xref: /openbmc/linux/fs/buffer.c (revision 606d099c)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53 	bh->b_end_io = handler;
54 	bh->b_private = private;
55 }
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80 	clear_buffer_locked(bh);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 	ClearPagePrivate(page);
99 	set_page_private(page, 0);
100 	page_cache_release(page);
101 }
102 
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 	char b[BDEVNAME_SIZE];
106 
107 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 			bdevname(bh->b_bdev, b),
109 			(unsigned long long)bh->b_blocknr);
110 }
111 
112 /*
113  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
114  * unlock the buffer. This is what ll_rw_block uses too.
115  */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118 	if (uptodate) {
119 		set_buffer_uptodate(bh);
120 	} else {
121 		/* This happens, due to failed READA attempts. */
122 		clear_buffer_uptodate(bh);
123 	}
124 	unlock_buffer(bh);
125 	put_bh(bh);
126 }
127 
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130 	char b[BDEVNAME_SIZE];
131 
132 	if (uptodate) {
133 		set_buffer_uptodate(bh);
134 	} else {
135 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 			buffer_io_error(bh);
137 			printk(KERN_WARNING "lost page write due to "
138 					"I/O error on %s\n",
139 				       bdevname(bh->b_bdev, b));
140 		}
141 		set_buffer_write_io_error(bh);
142 		clear_buffer_uptodate(bh);
143 	}
144 	unlock_buffer(bh);
145 	put_bh(bh);
146 }
147 
148 /*
149  * Write out and wait upon all the dirty data associated with a block
150  * device via its mapping.  Does not take the superblock lock.
151  */
152 int sync_blockdev(struct block_device *bdev)
153 {
154 	int ret = 0;
155 
156 	if (bdev)
157 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158 	return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161 
162 /*
163  * Write out and wait upon all dirty data associated with this
164  * device.   Filesystem data as well as the underlying block
165  * device.  Takes the superblock lock.
166  */
167 int fsync_bdev(struct block_device *bdev)
168 {
169 	struct super_block *sb = get_super(bdev);
170 	if (sb) {
171 		int res = fsync_super(sb);
172 		drop_super(sb);
173 		return res;
174 	}
175 	return sync_blockdev(bdev);
176 }
177 
178 /**
179  * freeze_bdev  --  lock a filesystem and force it into a consistent state
180  * @bdev:	blockdevice to lock
181  *
182  * This takes the block device bd_mount_mutex to make sure no new mounts
183  * happen on bdev until thaw_bdev() is called.
184  * If a superblock is found on this device, we take the s_umount semaphore
185  * on it to make sure nobody unmounts until the snapshot creation is done.
186  */
187 struct super_block *freeze_bdev(struct block_device *bdev)
188 {
189 	struct super_block *sb;
190 
191 	mutex_lock(&bdev->bd_mount_mutex);
192 	sb = get_super(bdev);
193 	if (sb && !(sb->s_flags & MS_RDONLY)) {
194 		sb->s_frozen = SB_FREEZE_WRITE;
195 		smp_wmb();
196 
197 		__fsync_super(sb);
198 
199 		sb->s_frozen = SB_FREEZE_TRANS;
200 		smp_wmb();
201 
202 		sync_blockdev(sb->s_bdev);
203 
204 		if (sb->s_op->write_super_lockfs)
205 			sb->s_op->write_super_lockfs(sb);
206 	}
207 
208 	sync_blockdev(bdev);
209 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
210 }
211 EXPORT_SYMBOL(freeze_bdev);
212 
213 /**
214  * thaw_bdev  -- unlock filesystem
215  * @bdev:	blockdevice to unlock
216  * @sb:		associated superblock
217  *
218  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
219  */
220 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
221 {
222 	if (sb) {
223 		BUG_ON(sb->s_bdev != bdev);
224 
225 		if (sb->s_op->unlockfs)
226 			sb->s_op->unlockfs(sb);
227 		sb->s_frozen = SB_UNFROZEN;
228 		smp_wmb();
229 		wake_up(&sb->s_wait_unfrozen);
230 		drop_super(sb);
231 	}
232 
233 	mutex_unlock(&bdev->bd_mount_mutex);
234 }
235 EXPORT_SYMBOL(thaw_bdev);
236 
237 /*
238  * Various filesystems appear to want __find_get_block to be non-blocking.
239  * But it's the page lock which protects the buffers.  To get around this,
240  * we get exclusion from try_to_free_buffers with the blockdev mapping's
241  * private_lock.
242  *
243  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244  * may be quite high.  This code could TryLock the page, and if that
245  * succeeds, there is no need to take private_lock. (But if
246  * private_lock is contended then so is mapping->tree_lock).
247  */
248 static struct buffer_head *
249 __find_get_block_slow(struct block_device *bdev, sector_t block)
250 {
251 	struct inode *bd_inode = bdev->bd_inode;
252 	struct address_space *bd_mapping = bd_inode->i_mapping;
253 	struct buffer_head *ret = NULL;
254 	pgoff_t index;
255 	struct buffer_head *bh;
256 	struct buffer_head *head;
257 	struct page *page;
258 	int all_mapped = 1;
259 
260 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261 	page = find_get_page(bd_mapping, index);
262 	if (!page)
263 		goto out;
264 
265 	spin_lock(&bd_mapping->private_lock);
266 	if (!page_has_buffers(page))
267 		goto out_unlock;
268 	head = page_buffers(page);
269 	bh = head;
270 	do {
271 		if (bh->b_blocknr == block) {
272 			ret = bh;
273 			get_bh(bh);
274 			goto out_unlock;
275 		}
276 		if (!buffer_mapped(bh))
277 			all_mapped = 0;
278 		bh = bh->b_this_page;
279 	} while (bh != head);
280 
281 	/* we might be here because some of the buffers on this page are
282 	 * not mapped.  This is due to various races between
283 	 * file io on the block device and getblk.  It gets dealt with
284 	 * elsewhere, don't buffer_error if we had some unmapped buffers
285 	 */
286 	if (all_mapped) {
287 		printk("__find_get_block_slow() failed. "
288 			"block=%llu, b_blocknr=%llu\n",
289 			(unsigned long long)block,
290 			(unsigned long long)bh->b_blocknr);
291 		printk("b_state=0x%08lx, b_size=%zu\n",
292 			bh->b_state, bh->b_size);
293 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
294 	}
295 out_unlock:
296 	spin_unlock(&bd_mapping->private_lock);
297 	page_cache_release(page);
298 out:
299 	return ret;
300 }
301 
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303    of fs corruption is going on. Trashing dirty data always imply losing
304    information that was supposed to be just stored on the physical layer
305    by the user.
306 
307    Thus invalidate_buffers in general usage is not allwowed to trash
308    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309    be preserved.  These buffers are simply skipped.
310 
311    We also skip buffers which are still in use.  For example this can
312    happen if a userspace program is reading the block device.
313 
314    NOTE: In the case where the user removed a removable-media-disk even if
315    there's still dirty data not synced on disk (due a bug in the device driver
316    or due an error of the user), by not destroying the dirty buffers we could
317    generate corruption also on the next media inserted, thus a parameter is
318    necessary to handle this case in the most safe way possible (trying
319    to not corrupt also the new disk inserted with the data belonging to
320    the old now corrupted disk). Also for the ramdisk the natural thing
321    to do in order to release the ramdisk memory is to destroy dirty buffers.
322 
323    These are two special cases. Normal usage imply the device driver
324    to issue a sync on the device (without waiting I/O completion) and
325    then an invalidate_buffers call that doesn't trash dirty buffers.
326 
327    For handling cache coherency with the blkdev pagecache the 'update' case
328    is been introduced. It is needed to re-read from disk any pinned
329    buffer. NOTE: re-reading from disk is destructive so we can do it only
330    when we assume nobody is changing the buffercache under our I/O and when
331    we think the disk contains more recent information than the buffercache.
332    The update == 1 pass marks the buffers we need to update, the update == 2
333    pass does the actual I/O. */
334 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
335 {
336 	struct address_space *mapping = bdev->bd_inode->i_mapping;
337 
338 	if (mapping->nrpages == 0)
339 		return;
340 
341 	invalidate_bh_lrus();
342 	/*
343 	 * FIXME: what about destroy_dirty_buffers?
344 	 * We really want to use invalidate_inode_pages2() for
345 	 * that, but not until that's cleaned up.
346 	 */
347 	invalidate_inode_pages(mapping);
348 }
349 
350 /*
351  * Kick pdflush then try to free up some ZONE_NORMAL memory.
352  */
353 static void free_more_memory(void)
354 {
355 	struct zone **zones;
356 	pg_data_t *pgdat;
357 
358 	wakeup_pdflush(1024);
359 	yield();
360 
361 	for_each_online_pgdat(pgdat) {
362 		zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
363 		if (*zones)
364 			try_to_free_pages(zones, GFP_NOFS);
365 	}
366 }
367 
368 /*
369  * I/O completion handler for block_read_full_page() - pages
370  * which come unlocked at the end of I/O.
371  */
372 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
373 {
374 	unsigned long flags;
375 	struct buffer_head *first;
376 	struct buffer_head *tmp;
377 	struct page *page;
378 	int page_uptodate = 1;
379 
380 	BUG_ON(!buffer_async_read(bh));
381 
382 	page = bh->b_page;
383 	if (uptodate) {
384 		set_buffer_uptodate(bh);
385 	} else {
386 		clear_buffer_uptodate(bh);
387 		if (printk_ratelimit())
388 			buffer_io_error(bh);
389 		SetPageError(page);
390 	}
391 
392 	/*
393 	 * Be _very_ careful from here on. Bad things can happen if
394 	 * two buffer heads end IO at almost the same time and both
395 	 * decide that the page is now completely done.
396 	 */
397 	first = page_buffers(page);
398 	local_irq_save(flags);
399 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
400 	clear_buffer_async_read(bh);
401 	unlock_buffer(bh);
402 	tmp = bh;
403 	do {
404 		if (!buffer_uptodate(tmp))
405 			page_uptodate = 0;
406 		if (buffer_async_read(tmp)) {
407 			BUG_ON(!buffer_locked(tmp));
408 			goto still_busy;
409 		}
410 		tmp = tmp->b_this_page;
411 	} while (tmp != bh);
412 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
413 	local_irq_restore(flags);
414 
415 	/*
416 	 * If none of the buffers had errors and they are all
417 	 * uptodate then we can set the page uptodate.
418 	 */
419 	if (page_uptodate && !PageError(page))
420 		SetPageUptodate(page);
421 	unlock_page(page);
422 	return;
423 
424 still_busy:
425 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
426 	local_irq_restore(flags);
427 	return;
428 }
429 
430 /*
431  * Completion handler for block_write_full_page() - pages which are unlocked
432  * during I/O, and which have PageWriteback cleared upon I/O completion.
433  */
434 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
435 {
436 	char b[BDEVNAME_SIZE];
437 	unsigned long flags;
438 	struct buffer_head *first;
439 	struct buffer_head *tmp;
440 	struct page *page;
441 
442 	BUG_ON(!buffer_async_write(bh));
443 
444 	page = bh->b_page;
445 	if (uptodate) {
446 		set_buffer_uptodate(bh);
447 	} else {
448 		if (printk_ratelimit()) {
449 			buffer_io_error(bh);
450 			printk(KERN_WARNING "lost page write due to "
451 					"I/O error on %s\n",
452 			       bdevname(bh->b_bdev, b));
453 		}
454 		set_bit(AS_EIO, &page->mapping->flags);
455 		set_buffer_write_io_error(bh);
456 		clear_buffer_uptodate(bh);
457 		SetPageError(page);
458 	}
459 
460 	first = page_buffers(page);
461 	local_irq_save(flags);
462 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
463 
464 	clear_buffer_async_write(bh);
465 	unlock_buffer(bh);
466 	tmp = bh->b_this_page;
467 	while (tmp != bh) {
468 		if (buffer_async_write(tmp)) {
469 			BUG_ON(!buffer_locked(tmp));
470 			goto still_busy;
471 		}
472 		tmp = tmp->b_this_page;
473 	}
474 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
475 	local_irq_restore(flags);
476 	end_page_writeback(page);
477 	return;
478 
479 still_busy:
480 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
481 	local_irq_restore(flags);
482 	return;
483 }
484 
485 /*
486  * If a page's buffers are under async readin (end_buffer_async_read
487  * completion) then there is a possibility that another thread of
488  * control could lock one of the buffers after it has completed
489  * but while some of the other buffers have not completed.  This
490  * locked buffer would confuse end_buffer_async_read() into not unlocking
491  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
492  * that this buffer is not under async I/O.
