xref: /openbmc/linux/fs/buffer.c (revision 54f9c4d0)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/export.h>
34 #include <linux/backing-dev.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/bio.h>
41 #include <linux/notifier.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <trace/events/block.h>
47 
48 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
49 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
50 			 unsigned long bio_flags,
51 			 struct writeback_control *wbc);
52 
53 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
54 
55 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
56 {
57 	bh->b_end_io = handler;
58 	bh->b_private = private;
59 }
60 EXPORT_SYMBOL(init_buffer);
61 
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	mark_page_accessed(bh->b_page);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the page has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the PageDirty information is stale. If
86  * any of the pages are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct page *page,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!PageLocked(page));
96 
97 	if (!page_has_buffers(page))
98 		return;
99 
100 	if (PageWriteback(page))
101 		*writeback = true;
102 
103 	head = page_buffers(page);
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 EXPORT_SYMBOL(buffer_check_dirty_writeback);
116 
117 /*
118  * Block until a buffer comes unlocked.  This doesn't stop it
119  * from becoming locked again - you have to lock it yourself
120  * if you want to preserve its state.
121  */
122 void __wait_on_buffer(struct buffer_head * bh)
123 {
124 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125 }
126 EXPORT_SYMBOL(__wait_on_buffer);
127 
128 static void
129 __clear_page_buffers(struct page *page)
130 {
131 	ClearPagePrivate(page);
132 	set_page_private(page, 0);
133 	put_page(page);
134 }
135 
136 static void buffer_io_error(struct buffer_head *bh, char *msg)
137 {
138 	if (!test_bit(BH_Quiet, &bh->b_state))
139 		printk_ratelimited(KERN_ERR
140 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
141 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
142 }
143 
144 /*
145  * End-of-IO handler helper function which does not touch the bh after
146  * unlocking it.
147  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
148  * a race there is benign: unlock_buffer() only use the bh's address for
149  * hashing after unlocking the buffer, so it doesn't actually touch the bh
150  * itself.
151  */
152 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
153 {
154 	if (uptodate) {
155 		set_buffer_uptodate(bh);
156 	} else {
157 		/* This happens, due to failed read-ahead attempts. */
158 		clear_buffer_uptodate(bh);
159 	}
160 	unlock_buffer(bh);
161 }
162 
163 /*
164  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
165  * unlock the buffer. This is what ll_rw_block uses too.
166  */
167 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
168 {
169 	__end_buffer_read_notouch(bh, uptodate);
170 	put_bh(bh);
171 }
172 EXPORT_SYMBOL(end_buffer_read_sync);
173 
174 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
175 {
176 	if (uptodate) {
177 		set_buffer_uptodate(bh);
178 	} else {
179 		buffer_io_error(bh, ", lost sync page write");
180 		set_buffer_write_io_error(bh);
181 		clear_buffer_uptodate(bh);
182 	}
183 	unlock_buffer(bh);
184 	put_bh(bh);
185 }
186 EXPORT_SYMBOL(end_buffer_write_sync);
187 
188 /*
189  * Various filesystems appear to want __find_get_block to be non-blocking.
190  * But it's the page lock which protects the buffers.  To get around this,
191  * we get exclusion from try_to_free_buffers with the blockdev mapping's
192  * private_lock.
193  *
194  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
195  * may be quite high.  This code could TryLock the page, and if that
196  * succeeds, there is no need to take private_lock. (But if
197  * private_lock is contended then so is mapping->tree_lock).
198  */
199 static struct buffer_head *
200 __find_get_block_slow(struct block_device *bdev, sector_t block)
201 {
202 	struct inode *bd_inode = bdev->bd_inode;
203 	struct address_space *bd_mapping = bd_inode->i_mapping;
204 	struct buffer_head *ret = NULL;
205 	pgoff_t index;
206 	struct buffer_head *bh;
207 	struct buffer_head *head;
208 	struct page *page;
209 	int all_mapped = 1;
210 
211 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
212 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
213 	if (!page)
214 		goto out;
215 
216 	spin_lock(&bd_mapping->private_lock);
217 	if (!page_has_buffers(page))
218 		goto out_unlock;
219 	head = page_buffers(page);
220 	bh = head;
221 	do {
222 		if (!buffer_mapped(bh))
223 			all_mapped = 0;
224 		else if (bh->b_blocknr == block) {
225 			ret = bh;
226 			get_bh(bh);
227 			goto out_unlock;
228 		}
229 		bh = bh->b_this_page;
230 	} while (bh != head);
231 
232 	/* we might be here because some of the buffers on this page are
233 	 * not mapped.  This is due to various races between
234 	 * file io on the block device and getblk.  It gets dealt with
235 	 * elsewhere, don't buffer_error if we had some unmapped buffers
236 	 */
237 	if (all_mapped) {
238 		printk("__find_get_block_slow() failed. "
239 			"block=%llu, b_blocknr=%llu\n",
240 			(unsigned long long)block,
241 			(unsigned long long)bh->b_blocknr);
242 		printk("b_state=0x%08lx, b_size=%zu\n",
243 			bh->b_state, bh->b_size);
244 		printk("device %pg blocksize: %d\n", bdev,
245 			1 << bd_inode->i_blkbits);
246 	}
247 out_unlock:
248 	spin_unlock(&bd_mapping->private_lock);
249 	put_page(page);
250 out:
251 	return ret;
252 }
253 
254 /*
255  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
256  */
257 static void free_more_memory(void)
258 {
259 	struct zoneref *z;
260 	int nid;
261 
262 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
263 	yield();
264 
265 	for_each_online_node(nid) {
266 
267 		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
268 						gfp_zone(GFP_NOFS), NULL);
269 		if (z->zone)
270 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
271 						GFP_NOFS, NULL);
272 	}
273 }
274 
275 /*
276  * I/O completion handler for block_read_full_page() - pages
277  * which come unlocked at the end of I/O.
