1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 53 #include "internal.h" 54 55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 57 struct writeback_control *wbc); 58 59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 60 61 inline void touch_buffer(struct buffer_head *bh) 62 { 63 trace_block_touch_buffer(bh); 64 folio_mark_accessed(bh->b_folio); 65 } 66 EXPORT_SYMBOL(touch_buffer); 67 68 void __lock_buffer(struct buffer_head *bh) 69 { 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 71 } 72 EXPORT_SYMBOL(__lock_buffer); 73 74 void unlock_buffer(struct buffer_head *bh) 75 { 76 clear_bit_unlock(BH_Lock, &bh->b_state); 77 smp_mb__after_atomic(); 78 wake_up_bit(&bh->b_state, BH_Lock); 79 } 80 EXPORT_SYMBOL(unlock_buffer); 81 82 /* 83 * Returns if the folio has dirty or writeback buffers. If all the buffers 84 * are unlocked and clean then the folio_test_dirty information is stale. If 85 * any of the buffers are locked, it is assumed they are locked for IO. 86 */ 87 void buffer_check_dirty_writeback(struct folio *folio, 88 bool *dirty, bool *writeback) 89 { 90 struct buffer_head *head, *bh; 91 *dirty = false; 92 *writeback = false; 93 94 BUG_ON(!folio_test_locked(folio)); 95 96 head = folio_buffers(folio); 97 if (!head) 98 return; 99 100 if (folio_test_writeback(folio)) 101 *writeback = true; 102 103 bh = head; 104 do { 105 if (buffer_locked(bh)) 106 *writeback = true; 107 108 if (buffer_dirty(bh)) 109 *dirty = true; 110 111 bh = bh->b_this_page; 112 } while (bh != head); 113 } 114 EXPORT_SYMBOL(buffer_check_dirty_writeback); 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * private_lock. 184 * 185 * Hack idea: for the blockdev mapping, private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct inode *bd_inode = bdev->bd_inode; 193 struct address_space *bd_mapping = bd_inode->i_mapping; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct folio *folio; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 204 if (IS_ERR(folio)) 205 goto out; 206 207 spin_lock(&bd_mapping->private_lock); 208 head = folio_buffers(folio); 209 if (!head) 210 goto out_unlock; 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << bd_inode->i_blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->private_lock); 240 folio_put(folio); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 folio_set_error(folio); 262 } 263 264 /* 265 * Be _very_ careful from here on. Bad things can happen if 266 * two buffer heads end IO at almost the same time and both 267 * decide that the page is now completely done. 268 */ 269 first = folio_buffers(folio); 270 spin_lock_irqsave(&first->b_uptodate_lock, flags); 271 clear_buffer_async_read(bh); 272 unlock_buffer(bh); 273 tmp = bh; 274 do { 275 if (!buffer_uptodate(tmp)) 276 folio_uptodate = 0; 277 if (buffer_async_read(tmp)) { 278 BUG_ON(!buffer_locked(tmp)); 279 goto still_busy; 280 } 281 tmp = tmp->b_this_page; 282 } while (tmp != bh); 283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 284 285 /* 286 * If all of the buffers are uptodate then we can set the page 287 * uptodate. 288 */ 289 if (folio_uptodate) 290 folio_mark_uptodate(folio); 291 folio_unlock(folio); 292 return; 293 294 still_busy: 295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 296 return; 297 } 298 299 struct postprocess_bh_ctx { 300 struct work_struct work; 301 struct buffer_head *bh; 302 }; 303 304 static void verify_bh(struct work_struct *work) 305 { 306 struct postprocess_bh_ctx *ctx = 307 container_of(work, struct postprocess_bh_ctx, work); 308 struct buffer_head *bh = ctx->bh; 309 bool valid; 310 311 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 312 end_buffer_async_read(bh, valid); 313 kfree(ctx); 314 } 315 316 static bool need_fsverity(struct buffer_head *bh) 317 { 318 struct folio *folio = bh->b_folio; 319 struct inode *inode = folio->mapping->host; 320 321 return fsverity_active(inode) && 322 /* needed by ext4 */ 323 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 324 } 325 326 static void decrypt_bh(struct work_struct *work) 327 { 328 struct postprocess_bh_ctx *ctx = 329 container_of(work, struct postprocess_bh_ctx, work); 330 struct buffer_head *bh = ctx->bh; 331 int err; 332 333 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 334 bh_offset(bh)); 335 if (err == 0 && need_fsverity(bh)) { 336 /* 337 * We use different work queues for decryption and for verity 338 * because verity may require reading metadata pages that need 339 * decryption, and we shouldn't recurse to the same workqueue. 340 */ 341 INIT_WORK(&ctx->work, verify_bh); 342 fsverity_enqueue_verify_work(&ctx->work); 343 return; 344 } 345 end_buffer_async_read(bh, err == 0); 346 kfree(ctx); 347 } 348 349 /* 350 * I/O completion handler for block_read_full_folio() - pages 351 * which come unlocked at the end of I/O. 352 */ 353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 354 { 355 struct inode *inode = bh->b_folio->mapping->host; 356 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 357 bool verify = need_fsverity(bh); 358 359 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 360 if (uptodate && (decrypt || verify)) { 361 struct postprocess_bh_ctx *ctx = 362 kmalloc(sizeof(*ctx), GFP_ATOMIC); 363 364 if (ctx) { 365 ctx->bh = bh; 366 if (decrypt) { 367 INIT_WORK(&ctx->work, decrypt_bh); 368 fscrypt_enqueue_decrypt_work(&ctx->work); 369 } else { 370 INIT_WORK(&ctx->work, verify_bh); 371 fsverity_enqueue_verify_work(&ctx->work); 372 } 373 return; 374 } 375 uptodate = 0; 376 } 377 end_buffer_async_read(bh, uptodate); 378 } 379 380 /* 381 * Completion handler for block_write_full_page() - pages which are unlocked 382 * during I/O, and which have PageWriteback cleared upon I/O completion. 383 */ 384 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 385 { 386 unsigned long flags; 387 struct buffer_head *first; 388 struct buffer_head *tmp; 389 struct folio *folio; 390 391 BUG_ON(!buffer_async_write(bh)); 392 393 folio = bh->b_folio; 394 if (uptodate) { 395 set_buffer_uptodate(bh); 396 } else { 397 buffer_io_error(bh, ", lost async page write"); 398 mark_buffer_write_io_error(bh); 399 clear_buffer_uptodate(bh); 400 folio_set_error(folio); 401 } 402 403 first = folio_buffers(folio); 404 spin_lock_irqsave(&first->b_uptodate_lock, flags); 405 406 clear_buffer_async_write(bh); 407 unlock_buffer(bh); 408 tmp = bh->b_this_page; 409 while (tmp != bh) { 410 if (buffer_async_write(tmp)) { 411 BUG_ON(!buffer_locked(tmp)); 412 goto still_busy; 413 } 414 tmp = tmp->b_this_page; 415 } 416 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 417 folio_end_writeback(folio); 418 return; 419 420 still_busy: 421 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 422 return; 423 } 424 EXPORT_SYMBOL(end_buffer_async_write); 425 426 /* 427 * If a page's buffers are under async readin (end_buffer_async_read 428 * completion) then there is a possibility that another thread of 429 * control could lock one of the buffers after it has completed 430 * but while some of the other buffers have not completed. This 431 * locked buffer would confuse end_buffer_async_read() into not unlocking 432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 433 * that this buffer is not under async I/O. 434 * 435 * The page comes unlocked when it has no locked buffer_async buffers 436 * left. 437 * 438 * PageLocked prevents anyone starting new async I/O reads any of 439 * the buffers. 440 * 441 * PageWriteback is used to prevent simultaneous writeout of the same 442 * page. 443 * 444 * PageLocked prevents anyone from starting writeback of a page which is 445 * under read I/O (PageWriteback is only ever set against a locked page). 446 */ 447 static void mark_buffer_async_read(struct buffer_head *bh) 448 { 449 bh->b_end_io = end_buffer_async_read_io; 450 set_buffer_async_read(bh); 451 } 452 453 static void mark_buffer_async_write_endio(struct buffer_head *bh, 454 bh_end_io_t *handler) 455 { 456 bh->b_end_io = handler; 457 set_buffer_async_write(bh); 458 } 459 460 void mark_buffer_async_write(struct buffer_head *bh) 461 { 462 mark_buffer_async_write_endio(bh, end_buffer_async_write); 463 } 464 EXPORT_SYMBOL(mark_buffer_async_write); 465 466 467 /* 468 * fs/buffer.c contains helper functions for buffer-backed address space's 469 * fsync functions. A common requirement for buffer-based filesystems is 470 * that certain data from the backing blockdev needs to be written out for 471 * a successful fsync(). For example, ext2 indirect blocks need to be 472 * written back and waited upon before fsync() returns. 473 * 474 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 476 * management of a list of dependent buffers at ->i_mapping->private_list. 477 * 478 * Locking is a little subtle: try_to_free_buffers() will remove buffers 479 * from their controlling inode's queue when they are being freed. But 480 * try_to_free_buffers() will be operating against the *blockdev* mapping 481 * at the time, not against the S_ISREG file which depends on those buffers. 482 * So the locking for private_list is via the private_lock in the address_space 483 * which backs the buffers. Which is different from the address_space 484 * against which the buffers are listed. So for a particular address_space, 485 * mapping->private_lock does *not* protect mapping->private_list! In fact, 486 * mapping->private_list will always be protected by the backing blockdev's 487 * ->private_lock. 488 * 489 * Which introduces a requirement: all buffers on an address_space's 490 * ->private_list must be from the same address_space: the blockdev's. 491 * 492 * address_spaces which do not place buffers at ->private_list via these 493 * utility functions are free to use private_lock and private_list for 494 * whatever they want. The only requirement is that list_empty(private_list) 495 * be true at clear_inode() time. 496 * 497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 498 * filesystems should do that. invalidate_inode_buffers() should just go 499 * BUG_ON(!list_empty). 