xref: /openbmc/linux/fs/buffer.c (revision 588b48ca)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69 
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 	clear_bit_unlock(BH_Lock, &bh->b_state);
73 	smp_mb__after_atomic();
74 	wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77 
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84 				     bool *dirty, bool *writeback)
85 {
86 	struct buffer_head *head, *bh;
87 	*dirty = false;
88 	*writeback = false;
89 
90 	BUG_ON(!PageLocked(page));
91 
92 	if (!page_has_buffers(page))
93 		return;
94 
95 	if (PageWriteback(page))
96 		*writeback = true;
97 
98 	head = page_buffers(page);
99 	bh = head;
100 	do {
101 		if (buffer_locked(bh))
102 			*writeback = true;
103 
104 		if (buffer_dirty(bh))
105 			*dirty = true;
106 
107 		bh = bh->b_this_page;
108 	} while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111 
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122 
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126 	ClearPagePrivate(page);
127 	set_page_private(page, 0);
128 	page_cache_release(page);
129 }
130 
131 
132 static int quiet_error(struct buffer_head *bh)
133 {
134 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135 		return 0;
136 	return 1;
137 }
138 
139 
140 static void buffer_io_error(struct buffer_head *bh)
141 {
142 	char b[BDEVNAME_SIZE];
143 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144 			bdevname(bh->b_bdev, b),
145 			(unsigned long long)bh->b_blocknr);
146 }
147 
148 /*
149  * End-of-IO handler helper function which does not touch the bh after
150  * unlocking it.
151  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152  * a race there is benign: unlock_buffer() only use the bh's address for
153  * hashing after unlocking the buffer, so it doesn't actually touch the bh
154  * itself.
155  */
156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
157 {
158 	if (uptodate) {
159 		set_buffer_uptodate(bh);
160 	} else {
161 		/* This happens, due to failed READA attempts. */
162 		clear_buffer_uptodate(bh);
163 	}
164 	unlock_buffer(bh);
165 }
166 
167 /*
168  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
169  * unlock the buffer. This is what ll_rw_block uses too.
170  */
171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172 {
173 	__end_buffer_read_notouch(bh, uptodate);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_read_sync);
177 
178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179 {
180 	char b[BDEVNAME_SIZE];
181 
182 	if (uptodate) {
183 		set_buffer_uptodate(bh);
184 	} else {
185 		if (!quiet_error(bh)) {
186 			buffer_io_error(bh);
187 			printk(KERN_WARNING "lost page write due to "
188 					"I/O error on %s\n",
189 				       bdevname(bh->b_bdev, b));
190 		}
191 		set_buffer_write_io_error(bh);
192 		clear_buffer_uptodate(bh);
193 	}
194 	unlock_buffer(bh);
195 	put_bh(bh);
196 }
197 EXPORT_SYMBOL(end_buffer_write_sync);
198 
199 /*
200  * Various filesystems appear to want __find_get_block to be non-blocking.
201  * But it's the page lock which protects the buffers.  To get around this,
202  * we get exclusion from try_to_free_buffers with the blockdev mapping's
203  * private_lock.
204  *
205  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206  * may be quite high.  This code could TryLock the page, and if that
207  * succeeds, there is no need to take private_lock. (But if
208  * private_lock is contended then so is mapping->tree_lock).
209  */
210 static struct buffer_head *
211 __find_get_block_slow(struct block_device *bdev, sector_t block)
212 {
213 	struct inode *bd_inode = bdev->bd_inode;
214 	struct address_space *bd_mapping = bd_inode->i_mapping;
215 	struct buffer_head *ret = NULL;
216 	pgoff_t index;
217 	struct buffer_head *bh;
218 	struct buffer_head *head;
219 	struct page *page;
220 	int all_mapped = 1;
221 
222 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
223 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
224 	if (!page)
225 		goto out;
226 
227 	spin_lock(&bd_mapping->private_lock);
228 	if (!page_has_buffers(page))
229 		goto out_unlock;
230 	head = page_buffers(page);
231 	bh = head;
232 	do {
233 		if (!buffer_mapped(bh))
234 			all_mapped = 0;
235 		else if (bh->b_blocknr == block) {
236 			ret = bh;
237 			get_bh(bh);
238 			goto out_unlock;
239 		}
240 		bh = bh->b_this_page;
241 	} while (bh != head);
242 
243 	/* we might be here because some of the buffers on this page are
244 	 * not mapped.  This is due to various races between
245 	 * file io on the block device and getblk.  It gets dealt with
246 	 * elsewhere, don't buffer_error if we had some unmapped buffers
247 	 */
248 	if (all_mapped) {
249 		char b[BDEVNAME_SIZE];
250 
251 		printk("__find_get_block_slow() failed. "
252 			"block=%llu, b_blocknr=%llu\n",
253 			(unsigned long long)block,
254 			(unsigned long long)bh->b_blocknr);
255 		printk("b_state=0x%08lx, b_size=%zu\n",
256 			bh->b_state, bh->b_size);
257 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
258 			1 << bd_inode->i_blkbits);
259 	}
260 out_unlock:
261 	spin_unlock(&bd_mapping->private_lock);
262 	page_cache_release(page);
263 out:
264 	return ret;
265 }
266 
267 /*
268  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
269  */
270 static void free_more_memory(void)
271 {
272 	struct zone *zone;
273 	int nid;
274 
275 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
276 	yield();
277 
278 	for_each_online_node(nid) {
279 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280 						gfp_zone(GFP_NOFS), NULL,
281 						&zone);
282 		if (zone)
283 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
284 						GFP_NOFS, NULL);
285 	}
286 }
287 
288 /*
289  * I/O completion handler for block_read_full_page() - pages
290  * which come unlocked at the end of I/O.
291  */
292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293 {
294 	unsigned long flags;
295 	struct buffer_head *first;
296 	struct buffer_head *tmp;
297 	struct page *page;
298 	int page_uptodate = 1;
299 
300 	BUG_ON(!buffer_async_read(bh));
301 
302 	page = bh->b_page;
303 	if (uptodate) {
304 		set_buffer_uptodate(bh);
305 	} else {
306 		clear_buffer_uptodate(bh);
307 		if (!quiet_error(bh))
308 			buffer_io_error(bh);
309 		SetPageError(page);
310 	}
311 
312 	/*
313 	 * Be _very_ careful from here on. Bad things can happen if
314 	 * two buffer heads end IO at almost the same time and both
315 	 * decide that the page is now completely done.
316 	 */
317 	first = page_buffers(page);
318 	local_irq_save(flags);
319 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
320 	clear_buffer_async_read(bh);
321 	unlock_buffer(bh);
322 	tmp = bh;
323 	do {
324 		if (!buffer_uptodate(tmp))
325 			page_uptodate = 0;
326 		if (buffer_async_read(tmp)) {
327 			BUG_ON(!buffer_locked(tmp));
328 			goto still_busy;
329 		}
330 		tmp = tmp->b_this_page;
331 	} while (tmp != bh);
332 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 	local_irq_restore(flags);
334 
335 	/*
336 	 * If none of the buffers had errors and they are all
337 	 * uptodate then we can set the page uptodate.
338 	 */
339 	if (page_uptodate && !PageError(page))
340 		SetPageUptodate(page);
341 	unlock_page(page);
342 	return;
343 
344 still_busy:
345 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 	local_irq_restore(flags);
347 	return;
348 }
349 
350 /*
351  * Completion handler for block_write_full_page() - pages which are unlocked
352  * during I/O, and which have PageWriteback cleared upon I/O completion.
353  */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356 	char b[BDEVNAME_SIZE];
357 	unsigned long flags;
358 	struct buffer_head *first;
359 	struct buffer_head *tmp;
360 	struct page *page;
361 
362 	BUG_ON(!buffer_async_write(bh));
363 
364 	page = bh->b_page;
365 	if (uptodate) {
366 		set_buffer_uptodate(bh);
367 	} else {
368 		if (!quiet_error(bh)) {
369 			buffer_io_error(bh);
370 			printk(KERN_WARNING "lost page write due to "
371 					"I/O error on %s\n",
372 			       bdevname(bh->b_bdev, b));
373 		}
374 		set_bit(AS_EIO, &page->mapping->flags);
375 		set_buffer_write_io_error(bh);
376 		clear_buffer_uptodate(bh);
377 		SetPageError(page);
378 	}
379 
380 	first = page_buffers(page);
381 	local_irq_save(flags);
382 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383 
384 	clear_buffer_async_write(bh);
385 	unlock_buffer(bh);
386 	tmp = bh->b_this_page;
387 	while (tmp != bh) {
388 		if (buffer_async_write(tmp)) {
389 			BUG_ON(!buffer_locked(tmp));
390 			goto still_busy;
391 		}
392 		tmp = tmp->b_this_page;
393 	}
394 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395 	local_irq_restore(flags);
396 	end_page_writeback(page);
397 	return;
398 
399 still_busy:
400 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401 	local_irq_restore(flags);
402 	return;
403 }
404 EXPORT_SYMBOL(end_buffer_async_write);
405 
406 /*
407  * If a page's buffers are under async readin (end_buffer_async_read
408  * completion) then there is a possibility that another thread of
409  * control could lock one of the buffers after it has completed
410  * but while some of the other buffers have not completed.  This
411  * locked buffer would confuse end_buffer_async_read() into not unlocking
412  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
413  * that this buffer is not under async I/O.
414  *
415  * The page comes unlocked when it has no locked buffer_async buffers
416  * left.
417  *
418  * PageLocked prevents anyone starting new async I/O reads any of
419  * the buffers.
420  *
421  * PageWriteback is used to prevent simultaneous writeout of the same
422  * page.
423  *
424  * PageLocked prevents anyone from starting writeback of a page which is
425  * under read I/O (PageWriteback is only ever set against a locked page).
426  */
427 static void mark_buffer_async_read(struct buffer_head *bh)
428 {
429 	bh->b_end_io = end_buffer_async_read;
430 	set_buffer_async_read(bh);
431 }
432 
433 static void mark_buffer_async_write_endio(struct buffer_head *bh,
434 					  bh_end_io_t *handler)
435 {
436 	bh->b_end_io = handler;
437 	set_buffer_async_write(bh);
438 }
439 
440 void mark_buffer_async_write(struct buffer_head *bh)
441 {
442 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
443 }
444 EXPORT_SYMBOL(mark_buffer_async_write);
445 
446 
447 /*
448  * fs/buffer.c contains helper functions for buffer-backed address space's
449  * fsync functions.  A common requirement for buffer-based filesystems is
450  * that certain data from the backing blockdev needs to be written out for
451  * a successful fsync().  For example, ext2 indirect blocks need to be
452  * written back and waited upon before fsync() returns.
453  *
454  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456  * management of a list of dependent buffers at ->i_mapping->private_list.
457  *
458  * Locking is a little subtle: try_to_free_buffers() will remove buffers
459  * from their controlling inode's queue when they are being freed.  But
460  * try_to_free_buffers() will be operating against the *blockdev* mapping
461  * at the time, not against the S_ISREG file which depends on those buffers.
462  * So the locking for private_list is via the private_lock in the address_space
463  * which backs the buffers.  Which is different from the address_space
464  * against which the buffers are listed.  So for a particular address_space,
465  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
466  * mapping->private_list will always be protected by the backing blockdev's
467  * ->private_lock.
468  *
469  * Which introduces a requirement: all buffers on an address_space's
470  * ->private_list must be from the same address_space: the blockdev's.
471  *
472  * address_spaces which do not place buffers at ->private_list via these
473  * utility functions are free to use private_lock and private_list for
474  * whatever they want.  The only requirement is that list_empty(private_list)
475  * be true at clear_inode() time.
476  *
477  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
478  * filesystems should do that.  invalidate_inode_buffers() should just go
479  * BUG_ON(!list_empty).
480  *
481  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
482  * take an address_space, not an inode.  And it should be called
483  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484  * queued up.
485  *
486  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487  * list if it is already on a list.  Because if the buffer is on a list,
488  * it *must* already be on the right one.  If not, the filesystem is being
489  * silly.  This will save a ton of locking.  But first we have to ensure
490  * that buffers are taken *off* the old inode's list when they are freed
491  * (presumably in truncate).  That requires careful auditing of all
492  * filesystems (do it inside bforget()).  It could also be done by bringing
493  * b_inode back.
494  */
495 
496 /*
497  * The buffer's backing address_space's private_lock must be held
498  */
499 static void __remove_assoc_queue(struct buffer_head *bh)
500 {
501 	list_del_init(&bh->b_assoc_buffers);
502 	WARN_ON(!bh->b_assoc_map);
503 	if (buffer_write_io_error(bh))
504 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
505 	bh->b_assoc_map = NULL;
506 }
507 
508 int inode_has_buffers(struct inode *inode)
509 {
510 	return !list_empty(&inode->i_data.private_list);
511 }
512 
513 /*
514  * osync is designed to support O_SYNC io.  It waits synchronously for
515  * all already-submitted IO to complete, but does not queue any new
516  * writes to the disk.
517  *
518  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519  * you dirty the buffers, and then use osync_inode_buffers to wait for
520  * completion.  Any other dirty buffers which are not yet queued for
521  * write will not be flushed to disk by the osync.
