xref: /openbmc/linux/fs/buffer.c (revision 60eb644b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 
53 #include "internal.h"
54 
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 			  struct writeback_control *wbc);
58 
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 	trace_block_touch_buffer(bh);
64 	folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67 
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73 
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 	clear_bit_unlock(BH_Lock, &bh->b_state);
77 	smp_mb__after_atomic();
78 	wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81 
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88 				     bool *dirty, bool *writeback)
89 {
90 	struct buffer_head *head, *bh;
91 	*dirty = false;
92 	*writeback = false;
93 
94 	BUG_ON(!folio_test_locked(folio));
95 
96 	head = folio_buffers(folio);
97 	if (!head)
98 		return;
99 
100 	if (folio_test_writeback(folio))
101 		*writeback = true;
102 
103 	bh = head;
104 	do {
105 		if (buffer_locked(bh))
106 			*writeback = true;
107 
108 		if (buffer_dirty(bh))
109 			*dirty = true;
110 
111 		bh = bh->b_this_page;
112 	} while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * private_lock.
184  *
185  * Hack idea: for the blockdev mapping, private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 	struct inode *bd_inode = bdev->bd_inode;
193 	struct address_space *bd_mapping = bd_inode->i_mapping;
194 	struct buffer_head *ret = NULL;
195 	pgoff_t index;
196 	struct buffer_head *bh;
197 	struct buffer_head *head;
198 	struct folio *folio;
199 	int all_mapped = 1;
200 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 	if (IS_ERR(folio))
205 		goto out;
206 
207 	spin_lock(&bd_mapping->private_lock);
208 	head = folio_buffers(folio);
209 	if (!head)
210 		goto out_unlock;
211 	bh = head;
212 	do {
213 		if (!buffer_mapped(bh))
214 			all_mapped = 0;
215 		else if (bh->b_blocknr == block) {
216 			ret = bh;
217 			get_bh(bh);
218 			goto out_unlock;
219 		}
220 		bh = bh->b_this_page;
221 	} while (bh != head);
222 
223 	/* we might be here because some of the buffers on this page are
224 	 * not mapped.  This is due to various races between
225 	 * file io on the block device and getblk.  It gets dealt with
226 	 * elsewhere, don't buffer_error if we had some unmapped buffers
227 	 */
228 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 	if (all_mapped && __ratelimit(&last_warned)) {
230 		printk("__find_get_block_slow() failed. block=%llu, "
231 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 		       "device %pg blocksize: %d\n",
233 		       (unsigned long long)block,
234 		       (unsigned long long)bh->b_blocknr,
235 		       bh->b_state, bh->b_size, bdev,
236 		       1 << bd_inode->i_blkbits);
237 	}
238 out_unlock:
239 	spin_unlock(&bd_mapping->private_lock);
240 	folio_put(folio);
241 out:
242 	return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 	unsigned long flags;
248 	struct buffer_head *first;
249 	struct buffer_head *tmp;
250 	struct folio *folio;
251 	int folio_uptodate = 1;
252 
253 	BUG_ON(!buffer_async_read(bh));
254 
255 	folio = bh->b_folio;
256 	if (uptodate) {
257 		set_buffer_uptodate(bh);
258 	} else {
259 		clear_buffer_uptodate(bh);
260 		buffer_io_error(bh, ", async page read");
261 		folio_set_error(folio);
262 	}
263 
264 	/*
265 	 * Be _very_ careful from here on. Bad things can happen if
266 	 * two buffer heads end IO at almost the same time and both
267 	 * decide that the page is now completely done.
268 	 */
269 	first = folio_buffers(folio);
270 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 	clear_buffer_async_read(bh);
272 	unlock_buffer(bh);
273 	tmp = bh;
274 	do {
275 		if (!buffer_uptodate(tmp))
276 			folio_uptodate = 0;
277 		if (buffer_async_read(tmp)) {
278 			BUG_ON(!buffer_locked(tmp));
279 			goto still_busy;
280 		}
281 		tmp = tmp->b_this_page;
282 	} while (tmp != bh);
283 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284 
285 	/*
286 	 * If all of the buffers are uptodate then we can set the page
287 	 * uptodate.
288 	 */
289 	if (folio_uptodate)
290 		folio_mark_uptodate(folio);
291 	folio_unlock(folio);
292 	return;
293 
294 still_busy:
295 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296 	return;
297 }
298 
299 struct postprocess_bh_ctx {
300 	struct work_struct work;
301 	struct buffer_head *bh;
302 };
303 
304 static void verify_bh(struct work_struct *work)
305 {
306 	struct postprocess_bh_ctx *ctx =
307 		container_of(work, struct postprocess_bh_ctx, work);
308 	struct buffer_head *bh = ctx->bh;
309 	bool valid;
310 
311 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
312 	end_buffer_async_read(bh, valid);
313 	kfree(ctx);
314 }
315 
316 static bool need_fsverity(struct buffer_head *bh)
317 {
318 	struct folio *folio = bh->b_folio;
319 	struct inode *inode = folio->mapping->host;
320 
321 	return fsverity_active(inode) &&
322 		/* needed by ext4 */
323 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
324 }
325 
326 static void decrypt_bh(struct work_struct *work)
327 {
328 	struct postprocess_bh_ctx *ctx =
329 		container_of(work, struct postprocess_bh_ctx, work);
330 	struct buffer_head *bh = ctx->bh;
331 	int err;
332 
333 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
334 					       bh_offset(bh));
335 	if (err == 0 && need_fsverity(bh)) {
336 		/*
337 		 * We use different work queues for decryption and for verity
338 		 * because verity may require reading metadata pages that need
339 		 * decryption, and we shouldn't recurse to the same workqueue.
340 		 */
341 		INIT_WORK(&ctx->work, verify_bh);
342 		fsverity_enqueue_verify_work(&ctx->work);
343 		return;
344 	}
345 	end_buffer_async_read(bh, err == 0);
346 	kfree(ctx);
347 }
348 
349 /*
350  * I/O completion handler for block_read_full_folio() - pages
351  * which come unlocked at the end of I/O.
352  */
353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
354 {
355 	struct inode *inode = bh->b_folio->mapping->host;
356 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
357 	bool verify = need_fsverity(bh);
358 
359 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
360 	if (uptodate && (decrypt || verify)) {
361 		struct postprocess_bh_ctx *ctx =
362 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
363 
364 		if (ctx) {
365 			ctx->bh = bh;
366 			if (decrypt) {
367 				INIT_WORK(&ctx->work, decrypt_bh);
368 				fscrypt_enqueue_decrypt_work(&ctx->work);
369 			} else {
370 				INIT_WORK(&ctx->work, verify_bh);
371 				fsverity_enqueue_verify_work(&ctx->work);
372 			}
373 			return;
374 		}
375 		uptodate = 0;
376 	}
377 	end_buffer_async_read(bh, uptodate);
378 }
379 
380 /*
381  * Completion handler for block_write_full_page() - pages which are unlocked
382  * during I/O, and which have PageWriteback cleared upon I/O completion.
383  */
384 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
385 {
386 	unsigned long flags;
387 	struct buffer_head *first;
388 	struct buffer_head *tmp;
389 	struct folio *folio;
390 
391 	BUG_ON(!buffer_async_write(bh));
392 
393 	folio = bh->b_folio;
394 	if (uptodate) {
395 		set_buffer_uptodate(bh);
396 	} else {
397 		buffer_io_error(bh, ", lost async page write");
398 		mark_buffer_write_io_error(bh);
399 		clear_buffer_uptodate(bh);
400 		folio_set_error(folio);
401 	}
402 
403 	first = folio_buffers(folio);
404 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
405 
406 	clear_buffer_async_write(bh);
407 	unlock_buffer(bh);
408 	tmp = bh->b_this_page;
409 	while (tmp != bh) {
410 		if (buffer_async_write(tmp)) {
411 			BUG_ON(!buffer_locked(tmp));
412 			goto still_busy;
413 		}
414 		tmp = tmp->b_this_page;
415 	}
416 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
417 	folio_end_writeback(folio);
418 	return;
419 
420 still_busy:
421 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
422 	return;
423 }
424 EXPORT_SYMBOL(end_buffer_async_write);
425 
426 /*
427  * If a page's buffers are under async readin (end_buffer_async_read
428  * completion) then there is a possibility that another thread of
429  * control could lock one of the buffers after it has completed
430  * but while some of the other buffers have not completed.  This
431  * locked buffer would confuse end_buffer_async_read() into not unlocking
432  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
433  * that this buffer is not under async I/O.
434  *
435  * The page comes unlocked when it has no locked buffer_async buffers
436  * left.
437  *
438  * PageLocked prevents anyone starting new async I/O reads any of
439  * the buffers.
440  *
441  * PageWriteback is used to prevent simultaneous writeout of the same
442  * page.
443  *
444  * PageLocked prevents anyone from starting writeback of a page which is
445  * under read I/O (PageWriteback is only ever set against a locked page).
446  */
447 static void mark_buffer_async_read(struct buffer_head *bh)
448 {
449 	bh->b_end_io = end_buffer_async_read_io;
450 	set_buffer_async_read(bh);
451 }
452 
453 static void mark_buffer_async_write_endio(struct buffer_head *bh,
454 					  bh_end_io_t *handler)
455 {
456 	bh->b_end_io = handler;
457 	set_buffer_async_write(bh);
458 }
459 
460 void mark_buffer_async_write(struct buffer_head *bh)
461 {
462 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
463 }
464 EXPORT_SYMBOL(mark_buffer_async_write);
465 
466 
467 /*
468  * fs/buffer.c contains helper functions for buffer-backed address space's
469  * fsync functions.  A common requirement for buffer-based filesystems is
470  * that certain data from the backing blockdev needs to be written out for
471  * a successful fsync().  For example, ext2 indirect blocks need to be
472  * written back and waited upon before fsync() returns.
473  *
474  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
475  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
476  * management of a list of dependent buffers at ->i_mapping->private_list.
477  *
478  * Locking is a little subtle: try_to_free_buffers() will remove buffers
479  * from their controlling inode's queue when they are being freed.  But
480  * try_to_free_buffers() will be operating against the *blockdev* mapping
481  * at the time, not against the S_ISREG file which depends on those buffers.
482  * So the locking for private_list is via the private_lock in the address_space
483  * which backs the buffers.  Which is different from the address_space
484  * against which the buffers are listed.  So for a particular address_space,
485  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
486  * mapping->private_list will always be protected by the backing blockdev's
487  * ->private_lock.
488  *
489  * Which introduces a requirement: all buffers on an address_space's
490  * ->private_list must be from the same address_space: the blockdev's.
491  *
492  * address_spaces which do not place buffers at ->private_list via these
493  * utility functions are free to use private_lock and private_list for
494  * whatever they want.  The only requirement is that list_empty(private_list)
495  * be true at clear_inode() time.
496  *
497  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
498  * filesystems should do that.  invalidate_inode_buffers() should just go
499  * BUG_ON(!list_empty).
500  *
501  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
502  * take an address_space, not an inode.  And it should be called
503  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
504  * queued up.
505  *
506  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507  * list if it is already on a list.  Because if the buffer is on a list,
508  * it *must* already be on the right one.  If not, the filesystem is being
509  * silly.  This will save a ton of locking.  But first we have to ensure
510  * that buffers are taken *off* the old inode's list when they are freed
511  * (presumably in truncate).  That requires careful auditing of all
512  * filesystems (do it inside bforget()).  It could also be done by bringing
513  * b_inode back.
514  */
515 
516 /*
517  * The buffer's backing address_space's private_lock must be held
518  */
519 static void __remove_assoc_queue(struct buffer_head *bh)
520 {
521 	list_del_init(&bh->b_assoc_buffers);
522 	WARN_ON(!bh->b_assoc_map);
523 	bh->b_assoc_map = NULL;
524 }
525 
526 int inode_has_buffers(struct inode *inode)
527 {
528 	return !list_empty(&inode->i_data.private_list);
529 }
530 
531 /*
532  * osync is designed to support O_SYNC io.  It waits synchronously for
533  * all already-submitted IO to complete, but does not queue any new
534  * writes to the disk.
