1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 #include <trace/events/block.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 inline void touch_buffer(struct buffer_head *bh) 58 { 59 trace_block_touch_buffer(bh); 60 mark_page_accessed(bh->b_page); 61 } 62 EXPORT_SYMBOL(touch_buffer); 63 64 void __lock_buffer(struct buffer_head *bh) 65 { 66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 67 } 68 EXPORT_SYMBOL(__lock_buffer); 69 70 void unlock_buffer(struct buffer_head *bh) 71 { 72 clear_bit_unlock(BH_Lock, &bh->b_state); 73 smp_mb__after_atomic(); 74 wake_up_bit(&bh->b_state, BH_Lock); 75 } 76 EXPORT_SYMBOL(unlock_buffer); 77 78 /* 79 * Returns if the page has dirty or writeback buffers. If all the buffers 80 * are unlocked and clean then the PageDirty information is stale. If 81 * any of the pages are locked, it is assumed they are locked for IO. 82 */ 83 void buffer_check_dirty_writeback(struct page *page, 84 bool *dirty, bool *writeback) 85 { 86 struct buffer_head *head, *bh; 87 *dirty = false; 88 *writeback = false; 89 90 BUG_ON(!PageLocked(page)); 91 92 if (!page_has_buffers(page)) 93 return; 94 95 if (PageWriteback(page)) 96 *writeback = true; 97 98 head = page_buffers(page); 99 bh = head; 100 do { 101 if (buffer_locked(bh)) 102 *writeback = true; 103 104 if (buffer_dirty(bh)) 105 *dirty = true; 106 107 bh = bh->b_this_page; 108 } while (bh != head); 109 } 110 EXPORT_SYMBOL(buffer_check_dirty_writeback); 111 112 /* 113 * Block until a buffer comes unlocked. This doesn't stop it 114 * from becoming locked again - you have to lock it yourself 115 * if you want to preserve its state. 116 */ 117 void __wait_on_buffer(struct buffer_head * bh) 118 { 119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 120 } 121 EXPORT_SYMBOL(__wait_on_buffer); 122 123 static void 124 __clear_page_buffers(struct page *page) 125 { 126 ClearPagePrivate(page); 127 set_page_private(page, 0); 128 page_cache_release(page); 129 } 130 131 132 static int quiet_error(struct buffer_head *bh) 133 { 134 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 135 return 0; 136 return 1; 137 } 138 139 140 static void buffer_io_error(struct buffer_head *bh) 141 { 142 char b[BDEVNAME_SIZE]; 143 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 144 bdevname(bh->b_bdev, b), 145 (unsigned long long)bh->b_blocknr); 146 } 147 148 /* 149 * End-of-IO handler helper function which does not touch the bh after 150 * unlocking it. 151 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 152 * a race there is benign: unlock_buffer() only use the bh's address for 153 * hashing after unlocking the buffer, so it doesn't actually touch the bh 154 * itself. 155 */ 156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 157 { 158 if (uptodate) { 159 set_buffer_uptodate(bh); 160 } else { 161 /* This happens, due to failed READA attempts. */ 162 clear_buffer_uptodate(bh); 163 } 164 unlock_buffer(bh); 165 } 166 167 /* 168 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 169 * unlock the buffer. This is what ll_rw_block uses too. 170 */ 171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 172 { 173 __end_buffer_read_notouch(bh, uptodate); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_read_sync); 177 178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 179 { 180 char b[BDEVNAME_SIZE]; 181 182 if (uptodate) { 183 set_buffer_uptodate(bh); 184 } else { 185 if (!quiet_error(bh)) { 186 buffer_io_error(bh); 187 printk(KERN_WARNING "lost page write due to " 188 "I/O error on %s\n", 189 bdevname(bh->b_bdev, b)); 190 } 191 set_buffer_write_io_error(bh); 192 clear_buffer_uptodate(bh); 193 } 194 unlock_buffer(bh); 195 put_bh(bh); 196 } 197 EXPORT_SYMBOL(end_buffer_write_sync); 198 199 /* 200 * Various filesystems appear to want __find_get_block to be non-blocking. 201 * But it's the page lock which protects the buffers. To get around this, 202 * we get exclusion from try_to_free_buffers with the blockdev mapping's 203 * private_lock. 204 * 205 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 206 * may be quite high. This code could TryLock the page, and if that 207 * succeeds, there is no need to take private_lock. (But if 208 * private_lock is contended then so is mapping->tree_lock). 209 */ 210 static struct buffer_head * 211 __find_get_block_slow(struct block_device *bdev, sector_t block) 212 { 213 struct inode *bd_inode = bdev->bd_inode; 214 struct address_space *bd_mapping = bd_inode->i_mapping; 215 struct buffer_head *ret = NULL; 216 pgoff_t index; 217 struct buffer_head *bh; 218 struct buffer_head *head; 219 struct page *page; 220 int all_mapped = 1; 221 222 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 223 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 224 if (!page) 225 goto out; 226 227 spin_lock(&bd_mapping->private_lock); 228 if (!page_has_buffers(page)) 229 goto out_unlock; 230 head = page_buffers(page); 231 bh = head; 232 do { 233 if (!buffer_mapped(bh)) 234 all_mapped = 0; 235 else if (bh->b_blocknr == block) { 236 ret = bh; 237 get_bh(bh); 238 goto out_unlock; 239 } 240 bh = bh->b_this_page; 241 } while (bh != head); 242 243 /* we might be here because some of the buffers on this page are 244 * not mapped. This is due to various races between 245 * file io on the block device and getblk. It gets dealt with 246 * elsewhere, don't buffer_error if we had some unmapped buffers 247 */ 248 if (all_mapped) { 249 char b[BDEVNAME_SIZE]; 250 251 printk("__find_get_block_slow() failed. " 252 "block=%llu, b_blocknr=%llu\n", 253 (unsigned long long)block, 254 (unsigned long long)bh->b_blocknr); 255 printk("b_state=0x%08lx, b_size=%zu\n", 256 bh->b_state, bh->b_size); 257 printk("device %s blocksize: %d\n", bdevname(bdev, b), 258 1 << bd_inode->i_blkbits); 259 } 260 out_unlock: 261 spin_unlock(&bd_mapping->private_lock); 262 page_cache_release(page); 263 out: 264 return ret; 265 } 266 267 /* 268 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 269 */ 270 static void free_more_memory(void) 271 { 272 struct zone *zone; 273 int nid; 274 275 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 276 yield(); 277 278 for_each_online_node(nid) { 279 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 280 gfp_zone(GFP_NOFS), NULL, 281 &zone); 282 if (zone) 283 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 284 GFP_NOFS, NULL); 285 } 286 } 287 288 /* 289 * I/O completion handler for block_read_full_page() - pages 290 * which come unlocked at the end of I/O. 291 */ 292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 293 { 294 unsigned long flags; 295 struct buffer_head *first; 296 struct buffer_head *tmp; 297 struct page *page; 298 int page_uptodate = 1; 299 300 BUG_ON(!buffer_async_read(bh)); 301 302 page = bh->b_page; 303 if (uptodate) { 304 set_buffer_uptodate(bh); 305 } else { 306 clear_buffer_uptodate(bh); 307 if (!quiet_error(bh)) 308 buffer_io_error(bh); 309 SetPageError(page); 310 } 311 312 /* 313 * Be _very_ careful from here on. Bad things can happen if 314 * two buffer heads end IO at almost the same time and both 315 * decide that the page is now completely done. 316 */ 317 first = page_buffers(page); 318 local_irq_save(flags); 319 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 320 clear_buffer_async_read(bh); 321 unlock_buffer(bh); 322 tmp = bh; 323 do { 324 if (!buffer_uptodate(tmp)) 325 page_uptodate = 0; 326 if (buffer_async_read(tmp)) { 327 BUG_ON(!buffer_locked(tmp)); 328 goto still_busy; 329 } 330 tmp = tmp->b_this_page; 331 } while (tmp != bh); 332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 333 local_irq_restore(flags); 334 335 /* 336 * If none of the buffers had errors and they are all 337 * uptodate then we can set the page uptodate. 338 */ 339 if (page_uptodate && !PageError(page)) 340 SetPageUptodate(page); 341 unlock_page(page); 342 return; 343 344 still_busy: 345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 346 local_irq_restore(flags); 347 return; 348 } 349 350 /* 351 * Completion handler for block_write_full_page() - pages which are unlocked 352 * during I/O, and which have PageWriteback cleared upon I/O completion. 353 */ 354 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 355 { 356 char b[BDEVNAME_SIZE]; 357 unsigned long flags; 358 struct buffer_head *first; 359 struct buffer_head *tmp; 360 struct page *page; 361 362 BUG_ON(!buffer_async_write(bh)); 363 364 page = bh->b_page; 365 if (uptodate) { 366 set_buffer_uptodate(bh); 367 } else { 368 if (!quiet_error(bh)) { 369 buffer_io_error(bh); 370 printk(KERN_WARNING "lost page write due to " 371 "I/O error on %s\n", 372 bdevname(bh->b_bdev, b)); 373 } 374 set_bit(AS_EIO, &page->mapping->flags); 375 set_buffer_write_io_error(bh); 376 clear_buffer_uptodate(bh); 377 SetPageError(page); 378 } 379 380 first = page_buffers(page); 381 local_irq_save(flags); 382 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 383 384 clear_buffer_async_write(bh); 385 unlock_buffer(bh); 386 tmp = bh->b_this_page; 387 while (tmp != bh) { 388 if (buffer_async_write(tmp)) { 389 BUG_ON(!buffer_locked(tmp)); 390 goto still_busy; 391 } 392 tmp = tmp->b_this_page; 393 } 394 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 395 local_irq_restore(flags); 396 end_page_writeback(page); 397 return; 398 399 still_busy: 400 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 401 local_irq_restore(flags); 402 return; 403 } 404 EXPORT_SYMBOL(end_buffer_async_write); 405 406 /* 407 * If a page's buffers are under async readin (end_buffer_async_read 408 * completion) then there is a possibility that another thread of 409 * control could lock one of the buffers after it has completed 410 * but while some of the other buffers have not completed. This 411 * locked buffer would confuse end_buffer_async_read() into not unlocking 412 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 413 * that this buffer is not under async I/O. 414 * 415 * The page comes unlocked when it has no locked buffer_async buffers 416 * left. 417 * 418 * PageLocked prevents anyone starting new async I/O reads any of 419 * the buffers. 420 * 421 * PageWriteback is used to prevent simultaneous writeout of the same 422 * page. 423 * 424 * PageLocked prevents anyone from starting writeback of a page which is 425 * under read I/O (PageWriteback is only ever set against a locked page). 426 */ 427 static void mark_buffer_async_read(struct buffer_head *bh) 428 { 429 bh->b_end_io = end_buffer_async_read; 430 set_buffer_async_read(bh); 431 } 432 433 static void mark_buffer_async_write_endio(struct buffer_head *bh, 434 bh_end_io_t *handler) 435 { 436 bh->b_end_io = handler; 437 set_buffer_async_write(bh); 438 } 439 440 void mark_buffer_async_write(struct buffer_head *bh) 441 { 442 mark_buffer_async_write_endio(bh, end_buffer_async_write); 443 } 444 EXPORT_SYMBOL(mark_buffer_async_write); 445 446 447 /* 448 * fs/buffer.c contains helper functions for buffer-backed address space's 449 * fsync functions. A common requirement for buffer-based filesystems is 450 * that certain data from the backing blockdev needs to be written out for 451 * a successful fsync(). For example, ext2 indirect blocks need to be 452 * written back and waited upon before fsync() returns. 453 * 454 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 455 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 456 * management of a list of dependent buffers at ->i_mapping->private_list. 457 * 458 * Locking is a little subtle: try_to_free_buffers() will remove buffers 459 * from their controlling inode's queue when they are being freed. But 460 * try_to_free_buffers() will be operating against the *blockdev* mapping 461 * at the time, not against the S_ISREG file which depends on those buffers. 462 * So the locking for private_list is via the private_lock in the address_space 463 * which backs the buffers. Which is different from the address_space 464 * against which the buffers are listed. So for a particular address_space, 465 * mapping->private_lock does *not* protect mapping->private_list! In fact, 466 * mapping->private_list will always be protected by the backing blockdev's 467 * ->private_lock. 468 * 469 * Which introduces a requirement: all buffers on an address_space's 470 * ->private_list must be from the same address_space: the blockdev's. 471 * 472 * address_spaces which do not place buffers at ->private_list via these 473 * utility functions are free to use private_lock and private_list for 474 * whatever they want. The only requirement is that list_empty(private_list) 475 * be true at clear_inode() time. 476 * 477 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 478 * filesystems should do that. invalidate_inode_buffers() should just go 479 * BUG_ON(!list_empty). 