xref: /openbmc/linux/fs/buffer.c (revision 76a4f7cc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 #include "internal.h"
53 
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 			 enum rw_hint hint, struct writeback_control *wbc);
57 
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59 
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 	trace_block_touch_buffer(bh);
63 	mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66 
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72 
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 	clear_bit_unlock(BH_Lock, &bh->b_state);
76 	smp_mb__after_atomic();
77 	wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80 
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87 				     bool *dirty, bool *writeback)
88 {
89 	struct buffer_head *head, *bh;
90 	*dirty = false;
91 	*writeback = false;
92 
93 	BUG_ON(!PageLocked(page));
94 
95 	if (!page_has_buffers(page))
96 		return;
97 
98 	if (PageWriteback(page))
99 		*writeback = true;
100 
101 	head = page_buffers(page);
102 	bh = head;
103 	do {
104 		if (buffer_locked(bh))
105 			*writeback = true;
106 
107 		if (buffer_dirty(bh))
108 			*dirty = true;
109 
110 		bh = bh->b_this_page;
111 	} while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 	if (!test_bit(BH_Quiet, &bh->b_state))
129 		printk_ratelimited(KERN_ERR
130 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
131 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133 
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 	if (uptodate) {
145 		set_buffer_uptodate(bh);
146 	} else {
147 		/* This happens, due to failed read-ahead attempts. */
148 		clear_buffer_uptodate(bh);
149 	}
150 	unlock_buffer(bh);
151 }
152 
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 	__end_buffer_read_notouch(bh, uptodate);
160 	put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163 
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 	if (uptodate) {
167 		set_buffer_uptodate(bh);
168 	} else {
169 		buffer_io_error(bh, ", lost sync page write");
170 		mark_buffer_write_io_error(bh);
171 		clear_buffer_uptodate(bh);
172 	}
173 	unlock_buffer(bh);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177 
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 	struct inode *bd_inode = bdev->bd_inode;
192 	struct address_space *bd_mapping = bd_inode->i_mapping;
193 	struct buffer_head *ret = NULL;
194 	pgoff_t index;
195 	struct buffer_head *bh;
196 	struct buffer_head *head;
197 	struct page *page;
198 	int all_mapped = 1;
199 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200 
201 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 	if (!page)
204 		goto out;
205 
206 	spin_lock(&bd_mapping->private_lock);
207 	if (!page_has_buffers(page))
208 		goto out_unlock;
209 	head = page_buffers(page);
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << bd_inode->i_blkbits);
236 	}
237 out_unlock:
238 	spin_unlock(&bd_mapping->private_lock);
239 	put_page(page);
240 out:
241 	return ret;
242 }
243 
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 	unsigned long flags;
247 	struct buffer_head *first;
248 	struct buffer_head *tmp;
249 	struct page *page;
250 	int page_uptodate = 1;
251 
252 	BUG_ON(!buffer_async_read(bh));
253 
254 	page = bh->b_page;
255 	if (uptodate) {
256 		set_buffer_uptodate(bh);
257 	} else {
258 		clear_buffer_uptodate(bh);
259 		buffer_io_error(bh, ", async page read");
260 		SetPageError(page);
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = page_buffers(page);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			page_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	/*
285 	 * If none of the buffers had errors and they are all
286 	 * uptodate then we can set the page uptodate.
287 	 */
288 	if (page_uptodate && !PageError(page))
289 		SetPageUptodate(page);
290 	unlock_page(page);
291 	return;
292 
293 still_busy:
294 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 	return;
296 }
297 
298 struct decrypt_bh_ctx {
299 	struct work_struct work;
300 	struct buffer_head *bh;
301 };
302 
303 static void decrypt_bh(struct work_struct *work)
304 {
305 	struct decrypt_bh_ctx *ctx =
306 		container_of(work, struct decrypt_bh_ctx, work);
307 	struct buffer_head *bh = ctx->bh;
308 	int err;
309 
310 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 					       bh_offset(bh));
312 	end_buffer_async_read(bh, err == 0);
313 	kfree(ctx);
314 }
315 
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 	/* Decrypt if needed */
323 	if (uptodate &&
324 	    fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326 
327 		if (ctx) {
328 			INIT_WORK(&ctx->work, decrypt_bh);
329 			ctx->bh = bh;
330 			fscrypt_enqueue_decrypt_work(&ctx->work);
331 			return;
332 		}
333 		uptodate = 0;
334 	}
335 	end_buffer_async_read(bh, uptodate);
336 }
337 
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 	unsigned long flags;
345 	struct buffer_head *first;
346 	struct buffer_head *tmp;
347 	struct page *page;
348 
349 	BUG_ON(!buffer_async_write(bh));
350 
351 	page = bh->b_page;
352 	if (uptodate) {
353 		set_buffer_uptodate(bh);
354 	} else {
355 		buffer_io_error(bh, ", lost async page write");
356 		mark_buffer_write_io_error(bh);
357 		clear_buffer_uptodate(bh);
358 		SetPageError(page);
359 	}
360 
361 	first = page_buffers(page);
362 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
363 
364 	clear_buffer_async_write(bh);
365 	unlock_buffer(bh);
366 	tmp = bh->b_this_page;
367 	while (tmp != bh) {
368 		if (buffer_async_write(tmp)) {
369 			BUG_ON(!buffer_locked(tmp));
370 			goto still_busy;
371 		}
372 		tmp = tmp->b_this_page;
373 	}
374 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 	end_page_writeback(page);
376 	return;
377 
378 still_busy:
379 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 	return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383 
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 	bh->b_end_io = end_buffer_async_read_io;
408 	set_buffer_async_read(bh);
409 }
410 
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 					  bh_end_io_t *handler)
413 {
414 	bh->b_end_io = handler;
415 	set_buffer_async_write(bh);
416 }
417 
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423 
424 
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473 
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 	list_del_init(&bh->b_assoc_buffers);
480 	WARN_ON(!bh->b_assoc_map);
481 	bh->b_assoc_map = NULL;
482 }
483 
484 int inode_has_buffers(struct inode *inode)
485 {
486 	return !list_empty(&inode->i_data.private_list);
487 }
488 
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 	struct buffer_head *bh;
502 	struct list_head *p;
503 	int err = 0;
504 
505 	spin_lock(lock);
506 repeat:
507 	list_for_each_prev(p, list) {
508 		bh = BH_ENTRY(p);
509 		if (buffer_locked(bh)) {
510 			get_bh(bh);
511 			spin_unlock(lock);
512 			wait_on_buffer(bh);
513 			if (!buffer_uptodate(bh))
514 				err = -EIO;
515 			brelse(bh);
516 			spin_lock(lock);
517 			goto repeat;
518 		}
519 	}
520 	spin_unlock(lock);
521 	return err;
522 }
523 
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529 
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 	struct address_space *buffer_mapping = mapping->private_data;
544 
545 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 		return 0;
547 
548 	return fsync_buffers_list(&buffer_mapping->private_lock,
549 					&mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552 
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560 			sector_t bblock, unsigned blocksize)
561 {
562 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 	if (bh) {
564 		if (buffer_dirty(bh))
565 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 		put_bh(bh);
567 	}
568 }
569 
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 	struct address_space *mapping = inode->i_mapping;
573 	struct address_space *buffer_mapping = bh->b_page->mapping;
574 
575 	mark_buffer_dirty(bh);
576 	if (!mapping->private_data) {
577 		mapping->private_data = buffer_mapping;
578 	} else {
579 		BUG_ON(mapping->private_data != buffer_mapping);
580 	}
581 	if (!bh->b_assoc_map) {
582 		spin_lock(&buffer_mapping->private_lock);
583 		list_move_tail(&bh->b_assoc_buffers,
584 				&mapping->private_list);
585 		bh->b_assoc_map = mapping;
586 		spin_unlock(&buffer_mapping->private_lock);
587 	}
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590 
591 /*
592  * Add a page to the dirty page list.
593  *
594  * It is a sad fact of life that this function is called from several places
595  * deeply under spinlocking.  It may not sleep.
596  *
597  * If the page has buffers, the uptodate buffers are set dirty, to preserve
598  * dirty-state coherency between the page and the buffers.  It the page does
599  * not have buffers then when they are later attached they will all be set
600  * dirty.
601  *
602  * The buffers are dirtied before the page is dirtied.  There's a small race
603  * window in which a writepage caller may see the page cleanness but not the
604  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
605  * before the buffers, a concurrent writepage caller could clear the page dirty
606  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607  * page on the dirty page list.
608  *
609  * We use private_lock to lock against try_to_free_buffers while using the
610  * page's buffer list.  Also use this to protect against clean buffers being
611  * added to the page after it was set dirty.
612  *
613  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
614  * address_space though.
615  */
616 int __set_page_dirty_buffers(struct page *page)
617 {
618 	int newly_dirty;
619 	struct address_space *mapping = page_mapping(page);
620 
621 	if (unlikely(!mapping))
622 		return !TestSetPageDirty(page);
623 
624 	spin_lock(&mapping->private_lock);
625 	if (page_has_buffers(page)) {
626 		struct buffer_head *head = page_buffers(page);
627 		struct buffer_head *bh = head;
628 
629 		do {
630 			set_buffer_dirty(bh);
631 			bh = bh->b_this_page;
632 		} while (bh != head);
633 	}
634 	/*
635 	 * Lock out page's memcg migration to keep PageDirty
636 	 * synchronized with per-memcg dirty page counters.
637 	 */
638 	lock_page_memcg(page);
639 	newly_dirty = !TestSetPageDirty(page);
640 	spin_unlock(&mapping->private_lock);
641 
642 	if (newly_dirty)
643 		__set_page_dirty(page, mapping, 1);
644 
645 	unlock_page_memcg(page);
646 
647 	if (newly_dirty)
648 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
649 
650 	return newly_dirty;
651 }
652 EXPORT_SYMBOL(__set_page_dirty_buffers);
653 
654 /*
655  * Write out and wait upon a list of buffers.
656  *
657  * We have conflicting pressures: we want to make sure that all
658  * initially dirty buffers get waited on, but that any subsequently
659  * dirtied buffers don't.  After all, we don't want fsync to last
660  * forever if somebody is actively writing to the file.
661  *
662  * Do this in two main stages: first we copy dirty buffers to a
663  * temporary inode list, queueing the writes as we go.  Then we clean
664  * up, waiting for those writes to complete.
665  *
666  * During this second stage, any subsequent updates to the file may end
667  * up refiling the buffer on the original inode's dirty list again, so
668  * there is a chance we will end up with a buffer queued for write but
669  * not yet completed on that list.  So, as a final cleanup we go through
670  * the osync code to catch these locked, dirty buffers without requeuing
671  * any newly dirty buffers for write.
672  */
673 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
674 {
675 	struct buffer_head *bh;
676 	struct list_head tmp;
677 	struct address_space *mapping;
678 	int err = 0, err2;
679 	struct blk_plug plug;
680 
681 	INIT_LIST_HEAD(&tmp);
682 	blk_start_plug(&plug);
683 
684 	spin_lock(lock);
685 	while (!list_empty(list)) {
686 		bh = BH_ENTRY(list->next);
687 		mapping = bh->b_assoc_map;
688 		__remove_assoc_queue(bh);
689 		/* Avoid race with mark_buffer_dirty_inode() which does
690 		 * a lockless check and we rely on seeing the dirty bit */
691 		smp_mb();
692 		if (buffer_dirty(bh) || buffer_locked(bh)) {
693 			list_add(&bh->b_assoc_buffers, &tmp);
694 			bh->b_assoc_map = mapping;
695 			if (buffer_dirty(bh)) {
696 				get_bh(bh);
697 				spin_unlock(lock);
698 				/*
699 				 * Ensure any pending I/O completes so that
700 				 * write_dirty_buffer() actually writes the
701 				 * current contents - it is a noop if I/O is
702 				 * still in flight on potentially older
703 				 * contents.
704 				 */
705 				write_dirty_buffer(bh, REQ_SYNC);
706 
707 				/*
708 				 * Kick off IO for the previous mapping. Note
709 				 * that we will not run the very last mapping,
710 				 * wait_on_buffer() will do that for us
711 				 * through sync_buffer().