500 * 501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 502 * take an address_space, not an inode. And it should be called 503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 504 * queued up. 505 * 506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 507 * list if it is already on a list. Because if the buffer is on a list, 508 * it *must* already be on the right one. If not, the filesystem is being 509 * silly. This will save a ton of locking. But first we have to ensure 510 * that buffers are taken *off* the old inode's list when they are freed 511 * (presumably in truncate). That requires careful auditing of all 512 * filesystems (do it inside bforget()). It could also be done by bringing 513 * b_inode back. 514 */ 515 516 /* 517 * The buffer's backing address_space's private_lock must be held 518 */ 519 static void __remove_assoc_queue(struct buffer_head *bh) 520 { 521 list_del_init(&bh->b_assoc_buffers); 522 WARN_ON(!bh->b_assoc_map); 523 bh->b_assoc_map = NULL; 524 } 525 526 int inode_has_buffers(struct inode *inode) 527 { 528 return !list_empty(&inode->i_data.private_list); 529 } 530 531 /* 532 * osync is designed to support O_SYNC io. It waits synchronously for 533 * all already-submitted IO to complete, but does not queue any new 534 * writes to the disk. 535 * 536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 537 * as you dirty the buffers, and then use osync_inode_buffers to wait for 538 * completion. Any other dirty buffers which are not yet queued for 539 * write will not be flushed to disk by the osync. 540 */ 541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 542 { 543 struct buffer_head *bh; 544 struct list_head *p; 545 int err = 0; 546 547 spin_lock(lock); 548 repeat: 549 list_for_each_prev(p, list) { 550 bh = BH_ENTRY(p); 551 if (buffer_locked(bh)) { 552 get_bh(bh); 553 spin_unlock(lock); 554 wait_on_buffer(bh); 555 if (!buffer_uptodate(bh)) 556 err = -EIO; 557 brelse(bh); 558 spin_lock(lock); 559 goto repeat; 560 } 561 } 562 spin_unlock(lock); 563 return err; 564 } 565 566 void emergency_thaw_bdev(struct super_block *sb) 567 { 568 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 569 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 570 } 571 572 /** 573 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 574 * @mapping: the mapping which wants those buffers written 575 * 576 * Starts I/O against the buffers at mapping->private_list, and waits upon 577 * that I/O. 578 * 579 * Basically, this is a convenience function for fsync(). 580 * @mapping is a file or directory which needs those buffers to be written for 581 * a successful fsync(). 582 */ 583 int sync_mapping_buffers(struct address_space *mapping) 584 { 585 struct address_space *buffer_mapping = mapping->private_data; 586 587 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 588 return 0; 589 590 return fsync_buffers_list(&buffer_mapping->private_lock, 591 &mapping->private_list); 592 } 593 EXPORT_SYMBOL(sync_mapping_buffers); 594 595 /* 596 * Called when we've recently written block `bblock', and it is known that 597 * `bblock' was for a buffer_boundary() buffer. This means that the block at 598 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 599 * dirty, schedule it for IO. So that indirects merge nicely with their data. 600 */ 601 void write_boundary_block(struct block_device *bdev, 602 sector_t bblock, unsigned blocksize) 603 { 604 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 605 if (bh) { 606 if (buffer_dirty(bh)) 607 write_dirty_buffer(bh, 0); 608 put_bh(bh); 609 } 610 } 611 612 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 613 { 614 struct address_space *mapping = inode->i_mapping; 615 struct address_space *buffer_mapping = bh->b_folio->mapping; 616 617 mark_buffer_dirty(bh); 618 if (!mapping->private_data) { 619 mapping->private_data = buffer_mapping; 620 } else { 621 BUG_ON(mapping->private_data != buffer_mapping); 622 } 623 if (!bh->b_assoc_map) { 624 spin_lock(&buffer_mapping->private_lock); 625 list_move_tail(&bh->b_assoc_buffers, 626 &mapping->private_list); 627 bh->b_assoc_map = mapping; 628 spin_unlock(&buffer_mapping->private_lock); 629 } 630 } 631 EXPORT_SYMBOL(mark_buffer_dirty_inode); 632 633 /* 634 * Add a page to the dirty page list. 635 * 636 * It is a sad fact of life that this function is called from several places 637 * deeply under spinlocking. It may not sleep. 638 * 639 * If the page has buffers, the uptodate buffers are set dirty, to preserve 640 * dirty-state coherency between the page and the buffers. It the page does 641 * not have buffers then when they are later attached they will all be set 642 * dirty. 643 * 644 * The buffers are dirtied before the page is dirtied. There's a small race 645 * window in which a writepage caller may see the page cleanness but not the 646 * buffer dirtiness. That's fine. If this code were to set the page dirty 647 * before the buffers, a concurrent writepage caller could clear the page dirty 648 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 649 * page on the dirty page list. 650 * 651 * We use private_lock to lock against try_to_free_buffers while using the 652 * page's buffer list. Also use this to protect against clean buffers being 653 * added to the page after it was set dirty. 654 * 655 * FIXME: may need to call ->reservepage here as well. That's rather up to the 656 * address_space though. 657 */ 658 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 659 { 660 struct buffer_head *head; 661 bool newly_dirty; 662 663 spin_lock(&mapping->private_lock); 664 head = folio_buffers(folio); 665 if (head) { 666 struct buffer_head *bh = head; 667 668 do { 669 set_buffer_dirty(bh); 670 bh = bh->b_this_page; 671 } while (bh != head); 672 } 673 /* 674 * Lock out page's memcg migration to keep PageDirty 675 * synchronized with per-memcg dirty page counters. 676 */ 677 folio_memcg_lock(folio); 678 newly_dirty = !folio_test_set_dirty(folio); 679 spin_unlock(&mapping->private_lock); 680 681 if (newly_dirty) 682 __folio_mark_dirty(folio, mapping, 1); 683 684 folio_memcg_unlock(folio); 685 686 if (newly_dirty) 687 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 688 689 return newly_dirty; 690 } 691 EXPORT_SYMBOL(block_dirty_folio); 692 693 /* 694 * Write out and wait upon a list of buffers. 695 * 696 * We have conflicting pressures: we want to make sure that all 697 * initially dirty buffers get waited on, but that any subsequently 698 * dirtied buffers don't. After all, we don't want fsync to last 699 * forever if somebody is actively writing to the file. 700 * 701 * Do this in two main stages: first we copy dirty buffers to a 702 * temporary inode list, queueing the writes as we go. Then we clean 703 * up, waiting for those writes to complete. 704 * 705 * During this second stage, any subsequent updates to the file may end 706 * up refiling the buffer on the original inode's dirty list again, so 707 * there is a chance we will end up with a buffer queued for write but 708 * not yet completed on that list. So, as a final cleanup we go through 709 * the osync code to catch these locked, dirty buffers without requeuing 710 * any newly dirty buffers for write. 711 */ 712 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 713 { 714 struct buffer_head *bh; 715 struct list_head tmp; 716 struct address_space *mapping; 717 int err = 0, err2; 718 struct blk_plug plug; 719 720 INIT_LIST_HEAD(&tmp); 721 blk_start_plug(&plug); 722 723 spin_lock(lock); 724 while (!list_empty(list)) { 725 bh = BH_ENTRY(list->next); 726 mapping = bh->b_assoc_map; 727 __remove_assoc_queue(bh); 728 /* Avoid race with mark_buffer_dirty_inode() which does 729 * a lockless check and we rely on seeing the dirty bit */ 730 smp_mb(); 731 if (buffer_dirty(bh) || buffer_locked(bh)) { 732 list_add(&bh->b_assoc_buffers, &tmp); 733 bh->b_assoc_map = mapping; 734 if (buffer_dirty(bh)) { 735 get_bh(bh); 736 spin_unlock(lock); 737 /* 738 * Ensure any pending I/O completes so that 739 * write_dirty_buffer() actually writes the 740 * current contents - it is a noop if I/O is 741 * still in flight on potentially older 742 * contents. 743 */ 744 write_dirty_buffer(bh, REQ_SYNC); 745 746 /* 747 * Kick off IO for the previous mapping. Note 748 * that we will not run the very last mapping, 749 * wait_on_buffer() will do that for us 750 * through sync_buffer(). 751 */ 752 brelse(bh); 753 spin_lock(lock); 754 } 755 } 756 } 757 758 spin_unlock(lock); 759 blk_finish_plug(&plug); 760 spin_lock(lock); 761 762 while (!list_empty(&tmp)) { 763 bh = BH_ENTRY(tmp.prev); 764 get_bh(bh); 765 mapping = bh->b_assoc_map; 766 __remove_assoc_queue(bh); 767 /* Avoid race with mark_buffer_dirty_inode() which does 768 * a lockless check and we rely on seeing the dirty bit */ 769 smp_mb(); 770 if (buffer_dirty(bh)) { 771 list_add(&bh->b_assoc_buffers, 772 &mapping->private_list); 773 bh->b_assoc_map = mapping; 774 } 775 spin_unlock(lock); 776 wait_on_buffer(bh); 777 if (!buffer_uptodate(bh)) 778 err = -EIO; 779 brelse(bh); 780 spin_lock(lock); 781 } 782 783 spin_unlock(lock); 784 err2 = osync_buffers_list(lock, list); 785 if (err) 786 return err; 787 else 788 return err2; 789 } 790 791 /* 792 * Invalidate any and all dirty buffers on a given inode. We are 793 * probably unmounting the fs, but that doesn't mean we have already 794 * done a sync(). Just drop the buffers from the inode list. 795 * 796 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 797 * assumes that all the buffers are against the blockdev. Not true 798 * for reiserfs. 799 */ 800 void invalidate_inode_buffers(struct inode *inode) 801 { 802 if (inode_has_buffers(inode)) { 803 struct address_space *mapping = &inode->i_data; 804 struct list_head *list = &mapping->private_list; 805 struct address_space *buffer_mapping = mapping->private_data; 806 807 spin_lock(&buffer_mapping->private_lock); 808 while (!list_empty(list)) 809 __remove_assoc_queue(BH_ENTRY(list->next)); 810 spin_unlock(&buffer_mapping->private_lock); 811 } 812 } 813 EXPORT_SYMBOL(invalidate_inode_buffers); 814 815 /* 816 * Remove any clean buffers from the inode's buffer list. This is called 817 * when we're trying to free the inode itself. Those buffers can pin it. 818 * 819 * Returns true if all buffers were removed. 820 */ 821 int remove_inode_buffers(struct inode *inode) 822 { 823 int ret = 1; 824 825 if (inode_has_buffers(inode)) { 826 struct address_space *mapping = &inode->i_data; 827 struct list_head *list = &mapping->private_list; 828 struct address_space *buffer_mapping = mapping->private_data; 829 830 spin_lock(&buffer_mapping->private_lock); 831 while (!list_empty(list)) { 832 struct buffer_head *bh = BH_ENTRY(list->next); 833 if (buffer_dirty(bh)) { 834 ret = 0; 835 break; 836 } 837 __remove_assoc_queue(bh); 838 } 839 spin_unlock(&buffer_mapping->private_lock); 840 } 841 return ret; 842 } 843 844 /* 845 * Create the appropriate buffers when given a folio for data area and 846 * the size of each buffer.. Use the bh->b_this_page linked list to 847 * follow the buffers created. Return NULL if unable to create more 848 * buffers. 849 * 850 * The retry flag is used to differentiate async IO (paging, swapping) 851 * which may not fail from ordinary buffer allocations. 