493  *
494  * The page comes unlocked when it has no locked buffer_async buffers
495  * left.
496  *
497  * PageLocked prevents anyone starting new async I/O reads any of
498  * the buffers.
499  *
500  * PageWriteback is used to prevent simultaneous writeout of the same
501  * page.
502  *
503  * PageLocked prevents anyone from starting writeback of a page which is
504  * under read I/O (PageWriteback is only ever set against a locked page).
505  */
506 static void mark_buffer_async_read(struct buffer_head *bh)
507 {
508 	bh->b_end_io = end_buffer_async_read;
509 	set_buffer_async_read(bh);
510 }
511 
512 void mark_buffer_async_write(struct buffer_head *bh)
513 {
514 	bh->b_end_io = end_buffer_async_write;
515 	set_buffer_async_write(bh);
516 }
517 EXPORT_SYMBOL(mark_buffer_async_write);
518 
519 
520 /*
521  * fs/buffer.c contains helper functions for buffer-backed address space's
522  * fsync functions.  A common requirement for buffer-based filesystems is
523  * that certain data from the backing blockdev needs to be written out for
524  * a successful fsync().  For example, ext2 indirect blocks need to be
525  * written back and waited upon before fsync() returns.
526  *
527  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
528  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
529  * management of a list of dependent buffers at ->i_mapping->private_list.
530  *
531  * Locking is a little subtle: try_to_free_buffers() will remove buffers
532  * from their controlling inode's queue when they are being freed.  But
533  * try_to_free_buffers() will be operating against the *blockdev* mapping
534  * at the time, not against the S_ISREG file which depends on those buffers.
535  * So the locking for private_list is via the private_lock in the address_space
536  * which backs the buffers.  Which is different from the address_space
537  * against which the buffers are listed.  So for a particular address_space,
538  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
539  * mapping->private_list will always be protected by the backing blockdev's
540  * ->private_lock.
541  *
542  * Which introduces a requirement: all buffers on an address_space's
543  * ->private_list must be from the same address_space: the blockdev's.
544  *
545  * address_spaces which do not place buffers at ->private_list via these
546  * utility functions are free to use private_lock and private_list for
547  * whatever they want.  The only requirement is that list_empty(private_list)
548  * be true at clear_inode() time.
549  *
550  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
551  * filesystems should do that.  invalidate_inode_buffers() should just go
552  * BUG_ON(!list_empty).
553  *
554  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
555  * take an address_space, not an inode.  And it should be called
556  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
557  * queued up.
558  *
559  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
560  * list if it is already on a list.  Because if the buffer is on a list,
561  * it *must* already be on the right one.  If not, the filesystem is being
562  * silly.  This will save a ton of locking.  But first we have to ensure
563  * that buffers are taken *off* the old inode's list when they are freed
564  * (presumably in truncate).  That requires careful auditing of all
565  * filesystems (do it inside bforget()).  It could also be done by bringing
566  * b_inode back.
567  */
568 
569 /*
570  * The buffer's backing address_space's private_lock must be held
571  */
572 static inline void __remove_assoc_queue(struct buffer_head *bh)
573 {
574 	list_del_init(&bh->b_assoc_buffers);
575 	WARN_ON(!bh->b_assoc_map);
576 	if (buffer_write_io_error(bh))
577 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
578 	bh->b_assoc_map = NULL;
579 }
580 
581 int inode_has_buffers(struct inode *inode)
582 {
583 	return !list_empty(&inode->i_data.private_list);
584 }
585 
586 /*
587  * osync is designed to support O_SYNC io.  It waits synchronously for
588  * all already-submitted IO to complete, but does not queue any new
589  * writes to the disk.
590  *
591  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
592  * you dirty the buffers, and then use osync_inode_buffers to wait for
593  * completion.  Any other dirty buffers which are not yet queued for
594  * write will not be flushed to disk by the osync.
595  */
596 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
597 {
598 	struct buffer_head *bh;
599 	struct list_head *p;
600 	int err = 0;
601 
602 	spin_lock(lock);
603 repeat:
604 	list_for_each_prev(p, list) {
605 		bh = BH_ENTRY(p);
606 		if (buffer_locked(bh)) {
607 			get_bh(bh);
608 			spin_unlock(lock);
609 			wait_on_buffer(bh);
610 			if (!buffer_uptodate(bh))
611 				err = -EIO;
612 			brelse(bh);
613 			spin_lock(lock);
614 			goto repeat;
615 		}
616 	}
617 	spin_unlock(lock);
618 	return err;
619 }
620 
621 /**
622  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
623  *                        buffers
624  * @mapping: the mapping which wants those buffers written
625  *
626  * Starts I/O against the buffers at mapping->private_list, and waits upon
627  * that I/O.
628  *
629  * Basically, this is a convenience function for fsync().
630  * @mapping is a file or directory which needs those buffers to be written for
631  * a successful fsync().
632  */
633 int sync_mapping_buffers(struct address_space *mapping)
634 {
635 	struct address_space *buffer_mapping = mapping->assoc_mapping;
636 
637 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
638 		return 0;
639 
640 	return fsync_buffers_list(&buffer_mapping->private_lock,
641 					&mapping->private_list);
642 }
643 EXPORT_SYMBOL(sync_mapping_buffers);
644 
645 /*
646  * Called when we've recently written block `bblock', and it is known that
647  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
648  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
649  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
650  */
651 void write_boundary_block(struct block_device *bdev,
652 			sector_t bblock, unsigned blocksize)
653 {
654 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
655 	if (bh) {
656 		if (buffer_dirty(bh))
657 			ll_rw_block(WRITE, 1, &bh);
658 		put_bh(bh);
659 	}
660 }
661 
662 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
663 {
664 	struct address_space *mapping = inode->i_mapping;
665 	struct address_space *buffer_mapping = bh->b_page->mapping;
666 
667 	mark_buffer_dirty(bh);
668 	if (!mapping->assoc_mapping) {
669 		mapping->assoc_mapping = buffer_mapping;
670 	} else {
671 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
672 	}
673 	if (list_empty(&bh->b_assoc_buffers)) {
674 		spin_lock(&buffer_mapping->private_lock);
675 		list_move_tail(&bh->b_assoc_buffers,
676 				&mapping->private_list);
677 		bh->b_assoc_map = mapping;
678 		spin_unlock(&buffer_mapping->private_lock);
679 	}
680 }
681 EXPORT_SYMBOL(mark_buffer_dirty_inode);
682 
683 /*
684  * Add a page to the dirty page list.
685  *
686  * It is a sad fact of life that this function is called from several places
687  * deeply under spinlocking.  It may not sleep.
688  *
689  * If the page has buffers, the uptodate buffers are set dirty, to preserve
690  * dirty-state coherency between the page and the buffers.  It the page does
691  * not have buffers then when they are later attached they will all be set
692  * dirty.
693  *
694  * The buffers are dirtied before the page is dirtied.  There's a small race
695  * window in which a writepage caller may see the page cleanness but not the
696  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
697  * before the buffers, a concurrent writepage caller could clear the page dirty
698  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
699  * page on the dirty page list.
700  *
701  * We use private_lock to lock against try_to_free_buffers while using the
702  * page's buffer list.  Also use this to protect against clean buffers being
703  * added to the page after it was set dirty.
704  *
705  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
706  * address_space though.
707  */
708 int __set_page_dirty_buffers(struct page *page)
709 {
710 	struct address_space * const mapping = page_mapping(page);
711 
712 	if (unlikely(!mapping))
713 		return !TestSetPageDirty(page);
714 
715 	spin_lock(&mapping->private_lock);
716 	if (page_has_buffers(page)) {
717 		struct buffer_head *head = page_buffers(page);
718 		struct buffer_head *bh = head;
719 
720 		do {
721 			set_buffer_dirty(bh);
722 			bh = bh->b_this_page;
723 		} while (bh != head);
724 	}
725 	spin_unlock(&mapping->private_lock);
726 
727 	if (!TestSetPageDirty(page)) {
728 		write_lock_irq(&mapping->tree_lock);
729 		if (page->mapping) {	/* Race with truncate? */
730 			if (mapping_cap_account_dirty(mapping))
731 				__inc_zone_page_state(page, NR_FILE_DIRTY);
732 			radix_tree_tag_set(&mapping->page_tree,
733 						page_index(page),
734 						PAGECACHE_TAG_DIRTY);
735 		}
736 		write_unlock_irq(&mapping->tree_lock);
737 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
738 		return 1;
739 	}
740 	return 0;
741 }
742 EXPORT_SYMBOL(__set_page_dirty_buffers);
743 
744 /*
745  * Write out and wait upon a list of buffers.
746  *
747  * We have conflicting pressures: we want to make sure that all
748  * initially dirty buffers get waited on, but that any subsequently
749  * dirtied buffers don't.  After all, we don't want fsync to last
750  * forever if somebody is actively writing to the file.
751  *
752  * Do this in two main stages: first we copy dirty buffers to a
753  * temporary inode list, queueing the writes as we go.  Then we clean
754  * up, waiting for those writes to complete.
755  *
756  * During this second stage, any subsequent updates to the file may end
757  * up refiling the buffer on the original inode's dirty list again, so
758  * there is a chance we will end up with a buffer queued for write but
759  * not yet completed on that list.  So, as a final cleanup we go through
760  * the osync code to catch these locked, dirty buffers without requeuing
761  * any newly dirty buffers for write.
762  */
763 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
764 {
765 	struct buffer_head *bh;
766 	struct list_head tmp;
767 	int err = 0, err2;
768 
769 	INIT_LIST_HEAD(&tmp);
770 
771 	spin_lock(lock);
772 	while (!list_empty(list)) {
773 		bh = BH_ENTRY(list->next);
774 		__remove_assoc_queue(bh);
775 		if (buffer_dirty(bh) || buffer_locked(bh)) {
776 			list_add(&bh->b_assoc_buffers, &tmp);
777 			if (buffer_dirty(bh)) {
778 				get_bh(bh);
779 				spin_unlock(lock);
780 				/*
781 				 * Ensure any pending I/O completes so that
782 				 * ll_rw_block() actually writes the current
783 				 * contents - it is a noop if I/O is still in
784 				 * flight on potentially older contents.
785 				 */
786 				ll_rw_block(SWRITE, 1, &bh);
787 				brelse(bh);
788 				spin_lock(lock);
789 			}
790 		}
791 	}
792 
793 	while (!list_empty(&tmp)) {
794 		bh = BH_ENTRY(tmp.prev);
795 		list_del_init(&bh->b_assoc_buffers);
796 		get_bh(bh);
797 		spin_unlock(lock);
798 		wait_on_buffer(bh);
799 		if (!buffer_uptodate(bh))
800 			err = -EIO;
801 		brelse(bh);
802 		spin_lock(lock);
803 	}
804 
805 	spin_unlock(lock);
806 	err2 = osync_buffers_list(lock, list);
807 	if (err)
808 		return err;
809 	else
810 		return err2;
811 }
812 
813 /*
814  * Invalidate any and all dirty buffers on a given inode.  We are
815  * probably unmounting the fs, but that doesn't mean we have already
816  * done a sync().  Just drop the buffers from the inode list.
817  *
818  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
819  * assumes that all the buffers are against the blockdev.  Not true
820  * for reiserfs.
821  */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824 	if (inode_has_buffers(inode)) {
825 		struct address_space *mapping = &inode->i_data;
826 		struct list_head *list = &mapping->private_list;
827 		struct address_space *buffer_mapping = mapping->assoc_mapping;
828 
829 		spin_lock(&buffer_mapping->private_lock);
830 		while (!list_empty(list))
831 			__remove_assoc_queue(BH_ENTRY(list->next));
832 		spin_unlock(&buffer_mapping->private_lock);
833 	}
834 }
835 
836 /*
837  * Remove any clean buffers from the inode's buffer list.  This is called
838  * when we're trying to free the inode itself.  Those buffers can pin it.
839  *
840  * Returns true if all buffers were removed.
