xref: /openbmc/linux/fs/buffer.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 
53 #include "internal.h"
54 
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 			  struct writeback_control *wbc);
58 
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 	trace_block_touch_buffer(bh);
64 	folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67 
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73 
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 	clear_bit_unlock(BH_Lock, &bh->b_state);
77 	smp_mb__after_atomic();
78 	wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81 
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88 				     bool *dirty, bool *writeback)
89 {
90 	struct buffer_head *head, *bh;
91 	*dirty = false;
92 	*writeback = false;
93 
94 	BUG_ON(!folio_test_locked(folio));
95 
96 	head = folio_buffers(folio);
97 	if (!head)
98 		return;
99 
100 	if (folio_test_writeback(folio))
101 		*writeback = true;
102 
103 	bh = head;
104 	do {
105 		if (buffer_locked(bh))
106 			*writeback = true;
107 
108 		if (buffer_dirty(bh))
109 			*dirty = true;
110 
111 		bh = bh->b_this_page;
112 	} while (bh != head);
113 }
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 	if (!test_bit(BH_Quiet, &bh->b_state))
129 		printk_ratelimited(KERN_ERR
130 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
131 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133 
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 	if (uptodate) {
145 		set_buffer_uptodate(bh);
146 	} else {
147 		/* This happens, due to failed read-ahead attempts. */
148 		clear_buffer_uptodate(bh);
149 	}
150 	unlock_buffer(bh);
151 }
152 
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 	__end_buffer_read_notouch(bh, uptodate);
160 	put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163 
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 	if (uptodate) {
167 		set_buffer_uptodate(bh);
168 	} else {
169 		buffer_io_error(bh, ", lost sync page write");
170 		mark_buffer_write_io_error(bh);
171 		clear_buffer_uptodate(bh);
172 	}
173 	unlock_buffer(bh);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177 
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 	struct inode *bd_inode = bdev->bd_inode;
192 	struct address_space *bd_mapping = bd_inode->i_mapping;
193 	struct buffer_head *ret = NULL;
194 	pgoff_t index;
195 	struct buffer_head *bh;
196 	struct buffer_head *head;
197 	struct folio *folio;
198 	int all_mapped = 1;
199 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200 
201 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
203 	if (IS_ERR(folio))
204 		goto out;
205 
206 	spin_lock(&bd_mapping->private_lock);
207 	head = folio_buffers(folio);
208 	if (!head)
209 		goto out_unlock;
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << bd_inode->i_blkbits);
236 	}
237 out_unlock:
238 	spin_unlock(&bd_mapping->private_lock);
239 	folio_put(folio);
240 out:
241 	return ret;
242 }
243 
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 	unsigned long flags;
247 	struct buffer_head *first;
248 	struct buffer_head *tmp;
249 	struct folio *folio;
250 	int folio_uptodate = 1;
251 
252 	BUG_ON(!buffer_async_read(bh));
253 
254 	folio = bh->b_folio;
255 	if (uptodate) {
256 		set_buffer_uptodate(bh);
257 	} else {
258 		clear_buffer_uptodate(bh);
259 		buffer_io_error(bh, ", async page read");
260 		folio_set_error(folio);
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = folio_buffers(folio);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			folio_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	/*
285 	 * If all of the buffers are uptodate then we can set the page
286 	 * uptodate.
287 	 */
288 	if (folio_uptodate)
289 		folio_mark_uptodate(folio);
290 	folio_unlock(folio);
291 	return;
292 
293 still_busy:
294 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 	return;
296 }
297 
298 struct postprocess_bh_ctx {
299 	struct work_struct work;
300 	struct buffer_head *bh;
301 };
302 
303 static void verify_bh(struct work_struct *work)
304 {
305 	struct postprocess_bh_ctx *ctx =
306 		container_of(work, struct postprocess_bh_ctx, work);
307 	struct buffer_head *bh = ctx->bh;
308 	bool valid;
309 
310 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
311 	end_buffer_async_read(bh, valid);
312 	kfree(ctx);
313 }
314 
315 static bool need_fsverity(struct buffer_head *bh)
316 {
317 	struct folio *folio = bh->b_folio;
318 	struct inode *inode = folio->mapping->host;
319 
320 	return fsverity_active(inode) &&
321 		/* needed by ext4 */
322 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
323 }
324 
325 static void decrypt_bh(struct work_struct *work)
326 {
327 	struct postprocess_bh_ctx *ctx =
328 		container_of(work, struct postprocess_bh_ctx, work);
329 	struct buffer_head *bh = ctx->bh;
330 	int err;
331 
332 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
333 					       bh_offset(bh));
334 	if (err == 0 && need_fsverity(bh)) {
335 		/*
336 		 * We use different work queues for decryption and for verity
337 		 * because verity may require reading metadata pages that need
338 		 * decryption, and we shouldn't recurse to the same workqueue.
339 		 */
340 		INIT_WORK(&ctx->work, verify_bh);
341 		fsverity_enqueue_verify_work(&ctx->work);
342 		return;
343 	}
344 	end_buffer_async_read(bh, err == 0);
345 	kfree(ctx);
346 }
347 
348 /*
349  * I/O completion handler for block_read_full_folio() - pages
350  * which come unlocked at the end of I/O.
351  */
352 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
353 {
354 	struct inode *inode = bh->b_folio->mapping->host;
355 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
356 	bool verify = need_fsverity(bh);
357 
358 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
359 	if (uptodate && (decrypt || verify)) {
360 		struct postprocess_bh_ctx *ctx =
361 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
362 
363 		if (ctx) {
364 			ctx->bh = bh;
365 			if (decrypt) {
366 				INIT_WORK(&ctx->work, decrypt_bh);
367 				fscrypt_enqueue_decrypt_work(&ctx->work);
368 			} else {
369 				INIT_WORK(&ctx->work, verify_bh);
370 				fsverity_enqueue_verify_work(&ctx->work);
371 			}
372 			return;
373 		}
374 		uptodate = 0;
375 	}
376 	end_buffer_async_read(bh, uptodate);
377 }
378 
379 /*
380  * Completion handler for block_write_full_page() - pages which are unlocked
381  * during I/O, and which have PageWriteback cleared upon I/O completion.
382  */
383 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
384 {
385 	unsigned long flags;
386 	struct buffer_head *first;
387 	struct buffer_head *tmp;
388 	struct folio *folio;
389 
390 	BUG_ON(!buffer_async_write(bh));
391 
392 	folio = bh->b_folio;
393 	if (uptodate) {
394 		set_buffer_uptodate(bh);
395 	} else {
396 		buffer_io_error(bh, ", lost async page write");
397 		mark_buffer_write_io_error(bh);
398 		clear_buffer_uptodate(bh);
399 		folio_set_error(folio);
400 	}
401 
402 	first = folio_buffers(folio);
403 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
404 
405 	clear_buffer_async_write(bh);
406 	unlock_buffer(bh);
407 	tmp = bh->b_this_page;
408 	while (tmp != bh) {
409 		if (buffer_async_write(tmp)) {
410 			BUG_ON(!buffer_locked(tmp));
411 			goto still_busy;
412 		}
413 		tmp = tmp->b_this_page;
414 	}
415 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 	folio_end_writeback(folio);
417 	return;
418 
419 still_busy:
420 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
421 	return;
422 }
423 EXPORT_SYMBOL(end_buffer_async_write);
424 
425 /*
426  * If a page's buffers are under async readin (end_buffer_async_read
427  * completion) then there is a possibility that another thread of
428  * control could lock one of the buffers after it has completed
429  * but while some of the other buffers have not completed.  This
430  * locked buffer would confuse end_buffer_async_read() into not unlocking
431  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
432  * that this buffer is not under async I/O.
433  *
434  * The page comes unlocked when it has no locked buffer_async buffers
435  * left.
436  *
437  * PageLocked prevents anyone starting new async I/O reads any of
438  * the buffers.
439  *
440  * PageWriteback is used to prevent simultaneous writeout of the same
441  * page.
442  *
443  * PageLocked prevents anyone from starting writeback of a page which is
444  * under read I/O (PageWriteback is only ever set against a locked page).
445  */
446 static void mark_buffer_async_read(struct buffer_head *bh)
447 {
448 	bh->b_end_io = end_buffer_async_read_io;
449 	set_buffer_async_read(bh);
450 }
451 
452 static void mark_buffer_async_write_endio(struct buffer_head *bh,
453 					  bh_end_io_t *handler)
454 {
455 	bh->b_end_io = handler;
456 	set_buffer_async_write(bh);
457 }
458 
459 void mark_buffer_async_write(struct buffer_head *bh)
460 {
461 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
462 }
463 EXPORT_SYMBOL(mark_buffer_async_write);
464 
465 
466 /*
467  * fs/buffer.c contains helper functions for buffer-backed address space's
468  * fsync functions.  A common requirement for buffer-based filesystems is
469  * that certain data from the backing blockdev needs to be written out for
470  * a successful fsync().  For example, ext2 indirect blocks need to be
471  * written back and waited upon before fsync() returns.
472  *
473  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
474  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
475  * management of a list of dependent buffers at ->i_mapping->private_list.
476  *
477  * Locking is a little subtle: try_to_free_buffers() will remove buffers
478  * from their controlling inode's queue when they are being freed.  But
479  * try_to_free_buffers() will be operating against the *blockdev* mapping
480  * at the time, not against the S_ISREG file which depends on those buffers.
481  * So the locking for private_list is via the private_lock in the address_space
482  * which backs the buffers.  Which is different from the address_space
483  * against which the buffers are listed.  So for a particular address_space,
484  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
485  * mapping->private_list will always be protected by the backing blockdev's
486  * ->private_lock.
487  *
488  * Which introduces a requirement: all buffers on an address_space's
489  * ->private_list must be from the same address_space: the blockdev's.
490  *
491  * address_spaces which do not place buffers at ->private_list via these
492  * utility functions are free to use private_lock and private_list for
493  * whatever they want.  The only requirement is that list_empty(private_list)
494  * be true at clear_inode() time.
495  *
496  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
497  * filesystems should do that.  invalidate_inode_buffers() should just go
498  * BUG_ON(!list_empty).
499  *
500  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
501  * take an address_space, not an inode.  And it should be called
502  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
503  * queued up.
504  *
505  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
506  * list if it is already on a list.  Because if the buffer is on a list,
507  * it *must* already be on the right one.  If not, the filesystem is being
508  * silly.  This will save a ton of locking.  But first we have to ensure
509  * that buffers are taken *off* the old inode's list when they are freed
510  * (presumably in truncate).  That requires careful auditing of all
511  * filesystems (do it inside bforget()).  It could also be done by bringing
512  * b_inode back.
513  */
514 
515 /*
516  * The buffer's backing address_space's private_lock must be held
517  */
518 static void __remove_assoc_queue(struct buffer_head *bh)
519 {
520 	list_del_init(&bh->b_assoc_buffers);
521 	WARN_ON(!bh->b_assoc_map);
522 	bh->b_assoc_map = NULL;
523 }
524 
525 int inode_has_buffers(struct inode *inode)
526 {
527 	return !list_empty(&inode->i_data.private_list);
528 }
529 
530 /*
531  * osync is designed to support O_SYNC io.  It waits synchronously for
532  * all already-submitted IO to complete, but does not queue any new
533  * writes to the disk.
534  *
535  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
536  * as you dirty the buffers, and then use osync_inode_buffers to wait for
537  * completion.  Any other dirty buffers which are not yet queued for
538  * write will not be flushed to disk by the osync.
539  */
540 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
541 {
542 	struct buffer_head *bh;
543 	struct list_head *p;
544 	int err = 0;
545 
546 	spin_lock(lock);
547 repeat:
548 	list_for_each_prev(p, list) {
549 		bh = BH_ENTRY(p);
550 		if (buffer_locked(bh)) {
551 			get_bh(bh);
552 			spin_unlock(lock);
553 			wait_on_buffer(bh);
554 			if (!buffer_uptodate(bh))
555 				err = -EIO;
556 			brelse(bh);
557 			spin_lock(lock);
558 			goto repeat;
559 		}
560 	}
561 	spin_unlock(lock);
562 	return err;
563 }
564 
565 void emergency_thaw_bdev(struct super_block *sb)
566 {
567 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
568 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
569 }
570 
571 /**
572  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
573  * @mapping: the mapping which wants those buffers written
574  *
575  * Starts I/O against the buffers at mapping->private_list, and waits upon
576  * that I/O.
