() which does
755 		 * a lockless check and we rely on seeing the dirty bit */
756 		smp_mb();
757 		if (buffer_dirty(bh)) {
758 			list_add(&bh->b_assoc_buffers,
759 				 &mapping->private_list);
760 			bh->b_assoc_map = mapping;
761 		}
762 		spin_unlock(lock);
763 		wait_on_buffer(bh);
764 		if (!buffer_uptodate(bh))
765 			err = -EIO;
766 		brelse(bh);
767 		spin_lock(lock);
768 	}
769 
770 	spin_unlock(lock);
771 	err2 = osync_buffers_list(lock, list);
772 	if (err)
773 		return err;
774 	else
775 		return err2;
776 }
777 
778 /*
779  * Invalidate any and all dirty buffers on a given inode.  We are
780  * probably unmounting the fs, but that doesn't mean we have already
781  * done a sync().  Just drop the buffers from the inode list.
782  *
783  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
784  * assumes that all the buffers are against the blockdev.  Not true
785  * for reiserfs.
786  */
787 void invalidate_inode_buffers(struct inode *inode)
788 {
789 	if (inode_has_buffers(inode)) {
790 		struct address_space *mapping = &inode->i_data;
791 		struct list_head *list = &mapping->private_list;
792 		struct address_space *buffer_mapping = mapping->private_data;
793 
794 		spin_lock(&buffer_mapping->private_lock);
795 		while (!list_empty(list))
796 			__remove_assoc_queue(BH_ENTRY(list->next));
797 		spin_unlock(&buffer_mapping->private_lock);
798 	}
799 }
800 EXPORT_SYMBOL(invalidate_inode_buffers);
801 
802 /*
803  * Remove any clean buffers from the inode's buffer list.  This is called
804  * when we're trying to free the inode itself.  Those buffers can pin it.
805  *
806  * Returns true if all buffers were removed.
807  */
808 int remove_inode_buffers(struct inode *inode)
809 {
810 	int ret = 1;
811 
812 	if (inode_has_buffers(inode)) {
813 		struct address_space *mapping = &inode->i_data;
814 		struct list_head *list = &mapping->private_list;
815 		struct address_space *buffer_mapping = mapping->private_data;
816 
817 		spin_lock(&buffer_mapping->private_lock);
818 		while (!list_empty(list)) {
819 			struct buffer_head *bh = BH_ENTRY(list->next);
820 			if (buffer_dirty(bh)) {
821 				ret = 0;
822 				break;
823 			}
824 			__remove_assoc_queue(bh);
825 		}
826 		spin_unlock(&buffer_mapping->private_lock);
827 	}
828 	return ret;
829 }
830 
831 /*
832  * Create the appropriate buffers when given a page for data area and
833  * the size of each buffer.. Use the bh->b_this_page linked list to
834  * follow the buffers created.  Return NULL if unable to create more
835  * buffers.
836  *
837  * The retry flag is used to differentiate async IO (paging, swapping)
838  * which may not fail from ordinary buffer allocations.
839  */
840 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
841 		bool retry)
842 {
843 	struct buffer_head *bh, *head;
844 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
845 	long offset;
846 	struct mem_cgroup *memcg;
847 
848 	if (retry)
849 		gfp |= __GFP_NOFAIL;
850 
851 	memcg = get_mem_cgroup_from_page(page);
852 	memalloc_use_memcg(memcg);
853 
854 	head = NULL;
855 	offset = PAGE_SIZE;
856 	while ((offset -= size) >= 0) {
857 		bh = alloc_buffer_head(gfp);
858 		if (!bh)
859 			goto no_grow;
860 
861 		bh->b_this_page = head;
862 		bh->b_blocknr = -1;
863 		head = bh;
864 
865 		bh->b_size = size;
866 
867 		/* Link the buffer to its page */
868 		set_bh_page(bh, page, offset);
869 	}
870 out:
871 	memalloc_unuse_memcg();
872 	mem_cgroup_put(memcg);
873 	return head;
874 /*
875  * In case anything failed, we just free everything we got.
876  */
877 no_grow:
878 	if (head) {
879 		do {
880 			bh = head;
881 			head = head->b_this_page;
882 			free_buffer_head(bh);
883 		} while (head);
884 	}
885 
886 	goto out;
887 }
888 EXPORT_SYMBOL_GPL(alloc_page_buffers);
889 
890 static inline void
891 link_dev_buffers(struct page *page, struct buffer_head *head)
892 {
893 	struct buffer_head *bh, *tail;
894 
895 	bh = head;
896 	do {
897 		tail = bh;
898 		bh = bh->b_this_page;
899 	} while (bh);
900 	tail->b_this_page = head;
901 	attach_page_private(page, head);
902 }
903 
904 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
905 {
906 	sector_t retval = ~((sector_t)0);
907 	loff_t sz = i_size_read(bdev->bd_inode);
908 
909 	if (sz) {
910 		unsigned int sizebits = blksize_bits(size);
911 		retval = (sz >> sizebits);
912 	}
913 	return retval;
914 }
915 
916 /*
917  * Initialise the state of a blockdev page's buffers.
918  */
919 static sector_t
920 init_page_buffers(struct page *page, struct block_device *bdev,
921 			sector_t block, int size)
922 {
923 	struct buffer_head *head = page_buffers(page);
924 	struct buffer_head *bh = head;
925 	int uptodate = PageUptodate(page);
926 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
927 
928 	do {
929 		if (!buffer_mapped(bh)) {
930 			bh->b_end_io = NULL;
931 			bh->b_private = NULL;
932 			bh->b_bdev = bdev;
933 			bh->b_blocknr = block;
934 			if (uptodate)
935 				set_buffer_uptodate(bh);
936 			if (block < end_block)
937 				set_buffer_mapped(bh);
938 		}
939 		block++;
940 		bh = bh->b_this_page;
941 	} while (bh != head);
942 
943 	/*
944 	 * Caller needs to validate requested block against end of device.
945 	 */
946 	return end_block;
947 }
948 
949 /*
950  * Create the page-cache page that contains the requested block.
951  *
952  * This is used purely for blockdev mappings.
953  */
954 static int
955 grow_dev_page(struct block_device *bdev, sector_t block,
956 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
957 {
958 	struct inode *inode = bdev->bd_inode;
959 	struct page *page;
960 	struct buffer_head *bh;
961 	sector_t end_block;
962 	int ret = 0;
963 	gfp_t gfp_mask;
964 
965 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
966 
967 	/*
968 	 * XXX: __getblk_slow() can not really deal with failure and
969 	 * will endlessly loop on improvised global reclaim.  Prefer
970 	 * looping in the allocator rather than here, at least that
971 	 * code knows what it's doing.
972 	 */
973 	gfp_mask |= __GFP_NOFAIL;
974 
975 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
976 
977 	BUG_ON(!PageLocked(page));
978 
979 	if (page_has_buffers(page)) {
980 		bh = page_buffers(page);
981 		if (bh->b_size == size) {
982 			end_block = init_page_buffers(page, bdev,
983 						(sector_t)index << sizebits,
984 						size);
985 			goto done;
986 		}
987 		if (!try_to_free_buffers(page))
988 			goto failed;
989 	}
990 
991 	/*
992 	 * Allocate some buffers for this page
993 	 */
994 	bh = alloc_page_buffers(page, size, true);
995 
996 	/*
997 	 * Link the page to the buffers and initialise them.  Take the
998 	 * lock to be atomic wrt __find_get_block(), which does not
999 	 * run under the page lock.
1000 	 */
1001 	spin_lock(&inode->i_mapping->private_lock);
1002 	link_dev_buffers(page, bh);
1003 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1004 			size);
1005 	spin_unlock(&inode->i_mapping->private_lock);
1006 done:
1007 	ret = (block < end_block) ? 1 : -ENXIO;
1008 failed:
1009 	unlock_page(page);
1010 	put_page(page);
1011 	return ret;
1012 }
1013 
1014 /*
1015  * Create buffers for the specified block device block's page.  If
1016  * that page was dirty, the buffers are set dirty also.
1017  */
1018 static int
1019 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1020 {
1021 	pgoff_t index;
1022 	int sizebits;
1023 
1024 	sizebits = -1;
1025 	do {
1026 		sizebits++;
1027 	} while ((size << sizebits) < PAGE_SIZE);
1028 
1029 	index = block >> sizebits;
1030 
1031 	/*
1032 	 * Check for a block which wants to lie outside our maximum possible
1033 	 * pagecache index.  (this comparison is done using sector_t types).
1034 	 */
1035 	if (unlikely(index != block >> sizebits)) {
1036 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1037 			"device %pg\n",
1038 			__func__, (unsigned long long)block,
1039 			bdev);
1040 		return -EIO;
1041 	}
1042 
1043 	/* Create a page with the proper size buffers.. */
1044 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1045 }
1046 
1047 static struct buffer_head *
1048 __getblk_slow(struct block_device *bdev, sector_t block,
1049 	     unsigned size, gfp_t gfp)
1050 {
1051 	/* Size must be multiple of hard sectorsize */
1052 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1053 			(size < 512 || size > PAGE_SIZE))) {
1054 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1055 					size);
1056 		printk(KERN_ERR "logical block size: %d\n",
1057 					bdev_logical_block_size(bdev));
1058 
1059 		dump_stack();
1060 		return NULL;
1061 	}
1062 
1063 	for (;;) {
1064 		struct buffer_head *bh;
1065 		int ret;
1066 
1067 		bh = __find_get_block(bdev, block, size);
1068 		if (bh)
1069 			return bh;
1070 
1071 		ret = grow_buffers(bdev, block, size, gfp);
1072 		if (ret < 0)
1073 			return NULL;
1074 	}
1075 }
1076 
1077 /*
1078  * The relationship between dirty buffers and dirty pages:
1079  *
1080  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1081  * the page is tagged dirty in the page cache.
1082  *
1083  * At all times, the dirtiness of the buffers represents the dirtiness of
1084  * subsections of the page.  If the page has buffers, the page dirty bit is
1085  * merely a hint about the true dirty state.
1086  *
1087  * When a page is set dirty in its entirety, all its buffers are marked dirty
1088  * (if the page has buffers).
1089  *
1090  * When a buffer is marked dirty, its page is dirtied, but the page's other
1091  * buffers are not.
1092  *
1093  * Also.  When blockdev buffers are explicitly read with bread(), they
1094  * individually become uptodate.  But their backing page remains not
1095  * uptodate - even if all of its buffers are uptodate.  A subsequent
1096  * block_read_full_page() against that page will discover all the uptodate
1097  * buffers, will set the page uptodate and will perform no I/O.
1098  */
1099 
1100 /**
1101  * mark_buffer_dirty - mark a buffer_head as needing writeout
1102  * @bh: the buffer_head to mark dirty
1103  *
1104  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1105  * its backing page dirty, then tag the page as dirty in the page cache
1106  * and then attach the address_space's inode to its superblock's dirty
1107  * inode list.
1108  *
1109  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1110  * i_pages lock and mapping->host->i_lock.