480 * 481 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 482 * take an address_space, not an inode. And it should be called 483 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 484 * queued up. 485 * 486 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 487 * list if it is already on a list. Because if the buffer is on a list, 488 * it *must* already be on the right one. If not, the filesystem is being 489 * silly. This will save a ton of locking. But first we have to ensure 490 * that buffers are taken *off* the old inode's list when they are freed 491 * (presumably in truncate). That requires careful auditing of all 492 * filesystems (do it inside bforget()). It could also be done by bringing 493 * b_inode back. 494 */ 495 496 /* 497 * The buffer's backing address_space's private_lock must be held 498 */ 499 static void __remove_assoc_queue(struct buffer_head *bh) 500 { 501 list_del_init(&bh->b_assoc_buffers); 502 WARN_ON(!bh->b_assoc_map); 503 if (buffer_write_io_error(bh)) 504 set_bit(AS_EIO, &bh->b_assoc_map->flags); 505 bh->b_assoc_map = NULL; 506 } 507 508 int inode_has_buffers(struct inode *inode) 509 { 510 return !list_empty(&inode->i_data.private_list); 511 } 512 513 /* 514 * osync is designed to support O_SYNC io. It waits synchronously for 515 * all already-submitted IO to complete, but does not queue any new 516 * writes to the disk. 517 * 518 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 519 * you dirty the buffers, and then use osync_inode_buffers to wait for 520 * completion. Any other dirty buffers which are not yet queued for 521 * write will not be flushed to disk by the osync. 522 */ 523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 524 { 525 struct buffer_head *bh; 526 struct list_head *p; 527 int err = 0; 528 529 spin_lock(lock); 530 repeat: 531 list_for_each_prev(p, list) { 532 bh = BH_ENTRY(p); 533 if (buffer_locked(bh)) { 534 get_bh(bh); 535 spin_unlock(lock); 536 wait_on_buffer(bh); 537 if (!buffer_uptodate(bh)) 538 err = -EIO; 539 brelse(bh); 540 spin_lock(lock); 541 goto repeat; 542 } 543 } 544 spin_unlock(lock); 545 return err; 546 } 547 548 static void do_thaw_one(struct super_block *sb, void *unused) 549 { 550 char b[BDEVNAME_SIZE]; 551 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 552 printk(KERN_WARNING "Emergency Thaw on %s\n", 553 bdevname(sb->s_bdev, b)); 554 } 555 556 static void do_thaw_all(struct work_struct *work) 557 { 558 iterate_supers(do_thaw_one, NULL); 559 kfree(work); 560 printk(KERN_WARNING "Emergency Thaw complete\n"); 561 } 562 563 /** 564 * emergency_thaw_all -- forcibly thaw every frozen filesystem 565 * 566 * Used for emergency unfreeze of all filesystems via SysRq 567 */ 568 void emergency_thaw_all(void) 569 { 570 struct work_struct *work; 571 572 work = kmalloc(sizeof(*work), GFP_ATOMIC); 573 if (work) { 574 INIT_WORK(work, do_thaw_all); 575 schedule_work(work); 576 } 577 } 578 579 /** 580 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 581 * @mapping: the mapping which wants those buffers written 582 * 583 * Starts I/O against the buffers at mapping->private_list, and waits upon 584 * that I/O. 585 * 586 * Basically, this is a convenience function for fsync(). 587 * @mapping is a file or directory which needs those buffers to be written for 588 * a successful fsync(). 589 */ 590 int sync_mapping_buffers(struct address_space *mapping) 591 { 592 struct address_space *buffer_mapping = mapping->private_data; 593 594 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 595 return 0; 596 597 return fsync_buffers_list(&buffer_mapping->private_lock, 598 &mapping->private_list); 599 } 600 EXPORT_SYMBOL(sync_mapping_buffers); 601 602 /* 603 * Called when we've recently written block `bblock', and it is known that 604 * `bblock' was for a buffer_boundary() buffer. This means that the block at 605 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 606 * dirty, schedule it for IO. So that indirects merge nicely with their data. 607 */ 608 void write_boundary_block(struct block_device *bdev, 609 sector_t bblock, unsigned blocksize) 610 { 611 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 612 if (bh) { 613 if (buffer_dirty(bh)) 614 ll_rw_block(WRITE, 1, &bh); 615 put_bh(bh); 616 } 617 } 618 619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 620 { 621 struct address_space *mapping = inode->i_mapping; 622 struct address_space *buffer_mapping = bh->b_page->mapping; 623 624 mark_buffer_dirty(bh); 625 if (!mapping->private_data) { 626 mapping->private_data = buffer_mapping; 627 } else { 628 BUG_ON(mapping->private_data != buffer_mapping); 629 } 630 if (!bh->b_assoc_map) { 631 spin_lock(&buffer_mapping->private_lock); 632 list_move_tail(&bh->b_assoc_buffers, 633 &mapping->private_list); 634 bh->b_assoc_map = mapping; 635 spin_unlock(&buffer_mapping->private_lock); 636 } 637 } 638 EXPORT_SYMBOL(mark_buffer_dirty_inode); 639 640 /* 641 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 642 * dirty. 643 * 644 * If warn is true, then emit a warning if the page is not uptodate and has 645 * not been truncated. 646 */ 647 static void __set_page_dirty(struct page *page, 648 struct address_space *mapping, int warn) 649 { 650 unsigned long flags; 651 652 spin_lock_irqsave(&mapping->tree_lock, flags); 653 if (page->mapping) { /* Race with truncate? */ 654 WARN_ON_ONCE(warn && !PageUptodate(page)); 655 account_page_dirtied(page, mapping); 656 radix_tree_tag_set(&mapping->page_tree, 657 page_index(page), PAGECACHE_TAG_DIRTY); 658 } 659 spin_unlock_irqrestore(&mapping->tree_lock, flags); 660 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 661 } 662 663 /* 664 * Add a page to the dirty page list. 665 * 666 * It is a sad fact of life that this function is called from several places 667 * deeply under spinlocking. It may not sleep. 668 * 669 * If the page has buffers, the uptodate buffers are set dirty, to preserve 670 * dirty-state coherency between the page and the buffers. It the page does 671 * not have buffers then when they are later attached they will all be set 672 * dirty. 673 * 674 * The buffers are dirtied before the page is dirtied. There's a small race 675 * window in which a writepage caller may see the page cleanness but not the 676 * buffer dirtiness. That's fine. If this code were to set the page dirty 677 * before the buffers, a concurrent writepage caller could clear the page dirty 678 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 679 * page on the dirty page list. 680 * 681 * We use private_lock to lock against try_to_free_buffers while using the 682 * page's buffer list. Also use this to protect against clean buffers being 683 * added to the page after it was set dirty. 684 * 685 * FIXME: may need to call ->reservepage here as well. That's rather up to the 686 * address_space though. 687 */ 688 int __set_page_dirty_buffers(struct page *page) 689 { 690 int newly_dirty; 691 struct address_space *mapping = page_mapping(page); 692 693 if (unlikely(!mapping)) 694 return !TestSetPageDirty(page); 695 696 spin_lock(&mapping->private_lock); 697 if (page_has_buffers(page)) { 698 struct buffer_head *head = page_buffers(page); 699 struct buffer_head *bh = head; 700 701 do { 702 set_buffer_dirty(bh); 703 bh = bh->b_this_page; 704 } while (bh != head); 705 } 706 newly_dirty = !TestSetPageDirty(page); 707 spin_unlock(&mapping->private_lock); 708 709 if (newly_dirty) 710 __set_page_dirty(page, mapping, 1); 711 return newly_dirty; 712 } 713 EXPORT_SYMBOL(__set_page_dirty_buffers); 714 715 /* 716 * Write out and wait upon a list of buffers. 717 * 718 * We have conflicting pressures: we want to make sure that all 719 * initially dirty buffers get waited on, but that any subsequently 720 * dirtied buffers don't. After all, we don't want fsync to last 721 * forever if somebody is actively writing to the file. 722 * 723 * Do this in two main stages: first we copy dirty buffers to a 724 * temporary inode list, queueing the writes as we go. Then we clean 725 * up, waiting for those writes to complete. 726 * 727 * During this second stage, any subsequent updates to the file may end 728 * up refiling the buffer on the original inode's dirty list again, so 729 * there is a chance we will end up with a buffer queued for write but 730 * not yet completed on that list. So, as a final cleanup we go through 731 * the osync code to catch these locked, dirty buffers without requeuing 732 * any newly dirty buffers for write. 733 */ 734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 735 { 736 struct buffer_head *bh; 737 struct list_head tmp; 738 struct address_space *mapping; 739 int err = 0, err2; 740 struct blk_plug plug; 741 742 INIT_LIST_HEAD(&tmp); 743 blk_start_plug(&plug); 744 745 spin_lock(lock); 746 while (!list_empty(list)) { 747 bh = BH_ENTRY(list->next); 748 mapping = bh->b_assoc_map; 749 __remove_assoc_queue(bh); 750 /* Avoid race with mark_buffer_dirty_inode() which does 751 * a lockless check and we rely on seeing the dirty bit */ 752 smp_mb(); 753 if (buffer_dirty(bh) || buffer_locked(bh)) { 754 list_add(&bh->b_assoc_buffers, &tmp); 755 bh->b_assoc_map = mapping; 756 if (buffer_dirty(bh)) { 757 get_bh(bh); 758 spin_unlock(lock); 759 /* 760 * Ensure any pending I/O completes so that 761 * write_dirty_buffer() actually writes the 762 * current contents - it is a noop if I/O is 763 * still in flight on potentially older 764 * contents. 765 */ 766 write_dirty_buffer(bh, WRITE_SYNC); 767 768 /* 769 * Kick off IO for the previous mapping. Note 770 * that we will not run the very last mapping, 771 * wait_on_buffer() will do that for us 772 * through sync_buffer(). 773 */ 774 brelse(bh); 775 spin_lock(lock); 776 } 777 } 778 } 779 780 spin_unlock(lock); 781 blk_finish_plug(&plug); 782 spin_lock(lock); 783 784 while (!list_empty(&tmp)) { 785 bh = BH_ENTRY(tmp.prev); 786 get_bh(bh); 787 mapping = bh->b_assoc_map; 788 __remove_assoc_queue(bh); 789 /* Avoid race with mark_buffer_dirty_inode() which does 790 * a lockless check and we rely on seeing the dirty bit */ 791 smp_mb(); 792 if (buffer_dirty(bh)) { 793 list_add(&bh->b_assoc_buffers, 794 &mapping->private_list); 795 bh->b_assoc_map = mapping; 796 } 797 spin_unlock(lock); 798 wait_on_buffer(bh); 799 if (!buffer_uptodate(bh)) 800 err = -EIO; 801 brelse(bh); 802 spin_lock(lock); 803 } 804 805 spin_unlock(lock); 806 err2 = osync_buffers_list(lock, list); 807 if (err) 808 return err; 809 else 810 return err2; 811 } 812 813 /* 814 * Invalidate any and all dirty buffers on a given inode. We are 815 * probably unmounting the fs, but that doesn't mean we have already 816 * done a sync(). Just drop the buffers from the inode list. 817 * 818 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 819 * assumes that all the buffers are against the blockdev. Not true 820 * for reiserfs. 821 */ 822 void invalidate_inode_buffers(struct inode *inode) 823 { 824 if (inode_has_buffers(inode)) { 825 struct address_space *mapping = &inode->i_data; 826 struct list_head *list = &mapping->private_list; 827 struct address_space *buffer_mapping = mapping->private_data; 828 829 spin_lock(&buffer_mapping->private_lock); 830 while (!list_empty(list)) 831 __remove_assoc_queue(BH_ENTRY(list->next)); 832 spin_unlock(&buffer_mapping->private_lock); 833 } 834 } 835 EXPORT_SYMBOL(invalidate_inode_buffers); 836 837 /* 838 * Remove any clean buffers from the inode's buffer list. This is called 839 * when we're trying to free the inode itself. Those buffers can pin it. 840 * 841 * Returns true if all buffers were removed. 