577  *
578  * Basically, this is a convenience function for fsync().
579  * @mapping is a file or directory which needs those buffers to be written for
580  * a successful fsync().
581  */
582 int sync_mapping_buffers(struct address_space *mapping)
583 {
584 	struct address_space *buffer_mapping = mapping->private_data;
585 
586 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
587 		return 0;
588 
589 	return fsync_buffers_list(&buffer_mapping->private_lock,
590 					&mapping->private_list);
591 }
592 EXPORT_SYMBOL(sync_mapping_buffers);
593 
594 /**
595  * generic_buffers_fsync_noflush - generic buffer fsync implementation
596  * for simple filesystems with no inode lock
597  *
598  * @file:	file to synchronize
599  * @start:	start offset in bytes
600  * @end:	end offset in bytes (inclusive)
601  * @datasync:	only synchronize essential metadata if true
602  *
603  * This is a generic implementation of the fsync method for simple
604  * filesystems which track all non-inode metadata in the buffers list
605  * hanging off the address_space structure.
606  */
607 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
608 				  bool datasync)
609 {
610 	struct inode *inode = file->f_mapping->host;
611 	int err;
612 	int ret;
613 
614 	err = file_write_and_wait_range(file, start, end);
615 	if (err)
616 		return err;
617 
618 	ret = sync_mapping_buffers(inode->i_mapping);
619 	if (!(inode->i_state & I_DIRTY_ALL))
620 		goto out;
621 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
622 		goto out;
623 
624 	err = sync_inode_metadata(inode, 1);
625 	if (ret == 0)
626 		ret = err;
627 
628 out:
629 	/* check and advance again to catch errors after syncing out buffers */
630 	err = file_check_and_advance_wb_err(file);
631 	if (ret == 0)
632 		ret = err;
633 	return ret;
634 }
635 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
636 
637 /**
638  * generic_buffers_fsync - generic buffer fsync implementation
639  * for simple filesystems with no inode lock
640  *
641  * @file:	file to synchronize
642  * @start:	start offset in bytes
643  * @end:	end offset in bytes (inclusive)
644  * @datasync:	only synchronize essential metadata if true
645  *
646  * This is a generic implementation of the fsync method for simple
647  * filesystems which track all non-inode metadata in the buffers list
648  * hanging off the address_space structure. This also makes sure that
649  * a device cache flush operation is called at the end.
650  */
651 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
652 			  bool datasync)
653 {
654 	struct inode *inode = file->f_mapping->host;
655 	int ret;
656 
657 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
658 	if (!ret)
659 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
660 	return ret;
661 }
662 EXPORT_SYMBOL(generic_buffers_fsync);
663 
664 /*
665  * Called when we've recently written block `bblock', and it is known that
666  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
667  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
668  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
669  */
670 void write_boundary_block(struct block_device *bdev,
671 			sector_t bblock, unsigned blocksize)
672 {
673 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
674 	if (bh) {
675 		if (buffer_dirty(bh))
676 			write_dirty_buffer(bh, 0);
677 		put_bh(bh);
678 	}
679 }
680 
681 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
682 {
683 	struct address_space *mapping = inode->i_mapping;
684 	struct address_space *buffer_mapping = bh->b_folio->mapping;
685 
686 	mark_buffer_dirty(bh);
687 	if (!mapping->private_data) {
688 		mapping->private_data = buffer_mapping;
689 	} else {
690 		BUG_ON(mapping->private_data != buffer_mapping);
691 	}
692 	if (!bh->b_assoc_map) {
693 		spin_lock(&buffer_mapping->private_lock);
694 		list_move_tail(&bh->b_assoc_buffers,
695 				&mapping->private_list);
696 		bh->b_assoc_map = mapping;
697 		spin_unlock(&buffer_mapping->private_lock);
698 	}
699 }
700 EXPORT_SYMBOL(mark_buffer_dirty_inode);
701 
702 /*
703  * Add a page to the dirty page list.
704  *
705  * It is a sad fact of life that this function is called from several places
706  * deeply under spinlocking.  It may not sleep.
707  *
708  * If the page has buffers, the uptodate buffers are set dirty, to preserve
709  * dirty-state coherency between the page and the buffers.  It the page does
710  * not have buffers then when they are later attached they will all be set
711  * dirty.
712  *
713  * The buffers are dirtied before the page is dirtied.  There's a small race
714  * window in which a writepage caller may see the page cleanness but not the
715  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
716  * before the buffers, a concurrent writepage caller could clear the page dirty
717  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
718  * page on the dirty page list.
719  *
720  * We use private_lock to lock against try_to_free_buffers while using the
721  * page's buffer list.  Also use this to protect against clean buffers being
722  * added to the page after it was set dirty.
723  *
724  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
725  * address_space though.
726  */
727 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
728 {
729 	struct buffer_head *head;
730 	bool newly_dirty;
731 
732 	spin_lock(&mapping->private_lock);
733 	head = folio_buffers(folio);
734 	if (head) {
735 		struct buffer_head *bh = head;
736 
737 		do {
738 			set_buffer_dirty(bh);
739 			bh = bh->b_this_page;
740 		} while (bh != head);
741 	}
742 	/*
743 	 * Lock out page's memcg migration to keep PageDirty
744 	 * synchronized with per-memcg dirty page counters.
745 	 */
746 	folio_memcg_lock(folio);
747 	newly_dirty = !folio_test_set_dirty(folio);
748 	spin_unlock(&mapping->private_lock);
749 
750 	if (newly_dirty)
751 		__folio_mark_dirty(folio, mapping, 1);
752 
753 	folio_memcg_unlock(folio);
754 
755 	if (newly_dirty)
756 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
757 
758 	return newly_dirty;
759 }
760 EXPORT_SYMBOL(block_dirty_folio);
761 
762 /*
763  * Write out and wait upon a list of buffers.
764  *
765  * We have conflicting pressures: we want to make sure that all
766  * initially dirty buffers get waited on, but that any subsequently
767  * dirtied buffers don't.  After all, we don't want fsync to last
768  * forever if somebody is actively writing to the file.
769  *
770  * Do this in two main stages: first we copy dirty buffers to a
771  * temporary inode list, queueing the writes as we go.  Then we clean
772  * up, waiting for those writes to complete.
773  *
774  * During this second stage, any subsequent updates to the file may end
775  * up refiling the buffer on the original inode's dirty list again, so
776  * there is a chance we will end up with a buffer queued for write but
777  * not yet completed on that list.  So, as a final cleanup we go through
778  * the osync code to catch these locked, dirty buffers without requeuing
779  * any newly dirty buffers for write.
780  */
781 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
782 {
783 	struct buffer_head *bh;
784 	struct list_head tmp;
785 	struct address_space *mapping;
786 	int err = 0, err2;
787 	struct blk_plug plug;
788 
789 	INIT_LIST_HEAD(&tmp);
790 	blk_start_plug(&plug);
791 
792 	spin_lock(lock);
793 	while (!list_empty(list)) {
794 		bh = BH_ENTRY(list->next);
795 		mapping = bh->b_assoc_map;
796 		__remove_assoc_queue(bh);
797 		/* Avoid race with mark_buffer_dirty_inode() which does
798 		 * a lockless check and we rely on seeing the dirty bit */
799 		smp_mb();
800 		if (buffer_dirty(bh) || buffer_locked(bh)) {
801 			list_add(&bh->b_assoc_buffers, &tmp);
802 			bh->b_assoc_map = mapping;
803 			if (buffer_dirty(bh)) {
804 				get_bh(bh);
805 				spin_unlock(lock);
806 				/*
807 				 * Ensure any pending I/O completes so that
808 				 * write_dirty_buffer() actually writes the
809 				 * current contents - it is a noop if I/O is
810 				 * still in flight on potentially older
811 				 * contents.
812 				 */
813 				write_dirty_buffer(bh, REQ_SYNC);
814 
815 				/*
816 				 * Kick off IO for the previous mapping. Note
817 				 * that we will not run the very last mapping,
818 				 * wait_on_buffer() will do that for us
819 				 * through sync_buffer().
820 				 */
821 				brelse(bh);
822 				spin_lock(lock);
823 			}
824 		}
825 	}
826 
827 	spin_unlock(lock);
828 	blk_finish_plug(&plug);
829 	spin_lock(lock);
830 
831 	while (!list_empty(&tmp)) {
832 		bh = BH_ENTRY(tmp.prev);
833 		get_bh(bh);
834 		mapping = bh->b_assoc_map;
835 		__remove_assoc_queue(bh);
836 		/* Avoid race with mark_buffer_dirty_inode() which does
837 		 * a lockless check and we rely on seeing the dirty bit */
838 		smp_mb();
839 		if (buffer_dirty(bh)) {
840 			list_add(&bh->b_assoc_buffers,
841 				 &mapping->private_list);
842 			bh->b_assoc_map = mapping;
843 		}
844 		spin_unlock(lock);
845 		wait_on_buffer(bh);
846 		if (!buffer_uptodate(bh))
847 			err = -EIO;
848 		brelse(bh);
849 		spin_lock(lock);
850 	}
851 
852 	spin_unlock(lock);
853 	err2 = osync_buffers_list(lock, list);
854 	if (err)
855 		return err;
856 	else
857 		return err2;
858 }
859 
860 /*
861  * Invalidate any and all dirty buffers on a given inode.  We are
862  * probably unmounting the fs, but that doesn't mean we have already
863  * done a sync().  Just drop the buffers from the inode list.
864  *
865  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
866  * assumes that all the buffers are against the blockdev.  Not true
867  * for reiserfs.
868  */
869 void invalidate_inode_buffers(struct inode *inode)
870 {
871 	if (inode_has_buffers(inode)) {
872 		struct address_space *mapping = &inode->i_data;
873 		struct list_head *list = &mapping->private_list;
874 		struct address_space *buffer_mapping = mapping->private_data;
875 
876 		spin_lock(&buffer_mapping->private_lock);
877 		while (!list_empty(list))
878 			__remove_assoc_queue(BH_ENTRY(list->next));
879 		spin_unlock(&buffer_mapping->private_lock);
880 	}
881 }
882 EXPORT_SYMBOL(invalidate_inode_buffers);
883 
884 /*
885  * Remove any clean buffers from the inode's buffer list.  This is called
886  * when we're trying to free the inode itself.  Those buffers can pin it.
887  *
888  * Returns true if all buffers were removed.
889  */
890 int remove_inode_buffers(struct inode *inode)
891 {
892 	int ret = 1;
893 
894 	if (inode_has_buffers(inode)) {
895 		struct address_space *mapping = &inode->i_data;
896 		struct list_head *list = &mapping->private_list;
897 		struct address_space *buffer_mapping = mapping->private_data;
898 
899 		spin_lock(&buffer_mapping->private_lock);
900 		while (!list_empty(list)) {
901 			struct buffer_head *bh = BH_ENTRY(list->next);
902 			if (buffer_dirty(bh)) {
903 				ret = 0;
904 				break;
905 			}
906 			__remove_assoc_queue(bh);
907 		}
908 		spin_unlock(&buffer_mapping->private_lock);
909 	}
910 	return ret;
911 }
912 
913 /*
914  * Create the appropriate buffers when given a folio for data area and
915  * the size of each buffer.. Use the bh->b_this_page linked list to
916  * follow the buffers created.  Return NULL if unable to create more
917  * buffers.
918  *
919  * The retry flag is used to differentiate async IO (paging, swapping)
920  * which may not fail from ordinary buffer allocations.