278  */
279 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
280 {
281 	unsigned long flags;
282 	struct buffer_head *first;
283 	struct buffer_head *tmp;
284 	struct page *page;
285 	int page_uptodate = 1;
286 
287 	BUG_ON(!buffer_async_read(bh));
288 
289 	page = bh->b_page;
290 	if (uptodate) {
291 		set_buffer_uptodate(bh);
292 	} else {
293 		clear_buffer_uptodate(bh);
294 		buffer_io_error(bh, ", async page read");
295 		SetPageError(page);
296 	}
297 
298 	/*
299 	 * Be _very_ careful from here on. Bad things can happen if
300 	 * two buffer heads end IO at almost the same time and both
301 	 * decide that the page is now completely done.
302 	 */
303 	first = page_buffers(page);
304 	local_irq_save(flags);
305 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
306 	clear_buffer_async_read(bh);
307 	unlock_buffer(bh);
308 	tmp = bh;
309 	do {
310 		if (!buffer_uptodate(tmp))
311 			page_uptodate = 0;
312 		if (buffer_async_read(tmp)) {
313 			BUG_ON(!buffer_locked(tmp));
314 			goto still_busy;
315 		}
316 		tmp = tmp->b_this_page;
317 	} while (tmp != bh);
318 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 	local_irq_restore(flags);
320 
321 	/*
322 	 * If none of the buffers had errors and they are all
323 	 * uptodate then we can set the page uptodate.
324 	 */
325 	if (page_uptodate && !PageError(page))
326 		SetPageUptodate(page);
327 	unlock_page(page);
328 	return;
329 
330 still_busy:
331 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
332 	local_irq_restore(flags);
333 	return;
334 }
335 
336 /*
337  * Completion handler for block_write_full_page() - pages which are unlocked
338  * during I/O, and which have PageWriteback cleared upon I/O completion.
339  */
340 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
341 {
342 	unsigned long flags;
343 	struct buffer_head *first;
344 	struct buffer_head *tmp;
345 	struct page *page;
346 
347 	BUG_ON(!buffer_async_write(bh));
348 
349 	page = bh->b_page;
350 	if (uptodate) {
351 		set_buffer_uptodate(bh);
352 	} else {
353 		buffer_io_error(bh, ", lost async page write");
354 		set_bit(AS_EIO, &page->mapping->flags);
355 		set_buffer_write_io_error(bh);
356 		clear_buffer_uptodate(bh);
357 		SetPageError(page);
358 	}
359 
360 	first = page_buffers(page);
361 	local_irq_save(flags);
362 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363 
364 	clear_buffer_async_write(bh);
365 	unlock_buffer(bh);
366 	tmp = bh->b_this_page;
367 	while (tmp != bh) {
368 		if (buffer_async_write(tmp)) {
369 			BUG_ON(!buffer_locked(tmp));
370 			goto still_busy;
371 		}
372 		tmp = tmp->b_this_page;
373 	}
374 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 	local_irq_restore(flags);
376 	end_page_writeback(page);
377 	return;
378 
379 still_busy:
380 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 	local_irq_restore(flags);
382 	return;
383 }
384 EXPORT_SYMBOL(end_buffer_async_write);
385 
386 /*
387  * If a page's buffers are under async readin (end_buffer_async_read
388  * completion) then there is a possibility that another thread of
389  * control could lock one of the buffers after it has completed
390  * but while some of the other buffers have not completed.  This
391  * locked buffer would confuse end_buffer_async_read() into not unlocking
392  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
393  * that this buffer is not under async I/O.
394  *
395  * The page comes unlocked when it has no locked buffer_async buffers
396  * left.