842 */ 843 int remove_inode_buffers(struct inode *inode) 844 { 845 int ret = 1; 846 847 if (inode_has_buffers(inode)) { 848 struct address_space *mapping = &inode->i_data; 849 struct list_head *list = &mapping->private_list; 850 struct address_space *buffer_mapping = mapping->private_data; 851 852 spin_lock(&buffer_mapping->private_lock); 853 while (!list_empty(list)) { 854 struct buffer_head *bh = BH_ENTRY(list->next); 855 if (buffer_dirty(bh)) { 856 ret = 0; 857 break; 858 } 859 __remove_assoc_queue(bh); 860 } 861 spin_unlock(&buffer_mapping->private_lock); 862 } 863 return ret; 864 } 865 866 /* 867 * Create the appropriate buffers when given a page for data area and 868 * the size of each buffer.. Use the bh->b_this_page linked list to 869 * follow the buffers created. Return NULL if unable to create more 870 * buffers. 871 * 872 * The retry flag is used to differentiate async IO (paging, swapping) 873 * which may not fail from ordinary buffer allocations. 874 */ 875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 876 int retry) 877 { 878 struct buffer_head *bh, *head; 879 long offset; 880 881 try_again: 882 head = NULL; 883 offset = PAGE_SIZE; 884 while ((offset -= size) >= 0) { 885 bh = alloc_buffer_head(GFP_NOFS); 886 if (!bh) 887 goto no_grow; 888 889 bh->b_this_page = head; 890 bh->b_blocknr = -1; 891 head = bh; 892 893 bh->b_size = size; 894 895 /* Link the buffer to its page */ 896 set_bh_page(bh, page, offset); 897 } 898 return head; 899 /* 900 * In case anything failed, we just free everything we got. 901 */ 902 no_grow: 903 if (head) { 904 do { 905 bh = head; 906 head = head->b_this_page; 907 free_buffer_head(bh); 908 } while (head); 909 } 910 911 /* 912 * Return failure for non-async IO requests. Async IO requests 913 * are not allowed to fail, so we have to wait until buffer heads 914 * become available. But we don't want tasks sleeping with 915 * partially complete buffers, so all were released above. 916 */ 917 if (!retry) 918 return NULL; 919 920 /* We're _really_ low on memory. Now we just 921 * wait for old buffer heads to become free due to 922 * finishing IO. Since this is an async request and 923 * the reserve list is empty, we're sure there are 924 * async buffer heads in use. 925 */ 926 free_more_memory(); 927 goto try_again; 928 } 929 EXPORT_SYMBOL_GPL(alloc_page_buffers); 930 931 static inline void 932 link_dev_buffers(struct page *page, struct buffer_head *head) 933 { 934 struct buffer_head *bh, *tail; 935 936 bh = head; 937 do { 938 tail = bh; 939 bh = bh->b_this_page; 940 } while (bh); 941 tail->b_this_page = head; 942 attach_page_buffers(page, head); 943 } 944 945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 946 { 947 sector_t retval = ~((sector_t)0); 948 loff_t sz = i_size_read(bdev->bd_inode); 949 950 if (sz) { 951 unsigned int sizebits = blksize_bits(size); 952 retval = (sz >> sizebits); 953 } 954 return retval; 955 } 956 957 /* 958 * Initialise the state of a blockdev page's buffers. 959 */ 960 static sector_t 961 init_page_buffers(struct page *page, struct block_device *bdev, 962 sector_t block, int size) 963 { 964 struct buffer_head *head = page_buffers(page); 965 struct buffer_head *bh = head; 966 int uptodate = PageUptodate(page); 967 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 968 969 do { 970 if (!buffer_mapped(bh)) { 971 init_buffer(bh, NULL, NULL); 972 bh->b_bdev = bdev; 973 bh->b_blocknr = block; 974 if (uptodate) 975 set_buffer_uptodate(bh); 976 if (block < end_block) 977 set_buffer_mapped(bh); 978 } 979 block++; 980 bh = bh->b_this_page; 981 } while (bh != head); 982 983 /* 984 * Caller needs to validate requested block against end of device. 985 */ 986 return end_block; 987 } 988 989 /* 990 * Create the page-cache page that contains the requested block. 991 * 992 * This is used purely for blockdev mappings. 993 */ 994 static int 995 grow_dev_page(struct block_device *bdev, sector_t block, 996 pgoff_t index, int size, int sizebits) 997 { 998 struct inode *inode = bdev->bd_inode; 999 struct page *page; 1000 struct buffer_head *bh; 1001 sector_t end_block; 1002 int ret = 0; /* Will call free_more_memory() */ 1003 gfp_t gfp_mask; 1004 1005 gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS; 1006 gfp_mask |= __GFP_MOVABLE; 1007 /* 1008 * XXX: __getblk_slow() can not really deal with failure and 1009 * will endlessly loop on improvised global reclaim. Prefer 1010 * looping in the allocator rather than here, at least that 1011 * code knows what it's doing. 1012 */ 1013 gfp_mask |= __GFP_NOFAIL; 1014 1015 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 1016 if (!page) 1017 return ret; 1018 1019 BUG_ON(!PageLocked(page)); 1020 1021 if (page_has_buffers(page)) { 1022 bh = page_buffers(page); 1023 if (bh->b_size == size) { 1024 end_block = init_page_buffers(page, bdev, 1025 index << sizebits, size); 1026 goto done; 1027 } 1028 if (!try_to_free_buffers(page)) 1029 goto failed; 1030 } 1031 1032 /* 1033 * Allocate some buffers for this page 1034 */ 1035 bh = alloc_page_buffers(page, size, 0); 1036 if (!bh) 1037 goto failed; 1038 1039 /* 1040 * Link the page to the buffers and initialise them. Take the 1041 * lock to be atomic wrt __find_get_block(), which does not 1042 * run under the page lock. 1043 */ 1044 spin_lock(&inode->i_mapping->private_lock); 1045 link_dev_buffers(page, bh); 1046 end_block = init_page_buffers(page, bdev, index << sizebits, size); 1047 spin_unlock(&inode->i_mapping->private_lock); 1048 done: 1049 ret = (block < end_block) ? 1 : -ENXIO; 1050 failed: 1051 unlock_page(page); 1052 page_cache_release(page); 1053 return ret; 1054 } 1055 1056 /* 1057 * Create buffers for the specified block device block's page. If 1058 * that page was dirty, the buffers are set dirty also. 1059 */ 1060 static int 1061 grow_buffers(struct block_device *bdev, sector_t block, int size) 1062 { 1063 pgoff_t index; 1064 int sizebits; 1065 1066 sizebits = -1; 1067 do { 1068 sizebits++; 1069 } while ((size << sizebits) < PAGE_SIZE); 1070 1071 index = block >> sizebits; 1072 1073 /* 1074 * Check for a block which wants to lie outside our maximum possible 1075 * pagecache index. (this comparison is done using sector_t types). 1076 */ 1077 if (unlikely(index != block >> sizebits)) { 1078 char b[BDEVNAME_SIZE]; 1079 1080 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1081 "device %s\n", 1082 __func__, (unsigned long long)block, 1083 bdevname(bdev, b)); 1084 return -EIO; 1085 } 1086 1087 /* Create a page with the proper size buffers.. */ 1088 return grow_dev_page(bdev, block, index, size, sizebits); 1089 } 1090 1091 static struct buffer_head * 1092 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1093 { 1094 /* Size must be multiple of hard sectorsize */ 1095 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1096 (size < 512 || size > PAGE_SIZE))) { 1097 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1098 size); 1099 printk(KERN_ERR "logical block size: %d\n", 1100 bdev_logical_block_size(bdev)); 1101 1102 dump_stack(); 1103 return NULL; 1104 } 1105 1106 for (;;) { 1107 struct buffer_head *bh; 1108 int ret; 1109 1110 bh = __find_get_block(bdev, block, size); 1111 if (bh) 1112 return bh; 1113 1114 ret = grow_buffers(bdev, block, size); 1115 if (ret < 0) 1116 return NULL; 1117 if (ret == 0) 1118 free_more_memory(); 1119 } 1120 } 1121 1122 /* 1123 * The relationship between dirty buffers and dirty pages: 1124 * 1125 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1126 * the page is tagged dirty in its radix tree. 1127 * 1128 * At all times, the dirtiness of the buffers represents the dirtiness of 1129 * subsections of the page. If the page has buffers, the page dirty bit is 1130 * merely a hint about the true dirty state. 1131 * 1132 * When a page is set dirty in its entirety, all its buffers are marked dirty 1133 * (if the page has buffers). 1134 * 1135 * When a buffer is marked dirty, its page is dirtied, but the page's other 1136 * buffers are not. 1137 * 1138 * Also. When blockdev buffers are explicitly read with bread(), they 1139 * individually become uptodate. But their backing page remains not 1140 * uptodate - even if all of its buffers are uptodate. A subsequent 1141 * block_read_full_page() against that page will discover all the uptodate 1142 * buffers, will set the page uptodate and will perform no I/O. 1143 */ 1144 1145 /** 1146 * mark_buffer_dirty - mark a buffer_head as needing writeout 1147 * @bh: the buffer_head to mark dirty 1148 * 1149 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1150 * backing page dirty, then tag the page as dirty in its address_space's radix 1151 * tree and then attach the address_space's inode to its superblock's dirty 1152 * inode list. 1153 * 1154 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1155 * mapping->tree_lock and mapping->host->i_lock. 1156 */ 1157 void mark_buffer_dirty(struct buffer_head *bh) 1158 { 1159 WARN_ON_ONCE(!buffer_uptodate(bh)); 1160 1161 trace_block_dirty_buffer(bh); 1162 1163 /* 1164 * Very *carefully* optimize the it-is-already-dirty case. 1165 * 1166 * Don't let the final "is it dirty" escape to before we 1167 * perhaps modified the buffer. 1168 */ 1169 if (buffer_dirty(bh)) { 1170 smp_mb(); 1171 if (buffer_dirty(bh)) 1172 return; 1173 } 1174 1175 if (!test_set_buffer_dirty(bh)) { 1176 struct page *page = bh->b_page; 1177 if (!TestSetPageDirty(page)) { 1178 struct address_space *mapping = page_mapping(page); 1179 if (mapping) 1180 __set_page_dirty(page, mapping, 0); 1181 } 1182 } 1183 } 1184 EXPORT_SYMBOL(mark_buffer_dirty); 1185 1186 /* 1187 * Decrement a buffer_head's reference count. If all buffers against a page 1188 * have zero reference count, are clean and unlocked, and if the page is clean 1189 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1190 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1191 * a page but it ends up not being freed, and buffers may later be reattached). 1192 */ 1193 void __brelse(struct buffer_head * buf) 1194 { 1195 if (atomic_read(&buf->b_count)) { 1196 put_bh(buf); 1197 return; 1198 } 1199 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1200 } 1201 EXPORT_SYMBOL(__brelse); 1202 1203 /* 1204 * bforget() is like brelse(), except it discards any 1205 * potentially dirty data. 1206 */ 1207 void __bforget(struct buffer_head *bh) 1208 { 1209 clear_buffer_dirty(bh); 1210 if (bh->b_assoc_map) { 1211 struct address_space *buffer_mapping = bh->b_page->mapping; 1212 1213 spin_lock(&buffer_mapping->private_lock); 1214 list_del_init(&bh->b_assoc_buffers); 1215 bh->b_assoc_map = NULL; 1216 spin_unlock(&buffer_mapping->private_lock); 1217 } 1218 __brelse(bh); 1219 } 1220 EXPORT_SYMBOL(__bforget); 1221 1222 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1223 { 1224 lock_buffer(bh); 1225 if (buffer_uptodate(bh)) { 1226 unlock_buffer(bh); 1227 return bh; 1228 } else { 1229 get_bh(bh); 1230 bh->b_end_io = end_buffer_read_sync; 1231 submit_bh(READ, bh); 1232 wait_on_buffer(bh); 1233 if (buffer_uptodate(bh)) 1234 return bh; 1235 } 1236 brelse(bh); 1237 return NULL; 1238 } 1239 1240 /* 1241 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1242 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1243 * refcount elevated by one when they're in an LRU. A buffer can only appear 1244 * once in a particular CPU's LRU. A single buffer can be present in multiple 1245 * CPU's LRUs at the same time. 1246 * 1247 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1248 * sb_find_get_block(). 1249 * 1250 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1251 * a local interrupt disable for that. 1252 */ 1253 1254 #define BH_LRU_SIZE 8 1255 1256 struct bh_lru { 1257 struct buffer_head *bhs[BH_LRU_SIZE]; 1258 }; 1259 1260 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1261 1262 #ifdef CONFIG_SMP 1263 #define bh_lru_lock() local_irq_disable() 1264 #define bh_lru_unlock() local_irq_enable() 1265 #else 1266 #define bh_lru_lock() preempt_disable() 1267 #define bh_lru_unlock() preempt_enable() 1268 #endif 1269 1270 static inline void check_irqs_on(void) 1271 { 1272 #ifdef irqs_disabled 1273 BUG_ON(irqs_disabled()); 1274 #endif 1275 } 1276 1277 /* 1278 * The LRU management algorithm is dopey-but-simple. Sorry. 