852 */ 853 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 854 bool retry) 855 { 856 struct buffer_head *bh, *head; 857 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 858 long offset; 859 struct mem_cgroup *memcg, *old_memcg; 860 861 if (retry) 862 gfp |= __GFP_NOFAIL; 863 864 /* The folio lock pins the memcg */ 865 memcg = folio_memcg(folio); 866 old_memcg = set_active_memcg(memcg); 867 868 head = NULL; 869 offset = folio_size(folio); 870 while ((offset -= size) >= 0) { 871 bh = alloc_buffer_head(gfp); 872 if (!bh) 873 goto no_grow; 874 875 bh->b_this_page = head; 876 bh->b_blocknr = -1; 877 head = bh; 878 879 bh->b_size = size; 880 881 /* Link the buffer to its folio */ 882 folio_set_bh(bh, folio, offset); 883 } 884 out: 885 set_active_memcg(old_memcg); 886 return head; 887 /* 888 * In case anything failed, we just free everything we got. 889 */ 890 no_grow: 891 if (head) { 892 do { 893 bh = head; 894 head = head->b_this_page; 895 free_buffer_head(bh); 896 } while (head); 897 } 898 899 goto out; 900 } 901 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 902 903 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 904 bool retry) 905 { 906 return folio_alloc_buffers(page_folio(page), size, retry); 907 } 908 EXPORT_SYMBOL_GPL(alloc_page_buffers); 909 910 static inline void link_dev_buffers(struct folio *folio, 911 struct buffer_head *head) 912 { 913 struct buffer_head *bh, *tail; 914 915 bh = head; 916 do { 917 tail = bh; 918 bh = bh->b_this_page; 919 } while (bh); 920 tail->b_this_page = head; 921 folio_attach_private(folio, head); 922 } 923 924 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 925 { 926 sector_t retval = ~((sector_t)0); 927 loff_t sz = bdev_nr_bytes(bdev); 928 929 if (sz) { 930 unsigned int sizebits = blksize_bits(size); 931 retval = (sz >> sizebits); 932 } 933 return retval; 934 } 935 936 /* 937 * Initialise the state of a blockdev folio's buffers. 938 */ 939 static sector_t folio_init_buffers(struct folio *folio, 940 struct block_device *bdev, sector_t block, int size) 941 { 942 struct buffer_head *head = folio_buffers(folio); 943 struct buffer_head *bh = head; 944 bool uptodate = folio_test_uptodate(folio); 945 sector_t end_block = blkdev_max_block(bdev, size); 946 947 do { 948 if (!buffer_mapped(bh)) { 949 bh->b_end_io = NULL; 950 bh->b_private = NULL; 951 bh->b_bdev = bdev; 952 bh->b_blocknr = block; 953 if (uptodate) 954 set_buffer_uptodate(bh); 955 if (block < end_block) 956 set_buffer_mapped(bh); 957 } 958 block++; 959 bh = bh->b_this_page; 960 } while (bh != head); 961 962 /* 963 * Caller needs to validate requested block against end of device. 964 */ 965 return end_block; 966 } 967 968 /* 969 * Create the page-cache page that contains the requested block. 970 * 971 * This is used purely for blockdev mappings. 972 */ 973 static int 974 grow_dev_page(struct block_device *bdev, sector_t block, 975 pgoff_t index, int size, int sizebits, gfp_t gfp) 976 { 977 struct inode *inode = bdev->bd_inode; 978 struct folio *folio; 979 struct buffer_head *bh; 980 sector_t end_block; 981 int ret = 0; 982 gfp_t gfp_mask; 983 984 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 985 986 /* 987 * XXX: __getblk_slow() can not really deal with failure and 988 * will endlessly loop on improvised global reclaim. Prefer 989 * looping in the allocator rather than here, at least that 990 * code knows what it's doing. 991 */ 992 gfp_mask |= __GFP_NOFAIL; 993 994 folio = __filemap_get_folio(inode->i_mapping, index, 995 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask); 996 997 bh = folio_buffers(folio); 998 if (bh) { 999 if (bh->b_size == size) { 1000 end_block = folio_init_buffers(folio, bdev, 1001 (sector_t)index << sizebits, size); 1002 goto done; 1003 } 1004 if (!try_to_free_buffers(folio)) 1005 goto failed; 1006 } 1007 1008 bh = folio_alloc_buffers(folio, size, true); 1009 1010 /* 1011 * Link the folio to the buffers and initialise them. Take the 1012 * lock to be atomic wrt __find_get_block(), which does not 1013 * run under the folio lock. 1014 */ 1015 spin_lock(&inode->i_mapping->private_lock); 1016 link_dev_buffers(folio, bh); 1017 end_block = folio_init_buffers(folio, bdev, 1018 (sector_t)index << sizebits, size); 1019 spin_unlock(&inode->i_mapping->private_lock); 1020 done: 1021 ret = (block < end_block) ? 1 : -ENXIO; 1022 failed: 1023 folio_unlock(folio); 1024 folio_put(folio); 1025 return ret; 1026 } 1027 1028 /* 1029 * Create buffers for the specified block device block's page. If 1030 * that page was dirty, the buffers are set dirty also. 1031 */ 1032 static int 1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1034 { 1035 pgoff_t index; 1036 int sizebits; 1037 1038 sizebits = PAGE_SHIFT - __ffs(size); 1039 index = block >> sizebits; 1040 1041 /* 1042 * Check for a block which wants to lie outside our maximum possible 1043 * pagecache index. (this comparison is done using sector_t types). 1044 */ 1045 if (unlikely(index != block >> sizebits)) { 1046 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1047 "device %pg\n", 1048 __func__, (unsigned long long)block, 1049 bdev); 1050 return -EIO; 1051 } 1052 1053 /* Create a page with the proper size buffers.. */ 1054 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1055 } 1056 1057 static struct buffer_head * 1058 __getblk_slow(struct block_device *bdev, sector_t block, 1059 unsigned size, gfp_t gfp) 1060 { 1061 /* Size must be multiple of hard sectorsize */ 1062 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1063 (size < 512 || size > PAGE_SIZE))) { 1064 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1065 size); 1066 printk(KERN_ERR "logical block size: %d\n", 1067 bdev_logical_block_size(bdev)); 1068 1069 dump_stack(); 1070 return NULL; 1071 } 1072 1073 for (;;) { 1074 struct buffer_head *bh; 1075 int ret; 1076 1077 bh = __find_get_block(bdev, block, size); 1078 if (bh) 1079 return bh; 1080 1081 ret = grow_buffers(bdev, block, size, gfp); 1082 if (ret < 0) 1083 return NULL; 1084 } 1085 } 1086 1087 /* 1088 * The relationship between dirty buffers and dirty pages: 1089 * 1090 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1091 * the page is tagged dirty in the page cache. 1092 * 1093 * At all times, the dirtiness of the buffers represents the dirtiness of 1094 * subsections of the page. If the page has buffers, the page dirty bit is 1095 * merely a hint about the true dirty state. 1096 * 1097 * When a page is set dirty in its entirety, all its buffers are marked dirty 1098 * (if the page has buffers). 1099 * 1100 * When a buffer is marked dirty, its page is dirtied, but the page's other 1101 * buffers are not. 1102 * 1103 * Also. When blockdev buffers are explicitly read with bread(), they 1104 * individually become uptodate. But their backing page remains not 1105 * uptodate - even if all of its buffers are uptodate. A subsequent 1106 * block_read_full_folio() against that folio will discover all the uptodate 1107 * buffers, will set the folio uptodate and will perform no I/O. 1108 */ 1109 1110 /** 1111 * mark_buffer_dirty - mark a buffer_head as needing writeout 1112 * @bh: the buffer_head to mark dirty 1113 * 1114 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1115 * its backing page dirty, then tag the page as dirty in the page cache 1116 * and then attach the address_space's inode to its superblock's dirty 1117 * inode list. 1118 * 1119 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock, 1120 * i_pages lock and mapping->host->i_lock. 1121 */ 1122 void mark_buffer_dirty(struct buffer_head *bh) 1123 { 1124 WARN_ON_ONCE(!buffer_uptodate(bh)); 1125 1126 trace_block_dirty_buffer(bh); 1127 1128 /* 1129 * Very *carefully* optimize the it-is-already-dirty case. 1130 * 1131 * Don't let the final "is it dirty" escape to before we 1132 * perhaps modified the buffer. 1133 */ 1134 if (buffer_dirty(bh)) { 1135 smp_mb(); 1136 if (buffer_dirty(bh)) 1137 return; 1138 } 1139 1140 if (!test_set_buffer_dirty(bh)) { 1141 struct folio *folio = bh->b_folio; 1142 struct address_space *mapping = NULL; 1143 1144 folio_memcg_lock(folio); 1145 if (!folio_test_set_dirty(folio)) { 1146 mapping = folio->mapping; 1147 if (mapping) 1148 __folio_mark_dirty(folio, mapping, 0); 1149 } 1150 folio_memcg_unlock(folio); 1151 if (mapping) 1152 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1153 } 1154 } 1155 EXPORT_SYMBOL(mark_buffer_dirty); 1156 1157 void mark_buffer_write_io_error(struct buffer_head *bh) 1158 { 1159 struct super_block *sb; 1160 1161 set_buffer_write_io_error(bh); 1162 /* FIXME: do we need to set this in both places? */ 1163 if (bh->b_folio && bh->b_folio->mapping) 1164 mapping_set_error(bh->b_folio->mapping, -EIO); 1165 if (bh->b_assoc_map) 1166 mapping_set_error(bh->b_assoc_map, -EIO); 1167 rcu_read_lock(); 1168 sb = READ_ONCE(bh->b_bdev->bd_super); 1169 if (sb) 1170 errseq_set(&sb->s_wb_err, -EIO); 1171 rcu_read_unlock(); 1172 } 1173 EXPORT_SYMBOL(mark_buffer_write_io_error); 1174 1175 /* 1176 * Decrement a buffer_head's reference count. If all buffers against a page 1177 * have zero reference count, are clean and unlocked, and if the page is clean 1178 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1179 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1180 * a page but it ends up not being freed, and buffers may later be reattached). 1181 */ 1182 void __brelse(struct buffer_head * buf) 1183 { 1184 if (atomic_read(&buf->b_count)) { 1185 put_bh(buf); 1186 return; 1187 } 1188 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1189 } 1190 EXPORT_SYMBOL(__brelse); 1191 1192 /* 1193 * bforget() is like brelse(), except it discards any 1194 * potentially dirty data. 1195 */ 1196 void __bforget(struct buffer_head *bh) 1197 { 1198 clear_buffer_dirty(bh); 1199 if (bh->b_assoc_map) { 1200 struct address_space *buffer_mapping = bh->b_folio->mapping; 1201 1202 spin_lock(&buffer_mapping->private_lock); 1203 list_del_init(&bh->b_assoc_buffers); 1204 bh->b_assoc_map = NULL; 1205 spin_unlock(&buffer_mapping->private_lock); 1206 } 1207 __brelse(bh); 1208 } 1209 EXPORT_SYMBOL(__bforget); 1210 1211 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1212 { 1213 lock_buffer(bh); 1214 if (buffer_uptodate(bh)) { 1215 unlock_buffer(bh); 1216 return bh; 1217 } else { 1218 get_bh(bh); 1219 bh->b_end_io = end_buffer_read_sync; 1220 submit_bh(REQ_OP_READ, bh); 1221 wait_on_buffer(bh); 1222 if (buffer_uptodate(bh)) 1223 return bh; 1224 } 1225 brelse(bh); 1226 return NULL; 1227 } 1228 1229 /* 1230 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1231 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1232 * refcount elevated by one when they're in an LRU. A buffer can only appear 1233 * once in a particular CPU's LRU. A single buffer can be present in multiple 1234 * CPU's LRUs at the same time. 1235 * 1236 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1237 * sb_find_get_block(). 