1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 53 #include "internal.h" 54 55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 57 struct writeback_control *wbc); 58 59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 60 61 inline void touch_buffer(struct buffer_head *bh) 62 { 63 trace_block_touch_buffer(bh); 64 folio_mark_accessed(bh->b_folio); 65 } 66 EXPORT_SYMBOL(touch_buffer); 67 68 void __lock_buffer(struct buffer_head *bh) 69 { 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 71 } 72 EXPORT_SYMBOL(__lock_buffer); 73 74 void unlock_buffer(struct buffer_head *bh) 75 { 76 clear_bit_unlock(BH_Lock, &bh->b_state); 77 smp_mb__after_atomic(); 78 wake_up_bit(&bh->b_state, BH_Lock); 79 } 80 EXPORT_SYMBOL(unlock_buffer); 81 82 /* 83 * Returns if the folio has dirty or writeback buffers. If all the buffers 84 * are unlocked and clean then the folio_test_dirty information is stale. If 85 * any of the buffers are locked, it is assumed they are locked for IO. 86 */ 87 void buffer_check_dirty_writeback(struct folio *folio, 88 bool *dirty, bool *writeback) 89 { 90 struct buffer_head *head, *bh; 91 *dirty = false; 92 *writeback = false; 93 94 BUG_ON(!folio_test_locked(folio)); 95 96 head = folio_buffers(folio); 97 if (!head) 98 return; 99 100 if (folio_test_writeback(folio)) 101 *writeback = true; 102 103 bh = head; 104 do { 105 if (buffer_locked(bh)) 106 *writeback = true; 107 108 if (buffer_dirty(bh)) 109 *dirty = true; 110 111 bh = bh->b_this_page; 112 } while (bh != head); 113 } 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct page *page; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 203 if (!page) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 if (!page_has_buffers(page)) 208 goto out_unlock; 209 head = page_buffers(page); 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 put_page(page); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct folio *folio; 250 int folio_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 folio = bh->b_folio; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 folio_set_error(folio); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = folio_buffers(folio); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 folio_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If all of the buffers are uptodate then we can set the page 286 * uptodate. 287 */ 288 if (folio_uptodate) 289 folio_mark_uptodate(folio); 290 folio_unlock(folio); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct postprocess_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void verify_bh(struct work_struct *work) 304 { 305 struct postprocess_bh_ctx *ctx = 306 container_of(work, struct postprocess_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 bool valid; 309 310 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 311 end_buffer_async_read(bh, valid); 312 kfree(ctx); 313 } 314 315 static bool need_fsverity(struct buffer_head *bh) 316 { 317 struct folio *folio = bh->b_folio; 318 struct inode *inode = folio->mapping->host; 319 320 return fsverity_active(inode) && 321 /* needed by ext4 */ 322 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 323 } 324 325 static void decrypt_bh(struct work_struct *work) 326 { 327 struct postprocess_bh_ctx *ctx = 328 container_of(work, struct postprocess_bh_ctx, work); 329 struct buffer_head *bh = ctx->bh; 330 int err; 331 332 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 333 bh_offset(bh)); 334 if (err == 0 && need_fsverity(bh)) { 335 /* 336 * We use different work queues for decryption and for verity 337 * because verity may require reading metadata pages that need 338 * decryption, and we shouldn't recurse to the same workqueue. 339 */ 340 INIT_WORK(&ctx->work, verify_bh); 341 fsverity_enqueue_verify_work(&ctx->work); 342 return; 343 } 344 end_buffer_async_read(bh, err == 0); 345 kfree(ctx); 346 } 347 348 /* 349 * I/O completion handler for block_read_full_folio() - pages 350 * which come unlocked at the end of I/O. 351 */ 352 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 353 { 354 struct inode *inode = bh->b_folio->mapping->host; 355 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 356 bool verify = need_fsverity(bh); 357 358 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 359 if (uptodate && (decrypt || verify)) { 360 struct postprocess_bh_ctx *ctx = 361 kmalloc(sizeof(*ctx), GFP_ATOMIC); 362 363 if (ctx) { 364 ctx->bh = bh; 365 if (decrypt) { 366 INIT_WORK(&ctx->work, decrypt_bh); 367 fscrypt_enqueue_decrypt_work(&ctx->work); 368 } else { 369 INIT_WORK(&ctx->work, verify_bh); 370 fsverity_enqueue_verify_work(&ctx->work); 371 } 372 return; 373 } 374 uptodate = 0; 375 } 376 end_buffer_async_read(bh, uptodate); 377 } 378 379 /* 380 * Completion handler for block_write_full_page() - pages which are unlocked 381 * during I/O, and which have PageWriteback cleared upon I/O completion. 382 */ 383 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 384 { 385 unsigned long flags; 386 struct buffer_head *first; 387 struct buffer_head *tmp; 388 struct folio *folio; 389 390 BUG_ON(!buffer_async_write(bh)); 391 392 folio = bh->b_folio; 393 if (uptodate) { 394 set_buffer_uptodate(bh); 395 } else { 396 buffer_io_error(bh, ", lost async page write"); 397 mark_buffer_write_io_error(bh); 398 clear_buffer_uptodate(bh); 399 folio_set_error(folio); 400 } 401 402 first = folio_buffers(folio); 403 spin_lock_irqsave(&first->b_uptodate_lock, flags); 404 405 clear_buffer_async_write(bh); 406 unlock_buffer(bh); 407 tmp = bh->b_this_page; 408 while (tmp != bh) { 409 if (buffer_async_write(tmp)) { 410 BUG_ON(!buffer_locked(tmp)); 411 goto still_busy; 412 } 413 tmp = tmp->b_this_page; 414 } 415 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 416 folio_end_writeback(folio); 417 return; 418 419 still_busy: 420 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 421 return; 422 } 423 EXPORT_SYMBOL(end_buffer_async_write); 424 425 /* 426 * If a page's buffers are under async readin (end_buffer_async_read 427 * completion) then there is a possibility that another thread of 428 * control could lock one of the buffers after it has completed 429 * but while some of the other buffers have not completed. This 430 * locked buffer would confuse end_buffer_async_read() into not unlocking 431 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 432 * that this buffer is not under async I/O. 433 * 434 * The page comes unlocked when it has no locked buffer_async buffers 435 * left. 436 * 437 * PageLocked prevents anyone starting new async I/O reads any of 438 * the buffers. 439 * 440 * PageWriteback is used to prevent simultaneous writeout of the same 441 * page. 442 * 443 * PageLocked prevents anyone from starting writeback of a page which is 444 * under read I/O (PageWriteback is only ever set against a locked page). 445 */ 446 static void mark_buffer_async_read(struct buffer_head *bh) 447 { 448 bh->b_end_io = end_buffer_async_read_io; 449 set_buffer_async_read(bh); 450 } 451 452 static void mark_buffer_async_write_endio(struct buffer_head *bh, 453 bh_end_io_t *handler) 454 { 455 bh->b_end_io = handler; 456 set_buffer_async_write(bh); 457 } 458 459 void mark_buffer_async_write(struct buffer_head *bh) 460 { 461 mark_buffer_async_write_endio(bh, end_buffer_async_write); 462 } 463 EXPORT_SYMBOL(mark_buffer_async_write); 464 465 466 /* 467 * fs/buffer.c contains helper functions for buffer-backed address space's 468 * fsync functions. A common requirement for buffer-based filesystems is 469 * that certain data from the backing blockdev needs to be written out for 470 * a successful fsync(). For example, ext2 indirect blocks need to be 471 * written back and waited upon before fsync() returns. 472 * 473 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 474 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 475 * management of a list of dependent buffers at ->i_mapping->private_list. 476 * 477 * Locking is a little subtle: try_to_free_buffers() will remove buffers 478 * from their controlling inode's queue when they are being freed. But 479 * try_to_free_buffers() will be operating against the *blockdev* mapping 480 * at the time, not against the S_ISREG file which depends on those buffers. 481 * So the locking for private_list is via the private_lock in the address_space 482 * which backs the buffers. Which is different from the address_space 483 * against which the buffers are listed. So for a particular address_space, 484 * mapping->private_lock does *not* protect mapping->private_list! In fact, 485 * mapping->private_list will always be protected by the backing blockdev's 486 * ->private_lock. 487 * 488 * Which introduces a requirement: all buffers on an address_space's 489 * ->private_list must be from the same address_space: the blockdev's. 490 * 491 * address_spaces which do not place buffers at ->private_list via these 492 * utility functions are free to use private_lock and private_list for 493 * whatever they want. The only requirement is that list_empty(private_list) 494 * be true at clear_inode() time. 495 * 496 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 497 * filesystems should do that. invalidate_inode_buffers() should just go 498 * BUG_ON(!list_empty). 499 * 500 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 501 * take an address_space, not an inode. And it should be called 502 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 503 * queued up. 504 * 505 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 506 * list if it is already on a list. Because if the buffer is on a list, 507 * it *must* already be on the right one. If not, the filesystem is being 508 * silly. This will save a ton of locking. But first we have to ensure 509 * that buffers are taken *off* the old inode's list when they are freed 510 * (presumably in truncate). That requires careful auditing of all 511 * filesystems (do it inside bforget()). It could also be done by bringing 512 * b_inode back. 513 */ 514 515 /* 516 * The buffer's backing address_space's private_lock must be held 517 */ 518 static void __remove_assoc_queue(struct buffer_head *bh) 519 { 520 list_del_init(&bh->b_assoc_buffers); 521 WARN_ON(!bh->b_assoc_map); 522 bh->b_assoc_map = NULL; 523 } 524 525 int inode_has_buffers(struct inode *inode) 526 { 527 return !list_empty(&inode->i_data.private_list); 528 } 529 530 /* 531 * osync is designed to support O_SYNC io. It waits synchronously for 532 * all already-submitted IO to complete, but does not queue any new 533 * writes to the disk. 534 * 535 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 536 * as you dirty the buffers, and then use osync_inode_buffers to wait for 537 * completion. Any other dirty buffers which are not yet queued for 538 * write will not be flushed to disk by the osync. 