1279 */ 1280 static void bh_lru_install(struct buffer_head *bh) 1281 { 1282 struct buffer_head *evictee = NULL; 1283 1284 check_irqs_on(); 1285 bh_lru_lock(); 1286 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1287 struct buffer_head *bhs[BH_LRU_SIZE]; 1288 int in; 1289 int out = 0; 1290 1291 get_bh(bh); 1292 bhs[out++] = bh; 1293 for (in = 0; in < BH_LRU_SIZE; in++) { 1294 struct buffer_head *bh2 = 1295 __this_cpu_read(bh_lrus.bhs[in]); 1296 1297 if (bh2 == bh) { 1298 __brelse(bh2); 1299 } else { 1300 if (out >= BH_LRU_SIZE) { 1301 BUG_ON(evictee != NULL); 1302 evictee = bh2; 1303 } else { 1304 bhs[out++] = bh2; 1305 } 1306 } 1307 } 1308 while (out < BH_LRU_SIZE) 1309 bhs[out++] = NULL; 1310 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1311 } 1312 bh_lru_unlock(); 1313 1314 if (evictee) 1315 __brelse(evictee); 1316 } 1317 1318 /* 1319 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1320 */ 1321 static struct buffer_head * 1322 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1323 { 1324 struct buffer_head *ret = NULL; 1325 unsigned int i; 1326 1327 check_irqs_on(); 1328 bh_lru_lock(); 1329 for (i = 0; i < BH_LRU_SIZE; i++) { 1330 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1331 1332 if (bh && bh->b_bdev == bdev && 1333 bh->b_blocknr == block && bh->b_size == size) { 1334 if (i) { 1335 while (i) { 1336 __this_cpu_write(bh_lrus.bhs[i], 1337 __this_cpu_read(bh_lrus.bhs[i - 1])); 1338 i--; 1339 } 1340 __this_cpu_write(bh_lrus.bhs[0], bh); 1341 } 1342 get_bh(bh); 1343 ret = bh; 1344 break; 1345 } 1346 } 1347 bh_lru_unlock(); 1348 return ret; 1349 } 1350 1351 /* 1352 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1353 * it in the LRU and mark it as accessed. If it is not present then return 1354 * NULL 1355 */ 1356 struct buffer_head * 1357 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1358 { 1359 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1360 1361 if (bh == NULL) { 1362 /* __find_get_block_slow will mark the page accessed */ 1363 bh = __find_get_block_slow(bdev, block); 1364 if (bh) 1365 bh_lru_install(bh); 1366 } else 1367 touch_buffer(bh); 1368 1369 return bh; 1370 } 1371 EXPORT_SYMBOL(__find_get_block); 1372 1373 /* 1374 * __getblk will locate (and, if necessary, create) the buffer_head 1375 * which corresponds to the passed block_device, block and size. The 1376 * returned buffer has its reference count incremented. 1377 * 1378 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1379 * attempt is failing. FIXME, perhaps? 1380 */ 1381 struct buffer_head * 1382 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1383 { 1384 struct buffer_head *bh = __find_get_block(bdev, block, size); 1385 1386 might_sleep(); 1387 if (bh == NULL) 1388 bh = __getblk_slow(bdev, block, size); 1389 return bh; 1390 } 1391 EXPORT_SYMBOL(__getblk); 1392 1393 /* 1394 * Do async read-ahead on a buffer.. 1395 */ 1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1397 { 1398 struct buffer_head *bh = __getblk(bdev, block, size); 1399 if (likely(bh)) { 1400 ll_rw_block(READA, 1, &bh); 1401 brelse(bh); 1402 } 1403 } 1404 EXPORT_SYMBOL(__breadahead); 1405 1406 /** 1407 * __bread() - reads a specified block and returns the bh 1408 * @bdev: the block_device to read from 1409 * @block: number of block 1410 * @size: size (in bytes) to read 1411 * 1412 * Reads a specified block, and returns buffer head that contains it. 1413 * It returns NULL if the block was unreadable. 1414 */ 1415 struct buffer_head * 1416 __bread(struct block_device *bdev, sector_t block, unsigned size) 1417 { 1418 struct buffer_head *bh = __getblk(bdev, block, size); 1419 1420 if (likely(bh) && !buffer_uptodate(bh)) 1421 bh = __bread_slow(bh); 1422 return bh; 1423 } 1424 EXPORT_SYMBOL(__bread); 1425 1426 /* 1427 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1428 * This doesn't race because it runs in each cpu either in irq 1429 * or with preempt disabled. 1430 */ 1431 static void invalidate_bh_lru(void *arg) 1432 { 1433 struct bh_lru *b = &get_cpu_var(bh_lrus); 1434 int i; 1435 1436 for (i = 0; i < BH_LRU_SIZE; i++) { 1437 brelse(b->bhs[i]); 1438 b->bhs[i] = NULL; 1439 } 1440 put_cpu_var(bh_lrus); 1441 } 1442 1443 static bool has_bh_in_lru(int cpu, void *dummy) 1444 { 1445 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1446 int i; 1447 1448 for (i = 0; i < BH_LRU_SIZE; i++) { 1449 if (b->bhs[i]) 1450 return 1; 1451 } 1452 1453 return 0; 1454 } 1455 1456 void invalidate_bh_lrus(void) 1457 { 1458 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1459 } 1460 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1461 1462 void set_bh_page(struct buffer_head *bh, 1463 struct page *page, unsigned long offset) 1464 { 1465 bh->b_page = page; 1466 BUG_ON(offset >= PAGE_SIZE); 1467 if (PageHighMem(page)) 1468 /* 1469 * This catches illegal uses and preserves the offset: 1470 */ 1471 bh->b_data = (char *)(0 + offset); 1472 else 1473 bh->b_data = page_address(page) + offset; 1474 } 1475 EXPORT_SYMBOL(set_bh_page); 1476 1477 /* 1478 * Called when truncating a buffer on a page completely. 1479 */ 1480 1481 /* Bits that are cleared during an invalidate */ 1482 #define BUFFER_FLAGS_DISCARD \ 1483 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1484 1 << BH_Delay | 1 << BH_Unwritten) 1485 1486 static void discard_buffer(struct buffer_head * bh) 1487 { 1488 unsigned long b_state, b_state_old; 1489 1490 lock_buffer(bh); 1491 clear_buffer_dirty(bh); 1492 bh->b_bdev = NULL; 1493 b_state = bh->b_state; 1494 for (;;) { 1495 b_state_old = cmpxchg(&bh->b_state, b_state, 1496 (b_state & ~BUFFER_FLAGS_DISCARD)); 1497 if (b_state_old == b_state) 1498 break; 1499 b_state = b_state_old; 1500 } 1501 unlock_buffer(bh); 1502 } 1503 1504 /** 1505 * block_invalidatepage - invalidate part or all of a buffer-backed page 1506 * 1507 * @page: the page which is affected 1508 * @offset: start of the range to invalidate 1509 * @length: length of the range to invalidate 1510 * 1511 * block_invalidatepage() is called when all or part of the page has become 1512 * invalidated by a truncate operation. 1513 * 1514 * block_invalidatepage() does not have to release all buffers, but it must 1515 * ensure that no dirty buffer is left outside @offset and that no I/O 1516 * is underway against any of the blocks which are outside the truncation 1517 * point. Because the caller is about to free (and possibly reuse) those 1518 * blocks on-disk. 1519 */ 1520 void block_invalidatepage(struct page *page, unsigned int offset, 1521 unsigned int length) 1522 { 1523 struct buffer_head *head, *bh, *next; 1524 unsigned int curr_off = 0; 1525 unsigned int stop = length + offset; 1526 1527 BUG_ON(!PageLocked(page)); 1528 if (!page_has_buffers(page)) 1529 goto out; 1530 1531 /* 1532 * Check for overflow 1533 */ 1534 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1535 1536 head = page_buffers(page); 1537 bh = head; 1538 do { 1539 unsigned int next_off = curr_off + bh->b_size; 1540 next = bh->b_this_page; 1541 1542 /* 1543 * Are we still fully in range ? 1544 */ 1545 if (next_off > stop) 1546 goto out; 1547 1548 /* 1549 * is this block fully invalidated? 1550 */ 1551 if (offset <= curr_off) 1552 discard_buffer(bh); 1553 curr_off = next_off; 1554 bh = next; 1555 } while (bh != head); 1556 1557 /* 1558 * We release buffers only if the entire page is being invalidated. 1559 * The get_block cached value has been unconditionally invalidated, 1560 * so real IO is not possible anymore. 1561 */ 1562 if (offset == 0) 1563 try_to_release_page(page, 0); 1564 out: 1565 return; 1566 } 1567 EXPORT_SYMBOL(block_invalidatepage); 1568 1569 1570 /* 1571 * We attach and possibly dirty the buffers atomically wrt 1572 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1573 * is already excluded via the page lock. 1574 */ 1575 void create_empty_buffers(struct page *page, 1576 unsigned long blocksize, unsigned long b_state) 1577 { 1578 struct buffer_head *bh, *head, *tail; 1579 1580 head = alloc_page_buffers(page, blocksize, 1); 1581 bh = head; 1582 do { 1583 bh->b_state |= b_state; 1584 tail = bh; 1585 bh = bh->b_this_page; 1586 } while (bh); 1587 tail->b_this_page = head; 1588 1589 spin_lock(&page->mapping->private_lock); 1590 if (PageUptodate(page) || PageDirty(page)) { 1591 bh = head; 1592 do { 1593 if (PageDirty(page)) 1594 set_buffer_dirty(bh); 1595 if (PageUptodate(page)) 1596 set_buffer_uptodate(bh); 1597 bh = bh->b_this_page; 1598 } while (bh != head); 1599 } 1600 attach_page_buffers(page, head); 1601 spin_unlock(&page->mapping->private_lock); 1602 } 1603 EXPORT_SYMBOL(create_empty_buffers); 1604 1605 /* 1606 * We are taking a block for data and we don't want any output from any 1607 * buffer-cache aliases starting from return from that function and 1608 * until the moment when something will explicitly mark the buffer 1609 * dirty (hopefully that will not happen until we will free that block ;-) 1610 * We don't even need to mark it not-uptodate - nobody can expect 1611 * anything from a newly allocated buffer anyway. We used to used 1612 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1613 * don't want to mark the alias unmapped, for example - it would confuse 1614 * anyone who might pick it with bread() afterwards... 1615 * 1616 * Also.. Note that bforget() doesn't lock the buffer. So there can 1617 * be writeout I/O going on against recently-freed buffers. We don't 1618 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1619 * only if we really need to. That happens here. 1620 */ 1621 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1622 { 1623 struct buffer_head *old_bh; 1624 1625 might_sleep(); 1626 1627 old_bh = __find_get_block_slow(bdev, block); 1628 if (old_bh) { 1629 clear_buffer_dirty(old_bh); 1630 wait_on_buffer(old_bh); 1631 clear_buffer_req(old_bh); 1632 __brelse(old_bh); 1633 } 1634 } 1635 EXPORT_SYMBOL(unmap_underlying_metadata); 1636 1637 /* 1638 * Size is a power-of-two in the range 512..PAGE_SIZE, 1639 * and the case we care about most is PAGE_SIZE. 1640 * 1641 * So this *could* possibly be written with those 1642 * constraints in mind (relevant mostly if some 1643 * architecture has a slow bit-scan instruction) 1644 */ 1645 static inline int block_size_bits(unsigned int blocksize) 1646 { 1647 return ilog2(blocksize); 1648 } 1649 1650 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1651 { 1652 BUG_ON(!PageLocked(page)); 1653 1654 if (!page_has_buffers(page)) 1655 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1656 return page_buffers(page); 1657 } 1658 1659 /* 1660 * NOTE! All mapped/uptodate combinations are valid: 1661 * 1662 * Mapped Uptodate Meaning 1663 * 1664 * No No "unknown" - must do get_block() 1665 * No Yes "hole" - zero-filled 1666 * Yes No "allocated" - allocated on disk, not read in 1667 * Yes Yes "valid" - allocated and up-to-date in memory. 1668 * 1669 * "Dirty" is valid only with the last case (mapped+uptodate). 1670 */ 1671 1672 /* 1673 * While block_write_full_page is writing back the dirty buffers under 1674 * the page lock, whoever dirtied the buffers may decide to clean them 1675 * again at any time. We handle that by only looking at the buffer 1676 * state inside lock_buffer(). 1677 * 1678 * If block_write_full_page() is called for regular writeback 1679 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1680 * locked buffer. This only can happen if someone has written the buffer 1681 * directly, with submit_bh(). At the address_space level PageWriteback 1682 * prevents this contention from occurring. 1683 * 1684 * If block_write_full_page() is called with wbc->sync_mode == 1685 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1686 * causes the writes to be flagged as synchronous writes. 1687 */ 1688 static int __block_write_full_page(struct inode *inode, struct page *page, 1689 get_block_t *get_block, struct writeback_control *wbc, 1690 bh_end_io_t *handler) 1691 { 1692 int err; 1693 sector_t block; 1694 sector_t last_block; 1695 struct buffer_head *bh, *head; 1696 unsigned int blocksize, bbits; 1697 int nr_underway = 0; 1698 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1699 WRITE_SYNC : WRITE); 1700 1701 head = create_page_buffers(page, inode, 1702 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1703 1704 /* 1705 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1706 * here, and the (potentially unmapped) buffers may become dirty at 1707 * any time. If a buffer becomes dirty here after we've inspected it 1708 * then we just miss that fact, and the page stays dirty. 1709 * 1710 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1711 * handle that here by just cleaning them. 1712 */ 1713 1714 bh = head; 1715 blocksize = bh->b_size; 1716 bbits = block_size_bits(blocksize); 1717 1718 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1719 last_block = (i_size_read(inode) - 1) >> bbits; 1720 1721 /* 1722 * Get all the dirty buffers mapped to disk addresses and 1723 * handle any aliases from the underlying blockdev's mapping. 