522  */
523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524 {
525 	struct buffer_head *bh;
526 	struct list_head *p;
527 	int err = 0;
528 
529 	spin_lock(lock);
530 repeat:
531 	list_for_each_prev(p, list) {
532 		bh = BH_ENTRY(p);
533 		if (buffer_locked(bh)) {
534 			get_bh(bh);
535 			spin_unlock(lock);
536 			wait_on_buffer(bh);
537 			if (!buffer_uptodate(bh))
538 				err = -EIO;
539 			brelse(bh);
540 			spin_lock(lock);
541 			goto repeat;
542 		}
543 	}
544 	spin_unlock(lock);
545 	return err;
546 }
547 
548 static void do_thaw_one(struct super_block *sb, void *unused)
549 {
550 	char b[BDEVNAME_SIZE];
551 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552 		printk(KERN_WARNING "Emergency Thaw on %s\n",
553 		       bdevname(sb->s_bdev, b));
554 }
555 
556 static void do_thaw_all(struct work_struct *work)
557 {
558 	iterate_supers(do_thaw_one, NULL);
559 	kfree(work);
560 	printk(KERN_WARNING "Emergency Thaw complete\n");
561 }
562 
563 /**
564  * emergency_thaw_all -- forcibly thaw every frozen filesystem
565  *
566  * Used for emergency unfreeze of all filesystems via SysRq
567  */
568 void emergency_thaw_all(void)
569 {
570 	struct work_struct *work;
571 
572 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
573 	if (work) {
574 		INIT_WORK(work, do_thaw_all);
575 		schedule_work(work);
576 	}
577 }
578 
579 /**
580  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
581  * @mapping: the mapping which wants those buffers written
582  *
583  * Starts I/O against the buffers at mapping->private_list, and waits upon
584  * that I/O.
585  *
586  * Basically, this is a convenience function for fsync().
587  * @mapping is a file or directory which needs those buffers to be written for
588  * a successful fsync().
589  */
590 int sync_mapping_buffers(struct address_space *mapping)
591 {
592 	struct address_space *buffer_mapping = mapping->private_data;
593 
594 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595 		return 0;
596 
597 	return fsync_buffers_list(&buffer_mapping->private_lock,
598 					&mapping->private_list);
599 }
600 EXPORT_SYMBOL(sync_mapping_buffers);
601 
602 /*
603  * Called when we've recently written block `bblock', and it is known that
604  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
605  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
606  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
607  */
608 void write_boundary_block(struct block_device *bdev,
609 			sector_t bblock, unsigned blocksize)
610 {
611 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612 	if (bh) {
613 		if (buffer_dirty(bh))
614 			ll_rw_block(WRITE, 1, &bh);
615 		put_bh(bh);
616 	}
617 }
618 
619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620 {
621 	struct address_space *mapping = inode->i_mapping;
622 	struct address_space *buffer_mapping = bh->b_page->mapping;
623 
624 	mark_buffer_dirty(bh);
625 	if (!mapping->private_data) {
626 		mapping->private_data = buffer_mapping;
627 	} else {
628 		BUG_ON(mapping->private_data != buffer_mapping);
629 	}
630 	if (!bh->b_assoc_map) {
631 		spin_lock(&buffer_mapping->private_lock);
632 		list_move_tail(&bh->b_assoc_buffers,
633 				&mapping->private_list);
634 		bh->b_assoc_map = mapping;
635 		spin_unlock(&buffer_mapping->private_lock);
636 	}
637 }
638 EXPORT_SYMBOL(mark_buffer_dirty_inode);
639 
640 /*
641  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642  * dirty.
643  *
644  * If warn is true, then emit a warning if the page is not uptodate and has
645  * not been truncated.
646  */
647 static void __set_page_dirty(struct page *page,
648 		struct address_space *mapping, int warn)
649 {
650 	unsigned long flags;
651 
652 	spin_lock_irqsave(&mapping->tree_lock, flags);
653 	if (page->mapping) {	/* Race with truncate? */
654 		WARN_ON_ONCE(warn && !PageUptodate(page));
655 		account_page_dirtied(page, mapping);
656 		radix_tree_tag_set(&mapping->page_tree,
657 				page_index(page), PAGECACHE_TAG_DIRTY);
658 	}
659 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
660 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
661 }
662 
663 /*
664  * Add a page to the dirty page list.
665  *
666  * It is a sad fact of life that this function is called from several places
667  * deeply under spinlocking.  It may not sleep.
668  *
669  * If the page has buffers, the uptodate buffers are set dirty, to preserve
670  * dirty-state coherency between the page and the buffers.  It the page does
671  * not have buffers then when they are later attached they will all be set
672  * dirty.
673  *
674  * The buffers are dirtied before the page is dirtied.  There's a small race
675  * window in which a writepage caller may see the page cleanness but not the
676  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
677  * before the buffers, a concurrent writepage caller could clear the page dirty
678  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679  * page on the dirty page list.
680  *
681  * We use private_lock to lock against try_to_free_buffers while using the
682  * page's buffer list.  Also use this to protect against clean buffers being
683  * added to the page after it was set dirty.
684  *
685  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
686  * address_space though.
687  */
688 int __set_page_dirty_buffers(struct page *page)
689 {
690 	int newly_dirty;
691 	struct address_space *mapping = page_mapping(page);
692 
693 	if (unlikely(!mapping))
694 		return !TestSetPageDirty(page);
695 
696 	spin_lock(&mapping->private_lock);
697 	if (page_has_buffers(page)) {
698 		struct buffer_head *head = page_buffers(page);
699 		struct buffer_head *bh = head;
700 
701 		do {
702 			set_buffer_dirty(bh);
703 			bh = bh->b_this_page;
704 		} while (bh != head);
705 	}
706 	newly_dirty = !TestSetPageDirty(page);
707 	spin_unlock(&mapping->private_lock);
708 
709 	if (newly_dirty)
710 		__set_page_dirty(page, mapping, 1);
711 	return newly_dirty;
712 }
713 EXPORT_SYMBOL(__set_page_dirty_buffers);
714 
715 /*
716  * Write out and wait upon a list of buffers.
717  *
718  * We have conflicting pressures: we want to make sure that all
719  * initially dirty buffers get waited on, but that any subsequently
720  * dirtied buffers don't.  After all, we don't want fsync to last
721  * forever if somebody is actively writing to the file.
722  *
723  * Do this in two main stages: first we copy dirty buffers to a
724  * temporary inode list, queueing the writes as we go.  Then we clean
725  * up, waiting for those writes to complete.
726  *
727  * During this second stage, any subsequent updates to the file may end
728  * up refiling the buffer on the original inode's dirty list again, so
729  * there is a chance we will end up with a buffer queued for write but
730  * not yet completed on that list.  So, as a final cleanup we go through
731  * the osync code to catch these locked, dirty buffers without requeuing
732  * any newly dirty buffers for write.
733  */
734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735 {
736 	struct buffer_head *bh;
737 	struct list_head tmp;
738 	struct address_space *mapping;
739 	int err = 0, err2;
740 	struct blk_plug plug;
741 
742 	INIT_LIST_HEAD(&tmp);
743 	blk_start_plug(&plug);
744 
745 	spin_lock(lock);
746 	while (!list_empty(list)) {
747 		bh = BH_ENTRY(list->next);
748 		mapping = bh->b_assoc_map;
749 		__remove_assoc_queue(bh);
750 		/* Avoid race with mark_buffer_dirty_inode() which does
751 		 * a lockless check and we rely on seeing the dirty bit */
752 		smp_mb();
753 		if (buffer_dirty(bh) || buffer_locked(bh)) {
754 			list_add(&bh->b_assoc_buffers, &tmp);
755 			bh->b_assoc_map = mapping;
756 			if (buffer_dirty(bh)) {
757 				get_bh(bh);
758 				spin_unlock(lock);
759 				/*
760 				 * Ensure any pending I/O completes so that
761 				 * write_dirty_buffer() actually writes the
762 				 * current contents - it is a noop if I/O is
763 				 * still in flight on potentially older
764 				 * contents.
765 				 */
766 				write_dirty_buffer(bh, WRITE_SYNC);
767 
768 				/*
769 				 * Kick off IO for the previous mapping. Note
770 				 * that we will not run the very last mapping,
771 				 * wait_on_buffer() will do that for us
772 				 * through sync_buffer().
773 				 */
774 				brelse(bh);
775 				spin_lock(lock);
776 			}
777 		}
778 	}
779 
780 	spin_unlock(lock);
781 	blk_finish_plug(&plug);
782 	spin_lock(lock);
783 
784 	while (!list_empty(&tmp)) {
785 		bh = BH_ENTRY(tmp.prev);
786 		get_bh(bh);
787 		mapping = bh->b_assoc_map;
788 		__remove_assoc_queue(bh);
789 		/* Avoid race with mark_buffer_dirty_inode() which does
790 		 * a lockless check and we rely on seeing the dirty bit */
791 		smp_mb();
792 		if (buffer_dirty(bh)) {
793 			list_add(&bh->b_assoc_buffers,
794 				 &mapping->private_list);
795 			bh->b_assoc_map = mapping;
796 		}
797 		spin_unlock(lock);
798 		wait_on_buffer(bh);
799 		if (!buffer_uptodate(bh))
800 			err = -EIO;
801 		brelse(bh);
802 		spin_lock(lock);
803 	}
804 
805 	spin_unlock(lock);
806 	err2 = osync_buffers_list(lock, list);
807 	if (err)
808 		return err;
809 	else
810 		return err2;
811 }
812 
813 /*
814  * Invalidate any and all dirty buffers on a given inode.  We are
815  * probably unmounting the fs, but that doesn't mean we have already
816  * done a sync().  Just drop the buffers from the inode list.
817  *
818  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
819  * assumes that all the buffers are against the blockdev.  Not true
820  * for reiserfs.
821  */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824 	if (inode_has_buffers(inode)) {
825 		struct address_space *mapping = &inode->i_data;
826 		struct list_head *list = &mapping->private_list;
827 		struct address_space *buffer_mapping = mapping->private_data;
828 
829 		spin_lock(&buffer_mapping->private_lock);
830 		while (!list_empty(list))
831 			__remove_assoc_queue(BH_ENTRY(list->next));
832 		spin_unlock(&buffer_mapping->private_lock);
833 	}
834 }
835 EXPORT_SYMBOL(invalidate_inode_buffers);
836 
837 /*
838  * Remove any clean buffers from the inode's buffer list.  This is called
839  * when we're trying to free the inode itself.  Those buffers can pin it.
840  *
841  * Returns true if all buffers were removed.
842  */
843 int remove_inode_buffers(struct inode *inode)
844 {
845 	int ret = 1;
846 
847 	if (inode_has_buffers(inode)) {
848 		struct address_space *mapping = &inode->i_data;
849 		struct list_head *list = &mapping->private_list;
850 		struct address_space *buffer_mapping = mapping->private_data;
851 
852 		spin_lock(&buffer_mapping->private_lock);
853 		while (!list_empty(list)) {
854 			struct buffer_head *bh = BH_ENTRY(list->next);
855 			if (buffer_dirty(bh)) {
856 				ret = 0;
857 				break;
858 			}
859 			__remove_assoc_queue(bh);
860 		}
861 		spin_unlock(&buffer_mapping->private_lock);
862 	}
863 	return ret;
864 }
865 
866 /*
867  * Create the appropriate buffers when given a page for data area and
868  * the size of each buffer.. Use the bh->b_this_page linked list to
869  * follow the buffers created.  Return NULL if unable to create more
870  * buffers.
871  *
872  * The retry flag is used to differentiate async IO (paging, swapping)
873  * which may not fail from ordinary buffer allocations.
874  */
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876 		int retry)
877 {
878 	struct buffer_head *bh, *head;
879 	long offset;
880 
881 try_again:
882 	head = NULL;
883 	offset = PAGE_SIZE;
884 	while ((offset -= size) >= 0) {
885 		bh = alloc_buffer_head(GFP_NOFS);
886 		if (!bh)
887 			goto no_grow;
888 
889 		bh->b_this_page = head;
890 		bh->b_blocknr = -1;
891 		head = bh;
892 
893 		bh->b_size = size;
894 
895 		/* Link the buffer to its page */
896 		set_bh_page(bh, page, offset);
897 	}
898 	return head;
899 /*
900  * In case anything failed, we just free everything we got.
901  */
902 no_grow:
903 	if (head) {
904 		do {
905 			bh = head;
906 			head = head->b_this_page;
907 			free_buffer_head(bh);
908 		} while (head);
909 	}
910 
911 	/*
912 	 * Return failure for non-async IO requests.  Async IO requests
913 	 * are not allowed to fail, so we have to wait until buffer heads
914 	 * become available.  But we don't want tasks sleeping with
915 	 * partially complete buffers, so all were released above.
916 	 */
917 	if (!retry)
918 		return NULL;
919 
920 	/* We're _really_ low on memory. Now we just
921 	 * wait for old buffer heads to become free due to
922 	 * finishing IO.  Since this is an async request and
923 	 * the reserve list is empty, we're sure there are
924 	 * async buffer heads in use.
925 	 */
926 	free_more_memory();
927 	goto try_again;
928 }
929 EXPORT_SYMBOL_GPL(alloc_page_buffers);
930 
931 static inline void
932 link_dev_buffers(struct page *page, struct buffer_head *head)
933 {
934 	struct buffer_head *bh, *tail;
935 
936 	bh = head;
937 	do {
938 		tail = bh;
939 		bh = bh->b_this_page;
940 	} while (bh);
941 	tail->b_this_page = head;
942 	attach_page_buffers(page, head);
943 }
944 
945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946 {
947 	sector_t retval = ~((sector_t)0);
948 	loff_t sz = i_size_read(bdev->bd_inode);
949 
950 	if (sz) {
951 		unsigned int sizebits = blksize_bits(size);
952 		retval = (sz >> sizebits);
953 	}
954 	return retval;
955 }
956 
957 /*
958  * Initialise the state of a blockdev page's buffers.