921  */
922 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
923 					bool retry)
924 {
925 	struct buffer_head *bh, *head;
926 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
927 	long offset;
928 	struct mem_cgroup *memcg, *old_memcg;
929 
930 	if (retry)
931 		gfp |= __GFP_NOFAIL;
932 
933 	/* The folio lock pins the memcg */
934 	memcg = folio_memcg(folio);
935 	old_memcg = set_active_memcg(memcg);
936 
937 	head = NULL;
938 	offset = folio_size(folio);
939 	while ((offset -= size) >= 0) {
940 		bh = alloc_buffer_head(gfp);
941 		if (!bh)
942 			goto no_grow;
943 
944 		bh->b_this_page = head;
945 		bh->b_blocknr = -1;
946 		head = bh;
947 
948 		bh->b_size = size;
949 
950 		/* Link the buffer to its folio */
951 		folio_set_bh(bh, folio, offset);
952 	}
953 out:
954 	set_active_memcg(old_memcg);
955 	return head;
956 /*
957  * In case anything failed, we just free everything we got.
958  */
959 no_grow:
960 	if (head) {
961 		do {
962 			bh = head;
963 			head = head->b_this_page;
964 			free_buffer_head(bh);
965 		} while (head);
966 	}
967 
968 	goto out;
969 }
970 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
971 
972 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
973 				       bool retry)
974 {
975 	return folio_alloc_buffers(page_folio(page), size, retry);
976 }
977 EXPORT_SYMBOL_GPL(alloc_page_buffers);
978 
979 static inline void link_dev_buffers(struct folio *folio,
980 		struct buffer_head *head)
981 {
982 	struct buffer_head *bh, *tail;
983 
984 	bh = head;
985 	do {
986 		tail = bh;
987 		bh = bh->b_this_page;
988 	} while (bh);
989 	tail->b_this_page = head;
990 	folio_attach_private(folio, head);
991 }
992 
993 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
994 {
995 	sector_t retval = ~((sector_t)0);
996 	loff_t sz = bdev_nr_bytes(bdev);
997 
998 	if (sz) {
999 		unsigned int sizebits = blksize_bits(size);
1000 		retval = (sz >> sizebits);
1001 	}
1002 	return retval;
1003 }
1004 
1005 /*
1006  * Initialise the state of a blockdev folio's buffers.
1007  */
1008 static sector_t folio_init_buffers(struct folio *folio,
1009 		struct block_device *bdev, sector_t block, int size)
1010 {
1011 	struct buffer_head *head = folio_buffers(folio);
1012 	struct buffer_head *bh = head;
1013 	bool uptodate = folio_test_uptodate(folio);
1014 	sector_t end_block = blkdev_max_block(bdev, size);
1015 
1016 	do {
1017 		if (!buffer_mapped(bh)) {
1018 			bh->b_end_io = NULL;
1019 			bh->b_private = NULL;
1020 			bh->b_bdev = bdev;
1021 			bh->b_blocknr = block;
1022 			if (uptodate)
1023 				set_buffer_uptodate(bh);
1024 			if (block < end_block)
1025 				set_buffer_mapped(bh);
1026 		}
1027 		block++;
1028 		bh = bh->b_this_page;
1029 	} while (bh != head);
1030 
1031 	/*
1032 	 * Caller needs to validate requested block against end of device.
1033 	 */
1034 	return end_block;
1035 }
1036 
1037 /*
1038  * Create the page-cache page that contains the requested block.
1039  *
1040  * This is used purely for blockdev mappings.
1041  */
1042 static int
1043 grow_dev_page(struct block_device *bdev, sector_t block,
1044 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
1045 {
1046 	struct inode *inode = bdev->bd_inode;
1047 	struct folio *folio;
1048 	struct buffer_head *bh;
1049 	sector_t end_block;
1050 	int ret = 0;
1051 	gfp_t gfp_mask;
1052 
1053 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
1054 
1055 	/*
1056 	 * XXX: __getblk_slow() can not really deal with failure and
1057 	 * will endlessly loop on improvised global reclaim.  Prefer
1058 	 * looping in the allocator rather than here, at least that
1059 	 * code knows what it's doing.
1060 	 */
1061 	gfp_mask |= __GFP_NOFAIL;
1062 
1063 	folio = __filemap_get_folio(inode->i_mapping, index,
1064 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
1065 
1066 	bh = folio_buffers(folio);
1067 	if (bh) {
1068 		if (bh->b_size == size) {
1069 			end_block = folio_init_buffers(folio, bdev,
1070 					(sector_t)index << sizebits, size);
1071 			goto done;
1072 		}
1073 		if (!try_to_free_buffers(folio))
1074 			goto failed;
1075 	}
1076 
1077 	bh = folio_alloc_buffers(folio, size, true);
1078 
1079 	/*
1080 	 * Link the folio to the buffers and initialise them.  Take the
1081 	 * lock to be atomic wrt __find_get_block(), which does not
1082 	 * run under the folio lock.
1083 	 */
1084 	spin_lock(&inode->i_mapping->private_lock);
1085 	link_dev_buffers(folio, bh);
1086 	end_block = folio_init_buffers(folio, bdev,
1087 			(sector_t)index << sizebits, size);
1088 	spin_unlock(&inode->i_mapping->private_lock);
1089 done:
1090 	ret = (block < end_block) ? 1 : -ENXIO;
1091 failed:
1092 	folio_unlock(folio);
1093 	folio_put(folio);
1094 	return ret;
1095 }
1096 
1097 /*
1098  * Create buffers for the specified block device block's page.  If
1099  * that page was dirty, the buffers are set dirty also.
1100  */
1101 static int
1102 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1103 {
1104 	pgoff_t index;
1105 	int sizebits;
1106 
1107 	sizebits = PAGE_SHIFT - __ffs(size);
1108 	index = block >> sizebits;
1109 
1110 	/*
1111 	 * Check for a block which wants to lie outside our maximum possible
1112 	 * pagecache index.  (this comparison is done using sector_t types).
1113 	 */
1114 	if (unlikely(index != block >> sizebits)) {
1115 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1116 			"device %pg\n",
1117 			__func__, (unsigned long long)block,
1118 			bdev);
1119 		return -EIO;
1120 	}
1121 
1122 	/* Create a page with the proper size buffers.. */
1123 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1124 }
1125 
1126 static struct buffer_head *
1127 __getblk_slow(struct block_device *bdev, sector_t block,
1128 	     unsigned size, gfp_t gfp)
1129 {
1130 	/* Size must be multiple of hard sectorsize */
1131 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1132 			(size < 512 || size > PAGE_SIZE))) {
1133 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1134 					size);
1135 		printk(KERN_ERR "logical block size: %d\n",
1136 					bdev_logical_block_size(bdev));
1137 
1138 		dump_stack();
1139 		return NULL;
1140 	}
1141 
1142 	for (;;) {
1143 		struct buffer_head *bh;
1144 		int ret;
1145 
1146 		bh = __find_get_block(bdev, block, size);
1147 		if (bh)
1148 			return bh;
1149 
1150 		ret = grow_buffers(bdev, block, size, gfp);
1151 		if (ret < 0)
1152 			return NULL;
1153 	}
1154 }
1155 
1156 /*
1157  * The relationship between dirty buffers and dirty pages:
1158  *
1159  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1160  * the page is tagged dirty in the page cache.
1161  *
1162  * At all times, the dirtiness of the buffers represents the dirtiness of
1163  * subsections of the page.  If the page has buffers, the page dirty bit is
1164  * merely a hint about the true dirty state.
1165  *
1166  * When a page is set dirty in its entirety, all its buffers are marked dirty
1167  * (if the page has buffers).
1168  *
1169  * When a buffer is marked dirty, its page is dirtied, but the page's other
1170  * buffers are not.
1171  *
1172  * Also.  When blockdev buffers are explicitly read with bread(), they
1173  * individually become uptodate.  But their backing page remains not
1174  * uptodate - even if all of its buffers are uptodate.  A subsequent
1175  * block_read_full_folio() against that folio will discover all the uptodate
1176  * buffers, will set the folio uptodate and will perform no I/O.
1177  */
1178 
1179 /**
1180  * mark_buffer_dirty - mark a buffer_head as needing writeout
1181  * @bh: the buffer_head to mark dirty
1182  *
1183  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1184  * its backing page dirty, then tag the page as dirty in the page cache
1185  * and then attach the address_space's inode to its superblock's dirty
1186  * inode list.
1187  *
1188  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1189  * i_pages lock and mapping->host->i_lock.
1190  */
1191 void mark_buffer_dirty(struct buffer_head *bh)
1192 {
1193 	WARN_ON_ONCE(!buffer_uptodate(bh));
1194 
1195 	trace_block_dirty_buffer(bh);
1196 
1197 	/*
1198 	 * Very *carefully* optimize the it-is-already-dirty case.
1199 	 *
1200 	 * Don't let the final "is it dirty" escape to before we
1201 	 * perhaps modified the buffer.
1202 	 */
1203 	if (buffer_dirty(bh)) {
1204 		smp_mb();
1205 		if (buffer_dirty(bh))
1206 			return;
1207 	}
1208 
1209 	if (!test_set_buffer_dirty(bh)) {
1210 		struct folio *folio = bh->b_folio;
1211 		struct address_space *mapping = NULL;
1212 
1213 		folio_memcg_lock(folio);
1214 		if (!folio_test_set_dirty(folio)) {
1215 			mapping = folio->mapping;
1216 			if (mapping)
1217 				__folio_mark_dirty(folio, mapping, 0);
1218 		}
1219 		folio_memcg_unlock(folio);
1220 		if (mapping)
1221 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1222 	}
1223 }
1224 EXPORT_SYMBOL(mark_buffer_dirty);
1225 
1226 void mark_buffer_write_io_error(struct buffer_head *bh)
1227 {
1228 	struct super_block *sb;
1229 
1230 	set_buffer_write_io_error(bh);
1231 	/* FIXME: do we need to set this in both places? */
1232 	if (bh->b_folio && bh->b_folio->mapping)
1233 		mapping_set_error(bh->b_folio->mapping, -EIO);
1234 	if (bh->b_assoc_map)
1235 		mapping_set_error(bh->b_assoc_map, -EIO);
1236 	rcu_read_lock();
1237 	sb = READ_ONCE(bh->b_bdev->bd_super);
1238 	if (sb)
1239 		errseq_set(&sb->s_wb_err, -EIO);
1240 	rcu_read_unlock();
1241 }
1242 EXPORT_SYMBOL(mark_buffer_write_io_error);
1243 
1244 /*
1245  * Decrement a buffer_head's reference count.  If all buffers against a page
1246  * have zero reference count, are clean and unlocked, and if the page is clean
1247  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1248  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1249  * a page but it ends up not being freed, and buffers may later be reattached).
1250  */
1251 void __brelse(struct buffer_head * buf)
1252 {
1253 	if (atomic_read(&buf->b_count)) {
1254 		put_bh(buf);
1255 		return;
1256 	}
1257 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1258 }
1259 EXPORT_SYMBOL(__brelse);
1260 
1261 /*
1262  * bforget() is like brelse(), except it discards any
1263  * potentially dirty data.
1264  */
1265 void __bforget(struct buffer_head *bh)
1266 {
1267 	clear_buffer_dirty(bh);
1268 	if (bh->b_assoc_map) {
1269 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1270 
1271 		spin_lock(&buffer_mapping->private_lock);
1272 		list_del_init(&bh->b_assoc_buffers);
1273 		bh->b_assoc_map = NULL;
1274 		spin_unlock(&buffer_mapping->private_lock);
1275 	}
1276 	__brelse(bh);
1277 }
1278 EXPORT_SYMBOL(__bforget);
1279 
1280 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1281 {
1282 	lock_buffer(bh);
1283 	if (buffer_uptodate(bh)) {
1284 		unlock_buffer(bh);
1285 		return bh;
1286 	} else {
1287 		get_bh(bh);
1288 		bh->b_end_io = end_buffer_read_sync;
1289 		submit_bh(REQ_OP_READ, bh);
1290 		wait_on_buffer(bh);
1291 		if (buffer_uptodate(bh))
1292 			return bh;
1293 	}
1294 	brelse(bh);
1295 	return NULL;
1296 }
1297 
1298 /*
1299  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1300  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1301  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1302  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1303  * CPU's LRUs at the same time.
1304  *
1305  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1306  * sb_find_get_block().
1307  *
1308  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1309  * a local interrupt disable for that.