1111  */
1112 void mark_buffer_dirty(struct buffer_head *bh)
1113 {
1114 	WARN_ON_ONCE(!buffer_uptodate(bh));
1115 
1116 	trace_block_dirty_buffer(bh);
1117 
1118 	/*
1119 	 * Very *carefully* optimize the it-is-already-dirty case.
1120 	 *
1121 	 * Don't let the final "is it dirty" escape to before we
1122 	 * perhaps modified the buffer.
1123 	 */
1124 	if (buffer_dirty(bh)) {
1125 		smp_mb();
1126 		if (buffer_dirty(bh))
1127 			return;
1128 	}
1129 
1130 	if (!test_set_buffer_dirty(bh)) {
1131 		struct page *page = bh->b_page;
1132 		struct address_space *mapping = NULL;
1133 
1134 		lock_page_memcg(page);
1135 		if (!TestSetPageDirty(page)) {
1136 			mapping = page_mapping(page);
1137 			if (mapping)
1138 				__set_page_dirty(page, mapping, 0);
1139 		}
1140 		unlock_page_memcg(page);
1141 		if (mapping)
1142 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1143 	}
1144 }
1145 EXPORT_SYMBOL(mark_buffer_dirty);
1146 
1147 void mark_buffer_write_io_error(struct buffer_head *bh)
1148 {
1149 	struct super_block *sb;
1150 
1151 	set_buffer_write_io_error(bh);
1152 	/* FIXME: do we need to set this in both places? */
1153 	if (bh->b_page && bh->b_page->mapping)
1154 		mapping_set_error(bh->b_page->mapping, -EIO);
1155 	if (bh->b_assoc_map)
1156 		mapping_set_error(bh->b_assoc_map, -EIO);
1157 	rcu_read_lock();
1158 	sb = READ_ONCE(bh->b_bdev->bd_super);
1159 	if (sb)
1160 		errseq_set(&sb->s_wb_err, -EIO);
1161 	rcu_read_unlock();
1162 }
1163 EXPORT_SYMBOL(mark_buffer_write_io_error);
1164 
1165 /*
1166  * Decrement a buffer_head's reference count.  If all buffers against a page
1167  * have zero reference count, are clean and unlocked, and if the page is clean
1168  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1169  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1170  * a page but it ends up not being freed, and buffers may later be reattached).
1171  */
1172 void __brelse(struct buffer_head * buf)
1173 {
1174 	if (atomic_read(&buf->b_count)) {
1175 		put_bh(buf);
1176 		return;
1177 	}
1178 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1179 }
1180 EXPORT_SYMBOL(__brelse);
1181 
1182 /*
1183  * bforget() is like brelse(), except it discards any
1184  * potentially dirty data.
1185  */
1186 void __bforget(struct buffer_head *bh)
1187 {
1188 	clear_buffer_dirty(bh);
1189 	if (bh->b_assoc_map) {
1190 		struct address_space *buffer_mapping = bh->b_page->mapping;
1191 
1192 		spin_lock(&buffer_mapping->private_lock);
1193 		list_del_init(&bh->b_assoc_buffers);
1194 		bh->b_assoc_map = NULL;
1195 		spin_unlock(&buffer_mapping->private_lock);
1196 	}
1197 	__brelse(bh);
1198 }
1199 EXPORT_SYMBOL(__bforget);
1200 
1201 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1202 {
1203 	lock_buffer(bh);
1204 	if (buffer_uptodate(bh)) {
1205 		unlock_buffer(bh);
1206 		return bh;
1207 	} else {
1208 		get_bh(bh);
1209 		bh->b_end_io = end_buffer_read_sync;
1210 		submit_bh(REQ_OP_READ, 0, bh);
1211 		wait_on_buffer(bh);
1212 		if (buffer_uptodate(bh))
1213 			return bh;
1214 	}
1215 	brelse(bh);
1216 	return NULL;
1217 }
1218 
1219 /*
1220  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1221  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1222  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1223  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1224  * CPU's LRUs at the same time.
1225  *
1226  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1227  * sb_find_get_block().
1228  *
1229  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1230  * a local interrupt disable for that.
1231  */
1232 
1233 #define BH_LRU_SIZE	16
1234 
1235 struct bh_lru {
1236 	struct buffer_head *bhs[BH_LRU_SIZE];
1237 };
1238 
1239 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1240 
1241 #ifdef CONFIG_SMP
1242 #define bh_lru_lock()	local_irq_disable()
1243 #define bh_lru_unlock()	local_irq_enable()
1244 #else
1245 #define bh_lru_lock()	preempt_disable()
1246 #define bh_lru_unlock()	preempt_enable()
1247 #endif
1248 
1249 static inline void check_irqs_on(void)
1250 {
1251 #ifdef irqs_disabled
1252 	BUG_ON(irqs_disabled());
1253 #endif
1254 }
1255 
1256 /*
1257  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1258  * inserted at the front, and the buffer_head at the back if any is evicted.
1259  * Or, if already in the LRU it is moved to the front.
1260  */
1261 static void bh_lru_install(struct buffer_head *bh)
1262 {
1263 	struct buffer_head *evictee = bh;
1264 	struct bh_lru *b;
1265 	int i;
1266 
1267 	check_irqs_on();
1268 	bh_lru_lock();
1269 
1270 	b = this_cpu_ptr(&bh_lrus);
1271 	for (i = 0; i < BH_LRU_SIZE; i++) {
1272 		swap(evictee, b->bhs[i]);
1273 		if (evictee == bh) {
1274 			bh_lru_unlock();
1275 			return;
1276 		}
1277 	}
1278 
1279 	get_bh(bh);
1280 	bh_lru_unlock();
1281 	brelse(evictee);
1282 }
1283 
1284 /*
1285  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1286  */
1287 static struct buffer_head *
1288 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1289 {
1290 	struct buffer_head *ret = NULL;
1291 	unsigned int i;
1292 
1293 	check_irqs_on();
1294 	bh_lru_lock();
1295 	for (i = 0; i < BH_LRU_SIZE; i++) {
1296 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1297 
1298 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1299 		    bh->b_size == size) {
1300 			if (i) {
1301 				while (i) {
1302 					__this_cpu_write(bh_lrus.bhs[i],
1303 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1304 					i--;
1305 				}
1306 				__this_cpu_write(bh_lrus.bhs[0], bh);
1307 			}
1308 			get_bh(bh);
1309 			ret = bh;
1310 			break;
1311 		}
1312 	}
1313 	bh_lru_unlock();
1314 	return ret;
1315 }
1316 
1317 /*
1318  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1319  * it in the LRU and mark it as accessed.  If it is not present then return
1320  * NULL
1321  */
1322 struct buffer_head *
1323 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1324 {
1325 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1326 
1327 	if (bh == NULL) {
1328 		/* __find_get_block_slow will mark the page accessed */
1329 		bh = __find_get_block_slow(bdev, block);
1330 		if (bh)
1331 			bh_lru_install(bh);
1332 	} else
1333 		touch_buffer(bh);
1334 
1335 	return bh;
1336 }
1337 EXPORT_SYMBOL(__find_get_block);
1338 
1339 /*
1340  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1341  * which corresponds to the passed block_device, block and size. The
1342  * returned buffer has its reference count incremented.
1343  *
1344  * __getblk_gfp() will lock up the machine if grow_dev_page's
1345  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1346  */
1347 struct buffer_head *
1348 __getblk_gfp(struct block_device *bdev, sector_t block,
1349 	     unsigned size, gfp_t gfp)
1350 {
1351 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1352 
1353 	might_sleep();
1354 	if (bh == NULL)
1355 		bh = __getblk_slow(bdev, block, size, gfp);
1356 	return bh;
1357 }
1358 EXPORT_SYMBOL(__getblk_gfp);
1359 
1360 /*
1361  * Do async read-ahead on a buffer..
1362  */
1363 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1364 {
1365 	struct buffer_head *bh = __getblk(bdev, block, size);
1366 	if (likely(bh)) {
1367 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1368 		brelse(bh);
1369 	}
1370 }
1371 EXPORT_SYMBOL(__breadahead);
1372 
1373 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1374 		      gfp_t gfp)
1375 {
1376 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1377 	if (likely(bh)) {
1378 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1379 		brelse(bh);
1380 	}
1381 }
1382 EXPORT_SYMBOL(__breadahead_gfp);
1383 
1384 /**
1385  *  __bread_gfp() - reads a specified block and returns the bh
1386  *  @bdev: the block_device to read from
1387  *  @block: number of block
1388  *  @size: size (in bytes) to read
1389  *  @gfp: page allocation flag
1390  *
1391  *  Reads a specified block, and returns buffer head that contains it.
1392  *  The page cache can be allocated from non-movable area
1393  *  not to prevent page migration if you set gfp to zero.
1394  *  It returns NULL if the block was unreadable.
1395  */
1396 struct buffer_head *
1397 __bread_gfp(struct block_device *bdev, sector_t block,
1398 		   unsigned size, gfp_t gfp)
1399 {
1400 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1401 
1402 	if (likely(bh) && !buffer_uptodate(bh))
1403 		bh = __bread_slow(bh);
1404 	return bh;
1405 }
1406 EXPORT_SYMBOL(__bread_gfp);
1407 
1408 /*
1409  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1410  * This doesn't race because it runs in each cpu either in irq
1411  * or with preempt disabled.
1412  */
1413 static void invalidate_bh_lru(void *arg)
1414 {
1415 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1416 	int i;
1417 
1418 	for (i = 0; i < BH_LRU_SIZE; i++) {
1419 		brelse(b->bhs[i]);
1420 		b->bhs[i] = NULL;
1421 	}
1422 	put_cpu_var(bh_lrus);
1423 }
1424 
1425 static bool has_bh_in_lru(int cpu, void *dummy)
1426 {
1427 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1428 	int i;
1429 
1430 	for (i = 0; i < BH_LRU_SIZE; i++) {
1431 		if (b->bhs[i])
1432 			return true;
1433 	}
1434 
1435 	return false;
1436 }
1437 
1438 void invalidate_bh_lrus(void)
1439 {
1440 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1441 }
1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1443 
1444 void set_bh_page(struct buffer_head *bh,
1445 		struct page *page, unsigned long offset)
1446 {
1447 	bh->b_page = page;
1448 	BUG_ON(offset >= PAGE_SIZE);
1449 	if (PageHighMem(page))
1450 		/*
1451 		 * This catches illegal uses and preserves the offset:
1452 		 */
1453 		bh->b_data = (char *)(0 + offset);
1454 	else
1455 		bh->b_data = page_address(page) + offset;
1456 }
1457 EXPORT_SYMBOL(set_bh_page);
1458 
1459 /*
1460  * Called when truncating a buffer on a page completely.