397  *
398  * PageLocked prevents anyone starting new async I/O reads any of
399  * the buffers.
400  *
401  * PageWriteback is used to prevent simultaneous writeout of the same
402  * page.
403  *
404  * PageLocked prevents anyone from starting writeback of a page which is
405  * under read I/O (PageWriteback is only ever set against a locked page).
406  */
407 static void mark_buffer_async_read(struct buffer_head *bh)
408 {
409 	bh->b_end_io = end_buffer_async_read;
410 	set_buffer_async_read(bh);
411 }
412 
413 static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 					  bh_end_io_t *handler)
415 {
416 	bh->b_end_io = handler;
417 	set_buffer_async_write(bh);
418 }
419 
420 void mark_buffer_async_write(struct buffer_head *bh)
421 {
422 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
423 }
424 EXPORT_SYMBOL(mark_buffer_async_write);
425 
426 
427 /*
428  * fs/buffer.c contains helper functions for buffer-backed address space's
429  * fsync functions.  A common requirement for buffer-based filesystems is
430  * that certain data from the backing blockdev needs to be written out for
431  * a successful fsync().  For example, ext2 indirect blocks need to be
432  * written back and waited upon before fsync() returns.
433  *
434  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436  * management of a list of dependent buffers at ->i_mapping->private_list.
437  *
438  * Locking is a little subtle: try_to_free_buffers() will remove buffers
439  * from their controlling inode's queue when they are being freed.  But
440  * try_to_free_buffers() will be operating against the *blockdev* mapping
441  * at the time, not against the S_ISREG file which depends on those buffers.
442  * So the locking for private_list is via the private_lock in the address_space
443  * which backs the buffers.  Which is different from the address_space
444  * against which the buffers are listed.  So for a particular address_space,
445  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
446  * mapping->private_list will always be protected by the backing blockdev's
447  * ->private_lock.
448  *
449  * Which introduces a requirement: all buffers on an address_space's
450  * ->private_list must be from the same address_space: the blockdev's.
451  *
452  * address_spaces which do not place buffers at ->private_list via these
453  * utility functions are free to use private_lock and private_list for
454  * whatever they want.  The only requirement is that list_empty(private_list)
455  * be true at clear_inode() time.
456  *
457  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
458  * filesystems should do that.  invalidate_inode_buffers() should just go
459  * BUG_ON(!list_empty).
460  *
461  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
462  * take an address_space, not an inode.  And it should be called
463  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464  * queued up.
465  *
466  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467  * list if it is already on a list.  Because if the buffer is on a list,
468  * it *must* already be on the right one.  If not, the filesystem is being
469  * silly.  This will save a ton of locking.  But first we have to ensure
470  * that buffers are taken *off* the old inode's list when they are freed
471  * (presumably in truncate).  That requires careful auditing of all
472  * filesystems (do it inside bforget()).  It could also be done by bringing
473  * b_inode back.
474  */
475 
476 /*
477  * The buffer's backing address_space's private_lock must be held
478  */
479 static void __remove_assoc_queue(struct buffer_head *bh)
480 {
481 	list_del_init(&bh->b_assoc_buffers);
482 	WARN_ON(!bh->b_assoc_map);
483 	if (buffer_write_io_error(bh))
484 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
485 	bh->b_assoc_map = NULL;
486 }
487 
488 int inode_has_buffers(struct inode *inode)
489 {
490 	return !list_empty(&inode->i_data.private_list);
491 }
492 
493 /*
494  * osync is designed to support O_SYNC io.  It waits synchronously for
495  * all already-submitted IO to complete, but does not queue any new
496  * writes to the disk.
497  *
498  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
499  * you dirty the buffers, and then use osync_inode_buffers to wait for
500  * completion.  Any other dirty buffers which are not yet queued for
501  * write will not be flushed to disk by the osync.
502  */
503 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
504 {
505 	struct buffer_head *bh;
506 	struct list_head *p;
507 	int err = 0;
508 
509 	spin_lock(lock);
510 repeat:
511 	list_for_each_prev(p, list) {
512 		bh = BH_ENTRY(p);
513 		if (buffer_locked(bh)) {
514 			get_bh(bh);
515 			spin_unlock(lock);
516 			wait_on_buffer(bh);
517 			if (!buffer_uptodate(bh))
518 				err = -EIO;
519 			brelse(bh);
520 			spin_lock(lock);
521 			goto repeat;
522 		}
523 	}
524 	spin_unlock(lock);
525 	return err;
526 }
527 
528 static void do_thaw_one(struct super_block *sb, void *unused)
529 {
530 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
531 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
532 }
533 
534 static void do_thaw_all(struct work_struct *work)
535 {
536 	iterate_supers(do_thaw_one, NULL);
537 	kfree(work);
538 	printk(KERN_WARNING "Emergency Thaw complete\n");
539 }
540 
541 /**
542  * emergency_thaw_all -- forcibly thaw every frozen filesystem
543  *
544  * Used for emergency unfreeze of all filesystems via SysRq
545  */
546 void emergency_thaw_all(void)
547 {
548 	struct work_struct *work;
549 
550 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
551 	if (work) {
552 		INIT_WORK(work, do_thaw_all);
553 		schedule_work(work);
554 	}
555 }
556 
557 /**
558  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559  * @mapping: the mapping which wants those buffers written
560  *
561  * Starts I/O against the buffers at mapping->private_list, and waits upon
562  * that I/O.