1310  */
1311 
1312 #define BH_LRU_SIZE	16
1313 
1314 struct bh_lru {
1315 	struct buffer_head *bhs[BH_LRU_SIZE];
1316 };
1317 
1318 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1319 
1320 #ifdef CONFIG_SMP
1321 #define bh_lru_lock()	local_irq_disable()
1322 #define bh_lru_unlock()	local_irq_enable()
1323 #else
1324 #define bh_lru_lock()	preempt_disable()
1325 #define bh_lru_unlock()	preempt_enable()
1326 #endif
1327 
1328 static inline void check_irqs_on(void)
1329 {
1330 #ifdef irqs_disabled
1331 	BUG_ON(irqs_disabled());
1332 #endif
1333 }
1334 
1335 /*
1336  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1337  * inserted at the front, and the buffer_head at the back if any is evicted.
1338  * Or, if already in the LRU it is moved to the front.
1339  */
1340 static void bh_lru_install(struct buffer_head *bh)
1341 {
1342 	struct buffer_head *evictee = bh;
1343 	struct bh_lru *b;
1344 	int i;
1345 
1346 	check_irqs_on();
1347 	bh_lru_lock();
1348 
1349 	/*
1350 	 * the refcount of buffer_head in bh_lru prevents dropping the
1351 	 * attached page(i.e., try_to_free_buffers) so it could cause
1352 	 * failing page migration.
1353 	 * Skip putting upcoming bh into bh_lru until migration is done.
1354 	 */
1355 	if (lru_cache_disabled()) {
1356 		bh_lru_unlock();
1357 		return;
1358 	}
1359 
1360 	b = this_cpu_ptr(&bh_lrus);
1361 	for (i = 0; i < BH_LRU_SIZE; i++) {
1362 		swap(evictee, b->bhs[i]);
1363 		if (evictee == bh) {
1364 			bh_lru_unlock();
1365 			return;
1366 		}
1367 	}
1368 
1369 	get_bh(bh);
1370 	bh_lru_unlock();
1371 	brelse(evictee);
1372 }
1373 
1374 /*
1375  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1376  */
1377 static struct buffer_head *
1378 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1379 {
1380 	struct buffer_head *ret = NULL;
1381 	unsigned int i;
1382 
1383 	check_irqs_on();
1384 	bh_lru_lock();
1385 	for (i = 0; i < BH_LRU_SIZE; i++) {
1386 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1387 
1388 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1389 		    bh->b_size == size) {
1390 			if (i) {
1391 				while (i) {
1392 					__this_cpu_write(bh_lrus.bhs[i],
1393 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1394 					i--;
1395 				}
1396 				__this_cpu_write(bh_lrus.bhs[0], bh);
1397 			}
1398 			get_bh(bh);
1399 			ret = bh;
1400 			break;
1401 		}
1402 	}
1403 	bh_lru_unlock();
1404 	return ret;
1405 }
1406 
1407 /*
1408  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1409  * it in the LRU and mark it as accessed.  If it is not present then return
1410  * NULL
1411  */
1412 struct buffer_head *
1413 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1414 {
1415 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1416 
1417 	if (bh == NULL) {
1418 		/* __find_get_block_slow will mark the page accessed */
1419 		bh = __find_get_block_slow(bdev, block);
1420 		if (bh)
1421 			bh_lru_install(bh);
1422 	} else
1423 		touch_buffer(bh);
1424 
1425 	return bh;
1426 }
1427 EXPORT_SYMBOL(__find_get_block);
1428 
1429 /*
1430  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1431  * which corresponds to the passed block_device, block and size. The
1432  * returned buffer has its reference count incremented.
1433  *
1434  * __getblk_gfp() will lock up the machine if grow_dev_page's
1435  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1436  */
1437 struct buffer_head *
1438 __getblk_gfp(struct block_device *bdev, sector_t block,
1439 	     unsigned size, gfp_t gfp)
1440 {
1441 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1442 
1443 	might_sleep();
1444 	if (bh == NULL)
1445 		bh = __getblk_slow(bdev, block, size, gfp);
1446 	return bh;
1447 }
1448 EXPORT_SYMBOL(__getblk_gfp);
1449 
1450 /*
1451  * Do async read-ahead on a buffer..
1452  */
1453 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1454 {
1455 	struct buffer_head *bh = __getblk(bdev, block, size);
1456 	if (likely(bh)) {
1457 		bh_readahead(bh, REQ_RAHEAD);
1458 		brelse(bh);
1459 	}
1460 }
1461 EXPORT_SYMBOL(__breadahead);
1462 
1463 /**
1464  *  __bread_gfp() - reads a specified block and returns the bh
1465  *  @bdev: the block_device to read from
1466  *  @block: number of block
1467  *  @size: size (in bytes) to read
1468  *  @gfp: page allocation flag
1469  *
1470  *  Reads a specified block, and returns buffer head that contains it.
1471  *  The page cache can be allocated from non-movable area
1472  *  not to prevent page migration if you set gfp to zero.
1473  *  It returns NULL if the block was unreadable.
1474  */
1475 struct buffer_head *
1476 __bread_gfp(struct block_device *bdev, sector_t block,
1477 		   unsigned size, gfp_t gfp)
1478 {
1479 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1480 
1481 	if (likely(bh) && !buffer_uptodate(bh))
1482 		bh = __bread_slow(bh);
1483 	return bh;
1484 }
1485 EXPORT_SYMBOL(__bread_gfp);
1486 
1487 static void __invalidate_bh_lrus(struct bh_lru *b)
1488 {
1489 	int i;
1490 
1491 	for (i = 0; i < BH_LRU_SIZE; i++) {
1492 		brelse(b->bhs[i]);
1493 		b->bhs[i] = NULL;
1494 	}
1495 }
1496 /*
1497  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1498  * This doesn't race because it runs in each cpu either in irq
1499  * or with preempt disabled.
1500  */
1501 static void invalidate_bh_lru(void *arg)
1502 {
1503 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1504 
1505 	__invalidate_bh_lrus(b);
1506 	put_cpu_var(bh_lrus);
1507 }
1508 
1509 bool has_bh_in_lru(int cpu, void *dummy)
1510 {
1511 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1512 	int i;
1513 
1514 	for (i = 0; i < BH_LRU_SIZE; i++) {
1515 		if (b->bhs[i])
1516 			return true;
1517 	}
1518 
1519 	return false;
1520 }
1521 
1522 void invalidate_bh_lrus(void)
1523 {
1524 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1525 }
1526 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1527 
1528 /*
1529  * It's called from workqueue context so we need a bh_lru_lock to close
1530  * the race with preemption/irq.
1531  */
1532 void invalidate_bh_lrus_cpu(void)
1533 {
1534 	struct bh_lru *b;
1535 
1536 	bh_lru_lock();
1537 	b = this_cpu_ptr(&bh_lrus);
1538 	__invalidate_bh_lrus(b);
1539 	bh_lru_unlock();
1540 }
1541 
1542 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1543 		  unsigned long offset)
1544 {
1545 	bh->b_folio = folio;
1546 	BUG_ON(offset >= folio_size(folio));
1547 	if (folio_test_highmem(folio))
1548 		/*
1549 		 * This catches illegal uses and preserves the offset:
1550 		 */
1551 		bh->b_data = (char *)(0 + offset);
1552 	else
1553 		bh->b_data = folio_address(folio) + offset;
1554 }
1555 EXPORT_SYMBOL(folio_set_bh);
1556 
1557 /*
1558  * Called when truncating a buffer on a page completely.
1559  */
1560 
1561 /* Bits that are cleared during an invalidate */
1562 #define BUFFER_FLAGS_DISCARD \
1563 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1564 	 1 << BH_Delay | 1 << BH_Unwritten)
1565 
1566 static void discard_buffer(struct buffer_head * bh)
1567 {
1568 	unsigned long b_state;
1569 
1570 	lock_buffer(bh);
1571 	clear_buffer_dirty(bh);
1572 	bh->b_bdev = NULL;
1573 	b_state = READ_ONCE(bh->b_state);
1574 	do {
1575 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1576 			      b_state & ~BUFFER_FLAGS_DISCARD));
1577 	unlock_buffer(bh);
1578 }
1579 
1580 /**
1581  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1582  * @folio: The folio which is affected.
1583  * @offset: start of the range to invalidate
1584  * @length: length of the range to invalidate
1585  *
1586  * block_invalidate_folio() is called when all or part of the folio has been
1587  * invalidated by a truncate operation.
1588  *
1589  * block_invalidate_folio() does not have to release all buffers, but it must
1590  * ensure that no dirty buffer is left outside @offset and that no I/O
1591  * is underway against any of the blocks which are outside the truncation
1592  * point.  Because the caller is about to free (and possibly reuse) those
1593  * blocks on-disk.
1594  */
1595 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1596 {
1597 	struct buffer_head *head, *bh, *next;
1598 	size_t curr_off = 0;
1599 	size_t stop = length + offset;
1600 
1601 	BUG_ON(!folio_test_locked(folio));
1602 
1603 	/*
1604 	 * Check for overflow
1605 	 */
1606 	BUG_ON(stop > folio_size(folio) || stop < length);
1607 
1608 	head = folio_buffers(folio);
1609 	if (!head)
1610 		return;
1611 
1612 	bh = head;
1613 	do {
1614 		size_t next_off = curr_off + bh->b_size;
1615 		next = bh->b_this_page;
1616 
1617 		/*
1618 		 * Are we still fully in range ?
1619 		 */
1620 		if (next_off > stop)
1621 			goto out;
1622 
1623 		/*
1624 		 * is this block fully invalidated?
1625 		 */
1626 		if (offset <= curr_off)
1627 			discard_buffer(bh);
1628 		curr_off = next_off;
1629 		bh = next;
1630 	} while (bh != head);
1631 
1632 	/*
1633 	 * We release buffers only if the entire folio is being invalidated.
1634 	 * The get_block cached value has been unconditionally invalidated,
1635 	 * so real IO is not possible anymore.
1636 	 */
1637 	if (length == folio_size(folio))
1638 		filemap_release_folio(folio, 0);
1639 out:
1640 	return;
1641 }
1642 EXPORT_SYMBOL(block_invalidate_folio);
1643 
1644 /*
1645  * We attach and possibly dirty the buffers atomically wrt
1646  * block_dirty_folio() via private_lock.  try_to_free_buffers
1647  * is already excluded via the folio lock.
1648  */
1649 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1650 				unsigned long b_state)
1651 {
1652 	struct buffer_head *bh, *head, *tail;
1653 
1654 	head = folio_alloc_buffers(folio, blocksize, true);
1655 	bh = head;
1656 	do {
1657 		bh->b_state |= b_state;
1658 		tail = bh;
1659 		bh = bh->b_this_page;
1660 	} while (bh);
1661 	tail->b_this_page = head;
1662 
1663 	spin_lock(&folio->mapping->private_lock);
1664 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1665 		bh = head;
1666 		do {
1667 			if (folio_test_dirty(folio))
1668 				set_buffer_dirty(bh);
1669 			if (folio_test_uptodate(folio))
1670 				set_buffer_uptodate(bh);
1671 			bh = bh->b_this_page;
1672 		} while (bh != head);
1673 	}
1674 	folio_attach_private(folio, head);
1675 	spin_unlock(&folio->mapping->private_lock);
1676 }
1677 EXPORT_SYMBOL(folio_create_empty_buffers);
1678 
1679 void create_empty_buffers(struct page *page,
1680 			unsigned long blocksize, unsigned long b_state)
1681 {
1682 	folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1683 }
1684 EXPORT_SYMBOL(create_empty_buffers);
1685 
1686 /**
1687  * clean_bdev_aliases: clean a range of buffers in block device
1688  * @bdev: Block device to clean buffers in
1689  * @block: Start of a range of blocks to clean
1690  * @len: Number of blocks to clean
1691  *
1692  * We are taking a range of blocks for data and we don't want writeback of any
1693  * buffer-cache aliases starting from return from this function and until the
1694  * moment when something will explicitly mark the buffer dirty (hopefully that
1695  * will not happen until we will free that block ;-) We don't even need to mark
1696  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1697  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1698  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1699  * would confuse anyone who might pick it with bread() afterwards...
1700  *
1701  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1702  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1703  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1704  * need to.  That happens here.