1461  */
1462 
1463 /* Bits that are cleared during an invalidate */
1464 #define BUFFER_FLAGS_DISCARD \
1465 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1466 	 1 << BH_Delay | 1 << BH_Unwritten)
1467 
1468 static void discard_buffer(struct buffer_head * bh)
1469 {
1470 	unsigned long b_state, b_state_old;
1471 
1472 	lock_buffer(bh);
1473 	clear_buffer_dirty(bh);
1474 	bh->b_bdev = NULL;
1475 	b_state = bh->b_state;
1476 	for (;;) {
1477 		b_state_old = cmpxchg(&bh->b_state, b_state,
1478 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1479 		if (b_state_old == b_state)
1480 			break;
1481 		b_state = b_state_old;
1482 	}
1483 	unlock_buffer(bh);
1484 }
1485 
1486 /**
1487  * block_invalidatepage - invalidate part or all of a buffer-backed page
1488  *
1489  * @page: the page which is affected
1490  * @offset: start of the range to invalidate
1491  * @length: length of the range to invalidate
1492  *
1493  * block_invalidatepage() is called when all or part of the page has become
1494  * invalidated by a truncate operation.
1495  *
1496  * block_invalidatepage() does not have to release all buffers, but it must
1497  * ensure that no dirty buffer is left outside @offset and that no I/O
1498  * is underway against any of the blocks which are outside the truncation
1499  * point.  Because the caller is about to free (and possibly reuse) those
1500  * blocks on-disk.
1501  */
1502 void block_invalidatepage(struct page *page, unsigned int offset,
1503 			  unsigned int length)
1504 {
1505 	struct buffer_head *head, *bh, *next;
1506 	unsigned int curr_off = 0;
1507 	unsigned int stop = length + offset;
1508 
1509 	BUG_ON(!PageLocked(page));
1510 	if (!page_has_buffers(page))
1511 		goto out;
1512 
1513 	/*
1514 	 * Check for overflow
1515 	 */
1516 	BUG_ON(stop > PAGE_SIZE || stop < length);
1517 
1518 	head = page_buffers(page);
1519 	bh = head;
1520 	do {
1521 		unsigned int next_off = curr_off + bh->b_size;
1522 		next = bh->b_this_page;
1523 
1524 		/*
1525 		 * Are we still fully in range ?
1526 		 */
1527 		if (next_off > stop)
1528 			goto out;
1529 
1530 		/*
1531 		 * is this block fully invalidated?
1532 		 */
1533 		if (offset <= curr_off)
1534 			discard_buffer(bh);
1535 		curr_off = next_off;
1536 		bh = next;
1537 	} while (bh != head);
1538 
1539 	/*
1540 	 * We release buffers only if the entire page is being invalidated.
1541 	 * The get_block cached value has been unconditionally invalidated,
1542 	 * so real IO is not possible anymore.
1543 	 */
1544 	if (length == PAGE_SIZE)
1545 		try_to_release_page(page, 0);
1546 out:
1547 	return;
1548 }
1549 EXPORT_SYMBOL(block_invalidatepage);
1550 
1551 
1552 /*
1553  * We attach and possibly dirty the buffers atomically wrt
1554  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1555  * is already excluded via the page lock.
1556  */
1557 void create_empty_buffers(struct page *page,
1558 			unsigned long blocksize, unsigned long b_state)
1559 {
1560 	struct buffer_head *bh, *head, *tail;
1561 
1562 	head = alloc_page_buffers(page, blocksize, true);
1563 	bh = head;
1564 	do {
1565 		bh->b_state |= b_state;
1566 		tail = bh;
1567 		bh = bh->b_this_page;
1568 	} while (bh);
1569 	tail->b_this_page = head;
1570 
1571 	spin_lock(&page->mapping->private_lock);
1572 	if (PageUptodate(page) || PageDirty(page)) {
1573 		bh = head;
1574 		do {
1575 			if (PageDirty(page))
1576 				set_buffer_dirty(bh);
1577 			if (PageUptodate(page))
1578 				set_buffer_uptodate(bh);
1579 			bh = bh->b_this_page;
1580 		} while (bh != head);
1581 	}
1582 	attach_page_private(page, head);
1583 	spin_unlock(&page->mapping->private_lock);
1584 }
1585 EXPORT_SYMBOL(create_empty_buffers);
1586 
1587 /**
1588  * clean_bdev_aliases: clean a range of buffers in block device
1589  * @bdev: Block device to clean buffers in
1590  * @block: Start of a range of blocks to clean
1591  * @len: Number of blocks to clean
1592  *
1593  * We are taking a range of blocks for data and we don't want writeback of any
1594  * buffer-cache aliases starting from return from this function and until the
1595  * moment when something will explicitly mark the buffer dirty (hopefully that
1596  * will not happen until we will free that block ;-) We don't even need to mark
1597  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1598  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1599  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1600  * would confuse anyone who might pick it with bread() afterwards...
1601  *
1602  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1603  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1604  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1605  * need to.  That happens here.
1606  */
1607 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1608 {
1609 	struct inode *bd_inode = bdev->bd_inode;
1610 	struct address_space *bd_mapping = bd_inode->i_mapping;
1611 	struct pagevec pvec;
1612 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1613 	pgoff_t end;
1614 	int i, count;
1615 	struct buffer_head *bh;
1616 	struct buffer_head *head;
1617 
1618 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1619 	pagevec_init(&pvec);
1620 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1621 		count = pagevec_count(&pvec);
1622 		for (i = 0; i < count; i++) {
1623 			struct page *page = pvec.pages[i];
1624 
1625 			if (!page_has_buffers(page))
1626 				continue;
1627 			/*
1628 			 * We use page lock instead of bd_mapping->private_lock
1629 			 * to pin buffers here since we can afford to sleep and
1630 			 * it scales better than a global spinlock lock.
1631 			 */
1632 			lock_page(page);
1633 			/* Recheck when the page is locked which pins bhs */
1634 			if (!page_has_buffers(page))
1635 				goto unlock_page;
1636 			head = page_buffers(page);
1637 			bh = head;
1638 			do {
1639 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1640 					goto next;
1641 				if (bh->b_blocknr >= block + len)
1642 					break;
1643 				clear_buffer_dirty(bh);
1644 				wait_on_buffer(bh);
1645 				clear_buffer_req(bh);
1646 next:
1647 				bh = bh->b_this_page;
1648 			} while (bh != head);
1649 unlock_page:
1650 			unlock_page(page);
1651 		}
1652 		pagevec_release(&pvec);
1653 		cond_resched();
1654 		/* End of range already reached? */
1655 		if (index > end || !index)
1656 			break;
1657 	}
1658 }
1659 EXPORT_SYMBOL(clean_bdev_aliases);
1660 
1661 /*
1662  * Size is a power-of-two in the range 512..PAGE_SIZE,
1663  * and the case we care about most is PAGE_SIZE.
1664  *
1665  * So this *could* possibly be written with those
1666  * constraints in mind (relevant mostly if some
1667  * architecture has a slow bit-scan instruction)
1668  */
1669 static inline int block_size_bits(unsigned int blocksize)
1670 {
1671 	return ilog2(blocksize);
1672 }
1673 
1674 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1675 {
1676 	BUG_ON(!PageLocked(page));
1677 
1678 	if (!page_has_buffers(page))
1679 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1680 				     b_state);
1681 	return page_buffers(page);
1682 }
1683 
1684 /*
1685  * NOTE! All mapped/uptodate combinations are valid:
1686  *
1687  *	Mapped	Uptodate	Meaning
1688  *
1689  *	No	No		"unknown" - must do get_block()
1690  *	No	Yes		"hole" - zero-filled
1691  *	Yes	No		"allocated" - allocated on disk, not read in
1692  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1693  *
1694  * "Dirty" is valid only with the last case (mapped+uptodate).
1695  */
1696 
1697 /*
1698  * While block_write_full_page is writing back the dirty buffers under
1699  * the page lock, whoever dirtied the buffers may decide to clean them
1700  * again at any time.  We handle that by only looking at the buffer
1701  * state inside lock_buffer().
1702  *
1703  * If block_write_full_page() is called for regular writeback
1704  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1705  * locked buffer.   This only can happen if someone has written the buffer
1706  * directly, with submit_bh().  At the address_space level PageWriteback
1707  * prevents this contention from occurring.
1708  *
1709  * If block_write_full_page() is called with wbc->sync_mode ==
1710  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1711  * causes the writes to be flagged as synchronous writes.
1712  */
1713 int __block_write_full_page(struct inode *inode, struct page *page,
1714 			get_block_t *get_block, struct writeback_control *wbc,
1715 			bh_end_io_t *handler)
1716 {
1717 	int err;
1718 	sector_t block;
1719 	sector_t last_block;
1720 	struct buffer_head *bh, *head;
1721 	unsigned int blocksize, bbits;
1722 	int nr_underway = 0;
1723 	int write_flags = wbc_to_write_flags(wbc);
1724 
1725 	head = create_page_buffers(page, inode,
1726 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1727 
1728 	/*
1729 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1730 	 * here, and the (potentially unmapped) buffers may become dirty at
1731 	 * any time.  If a buffer becomes dirty here after we've inspected it
1732 	 * then we just miss that fact, and the page stays dirty.
1733 	 *
1734 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1735 	 * handle that here by just cleaning them.
1736 	 */
1737 
1738 	bh = head;
1739 	blocksize = bh->b_size;
1740 	bbits = block_size_bits(blocksize);
1741 
1742 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1743 	last_block = (i_size_read(inode) - 1) >> bbits;
1744 
1745 	/*
1746 	 * Get all the dirty buffers mapped to disk addresses and
1747 	 * handle any aliases from the underlying blockdev's mapping.
1748 	 */
1749 	do {
1750 		if (block > last_block) {
1751 			/*
1752 			 * mapped buffers outside i_size will occur, because
1753 			 * this page can be outside i_size when there is a
1754 			 * truncate in progress.
1755 			 */
1756 			/*
1757 			 * The buffer was zeroed by block_write_full_page()
1758 			 */
1759 			clear_buffer_dirty(bh);
1760 			set_buffer_uptodate(bh);
1761 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1762 			   buffer_dirty(bh)) {
1763 			WARN_ON(bh->b_size != blocksize);
1764 			err = get_block(inode, block, bh, 1);
1765 			if (err)
1766 				goto recover;
1767 			clear_buffer_delay(bh);
1768 			if (buffer_new(bh)) {
1769 				/* blockdev mappings never come here */
1770 				clear_buffer_new(bh);
1771 				clean_bdev_bh_alias(bh);
1772 			}
1773 		}
1774 		bh = bh->b_this_page;
1775 		block++;
1776 	} while (bh != head);
1777 
1778 	do {
1779 		if (!buffer_mapped(bh))
1780 			continue;
1781 		/*
1782 		 * If it's a fully non-blocking write attempt and we cannot
1783 		 * lock the buffer then redirty the page.  Note that this can
1784 		 * potentially cause a busy-wait loop from writeback threads
1785 		 * and kswapd activity, but those code paths have their own
1786 		 * higher-level throttling.
1787 		 */
1788 		if (wbc->sync_mode != WB_SYNC_NONE) {
1789 			lock_buffer(bh);
1790 		} else if (!trylock_buffer(bh)) {
1791 			redirty_page_for_writepage(wbc, page);
1792 			continue;
1793 		}
1794 		if (test_clear_buffer_dirty(bh)) {
1795 			mark_buffer_async_write_endio(bh, handler);
1796 		} else {
1797 			unlock_buffer(bh);
1798 		}
1799 	} while ((bh = bh->b_this_page) != head);
1800 
1801 	/*
1802 	 * The page and its buffers are protected by PageWriteback(), so we can
1803 	 * drop the bh refcounts early.