535  *
536  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537  * as you dirty the buffers, and then use osync_inode_buffers to wait for
538  * completion.  Any other dirty buffers which are not yet queued for
539  * write will not be flushed to disk by the osync.
540  */
541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542 {
543 	struct buffer_head *bh;
544 	struct list_head *p;
545 	int err = 0;
546 
547 	spin_lock(lock);
548 repeat:
549 	list_for_each_prev(p, list) {
550 		bh = BH_ENTRY(p);
551 		if (buffer_locked(bh)) {
552 			get_bh(bh);
553 			spin_unlock(lock);
554 			wait_on_buffer(bh);
555 			if (!buffer_uptodate(bh))
556 				err = -EIO;
557 			brelse(bh);
558 			spin_lock(lock);
559 			goto repeat;
560 		}
561 	}
562 	spin_unlock(lock);
563 	return err;
564 }
565 
566 void emergency_thaw_bdev(struct super_block *sb)
567 {
568 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
569 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
570 }
571 
572 /**
573  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
574  * @mapping: the mapping which wants those buffers written
575  *
576  * Starts I/O against the buffers at mapping->private_list, and waits upon
577  * that I/O.
578  *
579  * Basically, this is a convenience function for fsync().
580  * @mapping is a file or directory which needs those buffers to be written for
581  * a successful fsync().
582  */
583 int sync_mapping_buffers(struct address_space *mapping)
584 {
585 	struct address_space *buffer_mapping = mapping->private_data;
586 
587 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
588 		return 0;
589 
590 	return fsync_buffers_list(&buffer_mapping->private_lock,
591 					&mapping->private_list);
592 }
593 EXPORT_SYMBOL(sync_mapping_buffers);
594 
595 /*
596  * Called when we've recently written block `bblock', and it is known that
597  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
598  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
599  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
600  */
601 void write_boundary_block(struct block_device *bdev,
602 			sector_t bblock, unsigned blocksize)
603 {
604 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
605 	if (bh) {
606 		if (buffer_dirty(bh))
607 			write_dirty_buffer(bh, 0);
608 		put_bh(bh);
609 	}
610 }
611 
612 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
613 {
614 	struct address_space *mapping = inode->i_mapping;
615 	struct address_space *buffer_mapping = bh->b_folio->mapping;
616 
617 	mark_buffer_dirty(bh);
618 	if (!mapping->private_data) {
619 		mapping->private_data = buffer_mapping;
620 	} else {
621 		BUG_ON(mapping->private_data != buffer_mapping);
622 	}
623 	if (!bh->b_assoc_map) {
624 		spin_lock(&buffer_mapping->private_lock);
625 		list_move_tail(&bh->b_assoc_buffers,
626 				&mapping->private_list);
627 		bh->b_assoc_map = mapping;
628 		spin_unlock(&buffer_mapping->private_lock);
629 	}
630 }
631 EXPORT_SYMBOL(mark_buffer_dirty_inode);
632 
633 /*
634  * Add a page to the dirty page list.
635  *
636  * It is a sad fact of life that this function is called from several places
637  * deeply under spinlocking.  It may not sleep.
638  *
639  * If the page has buffers, the uptodate buffers are set dirty, to preserve
640  * dirty-state coherency between the page and the buffers.  It the page does
641  * not have buffers then when they are later attached they will all be set
642  * dirty.
643  *
644  * The buffers are dirtied before the page is dirtied.  There's a small race
645  * window in which a writepage caller may see the page cleanness but not the
646  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
647  * before the buffers, a concurrent writepage caller could clear the page dirty
648  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
649  * page on the dirty page list.
650  *
651  * We use private_lock to lock against try_to_free_buffers while using the
652  * page's buffer list.  Also use this to protect against clean buffers being
653  * added to the page after it was set dirty.
654  *
655  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
656  * address_space though.
657  */
658 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
659 {
660 	struct buffer_head *head;
661 	bool newly_dirty;
662 
663 	spin_lock(&mapping->private_lock);
664 	head = folio_buffers(folio);
665 	if (head) {
666 		struct buffer_head *bh = head;
667 
668 		do {
669 			set_buffer_dirty(bh);
670 			bh = bh->b_this_page;
671 		} while (bh != head);
672 	}
673 	/*
674 	 * Lock out page's memcg migration to keep PageDirty
675 	 * synchronized with per-memcg dirty page counters.
676 	 */
677 	folio_memcg_lock(folio);
678 	newly_dirty = !folio_test_set_dirty(folio);
679 	spin_unlock(&mapping->private_lock);
680 
681 	if (newly_dirty)
682 		__folio_mark_dirty(folio, mapping, 1);
683 
684 	folio_memcg_unlock(folio);
685 
686 	if (newly_dirty)
687 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
688 
689 	return newly_dirty;
690 }
691 EXPORT_SYMBOL(block_dirty_folio);
692 
693 /*
694  * Write out and wait upon a list of buffers.
695  *
696  * We have conflicting pressures: we want to make sure that all
697  * initially dirty buffers get waited on, but that any subsequently
698  * dirtied buffers don't.  After all, we don't want fsync to last
699  * forever if somebody is actively writing to the file.
700  *
701  * Do this in two main stages: first we copy dirty buffers to a
702  * temporary inode list, queueing the writes as we go.  Then we clean
703  * up, waiting for those writes to complete.
704  *
705  * During this second stage, any subsequent updates to the file may end
706  * up refiling the buffer on the original inode's dirty list again, so
707  * there is a chance we will end up with a buffer queued for write but
708  * not yet completed on that list.  So, as a final cleanup we go through
709  * the osync code to catch these locked, dirty buffers without requeuing
710  * any newly dirty buffers for write.
711  */
712 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
713 {
714 	struct buffer_head *bh;
715 	struct list_head tmp;
716 	struct address_space *mapping;
717 	int err = 0, err2;
718 	struct blk_plug plug;
719 
720 	INIT_LIST_HEAD(&tmp);
721 	blk_start_plug(&plug);
722 
723 	spin_lock(lock);
724 	while (!list_empty(list)) {
725 		bh = BH_ENTRY(list->next);
726 		mapping = bh->b_assoc_map;
727 		__remove_assoc_queue(bh);
728 		/* Avoid race with mark_buffer_dirty_inode() which does
729 		 * a lockless check and we rely on seeing the dirty bit */
730 		smp_mb();
731 		if (buffer_dirty(bh) || buffer_locked(bh)) {
732 			list_add(&bh->b_assoc_buffers, &tmp);
733 			bh->b_assoc_map = mapping;
734 			if (buffer_dirty(bh)) {
735 				get_bh(bh);
736 				spin_unlock(lock);
737 				/*
738 				 * Ensure any pending I/O completes so that
739 				 * write_dirty_buffer() actually writes the
740 				 * current contents - it is a noop if I/O is
741 				 * still in flight on potentially older
742 				 * contents.
743 				 */
744 				write_dirty_buffer(bh, REQ_SYNC);
745 
746 				/*
747 				 * Kick off IO for the previous mapping. Note
748 				 * that we will not run the very last mapping,
749 				 * wait_on_buffer() will do that for us
750 				 * through sync_buffer().
751 				 */
752 				brelse(bh);
753 				spin_lock(lock);
754 			}
755 		}
756 	}
757 
758 	spin_unlock(lock);
759 	blk_finish_plug(&plug);
760 	spin_lock(lock);
761 
762 	while (!list_empty(&tmp)) {
763 		bh = BH_ENTRY(tmp.prev);
764 		get_bh(bh);
765 		mapping = bh->b_assoc_map;
766 		__remove_assoc_queue(bh);
767 		/* Avoid race with mark_buffer_dirty_inode() which does
768 		 * a lockless check and we rely on seeing the dirty bit */
769 		smp_mb();
770 		if (buffer_dirty(bh)) {
771 			list_add(&bh->b_assoc_buffers,
772 				 &mapping->private_list);
773 			bh->b_assoc_map = mapping;
774 		}
775 		spin_unlock(lock);
776 		wait_on_buffer(bh);
777 		if (!buffer_uptodate(bh))
778 			err = -EIO;
779 		brelse(bh);
780 		spin_lock(lock);
781 	}
782 
783 	spin_unlock(lock);
784 	err2 = osync_buffers_list(lock, list);
785 	if (err)
786 		return err;
787 	else
788 		return err2;
789 }
790 
791 /*
792  * Invalidate any and all dirty buffers on a given inode.  We are
793  * probably unmounting the fs, but that doesn't mean we have already
794  * done a sync().  Just drop the buffers from the inode list.
795  *
796  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
797  * assumes that all the buffers are against the blockdev.  Not true
798  * for reiserfs.
799  */
800 void invalidate_inode_buffers(struct inode *inode)
801 {
802 	if (inode_has_buffers(inode)) {
803 		struct address_space *mapping = &inode->i_data;
804 		struct list_head *list = &mapping->private_list;
805 		struct address_space *buffer_mapping = mapping->private_data;
806 
807 		spin_lock(&buffer_mapping->private_lock);
808 		while (!list_empty(list))
809 			__remove_assoc_queue(BH_ENTRY(list->next));
810 		spin_unlock(&buffer_mapping->private_lock);
811 	}
812 }
813 EXPORT_SYMBOL(invalidate_inode_buffers);
814 
815 /*
816  * Remove any clean buffers from the inode's buffer list.  This is called
817  * when we're trying to free the inode itself.  Those buffers can pin it.
818  *
819  * Returns true if all buffers were removed.
820  */
821 int remove_inode_buffers(struct inode *inode)
822 {
823 	int ret = 1;
824 
825 	if (inode_has_buffers(inode)) {
826 		struct address_space *mapping = &inode->i_data;
827 		struct list_head *list = &mapping->private_list;
828 		struct address_space *buffer_mapping = mapping->private_data;
829 
830 		spin_lock(&buffer_mapping->private_lock);
831 		while (!list_empty(list)) {
832 			struct buffer_head *bh = BH_ENTRY(list->next);
833 			if (buffer_dirty(bh)) {
834 				ret = 0;
835 				break;
836 			}
837 			__remove_assoc_queue(bh);
838 		}
839 		spin_unlock(&buffer_mapping->private_lock);
840 	}
841 	return ret;
842 }
843 
844 /*
845  * Create the appropriate buffers when given a folio for data area and
846  * the size of each buffer.. Use the bh->b_this_page linked list to
847  * follow the buffers created.  Return NULL if unable to create more
848  * buffers.
849  *
850  * The retry flag is used to differentiate async IO (paging, swapping)
851  * which may not fail from ordinary buffer allocations.
852  */
853 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
854 					bool retry)
855 {
856 	struct buffer_head *bh, *head;
857 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
858 	long offset;
859 	struct mem_cgroup *memcg, *old_memcg;
860 
861 	if (retry)
862 		gfp |= __GFP_NOFAIL;
863 
864 	/* The folio lock pins the memcg */
865 	memcg = folio_memcg(folio);
866 	old_memcg = set_active_memcg(memcg);
867 
868 	head = NULL;
869 	offset = folio_size(folio);
870 	while ((offset -= size) >= 0) {
871 		bh = alloc_buffer_head(gfp);
872 		if (!bh)
873 			goto no_grow;
874 
875 		bh->b_this_page = head;
876 		bh->b_blocknr = -1;
877 		head = bh;
878 
879 		bh->b_size = size;
880 
881 		/* Link the buffer to its folio */
882 		folio_set_bh(bh, folio, offset);
883 	}
884 out:
885 	set_active_memcg(old_memcg);
886 	return head;
887 /*
888  * In case anything failed, we just free everything we got.