1724 */ 1725 do { 1726 if (block > last_block) { 1727 /* 1728 * mapped buffers outside i_size will occur, because 1729 * this page can be outside i_size when there is a 1730 * truncate in progress. 1731 */ 1732 /* 1733 * The buffer was zeroed by block_write_full_page() 1734 */ 1735 clear_buffer_dirty(bh); 1736 set_buffer_uptodate(bh); 1737 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1738 buffer_dirty(bh)) { 1739 WARN_ON(bh->b_size != blocksize); 1740 err = get_block(inode, block, bh, 1); 1741 if (err) 1742 goto recover; 1743 clear_buffer_delay(bh); 1744 if (buffer_new(bh)) { 1745 /* blockdev mappings never come here */ 1746 clear_buffer_new(bh); 1747 unmap_underlying_metadata(bh->b_bdev, 1748 bh->b_blocknr); 1749 } 1750 } 1751 bh = bh->b_this_page; 1752 block++; 1753 } while (bh != head); 1754 1755 do { 1756 if (!buffer_mapped(bh)) 1757 continue; 1758 /* 1759 * If it's a fully non-blocking write attempt and we cannot 1760 * lock the buffer then redirty the page. Note that this can 1761 * potentially cause a busy-wait loop from writeback threads 1762 * and kswapd activity, but those code paths have their own 1763 * higher-level throttling. 1764 */ 1765 if (wbc->sync_mode != WB_SYNC_NONE) { 1766 lock_buffer(bh); 1767 } else if (!trylock_buffer(bh)) { 1768 redirty_page_for_writepage(wbc, page); 1769 continue; 1770 } 1771 if (test_clear_buffer_dirty(bh)) { 1772 mark_buffer_async_write_endio(bh, handler); 1773 } else { 1774 unlock_buffer(bh); 1775 } 1776 } while ((bh = bh->b_this_page) != head); 1777 1778 /* 1779 * The page and its buffers are protected by PageWriteback(), so we can 1780 * drop the bh refcounts early. 1781 */ 1782 BUG_ON(PageWriteback(page)); 1783 set_page_writeback(page); 1784 1785 do { 1786 struct buffer_head *next = bh->b_this_page; 1787 if (buffer_async_write(bh)) { 1788 submit_bh(write_op, bh); 1789 nr_underway++; 1790 } 1791 bh = next; 1792 } while (bh != head); 1793 unlock_page(page); 1794 1795 err = 0; 1796 done: 1797 if (nr_underway == 0) { 1798 /* 1799 * The page was marked dirty, but the buffers were 1800 * clean. Someone wrote them back by hand with 1801 * ll_rw_block/submit_bh. A rare case. 1802 */ 1803 end_page_writeback(page); 1804 1805 /* 1806 * The page and buffer_heads can be released at any time from 1807 * here on. 1808 */ 1809 } 1810 return err; 1811 1812 recover: 1813 /* 1814 * ENOSPC, or some other error. We may already have added some 1815 * blocks to the file, so we need to write these out to avoid 1816 * exposing stale data. 1817 * The page is currently locked and not marked for writeback 1818 */ 1819 bh = head; 1820 /* Recovery: lock and submit the mapped buffers */ 1821 do { 1822 if (buffer_mapped(bh) && buffer_dirty(bh) && 1823 !buffer_delay(bh)) { 1824 lock_buffer(bh); 1825 mark_buffer_async_write_endio(bh, handler); 1826 } else { 1827 /* 1828 * The buffer may have been set dirty during 1829 * attachment to a dirty page. 1830 */ 1831 clear_buffer_dirty(bh); 1832 } 1833 } while ((bh = bh->b_this_page) != head); 1834 SetPageError(page); 1835 BUG_ON(PageWriteback(page)); 1836 mapping_set_error(page->mapping, err); 1837 set_page_writeback(page); 1838 do { 1839 struct buffer_head *next = bh->b_this_page; 1840 if (buffer_async_write(bh)) { 1841 clear_buffer_dirty(bh); 1842 submit_bh(write_op, bh); 1843 nr_underway++; 1844 } 1845 bh = next; 1846 } while (bh != head); 1847 unlock_page(page); 1848 goto done; 1849 } 1850 1851 /* 1852 * If a page has any new buffers, zero them out here, and mark them uptodate 1853 * and dirty so they'll be written out (in order to prevent uninitialised 1854 * block data from leaking). And clear the new bit. 1855 */ 1856 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1857 { 1858 unsigned int block_start, block_end; 1859 struct buffer_head *head, *bh; 1860 1861 BUG_ON(!PageLocked(page)); 1862 if (!page_has_buffers(page)) 1863 return; 1864 1865 bh = head = page_buffers(page); 1866 block_start = 0; 1867 do { 1868 block_end = block_start + bh->b_size; 1869 1870 if (buffer_new(bh)) { 1871 if (block_end > from && block_start < to) { 1872 if (!PageUptodate(page)) { 1873 unsigned start, size; 1874 1875 start = max(from, block_start); 1876 size = min(to, block_end) - start; 1877 1878 zero_user(page, start, size); 1879 set_buffer_uptodate(bh); 1880 } 1881 1882 clear_buffer_new(bh); 1883 mark_buffer_dirty(bh); 1884 } 1885 } 1886 1887 block_start = block_end; 1888 bh = bh->b_this_page; 1889 } while (bh != head); 1890 } 1891 EXPORT_SYMBOL(page_zero_new_buffers); 1892 1893 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1894 get_block_t *get_block) 1895 { 1896 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1897 unsigned to = from + len; 1898 struct inode *inode = page->mapping->host; 1899 unsigned block_start, block_end; 1900 sector_t block; 1901 int err = 0; 1902 unsigned blocksize, bbits; 1903 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1904 1905 BUG_ON(!PageLocked(page)); 1906 BUG_ON(from > PAGE_CACHE_SIZE); 1907 BUG_ON(to > PAGE_CACHE_SIZE); 1908 BUG_ON(from > to); 1909 1910 head = create_page_buffers(page, inode, 0); 1911 blocksize = head->b_size; 1912 bbits = block_size_bits(blocksize); 1913 1914 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1915 1916 for(bh = head, block_start = 0; bh != head || !block_start; 1917 block++, block_start=block_end, bh = bh->b_this_page) { 1918 block_end = block_start + blocksize; 1919 if (block_end <= from || block_start >= to) { 1920 if (PageUptodate(page)) { 1921 if (!buffer_uptodate(bh)) 1922 set_buffer_uptodate(bh); 1923 } 1924 continue; 1925 } 1926 if (buffer_new(bh)) 1927 clear_buffer_new(bh); 1928 if (!buffer_mapped(bh)) { 1929 WARN_ON(bh->b_size != blocksize); 1930 err = get_block(inode, block, bh, 1); 1931 if (err) 1932 break; 1933 if (buffer_new(bh)) { 1934 unmap_underlying_metadata(bh->b_bdev, 1935 bh->b_blocknr); 1936 if (PageUptodate(page)) { 1937 clear_buffer_new(bh); 1938 set_buffer_uptodate(bh); 1939 mark_buffer_dirty(bh); 1940 continue; 1941 } 1942 if (block_end > to || block_start < from) 1943 zero_user_segments(page, 1944 to, block_end, 1945 block_start, from); 1946 continue; 1947 } 1948 } 1949 if (PageUptodate(page)) { 1950 if (!buffer_uptodate(bh)) 1951 set_buffer_uptodate(bh); 1952 continue; 1953 } 1954 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1955 !buffer_unwritten(bh) && 1956 (block_start < from || block_end > to)) { 1957 ll_rw_block(READ, 1, &bh); 1958 *wait_bh++=bh; 1959 } 1960 } 1961 /* 1962 * If we issued read requests - let them complete. 1963 */ 1964 while(wait_bh > wait) { 1965 wait_on_buffer(*--wait_bh); 1966 if (!buffer_uptodate(*wait_bh)) 1967 err = -EIO; 1968 } 1969 if (unlikely(err)) 1970 page_zero_new_buffers(page, from, to); 1971 return err; 1972 } 1973 EXPORT_SYMBOL(__block_write_begin); 1974 1975 static int __block_commit_write(struct inode *inode, struct page *page, 1976 unsigned from, unsigned to) 1977 { 1978 unsigned block_start, block_end; 1979 int partial = 0; 1980 unsigned blocksize; 1981 struct buffer_head *bh, *head; 1982 1983 bh = head = page_buffers(page); 1984 blocksize = bh->b_size; 1985 1986 block_start = 0; 1987 do { 1988 block_end = block_start + blocksize; 1989 if (block_end <= from || block_start >= to) { 1990 if (!buffer_uptodate(bh)) 1991 partial = 1; 1992 } else { 1993 set_buffer_uptodate(bh); 1994 mark_buffer_dirty(bh); 1995 } 1996 clear_buffer_new(bh); 1997 1998 block_start = block_end; 1999 bh = bh->b_this_page; 2000 } while (bh != head); 2001 2002 /* 2003 * If this is a partial write which happened to make all buffers 2004 * uptodate then we can optimize away a bogus readpage() for 2005 * the next read(). Here we 'discover' whether the page went 2006 * uptodate as a result of this (potentially partial) write. 2007 */ 2008 if (!partial) 2009 SetPageUptodate(page); 2010 return 0; 2011 } 2012 2013 /* 2014 * block_write_begin takes care of the basic task of block allocation and 2015 * bringing partial write blocks uptodate first. 2016 * 2017 * The filesystem needs to handle block truncation upon failure. 2018 */ 2019 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2020 unsigned flags, struct page **pagep, get_block_t *get_block) 2021 { 2022 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2023 struct page *page; 2024 int status; 2025 2026 page = grab_cache_page_write_begin(mapping, index, flags); 2027 if (!page) 2028 return -ENOMEM; 2029 2030 status = __block_write_begin(page, pos, len, get_block); 2031 if (unlikely(status)) { 2032 unlock_page(page); 2033 page_cache_release(page); 2034 page = NULL; 2035 } 2036 2037 *pagep = page; 2038 return status; 2039 } 2040 EXPORT_SYMBOL(block_write_begin); 2041 2042 int block_write_end(struct file *file, struct address_space *mapping, 2043 loff_t pos, unsigned len, unsigned copied, 2044 struct page *page, void *fsdata) 2045 { 2046 struct inode *inode = mapping->host; 2047 unsigned start; 2048 2049 start = pos & (PAGE_CACHE_SIZE - 1); 2050 2051 if (unlikely(copied < len)) { 2052 /* 2053 * The buffers that were written will now be uptodate, so we 2054 * don't have to worry about a readpage reading them and 2055 * overwriting a partial write. However if we have encountered 2056 * a short write and only partially written into a buffer, it 2057 * will not be marked uptodate, so a readpage might come in and 2058 * destroy our partial write. 2059 * 2060 * Do the simplest thing, and just treat any short write to a 2061 * non uptodate page as a zero-length write, and force the 2062 * caller to redo the whole thing. 2063 */ 2064 if (!PageUptodate(page)) 2065 copied = 0; 2066 2067 page_zero_new_buffers(page, start+copied, start+len); 2068 } 2069 flush_dcache_page(page); 2070 2071 /* This could be a short (even 0-length) commit */ 2072 __block_commit_write(inode, page, start, start+copied); 2073 2074 return copied; 2075 } 2076 EXPORT_SYMBOL(block_write_end); 2077 2078 int generic_write_end(struct file *file, struct address_space *mapping, 2079 loff_t pos, unsigned len, unsigned copied, 2080 struct page *page, void *fsdata) 2081 { 2082 struct inode *inode = mapping->host; 2083 int i_size_changed = 0; 2084 2085 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2086 2087 /* 2088 * No need to use i_size_read() here, the i_size 2089 * cannot change under us because we hold i_mutex. 2090 * 2091 * But it's important to update i_size while still holding page lock: 2092 * page writeout could otherwise come in and zero beyond i_size. 2093 */ 2094 if (pos+copied > inode->i_size) { 2095 i_size_write(inode, pos+copied); 2096 i_size_changed = 1; 2097 } 2098 2099 unlock_page(page); 2100 page_cache_release(page); 2101 2102 /* 2103 * Don't mark the inode dirty under page lock. First, it unnecessarily 2104 * makes the holding time of page lock longer. Second, it forces lock 2105 * ordering of page lock and transaction start for journaling 2106 * filesystems. 2107 */ 2108 if (i_size_changed) 2109 mark_inode_dirty(inode); 2110 2111 return copied; 2112 } 2113 EXPORT_SYMBOL(generic_write_end); 2114 2115 /* 2116 * block_is_partially_uptodate checks whether buffers within a page are 2117 * uptodate or not. 2118 * 2119 * Returns true if all buffers which correspond to a file portion 2120 * we want to read are uptodate. 2121 */ 2122 int block_is_partially_uptodate(struct page *page, unsigned long from, 2123 unsigned long count) 2124 { 2125 unsigned block_start, block_end, blocksize; 2126 unsigned to; 2127 struct buffer_head *bh, *head; 2128 int ret = 1; 2129 2130 if (!page_has_buffers(page)) 2131 return 0; 2132 2133 head = page_buffers(page); 2134 blocksize = head->b_size; 2135 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count); 2136 to = from + to; 2137 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2138 return 0; 2139 2140 bh = head; 2141 block_start = 0; 2142 do { 2143 block_end = block_start + blocksize; 2144 if (block_end > from && block_start < to) { 2145 if (!buffer_uptodate(bh)) { 2146 ret = 0; 2147 break; 2148 } 2149 if (block_end >= to) 2150 break; 2151 } 2152 block_start = block_end; 2153 bh = bh->b_this_page; 2154 } while (bh != head); 2155 2156 return ret; 2157 } 2158 EXPORT_SYMBOL(block_is_partially_uptodate); 2159 2160 /* 2161 * Generic "read page" function for block devices that have the normal 2162 * get_block functionality. This is most of the block device filesystems. 