1238 * 1239 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1240 * a local interrupt disable for that. 1241 */ 1242 1243 #define BH_LRU_SIZE 16 1244 1245 struct bh_lru { 1246 struct buffer_head *bhs[BH_LRU_SIZE]; 1247 }; 1248 1249 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1250 1251 #ifdef CONFIG_SMP 1252 #define bh_lru_lock() local_irq_disable() 1253 #define bh_lru_unlock() local_irq_enable() 1254 #else 1255 #define bh_lru_lock() preempt_disable() 1256 #define bh_lru_unlock() preempt_enable() 1257 #endif 1258 1259 static inline void check_irqs_on(void) 1260 { 1261 #ifdef irqs_disabled 1262 BUG_ON(irqs_disabled()); 1263 #endif 1264 } 1265 1266 /* 1267 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1268 * inserted at the front, and the buffer_head at the back if any is evicted. 1269 * Or, if already in the LRU it is moved to the front. 1270 */ 1271 static void bh_lru_install(struct buffer_head *bh) 1272 { 1273 struct buffer_head *evictee = bh; 1274 struct bh_lru *b; 1275 int i; 1276 1277 check_irqs_on(); 1278 bh_lru_lock(); 1279 1280 /* 1281 * the refcount of buffer_head in bh_lru prevents dropping the 1282 * attached page(i.e., try_to_free_buffers) so it could cause 1283 * failing page migration. 1284 * Skip putting upcoming bh into bh_lru until migration is done. 1285 */ 1286 if (lru_cache_disabled()) { 1287 bh_lru_unlock(); 1288 return; 1289 } 1290 1291 b = this_cpu_ptr(&bh_lrus); 1292 for (i = 0; i < BH_LRU_SIZE; i++) { 1293 swap(evictee, b->bhs[i]); 1294 if (evictee == bh) { 1295 bh_lru_unlock(); 1296 return; 1297 } 1298 } 1299 1300 get_bh(bh); 1301 bh_lru_unlock(); 1302 brelse(evictee); 1303 } 1304 1305 /* 1306 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1307 */ 1308 static struct buffer_head * 1309 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1310 { 1311 struct buffer_head *ret = NULL; 1312 unsigned int i; 1313 1314 check_irqs_on(); 1315 bh_lru_lock(); 1316 for (i = 0; i < BH_LRU_SIZE; i++) { 1317 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1318 1319 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1320 bh->b_size == size) { 1321 if (i) { 1322 while (i) { 1323 __this_cpu_write(bh_lrus.bhs[i], 1324 __this_cpu_read(bh_lrus.bhs[i - 1])); 1325 i--; 1326 } 1327 __this_cpu_write(bh_lrus.bhs[0], bh); 1328 } 1329 get_bh(bh); 1330 ret = bh; 1331 break; 1332 } 1333 } 1334 bh_lru_unlock(); 1335 return ret; 1336 } 1337 1338 /* 1339 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1340 * it in the LRU and mark it as accessed. If it is not present then return 1341 * NULL 1342 */ 1343 struct buffer_head * 1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1345 { 1346 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1347 1348 if (bh == NULL) { 1349 /* __find_get_block_slow will mark the page accessed */ 1350 bh = __find_get_block_slow(bdev, block); 1351 if (bh) 1352 bh_lru_install(bh); 1353 } else 1354 touch_buffer(bh); 1355 1356 return bh; 1357 } 1358 EXPORT_SYMBOL(__find_get_block); 1359 1360 /* 1361 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1362 * which corresponds to the passed block_device, block and size. The 1363 * returned buffer has its reference count incremented. 1364 * 1365 * __getblk_gfp() will lock up the machine if grow_dev_page's 1366 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1367 */ 1368 struct buffer_head * 1369 __getblk_gfp(struct block_device *bdev, sector_t block, 1370 unsigned size, gfp_t gfp) 1371 { 1372 struct buffer_head *bh = __find_get_block(bdev, block, size); 1373 1374 might_sleep(); 1375 if (bh == NULL) 1376 bh = __getblk_slow(bdev, block, size, gfp); 1377 return bh; 1378 } 1379 EXPORT_SYMBOL(__getblk_gfp); 1380 1381 /* 1382 * Do async read-ahead on a buffer.. 1383 */ 1384 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1385 { 1386 struct buffer_head *bh = __getblk(bdev, block, size); 1387 if (likely(bh)) { 1388 bh_readahead(bh, REQ_RAHEAD); 1389 brelse(bh); 1390 } 1391 } 1392 EXPORT_SYMBOL(__breadahead); 1393 1394 /** 1395 * __bread_gfp() - reads a specified block and returns the bh 1396 * @bdev: the block_device to read from 1397 * @block: number of block 1398 * @size: size (in bytes) to read 1399 * @gfp: page allocation flag 1400 * 1401 * Reads a specified block, and returns buffer head that contains it. 1402 * The page cache can be allocated from non-movable area 1403 * not to prevent page migration if you set gfp to zero. 1404 * It returns NULL if the block was unreadable. 1405 */ 1406 struct buffer_head * 1407 __bread_gfp(struct block_device *bdev, sector_t block, 1408 unsigned size, gfp_t gfp) 1409 { 1410 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1411 1412 if (likely(bh) && !buffer_uptodate(bh)) 1413 bh = __bread_slow(bh); 1414 return bh; 1415 } 1416 EXPORT_SYMBOL(__bread_gfp); 1417 1418 static void __invalidate_bh_lrus(struct bh_lru *b) 1419 { 1420 int i; 1421 1422 for (i = 0; i < BH_LRU_SIZE; i++) { 1423 brelse(b->bhs[i]); 1424 b->bhs[i] = NULL; 1425 } 1426 } 1427 /* 1428 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1429 * This doesn't race because it runs in each cpu either in irq 1430 * or with preempt disabled. 1431 */ 1432 static void invalidate_bh_lru(void *arg) 1433 { 1434 struct bh_lru *b = &get_cpu_var(bh_lrus); 1435 1436 __invalidate_bh_lrus(b); 1437 put_cpu_var(bh_lrus); 1438 } 1439 1440 bool has_bh_in_lru(int cpu, void *dummy) 1441 { 1442 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1443 int i; 1444 1445 for (i = 0; i < BH_LRU_SIZE; i++) { 1446 if (b->bhs[i]) 1447 return true; 1448 } 1449 1450 return false; 1451 } 1452 1453 void invalidate_bh_lrus(void) 1454 { 1455 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1456 } 1457 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1458 1459 /* 1460 * It's called from workqueue context so we need a bh_lru_lock to close 1461 * the race with preemption/irq. 1462 */ 1463 void invalidate_bh_lrus_cpu(void) 1464 { 1465 struct bh_lru *b; 1466 1467 bh_lru_lock(); 1468 b = this_cpu_ptr(&bh_lrus); 1469 __invalidate_bh_lrus(b); 1470 bh_lru_unlock(); 1471 } 1472 1473 void set_bh_page(struct buffer_head *bh, 1474 struct page *page, unsigned long offset) 1475 { 1476 bh->b_page = page; 1477 BUG_ON(offset >= PAGE_SIZE); 1478 if (PageHighMem(page)) 1479 /* 1480 * This catches illegal uses and preserves the offset: 1481 */ 1482 bh->b_data = (char *)(0 + offset); 1483 else 1484 bh->b_data = page_address(page) + offset; 1485 } 1486 EXPORT_SYMBOL(set_bh_page); 1487 1488 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1489 unsigned long offset) 1490 { 1491 bh->b_folio = folio; 1492 BUG_ON(offset >= folio_size(folio)); 1493 if (folio_test_highmem(folio)) 1494 /* 1495 * This catches illegal uses and preserves the offset: 1496 */ 1497 bh->b_data = (char *)(0 + offset); 1498 else 1499 bh->b_data = folio_address(folio) + offset; 1500 } 1501 EXPORT_SYMBOL(folio_set_bh); 1502 1503 /* 1504 * Called when truncating a buffer on a page completely. 1505 */ 1506 1507 /* Bits that are cleared during an invalidate */ 1508 #define BUFFER_FLAGS_DISCARD \ 1509 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1510 1 << BH_Delay | 1 << BH_Unwritten) 1511 1512 static void discard_buffer(struct buffer_head * bh) 1513 { 1514 unsigned long b_state; 1515 1516 lock_buffer(bh); 1517 clear_buffer_dirty(bh); 1518 bh->b_bdev = NULL; 1519 b_state = READ_ONCE(bh->b_state); 1520 do { 1521 } while (!try_cmpxchg(&bh->b_state, &b_state, 1522 b_state & ~BUFFER_FLAGS_DISCARD)); 1523 unlock_buffer(bh); 1524 } 1525 1526 /** 1527 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1528 * @folio: The folio which is affected. 1529 * @offset: start of the range to invalidate 1530 * @length: length of the range to invalidate 1531 * 1532 * block_invalidate_folio() is called when all or part of the folio has been 1533 * invalidated by a truncate operation. 1534 * 1535 * block_invalidate_folio() does not have to release all buffers, but it must 1536 * ensure that no dirty buffer is left outside @offset and that no I/O 1537 * is underway against any of the blocks which are outside the truncation 1538 * point. Because the caller is about to free (and possibly reuse) those 1539 * blocks on-disk. 1540 */ 1541 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1542 { 1543 struct buffer_head *head, *bh, *next; 1544 size_t curr_off = 0; 1545 size_t stop = length + offset; 1546 1547 BUG_ON(!folio_test_locked(folio)); 1548 1549 /* 1550 * Check for overflow 1551 */ 1552 BUG_ON(stop > folio_size(folio) || stop < length); 1553 1554 head = folio_buffers(folio); 1555 if (!head) 1556 return; 1557 1558 bh = head; 1559 do { 1560 size_t next_off = curr_off + bh->b_size; 1561 next = bh->b_this_page; 1562 1563 /* 1564 * Are we still fully in range ? 1565 */ 1566 if (next_off > stop) 1567 goto out; 1568 1569 /* 1570 * is this block fully invalidated? 1571 */ 1572 if (offset <= curr_off) 1573 discard_buffer(bh); 1574 curr_off = next_off; 1575 bh = next; 1576 } while (bh != head); 1577 1578 /* 1579 * We release buffers only if the entire folio is being invalidated. 1580 * The get_block cached value has been unconditionally invalidated, 1581 * so real IO is not possible anymore. 1582 */ 1583 if (length == folio_size(folio)) 1584 filemap_release_folio(folio, 0); 1585 out: 1586 return; 1587 } 1588 EXPORT_SYMBOL(block_invalidate_folio); 1589 1590 /* 1591 * We attach and possibly dirty the buffers atomically wrt 1592 * block_dirty_folio() via private_lock. try_to_free_buffers 1593 * is already excluded via the folio lock. 1594 */ 1595 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize, 1596 unsigned long b_state) 1597 { 1598 struct buffer_head *bh, *head, *tail; 1599 1600 head = folio_alloc_buffers(folio, blocksize, true); 1601 bh = head; 1602 do { 1603 bh->b_state |= b_state; 1604 tail = bh; 1605 bh = bh->b_this_page; 1606 } while (bh); 1607 tail->b_this_page = head; 1608 1609 spin_lock(&folio->mapping->private_lock); 1610 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1611 bh = head; 1612 do { 1613 if (folio_test_dirty(folio)) 1614 set_buffer_dirty(bh); 1615 if (folio_test_uptodate(folio)) 1616 set_buffer_uptodate(bh); 1617 bh = bh->b_this_page; 1618 } while (bh != head); 1619 } 1620 folio_attach_private(folio, head); 1621 spin_unlock(&folio->mapping->private_lock); 1622 } 1623 EXPORT_SYMBOL(folio_create_empty_buffers); 1624 1625 void create_empty_buffers(struct page *page, 1626 unsigned long blocksize, unsigned long b_state) 1627 { 1628 folio_create_empty_buffers(page_folio(page), blocksize, b_state); 1629 } 1630 EXPORT_SYMBOL(create_empty_buffers); 1631 1632 /** 1633 * clean_bdev_aliases: clean a range of buffers in block device 1634 * @bdev: Block device to clean buffers in 1635 * @block: Start of a range of blocks to clean 1636 * @len: Number of blocks to clean 1637 * 1638 * We are taking a range of blocks for data and we don't want writeback of any 1639 * buffer-cache aliases starting from return from this function and until the 1640 * moment when something will explicitly mark the buffer dirty (hopefully that 1641 * will not happen until we will free that block ;-) We don't even need to mark 1642 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1643 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1644 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1645 * would confuse anyone who might pick it with bread() afterwards... 