889  */
890 no_grow:
891 	if (head) {
892 		do {
893 			bh = head;
894 			head = head->b_this_page;
895 			free_buffer_head(bh);
896 		} while (head);
897 	}
898 
899 	goto out;
900 }
901 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
902 
903 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
904 				       bool retry)
905 {
906 	return folio_alloc_buffers(page_folio(page), size, retry);
907 }
908 EXPORT_SYMBOL_GPL(alloc_page_buffers);
909 
910 static inline void link_dev_buffers(struct folio *folio,
911 		struct buffer_head *head)
912 {
913 	struct buffer_head *bh, *tail;
914 
915 	bh = head;
916 	do {
917 		tail = bh;
918 		bh = bh->b_this_page;
919 	} while (bh);
920 	tail->b_this_page = head;
921 	folio_attach_private(folio, head);
922 }
923 
924 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
925 {
926 	sector_t retval = ~((sector_t)0);
927 	loff_t sz = bdev_nr_bytes(bdev);
928 
929 	if (sz) {
930 		unsigned int sizebits = blksize_bits(size);
931 		retval = (sz >> sizebits);
932 	}
933 	return retval;
934 }
935 
936 /*
937  * Initialise the state of a blockdev folio's buffers.
938  */
939 static sector_t folio_init_buffers(struct folio *folio,
940 		struct block_device *bdev, sector_t block, int size)
941 {
942 	struct buffer_head *head = folio_buffers(folio);
943 	struct buffer_head *bh = head;
944 	bool uptodate = folio_test_uptodate(folio);
945 	sector_t end_block = blkdev_max_block(bdev, size);
946 
947 	do {
948 		if (!buffer_mapped(bh)) {
949 			bh->b_end_io = NULL;
950 			bh->b_private = NULL;
951 			bh->b_bdev = bdev;
952 			bh->b_blocknr = block;
953 			if (uptodate)
954 				set_buffer_uptodate(bh);
955 			if (block < end_block)
956 				set_buffer_mapped(bh);
957 		}
958 		block++;
959 		bh = bh->b_this_page;
960 	} while (bh != head);
961 
962 	/*
963 	 * Caller needs to validate requested block against end of device.
964 	 */
965 	return end_block;
966 }
967 
968 /*
969  * Create the page-cache page that contains the requested block.
970  *
971  * This is used purely for blockdev mappings.
972  */
973 static int
974 grow_dev_page(struct block_device *bdev, sector_t block,
975 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
976 {
977 	struct inode *inode = bdev->bd_inode;
978 	struct folio *folio;
979 	struct buffer_head *bh;
980 	sector_t end_block;
981 	int ret = 0;
982 	gfp_t gfp_mask;
983 
984 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
985 
986 	/*
987 	 * XXX: __getblk_slow() can not really deal with failure and
988 	 * will endlessly loop on improvised global reclaim.  Prefer
989 	 * looping in the allocator rather than here, at least that
990 	 * code knows what it's doing.
991 	 */
992 	gfp_mask |= __GFP_NOFAIL;
993 
994 	folio = __filemap_get_folio(inode->i_mapping, index,
995 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
996 
997 	bh = folio_buffers(folio);
998 	if (bh) {
999 		if (bh->b_size == size) {
1000 			end_block = folio_init_buffers(folio, bdev,
1001 					(sector_t)index << sizebits, size);
1002 			goto done;
1003 		}
1004 		if (!try_to_free_buffers(folio))
1005 			goto failed;
1006 	}
1007 
1008 	bh = folio_alloc_buffers(folio, size, true);
1009 
1010 	/*
1011 	 * Link the folio to the buffers and initialise them.  Take the
1012 	 * lock to be atomic wrt __find_get_block(), which does not
1013 	 * run under the folio lock.
1014 	 */
1015 	spin_lock(&inode->i_mapping->private_lock);
1016 	link_dev_buffers(folio, bh);
1017 	end_block = folio_init_buffers(folio, bdev,
1018 			(sector_t)index << sizebits, size);
1019 	spin_unlock(&inode->i_mapping->private_lock);
1020 done:
1021 	ret = (block < end_block) ? 1 : -ENXIO;
1022 failed:
1023 	folio_unlock(folio);
1024 	folio_put(folio);
1025 	return ret;
1026 }
1027 
1028 /*
1029  * Create buffers for the specified block device block's page.  If
1030  * that page was dirty, the buffers are set dirty also.
1031  */
1032 static int
1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1034 {
1035 	pgoff_t index;
1036 	int sizebits;
1037 
1038 	sizebits = PAGE_SHIFT - __ffs(size);
1039 	index = block >> sizebits;
1040 
1041 	/*
1042 	 * Check for a block which wants to lie outside our maximum possible
1043 	 * pagecache index.  (this comparison is done using sector_t types).
1044 	 */
1045 	if (unlikely(index != block >> sizebits)) {
1046 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1047 			"device %pg\n",
1048 			__func__, (unsigned long long)block,
1049 			bdev);
1050 		return -EIO;
1051 	}
1052 
1053 	/* Create a page with the proper size buffers.. */
1054 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1055 }
1056 
1057 static struct buffer_head *
1058 __getblk_slow(struct block_device *bdev, sector_t block,
1059 	     unsigned size, gfp_t gfp)
1060 {
1061 	/* Size must be multiple of hard sectorsize */
1062 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1063 			(size < 512 || size > PAGE_SIZE))) {
1064 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1065 					size);
1066 		printk(KERN_ERR "logical block size: %d\n",
1067 					bdev_logical_block_size(bdev));
1068 
1069 		dump_stack();
1070 		return NULL;
1071 	}
1072 
1073 	for (;;) {
1074 		struct buffer_head *bh;
1075 		int ret;
1076 
1077 		bh = __find_get_block(bdev, block, size);
1078 		if (bh)
1079 			return bh;
1080 
1081 		ret = grow_buffers(bdev, block, size, gfp);
1082 		if (ret < 0)
1083 			return NULL;
1084 	}
1085 }
1086 
1087 /*
1088  * The relationship between dirty buffers and dirty pages:
1089  *
1090  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1091  * the page is tagged dirty in the page cache.
1092  *
1093  * At all times, the dirtiness of the buffers represents the dirtiness of
1094  * subsections of the page.  If the page has buffers, the page dirty bit is
1095  * merely a hint about the true dirty state.
1096  *
1097  * When a page is set dirty in its entirety, all its buffers are marked dirty
1098  * (if the page has buffers).
1099  *
1100  * When a buffer is marked dirty, its page is dirtied, but the page's other
1101  * buffers are not.
1102  *
1103  * Also.  When blockdev buffers are explicitly read with bread(), they
1104  * individually become uptodate.  But their backing page remains not
1105  * uptodate - even if all of its buffers are uptodate.  A subsequent
1106  * block_read_full_folio() against that folio will discover all the uptodate
1107  * buffers, will set the folio uptodate and will perform no I/O.
1108  */
1109 
1110 /**
1111  * mark_buffer_dirty - mark a buffer_head as needing writeout
1112  * @bh: the buffer_head to mark dirty
1113  *
1114  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1115  * its backing page dirty, then tag the page as dirty in the page cache
1116  * and then attach the address_space's inode to its superblock's dirty
1117  * inode list.
1118  *
1119  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1120  * i_pages lock and mapping->host->i_lock.
1121  */
1122 void mark_buffer_dirty(struct buffer_head *bh)
1123 {
1124 	WARN_ON_ONCE(!buffer_uptodate(bh));
1125 
1126 	trace_block_dirty_buffer(bh);
1127 
1128 	/*
1129 	 * Very *carefully* optimize the it-is-already-dirty case.
1130 	 *
1131 	 * Don't let the final "is it dirty" escape to before we
1132 	 * perhaps modified the buffer.
1133 	 */
1134 	if (buffer_dirty(bh)) {
1135 		smp_mb();
1136 		if (buffer_dirty(bh))
1137 			return;
1138 	}
1139 
1140 	if (!test_set_buffer_dirty(bh)) {
1141 		struct folio *folio = bh->b_folio;
1142 		struct address_space *mapping = NULL;
1143 
1144 		folio_memcg_lock(folio);
1145 		if (!folio_test_set_dirty(folio)) {
1146 			mapping = folio->mapping;
1147 			if (mapping)
1148 				__folio_mark_dirty(folio, mapping, 0);
1149 		}
1150 		folio_memcg_unlock(folio);
1151 		if (mapping)
1152 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1153 	}
1154 }
1155 EXPORT_SYMBOL(mark_buffer_dirty);
1156 
1157 void mark_buffer_write_io_error(struct buffer_head *bh)
1158 {
1159 	struct super_block *sb;
1160 
1161 	set_buffer_write_io_error(bh);
1162 	/* FIXME: do we need to set this in both places? */
1163 	if (bh->b_folio && bh->b_folio->mapping)
1164 		mapping_set_error(bh->b_folio->mapping, -EIO);
1165 	if (bh->b_assoc_map)
1166 		mapping_set_error(bh->b_assoc_map, -EIO);
1167 	rcu_read_lock();
1168 	sb = READ_ONCE(bh->b_bdev->bd_super);
1169 	if (sb)
1170 		errseq_set(&sb->s_wb_err, -EIO);
1171 	rcu_read_unlock();
1172 }
1173 EXPORT_SYMBOL(mark_buffer_write_io_error);
1174 
1175 /*
1176  * Decrement a buffer_head's reference count.  If all buffers against a page
1177  * have zero reference count, are clean and unlocked, and if the page is clean
1178  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1179  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1180  * a page but it ends up not being freed, and buffers may later be reattached).
1181  */
1182 void __brelse(struct buffer_head * buf)
1183 {
1184 	if (atomic_read(&buf->b_count)) {
1185 		put_bh(buf);
1186 		return;
1187 	}
1188 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1189 }
1190 EXPORT_SYMBOL(__brelse);
1191 
1192 /*
1193  * bforget() is like brelse(), except it discards any
1194  * potentially dirty data.
1195  */
1196 void __bforget(struct buffer_head *bh)
1197 {
1198 	clear_buffer_dirty(bh);
1199 	if (bh->b_assoc_map) {
1200 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1201 
1202 		spin_lock(&buffer_mapping->private_lock);
1203 		list_del_init(&bh->b_assoc_buffers);
1204 		bh->b_assoc_map = NULL;
1205 		spin_unlock(&buffer_mapping->private_lock);
1206 	}
1207 	__brelse(bh);
1208 }
1209 EXPORT_SYMBOL(__bforget);
1210 
1211 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1212 {
1213 	lock_buffer(bh);
1214 	if (buffer_uptodate(bh)) {
1215 		unlock_buffer(bh);
1216 		return bh;
1217 	} else {
1218 		get_bh(bh);
1219 		bh->b_end_io = end_buffer_read_sync;
1220 		submit_bh(REQ_OP_READ, bh);
1221 		wait_on_buffer(bh);
1222 		if (buffer_uptodate(bh))
1223 			return bh;
1224 	}
1225 	brelse(bh);
1226 	return NULL;
1227 }
1228 
1229 /*
1230  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1231  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1232  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1233  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1234  * CPU's LRUs at the same time.
1235  *
1236  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1237  * sb_find_get_block().
1238  *
1239  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1240  * a local interrupt disable for that.
1241  */
1242 
1243 #define BH_LRU_SIZE	16
1244 
1245 struct bh_lru {
1246 	struct buffer_head *bhs[BH_LRU_SIZE];
1247 };
1248 
1249 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1250 
1251 #ifdef CONFIG_SMP
1252 #define bh_lru_lock()	local_irq_disable()
1253 #define bh_lru_unlock()	local_irq_enable()
1254 #else
1255 #define bh_lru_lock()	preempt_disable()
1256 #define bh_lru_unlock()	preempt_enable()
1257 #endif
1258 
1259 static inline void check_irqs_on(void)
1260 {
1261 #ifdef irqs_disabled
1262 	BUG_ON(irqs_disabled());
1263 #endif
1264 }
1265 
1266 /*
1267  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1268  * inserted at the front, and the buffer_head at the back if any is evicted.
1269  * Or, if already in the LRU it is moved to the front.
1270  */
1271 static void bh_lru_install(struct buffer_head *bh)
1272 {
1273 	struct buffer_head *evictee = bh;
1274 	struct bh_lru *b;
1275 	int i;
1276 
1277 	check_irqs_on();
1278 	bh_lru_lock();
1279 
1280 	/*
1281 	 * the refcount of buffer_head in bh_lru prevents dropping the
1282 	 * attached page(i.e., try_to_free_buffers) so it could cause
1283 	 * failing page migration.