539 */ 540 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 541 { 542 struct buffer_head *bh; 543 struct list_head *p; 544 int err = 0; 545 546 spin_lock(lock); 547 repeat: 548 list_for_each_prev(p, list) { 549 bh = BH_ENTRY(p); 550 if (buffer_locked(bh)) { 551 get_bh(bh); 552 spin_unlock(lock); 553 wait_on_buffer(bh); 554 if (!buffer_uptodate(bh)) 555 err = -EIO; 556 brelse(bh); 557 spin_lock(lock); 558 goto repeat; 559 } 560 } 561 spin_unlock(lock); 562 return err; 563 } 564 565 void emergency_thaw_bdev(struct super_block *sb) 566 { 567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 568 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 569 } 570 571 /** 572 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 573 * @mapping: the mapping which wants those buffers written 574 * 575 * Starts I/O against the buffers at mapping->private_list, and waits upon 576 * that I/O. 577 * 578 * Basically, this is a convenience function for fsync(). 579 * @mapping is a file or directory which needs those buffers to be written for 580 * a successful fsync(). 581 */ 582 int sync_mapping_buffers(struct address_space *mapping) 583 { 584 struct address_space *buffer_mapping = mapping->private_data; 585 586 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 587 return 0; 588 589 return fsync_buffers_list(&buffer_mapping->private_lock, 590 &mapping->private_list); 591 } 592 EXPORT_SYMBOL(sync_mapping_buffers); 593 594 /* 595 * Called when we've recently written block `bblock', and it is known that 596 * `bblock' was for a buffer_boundary() buffer. This means that the block at 597 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 598 * dirty, schedule it for IO. So that indirects merge nicely with their data. 599 */ 600 void write_boundary_block(struct block_device *bdev, 601 sector_t bblock, unsigned blocksize) 602 { 603 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 604 if (bh) { 605 if (buffer_dirty(bh)) 606 write_dirty_buffer(bh, 0); 607 put_bh(bh); 608 } 609 } 610 611 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 612 { 613 struct address_space *mapping = inode->i_mapping; 614 struct address_space *buffer_mapping = bh->b_folio->mapping; 615 616 mark_buffer_dirty(bh); 617 if (!mapping->private_data) { 618 mapping->private_data = buffer_mapping; 619 } else { 620 BUG_ON(mapping->private_data != buffer_mapping); 621 } 622 if (!bh->b_assoc_map) { 623 spin_lock(&buffer_mapping->private_lock); 624 list_move_tail(&bh->b_assoc_buffers, 625 &mapping->private_list); 626 bh->b_assoc_map = mapping; 627 spin_unlock(&buffer_mapping->private_lock); 628 } 629 } 630 EXPORT_SYMBOL(mark_buffer_dirty_inode); 631 632 /* 633 * Add a page to the dirty page list. 634 * 635 * It is a sad fact of life that this function is called from several places 636 * deeply under spinlocking. It may not sleep. 637 * 638 * If the page has buffers, the uptodate buffers are set dirty, to preserve 639 * dirty-state coherency between the page and the buffers. It the page does 640 * not have buffers then when they are later attached they will all be set 641 * dirty. 642 * 643 * The buffers are dirtied before the page is dirtied. There's a small race 644 * window in which a writepage caller may see the page cleanness but not the 645 * buffer dirtiness. That's fine. If this code were to set the page dirty 646 * before the buffers, a concurrent writepage caller could clear the page dirty 647 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 648 * page on the dirty page list. 649 * 650 * We use private_lock to lock against try_to_free_buffers while using the 651 * page's buffer list. Also use this to protect against clean buffers being 652 * added to the page after it was set dirty. 653 * 654 * FIXME: may need to call ->reservepage here as well. That's rather up to the 655 * address_space though. 656 */ 657 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 658 { 659 struct buffer_head *head; 660 bool newly_dirty; 661 662 spin_lock(&mapping->private_lock); 663 head = folio_buffers(folio); 664 if (head) { 665 struct buffer_head *bh = head; 666 667 do { 668 set_buffer_dirty(bh); 669 bh = bh->b_this_page; 670 } while (bh != head); 671 } 672 /* 673 * Lock out page's memcg migration to keep PageDirty 674 * synchronized with per-memcg dirty page counters. 675 */ 676 folio_memcg_lock(folio); 677 newly_dirty = !folio_test_set_dirty(folio); 678 spin_unlock(&mapping->private_lock); 679 680 if (newly_dirty) 681 __folio_mark_dirty(folio, mapping, 1); 682 683 folio_memcg_unlock(folio); 684 685 if (newly_dirty) 686 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 687 688 return newly_dirty; 689 } 690 EXPORT_SYMBOL(block_dirty_folio); 691 692 /* 693 * Write out and wait upon a list of buffers. 694 * 695 * We have conflicting pressures: we want to make sure that all 696 * initially dirty buffers get waited on, but that any subsequently 697 * dirtied buffers don't. After all, we don't want fsync to last 698 * forever if somebody is actively writing to the file. 699 * 700 * Do this in two main stages: first we copy dirty buffers to a 701 * temporary inode list, queueing the writes as we go. Then we clean 702 * up, waiting for those writes to complete. 703 * 704 * During this second stage, any subsequent updates to the file may end 705 * up refiling the buffer on the original inode's dirty list again, so 706 * there is a chance we will end up with a buffer queued for write but 707 * not yet completed on that list. So, as a final cleanup we go through 708 * the osync code to catch these locked, dirty buffers without requeuing 709 * any newly dirty buffers for write. 710 */ 711 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 712 { 713 struct buffer_head *bh; 714 struct list_head tmp; 715 struct address_space *mapping; 716 int err = 0, err2; 717 struct blk_plug plug; 718 719 INIT_LIST_HEAD(&tmp); 720 blk_start_plug(&plug); 721 722 spin_lock(lock); 723 while (!list_empty(list)) { 724 bh = BH_ENTRY(list->next); 725 mapping = bh->b_assoc_map; 726 __remove_assoc_queue(bh); 727 /* Avoid race with mark_buffer_dirty_inode() which does 728 * a lockless check and we rely on seeing the dirty bit */ 729 smp_mb(); 730 if (buffer_dirty(bh) || buffer_locked(bh)) { 731 list_add(&bh->b_assoc_buffers, &tmp); 732 bh->b_assoc_map = mapping; 733 if (buffer_dirty(bh)) { 734 get_bh(bh); 735 spin_unlock(lock); 736 /* 737 * Ensure any pending I/O completes so that 738 * write_dirty_buffer() actually writes the 739 * current contents - it is a noop if I/O is 740 * still in flight on potentially older 741 * contents. 742 */ 743 write_dirty_buffer(bh, REQ_SYNC); 744 745 /* 746 * Kick off IO for the previous mapping. Note 747 * that we will not run the very last mapping, 748 * wait_on_buffer() will do that for us 749 * through sync_buffer(). 750 */ 751 brelse(bh); 752 spin_lock(lock); 753 } 754 } 755 } 756 757 spin_unlock(lock); 758 blk_finish_plug(&plug); 759 spin_lock(lock); 760 761 while (!list_empty(&tmp)) { 762 bh = BH_ENTRY(tmp.prev); 763 get_bh(bh); 764 mapping = bh->b_assoc_map; 765 __remove_assoc_queue(bh); 766 /* Avoid race with mark_buffer_dirty_inode() which does 767 * a lockless check and we rely on seeing the dirty bit */ 768 smp_mb(); 769 if (buffer_dirty(bh)) { 770 list_add(&bh->b_assoc_buffers, 771 &mapping->private_list); 772 bh->b_assoc_map = mapping; 773 } 774 spin_unlock(lock); 775 wait_on_buffer(bh); 776 if (!buffer_uptodate(bh)) 777 err = -EIO; 778 brelse(bh); 779 spin_lock(lock); 780 } 781 782 spin_unlock(lock); 783 err2 = osync_buffers_list(lock, list); 784 if (err) 785 return err; 786 else 787 return err2; 788 } 789 790 /* 791 * Invalidate any and all dirty buffers on a given inode. We are 792 * probably unmounting the fs, but that doesn't mean we have already 793 * done a sync(). Just drop the buffers from the inode list. 794 * 795 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 796 * assumes that all the buffers are against the blockdev. Not true 797 * for reiserfs. 798 */ 799 void invalidate_inode_buffers(struct inode *inode) 800 { 801 if (inode_has_buffers(inode)) { 802 struct address_space *mapping = &inode->i_data; 803 struct list_head *list = &mapping->private_list; 804 struct address_space *buffer_mapping = mapping->private_data; 805 806 spin_lock(&buffer_mapping->private_lock); 807 while (!list_empty(list)) 808 __remove_assoc_queue(BH_ENTRY(list->next)); 809 spin_unlock(&buffer_mapping->private_lock); 810 } 811 } 812 EXPORT_SYMBOL(invalidate_inode_buffers); 813 814 /* 815 * Remove any clean buffers from the inode's buffer list. This is called 816 * when we're trying to free the inode itself. Those buffers can pin it. 817 * 818 * Returns true if all buffers were removed. 819 */ 820 int remove_inode_buffers(struct inode *inode) 821 { 822 int ret = 1; 823 824 if (inode_has_buffers(inode)) { 825 struct address_space *mapping = &inode->i_data; 826 struct list_head *list = &mapping->private_list; 827 struct address_space *buffer_mapping = mapping->private_data; 828 829 spin_lock(&buffer_mapping->private_lock); 830 while (!list_empty(list)) { 831 struct buffer_head *bh = BH_ENTRY(list->next); 832 if (buffer_dirty(bh)) { 833 ret = 0; 834 break; 835 } 836 __remove_assoc_queue(bh); 837 } 838 spin_unlock(&buffer_mapping->private_lock); 839 } 840 return ret; 841 } 842 843 /* 844 * Create the appropriate buffers when given a folio for data area and 845 * the size of each buffer.. Use the bh->b_this_page linked list to 846 * follow the buffers created. Return NULL if unable to create more 847 * buffers. 848 * 849 * The retry flag is used to differentiate async IO (paging, swapping) 850 * which may not fail from ordinary buffer allocations. 