712 				 */
713 				brelse(bh);
714 				spin_lock(lock);
715 			}
716 		}
717 	}
718 
719 	spin_unlock(lock);
720 	blk_finish_plug(&plug);
721 	spin_lock(lock);
722 
723 	while (!list_empty(&tmp)) {
724 		bh = BH_ENTRY(tmp.prev);
725 		get_bh(bh);
726 		mapping = bh->b_assoc_map;
727 		__remove_assoc_queue(bh);
728 		/* Avoid race with mark_buffer_dirty_inode() which does
729 		 * a lockless check and we rely on seeing the dirty bit */
730 		smp_mb();
731 		if (buffer_dirty(bh)) {
732 			list_add(&bh->b_assoc_buffers,
733 				 &mapping->private_list);
734 			bh->b_assoc_map = mapping;
735 		}
736 		spin_unlock(lock);
737 		wait_on_buffer(bh);
738 		if (!buffer_uptodate(bh))
739 			err = -EIO;
740 		brelse(bh);
741 		spin_lock(lock);
742 	}
743 
744 	spin_unlock(lock);
745 	err2 = osync_buffers_list(lock, list);
746 	if (err)
747 		return err;
748 	else
749 		return err2;
750 }
751 
752 /*
753  * Invalidate any and all dirty buffers on a given inode.  We are
754  * probably unmounting the fs, but that doesn't mean we have already
755  * done a sync().  Just drop the buffers from the inode list.
756  *
757  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
758  * assumes that all the buffers are against the blockdev.  Not true
759  * for reiserfs.
760  */
761 void invalidate_inode_buffers(struct inode *inode)
762 {
763 	if (inode_has_buffers(inode)) {
764 		struct address_space *mapping = &inode->i_data;
765 		struct list_head *list = &mapping->private_list;
766 		struct address_space *buffer_mapping = mapping->private_data;
767 
768 		spin_lock(&buffer_mapping->private_lock);
769 		while (!list_empty(list))
770 			__remove_assoc_queue(BH_ENTRY(list->next));
771 		spin_unlock(&buffer_mapping->private_lock);
772 	}
773 }
774 EXPORT_SYMBOL(invalidate_inode_buffers);
775 
776 /*
777  * Remove any clean buffers from the inode's buffer list.  This is called
778  * when we're trying to free the inode itself.  Those buffers can pin it.
779  *
780  * Returns true if all buffers were removed.
781  */
782 int remove_inode_buffers(struct inode *inode)
783 {
784 	int ret = 1;
785 
786 	if (inode_has_buffers(inode)) {
787 		struct address_space *mapping = &inode->i_data;
788 		struct list_head *list = &mapping->private_list;
789 		struct address_space *buffer_mapping = mapping->private_data;
790 
791 		spin_lock(&buffer_mapping->private_lock);
792 		while (!list_empty(list)) {
793 			struct buffer_head *bh = BH_ENTRY(list->next);
794 			if (buffer_dirty(bh)) {
795 				ret = 0;
796 				break;
797 			}
798 			__remove_assoc_queue(bh);
799 		}
800 		spin_unlock(&buffer_mapping->private_lock);
801 	}
802 	return ret;
803 }
804 
805 /*
806  * Create the appropriate buffers when given a page for data area and
807  * the size of each buffer.. Use the bh->b_this_page linked list to
808  * follow the buffers created.  Return NULL if unable to create more
809  * buffers.
810  *
811  * The retry flag is used to differentiate async IO (paging, swapping)
812  * which may not fail from ordinary buffer allocations.
813  */
814 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
815 		bool retry)
816 {
817 	struct buffer_head *bh, *head;
818 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
819 	long offset;
820 	struct mem_cgroup *memcg, *old_memcg;
821 
822 	if (retry)
823 		gfp |= __GFP_NOFAIL;
824 
825 	/* The page lock pins the memcg */
826 	memcg = page_memcg(page);
827 	old_memcg = set_active_memcg(memcg);
828 
829 	head = NULL;
830 	offset = PAGE_SIZE;
831 	while ((offset -= size) >= 0) {
832 		bh = alloc_buffer_head(gfp);
833 		if (!bh)
834 			goto no_grow;
835 
836 		bh->b_this_page = head;
837 		bh->b_blocknr = -1;
838 		head = bh;
839 
840 		bh->b_size = size;
841 
842 		/* Link the buffer to its page */
843 		set_bh_page(bh, page, offset);
844 	}
845 out:
846 	set_active_memcg(old_memcg);
847 	return head;
848 /*
849  * In case anything failed, we just free everything we got.
850  */
851 no_grow:
852 	if (head) {
853 		do {
854 			bh = head;
855 			head = head->b_this_page;
856 			free_buffer_head(bh);
857 		} while (head);
858 	}
859 
860 	goto out;
861 }
862 EXPORT_SYMBOL_GPL(alloc_page_buffers);
863 
864 static inline void
865 link_dev_buffers(struct page *page, struct buffer_head *head)
866 {
867 	struct buffer_head *bh, *tail;
868 
869 	bh = head;
870 	do {
871 		tail = bh;
872 		bh = bh->b_this_page;
873 	} while (bh);
874 	tail->b_this_page = head;
875 	attach_page_private(page, head);
876 }
877 
878 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
879 {
880 	sector_t retval = ~((sector_t)0);
881 	loff_t sz = i_size_read(bdev->bd_inode);
882 
883 	if (sz) {
884 		unsigned int sizebits = blksize_bits(size);
885 		retval = (sz >> sizebits);
886 	}
887 	return retval;
888 }
889 
890 /*
891  * Initialise the state of a blockdev page's buffers.
892  */
893 static sector_t
894 init_page_buffers(struct page *page, struct block_device *bdev,
895 			sector_t block, int size)
896 {
897 	struct buffer_head *head = page_buffers(page);
898 	struct buffer_head *bh = head;
899 	int uptodate = PageUptodate(page);
900 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
901 
902 	do {
903 		if (!buffer_mapped(bh)) {
904 			bh->b_end_io = NULL;
905 			bh->b_private = NULL;
906 			bh->b_bdev = bdev;
907 			bh->b_blocknr = block;
908 			if (uptodate)
909 				set_buffer_uptodate(bh);
910 			if (block < end_block)
911 				set_buffer_mapped(bh);
912 		}
913 		block++;
914 		bh = bh->b_this_page;
915 	} while (bh != head);
916 
917 	/*
918 	 * Caller needs to validate requested block against end of device.
919 	 */
920 	return end_block;
921 }
922 
923 /*
924  * Create the page-cache page that contains the requested block.
925  *
926  * This is used purely for blockdev mappings.
927  */
928 static int
929 grow_dev_page(struct block_device *bdev, sector_t block,
930 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
931 {
932 	struct inode *inode = bdev->bd_inode;
933 	struct page *page;
934 	struct buffer_head *bh;
935 	sector_t end_block;
936 	int ret = 0;
937 	gfp_t gfp_mask;
938 
939 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
940 
941 	/*
942 	 * XXX: __getblk_slow() can not really deal with failure and
943 	 * will endlessly loop on improvised global reclaim.  Prefer
944 	 * looping in the allocator rather than here, at least that
945 	 * code knows what it's doing.
946 	 */
947 	gfp_mask |= __GFP_NOFAIL;
948 
949 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
950 
951 	BUG_ON(!PageLocked(page));
952 
953 	if (page_has_buffers(page)) {
954 		bh = page_buffers(page);
955 		if (bh->b_size == size) {
956 			end_block = init_page_buffers(page, bdev,
957 						(sector_t)index << sizebits,
958 						size);
959 			goto done;
960 		}
961 		if (!try_to_free_buffers(page))
962 			goto failed;
963 	}
964 
965 	/*
966 	 * Allocate some buffers for this page
967 	 */
968 	bh = alloc_page_buffers(page, size, true);
969 
970 	/*
971 	 * Link the page to the buffers and initialise them.  Take the
972 	 * lock to be atomic wrt __find_get_block(), which does not
973 	 * run under the page lock.
974 	 */
975 	spin_lock(&inode->i_mapping->private_lock);
976 	link_dev_buffers(page, bh);
977 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
978 			size);
979 	spin_unlock(&inode->i_mapping->private_lock);
980 done:
981 	ret = (block < end_block) ? 1 : -ENXIO;
982 failed:
983 	unlock_page(page);
984 	put_page(page);
985 	return ret;
986 }
987 
988 /*
989  * Create buffers for the specified block device block's page.  If
990  * that page was dirty, the buffers are set dirty also.
991  */
992 static int
993 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
994 {
995 	pgoff_t index;
996 	int sizebits;
997 
998 	sizebits = PAGE_SHIFT - __ffs(size);
999 	index = block >> sizebits;
1000 
1001 	/*
1002 	 * Check for a block which wants to lie outside our maximum possible
1003 	 * pagecache index.  (this comparison is done using sector_t types).
1004 	 */
1005 	if (unlikely(index != block >> sizebits)) {
1006 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1007 			"device %pg\n",
1008 			__func__, (unsigned long long)block,
1009 			bdev);
1010 		return -EIO;
1011 	}
1012 
1013 	/* Create a page with the proper size buffers.. */
1014 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1015 }
1016 
1017 static struct buffer_head *
1018 __getblk_slow(struct block_device *bdev, sector_t block,
1019 	     unsigned size, gfp_t gfp)
1020 {
1021 	/* Size must be multiple of hard sectorsize */
1022 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1023 			(size < 512 || size > PAGE_SIZE))) {
1024 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1025 					size);
1026 		printk(KERN_ERR "logical block size: %d\n",
1027 					bdev_logical_block_size(bdev));
1028 
1029 		dump_stack();
1030 		return NULL;
1031 	}
1032 
1033 	for (;;) {
1034 		struct buffer_head *bh;
1035 		int ret;
1036 
1037 		bh = __find_get_block(bdev, block, size);
1038 		if (bh)
1039 			return bh;
1040 
1041 		ret = grow_buffers(bdev, block, size, gfp);
1042 		if (ret < 0)
1043 			return NULL;
1044 	}
1045 }
1046 
1047 /*
1048  * The relationship between dirty buffers and dirty pages:
1049  *
1050  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1051  * the page is tagged dirty in the page cache.
1052  *
1053  * At all times, the dirtiness of the buffers represents the dirtiness of
1054  * subsections of the page.  If the page has buffers, the page dirty bit is
1055  * merely a hint about the true dirty state.
1056  *
1057  * When a page is set dirty in its entirety, all its buffers are marked dirty
1058  * (if the page has buffers).
1059  *
1060  * When a buffer is marked dirty, its page is dirtied, but the page's other
1061  * buffers are not.
1062  *
1063  * Also.  When blockdev buffers are explicitly read with bread(), they
1064  * individually become uptodate.  But their backing page remains not
1065  * uptodate - even if all of its buffers are uptodate.  A subsequent
1066  * block_read_full_page() against that page will discover all the uptodate
1067  * buffers, will set the page uptodate and will perform no I/O.
1068  */
1069 
1070 /**
1071  * mark_buffer_dirty - mark a buffer_head as needing writeout
1072  * @bh: the buffer_head to mark dirty
1073  *
1074  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1075  * its backing page dirty, then tag the page as dirty in the page cache
1076  * and then attach the address_space's inode to its superblock's dirty
1077  * inode list.
1078  *
1079  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1080  * i_pages lock and mapping->host->i_lock.
1081  */
1082 void mark_buffer_dirty(struct buffer_head *bh)
1083 {
1084 	WARN_ON_ONCE(!buffer_uptodate(bh));
1085 
1086 	trace_block_dirty_buffer(bh);
1087 
1088 	/*
1089 	 * Very *carefully* optimize the it-is-already-dirty case.
1090 	 *
1091 	 * Don't let the final "is it dirty" escape to before we
1092 	 * perhaps modified the buffer.
1093 	 */
1094 	if (buffer_dirty(bh)) {
1095 		smp_mb();
1096 		if (buffer_dirty(bh))
1097 			return;
1098 	}
1099 
1100 	if (!test_set_buffer_dirty(bh)) {
1101 		struct page *page = bh->b_page;
1102 		struct address_space *mapping = NULL;
1103 
1104 		lock_page_memcg(page);
1105 		if (!TestSetPageDirty(page)) {
1106 			mapping = page_mapping(page);
1107 			if (mapping)
1108 				__set_page_dirty(page, mapping, 0);
1109 		}
1110 		unlock_page_memcg(page);
1111 		if (mapping)
1112 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1113 	}
1114 }
1115 EXPORT_SYMBOL(mark_buffer_dirty);
1116 
1117 void mark_buffer_write_io_error(struct buffer_head *bh)
1118 {
1119 	struct super_block *sb;
1120 
1121 	set_buffer_write_io_error(bh);
1122 	/* FIXME: do we need to set this in both places? */
1123 	if (bh->b_page && bh->b_page->mapping)
1124 		mapping_set_error(bh->b_page->mapping, -EIO);
1125 	if (bh->b_assoc_map)
1126 		mapping_set_error(bh->b_assoc_map, -EIO);
1127 	rcu_read_lock();
1128 	sb = READ_ONCE(bh->b_bdev->bd_super);
1129 	if (sb)
1130 		errseq_set(&sb->s_wb_err, -EIO);
1131 	rcu_read_unlock();
1132 }
1133 EXPORT_SYMBOL(mark_buffer_write_io_error);
1134 
1135 /*
1136  * Decrement a buffer_head's reference count.  If all buffers against a page
1137  * have zero reference count, are clean and unlocked, and if the page is clean
1138  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1139  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1140  * a page but it ends up not being freed, and buffers may later be reattached).