1284 	 * Skip putting upcoming bh into bh_lru until migration is done.
1285 	 */
1286 	if (lru_cache_disabled()) {
1287 		bh_lru_unlock();
1288 		return;
1289 	}
1290 
1291 	b = this_cpu_ptr(&bh_lrus);
1292 	for (i = 0; i < BH_LRU_SIZE; i++) {
1293 		swap(evictee, b->bhs[i]);
1294 		if (evictee == bh) {
1295 			bh_lru_unlock();
1296 			return;
1297 		}
1298 	}
1299 
1300 	get_bh(bh);
1301 	bh_lru_unlock();
1302 	brelse(evictee);
1303 }
1304 
1305 /*
1306  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1307  */
1308 static struct buffer_head *
1309 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1310 {
1311 	struct buffer_head *ret = NULL;
1312 	unsigned int i;
1313 
1314 	check_irqs_on();
1315 	bh_lru_lock();
1316 	for (i = 0; i < BH_LRU_SIZE; i++) {
1317 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1318 
1319 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1320 		    bh->b_size == size) {
1321 			if (i) {
1322 				while (i) {
1323 					__this_cpu_write(bh_lrus.bhs[i],
1324 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1325 					i--;
1326 				}
1327 				__this_cpu_write(bh_lrus.bhs[0], bh);
1328 			}
1329 			get_bh(bh);
1330 			ret = bh;
1331 			break;
1332 		}
1333 	}
1334 	bh_lru_unlock();
1335 	return ret;
1336 }
1337 
1338 /*
1339  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1340  * it in the LRU and mark it as accessed.  If it is not present then return
1341  * NULL
1342  */
1343 struct buffer_head *
1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1347 
1348 	if (bh == NULL) {
1349 		/* __find_get_block_slow will mark the page accessed */
1350 		bh = __find_get_block_slow(bdev, block);
1351 		if (bh)
1352 			bh_lru_install(bh);
1353 	} else
1354 		touch_buffer(bh);
1355 
1356 	return bh;
1357 }
1358 EXPORT_SYMBOL(__find_get_block);
1359 
1360 /*
1361  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1362  * which corresponds to the passed block_device, block and size. The
1363  * returned buffer has its reference count incremented.
1364  *
1365  * __getblk_gfp() will lock up the machine if grow_dev_page's
1366  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1367  */
1368 struct buffer_head *
1369 __getblk_gfp(struct block_device *bdev, sector_t block,
1370 	     unsigned size, gfp_t gfp)
1371 {
1372 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1373 
1374 	might_sleep();
1375 	if (bh == NULL)
1376 		bh = __getblk_slow(bdev, block, size, gfp);
1377 	return bh;
1378 }
1379 EXPORT_SYMBOL(__getblk_gfp);
1380 
1381 /*
1382  * Do async read-ahead on a buffer..
1383  */
1384 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1385 {
1386 	struct buffer_head *bh = __getblk(bdev, block, size);
1387 	if (likely(bh)) {
1388 		bh_readahead(bh, REQ_RAHEAD);
1389 		brelse(bh);
1390 	}
1391 }
1392 EXPORT_SYMBOL(__breadahead);
1393 
1394 /**
1395  *  __bread_gfp() - reads a specified block and returns the bh
1396  *  @bdev: the block_device to read from
1397  *  @block: number of block
1398  *  @size: size (in bytes) to read
1399  *  @gfp: page allocation flag
1400  *
1401  *  Reads a specified block, and returns buffer head that contains it.
1402  *  The page cache can be allocated from non-movable area
1403  *  not to prevent page migration if you set gfp to zero.
1404  *  It returns NULL if the block was unreadable.
1405  */
1406 struct buffer_head *
1407 __bread_gfp(struct block_device *bdev, sector_t block,
1408 		   unsigned size, gfp_t gfp)
1409 {
1410 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1411 
1412 	if (likely(bh) && !buffer_uptodate(bh))
1413 		bh = __bread_slow(bh);
1414 	return bh;
1415 }
1416 EXPORT_SYMBOL(__bread_gfp);
1417 
1418 static void __invalidate_bh_lrus(struct bh_lru *b)
1419 {
1420 	int i;
1421 
1422 	for (i = 0; i < BH_LRU_SIZE; i++) {
1423 		brelse(b->bhs[i]);
1424 		b->bhs[i] = NULL;
1425 	}
1426 }
1427 /*
1428  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1429  * This doesn't race because it runs in each cpu either in irq
1430  * or with preempt disabled.
1431  */
1432 static void invalidate_bh_lru(void *arg)
1433 {
1434 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1435 
1436 	__invalidate_bh_lrus(b);
1437 	put_cpu_var(bh_lrus);
1438 }
1439 
1440 bool has_bh_in_lru(int cpu, void *dummy)
1441 {
1442 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1443 	int i;
1444 
1445 	for (i = 0; i < BH_LRU_SIZE; i++) {
1446 		if (b->bhs[i])
1447 			return true;
1448 	}
1449 
1450 	return false;
1451 }
1452 
1453 void invalidate_bh_lrus(void)
1454 {
1455 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1456 }
1457 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1458 
1459 /*
1460  * It's called from workqueue context so we need a bh_lru_lock to close
1461  * the race with preemption/irq.
1462  */
1463 void invalidate_bh_lrus_cpu(void)
1464 {
1465 	struct bh_lru *b;
1466 
1467 	bh_lru_lock();
1468 	b = this_cpu_ptr(&bh_lrus);
1469 	__invalidate_bh_lrus(b);
1470 	bh_lru_unlock();
1471 }
1472 
1473 void set_bh_page(struct buffer_head *bh,
1474 		struct page *page, unsigned long offset)
1475 {
1476 	bh->b_page = page;
1477 	BUG_ON(offset >= PAGE_SIZE);
1478 	if (PageHighMem(page))
1479 		/*
1480 		 * This catches illegal uses and preserves the offset:
1481 		 */
1482 		bh->b_data = (char *)(0 + offset);
1483 	else
1484 		bh->b_data = page_address(page) + offset;
1485 }
1486 EXPORT_SYMBOL(set_bh_page);
1487 
1488 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1489 		  unsigned long offset)
1490 {
1491 	bh->b_folio = folio;
1492 	BUG_ON(offset >= folio_size(folio));
1493 	if (folio_test_highmem(folio))
1494 		/*
1495 		 * This catches illegal uses and preserves the offset:
1496 		 */
1497 		bh->b_data = (char *)(0 + offset);
1498 	else
1499 		bh->b_data = folio_address(folio) + offset;
1500 }
1501 EXPORT_SYMBOL(folio_set_bh);
1502 
1503 /*
1504  * Called when truncating a buffer on a page completely.
1505  */
1506 
1507 /* Bits that are cleared during an invalidate */
1508 #define BUFFER_FLAGS_DISCARD \
1509 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1510 	 1 << BH_Delay | 1 << BH_Unwritten)
1511 
1512 static void discard_buffer(struct buffer_head * bh)
1513 {
1514 	unsigned long b_state;
1515 
1516 	lock_buffer(bh);
1517 	clear_buffer_dirty(bh);
1518 	bh->b_bdev = NULL;
1519 	b_state = READ_ONCE(bh->b_state);
1520 	do {
1521 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1522 			      b_state & ~BUFFER_FLAGS_DISCARD));
1523 	unlock_buffer(bh);
1524 }
1525 
1526 /**
1527  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1528  * @folio: The folio which is affected.
1529  * @offset: start of the range to invalidate
1530  * @length: length of the range to invalidate
1531  *
1532  * block_invalidate_folio() is called when all or part of the folio has been
1533  * invalidated by a truncate operation.
1534  *
1535  * block_invalidate_folio() does not have to release all buffers, but it must
1536  * ensure that no dirty buffer is left outside @offset and that no I/O
1537  * is underway against any of the blocks which are outside the truncation
1538  * point.  Because the caller is about to free (and possibly reuse) those
1539  * blocks on-disk.
1540  */
1541 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1542 {
1543 	struct buffer_head *head, *bh, *next;
1544 	size_t curr_off = 0;
1545 	size_t stop = length + offset;
1546 
1547 	BUG_ON(!folio_test_locked(folio));
1548 
1549 	/*
1550 	 * Check for overflow
1551 	 */
1552 	BUG_ON(stop > folio_size(folio) || stop < length);
1553 
1554 	head = folio_buffers(folio);
1555 	if (!head)
1556 		return;
1557 
1558 	bh = head;
1559 	do {
1560 		size_t next_off = curr_off + bh->b_size;
1561 		next = bh->b_this_page;
1562 
1563 		/*
1564 		 * Are we still fully in range ?
1565 		 */
1566 		if (next_off > stop)
1567 			goto out;
1568 
1569 		/*
1570 		 * is this block fully invalidated?
1571 		 */
1572 		if (offset <= curr_off)
1573 			discard_buffer(bh);
1574 		curr_off = next_off;
1575 		bh = next;
1576 	} while (bh != head);
1577 
1578 	/*
1579 	 * We release buffers only if the entire folio is being invalidated.
1580 	 * The get_block cached value has been unconditionally invalidated,
1581 	 * so real IO is not possible anymore.
1582 	 */
1583 	if (length == folio_size(folio))
1584 		filemap_release_folio(folio, 0);
1585 out:
1586 	return;
1587 }
1588 EXPORT_SYMBOL(block_invalidate_folio);
1589 
1590 /*
1591  * We attach and possibly dirty the buffers atomically wrt
1592  * block_dirty_folio() via private_lock.  try_to_free_buffers
1593  * is already excluded via the folio lock.
1594  */
1595 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1596 				unsigned long b_state)
1597 {
1598 	struct buffer_head *bh, *head, *tail;
1599 
1600 	head = folio_alloc_buffers(folio, blocksize, true);
1601 	bh = head;
1602 	do {
1603 		bh->b_state |= b_state;
1604 		tail = bh;
1605 		bh = bh->b_this_page;
1606 	} while (bh);
1607 	tail->b_this_page = head;
1608 
1609 	spin_lock(&folio->mapping->private_lock);
1610 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1611 		bh = head;
1612 		do {
1613 			if (folio_test_dirty(folio))
1614 				set_buffer_dirty(bh);
1615 			if (folio_test_uptodate(folio))
1616 				set_buffer_uptodate(bh);
1617 			bh = bh->b_this_page;
1618 		} while (bh != head);
1619 	}
1620 	folio_attach_private(folio, head);
1621 	spin_unlock(&folio->mapping->private_lock);
1622 }
1623 EXPORT_SYMBOL(folio_create_empty_buffers);
1624 
1625 void create_empty_buffers(struct page *page,
1626 			unsigned long blocksize, unsigned long b_state)
1627 {
1628 	folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1629 }
1630 EXPORT_SYMBOL(create_empty_buffers);
1631 
1632 /**
1633  * clean_bdev_aliases: clean a range of buffers in block device
1634  * @bdev: Block device to clean buffers in
1635  * @block: Start of a range of blocks to clean
1636  * @len: Number of blocks to clean
1637  *
1638  * We are taking a range of blocks for data and we don't want writeback of any
1639  * buffer-cache aliases starting from return from this function and until the
1640  * moment when something will explicitly mark the buffer dirty (hopefully that
1641  * will not happen until we will free that block ;-) We don't even need to mark
1642  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1643  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1644  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1645  * would confuse anyone who might pick it with bread() afterwards...
1646  *
1647  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1648  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1649  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1650  * need to.  That happens here.
1651  */
1652 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1653 {
1654 	struct inode *bd_inode = bdev->bd_inode;
1655 	struct address_space *bd_mapping = bd_inode->i_mapping;
1656 	struct folio_batch fbatch;
1657 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1658 	pgoff_t end;
1659 	int i, count;
1660 	struct buffer_head *bh;
1661 	struct buffer_head *head;
1662 
1663 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1664 	folio_batch_init(&fbatch);
1665 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1666 		count = folio_batch_count(&fbatch);
1667 		for (i = 0; i < count; i++) {
1668 			struct folio *folio = fbatch.folios[i];
1669 
1670 			if (!folio_buffers(folio))
1671 				continue;
1672 			/*
1673 			 * We use folio lock instead of bd_mapping->private_lock
1674 			 * to pin buffers here since we can afford to sleep and
1675 			 * it scales better than a global spinlock lock.