851 */ 852 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 853 bool retry) 854 { 855 struct buffer_head *bh, *head; 856 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 857 long offset; 858 struct mem_cgroup *memcg, *old_memcg; 859 860 if (retry) 861 gfp |= __GFP_NOFAIL; 862 863 /* The folio lock pins the memcg */ 864 memcg = folio_memcg(folio); 865 old_memcg = set_active_memcg(memcg); 866 867 head = NULL; 868 offset = folio_size(folio); 869 while ((offset -= size) >= 0) { 870 bh = alloc_buffer_head(gfp); 871 if (!bh) 872 goto no_grow; 873 874 bh->b_this_page = head; 875 bh->b_blocknr = -1; 876 head = bh; 877 878 bh->b_size = size; 879 880 /* Link the buffer to its folio */ 881 folio_set_bh(bh, folio, offset); 882 } 883 out: 884 set_active_memcg(old_memcg); 885 return head; 886 /* 887 * In case anything failed, we just free everything we got. 888 */ 889 no_grow: 890 if (head) { 891 do { 892 bh = head; 893 head = head->b_this_page; 894 free_buffer_head(bh); 895 } while (head); 896 } 897 898 goto out; 899 } 900 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 901 902 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 903 bool retry) 904 { 905 return folio_alloc_buffers(page_folio(page), size, retry); 906 } 907 EXPORT_SYMBOL_GPL(alloc_page_buffers); 908 909 static inline void 910 link_dev_buffers(struct page *page, struct buffer_head *head) 911 { 912 struct buffer_head *bh, *tail; 913 914 bh = head; 915 do { 916 tail = bh; 917 bh = bh->b_this_page; 918 } while (bh); 919 tail->b_this_page = head; 920 attach_page_private(page, head); 921 } 922 923 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 924 { 925 sector_t retval = ~((sector_t)0); 926 loff_t sz = bdev_nr_bytes(bdev); 927 928 if (sz) { 929 unsigned int sizebits = blksize_bits(size); 930 retval = (sz >> sizebits); 931 } 932 return retval; 933 } 934 935 /* 936 * Initialise the state of a blockdev page's buffers. 937 */ 938 static sector_t 939 init_page_buffers(struct page *page, struct block_device *bdev, 940 sector_t block, int size) 941 { 942 struct buffer_head *head = page_buffers(page); 943 struct buffer_head *bh = head; 944 int uptodate = PageUptodate(page); 945 sector_t end_block = blkdev_max_block(bdev, size); 946 947 do { 948 if (!buffer_mapped(bh)) { 949 bh->b_end_io = NULL; 950 bh->b_private = NULL; 951 bh->b_bdev = bdev; 952 bh->b_blocknr = block; 953 if (uptodate) 954 set_buffer_uptodate(bh); 955 if (block < end_block) 956 set_buffer_mapped(bh); 957 } 958 block++; 959 bh = bh->b_this_page; 960 } while (bh != head); 961 962 /* 963 * Caller needs to validate requested block against end of device. 964 */ 965 return end_block; 966 } 967 968 /* 969 * Create the page-cache page that contains the requested block. 970 * 971 * This is used purely for blockdev mappings. 972 */ 973 static int 974 grow_dev_page(struct block_device *bdev, sector_t block, 975 pgoff_t index, int size, int sizebits, gfp_t gfp) 976 { 977 struct inode *inode = bdev->bd_inode; 978 struct page *page; 979 struct buffer_head *bh; 980 sector_t end_block; 981 int ret = 0; 982 gfp_t gfp_mask; 983 984 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 985 986 /* 987 * XXX: __getblk_slow() can not really deal with failure and 988 * will endlessly loop on improvised global reclaim. Prefer 989 * looping in the allocator rather than here, at least that 990 * code knows what it's doing. 991 */ 992 gfp_mask |= __GFP_NOFAIL; 993 994 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 995 996 BUG_ON(!PageLocked(page)); 997 998 if (page_has_buffers(page)) { 999 bh = page_buffers(page); 1000 if (bh->b_size == size) { 1001 end_block = init_page_buffers(page, bdev, 1002 (sector_t)index << sizebits, 1003 size); 1004 goto done; 1005 } 1006 if (!try_to_free_buffers(page_folio(page))) 1007 goto failed; 1008 } 1009 1010 /* 1011 * Allocate some buffers for this page 1012 */ 1013 bh = alloc_page_buffers(page, size, true); 1014 1015 /* 1016 * Link the page to the buffers and initialise them. Take the 1017 * lock to be atomic wrt __find_get_block(), which does not 1018 * run under the page lock. 1019 */ 1020 spin_lock(&inode->i_mapping->private_lock); 1021 link_dev_buffers(page, bh); 1022 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1023 size); 1024 spin_unlock(&inode->i_mapping->private_lock); 1025 done: 1026 ret = (block < end_block) ? 1 : -ENXIO; 1027 failed: 1028 unlock_page(page); 1029 put_page(page); 1030 return ret; 1031 } 1032 1033 /* 1034 * Create buffers for the specified block device block's page. If 1035 * that page was dirty, the buffers are set dirty also. 1036 */ 1037 static int 1038 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1039 { 1040 pgoff_t index; 1041 int sizebits; 1042 1043 sizebits = PAGE_SHIFT - __ffs(size); 1044 index = block >> sizebits; 1045 1046 /* 1047 * Check for a block which wants to lie outside our maximum possible 1048 * pagecache index. (this comparison is done using sector_t types). 1049 */ 1050 if (unlikely(index != block >> sizebits)) { 1051 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1052 "device %pg\n", 1053 __func__, (unsigned long long)block, 1054 bdev); 1055 return -EIO; 1056 } 1057 1058 /* Create a page with the proper size buffers.. */ 1059 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1060 } 1061 1062 static struct buffer_head * 1063 __getblk_slow(struct block_device *bdev, sector_t block, 1064 unsigned size, gfp_t gfp) 1065 { 1066 /* Size must be multiple of hard sectorsize */ 1067 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1068 (size < 512 || size > PAGE_SIZE))) { 1069 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1070 size); 1071 printk(KERN_ERR "logical block size: %d\n", 1072 bdev_logical_block_size(bdev)); 1073 1074 dump_stack(); 1075 return NULL; 1076 } 1077 1078 for (;;) { 1079 struct buffer_head *bh; 1080 int ret; 1081 1082 bh = __find_get_block(bdev, block, size); 1083 if (bh) 1084 return bh; 1085 1086 ret = grow_buffers(bdev, block, size, gfp); 1087 if (ret < 0) 1088 return NULL; 1089 } 1090 } 1091 1092 /* 1093 * The relationship between dirty buffers and dirty pages: 1094 * 1095 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1096 * the page is tagged dirty in the page cache. 1097 * 1098 * At all times, the dirtiness of the buffers represents the dirtiness of 1099 * subsections of the page. If the page has buffers, the page dirty bit is 1100 * merely a hint about the true dirty state. 1101 * 1102 * When a page is set dirty in its entirety, all its buffers are marked dirty 1103 * (if the page has buffers). 1104 * 1105 * When a buffer is marked dirty, its page is dirtied, but the page's other 1106 * buffers are not. 1107 * 1108 * Also. When blockdev buffers are explicitly read with bread(), they 1109 * individually become uptodate. But their backing page remains not 1110 * uptodate - even if all of its buffers are uptodate. A subsequent 1111 * block_read_full_folio() against that folio will discover all the uptodate 1112 * buffers, will set the folio uptodate and will perform no I/O. 1113 */ 1114 1115 /** 1116 * mark_buffer_dirty - mark a buffer_head as needing writeout 1117 * @bh: the buffer_head to mark dirty 1118 * 1119 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1120 * its backing page dirty, then tag the page as dirty in the page cache 1121 * and then attach the address_space's inode to its superblock's dirty 1122 * inode list. 1123 * 1124 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock, 1125 * i_pages lock and mapping->host->i_lock. 1126 */ 1127 void mark_buffer_dirty(struct buffer_head *bh) 1128 { 1129 WARN_ON_ONCE(!buffer_uptodate(bh)); 1130 1131 trace_block_dirty_buffer(bh); 1132 1133 /* 1134 * Very *carefully* optimize the it-is-already-dirty case. 1135 * 1136 * Don't let the final "is it dirty" escape to before we 1137 * perhaps modified the buffer. 1138 */ 1139 if (buffer_dirty(bh)) { 1140 smp_mb(); 1141 if (buffer_dirty(bh)) 1142 return; 1143 } 1144 1145 if (!test_set_buffer_dirty(bh)) { 1146 struct folio *folio = bh->b_folio; 1147 struct address_space *mapping = NULL; 1148 1149 folio_memcg_lock(folio); 1150 if (!folio_test_set_dirty(folio)) { 1151 mapping = folio->mapping; 1152 if (mapping) 1153 __folio_mark_dirty(folio, mapping, 0); 1154 } 1155 folio_memcg_unlock(folio); 1156 if (mapping) 1157 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1158 } 1159 } 1160 EXPORT_SYMBOL(mark_buffer_dirty); 1161 1162 void mark_buffer_write_io_error(struct buffer_head *bh) 1163 { 1164 struct super_block *sb; 1165 1166 set_buffer_write_io_error(bh); 1167 /* FIXME: do we need to set this in both places? */ 1168 if (bh->b_folio && bh->b_folio->mapping) 1169 mapping_set_error(bh->b_folio->mapping, -EIO); 1170 if (bh->b_assoc_map) 1171 mapping_set_error(bh->b_assoc_map, -EIO); 1172 rcu_read_lock(); 1173 sb = READ_ONCE(bh->b_bdev->bd_super); 1174 if (sb) 1175 errseq_set(&sb->s_wb_err, -EIO); 1176 rcu_read_unlock(); 1177 } 1178 EXPORT_SYMBOL(mark_buffer_write_io_error); 1179 1180 /* 1181 * Decrement a buffer_head's reference count. If all buffers against a page 1182 * have zero reference count, are clean and unlocked, and if the page is clean 1183 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1184 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1185 * a page but it ends up not being freed, and buffers may later be reattached). 1186 */ 1187 void __brelse(struct buffer_head * buf) 1188 { 1189 if (atomic_read(&buf->b_count)) { 1190 put_bh(buf); 1191 return; 1192 } 1193 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1194 } 1195 EXPORT_SYMBOL(__brelse); 1196 1197 /* 1198 * bforget() is like brelse(), except it discards any 1199 * potentially dirty data. 1200 */ 1201 void __bforget(struct buffer_head *bh) 1202 { 1203 clear_buffer_dirty(bh); 1204 if (bh->b_assoc_map) { 1205 struct address_space *buffer_mapping = bh->b_folio->mapping; 1206 1207 spin_lock(&buffer_mapping->private_lock); 1208 list_del_init(&bh->b_assoc_buffers); 1209 bh->b_assoc_map = NULL; 1210 spin_unlock(&buffer_mapping->private_lock); 1211 } 1212 __brelse(bh); 1213 } 1214 EXPORT_SYMBOL(__bforget); 1215 1216 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1217 { 1218 lock_buffer(bh); 1219 if (buffer_uptodate(bh)) { 1220 unlock_buffer(bh); 1221 return bh; 1222 } else { 1223 get_bh(bh); 1224 bh->b_end_io = end_buffer_read_sync; 1225 submit_bh(REQ_OP_READ, bh); 1226 wait_on_buffer(bh); 1227 if (buffer_uptodate(bh)) 1228 return bh; 1229 } 1230 brelse(bh); 1231 return NULL; 1232 } 1233 1234 /* 1235 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1236 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1237 * refcount elevated by one when they're in an LRU. A buffer can only appear 1238 * once in a particular CPU's LRU. A single buffer can be present in multiple 1239 * CPU's LRUs at the same time. 1240 * 1241 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1242 * sb_find_get_block(). 