841  */
842 int remove_inode_buffers(struct inode *inode)
843 {
844 	int ret = 1;
845 
846 	if (inode_has_buffers(inode)) {
847 		struct address_space *mapping = &inode->i_data;
848 		struct list_head *list = &mapping->private_list;
849 		struct address_space *buffer_mapping = mapping->assoc_mapping;
850 
851 		spin_lock(&buffer_mapping->private_lock);
852 		while (!list_empty(list)) {
853 			struct buffer_head *bh = BH_ENTRY(list->next);
854 			if (buffer_dirty(bh)) {
855 				ret = 0;
856 				break;
857 			}
858 			__remove_assoc_queue(bh);
859 		}
860 		spin_unlock(&buffer_mapping->private_lock);
861 	}
862 	return ret;
863 }
864 
865 /*
866  * Create the appropriate buffers when given a page for data area and
867  * the size of each buffer.. Use the bh->b_this_page linked list to
868  * follow the buffers created.  Return NULL if unable to create more
869  * buffers.
870  *
871  * The retry flag is used to differentiate async IO (paging, swapping)
872  * which may not fail from ordinary buffer allocations.
873  */
874 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
875 		int retry)
876 {
877 	struct buffer_head *bh, *head;
878 	long offset;
879 
880 try_again:
881 	head = NULL;
882 	offset = PAGE_SIZE;
883 	while ((offset -= size) >= 0) {
884 		bh = alloc_buffer_head(GFP_NOFS);
885 		if (!bh)
886 			goto no_grow;
887 
888 		bh->b_bdev = NULL;
889 		bh->b_this_page = head;
890 		bh->b_blocknr = -1;
891 		head = bh;
892 
893 		bh->b_state = 0;
894 		atomic_set(&bh->b_count, 0);
895 		bh->b_private = NULL;
896 		bh->b_size = size;
897 
898 		/* Link the buffer to its page */
899 		set_bh_page(bh, page, offset);
900 
901 		init_buffer(bh, NULL, NULL);
902 	}
903 	return head;
904 /*
905  * In case anything failed, we just free everything we got.
906  */
907 no_grow:
908 	if (head) {
909 		do {
910 			bh = head;
911 			head = head->b_this_page;
912 			free_buffer_head(bh);
913 		} while (head);
914 	}
915 
916 	/*
917 	 * Return failure for non-async IO requests.  Async IO requests
918 	 * are not allowed to fail, so we have to wait until buffer heads
919 	 * become available.  But we don't want tasks sleeping with
920 	 * partially complete buffers, so all were released above.
921 	 */
922 	if (!retry)
923 		return NULL;
924 
925 	/* We're _really_ low on memory. Now we just
926 	 * wait for old buffer heads to become free due to
927 	 * finishing IO.  Since this is an async request and
928 	 * the reserve list is empty, we're sure there are
929 	 * async buffer heads in use.
930 	 */
931 	free_more_memory();
932 	goto try_again;
933 }
934 EXPORT_SYMBOL_GPL(alloc_page_buffers);
935 
936 static inline void
937 link_dev_buffers(struct page *page, struct buffer_head *head)
938 {
939 	struct buffer_head *bh, *tail;
940 
941 	bh = head;
942 	do {
943 		tail = bh;
944 		bh = bh->b_this_page;
945 	} while (bh);
946 	tail->b_this_page = head;
947 	attach_page_buffers(page, head);
948 }
949 
950 /*
951  * Initialise the state of a blockdev page's buffers.
952  */
953 static void
954 init_page_buffers(struct page *page, struct block_device *bdev,
955 			sector_t block, int size)
956 {
957 	struct buffer_head *head = page_buffers(page);
958 	struct buffer_head *bh = head;
959 	int uptodate = PageUptodate(page);
960 
961 	do {
962 		if (!buffer_mapped(bh)) {
963 			init_buffer(bh, NULL, NULL);
964 			bh->b_bdev = bdev;
965 			bh->b_blocknr = block;
966 			if (uptodate)
967 				set_buffer_uptodate(bh);
968 			set_buffer_mapped(bh);
969 		}
970 		block++;
971 		bh = bh->b_this_page;
972 	} while (bh != head);
973 }
974 
975 /*
976  * Create the page-cache page that contains the requested block.
977  *
978  * This is user purely for blockdev mappings.
979  */
980 static struct page *
981 grow_dev_page(struct block_device *bdev, sector_t block,
982 		pgoff_t index, int size)
983 {
984 	struct inode *inode = bdev->bd_inode;
985 	struct page *page;
986 	struct buffer_head *bh;
987 
988 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
989 	if (!page)
990 		return NULL;
991 
992 	BUG_ON(!PageLocked(page));
993 
994 	if (page_has_buffers(page)) {
995 		bh = page_buffers(page);
996 		if (bh->b_size == size) {
997 			init_page_buffers(page, bdev, block, size);
998 			return page;
999 		}
1000 		if (!try_to_free_buffers(page))
1001 			goto failed;
1002 	}
1003 
1004 	/*
1005 	 * Allocate some buffers for this page
1006 	 */
1007 	bh = alloc_page_buffers(page, size, 0);
1008 	if (!bh)
1009 		goto failed;
1010 
1011 	/*
1012 	 * Link the page to the buffers and initialise them.  Take the
1013 	 * lock to be atomic wrt __find_get_block(), which does not
1014 	 * run under the page lock.
1015 	 */
1016 	spin_lock(&inode->i_mapping->private_lock);
1017 	link_dev_buffers(page, bh);
1018 	init_page_buffers(page, bdev, block, size);
1019 	spin_unlock(&inode->i_mapping->private_lock);
1020 	return page;
1021 
1022 failed:
1023 	BUG();
1024 	unlock_page(page);
1025 	page_cache_release(page);
1026 	return NULL;
1027 }
1028 
1029 /*
1030  * Create buffers for the specified block device block's page.  If
1031  * that page was dirty, the buffers are set dirty also.
1032  *
1033  * Except that's a bug.  Attaching dirty buffers to a dirty
1034  * blockdev's page can result in filesystem corruption, because
1035  * some of those buffers may be aliases of filesystem data.
1036  * grow_dev_page() will go BUG() if this happens.
1037  */
1038 static int
1039 grow_buffers(struct block_device *bdev, sector_t block, int size)
1040 {
1041 	struct page *page;
1042 	pgoff_t index;
1043 	int sizebits;
1044 
1045 	sizebits = -1;
1046 	do {
1047 		sizebits++;
1048 	} while ((size << sizebits) < PAGE_SIZE);
1049 
1050 	index = block >> sizebits;
1051 
1052 	/*
1053 	 * Check for a block which wants to lie outside our maximum possible
1054 	 * pagecache index.  (this comparison is done using sector_t types).
1055 	 */
1056 	if (unlikely(index != block >> sizebits)) {
1057 		char b[BDEVNAME_SIZE];
1058 
1059 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1060 			"device %s\n",
1061 			__FUNCTION__, (unsigned long long)block,
1062 			bdevname(bdev, b));
1063 		return -EIO;
1064 	}
1065 	block = index << sizebits;
1066 	/* Create a page with the proper size buffers.. */
1067 	page = grow_dev_page(bdev, block, index, size);
1068 	if (!page)
1069 		return 0;
1070 	unlock_page(page);
1071 	page_cache_release(page);
1072 	return 1;
1073 }
1074 
1075 static struct buffer_head *
1076 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1077 {
1078 	/* Size must be multiple of hard sectorsize */
1079 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1080 			(size < 512 || size > PAGE_SIZE))) {
1081 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1082 					size);
1083 		printk(KERN_ERR "hardsect size: %d\n",
1084 					bdev_hardsect_size(bdev));
1085 
1086 		dump_stack();
1087 		return NULL;
1088 	}
1089 
1090 	for (;;) {
1091 		struct buffer_head * bh;
1092 		int ret;
1093 
1094 		bh = __find_get_block(bdev, block, size);
1095 		if (bh)
1096 			return bh;
1097 
1098 		ret = grow_buffers(bdev, block, size);
1099 		if (ret < 0)
1100 			return NULL;
1101 		if (ret == 0)
1102 			free_more_memory();
1103 	}
1104 }
1105 
1106 /*
1107  * The relationship between dirty buffers and dirty pages:
1108  *
1109  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1110  * the page is tagged dirty in its radix tree.
1111  *
1112  * At all times, the dirtiness of the buffers represents the dirtiness of
1113  * subsections of the page.  If the page has buffers, the page dirty bit is
1114  * merely a hint about the true dirty state.
1115  *
1116  * When a page is set dirty in its entirety, all its buffers are marked dirty
1117  * (if the page has buffers).
1118  *
1119  * When a buffer is marked dirty, its page is dirtied, but the page's other
1120  * buffers are not.
1121  *
1122  * Also.  When blockdev buffers are explicitly read with bread(), they
1123  * individually become uptodate.  But their backing page remains not
1124  * uptodate - even if all of its buffers are uptodate.  A subsequent
1125  * block_read_full_page() against that page will discover all the uptodate
1126  * buffers, will set the page uptodate and will perform no I/O.
1127  */
1128 
1129 /**
1130  * mark_buffer_dirty - mark a buffer_head as needing writeout
1131  * @bh: the buffer_head to mark dirty
1132  *
1133  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1134  * backing page dirty, then tag the page as dirty in its address_space's radix
1135  * tree and then attach the address_space's inode to its superblock's dirty
1136  * inode list.
1137  *
1138  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1139  * mapping->tree_lock and the global inode_lock.
1140  */
1141 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1142 {
1143 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1144 		__set_page_dirty_nobuffers(bh->b_page);
1145 }
1146 
1147 /*
1148  * Decrement a buffer_head's reference count.  If all buffers against a page
1149  * have zero reference count, are clean and unlocked, and if the page is clean
1150  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1151  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1152  * a page but it ends up not being freed, and buffers may later be reattached).
1153  */
1154 void __brelse(struct buffer_head * buf)
1155 {
1156 	if (atomic_read(&buf->b_count)) {
1157 		put_bh(buf);
1158 		return;
1159 	}
1160 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1161 	WARN_ON(1);
1162 }
1163 
1164 /*
1165  * bforget() is like brelse(), except it discards any
1166  * potentially dirty data.
1167  */
1168 void __bforget(struct buffer_head *bh)
1169 {
1170 	clear_buffer_dirty(bh);
1171 	if (!list_empty(&bh->b_assoc_buffers)) {
1172 		struct address_space *buffer_mapping = bh->b_page->mapping;
1173 
1174 		spin_lock(&buffer_mapping->private_lock);
1175 		list_del_init(&bh->b_assoc_buffers);
1176 		bh->b_assoc_map = NULL;
1177 		spin_unlock(&buffer_mapping->private_lock);
1178 	}
1179 	__brelse(bh);
1180 }
1181 
1182 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1183 {
1184 	lock_buffer(bh);
1185 	if (buffer_uptodate(bh)) {
1186 		unlock_buffer(bh);
1187 		return bh;
1188 	} else {
1189 		get_bh(bh);
1190 		bh->b_end_io = end_buffer_read_sync;
1191 		submit_bh(READ, bh);
1192 		wait_on_buffer(bh);
1193 		if (buffer_uptodate(bh))
1194 			return bh;
1195 	}
1196 	brelse(bh);
1197 	return NULL;
1198 }
1199 
1200 /*
1201  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1202  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1203  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1204  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1205  * CPU's LRUs at the same time.
1206  *
1207  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1208  * sb_find_get_block().
1209  *
1210  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1211  * a local interrupt disable for that.
1212  */
1213 
1214 #define BH_LRU_SIZE	8
1215 
1216 struct bh_lru {
1217 	struct buffer_head *bhs[BH_LRU_SIZE];
1218 };
1219 
1220 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1221 
1222 #ifdef CONFIG_SMP
1223 #define bh_lru_lock()	local_irq_disable()
1224 #define bh_lru_unlock()	local_irq_enable()
1225 #else
1226 #define bh_lru_lock()	preempt_disable()
1227 #define bh_lru_unlock()	preempt_enable()
1228 #endif
1229 
1230 static inline void check_irqs_on(void)
1231 {
1232 #ifdef irqs_disabled
1233 	BUG_ON(irqs_disabled());
1234 #endif
1235 }
1236 
1237 /*
1238  * The LRU management algorithm is dopey-but-simple.  Sorry.