1705  */
1706 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1707 {
1708 	struct inode *bd_inode = bdev->bd_inode;
1709 	struct address_space *bd_mapping = bd_inode->i_mapping;
1710 	struct folio_batch fbatch;
1711 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1712 	pgoff_t end;
1713 	int i, count;
1714 	struct buffer_head *bh;
1715 	struct buffer_head *head;
1716 
1717 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1718 	folio_batch_init(&fbatch);
1719 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1720 		count = folio_batch_count(&fbatch);
1721 		for (i = 0; i < count; i++) {
1722 			struct folio *folio = fbatch.folios[i];
1723 
1724 			if (!folio_buffers(folio))
1725 				continue;
1726 			/*
1727 			 * We use folio lock instead of bd_mapping->private_lock
1728 			 * to pin buffers here since we can afford to sleep and
1729 			 * it scales better than a global spinlock lock.
1730 			 */
1731 			folio_lock(folio);
1732 			/* Recheck when the folio is locked which pins bhs */
1733 			head = folio_buffers(folio);
1734 			if (!head)
1735 				goto unlock_page;
1736 			bh = head;
1737 			do {
1738 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1739 					goto next;
1740 				if (bh->b_blocknr >= block + len)
1741 					break;
1742 				clear_buffer_dirty(bh);
1743 				wait_on_buffer(bh);
1744 				clear_buffer_req(bh);
1745 next:
1746 				bh = bh->b_this_page;
1747 			} while (bh != head);
1748 unlock_page:
1749 			folio_unlock(folio);
1750 		}
1751 		folio_batch_release(&fbatch);
1752 		cond_resched();
1753 		/* End of range already reached? */
1754 		if (index > end || !index)
1755 			break;
1756 	}
1757 }
1758 EXPORT_SYMBOL(clean_bdev_aliases);
1759 
1760 /*
1761  * Size is a power-of-two in the range 512..PAGE_SIZE,
1762  * and the case we care about most is PAGE_SIZE.
1763  *
1764  * So this *could* possibly be written with those
1765  * constraints in mind (relevant mostly if some
1766  * architecture has a slow bit-scan instruction)
1767  */
1768 static inline int block_size_bits(unsigned int blocksize)
1769 {
1770 	return ilog2(blocksize);
1771 }
1772 
1773 static struct buffer_head *folio_create_buffers(struct folio *folio,
1774 						struct inode *inode,
1775 						unsigned int b_state)
1776 {
1777 	BUG_ON(!folio_test_locked(folio));
1778 
1779 	if (!folio_buffers(folio))
1780 		folio_create_empty_buffers(folio,
1781 					   1 << READ_ONCE(inode->i_blkbits),
1782 					   b_state);
1783 	return folio_buffers(folio);
1784 }
1785 
1786 /*
1787  * NOTE! All mapped/uptodate combinations are valid:
1788  *
1789  *	Mapped	Uptodate	Meaning
1790  *
1791  *	No	No		"unknown" - must do get_block()
1792  *	No	Yes		"hole" - zero-filled
1793  *	Yes	No		"allocated" - allocated on disk, not read in
1794  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1795  *
1796  * "Dirty" is valid only with the last case (mapped+uptodate).
1797  */
1798 
1799 /*
1800  * While block_write_full_page is writing back the dirty buffers under
1801  * the page lock, whoever dirtied the buffers may decide to clean them
1802  * again at any time.  We handle that by only looking at the buffer
1803  * state inside lock_buffer().
1804  *
1805  * If block_write_full_page() is called for regular writeback
1806  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1807  * locked buffer.   This only can happen if someone has written the buffer
1808  * directly, with submit_bh().  At the address_space level PageWriteback
1809  * prevents this contention from occurring.
1810  *
1811  * If block_write_full_page() is called with wbc->sync_mode ==
1812  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1813  * causes the writes to be flagged as synchronous writes.
1814  */
1815 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1816 			get_block_t *get_block, struct writeback_control *wbc,
1817 			bh_end_io_t *handler)
1818 {
1819 	int err;
1820 	sector_t block;
1821 	sector_t last_block;
1822 	struct buffer_head *bh, *head;
1823 	unsigned int blocksize, bbits;
1824 	int nr_underway = 0;
1825 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1826 
1827 	head = folio_create_buffers(folio, inode,
1828 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1829 
1830 	/*
1831 	 * Be very careful.  We have no exclusion from block_dirty_folio
1832 	 * here, and the (potentially unmapped) buffers may become dirty at
1833 	 * any time.  If a buffer becomes dirty here after we've inspected it
1834 	 * then we just miss that fact, and the folio stays dirty.
1835 	 *
1836 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1837 	 * handle that here by just cleaning them.
1838 	 */
1839 
1840 	bh = head;
1841 	blocksize = bh->b_size;
1842 	bbits = block_size_bits(blocksize);
1843 
1844 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1845 	last_block = (i_size_read(inode) - 1) >> bbits;
1846 
1847 	/*
1848 	 * Get all the dirty buffers mapped to disk addresses and
1849 	 * handle any aliases from the underlying blockdev's mapping.
1850 	 */
1851 	do {
1852 		if (block > last_block) {
1853 			/*
1854 			 * mapped buffers outside i_size will occur, because
1855 			 * this folio can be outside i_size when there is a
1856 			 * truncate in progress.
1857 			 */
1858 			/*
1859 			 * The buffer was zeroed by block_write_full_page()
1860 			 */
1861 			clear_buffer_dirty(bh);
1862 			set_buffer_uptodate(bh);
1863 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1864 			   buffer_dirty(bh)) {
1865 			WARN_ON(bh->b_size != blocksize);
1866 			err = get_block(inode, block, bh, 1);
1867 			if (err)
1868 				goto recover;
1869 			clear_buffer_delay(bh);
1870 			if (buffer_new(bh)) {
1871 				/* blockdev mappings never come here */
1872 				clear_buffer_new(bh);
1873 				clean_bdev_bh_alias(bh);
1874 			}
1875 		}
1876 		bh = bh->b_this_page;
1877 		block++;
1878 	} while (bh != head);
1879 
1880 	do {
1881 		if (!buffer_mapped(bh))
1882 			continue;
1883 		/*
1884 		 * If it's a fully non-blocking write attempt and we cannot
1885 		 * lock the buffer then redirty the folio.  Note that this can
1886 		 * potentially cause a busy-wait loop from writeback threads
1887 		 * and kswapd activity, but those code paths have their own
1888 		 * higher-level throttling.
1889 		 */
1890 		if (wbc->sync_mode != WB_SYNC_NONE) {
1891 			lock_buffer(bh);
1892 		} else if (!trylock_buffer(bh)) {
1893 			folio_redirty_for_writepage(wbc, folio);
1894 			continue;
1895 		}
1896 		if (test_clear_buffer_dirty(bh)) {
1897 			mark_buffer_async_write_endio(bh, handler);
1898 		} else {
1899 			unlock_buffer(bh);
1900 		}
1901 	} while ((bh = bh->b_this_page) != head);
1902 
1903 	/*
1904 	 * The folio and its buffers are protected by the writeback flag,
1905 	 * so we can drop the bh refcounts early.
1906 	 */
1907 	BUG_ON(folio_test_writeback(folio));
1908 	folio_start_writeback(folio);
1909 
1910 	do {
1911 		struct buffer_head *next = bh->b_this_page;
1912 		if (buffer_async_write(bh)) {
1913 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1914 			nr_underway++;
1915 		}
1916 		bh = next;
1917 	} while (bh != head);
1918 	folio_unlock(folio);
1919 
1920 	err = 0;
1921 done:
1922 	if (nr_underway == 0) {
1923 		/*
1924 		 * The folio was marked dirty, but the buffers were
1925 		 * clean.  Someone wrote them back by hand with
1926 		 * write_dirty_buffer/submit_bh.  A rare case.
1927 		 */
1928 		folio_end_writeback(folio);
1929 
1930 		/*
1931 		 * The folio and buffer_heads can be released at any time from
1932 		 * here on.
1933 		 */
1934 	}
1935 	return err;
1936 
1937 recover:
1938 	/*
1939 	 * ENOSPC, or some other error.  We may already have added some
1940 	 * blocks to the file, so we need to write these out to avoid
1941 	 * exposing stale data.
1942 	 * The folio is currently locked and not marked for writeback
1943 	 */
1944 	bh = head;
1945 	/* Recovery: lock and submit the mapped buffers */
1946 	do {
1947 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1948 		    !buffer_delay(bh)) {
1949 			lock_buffer(bh);
1950 			mark_buffer_async_write_endio(bh, handler);
1951 		} else {
1952 			/*
1953 			 * The buffer may have been set dirty during
1954 			 * attachment to a dirty folio.
1955 			 */
1956 			clear_buffer_dirty(bh);
1957 		}
1958 	} while ((bh = bh->b_this_page) != head);
1959 	folio_set_error(folio);
1960 	BUG_ON(folio_test_writeback(folio));
1961 	mapping_set_error(folio->mapping, err);
1962 	folio_start_writeback(folio);
1963 	do {
1964 		struct buffer_head *next = bh->b_this_page;
1965 		if (buffer_async_write(bh)) {
1966 			clear_buffer_dirty(bh);
1967 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1968 			nr_underway++;
1969 		}
1970 		bh = next;
1971 	} while (bh != head);
1972 	folio_unlock(folio);
1973 	goto done;
1974 }
1975 EXPORT_SYMBOL(__block_write_full_folio);
1976 
1977 /*
1978  * If a folio has any new buffers, zero them out here, and mark them uptodate
1979  * and dirty so they'll be written out (in order to prevent uninitialised
1980  * block data from leaking). And clear the new bit.
1981  */
1982 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1983 {
1984 	size_t block_start, block_end;
1985 	struct buffer_head *head, *bh;
1986 
1987 	BUG_ON(!folio_test_locked(folio));
1988 	head = folio_buffers(folio);
1989 	if (!head)
1990 		return;
1991 
1992 	bh = head;
1993 	block_start = 0;
1994 	do {
1995 		block_end = block_start + bh->b_size;
1996 
1997 		if (buffer_new(bh)) {
1998 			if (block_end > from && block_start < to) {
1999 				if (!folio_test_uptodate(folio)) {
2000 					size_t start, xend;
2001 
2002 					start = max(from, block_start);
2003 					xend = min(to, block_end);
2004 
2005 					folio_zero_segment(folio, start, xend);
2006 					set_buffer_uptodate(bh);
2007 				}
2008 
2009 				clear_buffer_new(bh);
2010 				mark_buffer_dirty(bh);
2011 			}
2012 		}
2013 
2014 		block_start = block_end;
2015 		bh = bh->b_this_page;
2016 	} while (bh != head);
2017 }
2018 EXPORT_SYMBOL(folio_zero_new_buffers);
2019 
2020 static void
2021 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2022 		const struct iomap *iomap)
2023 {
2024 	loff_t offset = block << inode->i_blkbits;
2025 
2026 	bh->b_bdev = iomap->bdev;
2027 
2028 	/*
2029 	 * Block points to offset in file we need to map, iomap contains
2030 	 * the offset at which the map starts. If the map ends before the
2031 	 * current block, then do not map the buffer and let the caller
2032 	 * handle it.
2033 	 */
2034 	BUG_ON(offset >= iomap->offset + iomap->length);
2035 
2036 	switch (iomap->type) {
2037 	case IOMAP_HOLE:
2038 		/*
2039 		 * If the buffer is not up to date or beyond the current EOF,
2040 		 * we need to mark it as new to ensure sub-block zeroing is
2041 		 * executed if necessary.
2042 		 */
2043 		if (!buffer_uptodate(bh) ||
2044 		    (offset >= i_size_read(inode)))
2045 			set_buffer_new(bh);
2046 		break;
2047 	case IOMAP_DELALLOC:
2048 		if (!buffer_uptodate(bh) ||
2049 		    (offset >= i_size_read(inode)))
2050 			set_buffer_new(bh);
2051 		set_buffer_uptodate(bh);
2052 		set_buffer_mapped(bh);
2053 		set_buffer_delay(bh);
2054 		break;
2055 	case IOMAP_UNWRITTEN:
2056 		/*
2057 		 * For unwritten regions, we always need to ensure that regions
2058 		 * in the block we are not writing to are zeroed. Mark the
2059 		 * buffer as new to ensure this.