563  *
564  * Basically, this is a convenience function for fsync().
565  * @mapping is a file or directory which needs those buffers to be written for
566  * a successful fsync().
567  */
568 int sync_mapping_buffers(struct address_space *mapping)
569 {
570 	struct address_space *buffer_mapping = mapping->private_data;
571 
572 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
573 		return 0;
574 
575 	return fsync_buffers_list(&buffer_mapping->private_lock,
576 					&mapping->private_list);
577 }
578 EXPORT_SYMBOL(sync_mapping_buffers);
579 
580 /*
581  * Called when we've recently written block `bblock', and it is known that
582  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
583  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
584  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
585  */
586 void write_boundary_block(struct block_device *bdev,
587 			sector_t bblock, unsigned blocksize)
588 {
589 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
590 	if (bh) {
591 		if (buffer_dirty(bh))
592 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
593 		put_bh(bh);
594 	}
595 }
596 
597 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
598 {
599 	struct address_space *mapping = inode->i_mapping;
600 	struct address_space *buffer_mapping = bh->b_page->mapping;
601 
602 	mark_buffer_dirty(bh);
603 	if (!mapping->private_data) {
604 		mapping->private_data = buffer_mapping;
605 	} else {
606 		BUG_ON(mapping->private_data != buffer_mapping);
607 	}
608 	if (!bh->b_assoc_map) {
609 		spin_lock(&buffer_mapping->private_lock);
610 		list_move_tail(&bh->b_assoc_buffers,
611 				&mapping->private_list);
612 		bh->b_assoc_map = mapping;
613 		spin_unlock(&buffer_mapping->private_lock);
614 	}
615 }
616 EXPORT_SYMBOL(mark_buffer_dirty_inode);
617 
618 /*
619  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
620  * dirty.
621  *
622  * If warn is true, then emit a warning if the page is not uptodate and has
623  * not been truncated.
624  *
625  * The caller must hold lock_page_memcg().
626  */
627 static void __set_page_dirty(struct page *page, struct address_space *mapping,
628 			     int warn)
629 {
630 	unsigned long flags;
631 
632 	spin_lock_irqsave(&mapping->tree_lock, flags);
633 	if (page->mapping) {	/* Race with truncate? */
634 		WARN_ON_ONCE(warn && !PageUptodate(page));
635 		account_page_dirtied(page, mapping);
636 		radix_tree_tag_set(&mapping->page_tree,
637 				page_index(page), PAGECACHE_TAG_DIRTY);
638 	}
639 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
640 }
641 
642 /*
643  * Add a page to the dirty page list.
644  *
645  * It is a sad fact of life that this function is called from several places
646  * deeply under spinlocking.  It may not sleep.
647  *
648  * If the page has buffers, the uptodate buffers are set dirty, to preserve
649  * dirty-state coherency between the page and the buffers.  It the page does
650  * not have buffers then when they are later attached they will all be set
651  * dirty.
652  *
653  * The buffers are dirtied before the page is dirtied.  There's a small race
654  * window in which a writepage caller may see the page cleanness but not the
655  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
656  * before the buffers, a concurrent writepage caller could clear the page dirty
657  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
658  * page on the dirty page list.
659  *
660  * We use private_lock to lock against try_to_free_buffers while using the
661  * page's buffer list.  Also use this to protect against clean buffers being
662  * added to the page after it was set dirty.
663  *
664  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
665  * address_space though.
666  */
667 int __set_page_dirty_buffers(struct page *page)
668 {
669 	int newly_dirty;
670 	struct address_space *mapping = page_mapping(page);
671 
672 	if (unlikely(!mapping))
673 		return !TestSetPageDirty(page);
674 
675 	spin_lock(&mapping->private_lock);
676 	if (page_has_buffers(page)) {
677 		struct buffer_head *head = page_buffers(page);
678 		struct buffer_head *bh = head;
679 
680 		do {
681 			set_buffer_dirty(bh);
682 			bh = bh->b_this_page;
683 		} while (bh != head);
684 	}
685 	/*
686 	 * Lock out page->mem_cgroup migration to keep PageDirty
687 	 * synchronized with per-memcg dirty page counters.