1804 	 */
1805 	BUG_ON(PageWriteback(page));
1806 	set_page_writeback(page);
1807 
1808 	do {
1809 		struct buffer_head *next = bh->b_this_page;
1810 		if (buffer_async_write(bh)) {
1811 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1812 					inode->i_write_hint, wbc);
1813 			nr_underway++;
1814 		}
1815 		bh = next;
1816 	} while (bh != head);
1817 	unlock_page(page);
1818 
1819 	err = 0;
1820 done:
1821 	if (nr_underway == 0) {
1822 		/*
1823 		 * The page was marked dirty, but the buffers were
1824 		 * clean.  Someone wrote them back by hand with
1825 		 * ll_rw_block/submit_bh.  A rare case.
1826 		 */
1827 		end_page_writeback(page);
1828 
1829 		/*
1830 		 * The page and buffer_heads can be released at any time from
1831 		 * here on.
1832 		 */
1833 	}
1834 	return err;
1835 
1836 recover:
1837 	/*
1838 	 * ENOSPC, or some other error.  We may already have added some
1839 	 * blocks to the file, so we need to write these out to avoid
1840 	 * exposing stale data.
1841 	 * The page is currently locked and not marked for writeback
1842 	 */
1843 	bh = head;
1844 	/* Recovery: lock and submit the mapped buffers */
1845 	do {
1846 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1847 		    !buffer_delay(bh)) {
1848 			lock_buffer(bh);
1849 			mark_buffer_async_write_endio(bh, handler);
1850 		} else {
1851 			/*
1852 			 * The buffer may have been set dirty during
1853 			 * attachment to a dirty page.
1854 			 */
1855 			clear_buffer_dirty(bh);
1856 		}
1857 	} while ((bh = bh->b_this_page) != head);
1858 	SetPageError(page);
1859 	BUG_ON(PageWriteback(page));
1860 	mapping_set_error(page->mapping, err);
1861 	set_page_writeback(page);
1862 	do {
1863 		struct buffer_head *next = bh->b_this_page;
1864 		if (buffer_async_write(bh)) {
1865 			clear_buffer_dirty(bh);
1866 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1867 					inode->i_write_hint, wbc);
1868 			nr_underway++;
1869 		}
1870 		bh = next;
1871 	} while (bh != head);
1872 	unlock_page(page);
1873 	goto done;
1874 }
1875 EXPORT_SYMBOL(__block_write_full_page);
1876 
1877 /*
1878  * If a page has any new buffers, zero them out here, and mark them uptodate
1879  * and dirty so they'll be written out (in order to prevent uninitialised
1880  * block data from leaking). And clear the new bit.
1881  */
1882 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1883 {
1884 	unsigned int block_start, block_end;
1885 	struct buffer_head *head, *bh;
1886 
1887 	BUG_ON(!PageLocked(page));
1888 	if (!page_has_buffers(page))
1889 		return;
1890 
1891 	bh = head = page_buffers(page);
1892 	block_start = 0;
1893 	do {
1894 		block_end = block_start + bh->b_size;
1895 
1896 		if (buffer_new(bh)) {
1897 			if (block_end > from && block_start < to) {
1898 				if (!PageUptodate(page)) {
1899 					unsigned start, size;
1900 
1901 					start = max(from, block_start);
1902 					size = min(to, block_end) - start;
1903 
1904 					zero_user(page, start, size);
1905 					set_buffer_uptodate(bh);
1906 				}
1907 
1908 				clear_buffer_new(bh);
1909 				mark_buffer_dirty(bh);
1910 			}
1911 		}
1912 
1913 		block_start = block_end;
1914 		bh = bh->b_this_page;
1915 	} while (bh != head);
1916 }
1917 EXPORT_SYMBOL(page_zero_new_buffers);
1918 
1919 static void
1920 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1921 		struct iomap *iomap)
1922 {
1923 	loff_t offset = block << inode->i_blkbits;
1924 
1925 	bh->b_bdev = iomap->bdev;
1926 
1927 	/*
1928 	 * Block points to offset in file we need to map, iomap contains
1929 	 * the offset at which the map starts. If the map ends before the
1930 	 * current block, then do not map the buffer and let the caller
1931 	 * handle it.
1932 	 */
1933 	BUG_ON(offset >= iomap->offset + iomap->length);
1934 
1935 	switch (iomap->type) {
1936 	case IOMAP_HOLE:
1937 		/*
1938 		 * If the buffer is not up to date or beyond the current EOF,
1939 		 * we need to mark it as new to ensure sub-block zeroing is
1940 		 * executed if necessary.
1941 		 */
1942 		if (!buffer_uptodate(bh) ||
1943 		    (offset >= i_size_read(inode)))
1944 			set_buffer_new(bh);
1945 		break;
1946 	case IOMAP_DELALLOC:
1947 		if (!buffer_uptodate(bh) ||
1948 		    (offset >= i_size_read(inode)))
1949 			set_buffer_new(bh);
1950 		set_buffer_uptodate(bh);
1951 		set_buffer_mapped(bh);
1952 		set_buffer_delay(bh);
1953 		break;
1954 	case IOMAP_UNWRITTEN:
1955 		/*
1956 		 * For unwritten regions, we always need to ensure that regions
1957 		 * in the block we are not writing to are zeroed. Mark the
1958 		 * buffer as new to ensure this.
1959 		 */
1960 		set_buffer_new(bh);
1961 		set_buffer_unwritten(bh);
1962 		/* FALLTHRU */
1963 	case IOMAP_MAPPED:
1964 		if ((iomap->flags & IOMAP_F_NEW) ||
1965 		    offset >= i_size_read(inode))
1966 			set_buffer_new(bh);
1967 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1968 				inode->i_blkbits;
1969 		set_buffer_mapped(bh);
1970 		break;
1971 	}
1972 }
1973 
1974 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1975 		get_block_t *get_block, struct iomap *iomap)
1976 {
1977 	unsigned from = pos & (PAGE_SIZE - 1);
1978 	unsigned to = from + len;
1979 	struct inode *inode = page->mapping->host;
1980 	unsigned block_start, block_end;
1981 	sector_t block;
1982 	int err = 0;
1983 	unsigned blocksize, bbits;
1984 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1985 
1986 	BUG_ON(!PageLocked(page));
1987 	BUG_ON(from > PAGE_SIZE);
1988 	BUG_ON(to > PAGE_SIZE);
1989 	BUG_ON(from > to);
1990 
1991 	head = create_page_buffers(page, inode, 0);
1992 	blocksize = head->b_size;
1993 	bbits = block_size_bits(blocksize);
1994 
1995 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1996 
1997 	for(bh = head, block_start = 0; bh != head || !block_start;
1998 	    block++, block_start=block_end, bh = bh->b_this_page) {
1999 		block_end = block_start + blocksize;
2000 		if (block_end <= from || block_start >= to) {
2001 			if (PageUptodate(page)) {
2002 				if (!buffer_uptodate(bh))
2003 					set_buffer_uptodate(bh);
2004 			}
2005 			continue;
2006 		}
2007 		if (buffer_new(bh))
2008 			clear_buffer_new(bh);
2009 		if (!buffer_mapped(bh)) {
2010 			WARN_ON(bh->b_size != blocksize);
2011 			if (get_block) {
2012 				err = get_block(inode, block, bh, 1);
2013 				if (err)
2014 					break;
2015 			} else {
2016 				iomap_to_bh(inode, block, bh, iomap);
2017 			}
2018 
2019 			if (buffer_new(bh)) {
2020 				clean_bdev_bh_alias(bh);
2021 				if (PageUptodate(page)) {
2022 					clear_buffer_new(bh);
2023 					set_buffer_uptodate(bh);
2024 					mark_buffer_dirty(bh);
2025 					continue;
2026 				}
2027 				if (block_end > to || block_start < from)
2028 					zero_user_segments(page,
2029 						to, block_end,
2030 						block_start, from);
2031 				continue;
2032 			}
2033 		}
2034 		if (PageUptodate(page)) {
2035 			if (!buffer_uptodate(bh))
2036 				set_buffer_uptodate(bh);
2037 			continue;
2038 		}
2039 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2040 		    !buffer_unwritten(bh) &&
2041 		     (block_start < from || block_end > to)) {
2042 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2043 			*wait_bh++=bh;
2044 		}
2045 	}
2046 	/*
2047 	 * If we issued read requests - let them complete.
2048 	 */
2049 	while(wait_bh > wait) {
2050 		wait_on_buffer(*--wait_bh);
2051 		if (!buffer_uptodate(*wait_bh))
2052 			err = -EIO;
2053 	}
2054 	if (unlikely(err))
2055 		page_zero_new_buffers(page, from, to);
2056 	return err;
2057 }
2058 
2059 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2060 		get_block_t *get_block)
2061 {
2062 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2063 }
2064 EXPORT_SYMBOL(__block_write_begin);
2065 
2066 static int __block_commit_write(struct inode *inode, struct page *page,
2067 		unsigned from, unsigned to)
2068 {
2069 	unsigned block_start, block_end;
2070 	int partial = 0;
2071 	unsigned blocksize;
2072 	struct buffer_head *bh, *head;
2073 
2074 	bh = head = page_buffers(page);
2075 	blocksize = bh->b_size;
2076 
2077 	block_start = 0;
2078 	do {
2079 		block_end = block_start + blocksize;
2080 		if (block_end <= from || block_start >= to) {
2081 			if (!buffer_uptodate(bh))
2082 				partial = 1;
2083 		} else {
2084 			set_buffer_uptodate(bh);
2085 			mark_buffer_dirty(bh);
2086 		}
2087 		clear_buffer_new(bh);
2088 
2089 		block_start = block_end;
2090 		bh = bh->b_this_page;
2091 	} while (bh != head);
2092 
2093 	/*
2094 	 * If this is a partial write which happened to make all buffers
2095 	 * uptodate then we can optimize away a bogus readpage() for
2096 	 * the next read(). Here we 'discover' whether the page went
2097 	 * uptodate as a result of this (potentially partial) write.
2098 	 */
2099 	if (!partial)
2100 		SetPageUptodate(page);
2101 	return 0;
2102 }
2103 
2104 /*
2105  * block_write_begin takes care of the basic task of block allocation and
2106  * bringing partial write blocks uptodate first.
2107  *
2108  * The filesystem needs to handle block truncation upon failure.