1141  */
1142 void __brelse(struct buffer_head * buf)
1143 {
1144 	if (atomic_read(&buf->b_count)) {
1145 		put_bh(buf);
1146 		return;
1147 	}
1148 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1149 }
1150 EXPORT_SYMBOL(__brelse);
1151 
1152 /*
1153  * bforget() is like brelse(), except it discards any
1154  * potentially dirty data.
1155  */
1156 void __bforget(struct buffer_head *bh)
1157 {
1158 	clear_buffer_dirty(bh);
1159 	if (bh->b_assoc_map) {
1160 		struct address_space *buffer_mapping = bh->b_page->mapping;
1161 
1162 		spin_lock(&buffer_mapping->private_lock);
1163 		list_del_init(&bh->b_assoc_buffers);
1164 		bh->b_assoc_map = NULL;
1165 		spin_unlock(&buffer_mapping->private_lock);
1166 	}
1167 	__brelse(bh);
1168 }
1169 EXPORT_SYMBOL(__bforget);
1170 
1171 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1172 {
1173 	lock_buffer(bh);
1174 	if (buffer_uptodate(bh)) {
1175 		unlock_buffer(bh);
1176 		return bh;
1177 	} else {
1178 		get_bh(bh);
1179 		bh->b_end_io = end_buffer_read_sync;
1180 		submit_bh(REQ_OP_READ, 0, bh);
1181 		wait_on_buffer(bh);
1182 		if (buffer_uptodate(bh))
1183 			return bh;
1184 	}
1185 	brelse(bh);
1186 	return NULL;
1187 }
1188 
1189 /*
1190  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1191  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1192  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1193  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1194  * CPU's LRUs at the same time.
1195  *
1196  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1197  * sb_find_get_block().
1198  *
1199  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1200  * a local interrupt disable for that.
1201  */
1202 
1203 #define BH_LRU_SIZE	16
1204 
1205 struct bh_lru {
1206 	struct buffer_head *bhs[BH_LRU_SIZE];
1207 };
1208 
1209 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1210 
1211 #ifdef CONFIG_SMP
1212 #define bh_lru_lock()	local_irq_disable()
1213 #define bh_lru_unlock()	local_irq_enable()
1214 #else
1215 #define bh_lru_lock()	preempt_disable()
1216 #define bh_lru_unlock()	preempt_enable()
1217 #endif
1218 
1219 static inline void check_irqs_on(void)
1220 {
1221 #ifdef irqs_disabled
1222 	BUG_ON(irqs_disabled());
1223 #endif
1224 }
1225 
1226 /*
1227  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1228  * inserted at the front, and the buffer_head at the back if any is evicted.
1229  * Or, if already in the LRU it is moved to the front.
1230  */
1231 static void bh_lru_install(struct buffer_head *bh)
1232 {
1233 	struct buffer_head *evictee = bh;
1234 	struct bh_lru *b;
1235 	int i;
1236 
1237 	check_irqs_on();
1238 	/*
1239 	 * the refcount of buffer_head in bh_lru prevents dropping the
1240 	 * attached page(i.e., try_to_free_buffers) so it could cause
1241 	 * failing page migration.
1242 	 * Skip putting upcoming bh into bh_lru until migration is done.
1243 	 */
1244 	if (lru_cache_disabled())
1245 		return;
1246 
1247 	bh_lru_lock();
1248 
1249 	b = this_cpu_ptr(&bh_lrus);
1250 	for (i = 0; i < BH_LRU_SIZE; i++) {
1251 		swap(evictee, b->bhs[i]);
1252 		if (evictee == bh) {
1253 			bh_lru_unlock();
1254 			return;
1255 		}
1256 	}
1257 
1258 	get_bh(bh);
1259 	bh_lru_unlock();
1260 	brelse(evictee);
1261 }
1262 
1263 /*
1264  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1265  */
1266 static struct buffer_head *
1267 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1268 {
1269 	struct buffer_head *ret = NULL;
1270 	unsigned int i;
1271 
1272 	check_irqs_on();
1273 	bh_lru_lock();
1274 	for (i = 0; i < BH_LRU_SIZE; i++) {
1275 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1276 
1277 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1278 		    bh->b_size == size) {
1279 			if (i) {
1280 				while (i) {
1281 					__this_cpu_write(bh_lrus.bhs[i],
1282 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1283 					i--;
1284 				}
1285 				__this_cpu_write(bh_lrus.bhs[0], bh);
1286 			}
1287 			get_bh(bh);
1288 			ret = bh;
1289 			break;
1290 		}
1291 	}
1292 	bh_lru_unlock();
1293 	return ret;
1294 }
1295 
1296 /*
1297  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1298  * it in the LRU and mark it as accessed.  If it is not present then return
1299  * NULL
1300  */
1301 struct buffer_head *
1302 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1303 {
1304 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1305 
1306 	if (bh == NULL) {
1307 		/* __find_get_block_slow will mark the page accessed */
1308 		bh = __find_get_block_slow(bdev, block);
1309 		if (bh)
1310 			bh_lru_install(bh);
1311 	} else
1312 		touch_buffer(bh);
1313 
1314 	return bh;
1315 }
1316 EXPORT_SYMBOL(__find_get_block);
1317 
1318 /*
1319  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1320  * which corresponds to the passed block_device, block and size. The
1321  * returned buffer has its reference count incremented.
1322  *
1323  * __getblk_gfp() will lock up the machine if grow_dev_page's
1324  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1325  */
1326 struct buffer_head *
1327 __getblk_gfp(struct block_device *bdev, sector_t block,
1328 	     unsigned size, gfp_t gfp)
1329 {
1330 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1331 
1332 	might_sleep();
1333 	if (bh == NULL)
1334 		bh = __getblk_slow(bdev, block, size, gfp);
1335 	return bh;
1336 }
1337 EXPORT_SYMBOL(__getblk_gfp);
1338 
1339 /*
1340  * Do async read-ahead on a buffer..
1341  */
1342 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1343 {
1344 	struct buffer_head *bh = __getblk(bdev, block, size);
1345 	if (likely(bh)) {
1346 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1347 		brelse(bh);
1348 	}
1349 }
1350 EXPORT_SYMBOL(__breadahead);
1351 
1352 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1353 		      gfp_t gfp)
1354 {
1355 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1356 	if (likely(bh)) {
1357 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1358 		brelse(bh);
1359 	}
1360 }
1361 EXPORT_SYMBOL(__breadahead_gfp);
1362 
1363 /**
1364  *  __bread_gfp() - reads a specified block and returns the bh
1365  *  @bdev: the block_device to read from
1366  *  @block: number of block
1367  *  @size: size (in bytes) to read
1368  *  @gfp: page allocation flag
1369  *
1370  *  Reads a specified block, and returns buffer head that contains it.
1371  *  The page cache can be allocated from non-movable area
1372  *  not to prevent page migration if you set gfp to zero.
1373  *  It returns NULL if the block was unreadable.
1374  */
1375 struct buffer_head *
1376 __bread_gfp(struct block_device *bdev, sector_t block,
1377 		   unsigned size, gfp_t gfp)
1378 {
1379 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1380 
1381 	if (likely(bh) && !buffer_uptodate(bh))
1382 		bh = __bread_slow(bh);
1383 	return bh;
1384 }
1385 EXPORT_SYMBOL(__bread_gfp);
1386 
1387 static void __invalidate_bh_lrus(struct bh_lru *b)
1388 {
1389 	int i;
1390 
1391 	for (i = 0; i < BH_LRU_SIZE; i++) {
1392 		brelse(b->bhs[i]);
1393 		b->bhs[i] = NULL;
1394 	}
1395 }
1396 /*
1397  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1398  * This doesn't race because it runs in each cpu either in irq
1399  * or with preempt disabled.
1400  */
1401 static void invalidate_bh_lru(void *arg)
1402 {
1403 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1404 
1405 	__invalidate_bh_lrus(b);
1406 	put_cpu_var(bh_lrus);
1407 }
1408 
1409 bool has_bh_in_lru(int cpu, void *dummy)
1410 {
1411 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1412 	int i;
1413 
1414 	for (i = 0; i < BH_LRU_SIZE; i++) {
1415 		if (b->bhs[i])
1416 			return true;
1417 	}
1418 
1419 	return false;
1420 }
1421 
1422 void invalidate_bh_lrus(void)
1423 {
1424 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1425 }
1426 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1427 
1428 void invalidate_bh_lrus_cpu(int cpu)
1429 {
1430 	struct bh_lru *b;
1431 
1432 	bh_lru_lock();
1433 	b = per_cpu_ptr(&bh_lrus, cpu);
1434 	__invalidate_bh_lrus(b);
1435 	bh_lru_unlock();
1436 }
1437 
1438 void set_bh_page(struct buffer_head *bh,
1439 		struct page *page, unsigned long offset)
1440 {
1441 	bh->b_page = page;
1442 	BUG_ON(offset >= PAGE_SIZE);
1443 	if (PageHighMem(page))
1444 		/*
1445 		 * This catches illegal uses and preserves the offset:
1446 		 */
1447 		bh->b_data = (char *)(0 + offset);
1448 	else
1449 		bh->b_data = page_address(page) + offset;
1450 }
1451 EXPORT_SYMBOL(set_bh_page);
1452 
1453 /*
1454  * Called when truncating a buffer on a page completely.
1455  */
1456 
1457 /* Bits that are cleared during an invalidate */
1458 #define BUFFER_FLAGS_DISCARD \
1459 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1460 	 1 << BH_Delay | 1 << BH_Unwritten)
1461 
1462 static void discard_buffer(struct buffer_head * bh)
1463 {
1464 	unsigned long b_state, b_state_old;
1465 
1466 	lock_buffer(bh);
1467 	clear_buffer_dirty(bh);
1468 	bh->b_bdev = NULL;
1469 	b_state = bh->b_state;
1470 	for (;;) {
1471 		b_state_old = cmpxchg(&bh->b_state, b_state,
1472 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1473 		if (b_state_old == b_state)
1474 			break;
1475 		b_state = b_state_old;
1476 	}
1477 	unlock_buffer(bh);
1478 }
1479 
1480 /**
1481  * block_invalidatepage - invalidate part or all of a buffer-backed page
1482  *
1483  * @page: the page which is affected
1484  * @offset: start of the range to invalidate
1485  * @length: length of the range to invalidate
1486  *
1487  * block_invalidatepage() is called when all or part of the page has become
1488  * invalidated by a truncate operation.
1489  *
1490  * block_invalidatepage() does not have to release all buffers, but it must
1491  * ensure that no dirty buffer is left outside @offset and that no I/O
1492  * is underway against any of the blocks which are outside the truncation
1493  * point.  Because the caller is about to free (and possibly reuse) those
1494  * blocks on-disk.
1495  */
1496 void block_invalidatepage(struct page *page, unsigned int offset,
1497 			  unsigned int length)
1498 {
1499 	struct buffer_head *head, *bh, *next;
1500 	unsigned int curr_off = 0;
1501 	unsigned int stop = length + offset;
1502 
1503 	BUG_ON(!PageLocked(page));
1504 	if (!page_has_buffers(page))
1505 		goto out;
1506 
1507 	/*
1508 	 * Check for overflow
1509 	 */
1510 	BUG_ON(stop > PAGE_SIZE || stop < length);
1511 
1512 	head = page_buffers(page);
1513 	bh = head;
1514 	do {
1515 		unsigned int next_off = curr_off + bh->b_size;
1516 		next = bh->b_this_page;
1517 
1518 		/*
1519 		 * Are we still fully in range ?
1520 		 */
1521 		if (next_off > stop)
1522 			goto out;
1523 
1524 		/*
1525 		 * is this block fully invalidated?
1526 		 */
1527 		if (offset <= curr_off)
1528 			discard_buffer(bh);
1529 		curr_off = next_off;
1530 		bh = next;
1531 	} while (bh != head);
1532 
1533 	/*
1534 	 * We release buffers only if the entire page is being invalidated.