1646 * 1647 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1648 * writeout I/O going on against recently-freed buffers. We don't wait on that 1649 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1650 * need to. That happens here. 1651 */ 1652 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1653 { 1654 struct inode *bd_inode = bdev->bd_inode; 1655 struct address_space *bd_mapping = bd_inode->i_mapping; 1656 struct folio_batch fbatch; 1657 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1658 pgoff_t end; 1659 int i, count; 1660 struct buffer_head *bh; 1661 struct buffer_head *head; 1662 1663 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1664 folio_batch_init(&fbatch); 1665 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1666 count = folio_batch_count(&fbatch); 1667 for (i = 0; i < count; i++) { 1668 struct folio *folio = fbatch.folios[i]; 1669 1670 if (!folio_buffers(folio)) 1671 continue; 1672 /* 1673 * We use folio lock instead of bd_mapping->private_lock 1674 * to pin buffers here since we can afford to sleep and 1675 * it scales better than a global spinlock lock. 1676 */ 1677 folio_lock(folio); 1678 /* Recheck when the folio is locked which pins bhs */ 1679 head = folio_buffers(folio); 1680 if (!head) 1681 goto unlock_page; 1682 bh = head; 1683 do { 1684 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1685 goto next; 1686 if (bh->b_blocknr >= block + len) 1687 break; 1688 clear_buffer_dirty(bh); 1689 wait_on_buffer(bh); 1690 clear_buffer_req(bh); 1691 next: 1692 bh = bh->b_this_page; 1693 } while (bh != head); 1694 unlock_page: 1695 folio_unlock(folio); 1696 } 1697 folio_batch_release(&fbatch); 1698 cond_resched(); 1699 /* End of range already reached? */ 1700 if (index > end || !index) 1701 break; 1702 } 1703 } 1704 EXPORT_SYMBOL(clean_bdev_aliases); 1705 1706 /* 1707 * Size is a power-of-two in the range 512..PAGE_SIZE, 1708 * and the case we care about most is PAGE_SIZE. 1709 * 1710 * So this *could* possibly be written with those 1711 * constraints in mind (relevant mostly if some 1712 * architecture has a slow bit-scan instruction) 1713 */ 1714 static inline int block_size_bits(unsigned int blocksize) 1715 { 1716 return ilog2(blocksize); 1717 } 1718 1719 static struct buffer_head *folio_create_buffers(struct folio *folio, 1720 struct inode *inode, 1721 unsigned int b_state) 1722 { 1723 BUG_ON(!folio_test_locked(folio)); 1724 1725 if (!folio_buffers(folio)) 1726 folio_create_empty_buffers(folio, 1727 1 << READ_ONCE(inode->i_blkbits), 1728 b_state); 1729 return folio_buffers(folio); 1730 } 1731 1732 /* 1733 * NOTE! All mapped/uptodate combinations are valid: 1734 * 1735 * Mapped Uptodate Meaning 1736 * 1737 * No No "unknown" - must do get_block() 1738 * No Yes "hole" - zero-filled 1739 * Yes No "allocated" - allocated on disk, not read in 1740 * Yes Yes "valid" - allocated and up-to-date in memory. 1741 * 1742 * "Dirty" is valid only with the last case (mapped+uptodate). 1743 */ 1744 1745 /* 1746 * While block_write_full_page is writing back the dirty buffers under 1747 * the page lock, whoever dirtied the buffers may decide to clean them 1748 * again at any time. We handle that by only looking at the buffer 1749 * state inside lock_buffer(). 1750 * 1751 * If block_write_full_page() is called for regular writeback 1752 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1753 * locked buffer. This only can happen if someone has written the buffer 1754 * directly, with submit_bh(). At the address_space level PageWriteback 1755 * prevents this contention from occurring. 1756 * 1757 * If block_write_full_page() is called with wbc->sync_mode == 1758 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1759 * causes the writes to be flagged as synchronous writes. 1760 */ 1761 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1762 get_block_t *get_block, struct writeback_control *wbc, 1763 bh_end_io_t *handler) 1764 { 1765 int err; 1766 sector_t block; 1767 sector_t last_block; 1768 struct buffer_head *bh, *head; 1769 unsigned int blocksize, bbits; 1770 int nr_underway = 0; 1771 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1772 1773 head = folio_create_buffers(folio, inode, 1774 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1775 1776 /* 1777 * Be very careful. We have no exclusion from block_dirty_folio 1778 * here, and the (potentially unmapped) buffers may become dirty at 1779 * any time. If a buffer becomes dirty here after we've inspected it 1780 * then we just miss that fact, and the folio stays dirty. 1781 * 1782 * Buffers outside i_size may be dirtied by block_dirty_folio; 1783 * handle that here by just cleaning them. 1784 */ 1785 1786 bh = head; 1787 blocksize = bh->b_size; 1788 bbits = block_size_bits(blocksize); 1789 1790 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1791 last_block = (i_size_read(inode) - 1) >> bbits; 1792 1793 /* 1794 * Get all the dirty buffers mapped to disk addresses and 1795 * handle any aliases from the underlying blockdev's mapping. 1796 */ 1797 do { 1798 if (block > last_block) { 1799 /* 1800 * mapped buffers outside i_size will occur, because 1801 * this folio can be outside i_size when there is a 1802 * truncate in progress. 1803 */ 1804 /* 1805 * The buffer was zeroed by block_write_full_page() 1806 */ 1807 clear_buffer_dirty(bh); 1808 set_buffer_uptodate(bh); 1809 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1810 buffer_dirty(bh)) { 1811 WARN_ON(bh->b_size != blocksize); 1812 err = get_block(inode, block, bh, 1); 1813 if (err) 1814 goto recover; 1815 clear_buffer_delay(bh); 1816 if (buffer_new(bh)) { 1817 /* blockdev mappings never come here */ 1818 clear_buffer_new(bh); 1819 clean_bdev_bh_alias(bh); 1820 } 1821 } 1822 bh = bh->b_this_page; 1823 block++; 1824 } while (bh != head); 1825 1826 do { 1827 if (!buffer_mapped(bh)) 1828 continue; 1829 /* 1830 * If it's a fully non-blocking write attempt and we cannot 1831 * lock the buffer then redirty the folio. Note that this can 1832 * potentially cause a busy-wait loop from writeback threads 1833 * and kswapd activity, but those code paths have their own 1834 * higher-level throttling. 1835 */ 1836 if (wbc->sync_mode != WB_SYNC_NONE) { 1837 lock_buffer(bh); 1838 } else if (!trylock_buffer(bh)) { 1839 folio_redirty_for_writepage(wbc, folio); 1840 continue; 1841 } 1842 if (test_clear_buffer_dirty(bh)) { 1843 mark_buffer_async_write_endio(bh, handler); 1844 } else { 1845 unlock_buffer(bh); 1846 } 1847 } while ((bh = bh->b_this_page) != head); 1848 1849 /* 1850 * The folio and its buffers are protected by the writeback flag, 1851 * so we can drop the bh refcounts early. 1852 */ 1853 BUG_ON(folio_test_writeback(folio)); 1854 folio_start_writeback(folio); 1855 1856 do { 1857 struct buffer_head *next = bh->b_this_page; 1858 if (buffer_async_write(bh)) { 1859 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1860 nr_underway++; 1861 } 1862 bh = next; 1863 } while (bh != head); 1864 folio_unlock(folio); 1865 1866 err = 0; 1867 done: 1868 if (nr_underway == 0) { 1869 /* 1870 * The folio was marked dirty, but the buffers were 1871 * clean. Someone wrote them back by hand with 1872 * write_dirty_buffer/submit_bh. A rare case. 1873 */ 1874 folio_end_writeback(folio); 1875 1876 /* 1877 * The folio and buffer_heads can be released at any time from 1878 * here on. 1879 */ 1880 } 1881 return err; 1882 1883 recover: 1884 /* 1885 * ENOSPC, or some other error. We may already have added some 1886 * blocks to the file, so we need to write these out to avoid 1887 * exposing stale data. 1888 * The folio is currently locked and not marked for writeback 1889 */ 1890 bh = head; 1891 /* Recovery: lock and submit the mapped buffers */ 1892 do { 1893 if (buffer_mapped(bh) && buffer_dirty(bh) && 1894 !buffer_delay(bh)) { 1895 lock_buffer(bh); 1896 mark_buffer_async_write_endio(bh, handler); 1897 } else { 1898 /* 1899 * The buffer may have been set dirty during 1900 * attachment to a dirty folio. 1901 */ 1902 clear_buffer_dirty(bh); 1903 } 1904 } while ((bh = bh->b_this_page) != head); 1905 folio_set_error(folio); 1906 BUG_ON(folio_test_writeback(folio)); 1907 mapping_set_error(folio->mapping, err); 1908 folio_start_writeback(folio); 1909 do { 1910 struct buffer_head *next = bh->b_this_page; 1911 if (buffer_async_write(bh)) { 1912 clear_buffer_dirty(bh); 1913 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1914 nr_underway++; 1915 } 1916 bh = next; 1917 } while (bh != head); 1918 folio_unlock(folio); 1919 goto done; 1920 } 1921 EXPORT_SYMBOL(__block_write_full_folio); 1922 1923 /* 1924 * If a folio has any new buffers, zero them out here, and mark them uptodate 1925 * and dirty so they'll be written out (in order to prevent uninitialised 1926 * block data from leaking). And clear the new bit. 1927 */ 1928 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 1929 { 1930 size_t block_start, block_end; 1931 struct buffer_head *head, *bh; 1932 1933 BUG_ON(!folio_test_locked(folio)); 1934 head = folio_buffers(folio); 1935 if (!head) 1936 return; 1937 1938 bh = head; 1939 block_start = 0; 1940 do { 1941 block_end = block_start + bh->b_size; 1942 1943 if (buffer_new(bh)) { 1944 if (block_end > from && block_start < to) { 1945 if (!folio_test_uptodate(folio)) { 1946 size_t start, xend; 1947 1948 start = max(from, block_start); 1949 xend = min(to, block_end); 1950 1951 folio_zero_segment(folio, start, xend); 1952 set_buffer_uptodate(bh); 1953 } 1954 1955 clear_buffer_new(bh); 1956 mark_buffer_dirty(bh); 1957 } 1958 } 1959 1960 block_start = block_end; 1961 bh = bh->b_this_page; 1962 } while (bh != head); 1963 } 1964 EXPORT_SYMBOL(folio_zero_new_buffers); 1965 1966 static void 1967 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1968 const struct iomap *iomap) 1969 { 1970 loff_t offset = block << inode->i_blkbits; 1971 1972 bh->b_bdev = iomap->bdev; 1973 1974 /* 1975 * Block points to offset in file we need to map, iomap contains 1976 * the offset at which the map starts. If the map ends before the 1977 * current block, then do not map the buffer and let the caller 1978 * handle it. 1979 */ 1980 BUG_ON(offset >= iomap->offset + iomap->length); 1981 1982 switch (iomap->type) { 1983 case IOMAP_HOLE: 1984 /* 1985 * If the buffer is not up to date or beyond the current EOF, 1986 * we need to mark it as new to ensure sub-block zeroing is 1987 * executed if necessary. 