1239  */
1240 static void bh_lru_install(struct buffer_head *bh)
1241 {
1242 	struct buffer_head *evictee = NULL;
1243 	struct bh_lru *lru;
1244 
1245 	check_irqs_on();
1246 	bh_lru_lock();
1247 	lru = &__get_cpu_var(bh_lrus);
1248 	if (lru->bhs[0] != bh) {
1249 		struct buffer_head *bhs[BH_LRU_SIZE];
1250 		int in;
1251 		int out = 0;
1252 
1253 		get_bh(bh);
1254 		bhs[out++] = bh;
1255 		for (in = 0; in < BH_LRU_SIZE; in++) {
1256 			struct buffer_head *bh2 = lru->bhs[in];
1257 
1258 			if (bh2 == bh) {
1259 				__brelse(bh2);
1260 			} else {
1261 				if (out >= BH_LRU_SIZE) {
1262 					BUG_ON(evictee != NULL);
1263 					evictee = bh2;
1264 				} else {
1265 					bhs[out++] = bh2;
1266 				}
1267 			}
1268 		}
1269 		while (out < BH_LRU_SIZE)
1270 			bhs[out++] = NULL;
1271 		memcpy(lru->bhs, bhs, sizeof(bhs));
1272 	}
1273 	bh_lru_unlock();
1274 
1275 	if (evictee)
1276 		__brelse(evictee);
1277 }
1278 
1279 /*
1280  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1281  */
1282 static struct buffer_head *
1283 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1284 {
1285 	struct buffer_head *ret = NULL;
1286 	struct bh_lru *lru;
1287 	int i;
1288 
1289 	check_irqs_on();
1290 	bh_lru_lock();
1291 	lru = &__get_cpu_var(bh_lrus);
1292 	for (i = 0; i < BH_LRU_SIZE; i++) {
1293 		struct buffer_head *bh = lru->bhs[i];
1294 
1295 		if (bh && bh->b_bdev == bdev &&
1296 				bh->b_blocknr == block && bh->b_size == size) {
1297 			if (i) {
1298 				while (i) {
1299 					lru->bhs[i] = lru->bhs[i - 1];
1300 					i--;
1301 				}
1302 				lru->bhs[0] = bh;
1303 			}
1304 			get_bh(bh);
1305 			ret = bh;
1306 			break;
1307 		}
1308 	}
1309 	bh_lru_unlock();
1310 	return ret;
1311 }
1312 
1313 /*
1314  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1315  * it in the LRU and mark it as accessed.  If it is not present then return
1316  * NULL
1317  */
1318 struct buffer_head *
1319 __find_get_block(struct block_device *bdev, sector_t block, int size)
1320 {
1321 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1322 
1323 	if (bh == NULL) {
1324 		bh = __find_get_block_slow(bdev, block);
1325 		if (bh)
1326 			bh_lru_install(bh);
1327 	}
1328 	if (bh)
1329 		touch_buffer(bh);
1330 	return bh;
1331 }
1332 EXPORT_SYMBOL(__find_get_block);
1333 
1334 /*
1335  * __getblk will locate (and, if necessary, create) the buffer_head
1336  * which corresponds to the passed block_device, block and size. The
1337  * returned buffer has its reference count incremented.
1338  *
1339  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1340  * illegal block number, __getblk() will happily return a buffer_head
1341  * which represents the non-existent block.  Very weird.
1342  *
1343  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1344  * attempt is failing.  FIXME, perhaps?
1345  */
1346 struct buffer_head *
1347 __getblk(struct block_device *bdev, sector_t block, int size)
1348 {
1349 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1350 
1351 	might_sleep();
1352 	if (bh == NULL)
1353 		bh = __getblk_slow(bdev, block, size);
1354 	return bh;
1355 }
1356 EXPORT_SYMBOL(__getblk);
1357 
1358 /*
1359  * Do async read-ahead on a buffer..
1360  */
1361 void __breadahead(struct block_device *bdev, sector_t block, int size)
1362 {
1363 	struct buffer_head *bh = __getblk(bdev, block, size);
1364 	if (likely(bh)) {
1365 		ll_rw_block(READA, 1, &bh);
1366 		brelse(bh);
1367 	}
1368 }
1369 EXPORT_SYMBOL(__breadahead);
1370 
1371 /**
1372  *  __bread() - reads a specified block and returns the bh
1373  *  @bdev: the block_device to read from
1374  *  @block: number of block
1375  *  @size: size (in bytes) to read
1376  *
1377  *  Reads a specified block, and returns buffer head that contains it.
1378  *  It returns NULL if the block was unreadable.
1379  */
1380 struct buffer_head *
1381 __bread(struct block_device *bdev, sector_t block, int size)
1382 {
1383 	struct buffer_head *bh = __getblk(bdev, block, size);
1384 
1385 	if (likely(bh) && !buffer_uptodate(bh))
1386 		bh = __bread_slow(bh);
1387 	return bh;
1388 }
1389 EXPORT_SYMBOL(__bread);
1390 
1391 /*
1392  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1393  * This doesn't race because it runs in each cpu either in irq
1394  * or with preempt disabled.
1395  */
1396 static void invalidate_bh_lru(void *arg)
1397 {
1398 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1399 	int i;
1400 
1401 	for (i = 0; i < BH_LRU_SIZE; i++) {
1402 		brelse(b->bhs[i]);
1403 		b->bhs[i] = NULL;
1404 	}
1405 	put_cpu_var(bh_lrus);
1406 }
1407 
1408 static void invalidate_bh_lrus(void)
1409 {
1410 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1411 }
1412 
1413 void set_bh_page(struct buffer_head *bh,
1414 		struct page *page, unsigned long offset)
1415 {
1416 	bh->b_page = page;
1417 	BUG_ON(offset >= PAGE_SIZE);
1418 	if (PageHighMem(page))
1419 		/*
1420 		 * This catches illegal uses and preserves the offset:
1421 		 */
1422 		bh->b_data = (char *)(0 + offset);
1423 	else
1424 		bh->b_data = page_address(page) + offset;
1425 }
1426 EXPORT_SYMBOL(set_bh_page);
1427 
1428 /*
1429  * Called when truncating a buffer on a page completely.
1430  */
1431 static void discard_buffer(struct buffer_head * bh)
1432 {
1433 	lock_buffer(bh);
1434 	clear_buffer_dirty(bh);
1435 	bh->b_bdev = NULL;
1436 	clear_buffer_mapped(bh);
1437 	clear_buffer_req(bh);
1438 	clear_buffer_new(bh);
1439 	clear_buffer_delay(bh);
1440 	unlock_buffer(bh);
1441 }
1442 
1443 /**
1444  * block_invalidatepage - invalidate part of all of a buffer-backed page
1445  *
1446  * @page: the page which is affected
1447  * @offset: the index of the truncation point
1448  *
1449  * block_invalidatepage() is called when all or part of the page has become
1450  * invalidatedby a truncate operation.
1451  *
1452  * block_invalidatepage() does not have to release all buffers, but it must
1453  * ensure that no dirty buffer is left outside @offset and that no I/O
1454  * is underway against any of the blocks which are outside the truncation
1455  * point.  Because the caller is about to free (and possibly reuse) those
1456  * blocks on-disk.
1457  */
1458 void block_invalidatepage(struct page *page, unsigned long offset)
1459 {
1460 	struct buffer_head *head, *bh, *next;
1461 	unsigned int curr_off = 0;
1462 
1463 	BUG_ON(!PageLocked(page));
1464 	if (!page_has_buffers(page))
1465 		goto out;
1466 
1467 	head = page_buffers(page);
1468 	bh = head;
1469 	do {
1470 		unsigned int next_off = curr_off + bh->b_size;
1471 		next = bh->b_this_page;
1472 
1473 		/*
1474 		 * is this block fully invalidated?
1475 		 */
1476 		if (offset <= curr_off)
1477 			discard_buffer(bh);
1478 		curr_off = next_off;
1479 		bh = next;
1480 	} while (bh != head);
1481 
1482 	/*
1483 	 * We release buffers only if the entire page is being invalidated.
1484 	 * The get_block cached value has been unconditionally invalidated,
1485 	 * so real IO is not possible anymore.
1486 	 */
1487 	if (offset == 0)
1488 		try_to_release_page(page, 0);
1489 out:
1490 	return;
1491 }
1492 EXPORT_SYMBOL(block_invalidatepage);
1493 
1494 /*
1495  * We attach and possibly dirty the buffers atomically wrt
1496  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1497  * is already excluded via the page lock.
1498  */
1499 void create_empty_buffers(struct page *page,
1500 			unsigned long blocksize, unsigned long b_state)
1501 {
1502 	struct buffer_head *bh, *head, *tail;
1503 
1504 	head = alloc_page_buffers(page, blocksize, 1);
1505 	bh = head;
1506 	do {
1507 		bh->b_state |= b_state;
1508 		tail = bh;
1509 		bh = bh->b_this_page;
1510 	} while (bh);
1511 	tail->b_this_page = head;
1512 
1513 	spin_lock(&page->mapping->private_lock);
1514 	if (PageUptodate(page) || PageDirty(page)) {
1515 		bh = head;
1516 		do {
1517 			if (PageDirty(page))
1518 				set_buffer_dirty(bh);
1519 			if (PageUptodate(page))
1520 				set_buffer_uptodate(bh);
1521 			bh = bh->b_this_page;
1522 		} while (bh != head);
1523 	}
1524 	attach_page_buffers(page, head);
1525 	spin_unlock(&page->mapping->private_lock);
1526 }
1527 EXPORT_SYMBOL(create_empty_buffers);
1528 
1529 /*
1530  * We are taking a block for data and we don't want any output from any
1531  * buffer-cache aliases starting from return from that function and
1532  * until the moment when something will explicitly mark the buffer
1533  * dirty (hopefully that will not happen until we will free that block ;-)
1534  * We don't even need to mark it not-uptodate - nobody can expect
1535  * anything from a newly allocated buffer anyway. We used to used
1536  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1537  * don't want to mark the alias unmapped, for example - it would confuse
1538  * anyone who might pick it with bread() afterwards...
1539  *
1540  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1541  * be writeout I/O going on against recently-freed buffers.  We don't
1542  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1543  * only if we really need to.  That happens here.
1544  */
1545 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1546 {
1547 	struct buffer_head *old_bh;
1548 
1549 	might_sleep();
1550 
1551 	old_bh = __find_get_block_slow(bdev, block);
1552 	if (old_bh) {
1553 		clear_buffer_dirty(old_bh);
1554 		wait_on_buffer(old_bh);
1555 		clear_buffer_req(old_bh);
1556 		__brelse(old_bh);
1557 	}
1558 }
1559 EXPORT_SYMBOL(unmap_underlying_metadata);
1560 
1561 /*
1562  * NOTE! All mapped/uptodate combinations are valid:
1563  *
1564  *	Mapped	Uptodate	Meaning
1565  *
1566  *	No	No		"unknown" - must do get_block()
1567  *	No	Yes		"hole" - zero-filled
1568  *	Yes	No		"allocated" - allocated on disk, not read in
1569  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1570  *
1571  * "Dirty" is valid only with the last case (mapped+uptodate).
1572  */
1573 
1574 /*
1575  * While block_write_full_page is writing back the dirty buffers under
1576  * the page lock, whoever dirtied the buffers may decide to clean them
1577  * again at any time.  We handle that by only looking at the buffer
1578  * state inside lock_buffer().
1579  *
1580  * If block_write_full_page() is called for regular writeback
1581  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1582  * locked buffer.   This only can happen if someone has written the buffer
1583  * directly, with submit_bh().  At the address_space level PageWriteback
1584  * prevents this contention from occurring.
1585  */
1586 static int __block_write_full_page(struct inode *inode, struct page *page,
1587 			get_block_t *get_block, struct writeback_control *wbc)
1588 {
1589 	int err;
1590 	sector_t block;
1591 	sector_t last_block;
1592 	struct buffer_head *bh, *head;
1593 	const unsigned blocksize = 1 << inode->i_blkbits;
1594 	int nr_underway = 0;
1595 
1596 	BUG_ON(!PageLocked(page));
1597 
1598 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1599 
1600 	if (!page_has_buffers(page)) {
1601 		create_empty_buffers(page, blocksize,
1602 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1603 	}
1604 
1605 	/*
1606 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1607 	 * here, and the (potentially unmapped) buffers may become dirty at
1608 	 * any time.  If a buffer becomes dirty here after we've inspected it
1609 	 * then we just miss that fact, and the page stays dirty.