1243 * 1244 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1245 * a local interrupt disable for that. 1246 */ 1247 1248 #define BH_LRU_SIZE 16 1249 1250 struct bh_lru { 1251 struct buffer_head *bhs[BH_LRU_SIZE]; 1252 }; 1253 1254 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1255 1256 #ifdef CONFIG_SMP 1257 #define bh_lru_lock() local_irq_disable() 1258 #define bh_lru_unlock() local_irq_enable() 1259 #else 1260 #define bh_lru_lock() preempt_disable() 1261 #define bh_lru_unlock() preempt_enable() 1262 #endif 1263 1264 static inline void check_irqs_on(void) 1265 { 1266 #ifdef irqs_disabled 1267 BUG_ON(irqs_disabled()); 1268 #endif 1269 } 1270 1271 /* 1272 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1273 * inserted at the front, and the buffer_head at the back if any is evicted. 1274 * Or, if already in the LRU it is moved to the front. 1275 */ 1276 static void bh_lru_install(struct buffer_head *bh) 1277 { 1278 struct buffer_head *evictee = bh; 1279 struct bh_lru *b; 1280 int i; 1281 1282 check_irqs_on(); 1283 bh_lru_lock(); 1284 1285 /* 1286 * the refcount of buffer_head in bh_lru prevents dropping the 1287 * attached page(i.e., try_to_free_buffers) so it could cause 1288 * failing page migration. 1289 * Skip putting upcoming bh into bh_lru until migration is done. 1290 */ 1291 if (lru_cache_disabled()) { 1292 bh_lru_unlock(); 1293 return; 1294 } 1295 1296 b = this_cpu_ptr(&bh_lrus); 1297 for (i = 0; i < BH_LRU_SIZE; i++) { 1298 swap(evictee, b->bhs[i]); 1299 if (evictee == bh) { 1300 bh_lru_unlock(); 1301 return; 1302 } 1303 } 1304 1305 get_bh(bh); 1306 bh_lru_unlock(); 1307 brelse(evictee); 1308 } 1309 1310 /* 1311 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1312 */ 1313 static struct buffer_head * 1314 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1315 { 1316 struct buffer_head *ret = NULL; 1317 unsigned int i; 1318 1319 check_irqs_on(); 1320 bh_lru_lock(); 1321 for (i = 0; i < BH_LRU_SIZE; i++) { 1322 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1323 1324 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1325 bh->b_size == size) { 1326 if (i) { 1327 while (i) { 1328 __this_cpu_write(bh_lrus.bhs[i], 1329 __this_cpu_read(bh_lrus.bhs[i - 1])); 1330 i--; 1331 } 1332 __this_cpu_write(bh_lrus.bhs[0], bh); 1333 } 1334 get_bh(bh); 1335 ret = bh; 1336 break; 1337 } 1338 } 1339 bh_lru_unlock(); 1340 return ret; 1341 } 1342 1343 /* 1344 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1345 * it in the LRU and mark it as accessed. If it is not present then return 1346 * NULL 1347 */ 1348 struct buffer_head * 1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1350 { 1351 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1352 1353 if (bh == NULL) { 1354 /* __find_get_block_slow will mark the page accessed */ 1355 bh = __find_get_block_slow(bdev, block); 1356 if (bh) 1357 bh_lru_install(bh); 1358 } else 1359 touch_buffer(bh); 1360 1361 return bh; 1362 } 1363 EXPORT_SYMBOL(__find_get_block); 1364 1365 /* 1366 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1367 * which corresponds to the passed block_device, block and size. The 1368 * returned buffer has its reference count incremented. 1369 * 1370 * __getblk_gfp() will lock up the machine if grow_dev_page's 1371 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1372 */ 1373 struct buffer_head * 1374 __getblk_gfp(struct block_device *bdev, sector_t block, 1375 unsigned size, gfp_t gfp) 1376 { 1377 struct buffer_head *bh = __find_get_block(bdev, block, size); 1378 1379 might_sleep(); 1380 if (bh == NULL) 1381 bh = __getblk_slow(bdev, block, size, gfp); 1382 return bh; 1383 } 1384 EXPORT_SYMBOL(__getblk_gfp); 1385 1386 /* 1387 * Do async read-ahead on a buffer.. 1388 */ 1389 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1390 { 1391 struct buffer_head *bh = __getblk(bdev, block, size); 1392 if (likely(bh)) { 1393 bh_readahead(bh, REQ_RAHEAD); 1394 brelse(bh); 1395 } 1396 } 1397 EXPORT_SYMBOL(__breadahead); 1398 1399 /** 1400 * __bread_gfp() - reads a specified block and returns the bh 1401 * @bdev: the block_device to read from 1402 * @block: number of block 1403 * @size: size (in bytes) to read 1404 * @gfp: page allocation flag 1405 * 1406 * Reads a specified block, and returns buffer head that contains it. 1407 * The page cache can be allocated from non-movable area 1408 * not to prevent page migration if you set gfp to zero. 1409 * It returns NULL if the block was unreadable. 1410 */ 1411 struct buffer_head * 1412 __bread_gfp(struct block_device *bdev, sector_t block, 1413 unsigned size, gfp_t gfp) 1414 { 1415 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1416 1417 if (likely(bh) && !buffer_uptodate(bh)) 1418 bh = __bread_slow(bh); 1419 return bh; 1420 } 1421 EXPORT_SYMBOL(__bread_gfp); 1422 1423 static void __invalidate_bh_lrus(struct bh_lru *b) 1424 { 1425 int i; 1426 1427 for (i = 0; i < BH_LRU_SIZE; i++) { 1428 brelse(b->bhs[i]); 1429 b->bhs[i] = NULL; 1430 } 1431 } 1432 /* 1433 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1434 * This doesn't race because it runs in each cpu either in irq 1435 * or with preempt disabled. 1436 */ 1437 static void invalidate_bh_lru(void *arg) 1438 { 1439 struct bh_lru *b = &get_cpu_var(bh_lrus); 1440 1441 __invalidate_bh_lrus(b); 1442 put_cpu_var(bh_lrus); 1443 } 1444 1445 bool has_bh_in_lru(int cpu, void *dummy) 1446 { 1447 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1448 int i; 1449 1450 for (i = 0; i < BH_LRU_SIZE; i++) { 1451 if (b->bhs[i]) 1452 return true; 1453 } 1454 1455 return false; 1456 } 1457 1458 void invalidate_bh_lrus(void) 1459 { 1460 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1461 } 1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1463 1464 /* 1465 * It's called from workqueue context so we need a bh_lru_lock to close 1466 * the race with preemption/irq. 1467 */ 1468 void invalidate_bh_lrus_cpu(void) 1469 { 1470 struct bh_lru *b; 1471 1472 bh_lru_lock(); 1473 b = this_cpu_ptr(&bh_lrus); 1474 __invalidate_bh_lrus(b); 1475 bh_lru_unlock(); 1476 } 1477 1478 void set_bh_page(struct buffer_head *bh, 1479 struct page *page, unsigned long offset) 1480 { 1481 bh->b_page = page; 1482 BUG_ON(offset >= PAGE_SIZE); 1483 if (PageHighMem(page)) 1484 /* 1485 * This catches illegal uses and preserves the offset: 1486 */ 1487 bh->b_data = (char *)(0 + offset); 1488 else 1489 bh->b_data = page_address(page) + offset; 1490 } 1491 EXPORT_SYMBOL(set_bh_page); 1492 1493 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1494 unsigned long offset) 1495 { 1496 bh->b_folio = folio; 1497 BUG_ON(offset >= folio_size(folio)); 1498 if (folio_test_highmem(folio)) 1499 /* 1500 * This catches illegal uses and preserves the offset: 1501 */ 1502 bh->b_data = (char *)(0 + offset); 1503 else 1504 bh->b_data = folio_address(folio) + offset; 1505 } 1506 EXPORT_SYMBOL(folio_set_bh); 1507 1508 /* 1509 * Called when truncating a buffer on a page completely. 1510 */ 1511 1512 /* Bits that are cleared during an invalidate */ 1513 #define BUFFER_FLAGS_DISCARD \ 1514 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1515 1 << BH_Delay | 1 << BH_Unwritten) 1516 1517 static void discard_buffer(struct buffer_head * bh) 1518 { 1519 unsigned long b_state; 1520 1521 lock_buffer(bh); 1522 clear_buffer_dirty(bh); 1523 bh->b_bdev = NULL; 1524 b_state = READ_ONCE(bh->b_state); 1525 do { 1526 } while (!try_cmpxchg(&bh->b_state, &b_state, 1527 b_state & ~BUFFER_FLAGS_DISCARD)); 1528 unlock_buffer(bh); 1529 } 1530 1531 /** 1532 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1533 * @folio: The folio which is affected. 1534 * @offset: start of the range to invalidate 1535 * @length: length of the range to invalidate 1536 * 1537 * block_invalidate_folio() is called when all or part of the folio has been 1538 * invalidated by a truncate operation. 1539 * 1540 * block_invalidate_folio() does not have to release all buffers, but it must 1541 * ensure that no dirty buffer is left outside @offset and that no I/O 1542 * is underway against any of the blocks which are outside the truncation 1543 * point. Because the caller is about to free (and possibly reuse) those 1544 * blocks on-disk. 1545 */ 1546 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1547 { 1548 struct buffer_head *head, *bh, *next; 1549 size_t curr_off = 0; 1550 size_t stop = length + offset; 1551 1552 BUG_ON(!folio_test_locked(folio)); 1553 1554 /* 1555 * Check for overflow 1556 */ 1557 BUG_ON(stop > folio_size(folio) || stop < length); 1558 1559 head = folio_buffers(folio); 1560 if (!head) 1561 return; 1562 1563 bh = head; 1564 do { 1565 size_t next_off = curr_off + bh->b_size; 1566 next = bh->b_this_page; 1567 1568 /* 1569 * Are we still fully in range ? 1570 */ 1571 if (next_off > stop) 1572 goto out; 1573 1574 /* 1575 * is this block fully invalidated? 1576 */ 1577 if (offset <= curr_off) 1578 discard_buffer(bh); 1579 curr_off = next_off; 1580 bh = next; 1581 } while (bh != head); 1582 1583 /* 1584 * We release buffers only if the entire folio is being invalidated. 1585 * The get_block cached value has been unconditionally invalidated, 1586 * so real IO is not possible anymore. 1587 */ 1588 if (length == folio_size(folio)) 1589 filemap_release_folio(folio, 0); 1590 out: 1591 return; 1592 } 1593 EXPORT_SYMBOL(block_invalidate_folio); 1594 1595 /* 1596 * We attach and possibly dirty the buffers atomically wrt 1597 * block_dirty_folio() via private_lock. try_to_free_buffers 1598 * is already excluded via the folio lock. 1599 */ 1600 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize, 1601 unsigned long b_state) 1602 { 1603 struct buffer_head *bh, *head, *tail; 1604 1605 head = folio_alloc_buffers(folio, blocksize, true); 1606 bh = head; 1607 do { 1608 bh->b_state |= b_state; 1609 tail = bh; 1610 bh = bh->b_this_page; 1611 } while (bh); 1612 tail->b_this_page = head; 1613 1614 spin_lock(&folio->mapping->private_lock); 1615 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1616 bh = head; 1617 do { 1618 if (folio_test_dirty(folio)) 1619 set_buffer_dirty(bh); 1620 if (folio_test_uptodate(folio)) 1621 set_buffer_uptodate(bh); 1622 bh = bh->b_this_page; 1623 } while (bh != head); 1624 } 1625 folio_attach_private(folio, head); 1626 spin_unlock(&folio->mapping->private_lock); 1627 } 1628 EXPORT_SYMBOL(folio_create_empty_buffers); 1629 1630 void create_empty_buffers(struct page *page, 1631 unsigned long blocksize, unsigned long b_state) 1632 { 1633 folio_create_empty_buffers(page_folio(page), blocksize, b_state); 1634 } 1635 EXPORT_SYMBOL(create_empty_buffers); 1636 1637 /** 1638 * clean_bdev_aliases: clean a range of buffers in block device 1639 * @bdev: Block device to clean buffers in 1640 * @block: Start of a range of blocks to clean 1641 * @len: Number of blocks to clean 1642 * 1643 * We are taking a range of blocks for data and we don't want writeback of any 1644 * buffer-cache aliases starting from return from this function and until the 1645 * moment when something will explicitly mark the buffer dirty (hopefully that 1646 * will not happen until we will free that block ;-) We don't even need to mark 1647 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1648 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1649 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1650 * would confuse anyone who might pick it with bread() afterwards... 