959  */
960 static sector_t
961 init_page_buffers(struct page *page, struct block_device *bdev,
962 			sector_t block, int size)
963 {
964 	struct buffer_head *head = page_buffers(page);
965 	struct buffer_head *bh = head;
966 	int uptodate = PageUptodate(page);
967 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
968 
969 	do {
970 		if (!buffer_mapped(bh)) {
971 			init_buffer(bh, NULL, NULL);
972 			bh->b_bdev = bdev;
973 			bh->b_blocknr = block;
974 			if (uptodate)
975 				set_buffer_uptodate(bh);
976 			if (block < end_block)
977 				set_buffer_mapped(bh);
978 		}
979 		block++;
980 		bh = bh->b_this_page;
981 	} while (bh != head);
982 
983 	/*
984 	 * Caller needs to validate requested block against end of device.
985 	 */
986 	return end_block;
987 }
988 
989 /*
990  * Create the page-cache page that contains the requested block.
991  *
992  * This is used purely for blockdev mappings.
993  */
994 static int
995 grow_dev_page(struct block_device *bdev, sector_t block,
996 		pgoff_t index, int size, int sizebits)
997 {
998 	struct inode *inode = bdev->bd_inode;
999 	struct page *page;
1000 	struct buffer_head *bh;
1001 	sector_t end_block;
1002 	int ret = 0;		/* Will call free_more_memory() */
1003 	gfp_t gfp_mask;
1004 
1005 	gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1006 	gfp_mask |= __GFP_MOVABLE;
1007 	/*
1008 	 * XXX: __getblk_slow() can not really deal with failure and
1009 	 * will endlessly loop on improvised global reclaim.  Prefer
1010 	 * looping in the allocator rather than here, at least that
1011 	 * code knows what it's doing.
1012 	 */
1013 	gfp_mask |= __GFP_NOFAIL;
1014 
1015 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1016 	if (!page)
1017 		return ret;
1018 
1019 	BUG_ON(!PageLocked(page));
1020 
1021 	if (page_has_buffers(page)) {
1022 		bh = page_buffers(page);
1023 		if (bh->b_size == size) {
1024 			end_block = init_page_buffers(page, bdev,
1025 						index << sizebits, size);
1026 			goto done;
1027 		}
1028 		if (!try_to_free_buffers(page))
1029 			goto failed;
1030 	}
1031 
1032 	/*
1033 	 * Allocate some buffers for this page
1034 	 */
1035 	bh = alloc_page_buffers(page, size, 0);
1036 	if (!bh)
1037 		goto failed;
1038 
1039 	/*
1040 	 * Link the page to the buffers and initialise them.  Take the
1041 	 * lock to be atomic wrt __find_get_block(), which does not
1042 	 * run under the page lock.
1043 	 */
1044 	spin_lock(&inode->i_mapping->private_lock);
1045 	link_dev_buffers(page, bh);
1046 	end_block = init_page_buffers(page, bdev, index << sizebits, size);
1047 	spin_unlock(&inode->i_mapping->private_lock);
1048 done:
1049 	ret = (block < end_block) ? 1 : -ENXIO;
1050 failed:
1051 	unlock_page(page);
1052 	page_cache_release(page);
1053 	return ret;
1054 }
1055 
1056 /*
1057  * Create buffers for the specified block device block's page.  If
1058  * that page was dirty, the buffers are set dirty also.
1059  */
1060 static int
1061 grow_buffers(struct block_device *bdev, sector_t block, int size)
1062 {
1063 	pgoff_t index;
1064 	int sizebits;
1065 
1066 	sizebits = -1;
1067 	do {
1068 		sizebits++;
1069 	} while ((size << sizebits) < PAGE_SIZE);
1070 
1071 	index = block >> sizebits;
1072 
1073 	/*
1074 	 * Check for a block which wants to lie outside our maximum possible
1075 	 * pagecache index.  (this comparison is done using sector_t types).
1076 	 */
1077 	if (unlikely(index != block >> sizebits)) {
1078 		char b[BDEVNAME_SIZE];
1079 
1080 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1081 			"device %s\n",
1082 			__func__, (unsigned long long)block,
1083 			bdevname(bdev, b));
1084 		return -EIO;
1085 	}
1086 
1087 	/* Create a page with the proper size buffers.. */
1088 	return grow_dev_page(bdev, block, index, size, sizebits);
1089 }
1090 
1091 static struct buffer_head *
1092 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1093 {
1094 	/* Size must be multiple of hard sectorsize */
1095 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1096 			(size < 512 || size > PAGE_SIZE))) {
1097 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1098 					size);
1099 		printk(KERN_ERR "logical block size: %d\n",
1100 					bdev_logical_block_size(bdev));
1101 
1102 		dump_stack();
1103 		return NULL;
1104 	}
1105 
1106 	for (;;) {
1107 		struct buffer_head *bh;
1108 		int ret;
1109 
1110 		bh = __find_get_block(bdev, block, size);
1111 		if (bh)
1112 			return bh;
1113 
1114 		ret = grow_buffers(bdev, block, size);
1115 		if (ret < 0)
1116 			return NULL;
1117 		if (ret == 0)
1118 			free_more_memory();
1119 	}
1120 }
1121 
1122 /*
1123  * The relationship between dirty buffers and dirty pages:
1124  *
1125  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1126  * the page is tagged dirty in its radix tree.
1127  *
1128  * At all times, the dirtiness of the buffers represents the dirtiness of
1129  * subsections of the page.  If the page has buffers, the page dirty bit is
1130  * merely a hint about the true dirty state.
1131  *
1132  * When a page is set dirty in its entirety, all its buffers are marked dirty
1133  * (if the page has buffers).
1134  *
1135  * When a buffer is marked dirty, its page is dirtied, but the page's other
1136  * buffers are not.
1137  *
1138  * Also.  When blockdev buffers are explicitly read with bread(), they
1139  * individually become uptodate.  But their backing page remains not
1140  * uptodate - even if all of its buffers are uptodate.  A subsequent
1141  * block_read_full_page() against that page will discover all the uptodate
1142  * buffers, will set the page uptodate and will perform no I/O.
1143  */
1144 
1145 /**
1146  * mark_buffer_dirty - mark a buffer_head as needing writeout
1147  * @bh: the buffer_head to mark dirty
1148  *
1149  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1150  * backing page dirty, then tag the page as dirty in its address_space's radix
1151  * tree and then attach the address_space's inode to its superblock's dirty
1152  * inode list.
1153  *
1154  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1155  * mapping->tree_lock and mapping->host->i_lock.
1156  */
1157 void mark_buffer_dirty(struct buffer_head *bh)
1158 {
1159 	WARN_ON_ONCE(!buffer_uptodate(bh));
1160 
1161 	trace_block_dirty_buffer(bh);
1162 
1163 	/*
1164 	 * Very *carefully* optimize the it-is-already-dirty case.
1165 	 *
1166 	 * Don't let the final "is it dirty" escape to before we
1167 	 * perhaps modified the buffer.
1168 	 */
1169 	if (buffer_dirty(bh)) {
1170 		smp_mb();
1171 		if (buffer_dirty(bh))
1172 			return;
1173 	}
1174 
1175 	if (!test_set_buffer_dirty(bh)) {
1176 		struct page *page = bh->b_page;
1177 		if (!TestSetPageDirty(page)) {
1178 			struct address_space *mapping = page_mapping(page);
1179 			if (mapping)
1180 				__set_page_dirty(page, mapping, 0);
1181 		}
1182 	}
1183 }
1184 EXPORT_SYMBOL(mark_buffer_dirty);
1185 
1186 /*
1187  * Decrement a buffer_head's reference count.  If all buffers against a page
1188  * have zero reference count, are clean and unlocked, and if the page is clean
1189  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1190  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1191  * a page but it ends up not being freed, and buffers may later be reattached).
1192  */
1193 void __brelse(struct buffer_head * buf)
1194 {
1195 	if (atomic_read(&buf->b_count)) {
1196 		put_bh(buf);
1197 		return;
1198 	}
1199 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1200 }
1201 EXPORT_SYMBOL(__brelse);
1202 
1203 /*
1204  * bforget() is like brelse(), except it discards any
1205  * potentially dirty data.
1206  */
1207 void __bforget(struct buffer_head *bh)
1208 {
1209 	clear_buffer_dirty(bh);
1210 	if (bh->b_assoc_map) {
1211 		struct address_space *buffer_mapping = bh->b_page->mapping;
1212 
1213 		spin_lock(&buffer_mapping->private_lock);
1214 		list_del_init(&bh->b_assoc_buffers);
1215 		bh->b_assoc_map = NULL;
1216 		spin_unlock(&buffer_mapping->private_lock);
1217 	}
1218 	__brelse(bh);
1219 }
1220 EXPORT_SYMBOL(__bforget);
1221 
1222 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1223 {
1224 	lock_buffer(bh);
1225 	if (buffer_uptodate(bh)) {
1226 		unlock_buffer(bh);
1227 		return bh;
1228 	} else {
1229 		get_bh(bh);
1230 		bh->b_end_io = end_buffer_read_sync;
1231 		submit_bh(READ, bh);
1232 		wait_on_buffer(bh);
1233 		if (buffer_uptodate(bh))
1234 			return bh;
1235 	}
1236 	brelse(bh);
1237 	return NULL;
1238 }
1239 
1240 /*
1241  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1242  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1243  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1244  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1245  * CPU's LRUs at the same time.
1246  *
1247  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1248  * sb_find_get_block().
1249  *
1250  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1251  * a local interrupt disable for that.
1252  */
1253 
1254 #define BH_LRU_SIZE	8
1255 
1256 struct bh_lru {
1257 	struct buffer_head *bhs[BH_LRU_SIZE];
1258 };
1259 
1260 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1261 
1262 #ifdef CONFIG_SMP
1263 #define bh_lru_lock()	local_irq_disable()
1264 #define bh_lru_unlock()	local_irq_enable()
1265 #else
1266 #define bh_lru_lock()	preempt_disable()
1267 #define bh_lru_unlock()	preempt_enable()
1268 #endif
1269 
1270 static inline void check_irqs_on(void)
1271 {
1272 #ifdef irqs_disabled
1273 	BUG_ON(irqs_disabled());
1274 #endif
1275 }
1276 
1277 /*
1278  * The LRU management algorithm is dopey-but-simple.  Sorry.
1279  */
1280 static void bh_lru_install(struct buffer_head *bh)
1281 {
1282 	struct buffer_head *evictee = NULL;
1283 
1284 	check_irqs_on();
1285 	bh_lru_lock();
1286 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1287 		struct buffer_head *bhs[BH_LRU_SIZE];
1288 		int in;
1289 		int out = 0;
1290 
1291 		get_bh(bh);
1292 		bhs[out++] = bh;
1293 		for (in = 0; in < BH_LRU_SIZE; in++) {
1294 			struct buffer_head *bh2 =
1295 				__this_cpu_read(bh_lrus.bhs[in]);
1296 
1297 			if (bh2 == bh) {
1298 				__brelse(bh2);
1299 			} else {
1300 				if (out >= BH_LRU_SIZE) {
1301 					BUG_ON(evictee != NULL);
1302 					evictee = bh2;
1303 				} else {
1304 					bhs[out++] = bh2;
1305 				}
1306 			}
1307 		}
1308 		while (out < BH_LRU_SIZE)
1309 			bhs[out++] = NULL;
1310 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1311 	}
1312 	bh_lru_unlock();
1313 
1314 	if (evictee)
1315 		__brelse(evictee);
1316 }
1317 
1318 /*
1319  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1320  */
1321 static struct buffer_head *
1322 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1323 {
1324 	struct buffer_head *ret = NULL;
1325 	unsigned int i;
1326 
1327 	check_irqs_on();
1328 	bh_lru_lock();
1329 	for (i = 0; i < BH_LRU_SIZE; i++) {
1330 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1331 
1332 		if (bh && bh->b_bdev == bdev &&
1333 				bh->b_blocknr == block && bh->b_size == size) {
1334 			if (i) {
1335 				while (i) {
1336 					__this_cpu_write(bh_lrus.bhs[i],
1337 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1338 					i--;
1339 				}
1340 				__this_cpu_write(bh_lrus.bhs[0], bh);
1341 			}
1342 			get_bh(bh);
1343 			ret = bh;
1344 			break;
1345 		}
1346 	}
1347 	bh_lru_unlock();
1348 	return ret;
1349 }
1350 
1351 /*
1352  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1353  * it in the LRU and mark it as accessed.  If it is not present then return
1354  * NULL
1355  */
1356 struct buffer_head *
1357 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1358 {
1359 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1360 
1361 	if (bh == NULL) {
1362 		/* __find_get_block_slow will mark the page accessed */
1363 		bh = __find_get_block_slow(bdev, block);
1364 		if (bh)
1365 			bh_lru_install(bh);
1366 	} else
1367 		touch_buffer(bh);
1368 
1369 	return bh;
1370 }
1371 EXPORT_SYMBOL(__find_get_block);
1372 
1373 /*
1374  * __getblk will locate (and, if necessary, create) the buffer_head
1375  * which corresponds to the passed block_device, block and size. The
1376  * returned buffer has its reference count incremented.
1377  *
1378  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1379  * attempt is failing.  FIXME, perhaps?
1380  */
1381 struct buffer_head *
1382 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1383 {
1384 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1385 
1386 	might_sleep();
1387 	if (bh == NULL)
1388 		bh = __getblk_slow(bdev, block, size);
1389 	return bh;
1390 }
1391 EXPORT_SYMBOL(__getblk);
1392 
1393 /*
1394  * Do async read-ahead on a buffer..