2163 * Reads the page asynchronously --- the unlock_buffer() and 2164 * set/clear_buffer_uptodate() functions propagate buffer state into the 2165 * page struct once IO has completed. 2166 */ 2167 int block_read_full_page(struct page *page, get_block_t *get_block) 2168 { 2169 struct inode *inode = page->mapping->host; 2170 sector_t iblock, lblock; 2171 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2172 unsigned int blocksize, bbits; 2173 int nr, i; 2174 int fully_mapped = 1; 2175 2176 head = create_page_buffers(page, inode, 0); 2177 blocksize = head->b_size; 2178 bbits = block_size_bits(blocksize); 2179 2180 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 2181 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2182 bh = head; 2183 nr = 0; 2184 i = 0; 2185 2186 do { 2187 if (buffer_uptodate(bh)) 2188 continue; 2189 2190 if (!buffer_mapped(bh)) { 2191 int err = 0; 2192 2193 fully_mapped = 0; 2194 if (iblock < lblock) { 2195 WARN_ON(bh->b_size != blocksize); 2196 err = get_block(inode, iblock, bh, 0); 2197 if (err) 2198 SetPageError(page); 2199 } 2200 if (!buffer_mapped(bh)) { 2201 zero_user(page, i * blocksize, blocksize); 2202 if (!err) 2203 set_buffer_uptodate(bh); 2204 continue; 2205 } 2206 /* 2207 * get_block() might have updated the buffer 2208 * synchronously 2209 */ 2210 if (buffer_uptodate(bh)) 2211 continue; 2212 } 2213 arr[nr++] = bh; 2214 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2215 2216 if (fully_mapped) 2217 SetPageMappedToDisk(page); 2218 2219 if (!nr) { 2220 /* 2221 * All buffers are uptodate - we can set the page uptodate 2222 * as well. But not if get_block() returned an error. 2223 */ 2224 if (!PageError(page)) 2225 SetPageUptodate(page); 2226 unlock_page(page); 2227 return 0; 2228 } 2229 2230 /* Stage two: lock the buffers */ 2231 for (i = 0; i < nr; i++) { 2232 bh = arr[i]; 2233 lock_buffer(bh); 2234 mark_buffer_async_read(bh); 2235 } 2236 2237 /* 2238 * Stage 3: start the IO. Check for uptodateness 2239 * inside the buffer lock in case another process reading 2240 * the underlying blockdev brought it uptodate (the sct fix). 2241 */ 2242 for (i = 0; i < nr; i++) { 2243 bh = arr[i]; 2244 if (buffer_uptodate(bh)) 2245 end_buffer_async_read(bh, 1); 2246 else 2247 submit_bh(READ, bh); 2248 } 2249 return 0; 2250 } 2251 EXPORT_SYMBOL(block_read_full_page); 2252 2253 /* utility function for filesystems that need to do work on expanding 2254 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2255 * deal with the hole. 2256 */ 2257 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2258 { 2259 struct address_space *mapping = inode->i_mapping; 2260 struct page *page; 2261 void *fsdata; 2262 int err; 2263 2264 err = inode_newsize_ok(inode, size); 2265 if (err) 2266 goto out; 2267 2268 err = pagecache_write_begin(NULL, mapping, size, 0, 2269 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2270 &page, &fsdata); 2271 if (err) 2272 goto out; 2273 2274 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2275 BUG_ON(err > 0); 2276 2277 out: 2278 return err; 2279 } 2280 EXPORT_SYMBOL(generic_cont_expand_simple); 2281 2282 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2283 loff_t pos, loff_t *bytes) 2284 { 2285 struct inode *inode = mapping->host; 2286 unsigned blocksize = 1 << inode->i_blkbits; 2287 struct page *page; 2288 void *fsdata; 2289 pgoff_t index, curidx; 2290 loff_t curpos; 2291 unsigned zerofrom, offset, len; 2292 int err = 0; 2293 2294 index = pos >> PAGE_CACHE_SHIFT; 2295 offset = pos & ~PAGE_CACHE_MASK; 2296 2297 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2298 zerofrom = curpos & ~PAGE_CACHE_MASK; 2299 if (zerofrom & (blocksize-1)) { 2300 *bytes |= (blocksize-1); 2301 (*bytes)++; 2302 } 2303 len = PAGE_CACHE_SIZE - zerofrom; 2304 2305 err = pagecache_write_begin(file, mapping, curpos, len, 2306 AOP_FLAG_UNINTERRUPTIBLE, 2307 &page, &fsdata); 2308 if (err) 2309 goto out; 2310 zero_user(page, zerofrom, len); 2311 err = pagecache_write_end(file, mapping, curpos, len, len, 2312 page, fsdata); 2313 if (err < 0) 2314 goto out; 2315 BUG_ON(err != len); 2316 err = 0; 2317 2318 balance_dirty_pages_ratelimited(mapping); 2319 } 2320 2321 /* page covers the boundary, find the boundary offset */ 2322 if (index == curidx) { 2323 zerofrom = curpos & ~PAGE_CACHE_MASK; 2324 /* if we will expand the thing last block will be filled */ 2325 if (offset <= zerofrom) { 2326 goto out; 2327 } 2328 if (zerofrom & (blocksize-1)) { 2329 *bytes |= (blocksize-1); 2330 (*bytes)++; 2331 } 2332 len = offset - zerofrom; 2333 2334 err = pagecache_write_begin(file, mapping, curpos, len, 2335 AOP_FLAG_UNINTERRUPTIBLE, 2336 &page, &fsdata); 2337 if (err) 2338 goto out; 2339 zero_user(page, zerofrom, len); 2340 err = pagecache_write_end(file, mapping, curpos, len, len, 2341 page, fsdata); 2342 if (err < 0) 2343 goto out; 2344 BUG_ON(err != len); 2345 err = 0; 2346 } 2347 out: 2348 return err; 2349 } 2350 2351 /* 2352 * For moronic filesystems that do not allow holes in file. 2353 * We may have to extend the file. 2354 */ 2355 int cont_write_begin(struct file *file, struct address_space *mapping, 2356 loff_t pos, unsigned len, unsigned flags, 2357 struct page **pagep, void **fsdata, 2358 get_block_t *get_block, loff_t *bytes) 2359 { 2360 struct inode *inode = mapping->host; 2361 unsigned blocksize = 1 << inode->i_blkbits; 2362 unsigned zerofrom; 2363 int err; 2364 2365 err = cont_expand_zero(file, mapping, pos, bytes); 2366 if (err) 2367 return err; 2368 2369 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2370 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2371 *bytes |= (blocksize-1); 2372 (*bytes)++; 2373 } 2374 2375 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2376 } 2377 EXPORT_SYMBOL(cont_write_begin); 2378 2379 int block_commit_write(struct page *page, unsigned from, unsigned to) 2380 { 2381 struct inode *inode = page->mapping->host; 2382 __block_commit_write(inode,page,from,to); 2383 return 0; 2384 } 2385 EXPORT_SYMBOL(block_commit_write); 2386 2387 /* 2388 * block_page_mkwrite() is not allowed to change the file size as it gets 2389 * called from a page fault handler when a page is first dirtied. Hence we must 2390 * be careful to check for EOF conditions here. We set the page up correctly 2391 * for a written page which means we get ENOSPC checking when writing into 2392 * holes and correct delalloc and unwritten extent mapping on filesystems that 2393 * support these features. 2394 * 2395 * We are not allowed to take the i_mutex here so we have to play games to 2396 * protect against truncate races as the page could now be beyond EOF. Because 2397 * truncate writes the inode size before removing pages, once we have the 2398 * page lock we can determine safely if the page is beyond EOF. If it is not 2399 * beyond EOF, then the page is guaranteed safe against truncation until we 2400 * unlock the page. 2401 * 2402 * Direct callers of this function should protect against filesystem freezing 2403 * using sb_start_write() - sb_end_write() functions. 2404 */ 2405 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2406 get_block_t get_block) 2407 { 2408 struct page *page = vmf->page; 2409 struct inode *inode = file_inode(vma->vm_file); 2410 unsigned long end; 2411 loff_t size; 2412 int ret; 2413 2414 lock_page(page); 2415 size = i_size_read(inode); 2416 if ((page->mapping != inode->i_mapping) || 2417 (page_offset(page) > size)) { 2418 /* We overload EFAULT to mean page got truncated */ 2419 ret = -EFAULT; 2420 goto out_unlock; 2421 } 2422 2423 /* page is wholly or partially inside EOF */ 2424 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2425 end = size & ~PAGE_CACHE_MASK; 2426 else 2427 end = PAGE_CACHE_SIZE; 2428 2429 ret = __block_write_begin(page, 0, end, get_block); 2430 if (!ret) 2431 ret = block_commit_write(page, 0, end); 2432 2433 if (unlikely(ret < 0)) 2434 goto out_unlock; 2435 set_page_dirty(page); 2436 wait_for_stable_page(page); 2437 return 0; 2438 out_unlock: 2439 unlock_page(page); 2440 return ret; 2441 } 2442 EXPORT_SYMBOL(__block_page_mkwrite); 2443 2444 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2445 get_block_t get_block) 2446 { 2447 int ret; 2448 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 2449 2450 sb_start_pagefault(sb); 2451 2452 /* 2453 * Update file times before taking page lock. We may end up failing the 2454 * fault so this update may be superfluous but who really cares... 2455 */ 2456 file_update_time(vma->vm_file); 2457 2458 ret = __block_page_mkwrite(vma, vmf, get_block); 2459 sb_end_pagefault(sb); 2460 return block_page_mkwrite_return(ret); 2461 } 2462 EXPORT_SYMBOL(block_page_mkwrite); 2463 2464 /* 2465 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2466 * immediately, while under the page lock. So it needs a special end_io 2467 * handler which does not touch the bh after unlocking it. 2468 */ 2469 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2470 { 2471 __end_buffer_read_notouch(bh, uptodate); 2472 } 2473 2474 /* 2475 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2476 * the page (converting it to circular linked list and taking care of page 2477 * dirty races). 2478 */ 2479 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2480 { 2481 struct buffer_head *bh; 2482 2483 BUG_ON(!PageLocked(page)); 2484 2485 spin_lock(&page->mapping->private_lock); 2486 bh = head; 2487 do { 2488 if (PageDirty(page)) 2489 set_buffer_dirty(bh); 2490 if (!bh->b_this_page) 2491 bh->b_this_page = head; 2492 bh = bh->b_this_page; 2493 } while (bh != head); 2494 attach_page_buffers(page, head); 2495 spin_unlock(&page->mapping->private_lock); 2496 } 2497 2498 /* 2499 * On entry, the page is fully not uptodate. 2500 * On exit the page is fully uptodate in the areas outside (from,to) 2501 * The filesystem needs to handle block truncation upon failure. 2502 */ 2503 int nobh_write_begin(struct address_space *mapping, 2504 loff_t pos, unsigned len, unsigned flags, 2505 struct page **pagep, void **fsdata, 2506 get_block_t *get_block) 2507 { 2508 struct inode *inode = mapping->host; 2509 const unsigned blkbits = inode->i_blkbits; 2510 const unsigned blocksize = 1 << blkbits; 2511 struct buffer_head *head, *bh; 2512 struct page *page; 2513 pgoff_t index; 2514 unsigned from, to; 2515 unsigned block_in_page; 2516 unsigned block_start, block_end; 2517 sector_t block_in_file; 2518 int nr_reads = 0; 2519 int ret = 0; 2520 int is_mapped_to_disk = 1; 2521 2522 index = pos >> PAGE_CACHE_SHIFT; 2523 from = pos & (PAGE_CACHE_SIZE - 1); 2524 to = from + len; 2525 2526 page = grab_cache_page_write_begin(mapping, index, flags); 2527 if (!page) 2528 return -ENOMEM; 2529 *pagep = page; 2530 *fsdata = NULL; 2531 2532 if (page_has_buffers(page)) { 2533 ret = __block_write_begin(page, pos, len, get_block); 2534 if (unlikely(ret)) 2535 goto out_release; 2536 return ret; 2537 } 2538 2539 if (PageMappedToDisk(page)) 2540 return 0; 2541 2542 /* 2543 * Allocate buffers so that we can keep track of state, and potentially 2544 * attach them to the page if an error occurs. In the common case of 2545 * no error, they will just be freed again without ever being attached 2546 * to the page (which is all OK, because we're under the page lock). 2547 * 2548 * Be careful: the buffer linked list is a NULL terminated one, rather 2549 * than the circular one we're used to. 2550 */ 2551 head = alloc_page_buffers(page, blocksize, 0); 2552 if (!head) { 2553 ret = -ENOMEM; 2554 goto out_release; 2555 } 2556 2557 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2558 2559 /* 2560 * We loop across all blocks in the page, whether or not they are 2561 * part of the affected region. This is so we can discover if the 2562 * page is fully mapped-to-disk. 2563 */ 2564 for (block_start = 0, block_in_page = 0, bh = head; 2565 block_start < PAGE_CACHE_SIZE; 2566 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2567 int create; 2568 2569 block_end = block_start + blocksize; 2570 bh->b_state = 0; 2571 create = 1; 2572 if (block_start >= to) 2573 create = 0; 2574 ret = get_block(inode, block_in_file + block_in_page, 2575 bh, create); 2576 if (ret) 2577 goto failed; 2578 if (!buffer_mapped(bh)) 2579 is_mapped_to_disk = 0; 2580 if (buffer_new(bh)) 2581 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2582 if (PageUptodate(page)) { 2583 set_buffer_uptodate(bh); 2584 continue; 2585 } 2586 if (buffer_new(bh) || !buffer_mapped(bh)) { 2587 zero_user_segments(page, block_start, from, 2588 to, block_end); 2589 continue; 2590 } 2591 if (buffer_uptodate(bh)) 2592 continue; /* reiserfs does this */ 2593 if (block_start < from || block_end > to) { 2594 lock_buffer(bh); 2595 bh->b_end_io = end_buffer_read_nobh; 2596 submit_bh(READ, bh); 2597 nr_reads++; 2598 } 2599 } 2600 2601 if (nr_reads) { 2602 /* 2603 * The page is locked, so these buffers are protected from 2604 * any VM or truncate activity. Hence we don't need to care 2605 * for the buffer_head refcounts. 