2060 		 */
2061 		set_buffer_new(bh);
2062 		set_buffer_unwritten(bh);
2063 		fallthrough;
2064 	case IOMAP_MAPPED:
2065 		if ((iomap->flags & IOMAP_F_NEW) ||
2066 		    offset >= i_size_read(inode))
2067 			set_buffer_new(bh);
2068 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2069 				inode->i_blkbits;
2070 		set_buffer_mapped(bh);
2071 		break;
2072 	}
2073 }
2074 
2075 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2076 		get_block_t *get_block, const struct iomap *iomap)
2077 {
2078 	unsigned from = pos & (PAGE_SIZE - 1);
2079 	unsigned to = from + len;
2080 	struct inode *inode = folio->mapping->host;
2081 	unsigned block_start, block_end;
2082 	sector_t block;
2083 	int err = 0;
2084 	unsigned blocksize, bbits;
2085 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2086 
2087 	BUG_ON(!folio_test_locked(folio));
2088 	BUG_ON(from > PAGE_SIZE);
2089 	BUG_ON(to > PAGE_SIZE);
2090 	BUG_ON(from > to);
2091 
2092 	head = folio_create_buffers(folio, inode, 0);
2093 	blocksize = head->b_size;
2094 	bbits = block_size_bits(blocksize);
2095 
2096 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2097 
2098 	for(bh = head, block_start = 0; bh != head || !block_start;
2099 	    block++, block_start=block_end, bh = bh->b_this_page) {
2100 		block_end = block_start + blocksize;
2101 		if (block_end <= from || block_start >= to) {
2102 			if (folio_test_uptodate(folio)) {
2103 				if (!buffer_uptodate(bh))
2104 					set_buffer_uptodate(bh);
2105 			}
2106 			continue;
2107 		}
2108 		if (buffer_new(bh))
2109 			clear_buffer_new(bh);
2110 		if (!buffer_mapped(bh)) {
2111 			WARN_ON(bh->b_size != blocksize);
2112 			if (get_block) {
2113 				err = get_block(inode, block, bh, 1);
2114 				if (err)
2115 					break;
2116 			} else {
2117 				iomap_to_bh(inode, block, bh, iomap);
2118 			}
2119 
2120 			if (buffer_new(bh)) {
2121 				clean_bdev_bh_alias(bh);
2122 				if (folio_test_uptodate(folio)) {
2123 					clear_buffer_new(bh);
2124 					set_buffer_uptodate(bh);
2125 					mark_buffer_dirty(bh);
2126 					continue;
2127 				}
2128 				if (block_end > to || block_start < from)
2129 					folio_zero_segments(folio,
2130 						to, block_end,
2131 						block_start, from);
2132 				continue;
2133 			}
2134 		}
2135 		if (folio_test_uptodate(folio)) {
2136 			if (!buffer_uptodate(bh))
2137 				set_buffer_uptodate(bh);
2138 			continue;
2139 		}
2140 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2141 		    !buffer_unwritten(bh) &&
2142 		     (block_start < from || block_end > to)) {
2143 			bh_read_nowait(bh, 0);
2144 			*wait_bh++=bh;
2145 		}
2146 	}
2147 	/*
2148 	 * If we issued read requests - let them complete.
2149 	 */
2150 	while(wait_bh > wait) {
2151 		wait_on_buffer(*--wait_bh);
2152 		if (!buffer_uptodate(*wait_bh))
2153 			err = -EIO;
2154 	}
2155 	if (unlikely(err))
2156 		folio_zero_new_buffers(folio, from, to);
2157 	return err;
2158 }
2159 
2160 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2161 		get_block_t *get_block)
2162 {
2163 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2164 				       NULL);
2165 }
2166 EXPORT_SYMBOL(__block_write_begin);
2167 
2168 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2169 {
2170 	size_t block_start, block_end;
2171 	bool partial = false;
2172 	unsigned blocksize;
2173 	struct buffer_head *bh, *head;
2174 
2175 	bh = head = folio_buffers(folio);
2176 	blocksize = bh->b_size;
2177 
2178 	block_start = 0;
2179 	do {
2180 		block_end = block_start + blocksize;
2181 		if (block_end <= from || block_start >= to) {
2182 			if (!buffer_uptodate(bh))
2183 				partial = true;
2184 		} else {
2185 			set_buffer_uptodate(bh);
2186 			mark_buffer_dirty(bh);
2187 		}
2188 		if (buffer_new(bh))
2189 			clear_buffer_new(bh);
2190 
2191 		block_start = block_end;
2192 		bh = bh->b_this_page;
2193 	} while (bh != head);
2194 
2195 	/*
2196 	 * If this is a partial write which happened to make all buffers
2197 	 * uptodate then we can optimize away a bogus read_folio() for
2198 	 * the next read(). Here we 'discover' whether the folio went
2199 	 * uptodate as a result of this (potentially partial) write.
2200 	 */
2201 	if (!partial)
2202 		folio_mark_uptodate(folio);
2203 }
2204 
2205 /*
2206  * block_write_begin takes care of the basic task of block allocation and
2207  * bringing partial write blocks uptodate first.
2208  *
2209  * The filesystem needs to handle block truncation upon failure.
2210  */
2211 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2212 		struct page **pagep, get_block_t *get_block)
2213 {
2214 	pgoff_t index = pos >> PAGE_SHIFT;
2215 	struct page *page;
2216 	int status;
2217 
2218 	page = grab_cache_page_write_begin(mapping, index);
2219 	if (!page)
2220 		return -ENOMEM;
2221 
2222 	status = __block_write_begin(page, pos, len, get_block);
2223 	if (unlikely(status)) {
2224 		unlock_page(page);
2225 		put_page(page);
2226 		page = NULL;
2227 	}
2228 
2229 	*pagep = page;
2230 	return status;
2231 }
2232 EXPORT_SYMBOL(block_write_begin);
2233 
2234 int block_write_end(struct file *file, struct address_space *mapping,
2235 			loff_t pos, unsigned len, unsigned copied,
2236 			struct page *page, void *fsdata)
2237 {
2238 	struct folio *folio = page_folio(page);
2239 	size_t start = pos - folio_pos(folio);
2240 
2241 	if (unlikely(copied < len)) {
2242 		/*
2243 		 * The buffers that were written will now be uptodate, so
2244 		 * we don't have to worry about a read_folio reading them
2245 		 * and overwriting a partial write. However if we have
2246 		 * encountered a short write and only partially written
2247 		 * into a buffer, it will not be marked uptodate, so a
2248 		 * read_folio might come in and destroy our partial write.
2249 		 *
2250 		 * Do the simplest thing, and just treat any short write to a
2251 		 * non uptodate folio as a zero-length write, and force the
2252 		 * caller to redo the whole thing.
2253 		 */
2254 		if (!folio_test_uptodate(folio))
2255 			copied = 0;
2256 
2257 		folio_zero_new_buffers(folio, start+copied, start+len);
2258 	}
2259 	flush_dcache_folio(folio);
2260 
2261 	/* This could be a short (even 0-length) commit */
2262 	__block_commit_write(folio, start, start + copied);
2263 
2264 	return copied;
2265 }
2266 EXPORT_SYMBOL(block_write_end);
2267 
2268 int generic_write_end(struct file *file, struct address_space *mapping,
2269 			loff_t pos, unsigned len, unsigned copied,
2270 			struct page *page, void *fsdata)
2271 {
2272 	struct inode *inode = mapping->host;
2273 	loff_t old_size = inode->i_size;
2274 	bool i_size_changed = false;
2275 
2276 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2277 
2278 	/*
2279 	 * No need to use i_size_read() here, the i_size cannot change under us
2280 	 * because we hold i_rwsem.
2281 	 *
2282 	 * But it's important to update i_size while still holding page lock:
2283 	 * page writeout could otherwise come in and zero beyond i_size.
2284 	 */
2285 	if (pos + copied > inode->i_size) {
2286 		i_size_write(inode, pos + copied);
2287 		i_size_changed = true;
2288 	}
2289 
2290 	unlock_page(page);
2291 	put_page(page);
2292 
2293 	if (old_size < pos)
2294 		pagecache_isize_extended(inode, old_size, pos);
2295 	/*
2296 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2297 	 * makes the holding time of page lock longer. Second, it forces lock
2298 	 * ordering of page lock and transaction start for journaling
2299 	 * filesystems.
2300 	 */
2301 	if (i_size_changed)
2302 		mark_inode_dirty(inode);
2303 	return copied;
2304 }
2305 EXPORT_SYMBOL(generic_write_end);
2306 
2307 /*
2308  * block_is_partially_uptodate checks whether buffers within a folio are
2309  * uptodate or not.
2310  *
2311  * Returns true if all buffers which correspond to the specified part
2312  * of the folio are uptodate.
2313  */
2314 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2315 {
2316 	unsigned block_start, block_end, blocksize;
2317 	unsigned to;
2318 	struct buffer_head *bh, *head;
2319 	bool ret = true;
2320 
2321 	head = folio_buffers(folio);
2322 	if (!head)
2323 		return false;
2324 	blocksize = head->b_size;
2325 	to = min_t(unsigned, folio_size(folio) - from, count);
2326 	to = from + to;
2327 	if (from < blocksize && to > folio_size(folio) - blocksize)
2328 		return false;
2329 
2330 	bh = head;
2331 	block_start = 0;
2332 	do {
2333 		block_end = block_start + blocksize;
2334 		if (block_end > from && block_start < to) {
2335 			if (!buffer_uptodate(bh)) {
2336 				ret = false;
2337 				break;
2338 			}
2339 			if (block_end >= to)
2340 				break;
2341 		}
2342 		block_start = block_end;
2343 		bh = bh->b_this_page;
2344 	} while (bh != head);
2345 
2346 	return ret;
2347 }
2348 EXPORT_SYMBOL(block_is_partially_uptodate);
2349 
2350 /*
2351  * Generic "read_folio" function for block devices that have the normal
2352  * get_block functionality. This is most of the block device filesystems.
2353  * Reads the folio asynchronously --- the unlock_buffer() and
2354  * set/clear_buffer_uptodate() functions propagate buffer state into the
2355  * folio once IO has completed.
2356  */
2357 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2358 {
2359 	struct inode *inode = folio->mapping->host;
2360 	sector_t iblock, lblock;
2361 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2362 	unsigned int blocksize, bbits;
2363 	int nr, i;
2364 	int fully_mapped = 1;
2365 	bool page_error = false;
2366 	loff_t limit = i_size_read(inode);
2367 
2368 	/* This is needed for ext4. */
2369 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2370 		limit = inode->i_sb->s_maxbytes;
2371 
2372 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2373 
2374 	head = folio_create_buffers(folio, inode, 0);
2375 	blocksize = head->b_size;
2376 	bbits = block_size_bits(blocksize);
2377 
2378 	iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2379 	lblock = (limit+blocksize-1) >> bbits;
2380 	bh = head;
2381 	nr = 0;
2382 	i = 0;
2383 
2384 	do {
2385 		if (buffer_uptodate(bh))
2386 			continue;
2387 
2388 		if (!buffer_mapped(bh)) {
2389 			int err = 0;
2390 
2391 			fully_mapped = 0;
2392 			if (iblock < lblock) {
2393 				WARN_ON(bh->b_size != blocksize);
2394 				err = get_block(inode, iblock, bh, 0);
2395 				if (err) {
2396 					folio_set_error(folio);
2397 					page_error = true;
2398 				}
2399 			}
2400 			if (!buffer_mapped(bh)) {
2401 				folio_zero_range(folio, i * blocksize,
2402 						blocksize);
2403 				if (!err)
2404 					set_buffer_uptodate(bh);
2405 				continue;
2406 			}
2407 			/*
2408 			 * get_block() might have updated the buffer
2409 			 * synchronously
2410 			 */
2411 			if (buffer_uptodate(bh))
2412 				continue;
2413 		}
2414 		arr[nr++] = bh;
2415 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2416 
2417 	if (fully_mapped)
2418 		folio_set_mappedtodisk(folio);
2419 
2420 	if (!nr) {
2421 		/*
2422 		 * All buffers are uptodate - we can set the folio uptodate
2423 		 * as well. But not if get_block() returned an error.