1395  */
1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1397 {
1398 	struct buffer_head *bh = __getblk(bdev, block, size);
1399 	if (likely(bh)) {
1400 		ll_rw_block(READA, 1, &bh);
1401 		brelse(bh);
1402 	}
1403 }
1404 EXPORT_SYMBOL(__breadahead);
1405 
1406 /**
1407  *  __bread() - reads a specified block and returns the bh
1408  *  @bdev: the block_device to read from
1409  *  @block: number of block
1410  *  @size: size (in bytes) to read
1411  *
1412  *  Reads a specified block, and returns buffer head that contains it.
1413  *  It returns NULL if the block was unreadable.
1414  */
1415 struct buffer_head *
1416 __bread(struct block_device *bdev, sector_t block, unsigned size)
1417 {
1418 	struct buffer_head *bh = __getblk(bdev, block, size);
1419 
1420 	if (likely(bh) && !buffer_uptodate(bh))
1421 		bh = __bread_slow(bh);
1422 	return bh;
1423 }
1424 EXPORT_SYMBOL(__bread);
1425 
1426 /*
1427  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1428  * This doesn't race because it runs in each cpu either in irq
1429  * or with preempt disabled.
1430  */
1431 static void invalidate_bh_lru(void *arg)
1432 {
1433 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1434 	int i;
1435 
1436 	for (i = 0; i < BH_LRU_SIZE; i++) {
1437 		brelse(b->bhs[i]);
1438 		b->bhs[i] = NULL;
1439 	}
1440 	put_cpu_var(bh_lrus);
1441 }
1442 
1443 static bool has_bh_in_lru(int cpu, void *dummy)
1444 {
1445 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1446 	int i;
1447 
1448 	for (i = 0; i < BH_LRU_SIZE; i++) {
1449 		if (b->bhs[i])
1450 			return 1;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 void invalidate_bh_lrus(void)
1457 {
1458 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1459 }
1460 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1461 
1462 void set_bh_page(struct buffer_head *bh,
1463 		struct page *page, unsigned long offset)
1464 {
1465 	bh->b_page = page;
1466 	BUG_ON(offset >= PAGE_SIZE);
1467 	if (PageHighMem(page))
1468 		/*
1469 		 * This catches illegal uses and preserves the offset:
1470 		 */
1471 		bh->b_data = (char *)(0 + offset);
1472 	else
1473 		bh->b_data = page_address(page) + offset;
1474 }
1475 EXPORT_SYMBOL(set_bh_page);
1476 
1477 /*
1478  * Called when truncating a buffer on a page completely.
1479  */
1480 
1481 /* Bits that are cleared during an invalidate */
1482 #define BUFFER_FLAGS_DISCARD \
1483 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1484 	 1 << BH_Delay | 1 << BH_Unwritten)
1485 
1486 static void discard_buffer(struct buffer_head * bh)
1487 {
1488 	unsigned long b_state, b_state_old;
1489 
1490 	lock_buffer(bh);
1491 	clear_buffer_dirty(bh);
1492 	bh->b_bdev = NULL;
1493 	b_state = bh->b_state;
1494 	for (;;) {
1495 		b_state_old = cmpxchg(&bh->b_state, b_state,
1496 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1497 		if (b_state_old == b_state)
1498 			break;
1499 		b_state = b_state_old;
1500 	}
1501 	unlock_buffer(bh);
1502 }
1503 
1504 /**
1505  * block_invalidatepage - invalidate part or all of a buffer-backed page
1506  *
1507  * @page: the page which is affected
1508  * @offset: start of the range to invalidate
1509  * @length: length of the range to invalidate
1510  *
1511  * block_invalidatepage() is called when all or part of the page has become
1512  * invalidated by a truncate operation.
1513  *
1514  * block_invalidatepage() does not have to release all buffers, but it must
1515  * ensure that no dirty buffer is left outside @offset and that no I/O
1516  * is underway against any of the blocks which are outside the truncation
1517  * point.  Because the caller is about to free (and possibly reuse) those
1518  * blocks on-disk.
1519  */
1520 void block_invalidatepage(struct page *page, unsigned int offset,
1521 			  unsigned int length)
1522 {
1523 	struct buffer_head *head, *bh, *next;
1524 	unsigned int curr_off = 0;
1525 	unsigned int stop = length + offset;
1526 
1527 	BUG_ON(!PageLocked(page));
1528 	if (!page_has_buffers(page))
1529 		goto out;
1530 
1531 	/*
1532 	 * Check for overflow
1533 	 */
1534 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1535 
1536 	head = page_buffers(page);
1537 	bh = head;
1538 	do {
1539 		unsigned int next_off = curr_off + bh->b_size;
1540 		next = bh->b_this_page;
1541 
1542 		/*
1543 		 * Are we still fully in range ?
1544 		 */
1545 		if (next_off > stop)
1546 			goto out;
1547 
1548 		/*
1549 		 * is this block fully invalidated?
1550 		 */
1551 		if (offset <= curr_off)
1552 			discard_buffer(bh);
1553 		curr_off = next_off;
1554 		bh = next;
1555 	} while (bh != head);
1556 
1557 	/*
1558 	 * We release buffers only if the entire page is being invalidated.
1559 	 * The get_block cached value has been unconditionally invalidated,
1560 	 * so real IO is not possible anymore.
1561 	 */
1562 	if (offset == 0)
1563 		try_to_release_page(page, 0);
1564 out:
1565 	return;
1566 }
1567 EXPORT_SYMBOL(block_invalidatepage);
1568 
1569 
1570 /*
1571  * We attach and possibly dirty the buffers atomically wrt
1572  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1573  * is already excluded via the page lock.
1574  */
1575 void create_empty_buffers(struct page *page,
1576 			unsigned long blocksize, unsigned long b_state)
1577 {
1578 	struct buffer_head *bh, *head, *tail;
1579 
1580 	head = alloc_page_buffers(page, blocksize, 1);
1581 	bh = head;
1582 	do {
1583 		bh->b_state |= b_state;
1584 		tail = bh;
1585 		bh = bh->b_this_page;
1586 	} while (bh);
1587 	tail->b_this_page = head;
1588 
1589 	spin_lock(&page->mapping->private_lock);
1590 	if (PageUptodate(page) || PageDirty(page)) {
1591 		bh = head;
1592 		do {
1593 			if (PageDirty(page))
1594 				set_buffer_dirty(bh);
1595 			if (PageUptodate(page))
1596 				set_buffer_uptodate(bh);
1597 			bh = bh->b_this_page;
1598 		} while (bh != head);
1599 	}
1600 	attach_page_buffers(page, head);
1601 	spin_unlock(&page->mapping->private_lock);
1602 }
1603 EXPORT_SYMBOL(create_empty_buffers);
1604 
1605 /*
1606  * We are taking a block for data and we don't want any output from any
1607  * buffer-cache aliases starting from return from that function and
1608  * until the moment when something will explicitly mark the buffer
1609  * dirty (hopefully that will not happen until we will free that block ;-)
1610  * We don't even need to mark it not-uptodate - nobody can expect
1611  * anything from a newly allocated buffer anyway. We used to used
1612  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1613  * don't want to mark the alias unmapped, for example - it would confuse
1614  * anyone who might pick it with bread() afterwards...
1615  *
1616  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1617  * be writeout I/O going on against recently-freed buffers.  We don't
1618  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1619  * only if we really need to.  That happens here.
1620  */
1621 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1622 {
1623 	struct buffer_head *old_bh;
1624 
1625 	might_sleep();
1626 
1627 	old_bh = __find_get_block_slow(bdev, block);
1628 	if (old_bh) {
1629 		clear_buffer_dirty(old_bh);
1630 		wait_on_buffer(old_bh);
1631 		clear_buffer_req(old_bh);
1632 		__brelse(old_bh);
1633 	}
1634 }
1635 EXPORT_SYMBOL(unmap_underlying_metadata);
1636 
1637 /*
1638  * Size is a power-of-two in the range 512..PAGE_SIZE,
1639  * and the case we care about most is PAGE_SIZE.
1640  *
1641  * So this *could* possibly be written with those
1642  * constraints in mind (relevant mostly if some
1643  * architecture has a slow bit-scan instruction)
1644  */
1645 static inline int block_size_bits(unsigned int blocksize)
1646 {
1647 	return ilog2(blocksize);
1648 }
1649 
1650 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1651 {
1652 	BUG_ON(!PageLocked(page));
1653 
1654 	if (!page_has_buffers(page))
1655 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1656 	return page_buffers(page);
1657 }
1658 
1659 /*
1660  * NOTE! All mapped/uptodate combinations are valid:
1661  *
1662  *	Mapped	Uptodate	Meaning
1663  *
1664  *	No	No		"unknown" - must do get_block()
1665  *	No	Yes		"hole" - zero-filled
1666  *	Yes	No		"allocated" - allocated on disk, not read in
1667  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1668  *
1669  * "Dirty" is valid only with the last case (mapped+uptodate).
1670  */
1671 
1672 /*
1673  * While block_write_full_page is writing back the dirty buffers under
1674  * the page lock, whoever dirtied the buffers may decide to clean them
1675  * again at any time.  We handle that by only looking at the buffer
1676  * state inside lock_buffer().
1677  *
1678  * If block_write_full_page() is called for regular writeback
1679  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1680  * locked buffer.   This only can happen if someone has written the buffer
1681  * directly, with submit_bh().  At the address_space level PageWriteback
1682  * prevents this contention from occurring.
1683  *
1684  * If block_write_full_page() is called with wbc->sync_mode ==
1685  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1686  * causes the writes to be flagged as synchronous writes.
1687  */
1688 static int __block_write_full_page(struct inode *inode, struct page *page,
1689 			get_block_t *get_block, struct writeback_control *wbc,
1690 			bh_end_io_t *handler)
1691 {
1692 	int err;
1693 	sector_t block;
1694 	sector_t last_block;
1695 	struct buffer_head *bh, *head;
1696 	unsigned int blocksize, bbits;
1697 	int nr_underway = 0;
1698 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1699 			WRITE_SYNC : WRITE);
1700 
1701 	head = create_page_buffers(page, inode,
1702 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1703 
1704 	/*
1705 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1706 	 * here, and the (potentially unmapped) buffers may become dirty at
1707 	 * any time.  If a buffer becomes dirty here after we've inspected it
1708 	 * then we just miss that fact, and the page stays dirty.
1709 	 *
1710 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1711 	 * handle that here by just cleaning them.
1712 	 */
1713 
1714 	bh = head;
1715 	blocksize = bh->b_size;
1716 	bbits = block_size_bits(blocksize);
1717 
1718 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1719 	last_block = (i_size_read(inode) - 1) >> bbits;
1720 
1721 	/*
1722 	 * Get all the dirty buffers mapped to disk addresses and
1723 	 * handle any aliases from the underlying blockdev's mapping.
1724 	 */
1725 	do {
1726 		if (block > last_block) {
1727 			/*
1728 			 * mapped buffers outside i_size will occur, because
1729 			 * this page can be outside i_size when there is a
1730 			 * truncate in progress.
1731 			 */
1732 			/*
1733 			 * The buffer was zeroed by block_write_full_page()
1734 			 */
1735 			clear_buffer_dirty(bh);
1736 			set_buffer_uptodate(bh);
1737 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1738 			   buffer_dirty(bh)) {
1739 			WARN_ON(bh->b_size != blocksize);
1740 			err = get_block(inode, block, bh, 1);
1741 			if (err)
1742 				goto recover;
1743 			clear_buffer_delay(bh);
1744 			if (buffer_new(bh)) {
1745 				/* blockdev mappings never come here */
1746 				clear_buffer_new(bh);
1747 				unmap_underlying_metadata(bh->b_bdev,
1748 							bh->b_blocknr);
1749 			}
1750 		}
1751 		bh = bh->b_this_page;
1752 		block++;
1753 	} while (bh != head);
1754 
1755 	do {
1756 		if (!buffer_mapped(bh))
1757 			continue;
1758 		/*
1759 		 * If it's a fully non-blocking write attempt and we cannot
1760 		 * lock the buffer then redirty the page.  Note that this can
1761 		 * potentially cause a busy-wait loop from writeback threads
1762 		 * and kswapd activity, but those code paths have their own
1763 		 * higher-level throttling.
1764 		 */
1765 		if (wbc->sync_mode != WB_SYNC_NONE) {
1766 			lock_buffer(bh);
1767 		} else if (!trylock_buffer(bh)) {
1768 			redirty_page_for_writepage(wbc, page);
1769 			continue;
1770 		}
1771 		if (test_clear_buffer_dirty(bh)) {
1772 			mark_buffer_async_write_endio(bh, handler);
1773 		} else {
1774 			unlock_buffer(bh);
1775 		}
1776 	} while ((bh = bh->b_this_page) != head);
1777 
1778 	/*
1779 	 * The page and its buffers are protected by PageWriteback(), so we can
1780 	 * drop the bh refcounts early.
1781 	 */
1782 	BUG_ON(PageWriteback(page));
1783 	set_page_writeback(page);
1784 
1785 	do {
1786 		struct buffer_head *next = bh->b_this_page;
1787 		if (buffer_async_write(bh)) {
1788 			submit_bh(write_op, bh);
1789 			nr_underway++;
1790 		}
1791 		bh = next;
1792 	} while (bh != head);
1793 	unlock_page(page);
1794 
1795 	err = 0;
1796 done:
1797 	if (nr_underway == 0) {
1798 		/*
1799 		 * The page was marked dirty, but the buffers were
1800 		 * clean.  Someone wrote them back by hand with
1801 		 * ll_rw_block/submit_bh.  A rare case.