2109  */
2110 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2111 		unsigned flags, struct page **pagep, get_block_t *get_block)
2112 {
2113 	pgoff_t index = pos >> PAGE_SHIFT;
2114 	struct page *page;
2115 	int status;
2116 
2117 	page = grab_cache_page_write_begin(mapping, index, flags);
2118 	if (!page)
2119 		return -ENOMEM;
2120 
2121 	status = __block_write_begin(page, pos, len, get_block);
2122 	if (unlikely(status)) {
2123 		unlock_page(page);
2124 		put_page(page);
2125 		page = NULL;
2126 	}
2127 
2128 	*pagep = page;
2129 	return status;
2130 }
2131 EXPORT_SYMBOL(block_write_begin);
2132 
2133 int block_write_end(struct file *file, struct address_space *mapping,
2134 			loff_t pos, unsigned len, unsigned copied,
2135 			struct page *page, void *fsdata)
2136 {
2137 	struct inode *inode = mapping->host;
2138 	unsigned start;
2139 
2140 	start = pos & (PAGE_SIZE - 1);
2141 
2142 	if (unlikely(copied < len)) {
2143 		/*
2144 		 * The buffers that were written will now be uptodate, so we
2145 		 * don't have to worry about a readpage reading them and
2146 		 * overwriting a partial write. However if we have encountered
2147 		 * a short write and only partially written into a buffer, it
2148 		 * will not be marked uptodate, so a readpage might come in and
2149 		 * destroy our partial write.
2150 		 *
2151 		 * Do the simplest thing, and just treat any short write to a
2152 		 * non uptodate page as a zero-length write, and force the
2153 		 * caller to redo the whole thing.
2154 		 */
2155 		if (!PageUptodate(page))
2156 			copied = 0;
2157 
2158 		page_zero_new_buffers(page, start+copied, start+len);
2159 	}
2160 	flush_dcache_page(page);
2161 
2162 	/* This could be a short (even 0-length) commit */
2163 	__block_commit_write(inode, page, start, start+copied);
2164 
2165 	return copied;
2166 }
2167 EXPORT_SYMBOL(block_write_end);
2168 
2169 int generic_write_end(struct file *file, struct address_space *mapping,
2170 			loff_t pos, unsigned len, unsigned copied,
2171 			struct page *page, void *fsdata)
2172 {
2173 	struct inode *inode = mapping->host;
2174 	loff_t old_size = inode->i_size;
2175 	bool i_size_changed = false;
2176 
2177 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2178 
2179 	/*
2180 	 * No need to use i_size_read() here, the i_size cannot change under us
2181 	 * because we hold i_rwsem.
2182 	 *
2183 	 * But it's important to update i_size while still holding page lock:
2184 	 * page writeout could otherwise come in and zero beyond i_size.
2185 	 */
2186 	if (pos + copied > inode->i_size) {
2187 		i_size_write(inode, pos + copied);
2188 		i_size_changed = true;
2189 	}
2190 
2191 	unlock_page(page);
2192 	put_page(page);
2193 
2194 	if (old_size < pos)
2195 		pagecache_isize_extended(inode, old_size, pos);
2196 	/*
2197 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2198 	 * makes the holding time of page lock longer. Second, it forces lock
2199 	 * ordering of page lock and transaction start for journaling
2200 	 * filesystems.
2201 	 */
2202 	if (i_size_changed)
2203 		mark_inode_dirty(inode);
2204 	return copied;
2205 }
2206 EXPORT_SYMBOL(generic_write_end);
2207 
2208 /*
2209  * block_is_partially_uptodate checks whether buffers within a page are
2210  * uptodate or not.
2211  *
2212  * Returns true if all buffers which correspond to a file portion
2213  * we want to read are uptodate.
2214  */
2215 int block_is_partially_uptodate(struct page *page, unsigned long from,
2216 					unsigned long count)
2217 {
2218 	unsigned block_start, block_end, blocksize;
2219 	unsigned to;
2220 	struct buffer_head *bh, *head;
2221 	int ret = 1;
2222 
2223 	if (!page_has_buffers(page))
2224 		return 0;
2225 
2226 	head = page_buffers(page);
2227 	blocksize = head->b_size;
2228 	to = min_t(unsigned, PAGE_SIZE - from, count);
2229 	to = from + to;
2230 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2231 		return 0;
2232 
2233 	bh = head;
2234 	block_start = 0;
2235 	do {
2236 		block_end = block_start + blocksize;
2237 		if (block_end > from && block_start < to) {
2238 			if (!buffer_uptodate(bh)) {
2239 				ret = 0;
2240 				break;
2241 			}
2242 			if (block_end >= to)
2243 				break;
2244 		}
2245 		block_start = block_end;
2246 		bh = bh->b_this_page;
2247 	} while (bh != head);
2248 
2249 	return ret;
2250 }
2251 EXPORT_SYMBOL(block_is_partially_uptodate);
2252 
2253 /*
2254  * Generic "read page" function for block devices that have the normal
2255  * get_block functionality. This is most of the block device filesystems.
2256  * Reads the page asynchronously --- the unlock_buffer() and
2257  * set/clear_buffer_uptodate() functions propagate buffer state into the
2258  * page struct once IO has completed.
2259  */
2260 int block_read_full_page(struct page *page, get_block_t *get_block)
2261 {
2262 	struct inode *inode = page->mapping->host;
2263 	sector_t iblock, lblock;
2264 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2265 	unsigned int blocksize, bbits;
2266 	int nr, i;
2267 	int fully_mapped = 1;
2268 
2269 	head = create_page_buffers(page, inode, 0);
2270 	blocksize = head->b_size;
2271 	bbits = block_size_bits(blocksize);
2272 
2273 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2274 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2275 	bh = head;
2276 	nr = 0;
2277 	i = 0;
2278 
2279 	do {
2280 		if (buffer_uptodate(bh))
2281 			continue;
2282 
2283 		if (!buffer_mapped(bh)) {
2284 			int err = 0;
2285 
2286 			fully_mapped = 0;
2287 			if (iblock < lblock) {
2288 				WARN_ON(bh->b_size != blocksize);
2289 				err = get_block(inode, iblock, bh, 0);
2290 				if (err)
2291 					SetPageError(page);
2292 			}
2293 			if (!buffer_mapped(bh)) {
2294 				zero_user(page, i * blocksize, blocksize);
2295 				if (!err)
2296 					set_buffer_uptodate(bh);
2297 				continue;
2298 			}
2299 			/*
2300 			 * get_block() might have updated the buffer
2301 			 * synchronously
2302 			 */
2303 			if (buffer_uptodate(bh))
2304 				continue;
2305 		}
2306 		arr[nr++] = bh;
2307 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2308 
2309 	if (fully_mapped)
2310 		SetPageMappedToDisk(page);
2311 
2312 	if (!nr) {
2313 		/*
2314 		 * All buffers are uptodate - we can set the page uptodate
2315 		 * as well. But not if get_block() returned an error.
2316 		 */
2317 		if (!PageError(page))
2318 			SetPageUptodate(page);
2319 		unlock_page(page);
2320 		return 0;
2321 	}
2322 
2323 	/* Stage two: lock the buffers */
2324 	for (i = 0; i < nr; i++) {
2325 		bh = arr[i];
2326 		lock_buffer(bh);
2327 		mark_buffer_async_read(bh);
2328 	}
2329 
2330 	/*
2331 	 * Stage 3: start the IO.  Check for uptodateness
2332 	 * inside the buffer lock in case another process reading
2333 	 * the underlying blockdev brought it uptodate (the sct fix).
2334 	 */
2335 	for (i = 0; i < nr; i++) {
2336 		bh = arr[i];
2337 		if (buffer_uptodate(bh))
2338 			end_buffer_async_read(bh, 1);
2339 		else
2340 			submit_bh(REQ_OP_READ, 0, bh);
2341 	}
2342 	return 0;
2343 }
2344 EXPORT_SYMBOL(block_read_full_page);
2345 
2346 /* utility function for filesystems that need to do work on expanding
2347  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2348  * deal with the hole.
2349  */
2350 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2351 {
2352 	struct address_space *mapping = inode->i_mapping;
2353 	struct page *page;
2354 	void *fsdata;
2355 	int err;
2356 
2357 	err = inode_newsize_ok(inode, size);
2358 	if (err)
2359 		goto out;
2360 
2361 	err = pagecache_write_begin(NULL, mapping, size, 0,
2362 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2363 	if (err)
2364 		goto out;
2365 
2366 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2367 	BUG_ON(err > 0);
2368 
2369 out:
2370 	return err;
2371 }
2372 EXPORT_SYMBOL(generic_cont_expand_simple);
2373 
2374 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2375 			    loff_t pos, loff_t *bytes)
2376 {
2377 	struct inode *inode = mapping->host;
2378 	unsigned int blocksize = i_blocksize(inode);
2379 	struct page *page;
2380 	void *fsdata;
2381 	pgoff_t index, curidx;
2382 	loff_t curpos;
2383 	unsigned zerofrom, offset, len;
2384 	int err = 0;
2385 
2386 	index = pos >> PAGE_SHIFT;
2387 	offset = pos & ~PAGE_MASK;
2388 
2389 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2390 		zerofrom = curpos & ~PAGE_MASK;
2391 		if (zerofrom & (blocksize-1)) {
2392 			*bytes |= (blocksize-1);
2393 			(*bytes)++;
2394 		}
2395 		len = PAGE_SIZE - zerofrom;
2396 
2397 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2398 					    &page, &fsdata);
2399 		if (err)
2400 			goto out;
2401 		zero_user(page, zerofrom, len);
2402 		err = pagecache_write_end(file, mapping, curpos, len, len,
2403 						page, fsdata);
2404 		if (err < 0)
2405 			goto out;
2406 		BUG_ON(err != len);
2407 		err = 0;
2408 
2409 		balance_dirty_pages_ratelimited(mapping);
2410 
2411 		if (fatal_signal_pending(current)) {
2412 			err = -EINTR;
2413 			goto out;
2414 		}
2415 	}
2416 
2417 	/* page covers the boundary, find the boundary offset */
2418 	if (index == curidx) {
2419 		zerofrom = curpos & ~PAGE_MASK;
2420 		/* if we will expand the thing last block will be filled */
2421 		if (offset <= zerofrom) {
2422 			goto out;
2423 		}
2424 		if (zerofrom & (blocksize-1)) {
2425 			*bytes |= (blocksize-1);
2426 			(*bytes)++;
2427 		}
2428 		len = offset - zerofrom;
2429 
2430 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2431 					    &page, &fsdata);
2432 		if (err)
2433 			goto out;
2434 		zero_user(page, zerofrom, len);
2435 		err = pagecache_write_end(file, mapping, curpos, len, len,
2436 						page, fsdata);
2437 		if (err < 0)
2438 			goto out;
2439 		BUG_ON(err != len);
2440 		err = 0;
2441 	}
2442 out:
2443 	return err;
2444 }
2445 
2446 /*
2447  * For moronic filesystems that do not allow holes in file.
2448  * We may have to extend the file.