2424 		 */
2425 		if (!page_error)
2426 			folio_mark_uptodate(folio);
2427 		folio_unlock(folio);
2428 		return 0;
2429 	}
2430 
2431 	/* Stage two: lock the buffers */
2432 	for (i = 0; i < nr; i++) {
2433 		bh = arr[i];
2434 		lock_buffer(bh);
2435 		mark_buffer_async_read(bh);
2436 	}
2437 
2438 	/*
2439 	 * Stage 3: start the IO.  Check for uptodateness
2440 	 * inside the buffer lock in case another process reading
2441 	 * the underlying blockdev brought it uptodate (the sct fix).
2442 	 */
2443 	for (i = 0; i < nr; i++) {
2444 		bh = arr[i];
2445 		if (buffer_uptodate(bh))
2446 			end_buffer_async_read(bh, 1);
2447 		else
2448 			submit_bh(REQ_OP_READ, bh);
2449 	}
2450 	return 0;
2451 }
2452 EXPORT_SYMBOL(block_read_full_folio);
2453 
2454 /* utility function for filesystems that need to do work on expanding
2455  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2456  * deal with the hole.
2457  */
2458 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2459 {
2460 	struct address_space *mapping = inode->i_mapping;
2461 	const struct address_space_operations *aops = mapping->a_ops;
2462 	struct page *page;
2463 	void *fsdata = NULL;
2464 	int err;
2465 
2466 	err = inode_newsize_ok(inode, size);
2467 	if (err)
2468 		goto out;
2469 
2470 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2471 	if (err)
2472 		goto out;
2473 
2474 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2475 	BUG_ON(err > 0);
2476 
2477 out:
2478 	return err;
2479 }
2480 EXPORT_SYMBOL(generic_cont_expand_simple);
2481 
2482 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2483 			    loff_t pos, loff_t *bytes)
2484 {
2485 	struct inode *inode = mapping->host;
2486 	const struct address_space_operations *aops = mapping->a_ops;
2487 	unsigned int blocksize = i_blocksize(inode);
2488 	struct page *page;
2489 	void *fsdata = NULL;
2490 	pgoff_t index, curidx;
2491 	loff_t curpos;
2492 	unsigned zerofrom, offset, len;
2493 	int err = 0;
2494 
2495 	index = pos >> PAGE_SHIFT;
2496 	offset = pos & ~PAGE_MASK;
2497 
2498 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2499 		zerofrom = curpos & ~PAGE_MASK;
2500 		if (zerofrom & (blocksize-1)) {
2501 			*bytes |= (blocksize-1);
2502 			(*bytes)++;
2503 		}
2504 		len = PAGE_SIZE - zerofrom;
2505 
2506 		err = aops->write_begin(file, mapping, curpos, len,
2507 					    &page, &fsdata);
2508 		if (err)
2509 			goto out;
2510 		zero_user(page, zerofrom, len);
2511 		err = aops->write_end(file, mapping, curpos, len, len,
2512 						page, fsdata);
2513 		if (err < 0)
2514 			goto out;
2515 		BUG_ON(err != len);
2516 		err = 0;
2517 
2518 		balance_dirty_pages_ratelimited(mapping);
2519 
2520 		if (fatal_signal_pending(current)) {
2521 			err = -EINTR;
2522 			goto out;
2523 		}
2524 	}
2525 
2526 	/* page covers the boundary, find the boundary offset */
2527 	if (index == curidx) {
2528 		zerofrom = curpos & ~PAGE_MASK;
2529 		/* if we will expand the thing last block will be filled */
2530 		if (offset <= zerofrom) {
2531 			goto out;
2532 		}
2533 		if (zerofrom & (blocksize-1)) {
2534 			*bytes |= (blocksize-1);
2535 			(*bytes)++;
2536 		}
2537 		len = offset - zerofrom;
2538 
2539 		err = aops->write_begin(file, mapping, curpos, len,
2540 					    &page, &fsdata);
2541 		if (err)
2542 			goto out;
2543 		zero_user(page, zerofrom, len);
2544 		err = aops->write_end(file, mapping, curpos, len, len,
2545 						page, fsdata);
2546 		if (err < 0)
2547 			goto out;
2548 		BUG_ON(err != len);
2549 		err = 0;
2550 	}
2551 out:
2552 	return err;
2553 }
2554 
2555 /*
2556  * For moronic filesystems that do not allow holes in file.
2557  * We may have to extend the file.
2558  */
2559 int cont_write_begin(struct file *file, struct address_space *mapping,
2560 			loff_t pos, unsigned len,
2561 			struct page **pagep, void **fsdata,
2562 			get_block_t *get_block, loff_t *bytes)
2563 {
2564 	struct inode *inode = mapping->host;
2565 	unsigned int blocksize = i_blocksize(inode);
2566 	unsigned int zerofrom;
2567 	int err;
2568 
2569 	err = cont_expand_zero(file, mapping, pos, bytes);
2570 	if (err)
2571 		return err;
2572 
2573 	zerofrom = *bytes & ~PAGE_MASK;
2574 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2575 		*bytes |= (blocksize-1);
2576 		(*bytes)++;
2577 	}
2578 
2579 	return block_write_begin(mapping, pos, len, pagep, get_block);
2580 }
2581 EXPORT_SYMBOL(cont_write_begin);
2582 
2583 void block_commit_write(struct page *page, unsigned from, unsigned to)
2584 {
2585 	struct folio *folio = page_folio(page);
2586 	__block_commit_write(folio, from, to);
2587 }
2588 EXPORT_SYMBOL(block_commit_write);
2589 
2590 /*
2591  * block_page_mkwrite() is not allowed to change the file size as it gets
2592  * called from a page fault handler when a page is first dirtied. Hence we must
2593  * be careful to check for EOF conditions here. We set the page up correctly
2594  * for a written page which means we get ENOSPC checking when writing into
2595  * holes and correct delalloc and unwritten extent mapping on filesystems that
2596  * support these features.
2597  *
2598  * We are not allowed to take the i_mutex here so we have to play games to
2599  * protect against truncate races as the page could now be beyond EOF.  Because
2600  * truncate writes the inode size before removing pages, once we have the
2601  * page lock we can determine safely if the page is beyond EOF. If it is not
2602  * beyond EOF, then the page is guaranteed safe against truncation until we
2603  * unlock the page.
2604  *
2605  * Direct callers of this function should protect against filesystem freezing
2606  * using sb_start_pagefault() - sb_end_pagefault() functions.
2607  */
2608 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2609 			 get_block_t get_block)
2610 {
2611 	struct folio *folio = page_folio(vmf->page);
2612 	struct inode *inode = file_inode(vma->vm_file);
2613 	unsigned long end;
2614 	loff_t size;
2615 	int ret;
2616 
2617 	folio_lock(folio);
2618 	size = i_size_read(inode);
2619 	if ((folio->mapping != inode->i_mapping) ||
2620 	    (folio_pos(folio) >= size)) {
2621 		/* We overload EFAULT to mean page got truncated */
2622 		ret = -EFAULT;
2623 		goto out_unlock;
2624 	}
2625 
2626 	end = folio_size(folio);
2627 	/* folio is wholly or partially inside EOF */
2628 	if (folio_pos(folio) + end > size)
2629 		end = size - folio_pos(folio);
2630 
2631 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2632 	if (unlikely(ret))
2633 		goto out_unlock;
2634 
2635 	__block_commit_write(folio, 0, end);
2636 
2637 	folio_mark_dirty(folio);
2638 	folio_wait_stable(folio);
2639 	return 0;
2640 out_unlock:
2641 	folio_unlock(folio);
2642 	return ret;
2643 }
2644 EXPORT_SYMBOL(block_page_mkwrite);
2645 
2646 int block_truncate_page(struct address_space *mapping,
2647 			loff_t from, get_block_t *get_block)
2648 {
2649 	pgoff_t index = from >> PAGE_SHIFT;
2650 	unsigned blocksize;
2651 	sector_t iblock;
2652 	size_t offset, length, pos;
2653 	struct inode *inode = mapping->host;
2654 	struct folio *folio;
2655 	struct buffer_head *bh;
2656 	int err = 0;
2657 
2658 	blocksize = i_blocksize(inode);
2659 	length = from & (blocksize - 1);
2660 
2661 	/* Block boundary? Nothing to do */
2662 	if (!length)
2663 		return 0;
2664 
2665 	length = blocksize - length;
2666 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2667 
2668 	folio = filemap_grab_folio(mapping, index);
2669 	if (IS_ERR(folio))
2670 		return PTR_ERR(folio);
2671 
2672 	bh = folio_buffers(folio);
2673 	if (!bh) {
2674 		folio_create_empty_buffers(folio, blocksize, 0);
2675 		bh = folio_buffers(folio);
2676 	}
2677 
2678 	/* Find the buffer that contains "offset" */
2679 	offset = offset_in_folio(folio, from);
2680 	pos = blocksize;
2681 	while (offset >= pos) {
2682 		bh = bh->b_this_page;
2683 		iblock++;
2684 		pos += blocksize;
2685 	}
2686 
2687 	if (!buffer_mapped(bh)) {
2688 		WARN_ON(bh->b_size != blocksize);
2689 		err = get_block(inode, iblock, bh, 0);
2690 		if (err)
2691 			goto unlock;
2692 		/* unmapped? It's a hole - nothing to do */
2693 		if (!buffer_mapped(bh))
2694 			goto unlock;
2695 	}
2696 
2697 	/* Ok, it's mapped. Make sure it's up-to-date */
2698 	if (folio_test_uptodate(folio))
2699 		set_buffer_uptodate(bh);
2700 
2701 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2702 		err = bh_read(bh, 0);
2703 		/* Uhhuh. Read error. Complain and punt. */
2704 		if (err < 0)
2705 			goto unlock;
2706 	}
2707 
2708 	folio_zero_range(folio, offset, length);
2709 	mark_buffer_dirty(bh);
2710 
2711 unlock:
2712 	folio_unlock(folio);
2713 	folio_put(folio);
2714 
2715 	return err;
2716 }
2717 EXPORT_SYMBOL(block_truncate_page);
2718 
2719 /*
2720  * The generic ->writepage function for buffer-backed address_spaces
2721  */
2722 int block_write_full_page(struct page *page, get_block_t *get_block,
2723 			struct writeback_control *wbc)
2724 {
2725 	struct folio *folio = page_folio(page);
2726 	struct inode * const inode = folio->mapping->host;
2727 	loff_t i_size = i_size_read(inode);
2728 
2729 	/* Is the folio fully inside i_size? */
2730 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2731 		return __block_write_full_folio(inode, folio, get_block, wbc,
2732 					       end_buffer_async_write);
2733 
2734 	/* Is the folio fully outside i_size? (truncate in progress) */
2735 	if (folio_pos(folio) >= i_size) {
2736 		folio_unlock(folio);
2737 		return 0; /* don't care */
2738 	}
2739 
2740 	/*
2741 	 * The folio straddles i_size.  It must be zeroed out on each and every
2742 	 * writepage invocation because it may be mmapped.  "A file is mapped
2743 	 * in multiples of the page size.  For a file that is not a multiple of
2744 	 * the page size, the remaining memory is zeroed when mapped, and
2745 	 * writes to that region are not written out to the file."