1802 		 */
1803 		end_page_writeback(page);
1804 
1805 		/*
1806 		 * The page and buffer_heads can be released at any time from
1807 		 * here on.
1808 		 */
1809 	}
1810 	return err;
1811 
1812 recover:
1813 	/*
1814 	 * ENOSPC, or some other error.  We may already have added some
1815 	 * blocks to the file, so we need to write these out to avoid
1816 	 * exposing stale data.
1817 	 * The page is currently locked and not marked for writeback
1818 	 */
1819 	bh = head;
1820 	/* Recovery: lock and submit the mapped buffers */
1821 	do {
1822 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1823 		    !buffer_delay(bh)) {
1824 			lock_buffer(bh);
1825 			mark_buffer_async_write_endio(bh, handler);
1826 		} else {
1827 			/*
1828 			 * The buffer may have been set dirty during
1829 			 * attachment to a dirty page.
1830 			 */
1831 			clear_buffer_dirty(bh);
1832 		}
1833 	} while ((bh = bh->b_this_page) != head);
1834 	SetPageError(page);
1835 	BUG_ON(PageWriteback(page));
1836 	mapping_set_error(page->mapping, err);
1837 	set_page_writeback(page);
1838 	do {
1839 		struct buffer_head *next = bh->b_this_page;
1840 		if (buffer_async_write(bh)) {
1841 			clear_buffer_dirty(bh);
1842 			submit_bh(write_op, bh);
1843 			nr_underway++;
1844 		}
1845 		bh = next;
1846 	} while (bh != head);
1847 	unlock_page(page);
1848 	goto done;
1849 }
1850 
1851 /*
1852  * If a page has any new buffers, zero them out here, and mark them uptodate
1853  * and dirty so they'll be written out (in order to prevent uninitialised
1854  * block data from leaking). And clear the new bit.
1855  */
1856 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1857 {
1858 	unsigned int block_start, block_end;
1859 	struct buffer_head *head, *bh;
1860 
1861 	BUG_ON(!PageLocked(page));
1862 	if (!page_has_buffers(page))
1863 		return;
1864 
1865 	bh = head = page_buffers(page);
1866 	block_start = 0;
1867 	do {
1868 		block_end = block_start + bh->b_size;
1869 
1870 		if (buffer_new(bh)) {
1871 			if (block_end > from && block_start < to) {
1872 				if (!PageUptodate(page)) {
1873 					unsigned start, size;
1874 
1875 					start = max(from, block_start);
1876 					size = min(to, block_end) - start;
1877 
1878 					zero_user(page, start, size);
1879 					set_buffer_uptodate(bh);
1880 				}
1881 
1882 				clear_buffer_new(bh);
1883 				mark_buffer_dirty(bh);
1884 			}
1885 		}
1886 
1887 		block_start = block_end;
1888 		bh = bh->b_this_page;
1889 	} while (bh != head);
1890 }
1891 EXPORT_SYMBOL(page_zero_new_buffers);
1892 
1893 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1894 		get_block_t *get_block)
1895 {
1896 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1897 	unsigned to = from + len;
1898 	struct inode *inode = page->mapping->host;
1899 	unsigned block_start, block_end;
1900 	sector_t block;
1901 	int err = 0;
1902 	unsigned blocksize, bbits;
1903 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1904 
1905 	BUG_ON(!PageLocked(page));
1906 	BUG_ON(from > PAGE_CACHE_SIZE);
1907 	BUG_ON(to > PAGE_CACHE_SIZE);
1908 	BUG_ON(from > to);
1909 
1910 	head = create_page_buffers(page, inode, 0);
1911 	blocksize = head->b_size;
1912 	bbits = block_size_bits(blocksize);
1913 
1914 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1915 
1916 	for(bh = head, block_start = 0; bh != head || !block_start;
1917 	    block++, block_start=block_end, bh = bh->b_this_page) {
1918 		block_end = block_start + blocksize;
1919 		if (block_end <= from || block_start >= to) {
1920 			if (PageUptodate(page)) {
1921 				if (!buffer_uptodate(bh))
1922 					set_buffer_uptodate(bh);
1923 			}
1924 			continue;
1925 		}
1926 		if (buffer_new(bh))
1927 			clear_buffer_new(bh);
1928 		if (!buffer_mapped(bh)) {
1929 			WARN_ON(bh->b_size != blocksize);
1930 			err = get_block(inode, block, bh, 1);
1931 			if (err)
1932 				break;
1933 			if (buffer_new(bh)) {
1934 				unmap_underlying_metadata(bh->b_bdev,
1935 							bh->b_blocknr);
1936 				if (PageUptodate(page)) {
1937 					clear_buffer_new(bh);
1938 					set_buffer_uptodate(bh);
1939 					mark_buffer_dirty(bh);
1940 					continue;
1941 				}
1942 				if (block_end > to || block_start < from)
1943 					zero_user_segments(page,
1944 						to, block_end,
1945 						block_start, from);
1946 				continue;
1947 			}
1948 		}
1949 		if (PageUptodate(page)) {
1950 			if (!buffer_uptodate(bh))
1951 				set_buffer_uptodate(bh);
1952 			continue;
1953 		}
1954 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1955 		    !buffer_unwritten(bh) &&
1956 		     (block_start < from || block_end > to)) {
1957 			ll_rw_block(READ, 1, &bh);
1958 			*wait_bh++=bh;
1959 		}
1960 	}
1961 	/*
1962 	 * If we issued read requests - let them complete.
1963 	 */
1964 	while(wait_bh > wait) {
1965 		wait_on_buffer(*--wait_bh);
1966 		if (!buffer_uptodate(*wait_bh))
1967 			err = -EIO;
1968 	}
1969 	if (unlikely(err))
1970 		page_zero_new_buffers(page, from, to);
1971 	return err;
1972 }
1973 EXPORT_SYMBOL(__block_write_begin);
1974 
1975 static int __block_commit_write(struct inode *inode, struct page *page,
1976 		unsigned from, unsigned to)
1977 {
1978 	unsigned block_start, block_end;
1979 	int partial = 0;
1980 	unsigned blocksize;
1981 	struct buffer_head *bh, *head;
1982 
1983 	bh = head = page_buffers(page);
1984 	blocksize = bh->b_size;
1985 
1986 	block_start = 0;
1987 	do {
1988 		block_end = block_start + blocksize;
1989 		if (block_end <= from || block_start >= to) {
1990 			if (!buffer_uptodate(bh))
1991 				partial = 1;
1992 		} else {
1993 			set_buffer_uptodate(bh);
1994 			mark_buffer_dirty(bh);
1995 		}
1996 		clear_buffer_new(bh);
1997 
1998 		block_start = block_end;
1999 		bh = bh->b_this_page;
2000 	} while (bh != head);
2001 
2002 	/*
2003 	 * If this is a partial write which happened to make all buffers
2004 	 * uptodate then we can optimize away a bogus readpage() for
2005 	 * the next read(). Here we 'discover' whether the page went
2006 	 * uptodate as a result of this (potentially partial) write.
2007 	 */
2008 	if (!partial)
2009 		SetPageUptodate(page);
2010 	return 0;
2011 }
2012 
2013 /*
2014  * block_write_begin takes care of the basic task of block allocation and
2015  * bringing partial write blocks uptodate first.
2016  *
2017  * The filesystem needs to handle block truncation upon failure.
2018  */
2019 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2020 		unsigned flags, struct page **pagep, get_block_t *get_block)
2021 {
2022 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2023 	struct page *page;
2024 	int status;
2025 
2026 	page = grab_cache_page_write_begin(mapping, index, flags);
2027 	if (!page)
2028 		return -ENOMEM;
2029 
2030 	status = __block_write_begin(page, pos, len, get_block);
2031 	if (unlikely(status)) {
2032 		unlock_page(page);
2033 		page_cache_release(page);
2034 		page = NULL;
2035 	}
2036 
2037 	*pagep = page;
2038 	return status;
2039 }
2040 EXPORT_SYMBOL(block_write_begin);
2041 
2042 int block_write_end(struct file *file, struct address_space *mapping,
2043 			loff_t pos, unsigned len, unsigned copied,
2044 			struct page *page, void *fsdata)
2045 {
2046 	struct inode *inode = mapping->host;
2047 	unsigned start;
2048 
2049 	start = pos & (PAGE_CACHE_SIZE - 1);
2050 
2051 	if (unlikely(copied < len)) {
2052 		/*
2053 		 * The buffers that were written will now be uptodate, so we
2054 		 * don't have to worry about a readpage reading them and
2055 		 * overwriting a partial write. However if we have encountered
2056 		 * a short write and only partially written into a buffer, it
2057 		 * will not be marked uptodate, so a readpage might come in and
2058 		 * destroy our partial write.
2059 		 *
2060 		 * Do the simplest thing, and just treat any short write to a
2061 		 * non uptodate page as a zero-length write, and force the
2062 		 * caller to redo the whole thing.
2063 		 */
2064 		if (!PageUptodate(page))
2065 			copied = 0;
2066 
2067 		page_zero_new_buffers(page, start+copied, start+len);
2068 	}
2069 	flush_dcache_page(page);
2070 
2071 	/* This could be a short (even 0-length) commit */
2072 	__block_commit_write(inode, page, start, start+copied);
2073 
2074 	return copied;
2075 }
2076 EXPORT_SYMBOL(block_write_end);
2077 
2078 int generic_write_end(struct file *file, struct address_space *mapping,
2079 			loff_t pos, unsigned len, unsigned copied,
2080 			struct page *page, void *fsdata)
2081 {
2082 	struct inode *inode = mapping->host;
2083 	int i_size_changed = 0;
2084 
2085 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2086 
2087 	/*
2088 	 * No need to use i_size_read() here, the i_size
2089 	 * cannot change under us because we hold i_mutex.
2090 	 *
2091 	 * But it's important to update i_size while still holding page lock:
2092 	 * page writeout could otherwise come in and zero beyond i_size.
2093 	 */
2094 	if (pos+copied > inode->i_size) {
2095 		i_size_write(inode, pos+copied);
2096 		i_size_changed = 1;
2097 	}
2098 
2099 	unlock_page(page);
2100 	page_cache_release(page);
2101 
2102 	/*
2103 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2104 	 * makes the holding time of page lock longer. Second, it forces lock
2105 	 * ordering of page lock and transaction start for journaling
2106 	 * filesystems.
2107 	 */
2108 	if (i_size_changed)
2109 		mark_inode_dirty(inode);
2110 
2111 	return copied;
2112 }
2113 EXPORT_SYMBOL(generic_write_end);
2114 
2115 /*
2116  * block_is_partially_uptodate checks whether buffers within a page are
2117  * uptodate or not.
2118  *
2119  * Returns true if all buffers which correspond to a file portion
2120  * we want to read are uptodate.
2121  */
2122 int block_is_partially_uptodate(struct page *page, unsigned long from,
2123 					unsigned long count)
2124 {
2125 	unsigned block_start, block_end, blocksize;
2126 	unsigned to;
2127 	struct buffer_head *bh, *head;
2128 	int ret = 1;
2129 
2130 	if (!page_has_buffers(page))
2131 		return 0;
2132 
2133 	head = page_buffers(page);
2134 	blocksize = head->b_size;
2135 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2136 	to = from + to;
2137 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2138 		return 0;
2139 
2140 	bh = head;
2141 	block_start = 0;
2142 	do {
2143 		block_end = block_start + blocksize;
2144 		if (block_end > from && block_start < to) {
2145 			if (!buffer_uptodate(bh)) {
2146 				ret = 0;
2147 				break;
2148 			}
2149 			if (block_end >= to)
2150 				break;
2151 		}
2152 		block_start = block_end;
2153 		bh = bh->b_this_page;
2154 	} while (bh != head);
2155 
2156 	return ret;
2157 }
2158 EXPORT_SYMBOL(block_is_partially_uptodate);
2159 
2160 /*
2161  * Generic "read page" function for block devices that have the normal
2162  * get_block functionality. This is most of the block device filesystems.
2163  * Reads the page asynchronously --- the unlock_buffer() and
2164  * set/clear_buffer_uptodate() functions propagate buffer state into the
2165  * page struct once IO has completed.
2166  */
2167 int block_read_full_page(struct page *page, get_block_t *get_block)
2168 {
2169 	struct inode *inode = page->mapping->host;
2170 	sector_t iblock, lblock;
2171 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2172 	unsigned int blocksize, bbits;
2173 	int nr, i;
2174 	int fully_mapped = 1;
2175 
2176 	head = create_page_buffers(page, inode, 0);
2177 	blocksize = head->b_size;
2178 	bbits = block_size_bits(blocksize);
2179 
2180 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2181 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2182 	bh = head;
2183 	nr = 0;
2184 	i = 0;
2185 
2186 	do {
2187 		if (buffer_uptodate(bh))
2188 			continue;
2189 
2190 		if (!buffer_mapped(bh)) {
2191 			int err = 0;
2192 
2193 			fully_mapped = 0;
2194 			if (iblock < lblock) {
2195 				WARN_ON(bh->b_size != blocksize);
2196 				err = get_block(inode, iblock, bh, 0);
2197 				if (err)
2198 					SetPageError(page);
2199 			}
2200 			if (!buffer_mapped(bh)) {
2201 				zero_user(page, i * blocksize, blocksize);
2202 				if (!err)
2203 					set_buffer_uptodate(bh);
2204 				continue;
2205 			}
2206 			/*
2207 			 * get_block() might have updated the buffer
2208 			 * synchronously
2209 			 */
2210 			if (buffer_uptodate(bh))
2211 				continue;
2212 		}
2213 		arr[nr++] = bh;
2214 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2215 
2216 	if (fully_mapped)
2217 		SetPageMappedToDisk(page);
2218 
2219 	if (!nr) {
2220 		/*
2221 		 * All buffers are uptodate - we can set the page uptodate
2222 		 * as well. But not if get_block() returned an error.