1610 	 *
1611 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1612 	 * handle that here by just cleaning them.
1613 	 */
1614 
1615 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1616 	head = page_buffers(page);
1617 	bh = head;
1618 
1619 	/*
1620 	 * Get all the dirty buffers mapped to disk addresses and
1621 	 * handle any aliases from the underlying blockdev's mapping.
1622 	 */
1623 	do {
1624 		if (block > last_block) {
1625 			/*
1626 			 * mapped buffers outside i_size will occur, because
1627 			 * this page can be outside i_size when there is a
1628 			 * truncate in progress.
1629 			 */
1630 			/*
1631 			 * The buffer was zeroed by block_write_full_page()
1632 			 */
1633 			clear_buffer_dirty(bh);
1634 			set_buffer_uptodate(bh);
1635 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1636 			WARN_ON(bh->b_size != blocksize);
1637 			err = get_block(inode, block, bh, 1);
1638 			if (err)
1639 				goto recover;
1640 			if (buffer_new(bh)) {
1641 				/* blockdev mappings never come here */
1642 				clear_buffer_new(bh);
1643 				unmap_underlying_metadata(bh->b_bdev,
1644 							bh->b_blocknr);
1645 			}
1646 		}
1647 		bh = bh->b_this_page;
1648 		block++;
1649 	} while (bh != head);
1650 
1651 	do {
1652 		if (!buffer_mapped(bh))
1653 			continue;
1654 		/*
1655 		 * If it's a fully non-blocking write attempt and we cannot
1656 		 * lock the buffer then redirty the page.  Note that this can
1657 		 * potentially cause a busy-wait loop from pdflush and kswapd
1658 		 * activity, but those code paths have their own higher-level
1659 		 * throttling.
1660 		 */
1661 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1662 			lock_buffer(bh);
1663 		} else if (test_set_buffer_locked(bh)) {
1664 			redirty_page_for_writepage(wbc, page);
1665 			continue;
1666 		}
1667 		if (test_clear_buffer_dirty(bh)) {
1668 			mark_buffer_async_write(bh);
1669 		} else {
1670 			unlock_buffer(bh);
1671 		}
1672 	} while ((bh = bh->b_this_page) != head);
1673 
1674 	/*
1675 	 * The page and its buffers are protected by PageWriteback(), so we can
1676 	 * drop the bh refcounts early.
1677 	 */
1678 	BUG_ON(PageWriteback(page));
1679 	set_page_writeback(page);
1680 
1681 	do {
1682 		struct buffer_head *next = bh->b_this_page;
1683 		if (buffer_async_write(bh)) {
1684 			submit_bh(WRITE, bh);
1685 			nr_underway++;
1686 		}
1687 		bh = next;
1688 	} while (bh != head);
1689 	unlock_page(page);
1690 
1691 	err = 0;
1692 done:
1693 	if (nr_underway == 0) {
1694 		/*
1695 		 * The page was marked dirty, but the buffers were
1696 		 * clean.  Someone wrote them back by hand with
1697 		 * ll_rw_block/submit_bh.  A rare case.
1698 		 */
1699 		int uptodate = 1;
1700 		do {
1701 			if (!buffer_uptodate(bh)) {
1702 				uptodate = 0;
1703 				break;
1704 			}
1705 			bh = bh->b_this_page;
1706 		} while (bh != head);
1707 		if (uptodate)
1708 			SetPageUptodate(page);
1709 		end_page_writeback(page);
1710 		/*
1711 		 * The page and buffer_heads can be released at any time from
1712 		 * here on.
1713 		 */
1714 		wbc->pages_skipped++;	/* We didn't write this page */
1715 	}
1716 	return err;
1717 
1718 recover:
1719 	/*
1720 	 * ENOSPC, or some other error.  We may already have added some
1721 	 * blocks to the file, so we need to write these out to avoid
1722 	 * exposing stale data.
1723 	 * The page is currently locked and not marked for writeback
1724 	 */
1725 	bh = head;
1726 	/* Recovery: lock and submit the mapped buffers */
1727 	do {
1728 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1729 			lock_buffer(bh);
1730 			mark_buffer_async_write(bh);
1731 		} else {
1732 			/*
1733 			 * The buffer may have been set dirty during
1734 			 * attachment to a dirty page.
1735 			 */
1736 			clear_buffer_dirty(bh);
1737 		}
1738 	} while ((bh = bh->b_this_page) != head);
1739 	SetPageError(page);
1740 	BUG_ON(PageWriteback(page));
1741 	set_page_writeback(page);
1742 	unlock_page(page);
1743 	do {
1744 		struct buffer_head *next = bh->b_this_page;
1745 		if (buffer_async_write(bh)) {
1746 			clear_buffer_dirty(bh);
1747 			submit_bh(WRITE, bh);
1748 			nr_underway++;
1749 		}
1750 		bh = next;
1751 	} while (bh != head);
1752 	goto done;
1753 }
1754 
1755 static int __block_prepare_write(struct inode *inode, struct page *page,
1756 		unsigned from, unsigned to, get_block_t *get_block)
1757 {
1758 	unsigned block_start, block_end;
1759 	sector_t block;
1760 	int err = 0;
1761 	unsigned blocksize, bbits;
1762 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1763 
1764 	BUG_ON(!PageLocked(page));
1765 	BUG_ON(from > PAGE_CACHE_SIZE);
1766 	BUG_ON(to > PAGE_CACHE_SIZE);
1767 	BUG_ON(from > to);
1768 
1769 	blocksize = 1 << inode->i_blkbits;
1770 	if (!page_has_buffers(page))
1771 		create_empty_buffers(page, blocksize, 0);
1772 	head = page_buffers(page);
1773 
1774 	bbits = inode->i_blkbits;
1775 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1776 
1777 	for(bh = head, block_start = 0; bh != head || !block_start;
1778 	    block++, block_start=block_end, bh = bh->b_this_page) {
1779 		block_end = block_start + blocksize;
1780 		if (block_end <= from || block_start >= to) {
1781 			if (PageUptodate(page)) {
1782 				if (!buffer_uptodate(bh))
1783 					set_buffer_uptodate(bh);
1784 			}
1785 			continue;
1786 		}
1787 		if (buffer_new(bh))
1788 			clear_buffer_new(bh);
1789 		if (!buffer_mapped(bh)) {
1790 			WARN_ON(bh->b_size != blocksize);
1791 			err = get_block(inode, block, bh, 1);
1792 			if (err)
1793 				break;
1794 			if (buffer_new(bh)) {
1795 				unmap_underlying_metadata(bh->b_bdev,
1796 							bh->b_blocknr);
1797 				if (PageUptodate(page)) {
1798 					set_buffer_uptodate(bh);
1799 					continue;
1800 				}
1801 				if (block_end > to || block_start < from) {
1802 					void *kaddr;
1803 
1804 					kaddr = kmap_atomic(page, KM_USER0);
1805 					if (block_end > to)
1806 						memset(kaddr+to, 0,
1807 							block_end-to);
1808 					if (block_start < from)
1809 						memset(kaddr+block_start,
1810 							0, from-block_start);
1811 					flush_dcache_page(page);
1812 					kunmap_atomic(kaddr, KM_USER0);
1813 				}
1814 				continue;
1815 			}
1816 		}
1817 		if (PageUptodate(page)) {
1818 			if (!buffer_uptodate(bh))
1819 				set_buffer_uptodate(bh);
1820 			continue;
1821 		}
1822 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1823 		     (block_start < from || block_end > to)) {
1824 			ll_rw_block(READ, 1, &bh);
1825 			*wait_bh++=bh;
1826 		}
1827 	}
1828 	/*
1829 	 * If we issued read requests - let them complete.
1830 	 */
1831 	while(wait_bh > wait) {
1832 		wait_on_buffer(*--wait_bh);
1833 		if (!buffer_uptodate(*wait_bh))
1834 			err = -EIO;
1835 	}
1836 	if (!err) {
1837 		bh = head;
1838 		do {
1839 			if (buffer_new(bh))
1840 				clear_buffer_new(bh);
1841 		} while ((bh = bh->b_this_page) != head);
1842 		return 0;
1843 	}
1844 	/* Error case: */
1845 	/*
1846 	 * Zero out any newly allocated blocks to avoid exposing stale
1847 	 * data.  If BH_New is set, we know that the block was newly
1848 	 * allocated in the above loop.
1849 	 */
1850 	bh = head;
1851 	block_start = 0;
1852 	do {
1853 		block_end = block_start+blocksize;
1854 		if (block_end <= from)
1855 			goto next_bh;
1856 		if (block_start >= to)
1857 			break;
1858 		if (buffer_new(bh)) {
1859 			void *kaddr;
1860 
1861 			clear_buffer_new(bh);
1862 			kaddr = kmap_atomic(page, KM_USER0);
1863 			memset(kaddr+block_start, 0, bh->b_size);
1864 			flush_dcache_page(page);
1865 			kunmap_atomic(kaddr, KM_USER0);
1866 			set_buffer_uptodate(bh);
1867 			mark_buffer_dirty(bh);
1868 		}
1869 next_bh:
1870 		block_start = block_end;
1871 		bh = bh->b_this_page;
1872 	} while (bh != head);
1873 	return err;
1874 }
1875 
1876 static int __block_commit_write(struct inode *inode, struct page *page,
1877 		unsigned from, unsigned to)
1878 {
1879 	unsigned block_start, block_end;
1880 	int partial = 0;
1881 	unsigned blocksize;
1882 	struct buffer_head *bh, *head;
1883 
1884 	blocksize = 1 << inode->i_blkbits;
1885 
1886 	for(bh = head = page_buffers(page), block_start = 0;
1887 	    bh != head || !block_start;
1888 	    block_start=block_end, bh = bh->b_this_page) {
1889 		block_end = block_start + blocksize;
1890 		if (block_end <= from || block_start >= to) {
1891 			if (!buffer_uptodate(bh))
1892 				partial = 1;
1893 		} else {
1894 			set_buffer_uptodate(bh);
1895 			mark_buffer_dirty(bh);
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * If this is a partial write which happened to make all buffers
1901 	 * uptodate then we can optimize away a bogus readpage() for
1902 	 * the next read(). Here we 'discover' whether the page went
1903 	 * uptodate as a result of this (potentially partial) write.
1904 	 */
1905 	if (!partial)
1906 		SetPageUptodate(page);
1907 	return 0;
1908 }
1909 
1910 /*
1911  * Generic "read page" function for block devices that have the normal
1912  * get_block functionality. This is most of the block device filesystems.
1913  * Reads the page asynchronously --- the unlock_buffer() and
1914  * set/clear_buffer_uptodate() functions propagate buffer state into the
1915  * page struct once IO has completed.
1916  */
1917 int block_read_full_page(struct page *page, get_block_t *get_block)
1918 {
1919 	struct inode *inode = page->mapping->host;
1920 	sector_t iblock, lblock;
1921 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1922 	unsigned int blocksize;
1923 	int nr, i;
1924 	int fully_mapped = 1;
1925 
1926 	BUG_ON(!PageLocked(page));
1927 	blocksize = 1 << inode->i_blkbits;
1928 	if (!page_has_buffers(page))
1929 		create_empty_buffers(page, blocksize, 0);
1930 	head = page_buffers(page);
1931 
1932 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1933 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1934 	bh = head;
1935 	nr = 0;
1936 	i = 0;
1937 
1938 	do {
1939 		if (buffer_uptodate(bh))
1940 			continue;
1941 
1942 		if (!buffer_mapped(bh)) {
1943 			int err = 0;
1944 
1945 			fully_mapped = 0;
1946 			if (iblock < lblock) {
1947 				WARN_ON(bh->b_size != blocksize);
1948 				err = get_block(inode, iblock, bh, 0);
1949 				if (err)
1950 					SetPageError(page);
1951 			}
1952 			if (!buffer_mapped(bh)) {
1953 				void *kaddr = kmap_atomic(page, KM_USER0);
1954 				memset(kaddr + i * blocksize, 0, blocksize);
1955 				flush_dcache_page(page);
1956 				kunmap_atomic(kaddr, KM_USER0);
1957 				if (!err)
1958 					set_buffer_uptodate(bh);
1959 				continue;
1960 			}
1961 			/*
1962 			 * get_block() might have updated the buffer
1963 			 * synchronously
1964 			 */
1965 			if (buffer_uptodate(bh))
1966 				continue;
1967 		}
1968 		arr[nr++] = bh;
1969 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
1970 
1971 	if (fully_mapped)
1972 		SetPageMappedToDisk(page);
1973 
1974 	if (!nr) {
1975 		/*
1976 		 * All buffers are uptodate - we can set the page uptodate
1977 		 * as well. But not if get_block() returned an error.