1535 	 * The get_block cached value has been unconditionally invalidated,
1536 	 * so real IO is not possible anymore.
1537 	 */
1538 	if (length == PAGE_SIZE)
1539 		try_to_release_page(page, 0);
1540 out:
1541 	return;
1542 }
1543 EXPORT_SYMBOL(block_invalidatepage);
1544 
1545 
1546 /*
1547  * We attach and possibly dirty the buffers atomically wrt
1548  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1549  * is already excluded via the page lock.
1550  */
1551 void create_empty_buffers(struct page *page,
1552 			unsigned long blocksize, unsigned long b_state)
1553 {
1554 	struct buffer_head *bh, *head, *tail;
1555 
1556 	head = alloc_page_buffers(page, blocksize, true);
1557 	bh = head;
1558 	do {
1559 		bh->b_state |= b_state;
1560 		tail = bh;
1561 		bh = bh->b_this_page;
1562 	} while (bh);
1563 	tail->b_this_page = head;
1564 
1565 	spin_lock(&page->mapping->private_lock);
1566 	if (PageUptodate(page) || PageDirty(page)) {
1567 		bh = head;
1568 		do {
1569 			if (PageDirty(page))
1570 				set_buffer_dirty(bh);
1571 			if (PageUptodate(page))
1572 				set_buffer_uptodate(bh);
1573 			bh = bh->b_this_page;
1574 		} while (bh != head);
1575 	}
1576 	attach_page_private(page, head);
1577 	spin_unlock(&page->mapping->private_lock);
1578 }
1579 EXPORT_SYMBOL(create_empty_buffers);
1580 
1581 /**
1582  * clean_bdev_aliases: clean a range of buffers in block device
1583  * @bdev: Block device to clean buffers in
1584  * @block: Start of a range of blocks to clean
1585  * @len: Number of blocks to clean
1586  *
1587  * We are taking a range of blocks for data and we don't want writeback of any
1588  * buffer-cache aliases starting from return from this function and until the
1589  * moment when something will explicitly mark the buffer dirty (hopefully that
1590  * will not happen until we will free that block ;-) We don't even need to mark
1591  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1592  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1593  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1594  * would confuse anyone who might pick it with bread() afterwards...
1595  *
1596  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1597  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1598  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1599  * need to.  That happens here.
1600  */
1601 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1602 {
1603 	struct inode *bd_inode = bdev->bd_inode;
1604 	struct address_space *bd_mapping = bd_inode->i_mapping;
1605 	struct pagevec pvec;
1606 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1607 	pgoff_t end;
1608 	int i, count;
1609 	struct buffer_head *bh;
1610 	struct buffer_head *head;
1611 
1612 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1613 	pagevec_init(&pvec);
1614 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1615 		count = pagevec_count(&pvec);
1616 		for (i = 0; i < count; i++) {
1617 			struct page *page = pvec.pages[i];
1618 
1619 			if (!page_has_buffers(page))
1620 				continue;
1621 			/*
1622 			 * We use page lock instead of bd_mapping->private_lock
1623 			 * to pin buffers here since we can afford to sleep and
1624 			 * it scales better than a global spinlock lock.
1625 			 */
1626 			lock_page(page);
1627 			/* Recheck when the page is locked which pins bhs */
1628 			if (!page_has_buffers(page))
1629 				goto unlock_page;
1630 			head = page_buffers(page);
1631 			bh = head;
1632 			do {
1633 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1634 					goto next;
1635 				if (bh->b_blocknr >= block + len)
1636 					break;
1637 				clear_buffer_dirty(bh);
1638 				wait_on_buffer(bh);
1639 				clear_buffer_req(bh);
1640 next:
1641 				bh = bh->b_this_page;
1642 			} while (bh != head);
1643 unlock_page:
1644 			unlock_page(page);
1645 		}
1646 		pagevec_release(&pvec);
1647 		cond_resched();
1648 		/* End of range already reached? */
1649 		if (index > end || !index)
1650 			break;
1651 	}
1652 }
1653 EXPORT_SYMBOL(clean_bdev_aliases);
1654 
1655 /*
1656  * Size is a power-of-two in the range 512..PAGE_SIZE,
1657  * and the case we care about most is PAGE_SIZE.
1658  *
1659  * So this *could* possibly be written with those
1660  * constraints in mind (relevant mostly if some
1661  * architecture has a slow bit-scan instruction)
1662  */
1663 static inline int block_size_bits(unsigned int blocksize)
1664 {
1665 	return ilog2(blocksize);
1666 }
1667 
1668 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1669 {
1670 	BUG_ON(!PageLocked(page));
1671 
1672 	if (!page_has_buffers(page))
1673 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1674 				     b_state);
1675 	return page_buffers(page);
1676 }
1677 
1678 /*
1679  * NOTE! All mapped/uptodate combinations are valid:
1680  *
1681  *	Mapped	Uptodate	Meaning
1682  *
1683  *	No	No		"unknown" - must do get_block()
1684  *	No	Yes		"hole" - zero-filled
1685  *	Yes	No		"allocated" - allocated on disk, not read in
1686  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1687  *
1688  * "Dirty" is valid only with the last case (mapped+uptodate).
1689  */
1690 
1691 /*
1692  * While block_write_full_page is writing back the dirty buffers under
1693  * the page lock, whoever dirtied the buffers may decide to clean them
1694  * again at any time.  We handle that by only looking at the buffer
1695  * state inside lock_buffer().
1696  *
1697  * If block_write_full_page() is called for regular writeback
1698  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1699  * locked buffer.   This only can happen if someone has written the buffer
1700  * directly, with submit_bh().  At the address_space level PageWriteback
1701  * prevents this contention from occurring.
1702  *
1703  * If block_write_full_page() is called with wbc->sync_mode ==
1704  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1705  * causes the writes to be flagged as synchronous writes.
1706  */
1707 int __block_write_full_page(struct inode *inode, struct page *page,
1708 			get_block_t *get_block, struct writeback_control *wbc,
1709 			bh_end_io_t *handler)
1710 {
1711 	int err;
1712 	sector_t block;
1713 	sector_t last_block;
1714 	struct buffer_head *bh, *head;
1715 	unsigned int blocksize, bbits;
1716 	int nr_underway = 0;
1717 	int write_flags = wbc_to_write_flags(wbc);
1718 
1719 	head = create_page_buffers(page, inode,
1720 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1721 
1722 	/*
1723 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1724 	 * here, and the (potentially unmapped) buffers may become dirty at
1725 	 * any time.  If a buffer becomes dirty here after we've inspected it
1726 	 * then we just miss that fact, and the page stays dirty.
1727 	 *
1728 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1729 	 * handle that here by just cleaning them.
1730 	 */
1731 
1732 	bh = head;
1733 	blocksize = bh->b_size;
1734 	bbits = block_size_bits(blocksize);
1735 
1736 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1737 	last_block = (i_size_read(inode) - 1) >> bbits;
1738 
1739 	/*
1740 	 * Get all the dirty buffers mapped to disk addresses and
1741 	 * handle any aliases from the underlying blockdev's mapping.
1742 	 */
1743 	do {
1744 		if (block > last_block) {
1745 			/*
1746 			 * mapped buffers outside i_size will occur, because
1747 			 * this page can be outside i_size when there is a
1748 			 * truncate in progress.
1749 			 */
1750 			/*
1751 			 * The buffer was zeroed by block_write_full_page()
1752 			 */
1753 			clear_buffer_dirty(bh);
1754 			set_buffer_uptodate(bh);
1755 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1756 			   buffer_dirty(bh)) {
1757 			WARN_ON(bh->b_size != blocksize);
1758 			err = get_block(inode, block, bh, 1);
1759 			if (err)
1760 				goto recover;
1761 			clear_buffer_delay(bh);
1762 			if (buffer_new(bh)) {
1763 				/* blockdev mappings never come here */
1764 				clear_buffer_new(bh);
1765 				clean_bdev_bh_alias(bh);
1766 			}
1767 		}
1768 		bh = bh->b_this_page;
1769 		block++;
1770 	} while (bh != head);
1771 
1772 	do {
1773 		if (!buffer_mapped(bh))
1774 			continue;
1775 		/*
1776 		 * If it's a fully non-blocking write attempt and we cannot
1777 		 * lock the buffer then redirty the page.  Note that this can
1778 		 * potentially cause a busy-wait loop from writeback threads
1779 		 * and kswapd activity, but those code paths have their own
1780 		 * higher-level throttling.
1781 		 */
1782 		if (wbc->sync_mode != WB_SYNC_NONE) {
1783 			lock_buffer(bh);
1784 		} else if (!trylock_buffer(bh)) {
1785 			redirty_page_for_writepage(wbc, page);
1786 			continue;
1787 		}
1788 		if (test_clear_buffer_dirty(bh)) {
1789 			mark_buffer_async_write_endio(bh, handler);
1790 		} else {
1791 			unlock_buffer(bh);
1792 		}
1793 	} while ((bh = bh->b_this_page) != head);
1794 
1795 	/*
1796 	 * The page and its buffers are protected by PageWriteback(), so we can
1797 	 * drop the bh refcounts early.
1798 	 */
1799 	BUG_ON(PageWriteback(page));
1800 	set_page_writeback(page);
1801 
1802 	do {
1803 		struct buffer_head *next = bh->b_this_page;
1804 		if (buffer_async_write(bh)) {
1805 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1806 					inode->i_write_hint, wbc);
1807 			nr_underway++;
1808 		}
1809 		bh = next;
1810 	} while (bh != head);
1811 	unlock_page(page);
1812 
1813 	err = 0;
1814 done:
1815 	if (nr_underway == 0) {
1816 		/*
1817 		 * The page was marked dirty, but the buffers were
1818 		 * clean.  Someone wrote them back by hand with
1819 		 * ll_rw_block/submit_bh.  A rare case.
1820 		 */
1821 		end_page_writeback(page);
1822 
1823 		/*
1824 		 * The page and buffer_heads can be released at any time from
1825 		 * here on.
1826 		 */
1827 	}
1828 	return err;
1829 
1830 recover:
1831 	/*
1832 	 * ENOSPC, or some other error.  We may already have added some
1833 	 * blocks to the file, so we need to write these out to avoid
1834 	 * exposing stale data.
1835 	 * The page is currently locked and not marked for writeback
1836 	 */
1837 	bh = head;
1838 	/* Recovery: lock and submit the mapped buffers */
1839 	do {
1840 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1841 		    !buffer_delay(bh)) {
1842 			lock_buffer(bh);
1843 			mark_buffer_async_write_endio(bh, handler);
1844 		} else {
1845 			/*
1846 			 * The buffer may have been set dirty during
1847 			 * attachment to a dirty page.
1848 			 */
1849 			clear_buffer_dirty(bh);
1850 		}
1851 	} while ((bh = bh->b_this_page) != head);
1852 	SetPageError(page);
1853 	BUG_ON(PageWriteback(page));
1854 	mapping_set_error(page->mapping, err);
1855 	set_page_writeback(page);
1856 	do {
1857 		struct buffer_head *next = bh->b_this_page;
1858 		if (buffer_async_write(bh)) {
1859 			clear_buffer_dirty(bh);
1860 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1861 					inode->i_write_hint, wbc);
1862 			nr_underway++;
1863 		}
1864 		bh = next;
1865 	} while (bh != head);
1866 	unlock_page(page);
1867 	goto done;
1868 }
1869 EXPORT_SYMBOL(__block_write_full_page);
1870 
1871 /*
1872  * If a page has any new buffers, zero them out here, and mark them uptodate
1873  * and dirty so they'll be written out (in order to prevent uninitialised
1874  * block data from leaking). And clear the new bit.
1875  */
1876 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1877 {
1878 	unsigned int block_start, block_end;
1879 	struct buffer_head *head, *bh;
1880 
1881 	BUG_ON(!PageLocked(page));
1882 	if (!page_has_buffers(page))
1883 		return;
1884 
1885 	bh = head = page_buffers(page);
1886 	block_start = 0;
1887 	do {
1888 		block_end = block_start + bh->b_size;
1889 
1890 		if (buffer_new(bh)) {
1891 			if (block_end > from && block_start < to) {
1892 				if (!PageUptodate(page)) {
1893 					unsigned start, size;
1894 
1895 					start = max(from, block_start);
1896 					size = min(to, block_end) - start;
1897 
1898 					zero_user(page, start, size);
1899 					set_buffer_uptodate(bh);
1900 				}
1901 
1902 				clear_buffer_new(bh);
1903 				mark_buffer_dirty(bh);
1904 			}
1905 		}
1906 
1907 		block_start = block_end;
1908 		bh = bh->b_this_page;
1909 	} while (bh != head);
1910 }
1911 EXPORT_SYMBOL(page_zero_new_buffers);
1912 
1913 static void
1914 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1915 		const struct iomap *iomap)
1916 {
1917 	loff_t offset = block << inode->i_blkbits;
1918 
1919 	bh->b_bdev = iomap->bdev;
1920 
1921 	/*
1922 	 * Block points to offset in file we need to map, iomap contains
1923 	 * the offset at which the map starts. If the map ends before the
1924 	 * current block, then do not map the buffer and let the caller
1925 	 * handle it.