2223 		 */
2224 		if (!PageError(page))
2225 			SetPageUptodate(page);
2226 		unlock_page(page);
2227 		return 0;
2228 	}
2229 
2230 	/* Stage two: lock the buffers */
2231 	for (i = 0; i < nr; i++) {
2232 		bh = arr[i];
2233 		lock_buffer(bh);
2234 		mark_buffer_async_read(bh);
2235 	}
2236 
2237 	/*
2238 	 * Stage 3: start the IO.  Check for uptodateness
2239 	 * inside the buffer lock in case another process reading
2240 	 * the underlying blockdev brought it uptodate (the sct fix).
2241 	 */
2242 	for (i = 0; i < nr; i++) {
2243 		bh = arr[i];
2244 		if (buffer_uptodate(bh))
2245 			end_buffer_async_read(bh, 1);
2246 		else
2247 			submit_bh(READ, bh);
2248 	}
2249 	return 0;
2250 }
2251 EXPORT_SYMBOL(block_read_full_page);
2252 
2253 /* utility function for filesystems that need to do work on expanding
2254  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2255  * deal with the hole.
2256  */
2257 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2258 {
2259 	struct address_space *mapping = inode->i_mapping;
2260 	struct page *page;
2261 	void *fsdata;
2262 	int err;
2263 
2264 	err = inode_newsize_ok(inode, size);
2265 	if (err)
2266 		goto out;
2267 
2268 	err = pagecache_write_begin(NULL, mapping, size, 0,
2269 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2270 				&page, &fsdata);
2271 	if (err)
2272 		goto out;
2273 
2274 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2275 	BUG_ON(err > 0);
2276 
2277 out:
2278 	return err;
2279 }
2280 EXPORT_SYMBOL(generic_cont_expand_simple);
2281 
2282 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2283 			    loff_t pos, loff_t *bytes)
2284 {
2285 	struct inode *inode = mapping->host;
2286 	unsigned blocksize = 1 << inode->i_blkbits;
2287 	struct page *page;
2288 	void *fsdata;
2289 	pgoff_t index, curidx;
2290 	loff_t curpos;
2291 	unsigned zerofrom, offset, len;
2292 	int err = 0;
2293 
2294 	index = pos >> PAGE_CACHE_SHIFT;
2295 	offset = pos & ~PAGE_CACHE_MASK;
2296 
2297 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2298 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2299 		if (zerofrom & (blocksize-1)) {
2300 			*bytes |= (blocksize-1);
2301 			(*bytes)++;
2302 		}
2303 		len = PAGE_CACHE_SIZE - zerofrom;
2304 
2305 		err = pagecache_write_begin(file, mapping, curpos, len,
2306 						AOP_FLAG_UNINTERRUPTIBLE,
2307 						&page, &fsdata);
2308 		if (err)
2309 			goto out;
2310 		zero_user(page, zerofrom, len);
2311 		err = pagecache_write_end(file, mapping, curpos, len, len,
2312 						page, fsdata);
2313 		if (err < 0)
2314 			goto out;
2315 		BUG_ON(err != len);
2316 		err = 0;
2317 
2318 		balance_dirty_pages_ratelimited(mapping);
2319 	}
2320 
2321 	/* page covers the boundary, find the boundary offset */
2322 	if (index == curidx) {
2323 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2324 		/* if we will expand the thing last block will be filled */
2325 		if (offset <= zerofrom) {
2326 			goto out;
2327 		}
2328 		if (zerofrom & (blocksize-1)) {
2329 			*bytes |= (blocksize-1);
2330 			(*bytes)++;
2331 		}
2332 		len = offset - zerofrom;
2333 
2334 		err = pagecache_write_begin(file, mapping, curpos, len,
2335 						AOP_FLAG_UNINTERRUPTIBLE,
2336 						&page, &fsdata);
2337 		if (err)
2338 			goto out;
2339 		zero_user(page, zerofrom, len);
2340 		err = pagecache_write_end(file, mapping, curpos, len, len,
2341 						page, fsdata);
2342 		if (err < 0)
2343 			goto out;
2344 		BUG_ON(err != len);
2345 		err = 0;
2346 	}
2347 out:
2348 	return err;
2349 }
2350 
2351 /*
2352  * For moronic filesystems that do not allow holes in file.
2353  * We may have to extend the file.
2354  */
2355 int cont_write_begin(struct file *file, struct address_space *mapping,
2356 			loff_t pos, unsigned len, unsigned flags,
2357 			struct page **pagep, void **fsdata,
2358 			get_block_t *get_block, loff_t *bytes)
2359 {
2360 	struct inode *inode = mapping->host;
2361 	unsigned blocksize = 1 << inode->i_blkbits;
2362 	unsigned zerofrom;
2363 	int err;
2364 
2365 	err = cont_expand_zero(file, mapping, pos, bytes);
2366 	if (err)
2367 		return err;
2368 
2369 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2370 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2371 		*bytes |= (blocksize-1);
2372 		(*bytes)++;
2373 	}
2374 
2375 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2376 }
2377 EXPORT_SYMBOL(cont_write_begin);
2378 
2379 int block_commit_write(struct page *page, unsigned from, unsigned to)
2380 {
2381 	struct inode *inode = page->mapping->host;
2382 	__block_commit_write(inode,page,from,to);
2383 	return 0;
2384 }
2385 EXPORT_SYMBOL(block_commit_write);
2386 
2387 /*
2388  * block_page_mkwrite() is not allowed to change the file size as it gets
2389  * called from a page fault handler when a page is first dirtied. Hence we must
2390  * be careful to check for EOF conditions here. We set the page up correctly
2391  * for a written page which means we get ENOSPC checking when writing into
2392  * holes and correct delalloc and unwritten extent mapping on filesystems that
2393  * support these features.
2394  *
2395  * We are not allowed to take the i_mutex here so we have to play games to
2396  * protect against truncate races as the page could now be beyond EOF.  Because
2397  * truncate writes the inode size before removing pages, once we have the
2398  * page lock we can determine safely if the page is beyond EOF. If it is not
2399  * beyond EOF, then the page is guaranteed safe against truncation until we
2400  * unlock the page.
2401  *
2402  * Direct callers of this function should protect against filesystem freezing
2403  * using sb_start_write() - sb_end_write() functions.
2404  */
2405 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2406 			 get_block_t get_block)
2407 {
2408 	struct page *page = vmf->page;
2409 	struct inode *inode = file_inode(vma->vm_file);
2410 	unsigned long end;
2411 	loff_t size;
2412 	int ret;
2413 
2414 	lock_page(page);
2415 	size = i_size_read(inode);
2416 	if ((page->mapping != inode->i_mapping) ||
2417 	    (page_offset(page) > size)) {
2418 		/* We overload EFAULT to mean page got truncated */
2419 		ret = -EFAULT;
2420 		goto out_unlock;
2421 	}
2422 
2423 	/* page is wholly or partially inside EOF */
2424 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2425 		end = size & ~PAGE_CACHE_MASK;
2426 	else
2427 		end = PAGE_CACHE_SIZE;
2428 
2429 	ret = __block_write_begin(page, 0, end, get_block);
2430 	if (!ret)
2431 		ret = block_commit_write(page, 0, end);
2432 
2433 	if (unlikely(ret < 0))
2434 		goto out_unlock;
2435 	set_page_dirty(page);
2436 	wait_for_stable_page(page);
2437 	return 0;
2438 out_unlock:
2439 	unlock_page(page);
2440 	return ret;
2441 }
2442 EXPORT_SYMBOL(__block_page_mkwrite);
2443 
2444 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2445 		   get_block_t get_block)
2446 {
2447 	int ret;
2448 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2449 
2450 	sb_start_pagefault(sb);
2451 
2452 	/*
2453 	 * Update file times before taking page lock. We may end up failing the
2454 	 * fault so this update may be superfluous but who really cares...
2455 	 */
2456 	file_update_time(vma->vm_file);
2457 
2458 	ret = __block_page_mkwrite(vma, vmf, get_block);
2459 	sb_end_pagefault(sb);
2460 	return block_page_mkwrite_return(ret);
2461 }
2462 EXPORT_SYMBOL(block_page_mkwrite);
2463 
2464 /*
2465  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2466  * immediately, while under the page lock.  So it needs a special end_io
2467  * handler which does not touch the bh after unlocking it.
2468  */
2469 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2470 {
2471 	__end_buffer_read_notouch(bh, uptodate);
2472 }
2473 
2474 /*
2475  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2476  * the page (converting it to circular linked list and taking care of page
2477  * dirty races).
2478  */
2479 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2480 {
2481 	struct buffer_head *bh;
2482 
2483 	BUG_ON(!PageLocked(page));
2484 
2485 	spin_lock(&page->mapping->private_lock);
2486 	bh = head;
2487 	do {
2488 		if (PageDirty(page))
2489 			set_buffer_dirty(bh);
2490 		if (!bh->b_this_page)
2491 			bh->b_this_page = head;
2492 		bh = bh->b_this_page;
2493 	} while (bh != head);
2494 	attach_page_buffers(page, head);
2495 	spin_unlock(&page->mapping->private_lock);
2496 }
2497 
2498 /*
2499  * On entry, the page is fully not uptodate.
2500  * On exit the page is fully uptodate in the areas outside (from,to)
2501  * The filesystem needs to handle block truncation upon failure.
2502  */
2503 int nobh_write_begin(struct address_space *mapping,
2504 			loff_t pos, unsigned len, unsigned flags,
2505 			struct page **pagep, void **fsdata,
2506 			get_block_t *get_block)
2507 {
2508 	struct inode *inode = mapping->host;
2509 	const unsigned blkbits = inode->i_blkbits;
2510 	const unsigned blocksize = 1 << blkbits;
2511 	struct buffer_head *head, *bh;
2512 	struct page *page;
2513 	pgoff_t index;
2514 	unsigned from, to;
2515 	unsigned block_in_page;
2516 	unsigned block_start, block_end;
2517 	sector_t block_in_file;
2518 	int nr_reads = 0;
2519 	int ret = 0;
2520 	int is_mapped_to_disk = 1;
2521 
2522 	index = pos >> PAGE_CACHE_SHIFT;
2523 	from = pos & (PAGE_CACHE_SIZE - 1);
2524 	to = from + len;
2525 
2526 	page = grab_cache_page_write_begin(mapping, index, flags);
2527 	if (!page)
2528 		return -ENOMEM;
2529 	*pagep = page;
2530 	*fsdata = NULL;
2531 
2532 	if (page_has_buffers(page)) {
2533 		ret = __block_write_begin(page, pos, len, get_block);
2534 		if (unlikely(ret))
2535 			goto out_release;
2536 		return ret;
2537 	}
2538 
2539 	if (PageMappedToDisk(page))
2540 		return 0;
2541 
2542 	/*
2543 	 * Allocate buffers so that we can keep track of state, and potentially
2544 	 * attach them to the page if an error occurs. In the common case of
2545 	 * no error, they will just be freed again without ever being attached
2546 	 * to the page (which is all OK, because we're under the page lock).
2547 	 *
2548 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2549 	 * than the circular one we're used to.
2550 	 */
2551 	head = alloc_page_buffers(page, blocksize, 0);
2552 	if (!head) {
2553 		ret = -ENOMEM;
2554 		goto out_release;
2555 	}
2556 
2557 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2558 
2559 	/*
2560 	 * We loop across all blocks in the page, whether or not they are
2561 	 * part of the affected region.  This is so we can discover if the
2562 	 * page is fully mapped-to-disk.
2563 	 */
2564 	for (block_start = 0, block_in_page = 0, bh = head;
2565 		  block_start < PAGE_CACHE_SIZE;
2566 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2567 		int create;
2568 
2569 		block_end = block_start + blocksize;
2570 		bh->b_state = 0;
2571 		create = 1;
2572 		if (block_start >= to)
2573 			create = 0;
2574 		ret = get_block(inode, block_in_file + block_in_page,
2575 					bh, create);
2576 		if (ret)
2577 			goto failed;
2578 		if (!buffer_mapped(bh))
2579 			is_mapped_to_disk = 0;
2580 		if (buffer_new(bh))
2581 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2582 		if (PageUptodate(page)) {
2583 			set_buffer_uptodate(bh);
2584 			continue;
2585 		}
2586 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2587 			zero_user_segments(page, block_start, from,
2588 							to, block_end);
2589 			continue;
2590 		}
2591 		if (buffer_uptodate(bh))
2592 			continue;	/* reiserfs does this */
2593 		if (block_start < from || block_end > to) {
2594 			lock_buffer(bh);
2595 			bh->b_end_io = end_buffer_read_nobh;
2596 			submit_bh(READ, bh);
2597 			nr_reads++;
2598 		}
2599 	}
2600 
2601 	if (nr_reads) {
2602 		/*
2603 		 * The page is locked, so these buffers are protected from
2604 		 * any VM or truncate activity.  Hence we don't need to care
2605 		 * for the buffer_head refcounts.
2606 		 */
2607 		for (bh = head; bh; bh = bh->b_this_page) {
2608 			wait_on_buffer(bh);
2609 			if (!buffer_uptodate(bh))
2610 				ret = -EIO;
2611 		}
2612 		if (ret)
2613 			goto failed;
2614 	}
2615 
2616 	if (is_mapped_to_disk)
2617 		SetPageMappedToDisk(page);
2618 
2619 	*fsdata = head; /* to be released by nobh_write_end */
2620 
2621 	return 0;
2622 
2623 failed:
2624 	BUG_ON(!ret);
2625 	/*
2626 	 * Error recovery is a bit difficult. We need to zero out blocks that
2627 	 * were newly allocated, and dirty them to ensure they get written out.