2606 */ 2607 for (bh = head; bh; bh = bh->b_this_page) { 2608 wait_on_buffer(bh); 2609 if (!buffer_uptodate(bh)) 2610 ret = -EIO; 2611 } 2612 if (ret) 2613 goto failed; 2614 } 2615 2616 if (is_mapped_to_disk) 2617 SetPageMappedToDisk(page); 2618 2619 *fsdata = head; /* to be released by nobh_write_end */ 2620 2621 return 0; 2622 2623 failed: 2624 BUG_ON(!ret); 2625 /* 2626 * Error recovery is a bit difficult. We need to zero out blocks that 2627 * were newly allocated, and dirty them to ensure they get written out. 2628 * Buffers need to be attached to the page at this point, otherwise 2629 * the handling of potential IO errors during writeout would be hard 2630 * (could try doing synchronous writeout, but what if that fails too?) 2631 */ 2632 attach_nobh_buffers(page, head); 2633 page_zero_new_buffers(page, from, to); 2634 2635 out_release: 2636 unlock_page(page); 2637 page_cache_release(page); 2638 *pagep = NULL; 2639 2640 return ret; 2641 } 2642 EXPORT_SYMBOL(nobh_write_begin); 2643 2644 int nobh_write_end(struct file *file, struct address_space *mapping, 2645 loff_t pos, unsigned len, unsigned copied, 2646 struct page *page, void *fsdata) 2647 { 2648 struct inode *inode = page->mapping->host; 2649 struct buffer_head *head = fsdata; 2650 struct buffer_head *bh; 2651 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2652 2653 if (unlikely(copied < len) && head) 2654 attach_nobh_buffers(page, head); 2655 if (page_has_buffers(page)) 2656 return generic_write_end(file, mapping, pos, len, 2657 copied, page, fsdata); 2658 2659 SetPageUptodate(page); 2660 set_page_dirty(page); 2661 if (pos+copied > inode->i_size) { 2662 i_size_write(inode, pos+copied); 2663 mark_inode_dirty(inode); 2664 } 2665 2666 unlock_page(page); 2667 page_cache_release(page); 2668 2669 while (head) { 2670 bh = head; 2671 head = head->b_this_page; 2672 free_buffer_head(bh); 2673 } 2674 2675 return copied; 2676 } 2677 EXPORT_SYMBOL(nobh_write_end); 2678 2679 /* 2680 * nobh_writepage() - based on block_full_write_page() except 2681 * that it tries to operate without attaching bufferheads to 2682 * the page. 2683 */ 2684 int nobh_writepage(struct page *page, get_block_t *get_block, 2685 struct writeback_control *wbc) 2686 { 2687 struct inode * const inode = page->mapping->host; 2688 loff_t i_size = i_size_read(inode); 2689 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2690 unsigned offset; 2691 int ret; 2692 2693 /* Is the page fully inside i_size? */ 2694 if (page->index < end_index) 2695 goto out; 2696 2697 /* Is the page fully outside i_size? (truncate in progress) */ 2698 offset = i_size & (PAGE_CACHE_SIZE-1); 2699 if (page->index >= end_index+1 || !offset) { 2700 /* 2701 * The page may have dirty, unmapped buffers. For example, 2702 * they may have been added in ext3_writepage(). Make them 2703 * freeable here, so the page does not leak. 2704 */ 2705 #if 0 2706 /* Not really sure about this - do we need this ? */ 2707 if (page->mapping->a_ops->invalidatepage) 2708 page->mapping->a_ops->invalidatepage(page, offset); 2709 #endif 2710 unlock_page(page); 2711 return 0; /* don't care */ 2712 } 2713 2714 /* 2715 * The page straddles i_size. It must be zeroed out on each and every 2716 * writepage invocation because it may be mmapped. "A file is mapped 2717 * in multiples of the page size. For a file that is not a multiple of 2718 * the page size, the remaining memory is zeroed when mapped, and 2719 * writes to that region are not written out to the file." 2720 */ 2721 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2722 out: 2723 ret = mpage_writepage(page, get_block, wbc); 2724 if (ret == -EAGAIN) 2725 ret = __block_write_full_page(inode, page, get_block, wbc, 2726 end_buffer_async_write); 2727 return ret; 2728 } 2729 EXPORT_SYMBOL(nobh_writepage); 2730 2731 int nobh_truncate_page(struct address_space *mapping, 2732 loff_t from, get_block_t *get_block) 2733 { 2734 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2735 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2736 unsigned blocksize; 2737 sector_t iblock; 2738 unsigned length, pos; 2739 struct inode *inode = mapping->host; 2740 struct page *page; 2741 struct buffer_head map_bh; 2742 int err; 2743 2744 blocksize = 1 << inode->i_blkbits; 2745 length = offset & (blocksize - 1); 2746 2747 /* Block boundary? Nothing to do */ 2748 if (!length) 2749 return 0; 2750 2751 length = blocksize - length; 2752 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2753 2754 page = grab_cache_page(mapping, index); 2755 err = -ENOMEM; 2756 if (!page) 2757 goto out; 2758 2759 if (page_has_buffers(page)) { 2760 has_buffers: 2761 unlock_page(page); 2762 page_cache_release(page); 2763 return block_truncate_page(mapping, from, get_block); 2764 } 2765 2766 /* Find the buffer that contains "offset" */ 2767 pos = blocksize; 2768 while (offset >= pos) { 2769 iblock++; 2770 pos += blocksize; 2771 } 2772 2773 map_bh.b_size = blocksize; 2774 map_bh.b_state = 0; 2775 err = get_block(inode, iblock, &map_bh, 0); 2776 if (err) 2777 goto unlock; 2778 /* unmapped? It's a hole - nothing to do */ 2779 if (!buffer_mapped(&map_bh)) 2780 goto unlock; 2781 2782 /* Ok, it's mapped. Make sure it's up-to-date */ 2783 if (!PageUptodate(page)) { 2784 err = mapping->a_ops->readpage(NULL, page); 2785 if (err) { 2786 page_cache_release(page); 2787 goto out; 2788 } 2789 lock_page(page); 2790 if (!PageUptodate(page)) { 2791 err = -EIO; 2792 goto unlock; 2793 } 2794 if (page_has_buffers(page)) 2795 goto has_buffers; 2796 } 2797 zero_user(page, offset, length); 2798 set_page_dirty(page); 2799 err = 0; 2800 2801 unlock: 2802 unlock_page(page); 2803 page_cache_release(page); 2804 out: 2805 return err; 2806 } 2807 EXPORT_SYMBOL(nobh_truncate_page); 2808 2809 int block_truncate_page(struct address_space *mapping, 2810 loff_t from, get_block_t *get_block) 2811 { 2812 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2813 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2814 unsigned blocksize; 2815 sector_t iblock; 2816 unsigned length, pos; 2817 struct inode *inode = mapping->host; 2818 struct page *page; 2819 struct buffer_head *bh; 2820 int err; 2821 2822 blocksize = 1 << inode->i_blkbits; 2823 length = offset & (blocksize - 1); 2824 2825 /* Block boundary? Nothing to do */ 2826 if (!length) 2827 return 0; 2828 2829 length = blocksize - length; 2830 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2831 2832 page = grab_cache_page(mapping, index); 2833 err = -ENOMEM; 2834 if (!page) 2835 goto out; 2836 2837 if (!page_has_buffers(page)) 2838 create_empty_buffers(page, blocksize, 0); 2839 2840 /* Find the buffer that contains "offset" */ 2841 bh = page_buffers(page); 2842 pos = blocksize; 2843 while (offset >= pos) { 2844 bh = bh->b_this_page; 2845 iblock++; 2846 pos += blocksize; 2847 } 2848 2849 err = 0; 2850 if (!buffer_mapped(bh)) { 2851 WARN_ON(bh->b_size != blocksize); 2852 err = get_block(inode, iblock, bh, 0); 2853 if (err) 2854 goto unlock; 2855 /* unmapped? It's a hole - nothing to do */ 2856 if (!buffer_mapped(bh)) 2857 goto unlock; 2858 } 2859 2860 /* Ok, it's mapped. Make sure it's up-to-date */ 2861 if (PageUptodate(page)) 2862 set_buffer_uptodate(bh); 2863 2864 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2865 err = -EIO; 2866 ll_rw_block(READ, 1, &bh); 2867 wait_on_buffer(bh); 2868 /* Uhhuh. Read error. Complain and punt. */ 2869 if (!buffer_uptodate(bh)) 2870 goto unlock; 2871 } 2872 2873 zero_user(page, offset, length); 2874 mark_buffer_dirty(bh); 2875 err = 0; 2876 2877 unlock: 2878 unlock_page(page); 2879 page_cache_release(page); 2880 out: 2881 return err; 2882 } 2883 EXPORT_SYMBOL(block_truncate_page); 2884 2885 /* 2886 * The generic ->writepage function for buffer-backed address_spaces 2887 */ 2888 int block_write_full_page(struct page *page, get_block_t *get_block, 2889 struct writeback_control *wbc) 2890 { 2891 struct inode * const inode = page->mapping->host; 2892 loff_t i_size = i_size_read(inode); 2893 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2894 unsigned offset; 2895 2896 /* Is the page fully inside i_size? */ 2897 if (page->index < end_index) 2898 return __block_write_full_page(inode, page, get_block, wbc, 2899 end_buffer_async_write); 2900 2901 /* Is the page fully outside i_size? (truncate in progress) */ 2902 offset = i_size & (PAGE_CACHE_SIZE-1); 2903 if (page->index >= end_index+1 || !offset) { 2904 /* 2905 * The page may have dirty, unmapped buffers. For example, 2906 * they may have been added in ext3_writepage(). Make them 2907 * freeable here, so the page does not leak. 2908 */ 2909 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 2910 unlock_page(page); 2911 return 0; /* don't care */ 2912 } 2913 2914 /* 2915 * The page straddles i_size. It must be zeroed out on each and every 2916 * writepage invocation because it may be mmapped. "A file is mapped 2917 * in multiples of the page size. For a file that is not a multiple of 2918 * the page size, the remaining memory is zeroed when mapped, and 2919 * writes to that region are not written out to the file." 2920 */ 2921 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2922 return __block_write_full_page(inode, page, get_block, wbc, 2923 end_buffer_async_write); 2924 } 2925 EXPORT_SYMBOL(block_write_full_page); 2926 2927 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2928 get_block_t *get_block) 2929 { 2930 struct buffer_head tmp; 2931 struct inode *inode = mapping->host; 2932 tmp.b_state = 0; 2933 tmp.b_blocknr = 0; 2934 tmp.b_size = 1 << inode->i_blkbits; 2935 get_block(inode, block, &tmp, 0); 2936 return tmp.b_blocknr; 2937 } 2938 EXPORT_SYMBOL(generic_block_bmap); 2939 2940 static void end_bio_bh_io_sync(struct bio *bio, int err) 2941 { 2942 struct buffer_head *bh = bio->bi_private; 2943 2944 if (err == -EOPNOTSUPP) { 2945 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2946 } 2947 2948 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2949 set_bit(BH_Quiet, &bh->b_state); 2950 2951 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2952 bio_put(bio); 2953 } 2954 2955 /* 2956 * This allows us to do IO even on the odd last sectors 2957 * of a device, even if the bh block size is some multiple 2958 * of the physical sector size. 2959 * 2960 * We'll just truncate the bio to the size of the device, 2961 * and clear the end of the buffer head manually. 