2449  */
2450 int cont_write_begin(struct file *file, struct address_space *mapping,
2451 			loff_t pos, unsigned len, unsigned flags,
2452 			struct page **pagep, void **fsdata,
2453 			get_block_t *get_block, loff_t *bytes)
2454 {
2455 	struct inode *inode = mapping->host;
2456 	unsigned int blocksize = i_blocksize(inode);
2457 	unsigned int zerofrom;
2458 	int err;
2459 
2460 	err = cont_expand_zero(file, mapping, pos, bytes);
2461 	if (err)
2462 		return err;
2463 
2464 	zerofrom = *bytes & ~PAGE_MASK;
2465 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2466 		*bytes |= (blocksize-1);
2467 		(*bytes)++;
2468 	}
2469 
2470 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2471 }
2472 EXPORT_SYMBOL(cont_write_begin);
2473 
2474 int block_commit_write(struct page *page, unsigned from, unsigned to)
2475 {
2476 	struct inode *inode = page->mapping->host;
2477 	__block_commit_write(inode,page,from,to);
2478 	return 0;
2479 }
2480 EXPORT_SYMBOL(block_commit_write);
2481 
2482 /*
2483  * block_page_mkwrite() is not allowed to change the file size as it gets
2484  * called from a page fault handler when a page is first dirtied. Hence we must
2485  * be careful to check for EOF conditions here. We set the page up correctly
2486  * for a written page which means we get ENOSPC checking when writing into
2487  * holes and correct delalloc and unwritten extent mapping on filesystems that
2488  * support these features.
2489  *
2490  * We are not allowed to take the i_mutex here so we have to play games to
2491  * protect against truncate races as the page could now be beyond EOF.  Because
2492  * truncate writes the inode size before removing pages, once we have the
2493  * page lock we can determine safely if the page is beyond EOF. If it is not
2494  * beyond EOF, then the page is guaranteed safe against truncation until we
2495  * unlock the page.
2496  *
2497  * Direct callers of this function should protect against filesystem freezing
2498  * using sb_start_pagefault() - sb_end_pagefault() functions.
2499  */
2500 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2501 			 get_block_t get_block)
2502 {
2503 	struct page *page = vmf->page;
2504 	struct inode *inode = file_inode(vma->vm_file);
2505 	unsigned long end;
2506 	loff_t size;
2507 	int ret;
2508 
2509 	lock_page(page);
2510 	size = i_size_read(inode);
2511 	if ((page->mapping != inode->i_mapping) ||
2512 	    (page_offset(page) > size)) {
2513 		/* We overload EFAULT to mean page got truncated */
2514 		ret = -EFAULT;
2515 		goto out_unlock;
2516 	}
2517 
2518 	/* page is wholly or partially inside EOF */
2519 	if (((page->index + 1) << PAGE_SHIFT) > size)
2520 		end = size & ~PAGE_MASK;
2521 	else
2522 		end = PAGE_SIZE;
2523 
2524 	ret = __block_write_begin(page, 0, end, get_block);
2525 	if (!ret)
2526 		ret = block_commit_write(page, 0, end);
2527 
2528 	if (unlikely(ret < 0))
2529 		goto out_unlock;
2530 	set_page_dirty(page);
2531 	wait_for_stable_page(page);
2532 	return 0;
2533 out_unlock:
2534 	unlock_page(page);
2535 	return ret;
2536 }
2537 EXPORT_SYMBOL(block_page_mkwrite);
2538 
2539 /*
2540  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2541  * immediately, while under the page lock.  So it needs a special end_io
2542  * handler which does not touch the bh after unlocking it.
2543  */
2544 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2545 {
2546 	__end_buffer_read_notouch(bh, uptodate);
2547 }
2548 
2549 /*
2550  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2551  * the page (converting it to circular linked list and taking care of page
2552  * dirty races).
2553  */
2554 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2555 {
2556 	struct buffer_head *bh;
2557 
2558 	BUG_ON(!PageLocked(page));
2559 
2560 	spin_lock(&page->mapping->private_lock);
2561 	bh = head;
2562 	do {
2563 		if (PageDirty(page))
2564 			set_buffer_dirty(bh);
2565 		if (!bh->b_this_page)
2566 			bh->b_this_page = head;
2567 		bh = bh->b_this_page;
2568 	} while (bh != head);
2569 	attach_page_private(page, head);
2570 	spin_unlock(&page->mapping->private_lock);
2571 }
2572 
2573 /*
2574  * On entry, the page is fully not uptodate.
2575  * On exit the page is fully uptodate in the areas outside (from,to)
2576  * The filesystem needs to handle block truncation upon failure.
2577  */
2578 int nobh_write_begin(struct address_space *mapping,
2579 			loff_t pos, unsigned len, unsigned flags,
2580 			struct page **pagep, void **fsdata,
2581 			get_block_t *get_block)
2582 {
2583 	struct inode *inode = mapping->host;
2584 	const unsigned blkbits = inode->i_blkbits;
2585 	const unsigned blocksize = 1 << blkbits;
2586 	struct buffer_head *head, *bh;
2587 	struct page *page;
2588 	pgoff_t index;
2589 	unsigned from, to;
2590 	unsigned block_in_page;
2591 	unsigned block_start, block_end;
2592 	sector_t block_in_file;
2593 	int nr_reads = 0;
2594 	int ret = 0;
2595 	int is_mapped_to_disk = 1;
2596 
2597 	index = pos >> PAGE_SHIFT;
2598 	from = pos & (PAGE_SIZE - 1);
2599 	to = from + len;
2600 
2601 	page = grab_cache_page_write_begin(mapping, index, flags);
2602 	if (!page)
2603 		return -ENOMEM;
2604 	*pagep = page;
2605 	*fsdata = NULL;
2606 
2607 	if (page_has_buffers(page)) {
2608 		ret = __block_write_begin(page, pos, len, get_block);
2609 		if (unlikely(ret))
2610 			goto out_release;
2611 		return ret;
2612 	}
2613 
2614 	if (PageMappedToDisk(page))
2615 		return 0;
2616 
2617 	/*
2618 	 * Allocate buffers so that we can keep track of state, and potentially
2619 	 * attach them to the page if an error occurs. In the common case of
2620 	 * no error, they will just be freed again without ever being attached
2621 	 * to the page (which is all OK, because we're under the page lock).
2622 	 *
2623 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2624 	 * than the circular one we're used to.
2625 	 */
2626 	head = alloc_page_buffers(page, blocksize, false);
2627 	if (!head) {
2628 		ret = -ENOMEM;
2629 		goto out_release;
2630 	}
2631 
2632 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2633 
2634 	/*
2635 	 * We loop across all blocks in the page, whether or not they are
2636 	 * part of the affected region.  This is so we can discover if the
2637 	 * page is fully mapped-to-disk.
2638 	 */
2639 	for (block_start = 0, block_in_page = 0, bh = head;
2640 		  block_start < PAGE_SIZE;
2641 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2642 		int create;
2643 
2644 		block_end = block_start + blocksize;
2645 		bh->b_state = 0;
2646 		create = 1;
2647 		if (block_start >= to)
2648 			create = 0;
2649 		ret = get_block(inode, block_in_file + block_in_page,
2650 					bh, create);
2651 		if (ret)
2652 			goto failed;
2653 		if (!buffer_mapped(bh))
2654 			is_mapped_to_disk = 0;
2655 		if (buffer_new(bh))
2656 			clean_bdev_bh_alias(bh);
2657 		if (PageUptodate(page)) {
2658 			set_buffer_uptodate(bh);
2659 			continue;
2660 		}
2661 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2662 			zero_user_segments(page, block_start, from,
2663 							to, block_end);
2664 			continue;
2665 		}
2666 		if (buffer_uptodate(bh))
2667 			continue;	/* reiserfs does this */
2668 		if (block_start < from || block_end > to) {
2669 			lock_buffer(bh);
2670 			bh->b_end_io = end_buffer_read_nobh;
2671 			submit_bh(REQ_OP_READ, 0, bh);
2672 			nr_reads++;
2673 		}
2674 	}
2675 
2676 	if (nr_reads) {
2677 		/*
2678 		 * The page is locked, so these buffers are protected from
2679 		 * any VM or truncate activity.  Hence we don't need to care
2680 		 * for the buffer_head refcounts.
2681 		 */
2682 		for (bh = head; bh; bh = bh->b_this_page) {
2683 			wait_on_buffer(bh);
2684 			if (!buffer_uptodate(bh))
2685 				ret = -EIO;
2686 		}
2687 		if (ret)
2688 			goto failed;
2689 	}
2690 
2691 	if (is_mapped_to_disk)
2692 		SetPageMappedToDisk(page);
2693 
2694 	*fsdata = head; /* to be released by nobh_write_end */
2695 
2696 	return 0;
2697 
2698 failed:
2699 	BUG_ON(!ret);
2700 	/*
2701 	 * Error recovery is a bit difficult. We need to zero out blocks that
2702 	 * were newly allocated, and dirty them to ensure they get written out.
2703 	 * Buffers need to be attached to the page at this point, otherwise
2704 	 * the handling of potential IO errors during writeout would be hard
2705 	 * (could try doing synchronous writeout, but what if that fails too?)
2706 	 */
2707 	attach_nobh_buffers(page, head);
2708 	page_zero_new_buffers(page, from, to);
2709 
2710 out_release:
2711 	unlock_page(page);
2712 	put_page(page);
2713 	*pagep = NULL;
2714 
2715 	return ret;
2716 }
2717 EXPORT_SYMBOL(nobh_write_begin);
2718 
2719 int nobh_write_end(struct file *file, struct address_space *mapping,
2720 			loff_t pos, unsigned len, unsigned copied,
2721 			struct page *page, void *fsdata)
2722 {
2723 	struct inode *inode = page->mapping->host;
2724 	struct buffer_head *head = fsdata;
2725 	struct buffer_head *bh;
2726 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2727 
2728 	if (unlikely(copied < len) && head)
2729 		attach_nobh_buffers(page, head);
2730 	if (page_has_buffers(page))
2731 		return generic_write_end(file, mapping, pos, len,
2732 					copied, page, fsdata);
2733 
2734 	SetPageUptodate(page);
2735 	set_page_dirty(page);
2736 	if (pos+copied > inode->i_size) {
2737 		i_size_write(inode, pos+copied);
2738 		mark_inode_dirty(inode);
2739 	}
2740 
2741 	unlock_page(page);
2742 	put_page(page);
2743 
2744 	while (head) {
2745 		bh = head;
2746 		head = head->b_this_page;
2747 		free_buffer_head(bh);
2748 	}
2749 
2750 	return copied;
2751 }
2752 EXPORT_SYMBOL(nobh_write_end);
2753 
2754 /*
2755  * nobh_writepage() - based on block_full_write_page() except
2756  * that it tries to operate without attaching bufferheads to
2757  * the page.
2758  */
2759 int nobh_writepage(struct page *page, get_block_t *get_block,
2760 			struct writeback_control *wbc)
2761 {
2762 	struct inode * const inode = page->mapping->host;
2763 	loff_t i_size = i_size_read(inode);
2764 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2765 	unsigned offset;
2766 	int ret;
2767 
2768 	/* Is the page fully inside i_size? */
2769 	if (page->index < end_index)
2770 		goto out;
2771 
2772 	/* Is the page fully outside i_size? (truncate in progress) */
2773 	offset = i_size & (PAGE_SIZE-1);
2774 	if (page->index >= end_index+1 || !offset) {
2775 		/*
2776 		 * The page may have dirty, unmapped buffers.  For example,
2777 		 * they may have been added in ext3_writepage().  Make them
2778 		 * freeable here, so the page does not leak.