2628 	 * Buffers need to be attached to the page at this point, otherwise
2629 	 * the handling of potential IO errors during writeout would be hard
2630 	 * (could try doing synchronous writeout, but what if that fails too?)
2631 	 */
2632 	attach_nobh_buffers(page, head);
2633 	page_zero_new_buffers(page, from, to);
2634 
2635 out_release:
2636 	unlock_page(page);
2637 	page_cache_release(page);
2638 	*pagep = NULL;
2639 
2640 	return ret;
2641 }
2642 EXPORT_SYMBOL(nobh_write_begin);
2643 
2644 int nobh_write_end(struct file *file, struct address_space *mapping,
2645 			loff_t pos, unsigned len, unsigned copied,
2646 			struct page *page, void *fsdata)
2647 {
2648 	struct inode *inode = page->mapping->host;
2649 	struct buffer_head *head = fsdata;
2650 	struct buffer_head *bh;
2651 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2652 
2653 	if (unlikely(copied < len) && head)
2654 		attach_nobh_buffers(page, head);
2655 	if (page_has_buffers(page))
2656 		return generic_write_end(file, mapping, pos, len,
2657 					copied, page, fsdata);
2658 
2659 	SetPageUptodate(page);
2660 	set_page_dirty(page);
2661 	if (pos+copied > inode->i_size) {
2662 		i_size_write(inode, pos+copied);
2663 		mark_inode_dirty(inode);
2664 	}
2665 
2666 	unlock_page(page);
2667 	page_cache_release(page);
2668 
2669 	while (head) {
2670 		bh = head;
2671 		head = head->b_this_page;
2672 		free_buffer_head(bh);
2673 	}
2674 
2675 	return copied;
2676 }
2677 EXPORT_SYMBOL(nobh_write_end);
2678 
2679 /*
2680  * nobh_writepage() - based on block_full_write_page() except
2681  * that it tries to operate without attaching bufferheads to
2682  * the page.
2683  */
2684 int nobh_writepage(struct page *page, get_block_t *get_block,
2685 			struct writeback_control *wbc)
2686 {
2687 	struct inode * const inode = page->mapping->host;
2688 	loff_t i_size = i_size_read(inode);
2689 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2690 	unsigned offset;
2691 	int ret;
2692 
2693 	/* Is the page fully inside i_size? */
2694 	if (page->index < end_index)
2695 		goto out;
2696 
2697 	/* Is the page fully outside i_size? (truncate in progress) */
2698 	offset = i_size & (PAGE_CACHE_SIZE-1);
2699 	if (page->index >= end_index+1 || !offset) {
2700 		/*
2701 		 * The page may have dirty, unmapped buffers.  For example,
2702 		 * they may have been added in ext3_writepage().  Make them
2703 		 * freeable here, so the page does not leak.
2704 		 */
2705 #if 0
2706 		/* Not really sure about this  - do we need this ? */
2707 		if (page->mapping->a_ops->invalidatepage)
2708 			page->mapping->a_ops->invalidatepage(page, offset);
2709 #endif
2710 		unlock_page(page);
2711 		return 0; /* don't care */
2712 	}
2713 
2714 	/*
2715 	 * The page straddles i_size.  It must be zeroed out on each and every
2716 	 * writepage invocation because it may be mmapped.  "A file is mapped
2717 	 * in multiples of the page size.  For a file that is not a multiple of
2718 	 * the  page size, the remaining memory is zeroed when mapped, and
2719 	 * writes to that region are not written out to the file."
2720 	 */
2721 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2722 out:
2723 	ret = mpage_writepage(page, get_block, wbc);
2724 	if (ret == -EAGAIN)
2725 		ret = __block_write_full_page(inode, page, get_block, wbc,
2726 					      end_buffer_async_write);
2727 	return ret;
2728 }
2729 EXPORT_SYMBOL(nobh_writepage);
2730 
2731 int nobh_truncate_page(struct address_space *mapping,
2732 			loff_t from, get_block_t *get_block)
2733 {
2734 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2735 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2736 	unsigned blocksize;
2737 	sector_t iblock;
2738 	unsigned length, pos;
2739 	struct inode *inode = mapping->host;
2740 	struct page *page;
2741 	struct buffer_head map_bh;
2742 	int err;
2743 
2744 	blocksize = 1 << inode->i_blkbits;
2745 	length = offset & (blocksize - 1);
2746 
2747 	/* Block boundary? Nothing to do */
2748 	if (!length)
2749 		return 0;
2750 
2751 	length = blocksize - length;
2752 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2753 
2754 	page = grab_cache_page(mapping, index);
2755 	err = -ENOMEM;
2756 	if (!page)
2757 		goto out;
2758 
2759 	if (page_has_buffers(page)) {
2760 has_buffers:
2761 		unlock_page(page);
2762 		page_cache_release(page);
2763 		return block_truncate_page(mapping, from, get_block);
2764 	}
2765 
2766 	/* Find the buffer that contains "offset" */
2767 	pos = blocksize;
2768 	while (offset >= pos) {
2769 		iblock++;
2770 		pos += blocksize;
2771 	}
2772 
2773 	map_bh.b_size = blocksize;
2774 	map_bh.b_state = 0;
2775 	err = get_block(inode, iblock, &map_bh, 0);
2776 	if (err)
2777 		goto unlock;
2778 	/* unmapped? It's a hole - nothing to do */
2779 	if (!buffer_mapped(&map_bh))
2780 		goto unlock;
2781 
2782 	/* Ok, it's mapped. Make sure it's up-to-date */
2783 	if (!PageUptodate(page)) {
2784 		err = mapping->a_ops->readpage(NULL, page);
2785 		if (err) {
2786 			page_cache_release(page);
2787 			goto out;
2788 		}
2789 		lock_page(page);
2790 		if (!PageUptodate(page)) {
2791 			err = -EIO;
2792 			goto unlock;
2793 		}
2794 		if (page_has_buffers(page))
2795 			goto has_buffers;
2796 	}
2797 	zero_user(page, offset, length);
2798 	set_page_dirty(page);
2799 	err = 0;
2800 
2801 unlock:
2802 	unlock_page(page);
2803 	page_cache_release(page);
2804 out:
2805 	return err;
2806 }
2807 EXPORT_SYMBOL(nobh_truncate_page);
2808 
2809 int block_truncate_page(struct address_space *mapping,
2810 			loff_t from, get_block_t *get_block)
2811 {
2812 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2813 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2814 	unsigned blocksize;
2815 	sector_t iblock;
2816 	unsigned length, pos;
2817 	struct inode *inode = mapping->host;
2818 	struct page *page;
2819 	struct buffer_head *bh;
2820 	int err;
2821 
2822 	blocksize = 1 << inode->i_blkbits;
2823 	length = offset & (blocksize - 1);
2824 
2825 	/* Block boundary? Nothing to do */
2826 	if (!length)
2827 		return 0;
2828 
2829 	length = blocksize - length;
2830 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2831 
2832 	page = grab_cache_page(mapping, index);
2833 	err = -ENOMEM;
2834 	if (!page)
2835 		goto out;
2836 
2837 	if (!page_has_buffers(page))
2838 		create_empty_buffers(page, blocksize, 0);
2839 
2840 	/* Find the buffer that contains "offset" */
2841 	bh = page_buffers(page);
2842 	pos = blocksize;
2843 	while (offset >= pos) {
2844 		bh = bh->b_this_page;
2845 		iblock++;
2846 		pos += blocksize;
2847 	}
2848 
2849 	err = 0;
2850 	if (!buffer_mapped(bh)) {
2851 		WARN_ON(bh->b_size != blocksize);
2852 		err = get_block(inode, iblock, bh, 0);
2853 		if (err)
2854 			goto unlock;
2855 		/* unmapped? It's a hole - nothing to do */
2856 		if (!buffer_mapped(bh))
2857 			goto unlock;
2858 	}
2859 
2860 	/* Ok, it's mapped. Make sure it's up-to-date */
2861 	if (PageUptodate(page))
2862 		set_buffer_uptodate(bh);
2863 
2864 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2865 		err = -EIO;
2866 		ll_rw_block(READ, 1, &bh);
2867 		wait_on_buffer(bh);
2868 		/* Uhhuh. Read error. Complain and punt. */
2869 		if (!buffer_uptodate(bh))
2870 			goto unlock;
2871 	}
2872 
2873 	zero_user(page, offset, length);
2874 	mark_buffer_dirty(bh);
2875 	err = 0;
2876 
2877 unlock:
2878 	unlock_page(page);
2879 	page_cache_release(page);
2880 out:
2881 	return err;
2882 }
2883 EXPORT_SYMBOL(block_truncate_page);
2884 
2885 /*
2886  * The generic ->writepage function for buffer-backed address_spaces
2887  */
2888 int block_write_full_page(struct page *page, get_block_t *get_block,
2889 			struct writeback_control *wbc)
2890 {
2891 	struct inode * const inode = page->mapping->host;
2892 	loff_t i_size = i_size_read(inode);
2893 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2894 	unsigned offset;
2895 
2896 	/* Is the page fully inside i_size? */
2897 	if (page->index < end_index)
2898 		return __block_write_full_page(inode, page, get_block, wbc,
2899 					       end_buffer_async_write);
2900 
2901 	/* Is the page fully outside i_size? (truncate in progress) */
2902 	offset = i_size & (PAGE_CACHE_SIZE-1);
2903 	if (page->index >= end_index+1 || !offset) {
2904 		/*
2905 		 * The page may have dirty, unmapped buffers.  For example,
2906 		 * they may have been added in ext3_writepage().  Make them
2907 		 * freeable here, so the page does not leak.
2908 		 */
2909 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2910 		unlock_page(page);
2911 		return 0; /* don't care */
2912 	}
2913 
2914 	/*
2915 	 * The page straddles i_size.  It must be zeroed out on each and every
2916 	 * writepage invocation because it may be mmapped.  "A file is mapped
2917 	 * in multiples of the page size.  For a file that is not a multiple of
2918 	 * the  page size, the remaining memory is zeroed when mapped, and
2919 	 * writes to that region are not written out to the file."
2920 	 */
2921 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2922 	return __block_write_full_page(inode, page, get_block, wbc,
2923 							end_buffer_async_write);
2924 }
2925 EXPORT_SYMBOL(block_write_full_page);
2926 
2927 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2928 			    get_block_t *get_block)
2929 {
2930 	struct buffer_head tmp;
2931 	struct inode *inode = mapping->host;
2932 	tmp.b_state = 0;
2933 	tmp.b_blocknr = 0;
2934 	tmp.b_size = 1 << inode->i_blkbits;
2935 	get_block(inode, block, &tmp, 0);
2936 	return tmp.b_blocknr;
2937 }
2938 EXPORT_SYMBOL(generic_block_bmap);
2939 
2940 static void end_bio_bh_io_sync(struct bio *bio, int err)
2941 {
2942 	struct buffer_head *bh = bio->bi_private;
2943 
2944 	if (err == -EOPNOTSUPP) {
2945 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2946 	}
2947 
2948 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2949 		set_bit(BH_Quiet, &bh->b_state);
2950 
2951 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2952 	bio_put(bio);
2953 }
2954 
2955 /*
2956  * This allows us to do IO even on the odd last sectors
2957  * of a device, even if the bh block size is some multiple
2958  * of the physical sector size.
2959  *
2960  * We'll just truncate the bio to the size of the device,
2961  * and clear the end of the buffer head manually.
2962  *
2963  * Truly out-of-range accesses will turn into actual IO
2964  * errors, this only handles the "we need to be able to
2965  * do IO at the final sector" case.
2966  */
2967 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2968 {
2969 	sector_t maxsector;
2970 	unsigned bytes;
2971 
2972 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2973 	if (!maxsector)
2974 		return;
2975 
2976 	/*
2977 	 * If the *whole* IO is past the end of the device,
2978 	 * let it through, and the IO layer will turn it into
2979 	 * an EIO.