1926 	 */
1927 	BUG_ON(offset >= iomap->offset + iomap->length);
1928 
1929 	switch (iomap->type) {
1930 	case IOMAP_HOLE:
1931 		/*
1932 		 * If the buffer is not up to date or beyond the current EOF,
1933 		 * we need to mark it as new to ensure sub-block zeroing is
1934 		 * executed if necessary.
1935 		 */
1936 		if (!buffer_uptodate(bh) ||
1937 		    (offset >= i_size_read(inode)))
1938 			set_buffer_new(bh);
1939 		break;
1940 	case IOMAP_DELALLOC:
1941 		if (!buffer_uptodate(bh) ||
1942 		    (offset >= i_size_read(inode)))
1943 			set_buffer_new(bh);
1944 		set_buffer_uptodate(bh);
1945 		set_buffer_mapped(bh);
1946 		set_buffer_delay(bh);
1947 		break;
1948 	case IOMAP_UNWRITTEN:
1949 		/*
1950 		 * For unwritten regions, we always need to ensure that regions
1951 		 * in the block we are not writing to are zeroed. Mark the
1952 		 * buffer as new to ensure this.
1953 		 */
1954 		set_buffer_new(bh);
1955 		set_buffer_unwritten(bh);
1956 		fallthrough;
1957 	case IOMAP_MAPPED:
1958 		if ((iomap->flags & IOMAP_F_NEW) ||
1959 		    offset >= i_size_read(inode))
1960 			set_buffer_new(bh);
1961 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1962 				inode->i_blkbits;
1963 		set_buffer_mapped(bh);
1964 		break;
1965 	}
1966 }
1967 
1968 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1969 		get_block_t *get_block, const struct iomap *iomap)
1970 {
1971 	unsigned from = pos & (PAGE_SIZE - 1);
1972 	unsigned to = from + len;
1973 	struct inode *inode = page->mapping->host;
1974 	unsigned block_start, block_end;
1975 	sector_t block;
1976 	int err = 0;
1977 	unsigned blocksize, bbits;
1978 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1979 
1980 	BUG_ON(!PageLocked(page));
1981 	BUG_ON(from > PAGE_SIZE);
1982 	BUG_ON(to > PAGE_SIZE);
1983 	BUG_ON(from > to);
1984 
1985 	head = create_page_buffers(page, inode, 0);
1986 	blocksize = head->b_size;
1987 	bbits = block_size_bits(blocksize);
1988 
1989 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1990 
1991 	for(bh = head, block_start = 0; bh != head || !block_start;
1992 	    block++, block_start=block_end, bh = bh->b_this_page) {
1993 		block_end = block_start + blocksize;
1994 		if (block_end <= from || block_start >= to) {
1995 			if (PageUptodate(page)) {
1996 				if (!buffer_uptodate(bh))
1997 					set_buffer_uptodate(bh);
1998 			}
1999 			continue;
2000 		}
2001 		if (buffer_new(bh))
2002 			clear_buffer_new(bh);
2003 		if (!buffer_mapped(bh)) {
2004 			WARN_ON(bh->b_size != blocksize);
2005 			if (get_block) {
2006 				err = get_block(inode, block, bh, 1);
2007 				if (err)
2008 					break;
2009 			} else {
2010 				iomap_to_bh(inode, block, bh, iomap);
2011 			}
2012 
2013 			if (buffer_new(bh)) {
2014 				clean_bdev_bh_alias(bh);
2015 				if (PageUptodate(page)) {
2016 					clear_buffer_new(bh);
2017 					set_buffer_uptodate(bh);
2018 					mark_buffer_dirty(bh);
2019 					continue;
2020 				}
2021 				if (block_end > to || block_start < from)
2022 					zero_user_segments(page,
2023 						to, block_end,
2024 						block_start, from);
2025 				continue;
2026 			}
2027 		}
2028 		if (PageUptodate(page)) {
2029 			if (!buffer_uptodate(bh))
2030 				set_buffer_uptodate(bh);
2031 			continue;
2032 		}
2033 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2034 		    !buffer_unwritten(bh) &&
2035 		     (block_start < from || block_end > to)) {
2036 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2037 			*wait_bh++=bh;
2038 		}
2039 	}
2040 	/*
2041 	 * If we issued read requests - let them complete.
2042 	 */
2043 	while(wait_bh > wait) {
2044 		wait_on_buffer(*--wait_bh);
2045 		if (!buffer_uptodate(*wait_bh))
2046 			err = -EIO;
2047 	}
2048 	if (unlikely(err))
2049 		page_zero_new_buffers(page, from, to);
2050 	return err;
2051 }
2052 
2053 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2054 		get_block_t *get_block)
2055 {
2056 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2057 }
2058 EXPORT_SYMBOL(__block_write_begin);
2059 
2060 static int __block_commit_write(struct inode *inode, struct page *page,
2061 		unsigned from, unsigned to)
2062 {
2063 	unsigned block_start, block_end;
2064 	int partial = 0;
2065 	unsigned blocksize;
2066 	struct buffer_head *bh, *head;
2067 
2068 	bh = head = page_buffers(page);
2069 	blocksize = bh->b_size;
2070 
2071 	block_start = 0;
2072 	do {
2073 		block_end = block_start + blocksize;
2074 		if (block_end <= from || block_start >= to) {
2075 			if (!buffer_uptodate(bh))
2076 				partial = 1;
2077 		} else {
2078 			set_buffer_uptodate(bh);
2079 			mark_buffer_dirty(bh);
2080 		}
2081 		if (buffer_new(bh))
2082 			clear_buffer_new(bh);
2083 
2084 		block_start = block_end;
2085 		bh = bh->b_this_page;
2086 	} while (bh != head);
2087 
2088 	/*
2089 	 * If this is a partial write which happened to make all buffers
2090 	 * uptodate then we can optimize away a bogus readpage() for
2091 	 * the next read(). Here we 'discover' whether the page went
2092 	 * uptodate as a result of this (potentially partial) write.
2093 	 */
2094 	if (!partial)
2095 		SetPageUptodate(page);
2096 	return 0;
2097 }
2098 
2099 /*
2100  * block_write_begin takes care of the basic task of block allocation and
2101  * bringing partial write blocks uptodate first.
2102  *
2103  * The filesystem needs to handle block truncation upon failure.
2104  */
2105 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2106 		unsigned flags, struct page **pagep, get_block_t *get_block)
2107 {
2108 	pgoff_t index = pos >> PAGE_SHIFT;
2109 	struct page *page;
2110 	int status;
2111 
2112 	page = grab_cache_page_write_begin(mapping, index, flags);
2113 	if (!page)
2114 		return -ENOMEM;
2115 
2116 	status = __block_write_begin(page, pos, len, get_block);
2117 	if (unlikely(status)) {
2118 		unlock_page(page);
2119 		put_page(page);
2120 		page = NULL;
2121 	}
2122 
2123 	*pagep = page;
2124 	return status;
2125 }
2126 EXPORT_SYMBOL(block_write_begin);
2127 
2128 int block_write_end(struct file *file, struct address_space *mapping,
2129 			loff_t pos, unsigned len, unsigned copied,
2130 			struct page *page, void *fsdata)
2131 {
2132 	struct inode *inode = mapping->host;
2133 	unsigned start;
2134 
2135 	start = pos & (PAGE_SIZE - 1);
2136 
2137 	if (unlikely(copied < len)) {
2138 		/*
2139 		 * The buffers that were written will now be uptodate, so we
2140 		 * don't have to worry about a readpage reading them and
2141 		 * overwriting a partial write. However if we have encountered
2142 		 * a short write and only partially written into a buffer, it
2143 		 * will not be marked uptodate, so a readpage might come in and
2144 		 * destroy our partial write.
2145 		 *
2146 		 * Do the simplest thing, and just treat any short write to a
2147 		 * non uptodate page as a zero-length write, and force the
2148 		 * caller to redo the whole thing.
2149 		 */
2150 		if (!PageUptodate(page))
2151 			copied = 0;
2152 
2153 		page_zero_new_buffers(page, start+copied, start+len);
2154 	}
2155 	flush_dcache_page(page);
2156 
2157 	/* This could be a short (even 0-length) commit */
2158 	__block_commit_write(inode, page, start, start+copied);
2159 
2160 	return copied;
2161 }
2162 EXPORT_SYMBOL(block_write_end);
2163 
2164 int generic_write_end(struct file *file, struct address_space *mapping,
2165 			loff_t pos, unsigned len, unsigned copied,
2166 			struct page *page, void *fsdata)
2167 {
2168 	struct inode *inode = mapping->host;
2169 	loff_t old_size = inode->i_size;
2170 	bool i_size_changed = false;
2171 
2172 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2173 
2174 	/*
2175 	 * No need to use i_size_read() here, the i_size cannot change under us
2176 	 * because we hold i_rwsem.
2177 	 *
2178 	 * But it's important to update i_size while still holding page lock:
2179 	 * page writeout could otherwise come in and zero beyond i_size.
2180 	 */
2181 	if (pos + copied > inode->i_size) {
2182 		i_size_write(inode, pos + copied);
2183 		i_size_changed = true;
2184 	}
2185 
2186 	unlock_page(page);
2187 	put_page(page);
2188 
2189 	if (old_size < pos)
2190 		pagecache_isize_extended(inode, old_size, pos);
2191 	/*
2192 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2193 	 * makes the holding time of page lock longer. Second, it forces lock
2194 	 * ordering of page lock and transaction start for journaling
2195 	 * filesystems.
2196 	 */
2197 	if (i_size_changed)
2198 		mark_inode_dirty(inode);
2199 	return copied;
2200 }
2201 EXPORT_SYMBOL(generic_write_end);
2202 
2203 /*
2204  * block_is_partially_uptodate checks whether buffers within a page are
2205  * uptodate or not.
2206  *
2207  * Returns true if all buffers which correspond to a file portion
2208  * we want to read are uptodate.
2209  */
2210 int block_is_partially_uptodate(struct page *page, unsigned long from,
2211 					unsigned long count)
2212 {
2213 	unsigned block_start, block_end, blocksize;
2214 	unsigned to;
2215 	struct buffer_head *bh, *head;
2216 	int ret = 1;
2217 
2218 	if (!page_has_buffers(page))
2219 		return 0;
2220 
2221 	head = page_buffers(page);
2222 	blocksize = head->b_size;
2223 	to = min_t(unsigned, PAGE_SIZE - from, count);
2224 	to = from + to;
2225 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2226 		return 0;
2227 
2228 	bh = head;
2229 	block_start = 0;
2230 	do {
2231 		block_end = block_start + blocksize;
2232 		if (block_end > from && block_start < to) {
2233 			if (!buffer_uptodate(bh)) {
2234 				ret = 0;
2235 				break;
2236 			}
2237 			if (block_end >= to)
2238 				break;
2239 		}
2240 		block_start = block_end;
2241 		bh = bh->b_this_page;
2242 	} while (bh != head);
2243 
2244 	return ret;
2245 }
2246 EXPORT_SYMBOL(block_is_partially_uptodate);
2247 
2248 /*
2249  * Generic "read page" function for block devices that have the normal
2250  * get_block functionality. This is most of the block device filesystems.
2251  * Reads the page asynchronously --- the unlock_buffer() and
2252  * set/clear_buffer_uptodate() functions propagate buffer state into the
2253  * page struct once IO has completed.