688 	 */
689 	lock_page_memcg(page);
690 	newly_dirty = !TestSetPageDirty(page);
691 	spin_unlock(&mapping->private_lock);
692 
693 	if (newly_dirty)
694 		__set_page_dirty(page, mapping, 1);
695 
696 	unlock_page_memcg(page);
697 
698 	if (newly_dirty)
699 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
700 
701 	return newly_dirty;
702 }
703 EXPORT_SYMBOL(__set_page_dirty_buffers);
704 
705 /*
706  * Write out and wait upon a list of buffers.
707  *
708  * We have conflicting pressures: we want to make sure that all
709  * initially dirty buffers get waited on, but that any subsequently
710  * dirtied buffers don't.  After all, we don't want fsync to last
711  * forever if somebody is actively writing to the file.
712  *
713  * Do this in two main stages: first we copy dirty buffers to a
714  * temporary inode list, queueing the writes as we go.  Then we clean
715  * up, waiting for those writes to complete.
716  *
717  * During this second stage, any subsequent updates to the file may end
718  * up refiling the buffer on the original inode's dirty list again, so
719  * there is a chance we will end up with a buffer queued for write but
720  * not yet completed on that list.  So, as a final cleanup we go through
721  * the osync code to catch these locked, dirty buffers without requeuing
722  * any newly dirty buffers for write.
723  */
724 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
725 {
726 	struct buffer_head *bh;
727 	struct list_head tmp;
728 	struct address_space *mapping;
729 	int err = 0, err2;
730 	struct blk_plug plug;
731 
732 	INIT_LIST_HEAD(&tmp);
733 	blk_start_plug(&plug);
734 
735 	spin_lock(lock);
736 	while (!list_empty(list)) {
737 		bh = BH_ENTRY(list->next);
738 		mapping = bh->b_assoc_map;
739 		__remove_assoc_queue(bh);
740 		/* Avoid race with mark_buffer_dirty_inode() which does
741 		 * a lockless check and we rely on seeing the dirty bit */
742 		smp_mb();
743 		if (buffer_dirty(bh) || buffer_locked(bh)) {
744 			list_add(&bh->b_assoc_buffers, &tmp);
745 			bh->b_assoc_map = mapping;
746 			if (buffer_dirty(bh)) {
747 				get_bh(bh);
748 				spin_unlock(lock);
749 				/*
750 				 * Ensure any pending I/O completes so that
751 				 * write_dirty_buffer() actually writes the
752 				 * current contents - it is a noop if I/O is
753 				 * still in flight on potentially older
754 				 * contents.
755 				 */
756 				write_dirty_buffer(bh, WRITE_SYNC);
757 
758 				/*
759 				 * Kick off IO for the previous mapping. Note
760 				 * that we will not run the very last mapping,
761 				 * wait_on_buffer() will do that for us
762 				 * through sync_buffer().
763 				 */
764 				brelse(bh);
765 				spin_lock(lock);
766 			}
767 		}
768 	}
769 
770 	spin_unlock(lock);
771 	blk_finish_plug(&plug);
772 	spin_lock(lock);
773 
774 	while (!list_empty(&tmp)) {
775 		bh = BH_ENTRY(tmp.prev);
776 		get_bh(bh);
777 		mapping = bh->b_assoc_map;
778 		__remove_assoc_queue(bh);
779 		/* Avoid race with mark_buffer_dirty_inode() which does
780 		 * a lockless check and we rely on seeing the dirty bit */
781 		smp_mb();
782 		if (buffer_dirty(bh)) {
783 			list_add(&bh->b_assoc_buffers,
784 				 &mapping->private_list);
785 			bh->b_assoc_map = mapping;
786 		}
787 		spin_unlock(lock);
788 		wait_on_buffer(bh);
789 		if (!buffer_uptodate(bh))
790 			err = -EIO;
791 		brelse(bh);
792 		spin_lock(lock);
793 	}
794 
795 	spin_unlock(lock);
796 	err2 = osync_buffers_list(lock, list);
797 	if (err)
798 		return err;
799 	else
800 		return err2;
801 }
802 
803 /*
804  * Invalidate any and all dirty buffers on a given inode.  We are
805  * probably unmounting the fs, but that doesn't mean we have already
806  * done a sync().  Just drop the buffers from the inode list.
807  *
808  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
809  * assumes that all the buffers are against the blockdev.  Not true
810  * for reiserfs.
811  */
812 void invalidate_inode_buffers(struct inode *inode)
813 {
814 	if (inode_has_buffers(inode)) {
815 		struct address_space *mapping = &inode->i_data;
816 		struct list_head *list = &mapping->private_list;
817 		struct address_space *buffer_mapping = mapping->private_data;
818 
819 		spin_lock(&buffer_mapping->private_lock);
820 		while (!list_empty(list))
821 			__remove_assoc_queue(BH_ENTRY(list->next));
822 		spin_unlock(&buffer_mapping->private_lock);
823 	}
824 }
825 EXPORT_SYMBOL(invalidate_inode_buffers);
826 
827 /*
828  * Remove any clean buffers from the inode's buffer list.  This is called
829  * when we're trying to free the inode itself.  Those buffers can pin it.