2980 	 */
2981 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2982 		return;
2983 
2984 	maxsector -= bio->bi_iter.bi_sector;
2985 	bytes = bio->bi_iter.bi_size;
2986 	if (likely((bytes >> 9) <= maxsector))
2987 		return;
2988 
2989 	/* Uhhuh. We've got a bh that straddles the device size! */
2990 	bytes = maxsector << 9;
2991 
2992 	/* Truncate the bio.. */
2993 	bio->bi_iter.bi_size = bytes;
2994 	bio->bi_io_vec[0].bv_len = bytes;
2995 
2996 	/* ..and clear the end of the buffer for reads */
2997 	if ((rw & RW_MASK) == READ) {
2998 		void *kaddr = kmap_atomic(bh->b_page);
2999 		memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3000 		kunmap_atomic(kaddr);
3001 		flush_dcache_page(bh->b_page);
3002 	}
3003 }
3004 
3005 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3006 {
3007 	struct bio *bio;
3008 	int ret = 0;
3009 
3010 	BUG_ON(!buffer_locked(bh));
3011 	BUG_ON(!buffer_mapped(bh));
3012 	BUG_ON(!bh->b_end_io);
3013 	BUG_ON(buffer_delay(bh));
3014 	BUG_ON(buffer_unwritten(bh));
3015 
3016 	/*
3017 	 * Only clear out a write error when rewriting
3018 	 */
3019 	if (test_set_buffer_req(bh) && (rw & WRITE))
3020 		clear_buffer_write_io_error(bh);
3021 
3022 	/*
3023 	 * from here on down, it's all bio -- do the initial mapping,
3024 	 * submit_bio -> generic_make_request may further map this bio around
3025 	 */
3026 	bio = bio_alloc(GFP_NOIO, 1);
3027 
3028 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3029 	bio->bi_bdev = bh->b_bdev;
3030 	bio->bi_io_vec[0].bv_page = bh->b_page;
3031 	bio->bi_io_vec[0].bv_len = bh->b_size;
3032 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3033 
3034 	bio->bi_vcnt = 1;
3035 	bio->bi_iter.bi_size = bh->b_size;
3036 
3037 	bio->bi_end_io = end_bio_bh_io_sync;
3038 	bio->bi_private = bh;
3039 	bio->bi_flags |= bio_flags;
3040 
3041 	/* Take care of bh's that straddle the end of the device */
3042 	guard_bh_eod(rw, bio, bh);
3043 
3044 	if (buffer_meta(bh))
3045 		rw |= REQ_META;
3046 	if (buffer_prio(bh))
3047 		rw |= REQ_PRIO;
3048 
3049 	bio_get(bio);
3050 	submit_bio(rw, bio);
3051 
3052 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3053 		ret = -EOPNOTSUPP;
3054 
3055 	bio_put(bio);
3056 	return ret;
3057 }
3058 EXPORT_SYMBOL_GPL(_submit_bh);
3059 
3060 int submit_bh(int rw, struct buffer_head *bh)
3061 {
3062 	return _submit_bh(rw, bh, 0);
3063 }
3064 EXPORT_SYMBOL(submit_bh);
3065 
3066 /**
3067  * ll_rw_block: low-level access to block devices (DEPRECATED)
3068  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3069  * @nr: number of &struct buffer_heads in the array
3070  * @bhs: array of pointers to &struct buffer_head
3071  *
3072  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3073  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3074  * %READA option is described in the documentation for generic_make_request()
3075  * which ll_rw_block() calls.
3076  *
3077  * This function drops any buffer that it cannot get a lock on (with the
3078  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3079  * request, and any buffer that appears to be up-to-date when doing read
3080  * request.  Further it marks as clean buffers that are processed for
3081  * writing (the buffer cache won't assume that they are actually clean
3082  * until the buffer gets unlocked).
3083  *
3084  * ll_rw_block sets b_end_io to simple completion handler that marks
3085  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3086  * any waiters.
3087  *
3088  * All of the buffers must be for the same device, and must also be a
3089  * multiple of the current approved size for the device.
3090  */
3091 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3092 {
3093 	int i;
3094 
3095 	for (i = 0; i < nr; i++) {
3096 		struct buffer_head *bh = bhs[i];
3097 
3098 		if (!trylock_buffer(bh))
3099 			continue;
3100 		if (rw == WRITE) {
3101 			if (test_clear_buffer_dirty(bh)) {
3102 				bh->b_end_io = end_buffer_write_sync;
3103 				get_bh(bh);
3104 				submit_bh(WRITE, bh);
3105 				continue;
3106 			}
3107 		} else {
3108 			if (!buffer_uptodate(bh)) {
3109 				bh->b_end_io = end_buffer_read_sync;
3110 				get_bh(bh);
3111 				submit_bh(rw, bh);
3112 				continue;
3113 			}
3114 		}
3115 		unlock_buffer(bh);
3116 	}
3117 }
3118 EXPORT_SYMBOL(ll_rw_block);
3119 
3120 void write_dirty_buffer(struct buffer_head *bh, int rw)
3121 {
3122 	lock_buffer(bh);
3123 	if (!test_clear_buffer_dirty(bh)) {
3124 		unlock_buffer(bh);
3125 		return;
3126 	}
3127 	bh->b_end_io = end_buffer_write_sync;
3128 	get_bh(bh);
3129 	submit_bh(rw, bh);
3130 }
3131 EXPORT_SYMBOL(write_dirty_buffer);
3132 
3133 /*
3134  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3135  * and then start new I/O and then wait upon it.  The caller must have a ref on
3136  * the buffer_head.
3137  */
3138 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3139 {
3140 	int ret = 0;
3141 
3142 	WARN_ON(atomic_read(&bh->b_count) < 1);
3143 	lock_buffer(bh);
3144 	if (test_clear_buffer_dirty(bh)) {
3145 		get_bh(bh);
3146 		bh->b_end_io = end_buffer_write_sync;
3147 		ret = submit_bh(rw, bh);
3148 		wait_on_buffer(bh);
3149 		if (!ret && !buffer_uptodate(bh))
3150 			ret = -EIO;
3151 	} else {
3152 		unlock_buffer(bh);
3153 	}
3154 	return ret;
3155 }
3156 EXPORT_SYMBOL(__sync_dirty_buffer);
3157 
3158 int sync_dirty_buffer(struct buffer_head *bh)
3159 {
3160 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3161 }
3162 EXPORT_SYMBOL(sync_dirty_buffer);
3163 
3164 /*
3165  * try_to_free_buffers() checks if all the buffers on this particular page
3166  * are unused, and releases them if so.
3167  *
3168  * Exclusion against try_to_free_buffers may be obtained by either
3169  * locking the page or by holding its mapping's private_lock.
3170  *
3171  * If the page is dirty but all the buffers are clean then we need to
3172  * be sure to mark the page clean as well.  This is because the page
3173  * may be against a block device, and a later reattachment of buffers
3174  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3175  * filesystem data on the same device.
3176  *
3177  * The same applies to regular filesystem pages: if all the buffers are
3178  * clean then we set the page clean and proceed.  To do that, we require
3179  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3180  * private_lock.
3181  *
3182  * try_to_free_buffers() is non-blocking.
3183  */
3184 static inline int buffer_busy(struct buffer_head *bh)
3185 {
3186 	return atomic_read(&bh->b_count) |
3187 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3188 }
3189 
3190 static int
3191 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3192 {
3193 	struct buffer_head *head = page_buffers(page);
3194 	struct buffer_head *bh;
3195 
3196 	bh = head;
3197 	do {
3198 		if (buffer_write_io_error(bh) && page->mapping)
3199 			set_bit(AS_EIO, &page->mapping->flags);
3200 		if (buffer_busy(bh))
3201 			goto failed;
3202 		bh = bh->b_this_page;
3203 	} while (bh != head);
3204 
3205 	do {
3206 		struct buffer_head *next = bh->b_this_page;
3207 
3208 		if (bh->b_assoc_map)
3209 			__remove_assoc_queue(bh);
3210 		bh = next;
3211 	} while (bh != head);
3212 	*buffers_to_free = head;
3213 	__clear_page_buffers(page);
3214 	return 1;
3215 failed:
3216 	return 0;
3217 }
3218 
3219 int try_to_free_buffers(struct page *page)
3220 {
3221 	struct address_space * const mapping = page->mapping;
3222 	struct buffer_head *buffers_to_free = NULL;
3223 	int ret = 0;
3224 
3225 	BUG_ON(!PageLocked(page));
3226 	if (PageWriteback(page))
3227 		return 0;
3228 
3229 	if (mapping == NULL) {		/* can this still happen? */
3230 		ret = drop_buffers(page, &buffers_to_free);
3231 		goto out;
3232 	}
3233 
3234 	spin_lock(&mapping->private_lock);
3235 	ret = drop_buffers(page, &buffers_to_free);
3236 
3237 	/*
3238 	 * If the filesystem writes its buffers by hand (eg ext3)
3239 	 * then we can have clean buffers against a dirty page.  We
3240 	 * clean the page here; otherwise the VM will never notice
3241 	 * that the filesystem did any IO at all.
3242 	 *
3243 	 * Also, during truncate, discard_buffer will have marked all
3244 	 * the page's buffers clean.  We discover that here and clean
3245 	 * the page also.
3246 	 *
3247 	 * private_lock must be held over this entire operation in order
3248 	 * to synchronise against __set_page_dirty_buffers and prevent the
3249 	 * dirty bit from being lost.
3250 	 */
3251 	if (ret)
3252 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3253 	spin_unlock(&mapping->private_lock);
3254 out:
3255 	if (buffers_to_free) {
3256 		struct buffer_head *bh = buffers_to_free;
3257 
3258 		do {
3259 			struct buffer_head *next = bh->b_this_page;
3260 			free_buffer_head(bh);
3261 			bh = next;
3262 		} while (bh != buffers_to_free);
3263 	}
3264 	return ret;
3265 }
3266 EXPORT_SYMBOL(try_to_free_buffers);
3267 
3268 /*
3269  * There are no bdflush tunables left.  But distributions are
3270  * still running obsolete flush daemons, so we terminate them here.
3271  *
3272  * Use of bdflush() is deprecated and will be removed in a future kernel.
3273  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3274  */
3275 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3276 {
3277 	static int msg_count;
3278 
3279 	if (!capable(CAP_SYS_ADMIN))
3280 		return -EPERM;
3281 
3282 	if (msg_count < 5) {
3283 		msg_count++;
3284 		printk(KERN_INFO
3285 			"warning: process `%s' used the obsolete bdflush"
3286 			" system call\n", current->comm);
3287 		printk(KERN_INFO "Fix your initscripts?\n");
3288 	}
3289 
3290 	if (func == 1)
3291 		do_exit(0);
3292 	return 0;
3293 }
3294 
3295 /*
3296  * Buffer-head allocation
3297  */
3298 static struct kmem_cache *bh_cachep __read_mostly;
3299 
3300 /*
3301  * Once the number of bh's in the machine exceeds this level, we start
3302  * stripping them in writeback.
3303  */
3304 static unsigned long max_buffer_heads;
3305 
3306 int buffer_heads_over_limit;
3307 
3308 struct bh_accounting {
3309 	int nr;			/* Number of live bh's */
3310 	int ratelimit;		/* Limit cacheline bouncing */
3311 };
3312 
3313 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3314 
3315 static void recalc_bh_state(void)
3316 {
3317 	int i;
3318 	int tot = 0;
3319 
3320 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3321 		return;
3322 	__this_cpu_write(bh_accounting.ratelimit, 0);
3323 	for_each_online_cpu(i)
3324 		tot += per_cpu(bh_accounting, i).nr;
3325 	buffer_heads_over_limit = (tot > max_buffer_heads);
3326 }
3327 
3328 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3329 {
3330 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3331 	if (ret) {
3332 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3333 		preempt_disable();
3334 		__this_cpu_inc(bh_accounting.nr);
3335 		recalc_bh_state();
3336 		preempt_enable();
3337 	}
3338 	return ret;
3339 }
3340 EXPORT_SYMBOL(alloc_buffer_head);
3341 
3342 void free_buffer_head(struct buffer_head *bh)
3343 {
3344 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3345 	kmem_cache_free(bh_cachep, bh);
3346 	preempt_disable();
3347 	__this_cpu_dec(bh_accounting.nr);
3348 	recalc_bh_state();
3349 	preempt_enable();
3350 }
3351 EXPORT_SYMBOL(free_buffer_head);
3352 
3353 static void buffer_exit_cpu(int cpu)
3354 {
3355 	int i;
3356 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3357 
3358 	for (i = 0; i < BH_LRU_SIZE; i++) {
3359 		brelse(b->bhs[i]);
3360 		b->bhs[i] = NULL;
3361 	}
3362 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3363 	per_cpu(bh_accounting, cpu).nr = 0;
3364 }
3365 
3366 static int buffer_cpu_notify(struct notifier_block *self,
3367 			      unsigned long action, void *hcpu)
3368 {
3369 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3370 		buffer_exit_cpu((unsigned long)hcpu);
3371 	return NOTIFY_OK;
3372 }
3373 
3374 /**
3375  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3376  * @bh: struct buffer_head
3377  *
3378  * Return true if the buffer is up-to-date and false,
3379  * with the buffer locked, if not.
3380  */
3381 int bh_uptodate_or_lock(struct buffer_head *bh)
3382 {
3383 	if (!buffer_uptodate(bh)) {
3384 		lock_buffer(bh);
3385 		if (!buffer_uptodate(bh))
3386 			return 0;
3387 		unlock_buffer(bh);
3388 	}
3389 	return 1;
3390 }
3391 EXPORT_SYMBOL(bh_uptodate_or_lock);
3392 
3393 /**
3394  * bh_submit_read - Submit a locked buffer for reading
3395  * @bh: struct buffer_head
3396  *
3397  * Returns zero on success and -EIO on error.
3398  */
3399 int bh_submit_read(struct buffer_head *bh)
3400 {
3401 	BUG_ON(!buffer_locked(bh));
3402 
3403 	if (buffer_uptodate(bh)) {
3404 		unlock_buffer(bh);
3405 		return 0;
3406 	}
3407 
3408 	get_bh(bh);
3409 	bh->b_end_io = end_buffer_read_sync;
3410 	submit_bh(READ, bh);
3411 	wait_on_buffer(bh);
3412 	if (buffer_uptodate(bh))
3413 		return 0;
3414 	return -EIO;
3415 }
3416 EXPORT_SYMBOL(bh_submit_read);
3417 
3418 void __init buffer_init(void)
3419 {
3420 	unsigned long nrpages;
3421 
3422 	bh_cachep = kmem_cache_create("buffer_head",
3423 			sizeof(struct buffer_head), 0,
3424 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3425 				SLAB_MEM_SPREAD),
3426 				NULL);
3427 
3428 	/*
3429 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3430 	 */
3431 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3432 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3433 	hotcpu_notifier(buffer_cpu_notify, 0);
3434 }
3435