1978 		 */
1979 		if (!PageError(page))
1980 			SetPageUptodate(page);
1981 		unlock_page(page);
1982 		return 0;
1983 	}
1984 
1985 	/* Stage two: lock the buffers */
1986 	for (i = 0; i < nr; i++) {
1987 		bh = arr[i];
1988 		lock_buffer(bh);
1989 		mark_buffer_async_read(bh);
1990 	}
1991 
1992 	/*
1993 	 * Stage 3: start the IO.  Check for uptodateness
1994 	 * inside the buffer lock in case another process reading
1995 	 * the underlying blockdev brought it uptodate (the sct fix).
1996 	 */
1997 	for (i = 0; i < nr; i++) {
1998 		bh = arr[i];
1999 		if (buffer_uptodate(bh))
2000 			end_buffer_async_read(bh, 1);
2001 		else
2002 			submit_bh(READ, bh);
2003 	}
2004 	return 0;
2005 }
2006 
2007 /* utility function for filesystems that need to do work on expanding
2008  * truncates.  Uses prepare/commit_write to allow the filesystem to
2009  * deal with the hole.
2010  */
2011 static int __generic_cont_expand(struct inode *inode, loff_t size,
2012 				 pgoff_t index, unsigned int offset)
2013 {
2014 	struct address_space *mapping = inode->i_mapping;
2015 	struct page *page;
2016 	unsigned long limit;
2017 	int err;
2018 
2019 	err = -EFBIG;
2020         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2021 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2022 		send_sig(SIGXFSZ, current, 0);
2023 		goto out;
2024 	}
2025 	if (size > inode->i_sb->s_maxbytes)
2026 		goto out;
2027 
2028 	err = -ENOMEM;
2029 	page = grab_cache_page(mapping, index);
2030 	if (!page)
2031 		goto out;
2032 	err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2033 	if (err) {
2034 		/*
2035 		 * ->prepare_write() may have instantiated a few blocks
2036 		 * outside i_size.  Trim these off again.
2037 		 */
2038 		unlock_page(page);
2039 		page_cache_release(page);
2040 		vmtruncate(inode, inode->i_size);
2041 		goto out;
2042 	}
2043 
2044 	err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2045 
2046 	unlock_page(page);
2047 	page_cache_release(page);
2048 	if (err > 0)
2049 		err = 0;
2050 out:
2051 	return err;
2052 }
2053 
2054 int generic_cont_expand(struct inode *inode, loff_t size)
2055 {
2056 	pgoff_t index;
2057 	unsigned int offset;
2058 
2059 	offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2060 
2061 	/* ugh.  in prepare/commit_write, if from==to==start of block, we
2062 	** skip the prepare.  make sure we never send an offset for the start
2063 	** of a block
2064 	*/
2065 	if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2066 		/* caller must handle this extra byte. */
2067 		offset++;
2068 	}
2069 	index = size >> PAGE_CACHE_SHIFT;
2070 
2071 	return __generic_cont_expand(inode, size, index, offset);
2072 }
2073 
2074 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2075 {
2076 	loff_t pos = size - 1;
2077 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2078 	unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2079 
2080 	/* prepare/commit_write can handle even if from==to==start of block. */
2081 	return __generic_cont_expand(inode, size, index, offset);
2082 }
2083 
2084 /*
2085  * For moronic filesystems that do not allow holes in file.
2086  * We may have to extend the file.
2087  */
2088 
2089 int cont_prepare_write(struct page *page, unsigned offset,
2090 		unsigned to, get_block_t *get_block, loff_t *bytes)
2091 {
2092 	struct address_space *mapping = page->mapping;
2093 	struct inode *inode = mapping->host;
2094 	struct page *new_page;
2095 	pgoff_t pgpos;
2096 	long status;
2097 	unsigned zerofrom;
2098 	unsigned blocksize = 1 << inode->i_blkbits;
2099 	void *kaddr;
2100 
2101 	while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2102 		status = -ENOMEM;
2103 		new_page = grab_cache_page(mapping, pgpos);
2104 		if (!new_page)
2105 			goto out;
2106 		/* we might sleep */
2107 		if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2108 			unlock_page(new_page);
2109 			page_cache_release(new_page);
2110 			continue;
2111 		}
2112 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2113 		if (zerofrom & (blocksize-1)) {
2114 			*bytes |= (blocksize-1);
2115 			(*bytes)++;
2116 		}
2117 		status = __block_prepare_write(inode, new_page, zerofrom,
2118 						PAGE_CACHE_SIZE, get_block);
2119 		if (status)
2120 			goto out_unmap;
2121 		kaddr = kmap_atomic(new_page, KM_USER0);
2122 		memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2123 		flush_dcache_page(new_page);
2124 		kunmap_atomic(kaddr, KM_USER0);
2125 		generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2126 		unlock_page(new_page);
2127 		page_cache_release(new_page);
2128 	}
2129 
2130 	if (page->index < pgpos) {
2131 		/* completely inside the area */
2132 		zerofrom = offset;
2133 	} else {
2134 		/* page covers the boundary, find the boundary offset */
2135 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2136 
2137 		/* if we will expand the thing last block will be filled */
2138 		if (to > zerofrom && (zerofrom & (blocksize-1))) {
2139 			*bytes |= (blocksize-1);
2140 			(*bytes)++;
2141 		}
2142 
2143 		/* starting below the boundary? Nothing to zero out */
2144 		if (offset <= zerofrom)
2145 			zerofrom = offset;
2146 	}
2147 	status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2148 	if (status)
2149 		goto out1;
2150 	if (zerofrom < offset) {
2151 		kaddr = kmap_atomic(page, KM_USER0);
2152 		memset(kaddr+zerofrom, 0, offset-zerofrom);
2153 		flush_dcache_page(page);
2154 		kunmap_atomic(kaddr, KM_USER0);
2155 		__block_commit_write(inode, page, zerofrom, offset);
2156 	}
2157 	return 0;
2158 out1:
2159 	ClearPageUptodate(page);
2160 	return status;
2161 
2162 out_unmap:
2163 	ClearPageUptodate(new_page);
2164 	unlock_page(new_page);
2165 	page_cache_release(new_page);
2166 out:
2167 	return status;
2168 }
2169 
2170 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2171 			get_block_t *get_block)
2172 {
2173 	struct inode *inode = page->mapping->host;
2174 	int err = __block_prepare_write(inode, page, from, to, get_block);
2175 	if (err)
2176 		ClearPageUptodate(page);
2177 	return err;
2178 }
2179 
2180 int block_commit_write(struct page *page, unsigned from, unsigned to)
2181 {
2182 	struct inode *inode = page->mapping->host;
2183 	__block_commit_write(inode,page,from,to);
2184 	return 0;
2185 }
2186 
2187 int generic_commit_write(struct file *file, struct page *page,
2188 		unsigned from, unsigned to)
2189 {
2190 	struct inode *inode = page->mapping->host;
2191 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2192 	__block_commit_write(inode,page,from,to);
2193 	/*
2194 	 * No need to use i_size_read() here, the i_size
2195 	 * cannot change under us because we hold i_mutex.
2196 	 */
2197 	if (pos > inode->i_size) {
2198 		i_size_write(inode, pos);
2199 		mark_inode_dirty(inode);
2200 	}
2201 	return 0;
2202 }
2203 
2204 
2205 /*
2206  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2207  * immediately, while under the page lock.  So it needs a special end_io
2208  * handler which does not touch the bh after unlocking it.
2209  *
2210  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2211  * a race there is benign: unlock_buffer() only use the bh's address for
2212  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2213  * itself.
2214  */
2215 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2216 {
2217 	if (uptodate) {
2218 		set_buffer_uptodate(bh);
2219 	} else {
2220 		/* This happens, due to failed READA attempts. */
2221 		clear_buffer_uptodate(bh);
2222 	}
2223 	unlock_buffer(bh);
2224 }
2225 
2226 /*
2227  * On entry, the page is fully not uptodate.
2228  * On exit the page is fully uptodate in the areas outside (from,to)
2229  */
2230 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2231 			get_block_t *get_block)
2232 {
2233 	struct inode *inode = page->mapping->host;
2234 	const unsigned blkbits = inode->i_blkbits;
2235 	const unsigned blocksize = 1 << blkbits;
2236 	struct buffer_head map_bh;
2237 	struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2238 	unsigned block_in_page;
2239 	unsigned block_start;
2240 	sector_t block_in_file;
2241 	char *kaddr;
2242 	int nr_reads = 0;
2243 	int i;
2244 	int ret = 0;
2245 	int is_mapped_to_disk = 1;
2246 	int dirtied_it = 0;
2247 
2248 	if (PageMappedToDisk(page))
2249 		return 0;
2250 
2251 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2252 	map_bh.b_page = page;
2253 
2254 	/*
2255 	 * We loop across all blocks in the page, whether or not they are
2256 	 * part of the affected region.  This is so we can discover if the
2257 	 * page is fully mapped-to-disk.
2258 	 */
2259 	for (block_start = 0, block_in_page = 0;
2260 		  block_start < PAGE_CACHE_SIZE;
2261 		  block_in_page++, block_start += blocksize) {
2262 		unsigned block_end = block_start + blocksize;
2263 		int create;
2264 
2265 		map_bh.b_state = 0;
2266 		create = 1;
2267 		if (block_start >= to)
2268 			create = 0;
2269 		map_bh.b_size = blocksize;
2270 		ret = get_block(inode, block_in_file + block_in_page,
2271 					&map_bh, create);
2272 		if (ret)
2273 			goto failed;
2274 		if (!buffer_mapped(&map_bh))
2275 			is_mapped_to_disk = 0;
2276 		if (buffer_new(&map_bh))
2277 			unmap_underlying_metadata(map_bh.b_bdev,
2278 							map_bh.b_blocknr);
2279 		if (PageUptodate(page))
2280 			continue;
2281 		if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2282 			kaddr = kmap_atomic(page, KM_USER0);
2283 			if (block_start < from) {
2284 				memset(kaddr+block_start, 0, from-block_start);
2285 				dirtied_it = 1;
2286 			}
2287 			if (block_end > to) {
2288 				memset(kaddr + to, 0, block_end - to);
2289 				dirtied_it = 1;
2290 			}
2291 			flush_dcache_page(page);
2292 			kunmap_atomic(kaddr, KM_USER0);
2293 			continue;
2294 		}
2295 		if (buffer_uptodate(&map_bh))
2296 			continue;	/* reiserfs does this */
2297 		if (block_start < from || block_end > to) {
2298 			struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2299 
2300 			if (!bh) {
2301 				ret = -ENOMEM;
2302 				goto failed;
2303 			}
2304 			bh->b_state = map_bh.b_state;
2305 			atomic_set(&bh->b_count, 0);
2306 			bh->b_this_page = NULL;
2307 			bh->b_page = page;
2308 			bh->b_blocknr = map_bh.b_blocknr;
2309 			bh->b_size = blocksize;
2310 			bh->b_data = (char *)(long)block_start;
2311 			bh->b_bdev = map_bh.b_bdev;
2312 			bh->b_private = NULL;
2313 			read_bh[nr_reads++] = bh;
2314 		}
2315 	}
2316 
2317 	if (nr_reads) {
2318 		struct buffer_head *bh;
2319 
2320 		/*
2321 		 * The page is locked, so these buffers are protected from
2322 		 * any VM or truncate activity.  Hence we don't need to care
2323 		 * for the buffer_head refcounts.