2962 * 2963 * Truly out-of-range accesses will turn into actual IO 2964 * errors, this only handles the "we need to be able to 2965 * do IO at the final sector" case. 2966 */ 2967 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh) 2968 { 2969 sector_t maxsector; 2970 unsigned bytes; 2971 2972 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2973 if (!maxsector) 2974 return; 2975 2976 /* 2977 * If the *whole* IO is past the end of the device, 2978 * let it through, and the IO layer will turn it into 2979 * an EIO. 2980 */ 2981 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 2982 return; 2983 2984 maxsector -= bio->bi_iter.bi_sector; 2985 bytes = bio->bi_iter.bi_size; 2986 if (likely((bytes >> 9) <= maxsector)) 2987 return; 2988 2989 /* Uhhuh. We've got a bh that straddles the device size! */ 2990 bytes = maxsector << 9; 2991 2992 /* Truncate the bio.. */ 2993 bio->bi_iter.bi_size = bytes; 2994 bio->bi_io_vec[0].bv_len = bytes; 2995 2996 /* ..and clear the end of the buffer for reads */ 2997 if ((rw & RW_MASK) == READ) { 2998 void *kaddr = kmap_atomic(bh->b_page); 2999 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes); 3000 kunmap_atomic(kaddr); 3001 flush_dcache_page(bh->b_page); 3002 } 3003 } 3004 3005 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) 3006 { 3007 struct bio *bio; 3008 int ret = 0; 3009 3010 BUG_ON(!buffer_locked(bh)); 3011 BUG_ON(!buffer_mapped(bh)); 3012 BUG_ON(!bh->b_end_io); 3013 BUG_ON(buffer_delay(bh)); 3014 BUG_ON(buffer_unwritten(bh)); 3015 3016 /* 3017 * Only clear out a write error when rewriting 3018 */ 3019 if (test_set_buffer_req(bh) && (rw & WRITE)) 3020 clear_buffer_write_io_error(bh); 3021 3022 /* 3023 * from here on down, it's all bio -- do the initial mapping, 3024 * submit_bio -> generic_make_request may further map this bio around 3025 */ 3026 bio = bio_alloc(GFP_NOIO, 1); 3027 3028 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3029 bio->bi_bdev = bh->b_bdev; 3030 bio->bi_io_vec[0].bv_page = bh->b_page; 3031 bio->bi_io_vec[0].bv_len = bh->b_size; 3032 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 3033 3034 bio->bi_vcnt = 1; 3035 bio->bi_iter.bi_size = bh->b_size; 3036 3037 bio->bi_end_io = end_bio_bh_io_sync; 3038 bio->bi_private = bh; 3039 bio->bi_flags |= bio_flags; 3040 3041 /* Take care of bh's that straddle the end of the device */ 3042 guard_bh_eod(rw, bio, bh); 3043 3044 if (buffer_meta(bh)) 3045 rw |= REQ_META; 3046 if (buffer_prio(bh)) 3047 rw |= REQ_PRIO; 3048 3049 bio_get(bio); 3050 submit_bio(rw, bio); 3051 3052 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 3053 ret = -EOPNOTSUPP; 3054 3055 bio_put(bio); 3056 return ret; 3057 } 3058 EXPORT_SYMBOL_GPL(_submit_bh); 3059 3060 int submit_bh(int rw, struct buffer_head *bh) 3061 { 3062 return _submit_bh(rw, bh, 0); 3063 } 3064 EXPORT_SYMBOL(submit_bh); 3065 3066 /** 3067 * ll_rw_block: low-level access to block devices (DEPRECATED) 3068 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 3069 * @nr: number of &struct buffer_heads in the array 3070 * @bhs: array of pointers to &struct buffer_head 3071 * 3072 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3073 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3074 * %READA option is described in the documentation for generic_make_request() 3075 * which ll_rw_block() calls. 3076 * 3077 * This function drops any buffer that it cannot get a lock on (with the 3078 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3079 * request, and any buffer that appears to be up-to-date when doing read 3080 * request. Further it marks as clean buffers that are processed for 3081 * writing (the buffer cache won't assume that they are actually clean 3082 * until the buffer gets unlocked). 3083 * 3084 * ll_rw_block sets b_end_io to simple completion handler that marks 3085 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3086 * any waiters. 3087 * 3088 * All of the buffers must be for the same device, and must also be a 3089 * multiple of the current approved size for the device. 3090 */ 3091 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3092 { 3093 int i; 3094 3095 for (i = 0; i < nr; i++) { 3096 struct buffer_head *bh = bhs[i]; 3097 3098 if (!trylock_buffer(bh)) 3099 continue; 3100 if (rw == WRITE) { 3101 if (test_clear_buffer_dirty(bh)) { 3102 bh->b_end_io = end_buffer_write_sync; 3103 get_bh(bh); 3104 submit_bh(WRITE, bh); 3105 continue; 3106 } 3107 } else { 3108 if (!buffer_uptodate(bh)) { 3109 bh->b_end_io = end_buffer_read_sync; 3110 get_bh(bh); 3111 submit_bh(rw, bh); 3112 continue; 3113 } 3114 } 3115 unlock_buffer(bh); 3116 } 3117 } 3118 EXPORT_SYMBOL(ll_rw_block); 3119 3120 void write_dirty_buffer(struct buffer_head *bh, int rw) 3121 { 3122 lock_buffer(bh); 3123 if (!test_clear_buffer_dirty(bh)) { 3124 unlock_buffer(bh); 3125 return; 3126 } 3127 bh->b_end_io = end_buffer_write_sync; 3128 get_bh(bh); 3129 submit_bh(rw, bh); 3130 } 3131 EXPORT_SYMBOL(write_dirty_buffer); 3132 3133 /* 3134 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3135 * and then start new I/O and then wait upon it. The caller must have a ref on 3136 * the buffer_head. 3137 */ 3138 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3139 { 3140 int ret = 0; 3141 3142 WARN_ON(atomic_read(&bh->b_count) < 1); 3143 lock_buffer(bh); 3144 if (test_clear_buffer_dirty(bh)) { 3145 get_bh(bh); 3146 bh->b_end_io = end_buffer_write_sync; 3147 ret = submit_bh(rw, bh); 3148 wait_on_buffer(bh); 3149 if (!ret && !buffer_uptodate(bh)) 3150 ret = -EIO; 3151 } else { 3152 unlock_buffer(bh); 3153 } 3154 return ret; 3155 } 3156 EXPORT_SYMBOL(__sync_dirty_buffer); 3157 3158 int sync_dirty_buffer(struct buffer_head *bh) 3159 { 3160 return __sync_dirty_buffer(bh, WRITE_SYNC); 3161 } 3162 EXPORT_SYMBOL(sync_dirty_buffer); 3163 3164 /* 3165 * try_to_free_buffers() checks if all the buffers on this particular page 3166 * are unused, and releases them if so. 3167 * 3168 * Exclusion against try_to_free_buffers may be obtained by either 3169 * locking the page or by holding its mapping's private_lock. 3170 * 3171 * If the page is dirty but all the buffers are clean then we need to 3172 * be sure to mark the page clean as well. This is because the page 3173 * may be against a block device, and a later reattachment of buffers 3174 * to a dirty page will set *all* buffers dirty. Which would corrupt 3175 * filesystem data on the same device. 3176 * 3177 * The same applies to regular filesystem pages: if all the buffers are 3178 * clean then we set the page clean and proceed. To do that, we require 3179 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3180 * private_lock. 3181 * 3182 * try_to_free_buffers() is non-blocking. 3183 */ 3184 static inline int buffer_busy(struct buffer_head *bh) 3185 { 3186 return atomic_read(&bh->b_count) | 3187 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3188 } 3189 3190 static int 3191 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3192 { 3193 struct buffer_head *head = page_buffers(page); 3194 struct buffer_head *bh; 3195 3196 bh = head; 3197 do { 3198 if (buffer_write_io_error(bh) && page->mapping) 3199 set_bit(AS_EIO, &page->mapping->flags); 3200 if (buffer_busy(bh)) 3201 goto failed; 3202 bh = bh->b_this_page; 3203 } while (bh != head); 3204 3205 do { 3206 struct buffer_head *next = bh->b_this_page; 3207 3208 if (bh->b_assoc_map) 3209 __remove_assoc_queue(bh); 3210 bh = next; 3211 } while (bh != head); 3212 *buffers_to_free = head; 3213 __clear_page_buffers(page); 3214 return 1; 3215 failed: 3216 return 0; 3217 } 3218 3219 int try_to_free_buffers(struct page *page) 3220 { 3221 struct address_space * const mapping = page->mapping; 3222 struct buffer_head *buffers_to_free = NULL; 3223 int ret = 0; 3224 3225 BUG_ON(!PageLocked(page)); 3226 if (PageWriteback(page)) 3227 return 0; 3228 3229 if (mapping == NULL) { /* can this still happen? */ 3230 ret = drop_buffers(page, &buffers_to_free); 3231 goto out; 3232 } 3233 3234 spin_lock(&mapping->private_lock); 3235 ret = drop_buffers(page, &buffers_to_free); 3236 3237 /* 3238 * If the filesystem writes its buffers by hand (eg ext3) 3239 * then we can have clean buffers against a dirty page. We 3240 * clean the page here; otherwise the VM will never notice 3241 * that the filesystem did any IO at all. 3242 * 3243 * Also, during truncate, discard_buffer will have marked all 3244 * the page's buffers clean. We discover that here and clean 3245 * the page also. 3246 * 3247 * private_lock must be held over this entire operation in order 3248 * to synchronise against __set_page_dirty_buffers and prevent the 3249 * dirty bit from being lost. 3250 */ 3251 if (ret) 3252 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3253 spin_unlock(&mapping->private_lock); 3254 out: 3255 if (buffers_to_free) { 3256 struct buffer_head *bh = buffers_to_free; 3257 3258 do { 3259 struct buffer_head *next = bh->b_this_page; 3260 free_buffer_head(bh); 3261 bh = next; 3262 } while (bh != buffers_to_free); 3263 } 3264 return ret; 3265 } 3266 EXPORT_SYMBOL(try_to_free_buffers); 3267 3268 /* 3269 * There are no bdflush tunables left. But distributions are 3270 * still running obsolete flush daemons, so we terminate them here. 3271 * 3272 * Use of bdflush() is deprecated and will be removed in a future kernel. 3273 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3274 */ 3275 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3276 { 3277 static int msg_count; 3278 3279 if (!capable(CAP_SYS_ADMIN)) 3280 return -EPERM; 3281 3282 if (msg_count < 5) { 3283 msg_count++; 3284 printk(KERN_INFO 3285 "warning: process `%s' used the obsolete bdflush" 3286 " system call\n", current->comm); 3287 printk(KERN_INFO "Fix your initscripts?\n"); 3288 } 3289 3290 if (func == 1) 3291 do_exit(0); 3292 return 0; 3293 } 3294 3295 /* 3296 * Buffer-head allocation 3297 */ 3298 static struct kmem_cache *bh_cachep __read_mostly; 3299 3300 /* 3301 * Once the number of bh's in the machine exceeds this level, we start 3302 * stripping them in writeback. 3303 */ 3304 static unsigned long max_buffer_heads; 3305 3306 int buffer_heads_over_limit; 3307 3308 struct bh_accounting { 3309 int nr; /* Number of live bh's */ 3310 int ratelimit; /* Limit cacheline bouncing */ 3311 }; 3312 3313 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3314 3315 static void recalc_bh_state(void) 3316 { 3317 int i; 3318 int tot = 0; 3319 3320 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3321 return; 3322 __this_cpu_write(bh_accounting.ratelimit, 0); 3323 for_each_online_cpu(i) 3324 tot += per_cpu(bh_accounting, i).nr; 3325 buffer_heads_over_limit = (tot > max_buffer_heads); 3326 } 3327 3328 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3329 { 3330 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3331 if (ret) { 3332 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3333 preempt_disable(); 3334 __this_cpu_inc(bh_accounting.nr); 3335 recalc_bh_state(); 3336 preempt_enable(); 3337 } 3338 return ret; 3339 } 3340 EXPORT_SYMBOL(alloc_buffer_head); 3341 3342 void free_buffer_head(struct buffer_head *bh) 3343 { 3344 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3345 kmem_cache_free(bh_cachep, bh); 3346 preempt_disable(); 3347 __this_cpu_dec(bh_accounting.nr); 3348 recalc_bh_state(); 3349 preempt_enable(); 3350 } 3351 EXPORT_SYMBOL(free_buffer_head); 3352 3353 static void buffer_exit_cpu(int cpu) 3354 { 3355 int i; 3356 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3357 3358 for (i = 0; i < BH_LRU_SIZE; i++) { 3359 brelse(b->bhs[i]); 3360 b->bhs[i] = NULL; 3361 } 3362 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3363 per_cpu(bh_accounting, cpu).nr = 0; 3364 } 3365 3366 static int buffer_cpu_notify(struct notifier_block *self, 3367 unsigned long action, void *hcpu) 3368 { 3369 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3370 buffer_exit_cpu((unsigned long)hcpu); 3371 return NOTIFY_OK; 3372 } 3373 3374 /** 3375 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3376 * @bh: struct buffer_head 3377 * 3378 * Return true if the buffer is up-to-date and false, 3379 * with the buffer locked, if not. 3380 */ 3381 int bh_uptodate_or_lock(struct buffer_head *bh) 3382 { 3383 if (!buffer_uptodate(bh)) { 3384 lock_buffer(bh); 3385 if (!buffer_uptodate(bh)) 3386 return 0; 3387 unlock_buffer(bh); 3388 } 3389 return 1; 3390 } 3391 EXPORT_SYMBOL(bh_uptodate_or_lock); 3392 3393 /** 3394 * bh_submit_read - Submit a locked buffer for reading 3395 * @bh: struct buffer_head 3396 * 3397 * Returns zero on success and -EIO on error. 3398 */ 3399 int bh_submit_read(struct buffer_head *bh) 3400 { 3401 BUG_ON(!buffer_locked(bh)); 3402 3403 if (buffer_uptodate(bh)) { 3404 unlock_buffer(bh); 3405 return 0; 3406 } 3407 3408 get_bh(bh); 3409 bh->b_end_io = end_buffer_read_sync; 3410 submit_bh(READ, bh); 3411 wait_on_buffer(bh); 3412 if (buffer_uptodate(bh)) 3413 return 0; 3414 return -EIO; 3415 } 3416 EXPORT_SYMBOL(bh_submit_read); 3417 3418 void __init buffer_init(void) 3419 { 3420 unsigned long nrpages; 3421 3422 bh_cachep = kmem_cache_create("buffer_head", 3423 sizeof(struct buffer_head), 0, 3424 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3425 SLAB_MEM_SPREAD), 3426 NULL); 3427 3428 /* 3429 * Limit the bh occupancy to 10% of ZONE_NORMAL 3430 */ 3431 nrpages = (nr_free_buffer_pages() * 10) / 100; 3432 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3433 hotcpu_notifier(buffer_cpu_notify, 0); 3434 } 3435