830  *
831  * Returns true if all buffers were removed.
832  */
833 int remove_inode_buffers(struct inode *inode)
834 {
835 	int ret = 1;
836 
837 	if (inode_has_buffers(inode)) {
838 		struct address_space *mapping = &inode->i_data;
839 		struct list_head *list = &mapping->private_list;
840 		struct address_space *buffer_mapping = mapping->private_data;
841 
842 		spin_lock(&buffer_mapping->private_lock);
843 		while (!list_empty(list)) {
844 			struct buffer_head *bh = BH_ENTRY(list->next);
845 			if (buffer_dirty(bh)) {
846 				ret = 0;
847 				break;
848 			}
849 			__remove_assoc_queue(bh);
850 		}
851 		spin_unlock(&buffer_mapping->private_lock);
852 	}
853 	return ret;
854 }
855 
856 /*
857  * Create the appropriate buffers when given a page for data area and
858  * the size of each buffer.. Use the bh->b_this_page linked list to
859  * follow the buffers created.  Return NULL if unable to create more
860  * buffers.
861  *
862  * The retry flag is used to differentiate async IO (paging, swapping)
863  * which may not fail from ordinary buffer allocations.
864  */
865 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
866 		int retry)
867 {
868 	struct buffer_head *bh, *head;
869 	long offset;
870 
871 try_again:
872 	head = NULL;
873 	offset = PAGE_SIZE;
874 	while ((offset -= size) >= 0) {
875 		bh = alloc_buffer_head(GFP_NOFS);
876 		if (!bh)
877 			goto no_grow;
878 
879 		bh->b_this_page = head;
880 		bh->b_blocknr = -1;
881 		head = bh;
882 
883 		bh->b_size = size;
884 
885 		/* Link the buffer to its page */
886 		set_bh_page(bh, page, offset);
887 	}
888 	return head;
889 /*
890  * In case anything failed, we just free everything we got.
891  */
892 no_grow:
893 	if (head) {
894 		do {
895 			bh = head;
896 			head = head->b_this_page;
897 			free_buffer_head(bh);
898 		} while (head);
899 	}
900 
901 	/*
902 	 * Return failure for non-async IO requests.  Async IO requests
903 	 * are not allowed to fail, so we have to wait until buffer heads
904 	 * become available.  But we don't want tasks sleeping with
905 	 * partially complete buffers, so all were released above.
906 	 */
907 	if (!retry)
908 		return NULL;
909 
910 	/* We're _really_ low on memory. Now we just
911 	 * wait for old buffer heads to become free due to
912 	 * finishing IO.  Since this is an async request and
913 	 * the reserve list is empty, we're sure there are
914 	 * async buffer heads in use.
915 	 */
916 	free_more_memory();
917 	goto try_again;
918 }
919 EXPORT_SYMBOL_GPL(alloc_page_buffers);
920 
921 static inline void
922 link_dev_buffers(struct page *page, struct buffer_head *head)
923 {
924 	struct buffer_head *bh, *tail;
925 
926 	bh = head;
927 	do {
928 		tail = bh;
929 		bh = bh->b_this_page;
930 	} while (bh);
931 	tail->b_this_page = head;
932 	attach_page_buffers(page, head);
933 }
934 
935 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
936 {
937 	sector_t retval = ~((sector_t)0);
938 	loff_t sz = i_size_read(bdev->bd_inode);
939 
940 	if (sz) {
941 		unsigned int sizebits = blksize_bits(size);
942 		retval = (sz >> sizebits);
943 	}
944 	return retval;
945 }
946 
947 /*
948  * Initialise the state of a blockdev page's buffers.
949  */
950 static sector_t
951 init_page_buffers(struct page *page, struct block_device *bdev,
952 			sector_t block, int size)
953 {
954 	struct buffer_head *head = page_buffers(page);
955 	struct buffer_head *bh = head;
956 	int uptodate = PageUptodate(page);
957 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
958 
959 	do {
960 		if (!buffer_mapped(bh)) {
961 			init_buffer(bh, NULL, NULL);
962 			bh->b_bdev = bdev;
963 			bh->b_blocknr = block;
964 			if (uptodate)
965 				set_buffer_uptodate(bh);
966 			if (block < end_block)
967 				set_buffer_mapped(bh);
968 		}
969 		block++;
970 		bh = bh->b_this_page;
971 	} while (bh != head);
972 
973 	/*
974 	 * Caller needs to validate requested block against end of device.