1651 * 1652 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1653 * writeout I/O going on against recently-freed buffers. We don't wait on that 1654 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1655 * need to. That happens here. 1656 */ 1657 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1658 { 1659 struct inode *bd_inode = bdev->bd_inode; 1660 struct address_space *bd_mapping = bd_inode->i_mapping; 1661 struct folio_batch fbatch; 1662 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1663 pgoff_t end; 1664 int i, count; 1665 struct buffer_head *bh; 1666 struct buffer_head *head; 1667 1668 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1669 folio_batch_init(&fbatch); 1670 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1671 count = folio_batch_count(&fbatch); 1672 for (i = 0; i < count; i++) { 1673 struct folio *folio = fbatch.folios[i]; 1674 1675 if (!folio_buffers(folio)) 1676 continue; 1677 /* 1678 * We use folio lock instead of bd_mapping->private_lock 1679 * to pin buffers here since we can afford to sleep and 1680 * it scales better than a global spinlock lock. 1681 */ 1682 folio_lock(folio); 1683 /* Recheck when the folio is locked which pins bhs */ 1684 head = folio_buffers(folio); 1685 if (!head) 1686 goto unlock_page; 1687 bh = head; 1688 do { 1689 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1690 goto next; 1691 if (bh->b_blocknr >= block + len) 1692 break; 1693 clear_buffer_dirty(bh); 1694 wait_on_buffer(bh); 1695 clear_buffer_req(bh); 1696 next: 1697 bh = bh->b_this_page; 1698 } while (bh != head); 1699 unlock_page: 1700 folio_unlock(folio); 1701 } 1702 folio_batch_release(&fbatch); 1703 cond_resched(); 1704 /* End of range already reached? */ 1705 if (index > end || !index) 1706 break; 1707 } 1708 } 1709 EXPORT_SYMBOL(clean_bdev_aliases); 1710 1711 /* 1712 * Size is a power-of-two in the range 512..PAGE_SIZE, 1713 * and the case we care about most is PAGE_SIZE. 1714 * 1715 * So this *could* possibly be written with those 1716 * constraints in mind (relevant mostly if some 1717 * architecture has a slow bit-scan instruction) 1718 */ 1719 static inline int block_size_bits(unsigned int blocksize) 1720 { 1721 return ilog2(blocksize); 1722 } 1723 1724 static struct buffer_head *folio_create_buffers(struct folio *folio, 1725 struct inode *inode, 1726 unsigned int b_state) 1727 { 1728 BUG_ON(!folio_test_locked(folio)); 1729 1730 if (!folio_buffers(folio)) 1731 folio_create_empty_buffers(folio, 1732 1 << READ_ONCE(inode->i_blkbits), 1733 b_state); 1734 return folio_buffers(folio); 1735 } 1736 1737 /* 1738 * NOTE! All mapped/uptodate combinations are valid: 1739 * 1740 * Mapped Uptodate Meaning 1741 * 1742 * No No "unknown" - must do get_block() 1743 * No Yes "hole" - zero-filled 1744 * Yes No "allocated" - allocated on disk, not read in 1745 * Yes Yes "valid" - allocated and up-to-date in memory. 1746 * 1747 * "Dirty" is valid only with the last case (mapped+uptodate). 1748 */ 1749 1750 /* 1751 * While block_write_full_page is writing back the dirty buffers under 1752 * the page lock, whoever dirtied the buffers may decide to clean them 1753 * again at any time. We handle that by only looking at the buffer 1754 * state inside lock_buffer(). 1755 * 1756 * If block_write_full_page() is called for regular writeback 1757 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1758 * locked buffer. This only can happen if someone has written the buffer 1759 * directly, with submit_bh(). At the address_space level PageWriteback 1760 * prevents this contention from occurring. 1761 * 1762 * If block_write_full_page() is called with wbc->sync_mode == 1763 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1764 * causes the writes to be flagged as synchronous writes. 1765 */ 1766 int __block_write_full_page(struct inode *inode, struct page *page, 1767 get_block_t *get_block, struct writeback_control *wbc, 1768 bh_end_io_t *handler) 1769 { 1770 int err; 1771 sector_t block; 1772 sector_t last_block; 1773 struct buffer_head *bh, *head; 1774 unsigned int blocksize, bbits; 1775 int nr_underway = 0; 1776 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1777 1778 head = folio_create_buffers(page_folio(page), inode, 1779 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1780 1781 /* 1782 * Be very careful. We have no exclusion from block_dirty_folio 1783 * here, and the (potentially unmapped) buffers may become dirty at 1784 * any time. If a buffer becomes dirty here after we've inspected it 1785 * then we just miss that fact, and the page stays dirty. 1786 * 1787 * Buffers outside i_size may be dirtied by block_dirty_folio; 1788 * handle that here by just cleaning them. 1789 */ 1790 1791 bh = head; 1792 blocksize = bh->b_size; 1793 bbits = block_size_bits(blocksize); 1794 1795 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1796 last_block = (i_size_read(inode) - 1) >> bbits; 1797 1798 /* 1799 * Get all the dirty buffers mapped to disk addresses and 1800 * handle any aliases from the underlying blockdev's mapping. 1801 */ 1802 do { 1803 if (block > last_block) { 1804 /* 1805 * mapped buffers outside i_size will occur, because 1806 * this page can be outside i_size when there is a 1807 * truncate in progress. 1808 */ 1809 /* 1810 * The buffer was zeroed by block_write_full_page() 1811 */ 1812 clear_buffer_dirty(bh); 1813 set_buffer_uptodate(bh); 1814 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1815 buffer_dirty(bh)) { 1816 WARN_ON(bh->b_size != blocksize); 1817 err = get_block(inode, block, bh, 1); 1818 if (err) 1819 goto recover; 1820 clear_buffer_delay(bh); 1821 if (buffer_new(bh)) { 1822 /* blockdev mappings never come here */ 1823 clear_buffer_new(bh); 1824 clean_bdev_bh_alias(bh); 1825 } 1826 } 1827 bh = bh->b_this_page; 1828 block++; 1829 } while (bh != head); 1830 1831 do { 1832 if (!buffer_mapped(bh)) 1833 continue; 1834 /* 1835 * If it's a fully non-blocking write attempt and we cannot 1836 * lock the buffer then redirty the page. Note that this can 1837 * potentially cause a busy-wait loop from writeback threads 1838 * and kswapd activity, but those code paths have their own 1839 * higher-level throttling. 1840 */ 1841 if (wbc->sync_mode != WB_SYNC_NONE) { 1842 lock_buffer(bh); 1843 } else if (!trylock_buffer(bh)) { 1844 redirty_page_for_writepage(wbc, page); 1845 continue; 1846 } 1847 if (test_clear_buffer_dirty(bh)) { 1848 mark_buffer_async_write_endio(bh, handler); 1849 } else { 1850 unlock_buffer(bh); 1851 } 1852 } while ((bh = bh->b_this_page) != head); 1853 1854 /* 1855 * The page and its buffers are protected by PageWriteback(), so we can 1856 * drop the bh refcounts early. 1857 */ 1858 BUG_ON(PageWriteback(page)); 1859 set_page_writeback(page); 1860 1861 do { 1862 struct buffer_head *next = bh->b_this_page; 1863 if (buffer_async_write(bh)) { 1864 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1865 nr_underway++; 1866 } 1867 bh = next; 1868 } while (bh != head); 1869 unlock_page(page); 1870 1871 err = 0; 1872 done: 1873 if (nr_underway == 0) { 1874 /* 1875 * The page was marked dirty, but the buffers were 1876 * clean. Someone wrote them back by hand with 1877 * write_dirty_buffer/submit_bh. A rare case. 1878 */ 1879 end_page_writeback(page); 1880 1881 /* 1882 * The page and buffer_heads can be released at any time from 1883 * here on. 1884 */ 1885 } 1886 return err; 1887 1888 recover: 1889 /* 1890 * ENOSPC, or some other error. We may already have added some 1891 * blocks to the file, so we need to write these out to avoid 1892 * exposing stale data. 1893 * The page is currently locked and not marked for writeback 1894 */ 1895 bh = head; 1896 /* Recovery: lock and submit the mapped buffers */ 1897 do { 1898 if (buffer_mapped(bh) && buffer_dirty(bh) && 1899 !buffer_delay(bh)) { 1900 lock_buffer(bh); 1901 mark_buffer_async_write_endio(bh, handler); 1902 } else { 1903 /* 1904 * The buffer may have been set dirty during 1905 * attachment to a dirty page. 1906 */ 1907 clear_buffer_dirty(bh); 1908 } 1909 } while ((bh = bh->b_this_page) != head); 1910 SetPageError(page); 1911 BUG_ON(PageWriteback(page)); 1912 mapping_set_error(page->mapping, err); 1913 set_page_writeback(page); 1914 do { 1915 struct buffer_head *next = bh->b_this_page; 1916 if (buffer_async_write(bh)) { 1917 clear_buffer_dirty(bh); 1918 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1919 nr_underway++; 1920 } 1921 bh = next; 1922 } while (bh != head); 1923 unlock_page(page); 1924 goto done; 1925 } 1926 EXPORT_SYMBOL(__block_write_full_page); 1927 1928 /* 1929 * If a page has any new buffers, zero them out here, and mark them uptodate 1930 * and dirty so they'll be written out (in order to prevent uninitialised 1931 * block data from leaking). And clear the new bit. 1932 */ 1933 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1934 { 1935 unsigned int block_start, block_end; 1936 struct buffer_head *head, *bh; 1937 1938 BUG_ON(!PageLocked(page)); 1939 if (!page_has_buffers(page)) 1940 return; 1941 1942 bh = head = page_buffers(page); 1943 block_start = 0; 1944 do { 1945 block_end = block_start + bh->b_size; 1946 1947 if (buffer_new(bh)) { 1948 if (block_end > from && block_start < to) { 1949 if (!PageUptodate(page)) { 1950 unsigned start, size; 1951 1952 start = max(from, block_start); 1953 size = min(to, block_end) - start; 1954 1955 zero_user(page, start, size); 1956 set_buffer_uptodate(bh); 1957 } 1958 1959 clear_buffer_new(bh); 1960 mark_buffer_dirty(bh); 1961 } 1962 } 1963 1964 block_start = block_end; 1965 bh = bh->b_this_page; 1966 } while (bh != head); 1967 } 1968 EXPORT_SYMBOL(page_zero_new_buffers); 1969 1970 static void 1971 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1972 const struct iomap *iomap) 1973 { 1974 loff_t offset = block << inode->i_blkbits; 1975 1976 bh->b_bdev = iomap->bdev; 1977 1978 /* 1979 * Block points to offset in file we need to map, iomap contains 1980 * the offset at which the map starts. If the map ends before the 1981 * current block, then do not map the buffer and let the caller 1982 * handle it. 1983 */ 1984 BUG_ON(offset >= iomap->offset + iomap->length); 1985 1986 switch (iomap->type) { 1987 case IOMAP_HOLE: 1988 /* 1989 * If the buffer is not up to date or beyond the current EOF, 1990 * we need to mark it as new to ensure sub-block zeroing is 1991 * executed if necessary. 