2324 		 */
2325 		for (i = 0; i < nr_reads; i++) {
2326 			bh = read_bh[i];
2327 			lock_buffer(bh);
2328 			bh->b_end_io = end_buffer_read_nobh;
2329 			submit_bh(READ, bh);
2330 		}
2331 		for (i = 0; i < nr_reads; i++) {
2332 			bh = read_bh[i];
2333 			wait_on_buffer(bh);
2334 			if (!buffer_uptodate(bh))
2335 				ret = -EIO;
2336 			free_buffer_head(bh);
2337 			read_bh[i] = NULL;
2338 		}
2339 		if (ret)
2340 			goto failed;
2341 	}
2342 
2343 	if (is_mapped_to_disk)
2344 		SetPageMappedToDisk(page);
2345 	SetPageUptodate(page);
2346 
2347 	/*
2348 	 * Setting the page dirty here isn't necessary for the prepare_write
2349 	 * function - commit_write will do that.  But if/when this function is
2350 	 * used within the pagefault handler to ensure that all mmapped pages
2351 	 * have backing space in the filesystem, we will need to dirty the page
2352 	 * if its contents were altered.
2353 	 */
2354 	if (dirtied_it)
2355 		set_page_dirty(page);
2356 
2357 	return 0;
2358 
2359 failed:
2360 	for (i = 0; i < nr_reads; i++) {
2361 		if (read_bh[i])
2362 			free_buffer_head(read_bh[i]);
2363 	}
2364 
2365 	/*
2366 	 * Error recovery is pretty slack.  Clear the page and mark it dirty
2367 	 * so we'll later zero out any blocks which _were_ allocated.
2368 	 */
2369 	kaddr = kmap_atomic(page, KM_USER0);
2370 	memset(kaddr, 0, PAGE_CACHE_SIZE);
2371 	flush_dcache_page(page);
2372 	kunmap_atomic(kaddr, KM_USER0);
2373 	SetPageUptodate(page);
2374 	set_page_dirty(page);
2375 	return ret;
2376 }
2377 EXPORT_SYMBOL(nobh_prepare_write);
2378 
2379 int nobh_commit_write(struct file *file, struct page *page,
2380 		unsigned from, unsigned to)
2381 {
2382 	struct inode *inode = page->mapping->host;
2383 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2384 
2385 	set_page_dirty(page);
2386 	if (pos > inode->i_size) {
2387 		i_size_write(inode, pos);
2388 		mark_inode_dirty(inode);
2389 	}
2390 	return 0;
2391 }
2392 EXPORT_SYMBOL(nobh_commit_write);
2393 
2394 /*
2395  * nobh_writepage() - based on block_full_write_page() except
2396  * that it tries to operate without attaching bufferheads to
2397  * the page.
2398  */
2399 int nobh_writepage(struct page *page, get_block_t *get_block,
2400 			struct writeback_control *wbc)
2401 {
2402 	struct inode * const inode = page->mapping->host;
2403 	loff_t i_size = i_size_read(inode);
2404 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2405 	unsigned offset;
2406 	void *kaddr;
2407 	int ret;
2408 
2409 	/* Is the page fully inside i_size? */
2410 	if (page->index < end_index)
2411 		goto out;
2412 
2413 	/* Is the page fully outside i_size? (truncate in progress) */
2414 	offset = i_size & (PAGE_CACHE_SIZE-1);
2415 	if (page->index >= end_index+1 || !offset) {
2416 		/*
2417 		 * The page may have dirty, unmapped buffers.  For example,
2418 		 * they may have been added in ext3_writepage().  Make them
2419 		 * freeable here, so the page does not leak.
2420 		 */
2421 #if 0
2422 		/* Not really sure about this  - do we need this ? */
2423 		if (page->mapping->a_ops->invalidatepage)
2424 			page->mapping->a_ops->invalidatepage(page, offset);
2425 #endif
2426 		unlock_page(page);
2427 		return 0; /* don't care */
2428 	}
2429 
2430 	/*
2431 	 * The page straddles i_size.  It must be zeroed out on each and every
2432 	 * writepage invocation because it may be mmapped.  "A file is mapped
2433 	 * in multiples of the page size.  For a file that is not a multiple of
2434 	 * the  page size, the remaining memory is zeroed when mapped, and
2435 	 * writes to that region are not written out to the file."
2436 	 */
2437 	kaddr = kmap_atomic(page, KM_USER0);
2438 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2439 	flush_dcache_page(page);
2440 	kunmap_atomic(kaddr, KM_USER0);
2441 out:
2442 	ret = mpage_writepage(page, get_block, wbc);
2443 	if (ret == -EAGAIN)
2444 		ret = __block_write_full_page(inode, page, get_block, wbc);
2445 	return ret;
2446 }
2447 EXPORT_SYMBOL(nobh_writepage);
2448 
2449 /*
2450  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2451  */
2452 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2453 {
2454 	struct inode *inode = mapping->host;
2455 	unsigned blocksize = 1 << inode->i_blkbits;
2456 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2457 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2458 	unsigned to;
2459 	struct page *page;
2460 	const struct address_space_operations *a_ops = mapping->a_ops;
2461 	char *kaddr;
2462 	int ret = 0;
2463 
2464 	if ((offset & (blocksize - 1)) == 0)
2465 		goto out;
2466 
2467 	ret = -ENOMEM;
2468 	page = grab_cache_page(mapping, index);
2469 	if (!page)
2470 		goto out;
2471 
2472 	to = (offset + blocksize) & ~(blocksize - 1);
2473 	ret = a_ops->prepare_write(NULL, page, offset, to);
2474 	if (ret == 0) {
2475 		kaddr = kmap_atomic(page, KM_USER0);
2476 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2477 		flush_dcache_page(page);
2478 		kunmap_atomic(kaddr, KM_USER0);
2479 		set_page_dirty(page);
2480 	}
2481 	unlock_page(page);
2482 	page_cache_release(page);
2483 out:
2484 	return ret;
2485 }
2486 EXPORT_SYMBOL(nobh_truncate_page);
2487 
2488 int block_truncate_page(struct address_space *mapping,
2489 			loff_t from, get_block_t *get_block)
2490 {
2491 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2492 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2493 	unsigned blocksize;
2494 	sector_t iblock;
2495 	unsigned length, pos;
2496 	struct inode *inode = mapping->host;
2497 	struct page *page;
2498 	struct buffer_head *bh;
2499 	void *kaddr;
2500 	int err;
2501 
2502 	blocksize = 1 << inode->i_blkbits;
2503 	length = offset & (blocksize - 1);
2504 
2505 	/* Block boundary? Nothing to do */
2506 	if (!length)
2507 		return 0;
2508 
2509 	length = blocksize - length;
2510 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2511 
2512 	page = grab_cache_page(mapping, index);
2513 	err = -ENOMEM;
2514 	if (!page)
2515 		goto out;
2516 
2517 	if (!page_has_buffers(page))
2518 		create_empty_buffers(page, blocksize, 0);
2519 
2520 	/* Find the buffer that contains "offset" */
2521 	bh = page_buffers(page);
2522 	pos = blocksize;
2523 	while (offset >= pos) {
2524 		bh = bh->b_this_page;
2525 		iblock++;
2526 		pos += blocksize;
2527 	}
2528 
2529 	err = 0;
2530 	if (!buffer_mapped(bh)) {
2531 		WARN_ON(bh->b_size != blocksize);
2532 		err = get_block(inode, iblock, bh, 0);
2533 		if (err)
2534 			goto unlock;
2535 		/* unmapped? It's a hole - nothing to do */
2536 		if (!buffer_mapped(bh))
2537 			goto unlock;
2538 	}
2539 
2540 	/* Ok, it's mapped. Make sure it's up-to-date */
2541 	if (PageUptodate(page))
2542 		set_buffer_uptodate(bh);
2543 
2544 	if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2545 		err = -EIO;
2546 		ll_rw_block(READ, 1, &bh);
2547 		wait_on_buffer(bh);
2548 		/* Uhhuh. Read error. Complain and punt. */
2549 		if (!buffer_uptodate(bh))
2550 			goto unlock;
2551 	}
2552 
2553 	kaddr = kmap_atomic(page, KM_USER0);
2554 	memset(kaddr + offset, 0, length);
2555 	flush_dcache_page(page);
2556 	kunmap_atomic(kaddr, KM_USER0);
2557 
2558 	mark_buffer_dirty(bh);
2559 	err = 0;
2560 
2561 unlock:
2562 	unlock_page(page);
2563 	page_cache_release(page);
2564 out:
2565 	return err;
2566 }
2567 
2568 /*
2569  * The generic ->writepage function for buffer-backed address_spaces
2570  */
2571 int block_write_full_page(struct page *page, get_block_t *get_block,
2572 			struct writeback_control *wbc)
2573 {
2574 	struct inode * const inode = page->mapping->host;
2575 	loff_t i_size = i_size_read(inode);
2576 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2577 	unsigned offset;
2578 	void *kaddr;
2579 
2580 	/* Is the page fully inside i_size? */
2581 	if (page->index < end_index)
2582 		return __block_write_full_page(inode, page, get_block, wbc);
2583 
2584 	/* Is the page fully outside i_size? (truncate in progress) */
2585 	offset = i_size & (PAGE_CACHE_SIZE-1);
2586 	if (page->index >= end_index+1 || !offset) {
2587 		/*
2588 		 * The page may have dirty, unmapped buffers.  For example,
2589 		 * they may have been added in ext3_writepage().  Make them
2590 		 * freeable here, so the page does not leak.
2591 		 */
2592 		do_invalidatepage(page, 0);
2593 		unlock_page(page);
2594 		return 0; /* don't care */
2595 	}
2596 
2597 	/*
2598 	 * The page straddles i_size.  It must be zeroed out on each and every
2599 	 * writepage invokation because it may be mmapped.  "A file is mapped
2600 	 * in multiples of the page size.  For a file that is not a multiple of
2601 	 * the  page size, the remaining memory is zeroed when mapped, and
2602 	 * writes to that region are not written out to the file."
2603 	 */
2604 	kaddr = kmap_atomic(page, KM_USER0);
2605 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2606 	flush_dcache_page(page);
2607 	kunmap_atomic(kaddr, KM_USER0);
2608 	return __block_write_full_page(inode, page, get_block, wbc);
2609 }
2610 
2611 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2612 			    get_block_t *get_block)
2613 {
2614 	struct buffer_head tmp;
2615 	struct inode *inode = mapping->host;
2616 	tmp.b_state = 0;
2617 	tmp.b_blocknr = 0;
2618 	tmp.b_size = 1 << inode->i_blkbits;
2619 	get_block(inode, block, &tmp, 0);
2620 	return tmp.b_blocknr;
2621 }
2622 
2623 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2624 {
2625 	struct buffer_head *bh = bio->bi_private;
2626 
2627 	if (bio->bi_size)
2628 		return 1;
2629 
2630 	if (err == -EOPNOTSUPP) {
2631 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2632 		set_bit(BH_Eopnotsupp, &bh->b_state);
2633 	}
2634 
2635 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2636 	bio_put(bio);
2637 	return 0;
2638 }
2639 
2640 int submit_bh(int rw, struct buffer_head * bh)
2641 {
2642 	struct bio *bio;
2643 	int ret = 0;
2644 
2645 	BUG_ON(!buffer_locked(bh));
2646 	BUG_ON(!buffer_mapped(bh));
2647 	BUG_ON(!bh->b_end_io);
2648 
2649 	if (buffer_ordered(bh) && (rw == WRITE))
2650 		rw = WRITE_BARRIER;
2651 
2652 	/*
2653 	 * Only clear out a write error when rewriting, should this
2654 	 * include WRITE_SYNC as well?
2655 	 */
2656 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2657 		clear_buffer_write_io_error(bh);
2658 
2659 	/*
2660 	 * from here on down, it's all bio -- do the initial mapping,
2661 	 * submit_bio -> generic_make_request may further map this bio around
2662 	 */
2663 	bio = bio_alloc(GFP_NOIO, 1);
2664 
2665 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2666 	bio->bi_bdev = bh->b_bdev;
2667 	bio->bi_io_vec[0].bv_page = bh->b_page;
2668 	bio->bi_io_vec[0].bv_len = bh->b_size;
2669 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2670 
2671 	bio->bi_vcnt = 1;
2672 	bio->bi_idx = 0;
2673 	bio->bi_size = bh->b_size;
2674 
2675 	bio->bi_end_io = end_bio_bh_io_sync;
2676 	bio->bi_private = bh;
2677 
2678 	bio_get(bio);
2679 	submit_bio(rw, bio);
2680 
2681 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2682 		ret = -EOPNOTSUPP;
2683 
2684 	bio_put(bio);
2685 	return ret;
2686 }
2687 
2688 /**
2689  * ll_rw_block: low-level access to block devices (DEPRECATED)
2690  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2691  * @nr: number of &struct buffer_heads in the array
2692  * @bhs: array of pointers to &struct buffer_head
2693  *
2694  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2695  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2696  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2697  * are sent to disk. The fourth %READA option is described in the documentation
2698  * for generic_make_request() which ll_rw_block() calls.