975 	 */
976 	return end_block;
977 }
978 
979 /*
980  * Create the page-cache page that contains the requested block.
981  *
982  * This is used purely for blockdev mappings.
983  */
984 static int
985 grow_dev_page(struct block_device *bdev, sector_t block,
986 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
987 {
988 	struct inode *inode = bdev->bd_inode;
989 	struct page *page;
990 	struct buffer_head *bh;
991 	sector_t end_block;
992 	int ret = 0;		/* Will call free_more_memory() */
993 	gfp_t gfp_mask;
994 
995 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
996 
997 	/*
998 	 * XXX: __getblk_slow() can not really deal with failure and
999 	 * will endlessly loop on improvised global reclaim.  Prefer
1000 	 * looping in the allocator rather than here, at least that
1001 	 * code knows what it's doing.
1002 	 */
1003 	gfp_mask |= __GFP_NOFAIL;
1004 
1005 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1006 	if (!page)
1007 		return ret;
1008 
1009 	BUG_ON(!PageLocked(page));
1010 
1011 	if (page_has_buffers(page)) {
1012 		bh = page_buffers(page);
1013 		if (bh->b_size == size) {
1014 			end_block = init_page_buffers(page, bdev,
1015 						(sector_t)index << sizebits,
1016 						size);
1017 			goto done;
1018 		}
1019 		if (!try_to_free_buffers(page))
1020 			goto failed;
1021 	}
1022 
1023 	/*
1024 	 * Allocate some buffers for this page
1025 	 */
1026 	bh = alloc_page_buffers(page, size, 0);
1027 	if (!bh)
1028 		goto failed;
1029 
1030 	/*
1031 	 * Link the page to the buffers and initialise them.  Take the
1032 	 * lock to be atomic wrt __find_get_block(), which does not
1033 	 * run under the page lock.
1034 	 */
1035 	spin_lock(&inode->i_mapping->private_lock);
1036 	link_dev_buffers(page, bh);
1037 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1038 			size);
1039 	spin_unlock(&inode->i_mapping->private_lock);
1040 done:
1041 	ret = (block < end_block) ? 1 : -ENXIO;
1042 failed:
1043 	unlock_page(page);
1044 	put_page(page);
1045 	return ret;
1046 }
1047 
1048 /*
1049  * Create buffers for the specified block device block's page.  If
1050  * that page was dirty, the buffers are set dirty also.
1051  */
1052 static int
1053 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1054 {
1055 	pgoff_t index;
1056 	int sizebits;
1057 
1058 	sizebits = -1;
1059 	do {
1060 		sizebits++;
1061 	} while ((size << sizebits) < PAGE_SIZE);
1062 
1063 	index = block >> sizebits;
1064 
1065 	/*
1066 	 * Check for a block which wants to lie outside our maximum possible
1067 	 * pagecache index.  (this comparison is done using sector_t types).
1068 	 */
1069 	if (unlikely(index != block >> sizebits)) {
1070 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1071 			"device %pg\n",
1072 			__func__, (unsigned long long)block,
1073 			bdev);
1074 		return -EIO;
1075 	}
1076 
1077 	/* Create a page with the proper size buffers.. */
1078 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1079 }
1080 
1081 struct buffer_head *
1082 __getblk_slow(struct block_device *bdev, sector_t block,
1083 	     unsigned size, gfp_t gfp)
1084 {
1085 	/* Size must be multiple of hard sectorsize */
1086 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1087 			(size < 512 || size > PAGE_SIZE))) {
1088 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1089 					size);
1090 		printk(KERN_ERR "logical block size: %d\n",
1091 					bdev_logical_block_size(bdev));
1092 
1093 		dump_stack();
1094 		return NULL;
1095 	}
1096 
1097 	for (;;) {
1098 		struct buffer_head *bh;
1099 		int ret;
1100 
1101 		bh = __find_get_block(bdev, block, size);
1102 		if (bh)
1103 			return bh;
1104 
1105 		ret = grow_buffers(bdev, block, size, gfp);
1106 		if (ret < 0)
1107 			return NULL;
1108 		if (ret == 0)
1109 			free_more_memory();
1110 	}
1111 }
1112 EXPORT_SYMBOL(__getblk_slow);
1113 
1114 /*
1115  * The relationship between dirty buffers and dirty pages:
1116  *
1117  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118  * the page is tagged dirty in its radix tree.
1119  *
1120  * At all times, the dirtiness of the buffers represents the dirtiness of
1121  * subsections of the page.  If the page has buffers, the page dirty bit is
1122  * merely a hint about the true dirty state.
1123  *
1124  * When a page is set dirty in its entirety, all its buffers are marked dirty
1125  * (if the page has buffers).