1676 			 */
1677 			folio_lock(folio);
1678 			/* Recheck when the folio is locked which pins bhs */
1679 			head = folio_buffers(folio);
1680 			if (!head)
1681 				goto unlock_page;
1682 			bh = head;
1683 			do {
1684 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1685 					goto next;
1686 				if (bh->b_blocknr >= block + len)
1687 					break;
1688 				clear_buffer_dirty(bh);
1689 				wait_on_buffer(bh);
1690 				clear_buffer_req(bh);
1691 next:
1692 				bh = bh->b_this_page;
1693 			} while (bh != head);
1694 unlock_page:
1695 			folio_unlock(folio);
1696 		}
1697 		folio_batch_release(&fbatch);
1698 		cond_resched();
1699 		/* End of range already reached? */
1700 		if (index > end || !index)
1701 			break;
1702 	}
1703 }
1704 EXPORT_SYMBOL(clean_bdev_aliases);
1705 
1706 /*
1707  * Size is a power-of-two in the range 512..PAGE_SIZE,
1708  * and the case we care about most is PAGE_SIZE.
1709  *
1710  * So this *could* possibly be written with those
1711  * constraints in mind (relevant mostly if some
1712  * architecture has a slow bit-scan instruction)
1713  */
1714 static inline int block_size_bits(unsigned int blocksize)
1715 {
1716 	return ilog2(blocksize);
1717 }
1718 
1719 static struct buffer_head *folio_create_buffers(struct folio *folio,
1720 						struct inode *inode,
1721 						unsigned int b_state)
1722 {
1723 	BUG_ON(!folio_test_locked(folio));
1724 
1725 	if (!folio_buffers(folio))
1726 		folio_create_empty_buffers(folio,
1727 					   1 << READ_ONCE(inode->i_blkbits),
1728 					   b_state);
1729 	return folio_buffers(folio);
1730 }
1731 
1732 /*
1733  * NOTE! All mapped/uptodate combinations are valid:
1734  *
1735  *	Mapped	Uptodate	Meaning
1736  *
1737  *	No	No		"unknown" - must do get_block()
1738  *	No	Yes		"hole" - zero-filled
1739  *	Yes	No		"allocated" - allocated on disk, not read in
1740  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1741  *
1742  * "Dirty" is valid only with the last case (mapped+uptodate).
1743  */
1744 
1745 /*
1746  * While block_write_full_page is writing back the dirty buffers under
1747  * the page lock, whoever dirtied the buffers may decide to clean them
1748  * again at any time.  We handle that by only looking at the buffer
1749  * state inside lock_buffer().
1750  *
1751  * If block_write_full_page() is called for regular writeback
1752  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1753  * locked buffer.   This only can happen if someone has written the buffer
1754  * directly, with submit_bh().  At the address_space level PageWriteback
1755  * prevents this contention from occurring.
1756  *
1757  * If block_write_full_page() is called with wbc->sync_mode ==
1758  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1759  * causes the writes to be flagged as synchronous writes.
1760  */
1761 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1762 			get_block_t *get_block, struct writeback_control *wbc,
1763 			bh_end_io_t *handler)
1764 {
1765 	int err;
1766 	sector_t block;
1767 	sector_t last_block;
1768 	struct buffer_head *bh, *head;
1769 	unsigned int blocksize, bbits;
1770 	int nr_underway = 0;
1771 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1772 
1773 	head = folio_create_buffers(folio, inode,
1774 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1775 
1776 	/*
1777 	 * Be very careful.  We have no exclusion from block_dirty_folio
1778 	 * here, and the (potentially unmapped) buffers may become dirty at
1779 	 * any time.  If a buffer becomes dirty here after we've inspected it
1780 	 * then we just miss that fact, and the folio stays dirty.
1781 	 *
1782 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1783 	 * handle that here by just cleaning them.
1784 	 */
1785 
1786 	bh = head;
1787 	blocksize = bh->b_size;
1788 	bbits = block_size_bits(blocksize);
1789 
1790 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1791 	last_block = (i_size_read(inode) - 1) >> bbits;
1792 
1793 	/*
1794 	 * Get all the dirty buffers mapped to disk addresses and
1795 	 * handle any aliases from the underlying blockdev's mapping.
1796 	 */
1797 	do {
1798 		if (block > last_block) {
1799 			/*
1800 			 * mapped buffers outside i_size will occur, because
1801 			 * this folio can be outside i_size when there is a
1802 			 * truncate in progress.
1803 			 */
1804 			/*
1805 			 * The buffer was zeroed by block_write_full_page()
1806 			 */
1807 			clear_buffer_dirty(bh);
1808 			set_buffer_uptodate(bh);
1809 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1810 			   buffer_dirty(bh)) {
1811 			WARN_ON(bh->b_size != blocksize);
1812 			err = get_block(inode, block, bh, 1);
1813 			if (err)
1814 				goto recover;
1815 			clear_buffer_delay(bh);
1816 			if (buffer_new(bh)) {
1817 				/* blockdev mappings never come here */
1818 				clear_buffer_new(bh);
1819 				clean_bdev_bh_alias(bh);
1820 			}
1821 		}
1822 		bh = bh->b_this_page;
1823 		block++;
1824 	} while (bh != head);
1825 
1826 	do {
1827 		if (!buffer_mapped(bh))
1828 			continue;
1829 		/*
1830 		 * If it's a fully non-blocking write attempt and we cannot
1831 		 * lock the buffer then redirty the folio.  Note that this can
1832 		 * potentially cause a busy-wait loop from writeback threads
1833 		 * and kswapd activity, but those code paths have their own
1834 		 * higher-level throttling.
1835 		 */
1836 		if (wbc->sync_mode != WB_SYNC_NONE) {
1837 			lock_buffer(bh);
1838 		} else if (!trylock_buffer(bh)) {
1839 			folio_redirty_for_writepage(wbc, folio);
1840 			continue;
1841 		}
1842 		if (test_clear_buffer_dirty(bh)) {
1843 			mark_buffer_async_write_endio(bh, handler);
1844 		} else {
1845 			unlock_buffer(bh);
1846 		}
1847 	} while ((bh = bh->b_this_page) != head);
1848 
1849 	/*
1850 	 * The folio and its buffers are protected by the writeback flag,
1851 	 * so we can drop the bh refcounts early.
1852 	 */
1853 	BUG_ON(folio_test_writeback(folio));
1854 	folio_start_writeback(folio);
1855 
1856 	do {
1857 		struct buffer_head *next = bh->b_this_page;
1858 		if (buffer_async_write(bh)) {
1859 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1860 			nr_underway++;
1861 		}
1862 		bh = next;
1863 	} while (bh != head);
1864 	folio_unlock(folio);
1865 
1866 	err = 0;
1867 done:
1868 	if (nr_underway == 0) {
1869 		/*
1870 		 * The folio was marked dirty, but the buffers were
1871 		 * clean.  Someone wrote them back by hand with
1872 		 * write_dirty_buffer/submit_bh.  A rare case.
1873 		 */
1874 		folio_end_writeback(folio);
1875 
1876 		/*
1877 		 * The folio and buffer_heads can be released at any time from
1878 		 * here on.
1879 		 */
1880 	}
1881 	return err;
1882 
1883 recover:
1884 	/*
1885 	 * ENOSPC, or some other error.  We may already have added some
1886 	 * blocks to the file, so we need to write these out to avoid
1887 	 * exposing stale data.
1888 	 * The folio is currently locked and not marked for writeback
1889 	 */
1890 	bh = head;
1891 	/* Recovery: lock and submit the mapped buffers */
1892 	do {
1893 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1894 		    !buffer_delay(bh)) {
1895 			lock_buffer(bh);
1896 			mark_buffer_async_write_endio(bh, handler);
1897 		} else {
1898 			/*
1899 			 * The buffer may have been set dirty during
1900 			 * attachment to a dirty folio.
1901 			 */
1902 			clear_buffer_dirty(bh);
1903 		}
1904 	} while ((bh = bh->b_this_page) != head);
1905 	folio_set_error(folio);
1906 	BUG_ON(folio_test_writeback(folio));
1907 	mapping_set_error(folio->mapping, err);
1908 	folio_start_writeback(folio);
1909 	do {
1910 		struct buffer_head *next = bh->b_this_page;
1911 		if (buffer_async_write(bh)) {
1912 			clear_buffer_dirty(bh);
1913 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1914 			nr_underway++;
1915 		}
1916 		bh = next;
1917 	} while (bh != head);
1918 	folio_unlock(folio);
1919 	goto done;
1920 }
1921 EXPORT_SYMBOL(__block_write_full_folio);
1922 
1923 /*
1924  * If a folio has any new buffers, zero them out here, and mark them uptodate
1925  * and dirty so they'll be written out (in order to prevent uninitialised
1926  * block data from leaking). And clear the new bit.
1927  */
1928 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1929 {
1930 	size_t block_start, block_end;
1931 	struct buffer_head *head, *bh;
1932 
1933 	BUG_ON(!folio_test_locked(folio));
1934 	head = folio_buffers(folio);
1935 	if (!head)
1936 		return;
1937 
1938 	bh = head;
1939 	block_start = 0;
1940 	do {
1941 		block_end = block_start + bh->b_size;
1942 
1943 		if (buffer_new(bh)) {
1944 			if (block_end > from && block_start < to) {
1945 				if (!folio_test_uptodate(folio)) {
1946 					size_t start, xend;
1947 
1948 					start = max(from, block_start);
1949 					xend = min(to, block_end);
1950 
1951 					folio_zero_segment(folio, start, xend);
1952 					set_buffer_uptodate(bh);
1953 				}
1954 
1955 				clear_buffer_new(bh);
1956 				mark_buffer_dirty(bh);
1957 			}
1958 		}
1959 
1960 		block_start = block_end;
1961 		bh = bh->b_this_page;
1962 	} while (bh != head);
1963 }
1964 EXPORT_SYMBOL(folio_zero_new_buffers);
1965 
1966 static void
1967 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1968 		const struct iomap *iomap)
1969 {
1970 	loff_t offset = block << inode->i_blkbits;
1971 
1972 	bh->b_bdev = iomap->bdev;
1973 
1974 	/*
1975 	 * Block points to offset in file we need to map, iomap contains
1976 	 * the offset at which the map starts. If the map ends before the
1977 	 * current block, then do not map the buffer and let the caller
1978 	 * handle it.
1979 	 */
1980 	BUG_ON(offset >= iomap->offset + iomap->length);
1981 
1982 	switch (iomap->type) {
1983 	case IOMAP_HOLE:
1984 		/*
1985 		 * If the buffer is not up to date or beyond the current EOF,
1986 		 * we need to mark it as new to ensure sub-block zeroing is
1987 		 * executed if necessary.
1988 		 */
1989 		if (!buffer_uptodate(bh) ||
1990 		    (offset >= i_size_read(inode)))
1991 			set_buffer_new(bh);
1992 		break;
1993 	case IOMAP_DELALLOC:
1994 		if (!buffer_uptodate(bh) ||
1995 		    (offset >= i_size_read(inode)))
1996 			set_buffer_new(bh);
1997 		set_buffer_uptodate(bh);
1998 		set_buffer_mapped(bh);
1999 		set_buffer_delay(bh);
2000 		break;
2001 	case IOMAP_UNWRITTEN:
2002 		/*
2003 		 * For unwritten regions, we always need to ensure that regions
2004 		 * in the block we are not writing to are zeroed. Mark the
2005 		 * buffer as new to ensure this.