1988 */ 1989 if (!buffer_uptodate(bh) || 1990 (offset >= i_size_read(inode))) 1991 set_buffer_new(bh); 1992 break; 1993 case IOMAP_DELALLOC: 1994 if (!buffer_uptodate(bh) || 1995 (offset >= i_size_read(inode))) 1996 set_buffer_new(bh); 1997 set_buffer_uptodate(bh); 1998 set_buffer_mapped(bh); 1999 set_buffer_delay(bh); 2000 break; 2001 case IOMAP_UNWRITTEN: 2002 /* 2003 * For unwritten regions, we always need to ensure that regions 2004 * in the block we are not writing to are zeroed. Mark the 2005 * buffer as new to ensure this. 2006 */ 2007 set_buffer_new(bh); 2008 set_buffer_unwritten(bh); 2009 fallthrough; 2010 case IOMAP_MAPPED: 2011 if ((iomap->flags & IOMAP_F_NEW) || 2012 offset >= i_size_read(inode)) 2013 set_buffer_new(bh); 2014 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2015 inode->i_blkbits; 2016 set_buffer_mapped(bh); 2017 break; 2018 } 2019 } 2020 2021 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2022 get_block_t *get_block, const struct iomap *iomap) 2023 { 2024 unsigned from = pos & (PAGE_SIZE - 1); 2025 unsigned to = from + len; 2026 struct inode *inode = folio->mapping->host; 2027 unsigned block_start, block_end; 2028 sector_t block; 2029 int err = 0; 2030 unsigned blocksize, bbits; 2031 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2032 2033 BUG_ON(!folio_test_locked(folio)); 2034 BUG_ON(from > PAGE_SIZE); 2035 BUG_ON(to > PAGE_SIZE); 2036 BUG_ON(from > to); 2037 2038 head = folio_create_buffers(folio, inode, 0); 2039 blocksize = head->b_size; 2040 bbits = block_size_bits(blocksize); 2041 2042 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2043 2044 for(bh = head, block_start = 0; bh != head || !block_start; 2045 block++, block_start=block_end, bh = bh->b_this_page) { 2046 block_end = block_start + blocksize; 2047 if (block_end <= from || block_start >= to) { 2048 if (folio_test_uptodate(folio)) { 2049 if (!buffer_uptodate(bh)) 2050 set_buffer_uptodate(bh); 2051 } 2052 continue; 2053 } 2054 if (buffer_new(bh)) 2055 clear_buffer_new(bh); 2056 if (!buffer_mapped(bh)) { 2057 WARN_ON(bh->b_size != blocksize); 2058 if (get_block) { 2059 err = get_block(inode, block, bh, 1); 2060 if (err) 2061 break; 2062 } else { 2063 iomap_to_bh(inode, block, bh, iomap); 2064 } 2065 2066 if (buffer_new(bh)) { 2067 clean_bdev_bh_alias(bh); 2068 if (folio_test_uptodate(folio)) { 2069 clear_buffer_new(bh); 2070 set_buffer_uptodate(bh); 2071 mark_buffer_dirty(bh); 2072 continue; 2073 } 2074 if (block_end > to || block_start < from) 2075 folio_zero_segments(folio, 2076 to, block_end, 2077 block_start, from); 2078 continue; 2079 } 2080 } 2081 if (folio_test_uptodate(folio)) { 2082 if (!buffer_uptodate(bh)) 2083 set_buffer_uptodate(bh); 2084 continue; 2085 } 2086 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2087 !buffer_unwritten(bh) && 2088 (block_start < from || block_end > to)) { 2089 bh_read_nowait(bh, 0); 2090 *wait_bh++=bh; 2091 } 2092 } 2093 /* 2094 * If we issued read requests - let them complete. 2095 */ 2096 while(wait_bh > wait) { 2097 wait_on_buffer(*--wait_bh); 2098 if (!buffer_uptodate(*wait_bh)) 2099 err = -EIO; 2100 } 2101 if (unlikely(err)) 2102 folio_zero_new_buffers(folio, from, to); 2103 return err; 2104 } 2105 2106 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2107 get_block_t *get_block) 2108 { 2109 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2110 NULL); 2111 } 2112 EXPORT_SYMBOL(__block_write_begin); 2113 2114 static int __block_commit_write(struct inode *inode, struct folio *folio, 2115 size_t from, size_t to) 2116 { 2117 size_t block_start, block_end; 2118 bool partial = false; 2119 unsigned blocksize; 2120 struct buffer_head *bh, *head; 2121 2122 bh = head = folio_buffers(folio); 2123 blocksize = bh->b_size; 2124 2125 block_start = 0; 2126 do { 2127 block_end = block_start + blocksize; 2128 if (block_end <= from || block_start >= to) { 2129 if (!buffer_uptodate(bh)) 2130 partial = true; 2131 } else { 2132 set_buffer_uptodate(bh); 2133 mark_buffer_dirty(bh); 2134 } 2135 if (buffer_new(bh)) 2136 clear_buffer_new(bh); 2137 2138 block_start = block_end; 2139 bh = bh->b_this_page; 2140 } while (bh != head); 2141 2142 /* 2143 * If this is a partial write which happened to make all buffers 2144 * uptodate then we can optimize away a bogus read_folio() for 2145 * the next read(). Here we 'discover' whether the folio went 2146 * uptodate as a result of this (potentially partial) write. 2147 */ 2148 if (!partial) 2149 folio_mark_uptodate(folio); 2150 return 0; 2151 } 2152 2153 /* 2154 * block_write_begin takes care of the basic task of block allocation and 2155 * bringing partial write blocks uptodate first. 2156 * 2157 * The filesystem needs to handle block truncation upon failure. 2158 */ 2159 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2160 struct page **pagep, get_block_t *get_block) 2161 { 2162 pgoff_t index = pos >> PAGE_SHIFT; 2163 struct page *page; 2164 int status; 2165 2166 page = grab_cache_page_write_begin(mapping, index); 2167 if (!page) 2168 return -ENOMEM; 2169 2170 status = __block_write_begin(page, pos, len, get_block); 2171 if (unlikely(status)) { 2172 unlock_page(page); 2173 put_page(page); 2174 page = NULL; 2175 } 2176 2177 *pagep = page; 2178 return status; 2179 } 2180 EXPORT_SYMBOL(block_write_begin); 2181 2182 int block_write_end(struct file *file, struct address_space *mapping, 2183 loff_t pos, unsigned len, unsigned copied, 2184 struct page *page, void *fsdata) 2185 { 2186 struct folio *folio = page_folio(page); 2187 struct inode *inode = mapping->host; 2188 size_t start = pos - folio_pos(folio); 2189 2190 if (unlikely(copied < len)) { 2191 /* 2192 * The buffers that were written will now be uptodate, so 2193 * we don't have to worry about a read_folio reading them 2194 * and overwriting a partial write. However if we have 2195 * encountered a short write and only partially written 2196 * into a buffer, it will not be marked uptodate, so a 2197 * read_folio might come in and destroy our partial write. 2198 * 2199 * Do the simplest thing, and just treat any short write to a 2200 * non uptodate folio as a zero-length write, and force the 2201 * caller to redo the whole thing. 2202 */ 2203 if (!folio_test_uptodate(folio)) 2204 copied = 0; 2205 2206 folio_zero_new_buffers(folio, start+copied, start+len); 2207 } 2208 flush_dcache_folio(folio); 2209 2210 /* This could be a short (even 0-length) commit */ 2211 __block_commit_write(inode, folio, start, start + copied); 2212 2213 return copied; 2214 } 2215 EXPORT_SYMBOL(block_write_end); 2216 2217 int generic_write_end(struct file *file, struct address_space *mapping, 2218 loff_t pos, unsigned len, unsigned copied, 2219 struct page *page, void *fsdata) 2220 { 2221 struct inode *inode = mapping->host; 2222 loff_t old_size = inode->i_size; 2223 bool i_size_changed = false; 2224 2225 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2226 2227 /* 2228 * No need to use i_size_read() here, the i_size cannot change under us 2229 * because we hold i_rwsem. 2230 * 2231 * But it's important to update i_size while still holding page lock: 2232 * page writeout could otherwise come in and zero beyond i_size. 2233 */ 2234 if (pos + copied > inode->i_size) { 2235 i_size_write(inode, pos + copied); 2236 i_size_changed = true; 2237 } 2238 2239 unlock_page(page); 2240 put_page(page); 2241 2242 if (old_size < pos) 2243 pagecache_isize_extended(inode, old_size, pos); 2244 /* 2245 * Don't mark the inode dirty under page lock. First, it unnecessarily 2246 * makes the holding time of page lock longer. Second, it forces lock 2247 * ordering of page lock and transaction start for journaling 2248 * filesystems. 2249 */ 2250 if (i_size_changed) 2251 mark_inode_dirty(inode); 2252 return copied; 2253 } 2254 EXPORT_SYMBOL(generic_write_end); 2255 2256 /* 2257 * block_is_partially_uptodate checks whether buffers within a folio are 2258 * uptodate or not. 2259 * 2260 * Returns true if all buffers which correspond to the specified part 2261 * of the folio are uptodate. 2262 */ 2263 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2264 { 2265 unsigned block_start, block_end, blocksize; 2266 unsigned to; 2267 struct buffer_head *bh, *head; 2268 bool ret = true; 2269 2270 head = folio_buffers(folio); 2271 if (!head) 2272 return false; 2273 blocksize = head->b_size; 2274 to = min_t(unsigned, folio_size(folio) - from, count); 2275 to = from + to; 2276 if (from < blocksize && to > folio_size(folio) - blocksize) 2277 return false; 2278 2279 bh = head; 2280 block_start = 0; 2281 do { 2282 block_end = block_start + blocksize; 2283 if (block_end > from && block_start < to) { 2284 if (!buffer_uptodate(bh)) { 2285 ret = false; 2286 break; 2287 } 2288 if (block_end >= to) 2289 break; 2290 } 2291 block_start = block_end; 2292 bh = bh->b_this_page; 2293 } while (bh != head); 2294 2295 return ret; 2296 } 2297 EXPORT_SYMBOL(block_is_partially_uptodate); 2298 2299 /* 2300 * Generic "read_folio" function for block devices that have the normal 2301 * get_block functionality. This is most of the block device filesystems. 2302 * Reads the folio asynchronously --- the unlock_buffer() and 2303 * set/clear_buffer_uptodate() functions propagate buffer state into the 2304 * folio once IO has completed. 2305 */ 2306 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2307 { 2308 struct inode *inode = folio->mapping->host; 2309 sector_t iblock, lblock; 2310 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2311 unsigned int blocksize, bbits; 2312 int nr, i; 2313 int fully_mapped = 1; 2314 bool page_error = false; 2315 loff_t limit = i_size_read(inode); 2316 2317 /* This is needed for ext4. */ 2318 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2319 limit = inode->i_sb->s_maxbytes; 2320 2321 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2322 2323 head = folio_create_buffers(folio, inode, 0); 2324 blocksize = head->b_size; 2325 bbits = block_size_bits(blocksize); 2326 2327 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2328 lblock = (limit+blocksize-1) >> bbits; 2329 bh = head; 2330 nr = 0; 2331 i = 0; 2332 2333 do { 2334 if (buffer_uptodate(bh)) 2335 continue; 2336 2337 if (!buffer_mapped(bh)) { 2338 int err = 0; 2339 2340 fully_mapped = 0; 2341 if (iblock < lblock) { 2342 WARN_ON(bh->b_size != blocksize); 2343 err = get_block(inode, iblock, bh, 0); 2344 if (err) { 2345 folio_set_error(folio); 2346 page_error = true; 2347 } 2348 } 2349 if (!buffer_mapped(bh)) { 2350 folio_zero_range(folio, i * blocksize, 2351 blocksize); 2352 if (!err) 2353 set_buffer_uptodate(bh); 2354 continue; 2355 } 2356 /* 2357 * get_block() might have updated the buffer 2358 * synchronously 2359 */ 2360 if (buffer_uptodate(bh)) 2361 continue; 2362 } 2363 arr[nr++] = bh; 2364 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2365 2366 if (fully_mapped) 2367 folio_set_mappedtodisk(folio); 2368 2369 if (!nr) { 2370 /* 2371 * All buffers are uptodate - we can set the folio uptodate 2372 * as well. But not if get_block() returned an error. 