1992 */ 1993 if (!buffer_uptodate(bh) || 1994 (offset >= i_size_read(inode))) 1995 set_buffer_new(bh); 1996 break; 1997 case IOMAP_DELALLOC: 1998 if (!buffer_uptodate(bh) || 1999 (offset >= i_size_read(inode))) 2000 set_buffer_new(bh); 2001 set_buffer_uptodate(bh); 2002 set_buffer_mapped(bh); 2003 set_buffer_delay(bh); 2004 break; 2005 case IOMAP_UNWRITTEN: 2006 /* 2007 * For unwritten regions, we always need to ensure that regions 2008 * in the block we are not writing to are zeroed. Mark the 2009 * buffer as new to ensure this. 2010 */ 2011 set_buffer_new(bh); 2012 set_buffer_unwritten(bh); 2013 fallthrough; 2014 case IOMAP_MAPPED: 2015 if ((iomap->flags & IOMAP_F_NEW) || 2016 offset >= i_size_read(inode)) 2017 set_buffer_new(bh); 2018 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2019 inode->i_blkbits; 2020 set_buffer_mapped(bh); 2021 break; 2022 } 2023 } 2024 2025 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2026 get_block_t *get_block, const struct iomap *iomap) 2027 { 2028 unsigned from = pos & (PAGE_SIZE - 1); 2029 unsigned to = from + len; 2030 struct inode *inode = folio->mapping->host; 2031 unsigned block_start, block_end; 2032 sector_t block; 2033 int err = 0; 2034 unsigned blocksize, bbits; 2035 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2036 2037 BUG_ON(!folio_test_locked(folio)); 2038 BUG_ON(from > PAGE_SIZE); 2039 BUG_ON(to > PAGE_SIZE); 2040 BUG_ON(from > to); 2041 2042 head = folio_create_buffers(folio, inode, 0); 2043 blocksize = head->b_size; 2044 bbits = block_size_bits(blocksize); 2045 2046 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2047 2048 for(bh = head, block_start = 0; bh != head || !block_start; 2049 block++, block_start=block_end, bh = bh->b_this_page) { 2050 block_end = block_start + blocksize; 2051 if (block_end <= from || block_start >= to) { 2052 if (folio_test_uptodate(folio)) { 2053 if (!buffer_uptodate(bh)) 2054 set_buffer_uptodate(bh); 2055 } 2056 continue; 2057 } 2058 if (buffer_new(bh)) 2059 clear_buffer_new(bh); 2060 if (!buffer_mapped(bh)) { 2061 WARN_ON(bh->b_size != blocksize); 2062 if (get_block) { 2063 err = get_block(inode, block, bh, 1); 2064 if (err) 2065 break; 2066 } else { 2067 iomap_to_bh(inode, block, bh, iomap); 2068 } 2069 2070 if (buffer_new(bh)) { 2071 clean_bdev_bh_alias(bh); 2072 if (folio_test_uptodate(folio)) { 2073 clear_buffer_new(bh); 2074 set_buffer_uptodate(bh); 2075 mark_buffer_dirty(bh); 2076 continue; 2077 } 2078 if (block_end > to || block_start < from) 2079 folio_zero_segments(folio, 2080 to, block_end, 2081 block_start, from); 2082 continue; 2083 } 2084 } 2085 if (folio_test_uptodate(folio)) { 2086 if (!buffer_uptodate(bh)) 2087 set_buffer_uptodate(bh); 2088 continue; 2089 } 2090 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2091 !buffer_unwritten(bh) && 2092 (block_start < from || block_end > to)) { 2093 bh_read_nowait(bh, 0); 2094 *wait_bh++=bh; 2095 } 2096 } 2097 /* 2098 * If we issued read requests - let them complete. 2099 */ 2100 while(wait_bh > wait) { 2101 wait_on_buffer(*--wait_bh); 2102 if (!buffer_uptodate(*wait_bh)) 2103 err = -EIO; 2104 } 2105 if (unlikely(err)) 2106 page_zero_new_buffers(&folio->page, from, to); 2107 return err; 2108 } 2109 2110 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2111 get_block_t *get_block) 2112 { 2113 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2114 NULL); 2115 } 2116 EXPORT_SYMBOL(__block_write_begin); 2117 2118 static int __block_commit_write(struct inode *inode, struct page *page, 2119 unsigned from, unsigned to) 2120 { 2121 unsigned block_start, block_end; 2122 int partial = 0; 2123 unsigned blocksize; 2124 struct buffer_head *bh, *head; 2125 2126 bh = head = page_buffers(page); 2127 blocksize = bh->b_size; 2128 2129 block_start = 0; 2130 do { 2131 block_end = block_start + blocksize; 2132 if (block_end <= from || block_start >= to) { 2133 if (!buffer_uptodate(bh)) 2134 partial = 1; 2135 } else { 2136 set_buffer_uptodate(bh); 2137 mark_buffer_dirty(bh); 2138 } 2139 if (buffer_new(bh)) 2140 clear_buffer_new(bh); 2141 2142 block_start = block_end; 2143 bh = bh->b_this_page; 2144 } while (bh != head); 2145 2146 /* 2147 * If this is a partial write which happened to make all buffers 2148 * uptodate then we can optimize away a bogus read_folio() for 2149 * the next read(). Here we 'discover' whether the page went 2150 * uptodate as a result of this (potentially partial) write. 2151 */ 2152 if (!partial) 2153 SetPageUptodate(page); 2154 return 0; 2155 } 2156 2157 /* 2158 * block_write_begin takes care of the basic task of block allocation and 2159 * bringing partial write blocks uptodate first. 2160 * 2161 * The filesystem needs to handle block truncation upon failure. 2162 */ 2163 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2164 struct page **pagep, get_block_t *get_block) 2165 { 2166 pgoff_t index = pos >> PAGE_SHIFT; 2167 struct page *page; 2168 int status; 2169 2170 page = grab_cache_page_write_begin(mapping, index); 2171 if (!page) 2172 return -ENOMEM; 2173 2174 status = __block_write_begin(page, pos, len, get_block); 2175 if (unlikely(status)) { 2176 unlock_page(page); 2177 put_page(page); 2178 page = NULL; 2179 } 2180 2181 *pagep = page; 2182 return status; 2183 } 2184 EXPORT_SYMBOL(block_write_begin); 2185 2186 int block_write_end(struct file *file, struct address_space *mapping, 2187 loff_t pos, unsigned len, unsigned copied, 2188 struct page *page, void *fsdata) 2189 { 2190 struct inode *inode = mapping->host; 2191 unsigned start; 2192 2193 start = pos & (PAGE_SIZE - 1); 2194 2195 if (unlikely(copied < len)) { 2196 /* 2197 * The buffers that were written will now be uptodate, so 2198 * we don't have to worry about a read_folio reading them 2199 * and overwriting a partial write. However if we have 2200 * encountered a short write and only partially written 2201 * into a buffer, it will not be marked uptodate, so a 2202 * read_folio might come in and destroy our partial write. 2203 * 2204 * Do the simplest thing, and just treat any short write to a 2205 * non uptodate page as a zero-length write, and force the 2206 * caller to redo the whole thing. 2207 */ 2208 if (!PageUptodate(page)) 2209 copied = 0; 2210 2211 page_zero_new_buffers(page, start+copied, start+len); 2212 } 2213 flush_dcache_page(page); 2214 2215 /* This could be a short (even 0-length) commit */ 2216 __block_commit_write(inode, page, start, start+copied); 2217 2218 return copied; 2219 } 2220 EXPORT_SYMBOL(block_write_end); 2221 2222 int generic_write_end(struct file *file, struct address_space *mapping, 2223 loff_t pos, unsigned len, unsigned copied, 2224 struct page *page, void *fsdata) 2225 { 2226 struct inode *inode = mapping->host; 2227 loff_t old_size = inode->i_size; 2228 bool i_size_changed = false; 2229 2230 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2231 2232 /* 2233 * No need to use i_size_read() here, the i_size cannot change under us 2234 * because we hold i_rwsem. 2235 * 2236 * But it's important to update i_size while still holding page lock: 2237 * page writeout could otherwise come in and zero beyond i_size. 2238 */ 2239 if (pos + copied > inode->i_size) { 2240 i_size_write(inode, pos + copied); 2241 i_size_changed = true; 2242 } 2243 2244 unlock_page(page); 2245 put_page(page); 2246 2247 if (old_size < pos) 2248 pagecache_isize_extended(inode, old_size, pos); 2249 /* 2250 * Don't mark the inode dirty under page lock. First, it unnecessarily 2251 * makes the holding time of page lock longer. Second, it forces lock 2252 * ordering of page lock and transaction start for journaling 2253 * filesystems. 2254 */ 2255 if (i_size_changed) 2256 mark_inode_dirty(inode); 2257 return copied; 2258 } 2259 EXPORT_SYMBOL(generic_write_end); 2260 2261 /* 2262 * block_is_partially_uptodate checks whether buffers within a folio are 2263 * uptodate or not. 2264 * 2265 * Returns true if all buffers which correspond to the specified part 2266 * of the folio are uptodate. 2267 */ 2268 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2269 { 2270 unsigned block_start, block_end, blocksize; 2271 unsigned to; 2272 struct buffer_head *bh, *head; 2273 bool ret = true; 2274 2275 head = folio_buffers(folio); 2276 if (!head) 2277 return false; 2278 blocksize = head->b_size; 2279 to = min_t(unsigned, folio_size(folio) - from, count); 2280 to = from + to; 2281 if (from < blocksize && to > folio_size(folio) - blocksize) 2282 return false; 2283 2284 bh = head; 2285 block_start = 0; 2286 do { 2287 block_end = block_start + blocksize; 2288 if (block_end > from && block_start < to) { 2289 if (!buffer_uptodate(bh)) { 2290 ret = false; 2291 break; 2292 } 2293 if (block_end >= to) 2294 break; 2295 } 2296 block_start = block_end; 2297 bh = bh->b_this_page; 2298 } while (bh != head); 2299 2300 return ret; 2301 } 2302 EXPORT_SYMBOL(block_is_partially_uptodate); 2303 2304 /* 2305 * Generic "read_folio" function for block devices that have the normal 2306 * get_block functionality. This is most of the block device filesystems. 2307 * Reads the folio asynchronously --- the unlock_buffer() and 2308 * set/clear_buffer_uptodate() functions propagate buffer state into the 2309 * folio once IO has completed. 2310 */ 2311 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2312 { 2313 struct inode *inode = folio->mapping->host; 2314 sector_t iblock, lblock; 2315 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2316 unsigned int blocksize, bbits; 2317 int nr, i; 2318 int fully_mapped = 1; 2319 bool page_error = false; 2320 loff_t limit = i_size_read(inode); 2321 2322 /* This is needed for ext4. */ 2323 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2324 limit = inode->i_sb->s_maxbytes; 2325 2326 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2327 2328 head = folio_create_buffers(folio, inode, 0); 2329 blocksize = head->b_size; 2330 bbits = block_size_bits(blocksize); 2331 2332 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2333 lblock = (limit+blocksize-1) >> bbits; 2334 bh = head; 2335 nr = 0; 2336 i = 0; 2337 2338 do { 2339 if (buffer_uptodate(bh)) 2340 continue; 2341 2342 if (!buffer_mapped(bh)) { 2343 int err = 0; 2344 2345 fully_mapped = 0; 2346 if (iblock < lblock) { 2347 WARN_ON(bh->b_size != blocksize); 2348 err = get_block(inode, iblock, bh, 0); 2349 if (err) { 2350 folio_set_error(folio); 2351 page_error = true; 2352 } 2353 } 2354 if (!buffer_mapped(bh)) { 2355 folio_zero_range(folio, i * blocksize, 2356 blocksize); 2357 if (!err) 2358 set_buffer_uptodate(bh); 2359 continue; 2360 } 2361 /* 2362 * get_block() might have updated the buffer 2363 * synchronously 2364 */ 2365 if (buffer_uptodate(bh)) 2366 continue; 2367 } 2368 arr[nr++] = bh; 2369 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2370 2371 if (fully_mapped) 2372 folio_set_mappedtodisk(folio); 2373 2374 if (!nr) { 2375 /* 2376 * All buffers are uptodate - we can set the folio uptodate 2377 * as well. But not if get_block() returned an error. 