2254  */
2255 int block_read_full_page(struct page *page, get_block_t *get_block)
2256 {
2257 	struct inode *inode = page->mapping->host;
2258 	sector_t iblock, lblock;
2259 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2260 	unsigned int blocksize, bbits;
2261 	int nr, i;
2262 	int fully_mapped = 1;
2263 
2264 	head = create_page_buffers(page, inode, 0);
2265 	blocksize = head->b_size;
2266 	bbits = block_size_bits(blocksize);
2267 
2268 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2269 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2270 	bh = head;
2271 	nr = 0;
2272 	i = 0;
2273 
2274 	do {
2275 		if (buffer_uptodate(bh))
2276 			continue;
2277 
2278 		if (!buffer_mapped(bh)) {
2279 			int err = 0;
2280 
2281 			fully_mapped = 0;
2282 			if (iblock < lblock) {
2283 				WARN_ON(bh->b_size != blocksize);
2284 				err = get_block(inode, iblock, bh, 0);
2285 				if (err)
2286 					SetPageError(page);
2287 			}
2288 			if (!buffer_mapped(bh)) {
2289 				zero_user(page, i * blocksize, blocksize);
2290 				if (!err)
2291 					set_buffer_uptodate(bh);
2292 				continue;
2293 			}
2294 			/*
2295 			 * get_block() might have updated the buffer
2296 			 * synchronously
2297 			 */
2298 			if (buffer_uptodate(bh))
2299 				continue;
2300 		}
2301 		arr[nr++] = bh;
2302 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2303 
2304 	if (fully_mapped)
2305 		SetPageMappedToDisk(page);
2306 
2307 	if (!nr) {
2308 		/*
2309 		 * All buffers are uptodate - we can set the page uptodate
2310 		 * as well. But not if get_block() returned an error.
2311 		 */
2312 		if (!PageError(page))
2313 			SetPageUptodate(page);
2314 		unlock_page(page);
2315 		return 0;
2316 	}
2317 
2318 	/* Stage two: lock the buffers */
2319 	for (i = 0; i < nr; i++) {
2320 		bh = arr[i];
2321 		lock_buffer(bh);
2322 		mark_buffer_async_read(bh);
2323 	}
2324 
2325 	/*
2326 	 * Stage 3: start the IO.  Check for uptodateness
2327 	 * inside the buffer lock in case another process reading
2328 	 * the underlying blockdev brought it uptodate (the sct fix).
2329 	 */
2330 	for (i = 0; i < nr; i++) {
2331 		bh = arr[i];
2332 		if (buffer_uptodate(bh))
2333 			end_buffer_async_read(bh, 1);
2334 		else
2335 			submit_bh(REQ_OP_READ, 0, bh);
2336 	}
2337 	return 0;
2338 }
2339 EXPORT_SYMBOL(block_read_full_page);
2340 
2341 /* utility function for filesystems that need to do work on expanding
2342  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2343  * deal with the hole.
2344  */
2345 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2346 {
2347 	struct address_space *mapping = inode->i_mapping;
2348 	struct page *page;
2349 	void *fsdata;
2350 	int err;
2351 
2352 	err = inode_newsize_ok(inode, size);
2353 	if (err)
2354 		goto out;
2355 
2356 	err = pagecache_write_begin(NULL, mapping, size, 0,
2357 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2358 	if (err)
2359 		goto out;
2360 
2361 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2362 	BUG_ON(err > 0);
2363 
2364 out:
2365 	return err;
2366 }
2367 EXPORT_SYMBOL(generic_cont_expand_simple);
2368 
2369 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2370 			    loff_t pos, loff_t *bytes)
2371 {
2372 	struct inode *inode = mapping->host;
2373 	unsigned int blocksize = i_blocksize(inode);
2374 	struct page *page;
2375 	void *fsdata;
2376 	pgoff_t index, curidx;
2377 	loff_t curpos;
2378 	unsigned zerofrom, offset, len;
2379 	int err = 0;
2380 
2381 	index = pos >> PAGE_SHIFT;
2382 	offset = pos & ~PAGE_MASK;
2383 
2384 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2385 		zerofrom = curpos & ~PAGE_MASK;
2386 		if (zerofrom & (blocksize-1)) {
2387 			*bytes |= (blocksize-1);
2388 			(*bytes)++;
2389 		}
2390 		len = PAGE_SIZE - zerofrom;
2391 
2392 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2393 					    &page, &fsdata);
2394 		if (err)
2395 			goto out;
2396 		zero_user(page, zerofrom, len);
2397 		err = pagecache_write_end(file, mapping, curpos, len, len,
2398 						page, fsdata);
2399 		if (err < 0)
2400 			goto out;
2401 		BUG_ON(err != len);
2402 		err = 0;
2403 
2404 		balance_dirty_pages_ratelimited(mapping);
2405 
2406 		if (fatal_signal_pending(current)) {
2407 			err = -EINTR;
2408 			goto out;
2409 		}
2410 	}
2411 
2412 	/* page covers the boundary, find the boundary offset */
2413 	if (index == curidx) {
2414 		zerofrom = curpos & ~PAGE_MASK;
2415 		/* if we will expand the thing last block will be filled */
2416 		if (offset <= zerofrom) {
2417 			goto out;
2418 		}
2419 		if (zerofrom & (blocksize-1)) {
2420 			*bytes |= (blocksize-1);
2421 			(*bytes)++;
2422 		}
2423 		len = offset - zerofrom;
2424 
2425 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2426 					    &page, &fsdata);
2427 		if (err)
2428 			goto out;
2429 		zero_user(page, zerofrom, len);
2430 		err = pagecache_write_end(file, mapping, curpos, len, len,
2431 						page, fsdata);
2432 		if (err < 0)
2433 			goto out;
2434 		BUG_ON(err != len);
2435 		err = 0;
2436 	}
2437 out:
2438 	return err;
2439 }
2440 
2441 /*
2442  * For moronic filesystems that do not allow holes in file.
2443  * We may have to extend the file.
2444  */
2445 int cont_write_begin(struct file *file, struct address_space *mapping,
2446 			loff_t pos, unsigned len, unsigned flags,
2447 			struct page **pagep, void **fsdata,
2448 			get_block_t *get_block, loff_t *bytes)
2449 {
2450 	struct inode *inode = mapping->host;
2451 	unsigned int blocksize = i_blocksize(inode);
2452 	unsigned int zerofrom;
2453 	int err;
2454 
2455 	err = cont_expand_zero(file, mapping, pos, bytes);
2456 	if (err)
2457 		return err;
2458 
2459 	zerofrom = *bytes & ~PAGE_MASK;
2460 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2461 		*bytes |= (blocksize-1);
2462 		(*bytes)++;
2463 	}
2464 
2465 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2466 }
2467 EXPORT_SYMBOL(cont_write_begin);
2468 
2469 int block_commit_write(struct page *page, unsigned from, unsigned to)
2470 {
2471 	struct inode *inode = page->mapping->host;
2472 	__block_commit_write(inode,page,from,to);
2473 	return 0;
2474 }
2475 EXPORT_SYMBOL(block_commit_write);
2476 
2477 /*
2478  * block_page_mkwrite() is not allowed to change the file size as it gets
2479  * called from a page fault handler when a page is first dirtied. Hence we must
2480  * be careful to check for EOF conditions here. We set the page up correctly
2481  * for a written page which means we get ENOSPC checking when writing into
2482  * holes and correct delalloc and unwritten extent mapping on filesystems that
2483  * support these features.
2484  *
2485  * We are not allowed to take the i_mutex here so we have to play games to
2486  * protect against truncate races as the page could now be beyond EOF.  Because
2487  * truncate writes the inode size before removing pages, once we have the
2488  * page lock we can determine safely if the page is beyond EOF. If it is not
2489  * beyond EOF, then the page is guaranteed safe against truncation until we
2490  * unlock the page.
2491  *
2492  * Direct callers of this function should protect against filesystem freezing
2493  * using sb_start_pagefault() - sb_end_pagefault() functions.
2494  */
2495 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2496 			 get_block_t get_block)
2497 {
2498 	struct page *page = vmf->page;
2499 	struct inode *inode = file_inode(vma->vm_file);
2500 	unsigned long end;
2501 	loff_t size;
2502 	int ret;
2503 
2504 	lock_page(page);
2505 	size = i_size_read(inode);
2506 	if ((page->mapping != inode->i_mapping) ||
2507 	    (page_offset(page) > size)) {
2508 		/* We overload EFAULT to mean page got truncated */
2509 		ret = -EFAULT;
2510 		goto out_unlock;
2511 	}
2512 
2513 	/* page is wholly or partially inside EOF */
2514 	if (((page->index + 1) << PAGE_SHIFT) > size)
2515 		end = size & ~PAGE_MASK;
2516 	else
2517 		end = PAGE_SIZE;
2518 
2519 	ret = __block_write_begin(page, 0, end, get_block);
2520 	if (!ret)
2521 		ret = block_commit_write(page, 0, end);
2522 
2523 	if (unlikely(ret < 0))
2524 		goto out_unlock;
2525 	set_page_dirty(page);
2526 	wait_for_stable_page(page);
2527 	return 0;
2528 out_unlock:
2529 	unlock_page(page);
2530 	return ret;
2531 }
2532 EXPORT_SYMBOL(block_page_mkwrite);
2533 
2534 /*
2535  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2536  * immediately, while under the page lock.  So it needs a special end_io
2537  * handler which does not touch the bh after unlocking it.
2538  */
2539 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2540 {
2541 	__end_buffer_read_notouch(bh, uptodate);
2542 }
2543 
2544 /*
2545  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2546  * the page (converting it to circular linked list and taking care of page
2547  * dirty races).
2548  */
2549 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2550 {
2551 	struct buffer_head *bh;
2552 
2553 	BUG_ON(!PageLocked(page));
2554 
2555 	spin_lock(&page->mapping->private_lock);
2556 	bh = head;
2557 	do {
2558 		if (PageDirty(page))
2559 			set_buffer_dirty(bh);
2560 		if (!bh->b_this_page)
2561 			bh->b_this_page = head;
2562 		bh = bh->b_this_page;
2563 	} while (bh != head);
2564 	attach_page_private(page, head);
2565 	spin_unlock(&page->mapping->private_lock);
2566 }
2567 
2568 /*
2569  * On entry, the page is fully not uptodate.
2570  * On exit the page is fully uptodate in the areas outside (from,to)
2571  * The filesystem needs to handle block truncation upon failure.
2572  */
2573 int nobh_write_begin(struct address_space *mapping,
2574 			loff_t pos, unsigned len, unsigned flags,
2575 			struct page **pagep, void **fsdata,
2576 			get_block_t *get_block)
2577 {
2578 	struct inode *inode = mapping->host;
2579 	const unsigned blkbits = inode->i_blkbits;
2580 	const unsigned blocksize = 1 << blkbits;
2581 	struct buffer_head *head, *bh;
2582 	struct page *page;
2583 	pgoff_t index;
2584 	unsigned from, to;
2585 	unsigned block_in_page;
2586 	unsigned block_start, block_end;
2587 	sector_t block_in_file;
2588 	int nr_reads = 0;
2589 	int ret = 0;
2590 	int is_mapped_to_disk = 1;
2591 
2592 	index = pos >> PAGE_SHIFT;
2593 	from = pos & (PAGE_SIZE - 1);
2594 	to = from + len;
2595 
2596 	page = grab_cache_page_write_begin(mapping, index, flags);
2597 	if (!page)
2598 		return -ENOMEM;
2599 	*pagep = page;
2600 	*fsdata = NULL;
2601 
2602 	if (page_has_buffers(page)) {
2603 		ret = __block_write_begin(page, pos, len, get_block);
2604 		if (unlikely(ret))
2605 			goto out_release;
2606 		return ret;
2607 	}
2608 
2609 	if (PageMappedToDisk(page))
2610 		return 0;
2611 
2612 	/*
2613 	 * Allocate buffers so that we can keep track of state, and potentially
2614 	 * attach them to the page if an error occurs. In the common case of
2615 	 * no error, they will just be freed again without ever being attached
2616 	 * to the page (which is all OK, because we're under the page lock).
2617 	 *
2618 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2619 	 * than the circular one we're used to.
2620 	 */
2621 	head = alloc_page_buffers(page, blocksize, false);
2622 	if (!head) {
2623 		ret = -ENOMEM;
2624 		goto out_release;
2625 	}
2626 
2627 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2628 
2629 	/*
2630 	 * We loop across all blocks in the page, whether or not they are
2631 	 * part of the affected region.  This is so we can discover if the
2632 	 * page is fully mapped-to-disk.