2779 		 */
2780 #if 0
2781 		/* Not really sure about this  - do we need this ? */
2782 		if (page->mapping->a_ops->invalidatepage)
2783 			page->mapping->a_ops->invalidatepage(page, offset);
2784 #endif
2785 		unlock_page(page);
2786 		return 0; /* don't care */
2787 	}
2788 
2789 	/*
2790 	 * The page straddles i_size.  It must be zeroed out on each and every
2791 	 * writepage invocation because it may be mmapped.  "A file is mapped
2792 	 * in multiples of the page size.  For a file that is not a multiple of
2793 	 * the  page size, the remaining memory is zeroed when mapped, and
2794 	 * writes to that region are not written out to the file."
2795 	 */
2796 	zero_user_segment(page, offset, PAGE_SIZE);
2797 out:
2798 	ret = mpage_writepage(page, get_block, wbc);
2799 	if (ret == -EAGAIN)
2800 		ret = __block_write_full_page(inode, page, get_block, wbc,
2801 					      end_buffer_async_write);
2802 	return ret;
2803 }
2804 EXPORT_SYMBOL(nobh_writepage);
2805 
2806 int nobh_truncate_page(struct address_space *mapping,
2807 			loff_t from, get_block_t *get_block)
2808 {
2809 	pgoff_t index = from >> PAGE_SHIFT;
2810 	unsigned offset = from & (PAGE_SIZE-1);
2811 	unsigned blocksize;
2812 	sector_t iblock;
2813 	unsigned length, pos;
2814 	struct inode *inode = mapping->host;
2815 	struct page *page;
2816 	struct buffer_head map_bh;
2817 	int err;
2818 
2819 	blocksize = i_blocksize(inode);
2820 	length = offset & (blocksize - 1);
2821 
2822 	/* Block boundary? Nothing to do */
2823 	if (!length)
2824 		return 0;
2825 
2826 	length = blocksize - length;
2827 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2828 
2829 	page = grab_cache_page(mapping, index);
2830 	err = -ENOMEM;
2831 	if (!page)
2832 		goto out;
2833 
2834 	if (page_has_buffers(page)) {
2835 has_buffers:
2836 		unlock_page(page);
2837 		put_page(page);
2838 		return block_truncate_page(mapping, from, get_block);
2839 	}
2840 
2841 	/* Find the buffer that contains "offset" */
2842 	pos = blocksize;
2843 	while (offset >= pos) {
2844 		iblock++;
2845 		pos += blocksize;
2846 	}
2847 
2848 	map_bh.b_size = blocksize;
2849 	map_bh.b_state = 0;
2850 	err = get_block(inode, iblock, &map_bh, 0);
2851 	if (err)
2852 		goto unlock;
2853 	/* unmapped? It's a hole - nothing to do */
2854 	if (!buffer_mapped(&map_bh))
2855 		goto unlock;
2856 
2857 	/* Ok, it's mapped. Make sure it's up-to-date */
2858 	if (!PageUptodate(page)) {
2859 		err = mapping->a_ops->readpage(NULL, page);
2860 		if (err) {
2861 			put_page(page);
2862 			goto out;
2863 		}
2864 		lock_page(page);
2865 		if (!PageUptodate(page)) {
2866 			err = -EIO;
2867 			goto unlock;
2868 		}
2869 		if (page_has_buffers(page))
2870 			goto has_buffers;
2871 	}
2872 	zero_user(page, offset, length);
2873 	set_page_dirty(page);
2874 	err = 0;
2875 
2876 unlock:
2877 	unlock_page(page);
2878 	put_page(page);
2879 out:
2880 	return err;
2881 }
2882 EXPORT_SYMBOL(nobh_truncate_page);
2883 
2884 int block_truncate_page(struct address_space *mapping,
2885 			loff_t from, get_block_t *get_block)
2886 {
2887 	pgoff_t index = from >> PAGE_SHIFT;
2888 	unsigned offset = from & (PAGE_SIZE-1);
2889 	unsigned blocksize;
2890 	sector_t iblock;
2891 	unsigned length, pos;
2892 	struct inode *inode = mapping->host;
2893 	struct page *page;
2894 	struct buffer_head *bh;
2895 	int err;
2896 
2897 	blocksize = i_blocksize(inode);
2898 	length = offset & (blocksize - 1);
2899 
2900 	/* Block boundary? Nothing to do */
2901 	if (!length)
2902 		return 0;
2903 
2904 	length = blocksize - length;
2905 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2906 
2907 	page = grab_cache_page(mapping, index);
2908 	err = -ENOMEM;
2909 	if (!page)
2910 		goto out;
2911 
2912 	if (!page_has_buffers(page))
2913 		create_empty_buffers(page, blocksize, 0);
2914 
2915 	/* Find the buffer that contains "offset" */
2916 	bh = page_buffers(page);
2917 	pos = blocksize;
2918 	while (offset >= pos) {
2919 		bh = bh->b_this_page;
2920 		iblock++;
2921 		pos += blocksize;
2922 	}
2923 
2924 	err = 0;
2925 	if (!buffer_mapped(bh)) {
2926 		WARN_ON(bh->b_size != blocksize);
2927 		err = get_block(inode, iblock, bh, 0);
2928 		if (err)
2929 			goto unlock;
2930 		/* unmapped? It's a hole - nothing to do */
2931 		if (!buffer_mapped(bh))
2932 			goto unlock;
2933 	}
2934 
2935 	/* Ok, it's mapped. Make sure it's up-to-date */
2936 	if (PageUptodate(page))
2937 		set_buffer_uptodate(bh);
2938 
2939 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2940 		err = -EIO;
2941 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2942 		wait_on_buffer(bh);
2943 		/* Uhhuh. Read error. Complain and punt. */
2944 		if (!buffer_uptodate(bh))
2945 			goto unlock;
2946 	}
2947 
2948 	zero_user(page, offset, length);
2949 	mark_buffer_dirty(bh);
2950 	err = 0;
2951 
2952 unlock:
2953 	unlock_page(page);
2954 	put_page(page);
2955 out:
2956 	return err;
2957 }
2958 EXPORT_SYMBOL(block_truncate_page);
2959 
2960 /*
2961  * The generic ->writepage function for buffer-backed address_spaces
2962  */
2963 int block_write_full_page(struct page *page, get_block_t *get_block,
2964 			struct writeback_control *wbc)
2965 {
2966 	struct inode * const inode = page->mapping->host;
2967 	loff_t i_size = i_size_read(inode);
2968 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2969 	unsigned offset;
2970 
2971 	/* Is the page fully inside i_size? */
2972 	if (page->index < end_index)
2973 		return __block_write_full_page(inode, page, get_block, wbc,
2974 					       end_buffer_async_write);
2975 
2976 	/* Is the page fully outside i_size? (truncate in progress) */
2977 	offset = i_size & (PAGE_SIZE-1);
2978 	if (page->index >= end_index+1 || !offset) {
2979 		/*
2980 		 * The page may have dirty, unmapped buffers.  For example,
2981 		 * they may have been added in ext3_writepage().  Make them
2982 		 * freeable here, so the page does not leak.
2983 		 */
2984 		do_invalidatepage(page, 0, PAGE_SIZE);
2985 		unlock_page(page);
2986 		return 0; /* don't care */
2987 	}
2988 
2989 	/*
2990 	 * The page straddles i_size.  It must be zeroed out on each and every
2991 	 * writepage invocation because it may be mmapped.  "A file is mapped
2992 	 * in multiples of the page size.  For a file that is not a multiple of
2993 	 * the  page size, the remaining memory is zeroed when mapped, and
2994 	 * writes to that region are not written out to the file."
2995 	 */
2996 	zero_user_segment(page, offset, PAGE_SIZE);
2997 	return __block_write_full_page(inode, page, get_block, wbc,
2998 							end_buffer_async_write);
2999 }
3000 EXPORT_SYMBOL(block_write_full_page);
3001 
3002 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3003 			    get_block_t *get_block)
3004 {
3005 	struct inode *inode = mapping->host;
3006 	struct buffer_head tmp = {
3007 		.b_size = i_blocksize(inode),
3008 	};
3009 
3010 	get_block(inode, block, &tmp, 0);
3011 	return tmp.b_blocknr;
3012 }
3013 EXPORT_SYMBOL(generic_block_bmap);
3014 
3015 static void end_bio_bh_io_sync(struct bio *bio)
3016 {
3017 	struct buffer_head *bh = bio->bi_private;
3018 
3019 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3020 		set_bit(BH_Quiet, &bh->b_state);
3021 
3022 	bh->b_end_io(bh, !bio->bi_status);
3023 	bio_put(bio);
3024 }
3025 
3026 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3027 			 enum rw_hint write_hint, struct writeback_control *wbc)
3028 {
3029 	struct bio *bio;
3030 
3031 	BUG_ON(!buffer_locked(bh));
3032 	BUG_ON(!buffer_mapped(bh));
3033 	BUG_ON(!bh->b_end_io);
3034 	BUG_ON(buffer_delay(bh));
3035 	BUG_ON(buffer_unwritten(bh));
3036 
3037 	/*
3038 	 * Only clear out a write error when rewriting
3039 	 */
3040 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3041 		clear_buffer_write_io_error(bh);
3042 
3043 	/*
3044 	 * from here on down, it's all bio -- do the initial mapping,
3045 	 * submit_bio -> generic_make_request may further map this bio around
3046 	 */
3047 	bio = bio_alloc(GFP_NOIO, 1);
3048 
3049 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3050 	bio_set_dev(bio, bh->b_bdev);
3051 	bio->bi_write_hint = write_hint;
3052 
3053 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3054 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3055 
3056 	bio->bi_end_io = end_bio_bh_io_sync;
3057 	bio->bi_private = bh;
3058 
3059 	if (buffer_meta(bh))
3060 		op_flags |= REQ_META;
3061 	if (buffer_prio(bh))
3062 		op_flags |= REQ_PRIO;
3063 	bio_set_op_attrs(bio, op, op_flags);
3064 
3065 	/* Take care of bh's that straddle the end of the device */
3066 	guard_bio_eod(bio);
3067 
3068 	if (wbc) {
3069 		wbc_init_bio(wbc, bio);
3070 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3071 	}
3072 
3073 	submit_bio(bio);
3074 	return 0;
3075 }
3076 
3077 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3078 {
3079 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3080 }
3081 EXPORT_SYMBOL(submit_bh);
3082 
3083 /**
3084  * ll_rw_block: low-level access to block devices (DEPRECATED)
3085  * @op: whether to %READ or %WRITE
3086  * @op_flags: req_flag_bits
3087  * @nr: number of &struct buffer_heads in the array
3088  * @bhs: array of pointers to &struct buffer_head
3089  *
3090  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3091  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3092  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3093  * %REQ_RAHEAD.
3094  *
3095  * This function drops any buffer that it cannot get a lock on (with the
3096  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3097  * request, and any buffer that appears to be up-to-date when doing read
3098  * request.  Further it marks as clean buffers that are processed for
3099  * writing (the buffer cache won't assume that they are actually clean
3100  * until the buffer gets unlocked).