2373 */ 2374 if (!page_error) 2375 folio_mark_uptodate(folio); 2376 folio_unlock(folio); 2377 return 0; 2378 } 2379 2380 /* Stage two: lock the buffers */ 2381 for (i = 0; i < nr; i++) { 2382 bh = arr[i]; 2383 lock_buffer(bh); 2384 mark_buffer_async_read(bh); 2385 } 2386 2387 /* 2388 * Stage 3: start the IO. Check for uptodateness 2389 * inside the buffer lock in case another process reading 2390 * the underlying blockdev brought it uptodate (the sct fix). 2391 */ 2392 for (i = 0; i < nr; i++) { 2393 bh = arr[i]; 2394 if (buffer_uptodate(bh)) 2395 end_buffer_async_read(bh, 1); 2396 else 2397 submit_bh(REQ_OP_READ, bh); 2398 } 2399 return 0; 2400 } 2401 EXPORT_SYMBOL(block_read_full_folio); 2402 2403 /* utility function for filesystems that need to do work on expanding 2404 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2405 * deal with the hole. 2406 */ 2407 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2408 { 2409 struct address_space *mapping = inode->i_mapping; 2410 const struct address_space_operations *aops = mapping->a_ops; 2411 struct page *page; 2412 void *fsdata = NULL; 2413 int err; 2414 2415 err = inode_newsize_ok(inode, size); 2416 if (err) 2417 goto out; 2418 2419 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2420 if (err) 2421 goto out; 2422 2423 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2424 BUG_ON(err > 0); 2425 2426 out: 2427 return err; 2428 } 2429 EXPORT_SYMBOL(generic_cont_expand_simple); 2430 2431 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2432 loff_t pos, loff_t *bytes) 2433 { 2434 struct inode *inode = mapping->host; 2435 const struct address_space_operations *aops = mapping->a_ops; 2436 unsigned int blocksize = i_blocksize(inode); 2437 struct page *page; 2438 void *fsdata = NULL; 2439 pgoff_t index, curidx; 2440 loff_t curpos; 2441 unsigned zerofrom, offset, len; 2442 int err = 0; 2443 2444 index = pos >> PAGE_SHIFT; 2445 offset = pos & ~PAGE_MASK; 2446 2447 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2448 zerofrom = curpos & ~PAGE_MASK; 2449 if (zerofrom & (blocksize-1)) { 2450 *bytes |= (blocksize-1); 2451 (*bytes)++; 2452 } 2453 len = PAGE_SIZE - zerofrom; 2454 2455 err = aops->write_begin(file, mapping, curpos, len, 2456 &page, &fsdata); 2457 if (err) 2458 goto out; 2459 zero_user(page, zerofrom, len); 2460 err = aops->write_end(file, mapping, curpos, len, len, 2461 page, fsdata); 2462 if (err < 0) 2463 goto out; 2464 BUG_ON(err != len); 2465 err = 0; 2466 2467 balance_dirty_pages_ratelimited(mapping); 2468 2469 if (fatal_signal_pending(current)) { 2470 err = -EINTR; 2471 goto out; 2472 } 2473 } 2474 2475 /* page covers the boundary, find the boundary offset */ 2476 if (index == curidx) { 2477 zerofrom = curpos & ~PAGE_MASK; 2478 /* if we will expand the thing last block will be filled */ 2479 if (offset <= zerofrom) { 2480 goto out; 2481 } 2482 if (zerofrom & (blocksize-1)) { 2483 *bytes |= (blocksize-1); 2484 (*bytes)++; 2485 } 2486 len = offset - zerofrom; 2487 2488 err = aops->write_begin(file, mapping, curpos, len, 2489 &page, &fsdata); 2490 if (err) 2491 goto out; 2492 zero_user(page, zerofrom, len); 2493 err = aops->write_end(file, mapping, curpos, len, len, 2494 page, fsdata); 2495 if (err < 0) 2496 goto out; 2497 BUG_ON(err != len); 2498 err = 0; 2499 } 2500 out: 2501 return err; 2502 } 2503 2504 /* 2505 * For moronic filesystems that do not allow holes in file. 2506 * We may have to extend the file. 2507 */ 2508 int cont_write_begin(struct file *file, struct address_space *mapping, 2509 loff_t pos, unsigned len, 2510 struct page **pagep, void **fsdata, 2511 get_block_t *get_block, loff_t *bytes) 2512 { 2513 struct inode *inode = mapping->host; 2514 unsigned int blocksize = i_blocksize(inode); 2515 unsigned int zerofrom; 2516 int err; 2517 2518 err = cont_expand_zero(file, mapping, pos, bytes); 2519 if (err) 2520 return err; 2521 2522 zerofrom = *bytes & ~PAGE_MASK; 2523 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2524 *bytes |= (blocksize-1); 2525 (*bytes)++; 2526 } 2527 2528 return block_write_begin(mapping, pos, len, pagep, get_block); 2529 } 2530 EXPORT_SYMBOL(cont_write_begin); 2531 2532 int block_commit_write(struct page *page, unsigned from, unsigned to) 2533 { 2534 struct folio *folio = page_folio(page); 2535 struct inode *inode = folio->mapping->host; 2536 __block_commit_write(inode, folio, from, to); 2537 return 0; 2538 } 2539 EXPORT_SYMBOL(block_commit_write); 2540 2541 /* 2542 * block_page_mkwrite() is not allowed to change the file size as it gets 2543 * called from a page fault handler when a page is first dirtied. Hence we must 2544 * be careful to check for EOF conditions here. We set the page up correctly 2545 * for a written page which means we get ENOSPC checking when writing into 2546 * holes and correct delalloc and unwritten extent mapping on filesystems that 2547 * support these features. 2548 * 2549 * We are not allowed to take the i_mutex here so we have to play games to 2550 * protect against truncate races as the page could now be beyond EOF. Because 2551 * truncate writes the inode size before removing pages, once we have the 2552 * page lock we can determine safely if the page is beyond EOF. If it is not 2553 * beyond EOF, then the page is guaranteed safe against truncation until we 2554 * unlock the page. 2555 * 2556 * Direct callers of this function should protect against filesystem freezing 2557 * using sb_start_pagefault() - sb_end_pagefault() functions. 2558 */ 2559 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2560 get_block_t get_block) 2561 { 2562 struct folio *folio = page_folio(vmf->page); 2563 struct inode *inode = file_inode(vma->vm_file); 2564 unsigned long end; 2565 loff_t size; 2566 int ret; 2567 2568 folio_lock(folio); 2569 size = i_size_read(inode); 2570 if ((folio->mapping != inode->i_mapping) || 2571 (folio_pos(folio) >= size)) { 2572 /* We overload EFAULT to mean page got truncated */ 2573 ret = -EFAULT; 2574 goto out_unlock; 2575 } 2576 2577 end = folio_size(folio); 2578 /* folio is wholly or partially inside EOF */ 2579 if (folio_pos(folio) + end > size) 2580 end = size - folio_pos(folio); 2581 2582 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2583 if (!ret) 2584 ret = __block_commit_write(inode, folio, 0, end); 2585 2586 if (unlikely(ret < 0)) 2587 goto out_unlock; 2588 folio_mark_dirty(folio); 2589 folio_wait_stable(folio); 2590 return 0; 2591 out_unlock: 2592 folio_unlock(folio); 2593 return ret; 2594 } 2595 EXPORT_SYMBOL(block_page_mkwrite); 2596 2597 int block_truncate_page(struct address_space *mapping, 2598 loff_t from, get_block_t *get_block) 2599 { 2600 pgoff_t index = from >> PAGE_SHIFT; 2601 unsigned blocksize; 2602 sector_t iblock; 2603 size_t offset, length, pos; 2604 struct inode *inode = mapping->host; 2605 struct folio *folio; 2606 struct buffer_head *bh; 2607 int err = 0; 2608 2609 blocksize = i_blocksize(inode); 2610 length = from & (blocksize - 1); 2611 2612 /* Block boundary? Nothing to do */ 2613 if (!length) 2614 return 0; 2615 2616 length = blocksize - length; 2617 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2618 2619 folio = filemap_grab_folio(mapping, index); 2620 if (IS_ERR(folio)) 2621 return PTR_ERR(folio); 2622 2623 bh = folio_buffers(folio); 2624 if (!bh) { 2625 folio_create_empty_buffers(folio, blocksize, 0); 2626 bh = folio_buffers(folio); 2627 } 2628 2629 /* Find the buffer that contains "offset" */ 2630 offset = offset_in_folio(folio, from); 2631 pos = blocksize; 2632 while (offset >= pos) { 2633 bh = bh->b_this_page; 2634 iblock++; 2635 pos += blocksize; 2636 } 2637 2638 if (!buffer_mapped(bh)) { 2639 WARN_ON(bh->b_size != blocksize); 2640 err = get_block(inode, iblock, bh, 0); 2641 if (err) 2642 goto unlock; 2643 /* unmapped? It's a hole - nothing to do */ 2644 if (!buffer_mapped(bh)) 2645 goto unlock; 2646 } 2647 2648 /* Ok, it's mapped. Make sure it's up-to-date */ 2649 if (folio_test_uptodate(folio)) 2650 set_buffer_uptodate(bh); 2651 2652 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2653 err = bh_read(bh, 0); 2654 /* Uhhuh. Read error. Complain and punt. */ 2655 if (err < 0) 2656 goto unlock; 2657 } 2658 2659 folio_zero_range(folio, offset, length); 2660 mark_buffer_dirty(bh); 2661 2662 unlock: 2663 folio_unlock(folio); 2664 folio_put(folio); 2665 2666 return err; 2667 } 2668 EXPORT_SYMBOL(block_truncate_page); 2669 2670 /* 2671 * The generic ->writepage function for buffer-backed address_spaces 2672 */ 2673 int block_write_full_page(struct page *page, get_block_t *get_block, 2674 struct writeback_control *wbc) 2675 { 2676 struct folio *folio = page_folio(page); 2677 struct inode * const inode = folio->mapping->host; 2678 loff_t i_size = i_size_read(inode); 2679 2680 /* Is the folio fully inside i_size? */ 2681 if (folio_pos(folio) + folio_size(folio) <= i_size) 2682 return __block_write_full_folio(inode, folio, get_block, wbc, 2683 end_buffer_async_write); 2684 2685 /* Is the folio fully outside i_size? (truncate in progress) */ 2686 if (folio_pos(folio) >= i_size) { 2687 folio_unlock(folio); 2688 return 0; /* don't care */ 2689 } 2690 2691 /* 2692 * The folio straddles i_size. It must be zeroed out on each and every 2693 * writepage invocation because it may be mmapped. "A file is mapped 2694 * in multiples of the page size. For a file that is not a multiple of 2695 * the page size, the remaining memory is zeroed when mapped, and 2696 * writes to that region are not written out to the file." 2697 */ 2698 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2699 folio_size(folio)); 2700 return __block_write_full_folio(inode, folio, get_block, wbc, 2701 end_buffer_async_write); 2702 } 2703 EXPORT_SYMBOL(block_write_full_page); 2704 2705 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2706 get_block_t *get_block) 2707 { 2708 struct inode *inode = mapping->host; 2709 struct buffer_head tmp = { 2710 .b_size = i_blocksize(inode), 2711 }; 2712 2713 get_block(inode, block, &tmp, 0); 2714 return tmp.b_blocknr; 2715 } 2716 EXPORT_SYMBOL(generic_block_bmap); 2717 2718 static void end_bio_bh_io_sync(struct bio *bio) 2719 { 2720 struct buffer_head *bh = bio->bi_private; 2721 