2633 	 */
2634 	for (block_start = 0, block_in_page = 0, bh = head;
2635 		  block_start < PAGE_SIZE;
2636 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2637 		int create;
2638 
2639 		block_end = block_start + blocksize;
2640 		bh->b_state = 0;
2641 		create = 1;
2642 		if (block_start >= to)
2643 			create = 0;
2644 		ret = get_block(inode, block_in_file + block_in_page,
2645 					bh, create);
2646 		if (ret)
2647 			goto failed;
2648 		if (!buffer_mapped(bh))
2649 			is_mapped_to_disk = 0;
2650 		if (buffer_new(bh))
2651 			clean_bdev_bh_alias(bh);
2652 		if (PageUptodate(page)) {
2653 			set_buffer_uptodate(bh);
2654 			continue;
2655 		}
2656 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2657 			zero_user_segments(page, block_start, from,
2658 							to, block_end);
2659 			continue;
2660 		}
2661 		if (buffer_uptodate(bh))
2662 			continue;	/* reiserfs does this */
2663 		if (block_start < from || block_end > to) {
2664 			lock_buffer(bh);
2665 			bh->b_end_io = end_buffer_read_nobh;
2666 			submit_bh(REQ_OP_READ, 0, bh);
2667 			nr_reads++;
2668 		}
2669 	}
2670 
2671 	if (nr_reads) {
2672 		/*
2673 		 * The page is locked, so these buffers are protected from
2674 		 * any VM or truncate activity.  Hence we don't need to care
2675 		 * for the buffer_head refcounts.
2676 		 */
2677 		for (bh = head; bh; bh = bh->b_this_page) {
2678 			wait_on_buffer(bh);
2679 			if (!buffer_uptodate(bh))
2680 				ret = -EIO;
2681 		}
2682 		if (ret)
2683 			goto failed;
2684 	}
2685 
2686 	if (is_mapped_to_disk)
2687 		SetPageMappedToDisk(page);
2688 
2689 	*fsdata = head; /* to be released by nobh_write_end */
2690 
2691 	return 0;
2692 
2693 failed:
2694 	BUG_ON(!ret);
2695 	/*
2696 	 * Error recovery is a bit difficult. We need to zero out blocks that
2697 	 * were newly allocated, and dirty them to ensure they get written out.
2698 	 * Buffers need to be attached to the page at this point, otherwise
2699 	 * the handling of potential IO errors during writeout would be hard
2700 	 * (could try doing synchronous writeout, but what if that fails too?)
2701 	 */
2702 	attach_nobh_buffers(page, head);
2703 	page_zero_new_buffers(page, from, to);
2704 
2705 out_release:
2706 	unlock_page(page);
2707 	put_page(page);
2708 	*pagep = NULL;
2709 
2710 	return ret;
2711 }
2712 EXPORT_SYMBOL(nobh_write_begin);
2713 
2714 int nobh_write_end(struct file *file, struct address_space *mapping,
2715 			loff_t pos, unsigned len, unsigned copied,
2716 			struct page *page, void *fsdata)
2717 {
2718 	struct inode *inode = page->mapping->host;
2719 	struct buffer_head *head = fsdata;
2720 	struct buffer_head *bh;
2721 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2722 
2723 	if (unlikely(copied < len) && head)
2724 		attach_nobh_buffers(page, head);
2725 	if (page_has_buffers(page))
2726 		return generic_write_end(file, mapping, pos, len,
2727 					copied, page, fsdata);
2728 
2729 	SetPageUptodate(page);
2730 	set_page_dirty(page);
2731 	if (pos+copied > inode->i_size) {
2732 		i_size_write(inode, pos+copied);
2733 		mark_inode_dirty(inode);
2734 	}
2735 
2736 	unlock_page(page);
2737 	put_page(page);
2738 
2739 	while (head) {
2740 		bh = head;
2741 		head = head->b_this_page;
2742 		free_buffer_head(bh);
2743 	}
2744 
2745 	return copied;
2746 }
2747 EXPORT_SYMBOL(nobh_write_end);
2748 
2749 /*
2750  * nobh_writepage() - based on block_full_write_page() except
2751  * that it tries to operate without attaching bufferheads to
2752  * the page.
2753  */
2754 int nobh_writepage(struct page *page, get_block_t *get_block,
2755 			struct writeback_control *wbc)
2756 {
2757 	struct inode * const inode = page->mapping->host;
2758 	loff_t i_size = i_size_read(inode);
2759 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2760 	unsigned offset;
2761 	int ret;
2762 
2763 	/* Is the page fully inside i_size? */
2764 	if (page->index < end_index)
2765 		goto out;
2766 
2767 	/* Is the page fully outside i_size? (truncate in progress) */
2768 	offset = i_size & (PAGE_SIZE-1);
2769 	if (page->index >= end_index+1 || !offset) {
2770 		unlock_page(page);
2771 		return 0; /* don't care */
2772 	}
2773 
2774 	/*
2775 	 * The page straddles i_size.  It must be zeroed out on each and every
2776 	 * writepage invocation because it may be mmapped.  "A file is mapped
2777 	 * in multiples of the page size.  For a file that is not a multiple of
2778 	 * the  page size, the remaining memory is zeroed when mapped, and
2779 	 * writes to that region are not written out to the file."
2780 	 */
2781 	zero_user_segment(page, offset, PAGE_SIZE);
2782 out:
2783 	ret = mpage_writepage(page, get_block, wbc);
2784 	if (ret == -EAGAIN)
2785 		ret = __block_write_full_page(inode, page, get_block, wbc,
2786 					      end_buffer_async_write);
2787 	return ret;
2788 }
2789 EXPORT_SYMBOL(nobh_writepage);
2790 
2791 int nobh_truncate_page(struct address_space *mapping,
2792 			loff_t from, get_block_t *get_block)
2793 {
2794 	pgoff_t index = from >> PAGE_SHIFT;
2795 	unsigned offset = from & (PAGE_SIZE-1);
2796 	unsigned blocksize;
2797 	sector_t iblock;
2798 	unsigned length, pos;
2799 	struct inode *inode = mapping->host;
2800 	struct page *page;
2801 	struct buffer_head map_bh;
2802 	int err;
2803 
2804 	blocksize = i_blocksize(inode);
2805 	length = offset & (blocksize - 1);
2806 
2807 	/* Block boundary? Nothing to do */
2808 	if (!length)
2809 		return 0;
2810 
2811 	length = blocksize - length;
2812 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2813 
2814 	page = grab_cache_page(mapping, index);
2815 	err = -ENOMEM;
2816 	if (!page)
2817 		goto out;
2818 
2819 	if (page_has_buffers(page)) {
2820 has_buffers:
2821 		unlock_page(page);
2822 		put_page(page);
2823 		return block_truncate_page(mapping, from, get_block);
2824 	}
2825 
2826 	/* Find the buffer that contains "offset" */
2827 	pos = blocksize;
2828 	while (offset >= pos) {
2829 		iblock++;
2830 		pos += blocksize;
2831 	}
2832 
2833 	map_bh.b_size = blocksize;
2834 	map_bh.b_state = 0;
2835 	err = get_block(inode, iblock, &map_bh, 0);
2836 	if (err)
2837 		goto unlock;
2838 	/* unmapped? It's a hole - nothing to do */
2839 	if (!buffer_mapped(&map_bh))
2840 		goto unlock;
2841 
2842 	/* Ok, it's mapped. Make sure it's up-to-date */
2843 	if (!PageUptodate(page)) {
2844 		err = mapping->a_ops->readpage(NULL, page);
2845 		if (err) {
2846 			put_page(page);
2847 			goto out;
2848 		}
2849 		lock_page(page);
2850 		if (!PageUptodate(page)) {
2851 			err = -EIO;
2852 			goto unlock;
2853 		}
2854 		if (page_has_buffers(page))
2855 			goto has_buffers;
2856 	}
2857 	zero_user(page, offset, length);
2858 	set_page_dirty(page);
2859 	err = 0;
2860 
2861 unlock:
2862 	unlock_page(page);
2863 	put_page(page);
2864 out:
2865 	return err;
2866 }
2867 EXPORT_SYMBOL(nobh_truncate_page);
2868 
2869 int block_truncate_page(struct address_space *mapping,
2870 			loff_t from, get_block_t *get_block)
2871 {
2872 	pgoff_t index = from >> PAGE_SHIFT;
2873 	unsigned offset = from & (PAGE_SIZE-1);
2874 	unsigned blocksize;
2875 	sector_t iblock;
2876 	unsigned length, pos;
2877 	struct inode *inode = mapping->host;
2878 	struct page *page;
2879 	struct buffer_head *bh;
2880 	int err;
2881 
2882 	blocksize = i_blocksize(inode);
2883 	length = offset & (blocksize - 1);
2884 
2885 	/* Block boundary? Nothing to do */
2886 	if (!length)
2887 		return 0;
2888 
2889 	length = blocksize - length;
2890 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2891 
2892 	page = grab_cache_page(mapping, index);
2893 	err = -ENOMEM;
2894 	if (!page)
2895 		goto out;
2896 
2897 	if (!page_has_buffers(page))
2898 		create_empty_buffers(page, blocksize, 0);
2899 
2900 	/* Find the buffer that contains "offset" */
2901 	bh = page_buffers(page);
2902 	pos = blocksize;
2903 	while (offset >= pos) {
2904 		bh = bh->b_this_page;
2905 		iblock++;
2906 		pos += blocksize;
2907 	}
2908 
2909 	err = 0;
2910 	if (!buffer_mapped(bh)) {
2911 		WARN_ON(bh->b_size != blocksize);
2912 		err = get_block(inode, iblock, bh, 0);
2913 		if (err)
2914 			goto unlock;
2915 		/* unmapped? It's a hole - nothing to do */
2916 		if (!buffer_mapped(bh))
2917 			goto unlock;
2918 	}
2919 
2920 	/* Ok, it's mapped. Make sure it's up-to-date */
2921 	if (PageUptodate(page))
2922 		set_buffer_uptodate(bh);
2923 
2924 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2925 		err = -EIO;
2926 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2927 		wait_on_buffer(bh);
2928 		/* Uhhuh. Read error. Complain and punt. */
2929 		if (!buffer_uptodate(bh))
2930 			goto unlock;
2931 	}
2932 
2933 	zero_user(page, offset, length);
2934 	mark_buffer_dirty(bh);
2935 	err = 0;
2936 
2937 unlock:
2938 	unlock_page(page);
2939 	put_page(page);
2940 out:
2941 	return err;
2942 }
2943 EXPORT_SYMBOL(block_truncate_page);
2944 
2945 /*
2946  * The generic ->writepage function for buffer-backed address_spaces
2947  */
2948 int block_write_full_page(struct page *page, get_block_t *get_block,
2949 			struct writeback_control *wbc)
2950 {
2951 	struct inode * const inode = page->mapping->host;
2952 	loff_t i_size = i_size_read(inode);
2953 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2954 	unsigned offset;
2955 
2956 	/* Is the page fully inside i_size? */
2957 	if (page->index < end_index)
2958 		return __block_write_full_page(inode, page, get_block, wbc,
2959 					       end_buffer_async_write);
2960 
2961 	/* Is the page fully outside i_size? (truncate in progress) */
2962 	offset = i_size & (PAGE_SIZE-1);
2963 	if (page->index >= end_index+1 || !offset) {
2964 		unlock_page(page);
2965 		return 0; /* don't care */
2966 	}
2967 
2968 	/*
2969 	 * The page straddles i_size.  It must be zeroed out on each and every
2970 	 * writepage invocation because it may be mmapped.  "A file is mapped
2971 	 * in multiples of the page size.  For a file that is not a multiple of
2972 	 * the  page size, the remaining memory is zeroed when mapped, and
2973 	 * writes to that region are not written out to the file."