2699  *
2700  * This function drops any buffer that it cannot get a lock on (with the
2701  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2702  * clean when doing a write request, and any buffer that appears to be
2703  * up-to-date when doing read request.  Further it marks as clean buffers that
2704  * are processed for writing (the buffer cache won't assume that they are
2705  * actually clean until the buffer gets unlocked).
2706  *
2707  * ll_rw_block sets b_end_io to simple completion handler that marks
2708  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2709  * any waiters.
2710  *
2711  * All of the buffers must be for the same device, and must also be a
2712  * multiple of the current approved size for the device.
2713  */
2714 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2715 {
2716 	int i;
2717 
2718 	for (i = 0; i < nr; i++) {
2719 		struct buffer_head *bh = bhs[i];
2720 
2721 		if (rw == SWRITE)
2722 			lock_buffer(bh);
2723 		else if (test_set_buffer_locked(bh))
2724 			continue;
2725 
2726 		if (rw == WRITE || rw == SWRITE) {
2727 			if (test_clear_buffer_dirty(bh)) {
2728 				bh->b_end_io = end_buffer_write_sync;
2729 				get_bh(bh);
2730 				submit_bh(WRITE, bh);
2731 				continue;
2732 			}
2733 		} else {
2734 			if (!buffer_uptodate(bh)) {
2735 				bh->b_end_io = end_buffer_read_sync;
2736 				get_bh(bh);
2737 				submit_bh(rw, bh);
2738 				continue;
2739 			}
2740 		}
2741 		unlock_buffer(bh);
2742 	}
2743 }
2744 
2745 /*
2746  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2747  * and then start new I/O and then wait upon it.  The caller must have a ref on
2748  * the buffer_head.
2749  */
2750 int sync_dirty_buffer(struct buffer_head *bh)
2751 {
2752 	int ret = 0;
2753 
2754 	WARN_ON(atomic_read(&bh->b_count) < 1);
2755 	lock_buffer(bh);
2756 	if (test_clear_buffer_dirty(bh)) {
2757 		get_bh(bh);
2758 		bh->b_end_io = end_buffer_write_sync;
2759 		ret = submit_bh(WRITE, bh);
2760 		wait_on_buffer(bh);
2761 		if (buffer_eopnotsupp(bh)) {
2762 			clear_buffer_eopnotsupp(bh);
2763 			ret = -EOPNOTSUPP;
2764 		}
2765 		if (!ret && !buffer_uptodate(bh))
2766 			ret = -EIO;
2767 	} else {
2768 		unlock_buffer(bh);
2769 	}
2770 	return ret;
2771 }
2772 
2773 /*
2774  * try_to_free_buffers() checks if all the buffers on this particular page
2775  * are unused, and releases them if so.
2776  *
2777  * Exclusion against try_to_free_buffers may be obtained by either
2778  * locking the page or by holding its mapping's private_lock.
2779  *
2780  * If the page is dirty but all the buffers are clean then we need to
2781  * be sure to mark the page clean as well.  This is because the page
2782  * may be against a block device, and a later reattachment of buffers
2783  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2784  * filesystem data on the same device.
2785  *
2786  * The same applies to regular filesystem pages: if all the buffers are
2787  * clean then we set the page clean and proceed.  To do that, we require
2788  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2789  * private_lock.
2790  *
2791  * try_to_free_buffers() is non-blocking.
2792  */
2793 static inline int buffer_busy(struct buffer_head *bh)
2794 {
2795 	return atomic_read(&bh->b_count) |
2796 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2797 }
2798 
2799 static int
2800 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2801 {
2802 	struct buffer_head *head = page_buffers(page);
2803 	struct buffer_head *bh;
2804 
2805 	bh = head;
2806 	do {
2807 		if (buffer_write_io_error(bh) && page->mapping)
2808 			set_bit(AS_EIO, &page->mapping->flags);
2809 		if (buffer_busy(bh))
2810 			goto failed;
2811 		bh = bh->b_this_page;
2812 	} while (bh != head);
2813 
2814 	do {
2815 		struct buffer_head *next = bh->b_this_page;
2816 
2817 		if (!list_empty(&bh->b_assoc_buffers))
2818 			__remove_assoc_queue(bh);
2819 		bh = next;
2820 	} while (bh != head);
2821 	*buffers_to_free = head;
2822 	__clear_page_buffers(page);
2823 	return 1;
2824 failed:
2825 	return 0;
2826 }
2827 
2828 int try_to_free_buffers(struct page *page)
2829 {
2830 	struct address_space * const mapping = page->mapping;
2831 	struct buffer_head *buffers_to_free = NULL;
2832 	int ret = 0;
2833 
2834 	BUG_ON(!PageLocked(page));
2835 	if (PageWriteback(page))
2836 		return 0;
2837 
2838 	if (mapping == NULL) {		/* can this still happen? */
2839 		ret = drop_buffers(page, &buffers_to_free);
2840 		goto out;
2841 	}
2842 
2843 	spin_lock(&mapping->private_lock);
2844 	ret = drop_buffers(page, &buffers_to_free);
2845 	spin_unlock(&mapping->private_lock);
2846 	if (ret) {
2847 		/*
2848 		 * If the filesystem writes its buffers by hand (eg ext3)
2849 		 * then we can have clean buffers against a dirty page.  We
2850 		 * clean the page here; otherwise later reattachment of buffers
2851 		 * could encounter a non-uptodate page, which is unresolvable.
2852 		 * This only applies in the rare case where try_to_free_buffers
2853 		 * succeeds but the page is not freed.
2854 		 */
2855 		clear_page_dirty(page);
2856 	}
2857 out:
2858 	if (buffers_to_free) {
2859 		struct buffer_head *bh = buffers_to_free;
2860 
2861 		do {
2862 			struct buffer_head *next = bh->b_this_page;
2863 			free_buffer_head(bh);
2864 			bh = next;
2865 		} while (bh != buffers_to_free);
2866 	}
2867 	return ret;
2868 }
2869 EXPORT_SYMBOL(try_to_free_buffers);
2870 
2871 void block_sync_page(struct page *page)
2872 {
2873 	struct address_space *mapping;
2874 
2875 	smp_mb();
2876 	mapping = page_mapping(page);
2877 	if (mapping)
2878 		blk_run_backing_dev(mapping->backing_dev_info, page);
2879 }
2880 
2881 /*
2882  * There are no bdflush tunables left.  But distributions are
2883  * still running obsolete flush daemons, so we terminate them here.
2884  *
2885  * Use of bdflush() is deprecated and will be removed in a future kernel.
2886  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2887  */
2888 asmlinkage long sys_bdflush(int func, long data)
2889 {
2890 	static int msg_count;
2891 
2892 	if (!capable(CAP_SYS_ADMIN))
2893 		return -EPERM;
2894 
2895 	if (msg_count < 5) {
2896 		msg_count++;
2897 		printk(KERN_INFO
2898 			"warning: process `%s' used the obsolete bdflush"
2899 			" system call\n", current->comm);
2900 		printk(KERN_INFO "Fix your initscripts?\n");
2901 	}
2902 
2903 	if (func == 1)
2904 		do_exit(0);
2905 	return 0;
2906 }
2907 
2908 /*
2909  * Buffer-head allocation
2910  */
2911 static struct kmem_cache *bh_cachep;
2912 
2913 /*
2914  * Once the number of bh's in the machine exceeds this level, we start
2915  * stripping them in writeback.
2916  */
2917 static int max_buffer_heads;
2918 
2919 int buffer_heads_over_limit;
2920 
2921 struct bh_accounting {
2922 	int nr;			/* Number of live bh's */
2923 	int ratelimit;		/* Limit cacheline bouncing */
2924 };
2925 
2926 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2927 
2928 static void recalc_bh_state(void)
2929 {
2930 	int i;
2931 	int tot = 0;
2932 
2933 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2934 		return;
2935 	__get_cpu_var(bh_accounting).ratelimit = 0;
2936 	for_each_online_cpu(i)
2937 		tot += per_cpu(bh_accounting, i).nr;
2938 	buffer_heads_over_limit = (tot > max_buffer_heads);
2939 }
2940 
2941 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2942 {
2943 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2944 	if (ret) {
2945 		get_cpu_var(bh_accounting).nr++;
2946 		recalc_bh_state();
2947 		put_cpu_var(bh_accounting);
2948 	}
2949 	return ret;
2950 }
2951 EXPORT_SYMBOL(alloc_buffer_head);
2952 
2953 void free_buffer_head(struct buffer_head *bh)
2954 {
2955 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
2956 	kmem_cache_free(bh_cachep, bh);
2957 	get_cpu_var(bh_accounting).nr--;
2958 	recalc_bh_state();
2959 	put_cpu_var(bh_accounting);
2960 }
2961 EXPORT_SYMBOL(free_buffer_head);
2962 
2963 static void
2964 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2965 {
2966 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2967 			    SLAB_CTOR_CONSTRUCTOR) {
2968 		struct buffer_head * bh = (struct buffer_head *)data;
2969 
2970 		memset(bh, 0, sizeof(*bh));
2971 		INIT_LIST_HEAD(&bh->b_assoc_buffers);
2972 	}
2973 }
2974 
2975 static void buffer_exit_cpu(int cpu)
2976 {
2977 	int i;
2978 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2979 
2980 	for (i = 0; i < BH_LRU_SIZE; i++) {
2981 		brelse(b->bhs[i]);
2982 		b->bhs[i] = NULL;
2983 	}
2984 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2985 	per_cpu(bh_accounting, cpu).nr = 0;
2986 	put_cpu_var(bh_accounting);
2987 }
2988 
2989 static int buffer_cpu_notify(struct notifier_block *self,
2990 			      unsigned long action, void *hcpu)
2991 {
2992 	if (action == CPU_DEAD)
2993 		buffer_exit_cpu((unsigned long)hcpu);
2994 	return NOTIFY_OK;
2995 }
2996 
2997 void __init buffer_init(void)
2998 {
2999 	int nrpages;
3000 
3001 	bh_cachep = kmem_cache_create("buffer_head",
3002 					sizeof(struct buffer_head), 0,
3003 					(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3004 					SLAB_MEM_SPREAD),
3005 					init_buffer_head,
3006 					NULL);
3007 
3008 	/*
3009 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3010 	 */
3011 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3012 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3013 	hotcpu_notifier(buffer_cpu_notify, 0);
3014 }
3015 
3016 EXPORT_SYMBOL(__bforget);
3017 EXPORT_SYMBOL(__brelse);
3018 EXPORT_SYMBOL(__wait_on_buffer);
3019 EXPORT_SYMBOL(block_commit_write);
3020 EXPORT_SYMBOL(block_prepare_write);
3021 EXPORT_SYMBOL(block_read_full_page);
3022 EXPORT_SYMBOL(block_sync_page);
3023 EXPORT_SYMBOL(block_truncate_page);
3024 EXPORT_SYMBOL(block_write_full_page);
3025 EXPORT_SYMBOL(cont_prepare_write);
3026 EXPORT_SYMBOL(end_buffer_read_sync);
3027 EXPORT_SYMBOL(end_buffer_write_sync);
3028 EXPORT_SYMBOL(file_fsync);
3029 EXPORT_SYMBOL(fsync_bdev);
3030 EXPORT_SYMBOL(generic_block_bmap);
3031 EXPORT_SYMBOL(generic_commit_write);
3032 EXPORT_SYMBOL(generic_cont_expand);
3033 EXPORT_SYMBOL(generic_cont_expand_simple);
3034 EXPORT_SYMBOL(init_buffer);
3035 EXPORT_SYMBOL(invalidate_bdev);
3036 EXPORT_SYMBOL(ll_rw_block);
3037 EXPORT_SYMBOL(mark_buffer_dirty);
3038 EXPORT_SYMBOL(submit_bh);
3039 EXPORT_SYMBOL(sync_dirty_buffer);
3040 EXPORT_SYMBOL(unlock_buffer);
3041