2006 		 */
2007 		set_buffer_new(bh);
2008 		set_buffer_unwritten(bh);
2009 		fallthrough;
2010 	case IOMAP_MAPPED:
2011 		if ((iomap->flags & IOMAP_F_NEW) ||
2012 		    offset >= i_size_read(inode))
2013 			set_buffer_new(bh);
2014 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2015 				inode->i_blkbits;
2016 		set_buffer_mapped(bh);
2017 		break;
2018 	}
2019 }
2020 
2021 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2022 		get_block_t *get_block, const struct iomap *iomap)
2023 {
2024 	unsigned from = pos & (PAGE_SIZE - 1);
2025 	unsigned to = from + len;
2026 	struct inode *inode = folio->mapping->host;
2027 	unsigned block_start, block_end;
2028 	sector_t block;
2029 	int err = 0;
2030 	unsigned blocksize, bbits;
2031 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2032 
2033 	BUG_ON(!folio_test_locked(folio));
2034 	BUG_ON(from > PAGE_SIZE);
2035 	BUG_ON(to > PAGE_SIZE);
2036 	BUG_ON(from > to);
2037 
2038 	head = folio_create_buffers(folio, inode, 0);
2039 	blocksize = head->b_size;
2040 	bbits = block_size_bits(blocksize);
2041 
2042 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2043 
2044 	for(bh = head, block_start = 0; bh != head || !block_start;
2045 	    block++, block_start=block_end, bh = bh->b_this_page) {
2046 		block_end = block_start + blocksize;
2047 		if (block_end <= from || block_start >= to) {
2048 			if (folio_test_uptodate(folio)) {
2049 				if (!buffer_uptodate(bh))
2050 					set_buffer_uptodate(bh);
2051 			}
2052 			continue;
2053 		}
2054 		if (buffer_new(bh))
2055 			clear_buffer_new(bh);
2056 		if (!buffer_mapped(bh)) {
2057 			WARN_ON(bh->b_size != blocksize);
2058 			if (get_block) {
2059 				err = get_block(inode, block, bh, 1);
2060 				if (err)
2061 					break;
2062 			} else {
2063 				iomap_to_bh(inode, block, bh, iomap);
2064 			}
2065 
2066 			if (buffer_new(bh)) {
2067 				clean_bdev_bh_alias(bh);
2068 				if (folio_test_uptodate(folio)) {
2069 					clear_buffer_new(bh);
2070 					set_buffer_uptodate(bh);
2071 					mark_buffer_dirty(bh);
2072 					continue;
2073 				}
2074 				if (block_end > to || block_start < from)
2075 					folio_zero_segments(folio,
2076 						to, block_end,
2077 						block_start, from);
2078 				continue;
2079 			}
2080 		}
2081 		if (folio_test_uptodate(folio)) {
2082 			if (!buffer_uptodate(bh))
2083 				set_buffer_uptodate(bh);
2084 			continue;
2085 		}
2086 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2087 		    !buffer_unwritten(bh) &&
2088 		     (block_start < from || block_end > to)) {
2089 			bh_read_nowait(bh, 0);
2090 			*wait_bh++=bh;
2091 		}
2092 	}
2093 	/*
2094 	 * If we issued read requests - let them complete.
2095 	 */
2096 	while(wait_bh > wait) {
2097 		wait_on_buffer(*--wait_bh);
2098 		if (!buffer_uptodate(*wait_bh))
2099 			err = -EIO;
2100 	}
2101 	if (unlikely(err))
2102 		folio_zero_new_buffers(folio, from, to);
2103 	return err;
2104 }
2105 
2106 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2107 		get_block_t *get_block)
2108 {
2109 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2110 				       NULL);
2111 }
2112 EXPORT_SYMBOL(__block_write_begin);
2113 
2114 static int __block_commit_write(struct inode *inode, struct folio *folio,
2115 		size_t from, size_t to)
2116 {
2117 	size_t block_start, block_end;
2118 	bool partial = false;
2119 	unsigned blocksize;
2120 	struct buffer_head *bh, *head;
2121 
2122 	bh = head = folio_buffers(folio);
2123 	blocksize = bh->b_size;
2124 
2125 	block_start = 0;
2126 	do {
2127 		block_end = block_start + blocksize;
2128 		if (block_end <= from || block_start >= to) {
2129 			if (!buffer_uptodate(bh))
2130 				partial = true;
2131 		} else {
2132 			set_buffer_uptodate(bh);
2133 			mark_buffer_dirty(bh);
2134 		}
2135 		if (buffer_new(bh))
2136 			clear_buffer_new(bh);
2137 
2138 		block_start = block_end;
2139 		bh = bh->b_this_page;
2140 	} while (bh != head);
2141 
2142 	/*
2143 	 * If this is a partial write which happened to make all buffers
2144 	 * uptodate then we can optimize away a bogus read_folio() for
2145 	 * the next read(). Here we 'discover' whether the folio went
2146 	 * uptodate as a result of this (potentially partial) write.
2147 	 */
2148 	if (!partial)
2149 		folio_mark_uptodate(folio);
2150 	return 0;
2151 }
2152 
2153 /*
2154  * block_write_begin takes care of the basic task of block allocation and
2155  * bringing partial write blocks uptodate first.
2156  *
2157  * The filesystem needs to handle block truncation upon failure.
2158  */
2159 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2160 		struct page **pagep, get_block_t *get_block)
2161 {
2162 	pgoff_t index = pos >> PAGE_SHIFT;
2163 	struct page *page;
2164 	int status;
2165 
2166 	page = grab_cache_page_write_begin(mapping, index);
2167 	if (!page)
2168 		return -ENOMEM;
2169 
2170 	status = __block_write_begin(page, pos, len, get_block);
2171 	if (unlikely(status)) {
2172 		unlock_page(page);
2173 		put_page(page);
2174 		page = NULL;
2175 	}
2176 
2177 	*pagep = page;
2178 	return status;
2179 }
2180 EXPORT_SYMBOL(block_write_begin);
2181 
2182 int block_write_end(struct file *file, struct address_space *mapping,
2183 			loff_t pos, unsigned len, unsigned copied,
2184 			struct page *page, void *fsdata)
2185 {
2186 	struct folio *folio = page_folio(page);
2187 	struct inode *inode = mapping->host;
2188 	size_t start = pos - folio_pos(folio);
2189 
2190 	if (unlikely(copied < len)) {
2191 		/*
2192 		 * The buffers that were written will now be uptodate, so
2193 		 * we don't have to worry about a read_folio reading them
2194 		 * and overwriting a partial write. However if we have
2195 		 * encountered a short write and only partially written
2196 		 * into a buffer, it will not be marked uptodate, so a
2197 		 * read_folio might come in and destroy our partial write.
2198 		 *
2199 		 * Do the simplest thing, and just treat any short write to a
2200 		 * non uptodate folio as a zero-length write, and force the
2201 		 * caller to redo the whole thing.
2202 		 */
2203 		if (!folio_test_uptodate(folio))
2204 			copied = 0;
2205 
2206 		folio_zero_new_buffers(folio, start+copied, start+len);
2207 	}
2208 	flush_dcache_folio(folio);
2209 
2210 	/* This could be a short (even 0-length) commit */
2211 	__block_commit_write(inode, folio, start, start + copied);
2212 
2213 	return copied;
2214 }
2215 EXPORT_SYMBOL(block_write_end);
2216 
2217 int generic_write_end(struct file *file, struct address_space *mapping,
2218 			loff_t pos, unsigned len, unsigned copied,
2219 			struct page *page, void *fsdata)
2220 {
2221 	struct inode *inode = mapping->host;
2222 	loff_t old_size = inode->i_size;
2223 	bool i_size_changed = false;
2224 
2225 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2226 
2227 	/*
2228 	 * No need to use i_size_read() here, the i_size cannot change under us
2229 	 * because we hold i_rwsem.
2230 	 *
2231 	 * But it's important to update i_size while still holding page lock:
2232 	 * page writeout could otherwise come in and zero beyond i_size.
2233 	 */
2234 	if (pos + copied > inode->i_size) {
2235 		i_size_write(inode, pos + copied);
2236 		i_size_changed = true;
2237 	}
2238 
2239 	unlock_page(page);
2240 	put_page(page);
2241 
2242 	if (old_size < pos)
2243 		pagecache_isize_extended(inode, old_size, pos);
2244 	/*
2245 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2246 	 * makes the holding time of page lock longer. Second, it forces lock
2247 	 * ordering of page lock and transaction start for journaling
2248 	 * filesystems.
2249 	 */
2250 	if (i_size_changed)
2251 		mark_inode_dirty(inode);
2252 	return copied;
2253 }
2254 EXPORT_SYMBOL(generic_write_end);
2255 
2256 /*
2257  * block_is_partially_uptodate checks whether buffers within a folio are
2258  * uptodate or not.
2259  *
2260  * Returns true if all buffers which correspond to the specified part
2261  * of the folio are uptodate.
2262  */
2263 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2264 {
2265 	unsigned block_start, block_end, blocksize;
2266 	unsigned to;
2267 	struct buffer_head *bh, *head;
2268 	bool ret = true;
2269 
2270 	head = folio_buffers(folio);
2271 	if (!head)
2272 		return false;
2273 	blocksize = head->b_size;
2274 	to = min_t(unsigned, folio_size(folio) - from, count);
2275 	to = from + to;
2276 	if (from < blocksize && to > folio_size(folio) - blocksize)
2277 		return false;
2278 
2279 	bh = head;
2280 	block_start = 0;
2281 	do {
2282 		block_end = block_start + blocksize;
2283 		if (block_end > from && block_start < to) {
2284 			if (!buffer_uptodate(bh)) {
2285 				ret = false;
2286 				break;
2287 			}
2288 			if (block_end >= to)
2289 				break;
2290 		}
2291 		block_start = block_end;
2292 		bh = bh->b_this_page;
2293 	} while (bh != head);
2294 
2295 	return ret;
2296 }
2297 EXPORT_SYMBOL(block_is_partially_uptodate);
2298 
2299 /*
2300  * Generic "read_folio" function for block devices that have the normal
2301  * get_block functionality. This is most of the block device filesystems.
2302  * Reads the folio asynchronously --- the unlock_buffer() and
2303  * set/clear_buffer_uptodate() functions propagate buffer state into the
2304  * folio once IO has completed.
2305  */
2306 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2307 {
2308 	struct inode *inode = folio->mapping->host;
2309 	sector_t iblock, lblock;
2310 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2311 	unsigned int blocksize, bbits;
2312 	int nr, i;
2313 	int fully_mapped = 1;
2314 	bool page_error = false;
2315 	loff_t limit = i_size_read(inode);
2316 
2317 	/* This is needed for ext4. */
2318 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2319 		limit = inode->i_sb->s_maxbytes;
2320 
2321 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2322 
2323 	head = folio_create_buffers(folio, inode, 0);
2324 	blocksize = head->b_size;
2325 	bbits = block_size_bits(blocksize);
2326 
2327 	iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2328 	lblock = (limit+blocksize-1) >> bbits;
2329 	bh = head;
2330 	nr = 0;
2331 	i = 0;
2332 
2333 	do {
2334 		if (buffer_uptodate(bh))
2335 			continue;
2336 
2337 		if (!buffer_mapped(bh)) {
2338 			int err = 0;
2339 
2340 			fully_mapped = 0;
2341 			if (iblock < lblock) {
2342 				WARN_ON(bh->b_size != blocksize);
2343 				err = get_block(inode, iblock, bh, 0);
2344 				if (err) {
2345 					folio_set_error(folio);
2346 					page_error = true;
2347 				}
2348 			}
2349 			if (!buffer_mapped(bh)) {
2350 				folio_zero_range(folio, i * blocksize,
2351 						blocksize);
2352 				if (!err)
2353 					set_buffer_uptodate(bh);
2354 				continue;
2355 			}
2356 			/*
2357 			 * get_block() might have updated the buffer
2358 			 * synchronously
2359 			 */
2360 			if (buffer_uptodate(bh))
2361 				continue;
2362 		}
2363 		arr[nr++] = bh;
2364 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2365 
2366 	if (fully_mapped)
2367 		folio_set_mappedtodisk(folio);
2368 
2369 	if (!nr) {
2370 		/*
2371 		 * All buffers are uptodate - we can set the folio uptodate
2372 		 * as well. But not if get_block() returned an error.