2378 */ 2379 if (!page_error) 2380 folio_mark_uptodate(folio); 2381 folio_unlock(folio); 2382 return 0; 2383 } 2384 2385 /* Stage two: lock the buffers */ 2386 for (i = 0; i < nr; i++) { 2387 bh = arr[i]; 2388 lock_buffer(bh); 2389 mark_buffer_async_read(bh); 2390 } 2391 2392 /* 2393 * Stage 3: start the IO. Check for uptodateness 2394 * inside the buffer lock in case another process reading 2395 * the underlying blockdev brought it uptodate (the sct fix). 2396 */ 2397 for (i = 0; i < nr; i++) { 2398 bh = arr[i]; 2399 if (buffer_uptodate(bh)) 2400 end_buffer_async_read(bh, 1); 2401 else 2402 submit_bh(REQ_OP_READ, bh); 2403 } 2404 return 0; 2405 } 2406 EXPORT_SYMBOL(block_read_full_folio); 2407 2408 /* utility function for filesystems that need to do work on expanding 2409 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2410 * deal with the hole. 2411 */ 2412 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2413 { 2414 struct address_space *mapping = inode->i_mapping; 2415 const struct address_space_operations *aops = mapping->a_ops; 2416 struct page *page; 2417 void *fsdata = NULL; 2418 int err; 2419 2420 err = inode_newsize_ok(inode, size); 2421 if (err) 2422 goto out; 2423 2424 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2425 if (err) 2426 goto out; 2427 2428 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2429 BUG_ON(err > 0); 2430 2431 out: 2432 return err; 2433 } 2434 EXPORT_SYMBOL(generic_cont_expand_simple); 2435 2436 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2437 loff_t pos, loff_t *bytes) 2438 { 2439 struct inode *inode = mapping->host; 2440 const struct address_space_operations *aops = mapping->a_ops; 2441 unsigned int blocksize = i_blocksize(inode); 2442 struct page *page; 2443 void *fsdata = NULL; 2444 pgoff_t index, curidx; 2445 loff_t curpos; 2446 unsigned zerofrom, offset, len; 2447 int err = 0; 2448 2449 index = pos >> PAGE_SHIFT; 2450 offset = pos & ~PAGE_MASK; 2451 2452 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2453 zerofrom = curpos & ~PAGE_MASK; 2454 if (zerofrom & (blocksize-1)) { 2455 *bytes |= (blocksize-1); 2456 (*bytes)++; 2457 } 2458 len = PAGE_SIZE - zerofrom; 2459 2460 err = aops->write_begin(file, mapping, curpos, len, 2461 &page, &fsdata); 2462 if (err) 2463 goto out; 2464 zero_user(page, zerofrom, len); 2465 err = aops->write_end(file, mapping, curpos, len, len, 2466 page, fsdata); 2467 if (err < 0) 2468 goto out; 2469 BUG_ON(err != len); 2470 err = 0; 2471 2472 balance_dirty_pages_ratelimited(mapping); 2473 2474 if (fatal_signal_pending(current)) { 2475 err = -EINTR; 2476 goto out; 2477 } 2478 } 2479 2480 /* page covers the boundary, find the boundary offset */ 2481 if (index == curidx) { 2482 zerofrom = curpos & ~PAGE_MASK; 2483 /* if we will expand the thing last block will be filled */ 2484 if (offset <= zerofrom) { 2485 goto out; 2486 } 2487 if (zerofrom & (blocksize-1)) { 2488 *bytes |= (blocksize-1); 2489 (*bytes)++; 2490 } 2491 len = offset - zerofrom; 2492 2493 err = aops->write_begin(file, mapping, curpos, len, 2494 &page, &fsdata); 2495 if (err) 2496 goto out; 2497 zero_user(page, zerofrom, len); 2498 err = aops->write_end(file, mapping, curpos, len, len, 2499 page, fsdata); 2500 if (err < 0) 2501 goto out; 2502 BUG_ON(err != len); 2503 err = 0; 2504 } 2505 out: 2506 return err; 2507 } 2508 2509 /* 2510 * For moronic filesystems that do not allow holes in file. 2511 * We may have to extend the file. 2512 */ 2513 int cont_write_begin(struct file *file, struct address_space *mapping, 2514 loff_t pos, unsigned len, 2515 struct page **pagep, void **fsdata, 2516 get_block_t *get_block, loff_t *bytes) 2517 { 2518 struct inode *inode = mapping->host; 2519 unsigned int blocksize = i_blocksize(inode); 2520 unsigned int zerofrom; 2521 int err; 2522 2523 err = cont_expand_zero(file, mapping, pos, bytes); 2524 if (err) 2525 return err; 2526 2527 zerofrom = *bytes & ~PAGE_MASK; 2528 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2529 *bytes |= (blocksize-1); 2530 (*bytes)++; 2531 } 2532 2533 return block_write_begin(mapping, pos, len, pagep, get_block); 2534 } 2535 EXPORT_SYMBOL(cont_write_begin); 2536 2537 int block_commit_write(struct page *page, unsigned from, unsigned to) 2538 { 2539 struct inode *inode = page->mapping->host; 2540 __block_commit_write(inode,page,from,to); 2541 return 0; 2542 } 2543 EXPORT_SYMBOL(block_commit_write); 2544 2545 /* 2546 * block_page_mkwrite() is not allowed to change the file size as it gets 2547 * called from a page fault handler when a page is first dirtied. Hence we must 2548 * be careful to check for EOF conditions here. We set the page up correctly 2549 * for a written page which means we get ENOSPC checking when writing into 2550 * holes and correct delalloc and unwritten extent mapping on filesystems that 2551 * support these features. 2552 * 2553 * We are not allowed to take the i_mutex here so we have to play games to 2554 * protect against truncate races as the page could now be beyond EOF. Because 2555 * truncate writes the inode size before removing pages, once we have the 2556 * page lock we can determine safely if the page is beyond EOF. If it is not 2557 * beyond EOF, then the page is guaranteed safe against truncation until we 2558 * unlock the page. 2559 * 2560 * Direct callers of this function should protect against filesystem freezing 2561 * using sb_start_pagefault() - sb_end_pagefault() functions. 2562 */ 2563 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2564 get_block_t get_block) 2565 { 2566 struct page *page = vmf->page; 2567 struct inode *inode = file_inode(vma->vm_file); 2568 unsigned long end; 2569 loff_t size; 2570 int ret; 2571 2572 lock_page(page); 2573 size = i_size_read(inode); 2574 if ((page->mapping != inode->i_mapping) || 2575 (page_offset(page) > size)) { 2576 /* We overload EFAULT to mean page got truncated */ 2577 ret = -EFAULT; 2578 goto out_unlock; 2579 } 2580 2581 /* page is wholly or partially inside EOF */ 2582 if (((page->index + 1) << PAGE_SHIFT) > size) 2583 end = size & ~PAGE_MASK; 2584 else 2585 end = PAGE_SIZE; 2586 2587 ret = __block_write_begin(page, 0, end, get_block); 2588 if (!ret) 2589 ret = block_commit_write(page, 0, end); 2590 2591 if (unlikely(ret < 0)) 2592 goto out_unlock; 2593 set_page_dirty(page); 2594 wait_for_stable_page(page); 2595 return 0; 2596 out_unlock: 2597 unlock_page(page); 2598 return ret; 2599 } 2600 EXPORT_SYMBOL(block_page_mkwrite); 2601 2602 int block_truncate_page(struct address_space *mapping, 2603 loff_t from, get_block_t *get_block) 2604 { 2605 pgoff_t index = from >> PAGE_SHIFT; 2606 unsigned offset = from & (PAGE_SIZE-1); 2607 unsigned blocksize; 2608 sector_t iblock; 2609 unsigned length, pos; 2610 struct inode *inode = mapping->host; 2611 struct page *page; 2612 struct buffer_head *bh; 2613 int err = 0; 2614 2615 blocksize = i_blocksize(inode); 2616 length = offset & (blocksize - 1); 2617 2618 /* Block boundary? Nothing to do */ 2619 if (!length) 2620 return 0; 2621 2622 length = blocksize - length; 2623 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2624 2625 page = grab_cache_page(mapping, index); 2626 if (!page) 2627 return -ENOMEM; 2628 2629 if (!page_has_buffers(page)) 2630 create_empty_buffers(page, blocksize, 0); 2631 2632 /* Find the buffer that contains "offset" */ 2633 bh = page_buffers(page); 2634 pos = blocksize; 2635 while (offset >= pos) { 2636 bh = bh->b_this_page; 2637 iblock++; 2638 pos += blocksize; 2639 } 2640 2641 if (!buffer_mapped(bh)) { 2642 WARN_ON(bh->b_size != blocksize); 2643 err = get_block(inode, iblock, bh, 0); 2644 if (err) 2645 goto unlock; 2646 /* unmapped? It's a hole - nothing to do */ 2647 if (!buffer_mapped(bh)) 2648 goto unlock; 2649 } 2650 2651 /* Ok, it's mapped. Make sure it's up-to-date */ 2652 if (PageUptodate(page)) 2653 set_buffer_uptodate(bh); 2654 2655 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2656 err = bh_read(bh, 0); 2657 /* Uhhuh. Read error. Complain and punt. */ 2658 if (err < 0) 2659 goto unlock; 2660 } 2661 2662 zero_user(page, offset, length); 2663 mark_buffer_dirty(bh); 2664 2665 unlock: 2666 unlock_page(page); 2667 put_page(page); 2668 2669 return err; 2670 } 2671 EXPORT_SYMBOL(block_truncate_page); 2672 2673 /* 2674 * The generic ->writepage function for buffer-backed address_spaces 2675 */ 2676 int block_write_full_page(struct page *page, get_block_t *get_block, 2677 struct writeback_control *wbc) 2678 { 2679 struct inode * const inode = page->mapping->host; 2680 loff_t i_size = i_size_read(inode); 2681 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2682 unsigned offset; 2683 2684 /* Is the page fully inside i_size? */ 2685 if (page->index < end_index) 2686 return __block_write_full_page(inode, page, get_block, wbc, 2687 end_buffer_async_write); 2688 2689 /* Is the page fully outside i_size? (truncate in progress) */ 2690 offset = i_size & (PAGE_SIZE-1); 2691 if (page->index >= end_index+1 || !offset) { 2692 unlock_page(page); 2693 return 0; /* don't care */ 2694 } 2695 2696 /* 2697 * The page straddles i_size. It must be zeroed out on each and every 2698 * writepage invocation because it may be mmapped. "A file is mapped 2699 * in multiples of the page size. For a file that is not a multiple of 2700 * the page size, the remaining memory is zeroed when mapped, and 2701 * writes to that region are not written out to the file." 2702 */ 2703 zero_user_segment(page, offset, PAGE_SIZE); 2704 return __block_write_full_page(inode, page, get_block, wbc, 2705 end_buffer_async_write); 2706 } 2707 EXPORT_SYMBOL(block_write_full_page); 2708 2709 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2710 get_block_t *get_block) 2711 { 2712 struct inode *inode = mapping->host; 2713 struct buffer_head tmp = { 2714 .b_size = i_blocksize(inode), 2715 }; 2716 2717 get_block(inode, block, &tmp, 0); 2718 return tmp.b_blocknr; 2719 } 2720 EXPORT_SYMBOL(generic_block_bmap); 2721 2722 static void end_bio_bh_io_sync(struct bio *bio) 2723 { 2724 struct buffer_head *bh = bio->bi_private; 2725 2726 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2727 