2746 	 */
2747 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2748 			folio_size(folio));
2749 	return __block_write_full_folio(inode, folio, get_block, wbc,
2750 			end_buffer_async_write);
2751 }
2752 EXPORT_SYMBOL(block_write_full_page);
2753 
2754 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2755 			    get_block_t *get_block)
2756 {
2757 	struct inode *inode = mapping->host;
2758 	struct buffer_head tmp = {
2759 		.b_size = i_blocksize(inode),
2760 	};
2761 
2762 	get_block(inode, block, &tmp, 0);
2763 	return tmp.b_blocknr;
2764 }
2765 EXPORT_SYMBOL(generic_block_bmap);
2766 
2767 static void end_bio_bh_io_sync(struct bio *bio)
2768 {
2769 	struct buffer_head *bh = bio->bi_private;
2770 
2771 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2772 		set_bit(BH_Quiet, &bh->b_state);
2773 
2774 	bh->b_end_io(bh, !bio->bi_status);
2775 	bio_put(bio);
2776 }
2777 
2778 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2779 			  struct writeback_control *wbc)
2780 {
2781 	const enum req_op op = opf & REQ_OP_MASK;
2782 	struct bio *bio;
2783 
2784 	BUG_ON(!buffer_locked(bh));
2785 	BUG_ON(!buffer_mapped(bh));
2786 	BUG_ON(!bh->b_end_io);
2787 	BUG_ON(buffer_delay(bh));
2788 	BUG_ON(buffer_unwritten(bh));
2789 
2790 	/*
2791 	 * Only clear out a write error when rewriting
2792 	 */
2793 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2794 		clear_buffer_write_io_error(bh);
2795 
2796 	if (buffer_meta(bh))
2797 		opf |= REQ_META;
2798 	if (buffer_prio(bh))
2799 		opf |= REQ_PRIO;
2800 
2801 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2802 
2803 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2804 
2805 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2806 
2807 	__bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2808 
2809 	bio->bi_end_io = end_bio_bh_io_sync;
2810 	bio->bi_private = bh;
2811 
2812 	/* Take care of bh's that straddle the end of the device */
2813 	guard_bio_eod(bio);
2814 
2815 	if (wbc) {
2816 		wbc_init_bio(wbc, bio);
2817 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2818 	}
2819 
2820 	submit_bio(bio);
2821 }
2822 
2823 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2824 {
2825 	submit_bh_wbc(opf, bh, NULL);
2826 }
2827 EXPORT_SYMBOL(submit_bh);
2828 
2829 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2830 {
2831 	lock_buffer(bh);
2832 	if (!test_clear_buffer_dirty(bh)) {
2833 		unlock_buffer(bh);
2834 		return;
2835 	}
2836 	bh->b_end_io = end_buffer_write_sync;
2837 	get_bh(bh);
2838 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2839 }
2840 EXPORT_SYMBOL(write_dirty_buffer);
2841 
2842 /*
2843  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2844  * and then start new I/O and then wait upon it.  The caller must have a ref on
2845  * the buffer_head.
2846  */
2847 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2848 {
2849 	WARN_ON(atomic_read(&bh->b_count) < 1);
2850 	lock_buffer(bh);
2851 	if (test_clear_buffer_dirty(bh)) {
2852 		/*
2853 		 * The bh should be mapped, but it might not be if the
2854 		 * device was hot-removed. Not much we can do but fail the I/O.
2855 		 */
2856 		if (!buffer_mapped(bh)) {
2857 			unlock_buffer(bh);
2858 			return -EIO;
2859 		}
2860 
2861 		get_bh(bh);
2862 		bh->b_end_io = end_buffer_write_sync;
2863 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2864 		wait_on_buffer(bh);
2865 		if (!buffer_uptodate(bh))
2866 			return -EIO;
2867 	} else {
2868 		unlock_buffer(bh);
2869 	}
2870 	return 0;
2871 }
2872 EXPORT_SYMBOL(__sync_dirty_buffer);
2873 
2874 int sync_dirty_buffer(struct buffer_head *bh)
2875 {
2876 	return __sync_dirty_buffer(bh, REQ_SYNC);
2877 }
2878 EXPORT_SYMBOL(sync_dirty_buffer);
2879 
2880 /*
2881  * try_to_free_buffers() checks if all the buffers on this particular folio
2882  * are unused, and releases them if so.
2883  *
2884  * Exclusion against try_to_free_buffers may be obtained by either
2885  * locking the folio or by holding its mapping's private_lock.
2886  *
2887  * If the folio is dirty but all the buffers are clean then we need to
2888  * be sure to mark the folio clean as well.  This is because the folio
2889  * may be against a block device, and a later reattachment of buffers
2890  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2891  * filesystem data on the same device.
2892  *
2893  * The same applies to regular filesystem folios: if all the buffers are
2894  * clean then we set the folio clean and proceed.  To do that, we require
2895  * total exclusion from block_dirty_folio().  That is obtained with
2896  * private_lock.
2897  *
2898  * try_to_free_buffers() is non-blocking.
2899  */
2900 static inline int buffer_busy(struct buffer_head *bh)
2901 {
2902 	return atomic_read(&bh->b_count) |
2903 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2904 }
2905 
2906 static bool
2907 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2908 {
2909 	struct buffer_head *head = folio_buffers(folio);
2910 	struct buffer_head *bh;
2911 
2912 	bh = head;
2913 	do {
2914 		if (buffer_busy(bh))
2915 			goto failed;
2916 		bh = bh->b_this_page;
2917 	} while (bh != head);
2918 
2919 	do {
2920 		struct buffer_head *next = bh->b_this_page;
2921 
2922 		if (bh->b_assoc_map)
2923 			__remove_assoc_queue(bh);
2924 		bh = next;
2925 	} while (bh != head);
2926 	*buffers_to_free = head;
2927 	folio_detach_private(folio);
2928 	return true;
2929 failed:
2930 	return false;
2931 }
2932 
2933 bool try_to_free_buffers(struct folio *folio)
2934 {
2935 	struct address_space * const mapping = folio->mapping;
2936 	struct buffer_head *buffers_to_free = NULL;
2937 	bool ret = 0;
2938 
2939 	BUG_ON(!folio_test_locked(folio));
2940 	if (folio_test_writeback(folio))
2941 		return false;
2942 
2943 	if (mapping == NULL) {		/* can this still happen? */
2944 		ret = drop_buffers(folio, &buffers_to_free);
2945 		goto out;
2946 	}
2947 
2948 	spin_lock(&mapping->private_lock);
2949 	ret = drop_buffers(folio, &buffers_to_free);
2950 
2951 	/*
2952 	 * If the filesystem writes its buffers by hand (eg ext3)
2953 	 * then we can have clean buffers against a dirty folio.  We
2954 	 * clean the folio here; otherwise the VM will never notice
2955 	 * that the filesystem did any IO at all.
2956 	 *
2957 	 * Also, during truncate, discard_buffer will have marked all
2958 	 * the folio's buffers clean.  We discover that here and clean
2959 	 * the folio also.
2960 	 *
2961 	 * private_lock must be held over this entire operation in order
2962 	 * to synchronise against block_dirty_folio and prevent the
2963 	 * dirty bit from being lost.
2964 	 */
2965 	if (ret)
2966 		folio_cancel_dirty(folio);
2967 	spin_unlock(&mapping->private_lock);
2968 out:
2969 	if (buffers_to_free) {
2970 		struct buffer_head *bh = buffers_to_free;
2971 
2972 		do {
2973 			struct buffer_head *next = bh->b_this_page;
2974 			free_buffer_head(bh);
2975 			bh = next;
2976 		} while (bh != buffers_to_free);
2977 	}
2978 	return ret;
2979 }
2980 EXPORT_SYMBOL(try_to_free_buffers);
2981 
2982 /*
2983  * Buffer-head allocation
2984  */
2985 static struct kmem_cache *bh_cachep __read_mostly;
2986 
2987 /*
2988  * Once the number of bh's in the machine exceeds this level, we start
2989  * stripping them in writeback.
2990  */
2991 static unsigned long max_buffer_heads;
2992 
2993 int buffer_heads_over_limit;
2994 
2995 struct bh_accounting {
2996 	int nr;			/* Number of live bh's */
2997 	int ratelimit;		/* Limit cacheline bouncing */
2998 };
2999 
3000 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3001 
3002 static void recalc_bh_state(void)
3003 {
3004 	int i;
3005 	int tot = 0;
3006 
3007 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3008 		return;
3009 	__this_cpu_write(bh_accounting.ratelimit, 0);
3010 	for_each_online_cpu(i)
3011 		tot += per_cpu(bh_accounting, i).nr;
3012 	buffer_heads_over_limit = (tot > max_buffer_heads);
3013 }
3014 
3015 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3016 {
3017 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3018 	if (ret) {
3019 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3020 		spin_lock_init(&ret->b_uptodate_lock);
3021 		preempt_disable();
3022 		__this_cpu_inc(bh_accounting.nr);
3023 		recalc_bh_state();
3024 		preempt_enable();
3025 	}
3026 	return ret;
3027 }
3028 EXPORT_SYMBOL(alloc_buffer_head);
3029 
3030 void free_buffer_head(struct buffer_head *bh)
3031 {
3032 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3033 	kmem_cache_free(bh_cachep, bh);
3034 	preempt_disable();
3035 	__this_cpu_dec(bh_accounting.nr);
3036 	recalc_bh_state();
3037 	preempt_enable();
3038 }
3039 EXPORT_SYMBOL(free_buffer_head);
3040 
3041 static int buffer_exit_cpu_dead(unsigned int cpu)
3042 {
3043 	int i;
3044 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3045 
3046 	for (i = 0; i < BH_LRU_SIZE; i++) {
3047 		brelse(b->bhs[i]);
3048 		b->bhs[i] = NULL;
3049 	}
3050 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3051 	per_cpu(bh_accounting, cpu).nr = 0;
3052 	return 0;
3053 }
3054 
3055 /**
3056  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3057  * @bh: struct buffer_head
3058  *
3059  * Return true if the buffer is up-to-date and false,
3060  * with the buffer locked, if not.
3061  */
3062 int bh_uptodate_or_lock(struct buffer_head *bh)
3063 {
3064 	if (!buffer_uptodate(bh)) {
3065 		lock_buffer(bh);
3066 		if (!buffer_uptodate(bh))
3067 			return 0;
3068 		unlock_buffer(bh);
3069 	}
3070 	return 1;
3071 }
3072 EXPORT_SYMBOL(bh_uptodate_or_lock);
3073 
3074 /**
3075  * __bh_read - Submit read for a locked buffer
3076  * @bh: struct buffer_head
3077  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3078  * @wait: wait until reading finish
3079  *
3080  * Returns zero on success or don't wait, and -EIO on error.
3081  */
3082 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3083 {
3084 	int ret = 0;
3085 
3086 	BUG_ON(!buffer_locked(bh));
3087 
3088 	get_bh(bh);
3089 	bh->b_end_io = end_buffer_read_sync;
3090 	submit_bh(REQ_OP_READ | op_flags, bh);
3091 	if (wait) {
3092 		wait_on_buffer(bh);
3093 		if (!buffer_uptodate(bh))
3094 			ret = -EIO;
3095 	}
3096 	return ret;
3097 }
3098 EXPORT_SYMBOL(__bh_read);
3099 
3100 /**
3101  * __bh_read_batch - Submit read for a batch of unlocked buffers
3102  * @nr: entry number of the buffer batch
3103  * @bhs: a batch of struct buffer_head
3104  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3105  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3106  *              buffer that cannot lock.
3107  *
3108  * Returns zero on success or don't wait, and -EIO on error.
3109  */
3110 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3111 		     blk_opf_t op_flags, bool force_lock)
3112 {
3113 	int i;
3114 
3115 	for (i = 0; i < nr; i++) {
3116 		struct buffer_head *bh = bhs[i];
3117 
3118 		if (buffer_uptodate(bh))
3119 			continue;
3120 
3121 		if (force_lock)
3122 			lock_buffer(bh);
3123 		else
3124 			if (!trylock_buffer(bh))
3125 				continue;
3126 
3127 		if (buffer_uptodate(bh)) {
3128 			unlock_buffer(bh);
3129 			continue;
3130 		}
3131 
3132 		bh->b_end_io = end_buffer_read_sync;
3133 		get_bh(bh);
3134 		submit_bh(REQ_OP_READ | op_flags, bh);
3135 	}
3136 }
3137 EXPORT_SYMBOL(__bh_read_batch);
3138 
3139 void __init buffer_init(void)
3140 {
3141 	unsigned long nrpages;
3142 	int ret;
3143 
3144 	bh_cachep = kmem_cache_create("buffer_head",
3145 			sizeof(struct buffer_head), 0,
3146 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3147 				SLAB_MEM_SPREAD),
3148 				NULL);
3149 
3150 	/*
3151 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3152 	 */
3153 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3154 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3155 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3156 					NULL, buffer_exit_cpu_dead);
3157 	WARN_ON(ret < 0);
3158 }
3159