2373 		 */
2374 		if (!page_error)
2375 			folio_mark_uptodate(folio);
2376 		folio_unlock(folio);
2377 		return 0;
2378 	}
2379 
2380 	/* Stage two: lock the buffers */
2381 	for (i = 0; i < nr; i++) {
2382 		bh = arr[i];
2383 		lock_buffer(bh);
2384 		mark_buffer_async_read(bh);
2385 	}
2386 
2387 	/*
2388 	 * Stage 3: start the IO.  Check for uptodateness
2389 	 * inside the buffer lock in case another process reading
2390 	 * the underlying blockdev brought it uptodate (the sct fix).
2391 	 */
2392 	for (i = 0; i < nr; i++) {
2393 		bh = arr[i];
2394 		if (buffer_uptodate(bh))
2395 			end_buffer_async_read(bh, 1);
2396 		else
2397 			submit_bh(REQ_OP_READ, bh);
2398 	}
2399 	return 0;
2400 }
2401 EXPORT_SYMBOL(block_read_full_folio);
2402 
2403 /* utility function for filesystems that need to do work on expanding
2404  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2405  * deal with the hole.
2406  */
2407 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2408 {
2409 	struct address_space *mapping = inode->i_mapping;
2410 	const struct address_space_operations *aops = mapping->a_ops;
2411 	struct page *page;
2412 	void *fsdata = NULL;
2413 	int err;
2414 
2415 	err = inode_newsize_ok(inode, size);
2416 	if (err)
2417 		goto out;
2418 
2419 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2420 	if (err)
2421 		goto out;
2422 
2423 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2424 	BUG_ON(err > 0);
2425 
2426 out:
2427 	return err;
2428 }
2429 EXPORT_SYMBOL(generic_cont_expand_simple);
2430 
2431 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2432 			    loff_t pos, loff_t *bytes)
2433 {
2434 	struct inode *inode = mapping->host;
2435 	const struct address_space_operations *aops = mapping->a_ops;
2436 	unsigned int blocksize = i_blocksize(inode);
2437 	struct page *page;
2438 	void *fsdata = NULL;
2439 	pgoff_t index, curidx;
2440 	loff_t curpos;
2441 	unsigned zerofrom, offset, len;
2442 	int err = 0;
2443 
2444 	index = pos >> PAGE_SHIFT;
2445 	offset = pos & ~PAGE_MASK;
2446 
2447 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2448 		zerofrom = curpos & ~PAGE_MASK;
2449 		if (zerofrom & (blocksize-1)) {
2450 			*bytes |= (blocksize-1);
2451 			(*bytes)++;
2452 		}
2453 		len = PAGE_SIZE - zerofrom;
2454 
2455 		err = aops->write_begin(file, mapping, curpos, len,
2456 					    &page, &fsdata);
2457 		if (err)
2458 			goto out;
2459 		zero_user(page, zerofrom, len);
2460 		err = aops->write_end(file, mapping, curpos, len, len,
2461 						page, fsdata);
2462 		if (err < 0)
2463 			goto out;
2464 		BUG_ON(err != len);
2465 		err = 0;
2466 
2467 		balance_dirty_pages_ratelimited(mapping);
2468 
2469 		if (fatal_signal_pending(current)) {
2470 			err = -EINTR;
2471 			goto out;
2472 		}
2473 	}
2474 
2475 	/* page covers the boundary, find the boundary offset */
2476 	if (index == curidx) {
2477 		zerofrom = curpos & ~PAGE_MASK;
2478 		/* if we will expand the thing last block will be filled */
2479 		if (offset <= zerofrom) {
2480 			goto out;
2481 		}
2482 		if (zerofrom & (blocksize-1)) {
2483 			*bytes |= (blocksize-1);
2484 			(*bytes)++;
2485 		}
2486 		len = offset - zerofrom;
2487 
2488 		err = aops->write_begin(file, mapping, curpos, len,
2489 					    &page, &fsdata);
2490 		if (err)
2491 			goto out;
2492 		zero_user(page, zerofrom, len);
2493 		err = aops->write_end(file, mapping, curpos, len, len,
2494 						page, fsdata);
2495 		if (err < 0)
2496 			goto out;
2497 		BUG_ON(err != len);
2498 		err = 0;
2499 	}
2500 out:
2501 	return err;
2502 }
2503 
2504 /*
2505  * For moronic filesystems that do not allow holes in file.
2506  * We may have to extend the file.
2507  */
2508 int cont_write_begin(struct file *file, struct address_space *mapping,
2509 			loff_t pos, unsigned len,
2510 			struct page **pagep, void **fsdata,
2511 			get_block_t *get_block, loff_t *bytes)
2512 {
2513 	struct inode *inode = mapping->host;
2514 	unsigned int blocksize = i_blocksize(inode);
2515 	unsigned int zerofrom;
2516 	int err;
2517 
2518 	err = cont_expand_zero(file, mapping, pos, bytes);
2519 	if (err)
2520 		return err;
2521 
2522 	zerofrom = *bytes & ~PAGE_MASK;
2523 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2524 		*bytes |= (blocksize-1);
2525 		(*bytes)++;
2526 	}
2527 
2528 	return block_write_begin(mapping, pos, len, pagep, get_block);
2529 }
2530 EXPORT_SYMBOL(cont_write_begin);
2531 
2532 int block_commit_write(struct page *page, unsigned from, unsigned to)
2533 {
2534 	struct folio *folio = page_folio(page);
2535 	struct inode *inode = folio->mapping->host;
2536 	__block_commit_write(inode, folio, from, to);
2537 	return 0;
2538 }
2539 EXPORT_SYMBOL(block_commit_write);
2540 
2541 /*
2542  * block_page_mkwrite() is not allowed to change the file size as it gets
2543  * called from a page fault handler when a page is first dirtied. Hence we must
2544  * be careful to check for EOF conditions here. We set the page up correctly
2545  * for a written page which means we get ENOSPC checking when writing into
2546  * holes and correct delalloc and unwritten extent mapping on filesystems that
2547  * support these features.
2548  *
2549  * We are not allowed to take the i_mutex here so we have to play games to
2550  * protect against truncate races as the page could now be beyond EOF.  Because
2551  * truncate writes the inode size before removing pages, once we have the
2552  * page lock we can determine safely if the page is beyond EOF. If it is not
2553  * beyond EOF, then the page is guaranteed safe against truncation until we
2554  * unlock the page.
2555  *
2556  * Direct callers of this function should protect against filesystem freezing
2557  * using sb_start_pagefault() - sb_end_pagefault() functions.
2558  */
2559 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2560 			 get_block_t get_block)
2561 {
2562 	struct folio *folio = page_folio(vmf->page);
2563 	struct inode *inode = file_inode(vma->vm_file);
2564 	unsigned long end;
2565 	loff_t size;
2566 	int ret;
2567 
2568 	folio_lock(folio);
2569 	size = i_size_read(inode);
2570 	if ((folio->mapping != inode->i_mapping) ||
2571 	    (folio_pos(folio) >= size)) {
2572 		/* We overload EFAULT to mean page got truncated */
2573 		ret = -EFAULT;
2574 		goto out_unlock;
2575 	}
2576 
2577 	end = folio_size(folio);
2578 	/* folio is wholly or partially inside EOF */
2579 	if (folio_pos(folio) + end > size)
2580 		end = size - folio_pos(folio);
2581 
2582 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2583 	if (!ret)
2584 		ret = __block_commit_write(inode, folio, 0, end);
2585 
2586 	if (unlikely(ret < 0))
2587 		goto out_unlock;
2588 	folio_mark_dirty(folio);
2589 	folio_wait_stable(folio);
2590 	return 0;
2591 out_unlock:
2592 	folio_unlock(folio);
2593 	return ret;
2594 }
2595 EXPORT_SYMBOL(block_page_mkwrite);
2596 
2597 int block_truncate_page(struct address_space *mapping,
2598 			loff_t from, get_block_t *get_block)
2599 {
2600 	pgoff_t index = from >> PAGE_SHIFT;
2601 	unsigned blocksize;
2602 	sector_t iblock;
2603 	size_t offset, length, pos;
2604 	struct inode *inode = mapping->host;
2605 	struct folio *folio;
2606 	struct buffer_head *bh;
2607 	int err = 0;
2608 
2609 	blocksize = i_blocksize(inode);
2610 	length = from & (blocksize - 1);
2611 
2612 	/* Block boundary? Nothing to do */
2613 	if (!length)
2614 		return 0;
2615 
2616 	length = blocksize - length;
2617 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2618 
2619 	folio = filemap_grab_folio(mapping, index);
2620 	if (IS_ERR(folio))
2621 		return PTR_ERR(folio);
2622 
2623 	bh = folio_buffers(folio);
2624 	if (!bh) {
2625 		folio_create_empty_buffers(folio, blocksize, 0);
2626 		bh = folio_buffers(folio);
2627 	}
2628 
2629 	/* Find the buffer that contains "offset" */
2630 	offset = offset_in_folio(folio, from);
2631 	pos = blocksize;
2632 	while (offset >= pos) {
2633 		bh = bh->b_this_page;
2634 		iblock++;
2635 		pos += blocksize;
2636 	}
2637 
2638 	if (!buffer_mapped(bh)) {
2639 		WARN_ON(bh->b_size != blocksize);
2640 		err = get_block(inode, iblock, bh, 0);
2641 		if (err)
2642 			goto unlock;
2643 		/* unmapped? It's a hole - nothing to do */
2644 		if (!buffer_mapped(bh))
2645 			goto unlock;
2646 	}
2647 
2648 	/* Ok, it's mapped. Make sure it's up-to-date */
2649 	if (folio_test_uptodate(folio))
2650 		set_buffer_uptodate(bh);
2651 
2652 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2653 		err = bh_read(bh, 0);
2654 		/* Uhhuh. Read error. Complain and punt. */
2655 		if (err < 0)
2656 			goto unlock;
2657 	}
2658 
2659 	folio_zero_range(folio, offset, length);
2660 	mark_buffer_dirty(bh);
2661 
2662 unlock:
2663 	folio_unlock(folio);
2664 	folio_put(folio);
2665 
2666 	return err;
2667 }
2668 EXPORT_SYMBOL(block_truncate_page);
2669 
2670 /*
2671  * The generic ->writepage function for buffer-backed address_spaces
2672  */
2673 int block_write_full_page(struct page *page, get_block_t *get_block,
2674 			struct writeback_control *wbc)
2675 {
2676 	struct folio *folio = page_folio(page);
2677 	struct inode * const inode = folio->mapping->host;
2678 	loff_t i_size = i_size_read(inode);
2679 
2680 	/* Is the folio fully inside i_size? */
2681 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2682 		return __block_write_full_folio(inode, folio, get_block, wbc,
2683 					       end_buffer_async_write);
2684 
2685 	/* Is the folio fully outside i_size? (truncate in progress) */
2686 	if (folio_pos(folio) >= i_size) {
2687 		folio_unlock(folio);
2688 		return 0; /* don't care */
2689 	}
2690 
2691 	/*
2692 	 * The folio straddles i_size.  It must be zeroed out on each and every
2693 	 * writepage invocation because it may be mmapped.  "A file is mapped
2694 	 * in multiples of the page size.  For a file that is not a multiple of
2695 	 * the page size, the remaining memory is zeroed when mapped, and
2696 	 * writes to that region are not written out to the file."