2722 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2723 set_bit(BH_Quiet, &bh->b_state); 2724 2725 bh->b_end_io(bh, !bio->bi_status); 2726 bio_put(bio); 2727 } 2728 2729 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2730 struct writeback_control *wbc) 2731 { 2732 const enum req_op op = opf & REQ_OP_MASK; 2733 struct bio *bio; 2734 2735 BUG_ON(!buffer_locked(bh)); 2736 BUG_ON(!buffer_mapped(bh)); 2737 BUG_ON(!bh->b_end_io); 2738 BUG_ON(buffer_delay(bh)); 2739 BUG_ON(buffer_unwritten(bh)); 2740 2741 /* 2742 * Only clear out a write error when rewriting 2743 */ 2744 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2745 clear_buffer_write_io_error(bh); 2746 2747 if (buffer_meta(bh)) 2748 opf |= REQ_META; 2749 if (buffer_prio(bh)) 2750 opf |= REQ_PRIO; 2751 2752 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2753 2754 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2755 2756 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2757 2758 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2759 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 2760 2761 bio->bi_end_io = end_bio_bh_io_sync; 2762 bio->bi_private = bh; 2763 2764 /* Take care of bh's that straddle the end of the device */ 2765 guard_bio_eod(bio); 2766 2767 if (wbc) { 2768 wbc_init_bio(wbc, bio); 2769 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2770 } 2771 2772 submit_bio(bio); 2773 } 2774 2775 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2776 { 2777 submit_bh_wbc(opf, bh, NULL); 2778 } 2779 EXPORT_SYMBOL(submit_bh); 2780 2781 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2782 { 2783 lock_buffer(bh); 2784 if (!test_clear_buffer_dirty(bh)) { 2785 unlock_buffer(bh); 2786 return; 2787 } 2788 bh->b_end_io = end_buffer_write_sync; 2789 get_bh(bh); 2790 submit_bh(REQ_OP_WRITE | op_flags, bh); 2791 } 2792 EXPORT_SYMBOL(write_dirty_buffer); 2793 2794 /* 2795 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2796 * and then start new I/O and then wait upon it. The caller must have a ref on 2797 * the buffer_head. 2798 */ 2799 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2800 { 2801 WARN_ON(atomic_read(&bh->b_count) < 1); 2802 lock_buffer(bh); 2803 if (test_clear_buffer_dirty(bh)) { 2804 /* 2805 * The bh should be mapped, but it might not be if the 2806 * device was hot-removed. Not much we can do but fail the I/O. 2807 */ 2808 if (!buffer_mapped(bh)) { 2809 unlock_buffer(bh); 2810 return -EIO; 2811 } 2812 2813 get_bh(bh); 2814 bh->b_end_io = end_buffer_write_sync; 2815 submit_bh(REQ_OP_WRITE | op_flags, bh); 2816 wait_on_buffer(bh); 2817 if (!buffer_uptodate(bh)) 2818 return -EIO; 2819 } else { 2820 unlock_buffer(bh); 2821 } 2822 return 0; 2823 } 2824 EXPORT_SYMBOL(__sync_dirty_buffer); 2825 2826 int sync_dirty_buffer(struct buffer_head *bh) 2827 { 2828 return __sync_dirty_buffer(bh, REQ_SYNC); 2829 } 2830 EXPORT_SYMBOL(sync_dirty_buffer); 2831 2832 /* 2833 * try_to_free_buffers() checks if all the buffers on this particular folio 2834 * are unused, and releases them if so. 2835 * 2836 * Exclusion against try_to_free_buffers may be obtained by either 2837 * locking the folio or by holding its mapping's private_lock. 2838 * 2839 * If the folio is dirty but all the buffers are clean then we need to 2840 * be sure to mark the folio clean as well. This is because the folio 2841 * may be against a block device, and a later reattachment of buffers 2842 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2843 * filesystem data on the same device. 2844 * 2845 * The same applies to regular filesystem folios: if all the buffers are 2846 * clean then we set the folio clean and proceed. To do that, we require 2847 * total exclusion from block_dirty_folio(). That is obtained with 2848 * private_lock. 2849 * 2850 * try_to_free_buffers() is non-blocking. 2851 */ 2852 static inline int buffer_busy(struct buffer_head *bh) 2853 { 2854 return atomic_read(&bh->b_count) | 2855 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2856 } 2857 2858 static bool 2859 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2860 { 2861 struct buffer_head *head = folio_buffers(folio); 2862 struct buffer_head *bh; 2863 2864 bh = head; 2865 do { 2866 if (buffer_busy(bh)) 2867 goto failed; 2868 bh = bh->b_this_page; 2869 } while (bh != head); 2870 2871 do { 2872 struct buffer_head *next = bh->b_this_page; 2873 2874 if (bh->b_assoc_map) 2875 __remove_assoc_queue(bh); 2876 bh = next; 2877 } while (bh != head); 2878 *buffers_to_free = head; 2879 folio_detach_private(folio); 2880 return true; 2881 failed: 2882 return false; 2883 } 2884 2885 bool try_to_free_buffers(struct folio *folio) 2886 { 2887 struct address_space * const mapping = folio->mapping; 2888 struct buffer_head *buffers_to_free = NULL; 2889 bool ret = 0; 2890 2891 BUG_ON(!folio_test_locked(folio)); 2892 if (folio_test_writeback(folio)) 2893 return false; 2894 2895 if (mapping == NULL) { /* can this still happen? */ 2896 ret = drop_buffers(folio, &buffers_to_free); 2897 goto out; 2898 } 2899 2900 spin_lock(&mapping->private_lock); 2901 ret = drop_buffers(folio, &buffers_to_free); 2902 2903 /* 2904 * If the filesystem writes its buffers by hand (eg ext3) 2905 * then we can have clean buffers against a dirty folio. We 2906 * clean the folio here; otherwise the VM will never notice 2907 * that the filesystem did any IO at all. 2908 * 2909 * Also, during truncate, discard_buffer will have marked all 2910 * the folio's buffers clean. We discover that here and clean 2911 * the folio also. 2912 * 2913 * private_lock must be held over this entire operation in order 2914 * to synchronise against block_dirty_folio and prevent the 2915 * dirty bit from being lost. 2916 */ 2917 if (ret) 2918 folio_cancel_dirty(folio); 2919 spin_unlock(&mapping->private_lock); 2920 out: 2921 if (buffers_to_free) { 2922 struct buffer_head *bh = buffers_to_free; 2923 2924 do { 2925 struct buffer_head *next = bh->b_this_page; 2926 free_buffer_head(bh); 2927 bh = next; 2928 } while (bh != buffers_to_free); 2929 } 2930 return ret; 2931 } 2932 EXPORT_SYMBOL(try_to_free_buffers); 2933 2934 /* 2935 * Buffer-head allocation 2936 */ 2937 static struct kmem_cache *bh_cachep __read_mostly; 2938 2939 /* 2940 * Once the number of bh's in the machine exceeds this level, we start 2941 * stripping them in writeback. 2942 */ 2943 static unsigned long max_buffer_heads; 2944 2945 int buffer_heads_over_limit; 2946 2947 struct bh_accounting { 2948 int nr; /* Number of live bh's */ 2949 int ratelimit; /* Limit cacheline bouncing */ 2950 }; 2951 2952 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2953 2954 static void recalc_bh_state(void) 2955 { 2956 int i; 2957 int tot = 0; 2958 2959 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 2960 return; 2961 __this_cpu_write(bh_accounting.ratelimit, 0); 2962 for_each_online_cpu(i) 2963 tot += per_cpu(bh_accounting, i).nr; 2964 buffer_heads_over_limit = (tot > max_buffer_heads); 2965 } 2966 2967 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2968 { 2969 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 2970 if (ret) { 2971 INIT_LIST_HEAD(&ret->b_assoc_buffers); 2972 spin_lock_init(&ret->b_uptodate_lock); 2973 preempt_disable(); 2974 __this_cpu_inc(bh_accounting.nr); 2975 recalc_bh_state(); 2976 preempt_enable(); 2977 } 2978 return ret; 2979 } 2980 EXPORT_SYMBOL(alloc_buffer_head); 2981 2982 void free_buffer_head(struct buffer_head *bh) 2983 { 2984 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2985 kmem_cache_free(bh_cachep, bh); 2986 preempt_disable(); 2987 __this_cpu_dec(bh_accounting.nr); 2988 recalc_bh_state(); 2989 preempt_enable(); 2990 } 2991 EXPORT_SYMBOL(free_buffer_head); 2992 2993 static int buffer_exit_cpu_dead(unsigned int cpu) 2994 { 2995 int i; 2996 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 2997 2998 for (i = 0; i < BH_LRU_SIZE; i++) { 2999 brelse(b->bhs[i]); 3000 b->bhs[i] = NULL; 3001 } 3002 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3003 per_cpu(bh_accounting, cpu).nr = 0; 3004 return 0; 3005 } 3006 3007 /** 3008 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3009 * @bh: struct buffer_head 3010 * 3011 * Return true if the buffer is up-to-date and false, 3012 * with the buffer locked, if not. 3013 */ 3014 int bh_uptodate_or_lock(struct buffer_head *bh) 3015 { 3016 if (!buffer_uptodate(bh)) { 3017 lock_buffer(bh); 3018 if (!buffer_uptodate(bh)) 3019 return 0; 3020 unlock_buffer(bh); 3021 } 3022 return 1; 3023 } 3024 EXPORT_SYMBOL(bh_uptodate_or_lock); 3025 3026 /** 3027 * __bh_read - Submit read for a locked buffer 3028 * @bh: struct buffer_head 3029 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3030 * @wait: wait until reading finish 3031 * 3032 * Returns zero on success or don't wait, and -EIO on error. 3033 */ 3034 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3035 { 3036 int ret = 0; 3037 3038 BUG_ON(!buffer_locked(bh)); 3039 3040 get_bh(bh); 3041 bh->b_end_io = end_buffer_read_sync; 3042 submit_bh(REQ_OP_READ | op_flags, bh); 3043 if (wait) { 3044 wait_on_buffer(bh); 3045 if (!buffer_uptodate(bh)) 3046 ret = -EIO; 3047 } 3048 return ret; 3049 } 3050 EXPORT_SYMBOL(__bh_read); 3051 3052 /** 3053 * __bh_read_batch - Submit read for a batch of unlocked buffers 3054 * @nr: entry number of the buffer batch 3055 * @bhs: a batch of struct buffer_head 3056 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3057 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3058 * buffer that cannot lock. 3059 * 3060 * Returns zero on success or don't wait, and -EIO on error. 3061 */ 3062 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3063 blk_opf_t op_flags, bool force_lock) 3064 { 3065 int i; 3066 3067 for (i = 0; i < nr; i++) { 3068 struct buffer_head *bh = bhs[i]; 3069 3070 if (buffer_uptodate(bh)) 3071 continue; 3072 3073 if (force_lock) 3074 lock_buffer(bh); 3075 else 3076 if (!trylock_buffer(bh)) 3077 continue; 3078 3079 if (buffer_uptodate(bh)) { 3080 unlock_buffer(bh); 3081 continue; 3082 } 3083 3084 bh->b_end_io = end_buffer_read_sync; 3085 get_bh(bh); 3086 submit_bh(REQ_OP_READ | op_flags, bh); 3087 } 3088 } 3089 EXPORT_SYMBOL(__bh_read_batch); 3090 3091 void __init buffer_init(void) 3092 { 3093 unsigned long nrpages; 3094 int ret; 3095 3096 bh_cachep = kmem_cache_create("buffer_head", 3097 sizeof(struct buffer_head), 0, 3098 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3099 SLAB_MEM_SPREAD), 3100 NULL); 3101 3102 /* 3103 * Limit the bh occupancy to 10% of ZONE_NORMAL 3104 */ 3105 nrpages = (nr_free_buffer_pages() * 10) / 100; 3106 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3107 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3108 NULL, buffer_exit_cpu_dead); 3109 WARN_ON(ret < 0); 3110 } 3111