2974 	 */
2975 	zero_user_segment(page, offset, PAGE_SIZE);
2976 	return __block_write_full_page(inode, page, get_block, wbc,
2977 							end_buffer_async_write);
2978 }
2979 EXPORT_SYMBOL(block_write_full_page);
2980 
2981 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2982 			    get_block_t *get_block)
2983 {
2984 	struct inode *inode = mapping->host;
2985 	struct buffer_head tmp = {
2986 		.b_size = i_blocksize(inode),
2987 	};
2988 
2989 	get_block(inode, block, &tmp, 0);
2990 	return tmp.b_blocknr;
2991 }
2992 EXPORT_SYMBOL(generic_block_bmap);
2993 
2994 static void end_bio_bh_io_sync(struct bio *bio)
2995 {
2996 	struct buffer_head *bh = bio->bi_private;
2997 
2998 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2999 		set_bit(BH_Quiet, &bh->b_state);
3000 
3001 	bh->b_end_io(bh, !bio->bi_status);
3002 	bio_put(bio);
3003 }
3004 
3005 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3006 			 enum rw_hint write_hint, struct writeback_control *wbc)
3007 {
3008 	struct bio *bio;
3009 
3010 	BUG_ON(!buffer_locked(bh));
3011 	BUG_ON(!buffer_mapped(bh));
3012 	BUG_ON(!bh->b_end_io);
3013 	BUG_ON(buffer_delay(bh));
3014 	BUG_ON(buffer_unwritten(bh));
3015 
3016 	/*
3017 	 * Only clear out a write error when rewriting
3018 	 */
3019 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3020 		clear_buffer_write_io_error(bh);
3021 
3022 	bio = bio_alloc(GFP_NOIO, 1);
3023 
3024 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3025 
3026 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3027 	bio_set_dev(bio, bh->b_bdev);
3028 	bio->bi_write_hint = write_hint;
3029 
3030 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3031 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3032 
3033 	bio->bi_end_io = end_bio_bh_io_sync;
3034 	bio->bi_private = bh;
3035 
3036 	if (buffer_meta(bh))
3037 		op_flags |= REQ_META;
3038 	if (buffer_prio(bh))
3039 		op_flags |= REQ_PRIO;
3040 	bio_set_op_attrs(bio, op, op_flags);
3041 
3042 	/* Take care of bh's that straddle the end of the device */
3043 	guard_bio_eod(bio);
3044 
3045 	if (wbc) {
3046 		wbc_init_bio(wbc, bio);
3047 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3048 	}
3049 
3050 	submit_bio(bio);
3051 	return 0;
3052 }
3053 
3054 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3055 {
3056 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3057 }
3058 EXPORT_SYMBOL(submit_bh);
3059 
3060 /**
3061  * ll_rw_block: low-level access to block devices (DEPRECATED)
3062  * @op: whether to %READ or %WRITE
3063  * @op_flags: req_flag_bits
3064  * @nr: number of &struct buffer_heads in the array
3065  * @bhs: array of pointers to &struct buffer_head
3066  *
3067  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3068  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3069  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3070  * %REQ_RAHEAD.
3071  *
3072  * This function drops any buffer that it cannot get a lock on (with the
3073  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3074  * request, and any buffer that appears to be up-to-date when doing read
3075  * request.  Further it marks as clean buffers that are processed for
3076  * writing (the buffer cache won't assume that they are actually clean
3077  * until the buffer gets unlocked).
3078  *
3079  * ll_rw_block sets b_end_io to simple completion handler that marks
3080  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3081  * any waiters.
3082  *
3083  * All of the buffers must be for the same device, and must also be a
3084  * multiple of the current approved size for the device.
3085  */
3086 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3087 {
3088 	int i;
3089 
3090 	for (i = 0; i < nr; i++) {
3091 		struct buffer_head *bh = bhs[i];
3092 
3093 		if (!trylock_buffer(bh))
3094 			continue;
3095 		if (op == WRITE) {
3096 			if (test_clear_buffer_dirty(bh)) {
3097 				bh->b_end_io = end_buffer_write_sync;
3098 				get_bh(bh);
3099 				submit_bh(op, op_flags, bh);
3100 				continue;
3101 			}
3102 		} else {
3103 			if (!buffer_uptodate(bh)) {
3104 				bh->b_end_io = end_buffer_read_sync;
3105 				get_bh(bh);
3106 				submit_bh(op, op_flags, bh);
3107 				continue;
3108 			}
3109 		}
3110 		unlock_buffer(bh);
3111 	}
3112 }
3113 EXPORT_SYMBOL(ll_rw_block);
3114 
3115 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3116 {
3117 	lock_buffer(bh);
3118 	if (!test_clear_buffer_dirty(bh)) {
3119 		unlock_buffer(bh);
3120 		return;
3121 	}
3122 	bh->b_end_io = end_buffer_write_sync;
3123 	get_bh(bh);
3124 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3125 }
3126 EXPORT_SYMBOL(write_dirty_buffer);
3127 
3128 /*
3129  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3130  * and then start new I/O and then wait upon it.  The caller must have a ref on
3131  * the buffer_head.
3132  */
3133 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3134 {
3135 	int ret = 0;
3136 
3137 	WARN_ON(atomic_read(&bh->b_count) < 1);
3138 	lock_buffer(bh);
3139 	if (test_clear_buffer_dirty(bh)) {
3140 		/*
3141 		 * The bh should be mapped, but it might not be if the
3142 		 * device was hot-removed. Not much we can do but fail the I/O.
3143 		 */
3144 		if (!buffer_mapped(bh)) {
3145 			unlock_buffer(bh);
3146 			return -EIO;
3147 		}
3148 
3149 		get_bh(bh);
3150 		bh->b_end_io = end_buffer_write_sync;
3151 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3152 		wait_on_buffer(bh);
3153 		if (!ret && !buffer_uptodate(bh))
3154 			ret = -EIO;
3155 	} else {
3156 		unlock_buffer(bh);
3157 	}
3158 	return ret;
3159 }
3160 EXPORT_SYMBOL(__sync_dirty_buffer);
3161 
3162 int sync_dirty_buffer(struct buffer_head *bh)
3163 {
3164 	return __sync_dirty_buffer(bh, REQ_SYNC);
3165 }
3166 EXPORT_SYMBOL(sync_dirty_buffer);
3167 
3168 /*
3169  * try_to_free_buffers() checks if all the buffers on this particular page
3170  * are unused, and releases them if so.
3171  *
3172  * Exclusion against try_to_free_buffers may be obtained by either
3173  * locking the page or by holding its mapping's private_lock.
3174  *
3175  * If the page is dirty but all the buffers are clean then we need to
3176  * be sure to mark the page clean as well.  This is because the page
3177  * may be against a block device, and a later reattachment of buffers
3178  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3179  * filesystem data on the same device.
3180  *
3181  * The same applies to regular filesystem pages: if all the buffers are
3182  * clean then we set the page clean and proceed.  To do that, we require
3183  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3184  * private_lock.
3185  *
3186  * try_to_free_buffers() is non-blocking.
3187  */
3188 static inline int buffer_busy(struct buffer_head *bh)
3189 {
3190 	return atomic_read(&bh->b_count) |
3191 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3192 }
3193 
3194 static int
3195 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3196 {
3197 	struct buffer_head *head = page_buffers(page);
3198 	struct buffer_head *bh;
3199 
3200 	bh = head;
3201 	do {
3202 		if (buffer_busy(bh))
3203 			goto failed;
3204 		bh = bh->b_this_page;
3205 	} while (bh != head);
3206 
3207 	do {
3208 		struct buffer_head *next = bh->b_this_page;
3209 
3210 		if (bh->b_assoc_map)
3211 			__remove_assoc_queue(bh);
3212 		bh = next;
3213 	} while (bh != head);
3214 	*buffers_to_free = head;
3215 	detach_page_private(page);
3216 	return 1;
3217 failed:
3218 	return 0;
3219 }
3220 
3221 int try_to_free_buffers(struct page *page)
3222 {
3223 	struct address_space * const mapping = page->mapping;
3224 	struct buffer_head *buffers_to_free = NULL;
3225 	int ret = 0;
3226 
3227 	BUG_ON(!PageLocked(page));
3228 	if (PageWriteback(page))
3229 		return 0;
3230 
3231 	if (mapping == NULL) {		/* can this still happen? */
3232 		ret = drop_buffers(page, &buffers_to_free);
3233 		goto out;
3234 	}
3235 
3236 	spin_lock(&mapping->private_lock);
3237 	ret = drop_buffers(page, &buffers_to_free);
3238 
3239 	/*
3240 	 * If the filesystem writes its buffers by hand (eg ext3)
3241 	 * then we can have clean buffers against a dirty page.  We
3242 	 * clean the page here; otherwise the VM will never notice
3243 	 * that the filesystem did any IO at all.
3244 	 *
3245 	 * Also, during truncate, discard_buffer will have marked all
3246 	 * the page's buffers clean.  We discover that here and clean
3247 	 * the page also.
3248 	 *
3249 	 * private_lock must be held over this entire operation in order
3250 	 * to synchronise against __set_page_dirty_buffers and prevent the
3251 	 * dirty bit from being lost.
3252 	 */
3253 	if (ret)
3254 		cancel_dirty_page(page);
3255 	spin_unlock(&mapping->private_lock);
3256 out:
3257 	if (buffers_to_free) {
3258 		struct buffer_head *bh = buffers_to_free;
3259 
3260 		do {
3261 			struct buffer_head *next = bh->b_this_page;
3262 			free_buffer_head(bh);
3263 			bh = next;
3264 		} while (bh != buffers_to_free);
3265 	}
3266 	return ret;
3267 }
3268 EXPORT_SYMBOL(try_to_free_buffers);
3269 
3270 /*
3271  * Buffer-head allocation
3272  */
3273 static struct kmem_cache *bh_cachep __read_mostly;
3274 
3275 /*
3276  * Once the number of bh's in the machine exceeds this level, we start
3277  * stripping them in writeback.
3278  */
3279 static unsigned long max_buffer_heads;
3280 
3281 int buffer_heads_over_limit;
3282 
3283 struct bh_accounting {
3284 	int nr;			/* Number of live bh's */
3285 	int ratelimit;		/* Limit cacheline bouncing */
3286 };
3287 
3288 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3289 
3290 static void recalc_bh_state(void)
3291 {
3292 	int i;
3293 	int tot = 0;
3294 
3295 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3296 		return;
3297 	__this_cpu_write(bh_accounting.ratelimit, 0);
3298 	for_each_online_cpu(i)
3299 		tot += per_cpu(bh_accounting, i).nr;
3300 	buffer_heads_over_limit = (tot > max_buffer_heads);
3301 }
3302 
3303 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3304 {
3305 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3306 	if (ret) {
3307 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3308 		spin_lock_init(&ret->b_uptodate_lock);
3309 		preempt_disable();
3310 		__this_cpu_inc(bh_accounting.nr);
3311 		recalc_bh_state();
3312 		preempt_enable();
3313 	}
3314 	return ret;
3315 }
3316 EXPORT_SYMBOL(alloc_buffer_head);
3317 
3318 void free_buffer_head(struct buffer_head *bh)
3319 {
3320 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3321 	kmem_cache_free(bh_cachep, bh);
3322 	preempt_disable();
3323 	__this_cpu_dec(bh_accounting.nr);
3324 	recalc_bh_state();
3325 	preempt_enable();
3326 }
3327 EXPORT_SYMBOL(free_buffer_head);
3328 
3329 static int buffer_exit_cpu_dead(unsigned int cpu)
3330 {
3331 	int i;
3332 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3333 
3334 	for (i = 0; i < BH_LRU_SIZE; i++) {
3335 		brelse(b->bhs[i]);
3336 		b->bhs[i] = NULL;
3337 	}
3338 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3339 	per_cpu(bh_accounting, cpu).nr = 0;
3340 	return 0;
3341 }
3342 
3343 /**
3344  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3345  * @bh: struct buffer_head
3346  *
3347  * Return true if the buffer is up-to-date and false,
3348  * with the buffer locked, if not.
3349  */
3350 int bh_uptodate_or_lock(struct buffer_head *bh)
3351 {
3352 	if (!buffer_uptodate(bh)) {
3353 		lock_buffer(bh);
3354 		if (!buffer_uptodate(bh))
3355 			return 0;
3356 		unlock_buffer(bh);
3357 	}
3358 	return 1;
3359 }
3360 EXPORT_SYMBOL(bh_uptodate_or_lock);
3361 
3362 /**
3363  * bh_submit_read - Submit a locked buffer for reading
3364  * @bh: struct buffer_head
3365  *
3366  * Returns zero on success and -EIO on error.
3367  */
3368 int bh_submit_read(struct buffer_head *bh)
3369 {
3370 	BUG_ON(!buffer_locked(bh));
3371 
3372 	if (buffer_uptodate(bh)) {
3373 		unlock_buffer(bh);
3374 		return 0;
3375 	}
3376 
3377 	get_bh(bh);
3378 	bh->b_end_io = end_buffer_read_sync;
3379 	submit_bh(REQ_OP_READ, 0, bh);
3380 	wait_on_buffer(bh);
3381 	if (buffer_uptodate(bh))
3382 		return 0;
3383 	return -EIO;
3384 }
3385 EXPORT_SYMBOL(bh_submit_read);
3386 
3387 void __init buffer_init(void)
3388 {
3389 	unsigned long nrpages;
3390 	int ret;
3391 
3392 	bh_cachep = kmem_cache_create("buffer_head",
3393 			sizeof(struct buffer_head), 0,
3394 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3395 				SLAB_MEM_SPREAD),
3396 				NULL);
3397 
3398 	/*
3399 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3400 	 */
3401 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3402 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3403 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3404 					NULL, buffer_exit_cpu_dead);
3405 	WARN_ON(ret < 0);
3406 }
3407