3101  *
3102  * ll_rw_block sets b_end_io to simple completion handler that marks
3103  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3104  * any waiters.
3105  *
3106  * All of the buffers must be for the same device, and must also be a
3107  * multiple of the current approved size for the device.
3108  */
3109 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3110 {
3111 	int i;
3112 
3113 	for (i = 0; i < nr; i++) {
3114 		struct buffer_head *bh = bhs[i];
3115 
3116 		if (!trylock_buffer(bh))
3117 			continue;
3118 		if (op == WRITE) {
3119 			if (test_clear_buffer_dirty(bh)) {
3120 				bh->b_end_io = end_buffer_write_sync;
3121 				get_bh(bh);
3122 				submit_bh(op, op_flags, bh);
3123 				continue;
3124 			}
3125 		} else {
3126 			if (!buffer_uptodate(bh)) {
3127 				bh->b_end_io = end_buffer_read_sync;
3128 				get_bh(bh);
3129 				submit_bh(op, op_flags, bh);
3130 				continue;
3131 			}
3132 		}
3133 		unlock_buffer(bh);
3134 	}
3135 }
3136 EXPORT_SYMBOL(ll_rw_block);
3137 
3138 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3139 {
3140 	lock_buffer(bh);
3141 	if (!test_clear_buffer_dirty(bh)) {
3142 		unlock_buffer(bh);
3143 		return;
3144 	}
3145 	bh->b_end_io = end_buffer_write_sync;
3146 	get_bh(bh);
3147 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3148 }
3149 EXPORT_SYMBOL(write_dirty_buffer);
3150 
3151 /*
3152  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3153  * and then start new I/O and then wait upon it.  The caller must have a ref on
3154  * the buffer_head.
3155  */
3156 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3157 {
3158 	int ret = 0;
3159 
3160 	WARN_ON(atomic_read(&bh->b_count) < 1);
3161 	lock_buffer(bh);
3162 	if (test_clear_buffer_dirty(bh)) {
3163 		get_bh(bh);
3164 		bh->b_end_io = end_buffer_write_sync;
3165 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3166 		wait_on_buffer(bh);
3167 		if (!ret && !buffer_uptodate(bh))
3168 			ret = -EIO;
3169 	} else {
3170 		unlock_buffer(bh);
3171 	}
3172 	return ret;
3173 }
3174 EXPORT_SYMBOL(__sync_dirty_buffer);
3175 
3176 int sync_dirty_buffer(struct buffer_head *bh)
3177 {
3178 	return __sync_dirty_buffer(bh, REQ_SYNC);
3179 }
3180 EXPORT_SYMBOL(sync_dirty_buffer);
3181 
3182 /*
3183  * try_to_free_buffers() checks if all the buffers on this particular page
3184  * are unused, and releases them if so.
3185  *
3186  * Exclusion against try_to_free_buffers may be obtained by either
3187  * locking the page or by holding its mapping's private_lock.
3188  *
3189  * If the page is dirty but all the buffers are clean then we need to
3190  * be sure to mark the page clean as well.  This is because the page
3191  * may be against a block device, and a later reattachment of buffers
3192  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3193  * filesystem data on the same device.
3194  *
3195  * The same applies to regular filesystem pages: if all the buffers are
3196  * clean then we set the page clean and proceed.  To do that, we require
3197  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3198  * private_lock.
3199  *
3200  * try_to_free_buffers() is non-blocking.
3201  */
3202 static inline int buffer_busy(struct buffer_head *bh)
3203 {
3204 	return atomic_read(&bh->b_count) |
3205 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3206 }
3207 
3208 static int
3209 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3210 {
3211 	struct buffer_head *head = page_buffers(page);
3212 	struct buffer_head *bh;
3213 
3214 	bh = head;
3215 	do {
3216 		if (buffer_busy(bh))
3217 			goto failed;
3218 		bh = bh->b_this_page;
3219 	} while (bh != head);
3220 
3221 	do {
3222 		struct buffer_head *next = bh->b_this_page;
3223 
3224 		if (bh->b_assoc_map)
3225 			__remove_assoc_queue(bh);
3226 		bh = next;
3227 	} while (bh != head);
3228 	*buffers_to_free = head;
3229 	detach_page_private(page);
3230 	return 1;
3231 failed:
3232 	return 0;
3233 }
3234 
3235 int try_to_free_buffers(struct page *page)
3236 {
3237 	struct address_space * const mapping = page->mapping;
3238 	struct buffer_head *buffers_to_free = NULL;
3239 	int ret = 0;
3240 
3241 	BUG_ON(!PageLocked(page));
3242 	if (PageWriteback(page))
3243 		return 0;
3244 
3245 	if (mapping == NULL) {		/* can this still happen? */
3246 		ret = drop_buffers(page, &buffers_to_free);
3247 		goto out;
3248 	}
3249 
3250 	spin_lock(&mapping->private_lock);
3251 	ret = drop_buffers(page, &buffers_to_free);
3252 
3253 	/*
3254 	 * If the filesystem writes its buffers by hand (eg ext3)
3255 	 * then we can have clean buffers against a dirty page.  We
3256 	 * clean the page here; otherwise the VM will never notice
3257 	 * that the filesystem did any IO at all.
3258 	 *
3259 	 * Also, during truncate, discard_buffer will have marked all
3260 	 * the page's buffers clean.  We discover that here and clean
3261 	 * the page also.
3262 	 *
3263 	 * private_lock must be held over this entire operation in order
3264 	 * to synchronise against __set_page_dirty_buffers and prevent the
3265 	 * dirty bit from being lost.
3266 	 */
3267 	if (ret)
3268 		cancel_dirty_page(page);
3269 	spin_unlock(&mapping->private_lock);
3270 out:
3271 	if (buffers_to_free) {
3272 		struct buffer_head *bh = buffers_to_free;
3273 
3274 		do {
3275 			struct buffer_head *next = bh->b_this_page;
3276 			free_buffer_head(bh);
3277 			bh = next;
3278 		} while (bh != buffers_to_free);
3279 	}
3280 	return ret;
3281 }
3282 EXPORT_SYMBOL(try_to_free_buffers);
3283 
3284 /*
3285  * There are no bdflush tunables left.  But distributions are
3286  * still running obsolete flush daemons, so we terminate them here.
3287  *
3288  * Use of bdflush() is deprecated and will be removed in a future kernel.
3289  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3290  */
3291 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3292 {
3293 	static int msg_count;
3294 
3295 	if (!capable(CAP_SYS_ADMIN))
3296 		return -EPERM;
3297 
3298 	if (msg_count < 5) {
3299 		msg_count++;
3300 		printk(KERN_INFO
3301 			"warning: process `%s' used the obsolete bdflush"
3302 			" system call\n", current->comm);
3303 		printk(KERN_INFO "Fix your initscripts?\n");
3304 	}
3305 
3306 	if (func == 1)
3307 		do_exit(0);
3308 	return 0;
3309 }
3310 
3311 /*
3312  * Buffer-head allocation
3313  */
3314 static struct kmem_cache *bh_cachep __read_mostly;
3315 
3316 /*
3317  * Once the number of bh's in the machine exceeds this level, we start
3318  * stripping them in writeback.
3319  */
3320 static unsigned long max_buffer_heads;
3321 
3322 int buffer_heads_over_limit;
3323 
3324 struct bh_accounting {
3325 	int nr;			/* Number of live bh's */
3326 	int ratelimit;		/* Limit cacheline bouncing */
3327 };
3328 
3329 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3330 
3331 static void recalc_bh_state(void)
3332 {
3333 	int i;
3334 	int tot = 0;
3335 
3336 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3337 		return;
3338 	__this_cpu_write(bh_accounting.ratelimit, 0);
3339 	for_each_online_cpu(i)
3340 		tot += per_cpu(bh_accounting, i).nr;
3341 	buffer_heads_over_limit = (tot > max_buffer_heads);
3342 }
3343 
3344 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3345 {
3346 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3347 	if (ret) {
3348 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3349 		spin_lock_init(&ret->b_uptodate_lock);
3350 		preempt_disable();
3351 		__this_cpu_inc(bh_accounting.nr);
3352 		recalc_bh_state();
3353 		preempt_enable();
3354 	}
3355 	return ret;
3356 }
3357 EXPORT_SYMBOL(alloc_buffer_head);
3358 
3359 void free_buffer_head(struct buffer_head *bh)
3360 {
3361 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3362 	kmem_cache_free(bh_cachep, bh);
3363 	preempt_disable();
3364 	__this_cpu_dec(bh_accounting.nr);
3365 	recalc_bh_state();
3366 	preempt_enable();
3367 }
3368 EXPORT_SYMBOL(free_buffer_head);
3369 
3370 static int buffer_exit_cpu_dead(unsigned int cpu)
3371 {
3372 	int i;
3373 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3374 
3375 	for (i = 0; i < BH_LRU_SIZE; i++) {
3376 		brelse(b->bhs[i]);
3377 		b->bhs[i] = NULL;
3378 	}
3379 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3380 	per_cpu(bh_accounting, cpu).nr = 0;
3381 	return 0;
3382 }
3383 
3384 /**
3385  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3386  * @bh: struct buffer_head
3387  *
3388  * Return true if the buffer is up-to-date and false,
3389  * with the buffer locked, if not.
3390  */
3391 int bh_uptodate_or_lock(struct buffer_head *bh)
3392 {
3393 	if (!buffer_uptodate(bh)) {
3394 		lock_buffer(bh);
3395 		if (!buffer_uptodate(bh))
3396 			return 0;
3397 		unlock_buffer(bh);
3398 	}
3399 	return 1;
3400 }
3401 EXPORT_SYMBOL(bh_uptodate_or_lock);
3402 
3403 /**
3404  * bh_submit_read - Submit a locked buffer for reading
3405  * @bh: struct buffer_head
3406  *
3407  * Returns zero on success and -EIO on error.
3408  */
3409 int bh_submit_read(struct buffer_head *bh)
3410 {
3411 	BUG_ON(!buffer_locked(bh));
3412 
3413 	if (buffer_uptodate(bh)) {
3414 		unlock_buffer(bh);
3415 		return 0;
3416 	}
3417 
3418 	get_bh(bh);
3419 	bh->b_end_io = end_buffer_read_sync;
3420 	submit_bh(REQ_OP_READ, 0, bh);
3421 	wait_on_buffer(bh);
3422 	if (buffer_uptodate(bh))
3423 		return 0;
3424 	return -EIO;
3425 }
3426 EXPORT_SYMBOL(bh_submit_read);
3427 
3428 void __init buffer_init(void)
3429 {
3430 	unsigned long nrpages;
3431 	int ret;
3432 
3433 	bh_cachep = kmem_cache_create("buffer_head",
3434 			sizeof(struct buffer_head), 0,
3435 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3436 				SLAB_MEM_SPREAD),
3437 				NULL);
3438 
3439 	/*
3440 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3441 	 */
3442 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3443 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3444 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3445 					NULL, buffer_exit_cpu_dead);
3446 	WARN_ON(ret < 0);
3447 }
3448