set_bit(BH_Quiet, &bh->b_state); 2728 2729 bh->b_end_io(bh, !bio->bi_status); 2730 bio_put(bio); 2731 } 2732 2733 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2734 struct writeback_control *wbc) 2735 { 2736 const enum req_op op = opf & REQ_OP_MASK; 2737 struct bio *bio; 2738 2739 BUG_ON(!buffer_locked(bh)); 2740 BUG_ON(!buffer_mapped(bh)); 2741 BUG_ON(!bh->b_end_io); 2742 BUG_ON(buffer_delay(bh)); 2743 BUG_ON(buffer_unwritten(bh)); 2744 2745 /* 2746 * Only clear out a write error when rewriting 2747 */ 2748 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2749 clear_buffer_write_io_error(bh); 2750 2751 if (buffer_meta(bh)) 2752 opf |= REQ_META; 2753 if (buffer_prio(bh)) 2754 opf |= REQ_PRIO; 2755 2756 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2757 2758 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2759 2760 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2761 2762 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2763 2764 bio->bi_end_io = end_bio_bh_io_sync; 2765 bio->bi_private = bh; 2766 2767 /* Take care of bh's that straddle the end of the device */ 2768 guard_bio_eod(bio); 2769 2770 if (wbc) { 2771 wbc_init_bio(wbc, bio); 2772 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2773 } 2774 2775 submit_bio(bio); 2776 } 2777 2778 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2779 { 2780 submit_bh_wbc(opf, bh, NULL); 2781 } 2782 EXPORT_SYMBOL(submit_bh); 2783 2784 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2785 { 2786 lock_buffer(bh); 2787 if (!test_clear_buffer_dirty(bh)) { 2788 unlock_buffer(bh); 2789 return; 2790 } 2791 bh->b_end_io = end_buffer_write_sync; 2792 get_bh(bh); 2793 submit_bh(REQ_OP_WRITE | op_flags, bh); 2794 } 2795 EXPORT_SYMBOL(write_dirty_buffer); 2796 2797 /* 2798 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2799 * and then start new I/O and then wait upon it. The caller must have a ref on 2800 * the buffer_head. 2801 */ 2802 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2803 { 2804 WARN_ON(atomic_read(&bh->b_count) < 1); 2805 lock_buffer(bh); 2806 if (test_clear_buffer_dirty(bh)) { 2807 /* 2808 * The bh should be mapped, but it might not be if the 2809 * device was hot-removed. Not much we can do but fail the I/O. 2810 */ 2811 if (!buffer_mapped(bh)) { 2812 unlock_buffer(bh); 2813 return -EIO; 2814 } 2815 2816 get_bh(bh); 2817 bh->b_end_io = end_buffer_write_sync; 2818 submit_bh(REQ_OP_WRITE | op_flags, bh); 2819 wait_on_buffer(bh); 2820 if (!buffer_uptodate(bh)) 2821 return -EIO; 2822 } else { 2823 unlock_buffer(bh); 2824 } 2825 return 0; 2826 } 2827 EXPORT_SYMBOL(__sync_dirty_buffer); 2828 2829 int sync_dirty_buffer(struct buffer_head *bh) 2830 { 2831 return __sync_dirty_buffer(bh, REQ_SYNC); 2832 } 2833 EXPORT_SYMBOL(sync_dirty_buffer); 2834 2835 /* 2836 * try_to_free_buffers() checks if all the buffers on this particular folio 2837 * are unused, and releases them if so. 2838 * 2839 * Exclusion against try_to_free_buffers may be obtained by either 2840 * locking the folio or by holding its mapping's private_lock. 2841 * 2842 * If the folio is dirty but all the buffers are clean then we need to 2843 * be sure to mark the folio clean as well. This is because the folio 2844 * may be against a block device, and a later reattachment of buffers 2845 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2846 * filesystem data on the same device. 2847 * 2848 * The same applies to regular filesystem folios: if all the buffers are 2849 * clean then we set the folio clean and proceed. To do that, we require 2850 * total exclusion from block_dirty_folio(). That is obtained with 2851 * private_lock. 2852 * 2853 * try_to_free_buffers() is non-blocking. 2854 */ 2855 static inline int buffer_busy(struct buffer_head *bh) 2856 { 2857 return atomic_read(&bh->b_count) | 2858 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2859 } 2860 2861 static bool 2862 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2863 { 2864 struct buffer_head *head = folio_buffers(folio); 2865 struct buffer_head *bh; 2866 2867 bh = head; 2868 do { 2869 if (buffer_busy(bh)) 2870 goto failed; 2871 bh = bh->b_this_page; 2872 } while (bh != head); 2873 2874 do { 2875 struct buffer_head *next = bh->b_this_page; 2876 2877 if (bh->b_assoc_map) 2878 __remove_assoc_queue(bh); 2879 bh = next; 2880 } while (bh != head); 2881 *buffers_to_free = head; 2882 folio_detach_private(folio); 2883 return true; 2884 failed: 2885 return false; 2886 } 2887 2888 bool try_to_free_buffers(struct folio *folio) 2889 { 2890 struct address_space * const mapping = folio->mapping; 2891 struct buffer_head *buffers_to_free = NULL; 2892 bool ret = 0; 2893 2894 BUG_ON(!folio_test_locked(folio)); 2895 if (folio_test_writeback(folio)) 2896 return false; 2897 2898 if (mapping == NULL) { /* can this still happen? */ 2899 ret = drop_buffers(folio, &buffers_to_free); 2900 goto out; 2901 } 2902 2903 spin_lock(&mapping->private_lock); 2904 ret = drop_buffers(folio, &buffers_to_free); 2905 2906 /* 2907 * If the filesystem writes its buffers by hand (eg ext3) 2908 * then we can have clean buffers against a dirty folio. We 2909 * clean the folio here; otherwise the VM will never notice 2910 * that the filesystem did any IO at all. 2911 * 2912 * Also, during truncate, discard_buffer will have marked all 2913 * the folio's buffers clean. We discover that here and clean 2914 * the folio also. 2915 * 2916 * private_lock must be held over this entire operation in order 2917 * to synchronise against block_dirty_folio and prevent the 2918 * dirty bit from being lost. 2919 */ 2920 if (ret) 2921 folio_cancel_dirty(folio); 2922 spin_unlock(&mapping->private_lock); 2923 out: 2924 if (buffers_to_free) { 2925 struct buffer_head *bh = buffers_to_free; 2926 2927 do { 2928 struct buffer_head *next = bh->b_this_page; 2929 free_buffer_head(bh); 2930 bh = next; 2931 } while (bh != buffers_to_free); 2932 } 2933 return ret; 2934 } 2935 EXPORT_SYMBOL(try_to_free_buffers); 2936 2937 /* 2938 * Buffer-head allocation 2939 */ 2940 static struct kmem_cache *bh_cachep __read_mostly; 2941 2942 /* 2943 * Once the number of bh's in the machine exceeds this level, we start 2944 * stripping them in writeback. 2945 */ 2946 static unsigned long max_buffer_heads; 2947 2948 int buffer_heads_over_limit; 2949 2950 struct bh_accounting { 2951 int nr; /* Number of live bh's */ 2952 int ratelimit; /* Limit cacheline bouncing */ 2953 }; 2954 2955 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2956 2957 static void recalc_bh_state(void) 2958 { 2959 int i; 2960 int tot = 0; 2961 2962 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 2963 return; 2964 __this_cpu_write(bh_accounting.ratelimit, 0); 2965 for_each_online_cpu(i) 2966 tot += per_cpu(bh_accounting, i).nr; 2967 buffer_heads_over_limit = (tot > max_buffer_heads); 2968 } 2969 2970 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2971 { 2972 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 2973 if (ret) { 2974 INIT_LIST_HEAD(&ret->b_assoc_buffers); 2975 spin_lock_init(&ret->b_uptodate_lock); 2976 preempt_disable(); 2977 __this_cpu_inc(bh_accounting.nr); 2978 recalc_bh_state(); 2979 preempt_enable(); 2980 } 2981 return ret; 2982 } 2983 EXPORT_SYMBOL(alloc_buffer_head); 2984 2985 void free_buffer_head(struct buffer_head *bh) 2986 { 2987 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2988 kmem_cache_free(bh_cachep, bh); 2989 preempt_disable(); 2990 __this_cpu_dec(bh_accounting.nr); 2991 recalc_bh_state(); 2992 preempt_enable(); 2993 } 2994 EXPORT_SYMBOL(free_buffer_head); 2995 2996 static int buffer_exit_cpu_dead(unsigned int cpu) 2997 { 2998 int i; 2999 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3000 3001 for (i = 0; i < BH_LRU_SIZE; i++) { 3002 brelse(b->bhs[i]); 3003 b->bhs[i] = NULL; 3004 } 3005 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3006 per_cpu(bh_accounting, cpu).nr = 0; 3007 return 0; 3008 } 3009 3010 /** 3011 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3012 * @bh: struct buffer_head 3013 * 3014 * Return true if the buffer is up-to-date and false, 3015 * with the buffer locked, if not. 3016 */ 3017 int bh_uptodate_or_lock(struct buffer_head *bh) 3018 { 3019 if (!buffer_uptodate(bh)) { 3020 lock_buffer(bh); 3021 if (!buffer_uptodate(bh)) 3022 return 0; 3023 unlock_buffer(bh); 3024 } 3025 return 1; 3026 } 3027 EXPORT_SYMBOL(bh_uptodate_or_lock); 3028 3029 /** 3030 * __bh_read - Submit read for a locked buffer 3031 * @bh: struct buffer_head 3032 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3033 * @wait: wait until reading finish 3034 * 3035 * Returns zero on success or don't wait, and -EIO on error. 3036 */ 3037 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3038 { 3039 int ret = 0; 3040 3041 BUG_ON(!buffer_locked(bh)); 3042 3043 get_bh(bh); 3044 bh->b_end_io = end_buffer_read_sync; 3045 submit_bh(REQ_OP_READ | op_flags, bh); 3046 if (wait) { 3047 wait_on_buffer(bh); 3048 if (!buffer_uptodate(bh)) 3049 ret = -EIO; 3050 } 3051 return ret; 3052 } 3053 EXPORT_SYMBOL(__bh_read); 3054 3055 /** 3056 * __bh_read_batch - Submit read for a batch of unlocked buffers 3057 * @nr: entry number of the buffer batch 3058 * @bhs: a batch of struct buffer_head 3059 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3060 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3061 * buffer that cannot lock. 3062 * 3063 * Returns zero on success or don't wait, and -EIO on error. 3064 */ 3065 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3066 blk_opf_t op_flags, bool force_lock) 3067 { 3068 int i; 3069 3070 for (i = 0; i < nr; i++) { 3071 struct buffer_head *bh = bhs[i]; 3072 3073 if (buffer_uptodate(bh)) 3074 continue; 3075 3076 if (force_lock) 3077 lock_buffer(bh); 3078 else 3079 if (!trylock_buffer(bh)) 3080 continue; 3081 3082 if (buffer_uptodate(bh)) { 3083 unlock_buffer(bh); 3084 continue; 3085 } 3086 3087 bh->b_end_io = end_buffer_read_sync; 3088 get_bh(bh); 3089 submit_bh(REQ_OP_READ | op_flags, bh); 3090 } 3091 } 3092 EXPORT_SYMBOL(__bh_read_batch); 3093 3094 void __init buffer_init(void) 3095 { 3096 unsigned long nrpages; 3097 int ret; 3098 3099 bh_cachep = kmem_cache_create("buffer_head", 3100 sizeof(struct buffer_head), 0, 3101 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3102 SLAB_MEM_SPREAD), 3103 NULL); 3104 3105 /* 3106 * Limit the bh occupancy to 10% of ZONE_NORMAL 3107 */ 3108 nrpages = (nr_free_buffer_pages() * 10) / 100; 3109 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3110 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3111 NULL, buffer_exit_cpu_dead); 3112 WARN_ON(ret < 0); 3113 } 3114