2697 	 */
2698 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2699 			folio_size(folio));
2700 	return __block_write_full_folio(inode, folio, get_block, wbc,
2701 			end_buffer_async_write);
2702 }
2703 EXPORT_SYMBOL(block_write_full_page);
2704 
2705 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2706 			    get_block_t *get_block)
2707 {
2708 	struct inode *inode = mapping->host;
2709 	struct buffer_head tmp = {
2710 		.b_size = i_blocksize(inode),
2711 	};
2712 
2713 	get_block(inode, block, &tmp, 0);
2714 	return tmp.b_blocknr;
2715 }
2716 EXPORT_SYMBOL(generic_block_bmap);
2717 
2718 static void end_bio_bh_io_sync(struct bio *bio)
2719 {
2720 	struct buffer_head *bh = bio->bi_private;
2721 
2722 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2723 		set_bit(BH_Quiet, &bh->b_state);
2724 
2725 	bh->b_end_io(bh, !bio->bi_status);
2726 	bio_put(bio);
2727 }
2728 
2729 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2730 			  struct writeback_control *wbc)
2731 {
2732 	const enum req_op op = opf & REQ_OP_MASK;
2733 	struct bio *bio;
2734 
2735 	BUG_ON(!buffer_locked(bh));
2736 	BUG_ON(!buffer_mapped(bh));
2737 	BUG_ON(!bh->b_end_io);
2738 	BUG_ON(buffer_delay(bh));
2739 	BUG_ON(buffer_unwritten(bh));
2740 
2741 	/*
2742 	 * Only clear out a write error when rewriting
2743 	 */
2744 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2745 		clear_buffer_write_io_error(bh);
2746 
2747 	if (buffer_meta(bh))
2748 		opf |= REQ_META;
2749 	if (buffer_prio(bh))
2750 		opf |= REQ_PRIO;
2751 
2752 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2753 
2754 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2755 
2756 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2757 
2758 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2759 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2760 
2761 	bio->bi_end_io = end_bio_bh_io_sync;
2762 	bio->bi_private = bh;
2763 
2764 	/* Take care of bh's that straddle the end of the device */
2765 	guard_bio_eod(bio);
2766 
2767 	if (wbc) {
2768 		wbc_init_bio(wbc, bio);
2769 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2770 	}
2771 
2772 	submit_bio(bio);
2773 }
2774 
2775 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2776 {
2777 	submit_bh_wbc(opf, bh, NULL);
2778 }
2779 EXPORT_SYMBOL(submit_bh);
2780 
2781 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2782 {
2783 	lock_buffer(bh);
2784 	if (!test_clear_buffer_dirty(bh)) {
2785 		unlock_buffer(bh);
2786 		return;
2787 	}
2788 	bh->b_end_io = end_buffer_write_sync;
2789 	get_bh(bh);
2790 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2791 }
2792 EXPORT_SYMBOL(write_dirty_buffer);
2793 
2794 /*
2795  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2796  * and then start new I/O and then wait upon it.  The caller must have a ref on
2797  * the buffer_head.
2798  */
2799 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2800 {
2801 	WARN_ON(atomic_read(&bh->b_count) < 1);
2802 	lock_buffer(bh);
2803 	if (test_clear_buffer_dirty(bh)) {
2804 		/*
2805 		 * The bh should be mapped, but it might not be if the
2806 		 * device was hot-removed. Not much we can do but fail the I/O.
2807 		 */
2808 		if (!buffer_mapped(bh)) {
2809 			unlock_buffer(bh);
2810 			return -EIO;
2811 		}
2812 
2813 		get_bh(bh);
2814 		bh->b_end_io = end_buffer_write_sync;
2815 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2816 		wait_on_buffer(bh);
2817 		if (!buffer_uptodate(bh))
2818 			return -EIO;
2819 	} else {
2820 		unlock_buffer(bh);
2821 	}
2822 	return 0;
2823 }
2824 EXPORT_SYMBOL(__sync_dirty_buffer);
2825 
2826 int sync_dirty_buffer(struct buffer_head *bh)
2827 {
2828 	return __sync_dirty_buffer(bh, REQ_SYNC);
2829 }
2830 EXPORT_SYMBOL(sync_dirty_buffer);
2831 
2832 /*
2833  * try_to_free_buffers() checks if all the buffers on this particular folio
2834  * are unused, and releases them if so.
2835  *
2836  * Exclusion against try_to_free_buffers may be obtained by either
2837  * locking the folio or by holding its mapping's private_lock.
2838  *
2839  * If the folio is dirty but all the buffers are clean then we need to
2840  * be sure to mark the folio clean as well.  This is because the folio
2841  * may be against a block device, and a later reattachment of buffers
2842  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2843  * filesystem data on the same device.
2844  *
2845  * The same applies to regular filesystem folios: if all the buffers are
2846  * clean then we set the folio clean and proceed.  To do that, we require
2847  * total exclusion from block_dirty_folio().  That is obtained with
2848  * private_lock.
2849  *
2850  * try_to_free_buffers() is non-blocking.
2851  */
2852 static inline int buffer_busy(struct buffer_head *bh)
2853 {
2854 	return atomic_read(&bh->b_count) |
2855 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2856 }
2857 
2858 static bool
2859 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2860 {
2861 	struct buffer_head *head = folio_buffers(folio);
2862 	struct buffer_head *bh;
2863 
2864 	bh = head;
2865 	do {
2866 		if (buffer_busy(bh))
2867 			goto failed;
2868 		bh = bh->b_this_page;
2869 	} while (bh != head);
2870 
2871 	do {
2872 		struct buffer_head *next = bh->b_this_page;
2873 
2874 		if (bh->b_assoc_map)
2875 			__remove_assoc_queue(bh);
2876 		bh = next;
2877 	} while (bh != head);
2878 	*buffers_to_free = head;
2879 	folio_detach_private(folio);
2880 	return true;
2881 failed:
2882 	return false;
2883 }
2884 
2885 bool try_to_free_buffers(struct folio *folio)
2886 {
2887 	struct address_space * const mapping = folio->mapping;
2888 	struct buffer_head *buffers_to_free = NULL;
2889 	bool ret = 0;
2890 
2891 	BUG_ON(!folio_test_locked(folio));
2892 	if (folio_test_writeback(folio))
2893 		return false;
2894 
2895 	if (mapping == NULL) {		/* can this still happen? */
2896 		ret = drop_buffers(folio, &buffers_to_free);
2897 		goto out;
2898 	}
2899 
2900 	spin_lock(&mapping->private_lock);
2901 	ret = drop_buffers(folio, &buffers_to_free);
2902 
2903 	/*
2904 	 * If the filesystem writes its buffers by hand (eg ext3)
2905 	 * then we can have clean buffers against a dirty folio.  We
2906 	 * clean the folio here; otherwise the VM will never notice
2907 	 * that the filesystem did any IO at all.
2908 	 *
2909 	 * Also, during truncate, discard_buffer will have marked all
2910 	 * the folio's buffers clean.  We discover that here and clean
2911 	 * the folio also.
2912 	 *
2913 	 * private_lock must be held over this entire operation in order
2914 	 * to synchronise against block_dirty_folio and prevent the
2915 	 * dirty bit from being lost.
2916 	 */
2917 	if (ret)
2918 		folio_cancel_dirty(folio);
2919 	spin_unlock(&mapping->private_lock);
2920 out:
2921 	if (buffers_to_free) {
2922 		struct buffer_head *bh = buffers_to_free;
2923 
2924 		do {
2925 			struct buffer_head *next = bh->b_this_page;
2926 			free_buffer_head(bh);
2927 			bh = next;
2928 		} while (bh != buffers_to_free);
2929 	}
2930 	return ret;
2931 }
2932 EXPORT_SYMBOL(try_to_free_buffers);
2933 
2934 /*
2935  * Buffer-head allocation
2936  */
2937 static struct kmem_cache *bh_cachep __read_mostly;
2938 
2939 /*
2940  * Once the number of bh's in the machine exceeds this level, we start
2941  * stripping them in writeback.
2942  */
2943 static unsigned long max_buffer_heads;
2944 
2945 int buffer_heads_over_limit;
2946 
2947 struct bh_accounting {
2948 	int nr;			/* Number of live bh's */
2949 	int ratelimit;		/* Limit cacheline bouncing */
2950 };
2951 
2952 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2953 
2954 static void recalc_bh_state(void)
2955 {
2956 	int i;
2957 	int tot = 0;
2958 
2959 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2960 		return;
2961 	__this_cpu_write(bh_accounting.ratelimit, 0);
2962 	for_each_online_cpu(i)
2963 		tot += per_cpu(bh_accounting, i).nr;
2964 	buffer_heads_over_limit = (tot > max_buffer_heads);
2965 }
2966 
2967 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2968 {
2969 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2970 	if (ret) {
2971 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
2972 		spin_lock_init(&ret->b_uptodate_lock);
2973 		preempt_disable();
2974 		__this_cpu_inc(bh_accounting.nr);
2975 		recalc_bh_state();
2976 		preempt_enable();
2977 	}
2978 	return ret;
2979 }
2980 EXPORT_SYMBOL(alloc_buffer_head);
2981 
2982 void free_buffer_head(struct buffer_head *bh)
2983 {
2984 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
2985 	kmem_cache_free(bh_cachep, bh);
2986 	preempt_disable();
2987 	__this_cpu_dec(bh_accounting.nr);
2988 	recalc_bh_state();
2989 	preempt_enable();
2990 }
2991 EXPORT_SYMBOL(free_buffer_head);
2992 
2993 static int buffer_exit_cpu_dead(unsigned int cpu)
2994 {
2995 	int i;
2996 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2997 
2998 	for (i = 0; i < BH_LRU_SIZE; i++) {
2999 		brelse(b->bhs[i]);
3000 		b->bhs[i] = NULL;
3001 	}
3002 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3003 	per_cpu(bh_accounting, cpu).nr = 0;
3004 	return 0;
3005 }
3006 
3007 /**
3008  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3009  * @bh: struct buffer_head
3010  *
3011  * Return true if the buffer is up-to-date and false,
3012  * with the buffer locked, if not.
3013  */
3014 int bh_uptodate_or_lock(struct buffer_head *bh)
3015 {
3016 	if (!buffer_uptodate(bh)) {
3017 		lock_buffer(bh);
3018 		if (!buffer_uptodate(bh))
3019 			return 0;
3020 		unlock_buffer(bh);
3021 	}
3022 	return 1;
3023 }
3024 EXPORT_SYMBOL(bh_uptodate_or_lock);
3025 
3026 /**
3027  * __bh_read - Submit read for a locked buffer
3028  * @bh: struct buffer_head
3029  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3030  * @wait: wait until reading finish
3031  *
3032  * Returns zero on success or don't wait, and -EIO on error.
3033  */
3034 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3035 {
3036 	int ret = 0;
3037 
3038 	BUG_ON(!buffer_locked(bh));
3039 
3040 	get_bh(bh);
3041 	bh->b_end_io = end_buffer_read_sync;
3042 	submit_bh(REQ_OP_READ | op_flags, bh);
3043 	if (wait) {
3044 		wait_on_buffer(bh);
3045 		if (!buffer_uptodate(bh))
3046 			ret = -EIO;
3047 	}
3048 	return ret;
3049 }
3050 EXPORT_SYMBOL(__bh_read);
3051 
3052 /**
3053  * __bh_read_batch - Submit read for a batch of unlocked buffers
3054  * @nr: entry number of the buffer batch
3055  * @bhs: a batch of struct buffer_head
3056  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3057  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3058  *              buffer that cannot lock.
3059  *
3060  * Returns zero on success or don't wait, and -EIO on error.
3061  */
3062 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3063 		     blk_opf_t op_flags, bool force_lock)
3064 {
3065 	int i;
3066 
3067 	for (i = 0; i < nr; i++) {
3068 		struct buffer_head *bh = bhs[i];
3069 
3070 		if (buffer_uptodate(bh))
3071 			continue;
3072 
3073 		if (force_lock)
3074 			lock_buffer(bh);
3075 		else
3076 			if (!trylock_buffer(bh))
3077 				continue;
3078 
3079 		if (buffer_uptodate(bh)) {
3080 			unlock_buffer(bh);
3081 			continue;
3082 		}
3083 
3084 		bh->b_end_io = end_buffer_read_sync;
3085 		get_bh(bh);
3086 		submit_bh(REQ_OP_READ | op_flags, bh);
3087 	}
3088 }
3089 EXPORT_SYMBOL(__bh_read_batch);
3090 
3091 void __init buffer_init(void)
3092 {
3093 	unsigned long nrpages;
3094 	int ret;
3095 
3096 	bh_cachep = kmem_cache_create("buffer_head",
3097 			sizeof(struct buffer_head), 0,
3098 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3099 				SLAB_MEM_SPREAD),
3100 				NULL);
3101 
3102 	/*
3103 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3104 	 */
3105 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3106 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3107 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3108 					NULL, buffer_exit_cpu_dead);
3109 	WARN_ON(ret < 0);
3110 }
3111