1126  *
1127  * When a buffer is marked dirty, its page is dirtied, but the page's other
1128  * buffers are not.
1129  *
1130  * Also.  When blockdev buffers are explicitly read with bread(), they
1131  * individually become uptodate.  But their backing page remains not
1132  * uptodate - even if all of its buffers are uptodate.  A subsequent
1133  * block_read_full_page() against that page will discover all the uptodate
1134  * buffers, will set the page uptodate and will perform no I/O.
1135  */
1136 
1137 /**
1138  * mark_buffer_dirty - mark a buffer_head as needing writeout
1139  * @bh: the buffer_head to mark dirty
1140  *
1141  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142  * backing page dirty, then tag the page as dirty in its address_space's radix
1143  * tree and then attach the address_space's inode to its superblock's dirty
1144  * inode list.
1145  *
1146  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147  * mapping->tree_lock and mapping->host->i_lock.
1148  */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151 	WARN_ON_ONCE(!buffer_uptodate(bh));
1152 
1153 	trace_block_dirty_buffer(bh);
1154 
1155 	/*
1156 	 * Very *carefully* optimize the it-is-already-dirty case.
1157 	 *
1158 	 * Don't let the final "is it dirty" escape to before we
1159 	 * perhaps modified the buffer.
1160 	 */
1161 	if (buffer_dirty(bh)) {
1162 		smp_mb();
1163 		if (buffer_dirty(bh))
1164 			return;
1165 	}
1166 
1167 	if (!test_set_buffer_dirty(bh)) {
1168 		struct page *page = bh->b_page;
1169 		struct address_space *mapping = NULL;
1170 
1171 		lock_page_memcg(page);
1172 		if (!TestSetPageDirty(page)) {
1173 			mapping = page_mapping(page);
1174 			if (mapping)
1175 				__set_page_dirty(page, mapping, 0);
1176 		}
1177 		unlock_page_memcg(page);
1178 		if (mapping)
1179 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180 	}
1181 }
1182 EXPORT_SYMBOL(mark_buffer_dirty);
1183 
1184 /*
1185  * Decrement a buffer_head's reference count.  If all buffers against a page
1186  * have zero reference count, are clean and unlocked, and if the page is clean
1187  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189  * a page but it ends up not being freed, and buffers may later be reattached).
1190  */
1191 void __brelse(struct buffer_head * buf)
1192 {
1193 	if (atomic_read(&buf->b_count)) {
1194 		put_bh(buf);
1195 		return;
1196 	}
1197 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198 }
1199 EXPORT_SYMBOL(__brelse);
1200 
1201 /*
1202  * bforget() is like brelse(), except it discards any
1203  * potentially dirty data.
1204  */
1205 void __bforget(struct buffer_head *bh)
1206 {
1207 	clear_buffer_dirty(bh);
1208 	if (bh->b_assoc_map) {
1209 		struct address_space *buffer_mapping = bh->b_page->mapping;
1210 
1211 		spin_lock(&buffer_mapping->private_lock);
1212 		list_del_init(&bh->b_assoc_buffers);
1213 		bh->b_assoc_map = NULL;
1214 		spin_unlock(&buffer_mapping->private_lock);
1215 	}
1216 	__brelse(bh);
1217 }
1218 EXPORT_SYMBOL(__bforget);
1219 
1220 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221 {
1222 	lock_buffer(bh);
1223 	if (buffer_uptodate(bh)) {
1224 		unlock_buffer(bh);
1225 		return bh;
1226 	} else {
1227 		get_bh(bh);
1228 		bh->b_end_io = end_buffer_read_sync;
1229 		submit_bh(REQ_OP_READ, 0, bh);
1230 		wait_on_buffer(bh);
1231 		if (buffer_uptodate(bh))
1232 			return bh;
1233 	}
1234 	brelse(bh);
1235 	return NULL;
1236 }
1237 
1238 /*
1239  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1240  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1241  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1242  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1243  * CPU's LRUs at the same time.
1244  *
1245  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246  * sb_find_get_block().
1247  *
1248  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1249  * a local interrupt disable for that.
1250  */
1251 
1252 #define BH_LRU_SIZE	16
1253 
1254 struct bh_lru {
1255 	struct buffer_head *bhs[BH_LRU_SIZE];
1256 };
1257 
1258 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259 
1260 #ifdef CONFIG_SMP
1261 #define bh_lru_lock()	local_irq_disable()
1262 #define bh_lru_unlock()	local_irq_enable()
1263 #else
1264 #define bh_lru_lock()	preempt_disable()
1265 #define bh_lru_unlock()	preempt_enable()
1266 #endif
1267 
1268 static inline void check_irqs_on(void)
1269 {
1270 #ifdef irqs_disabled
1271 	BUG_ON(irqs_disabled());
1272 #endif
1273 }
1274 
1275 /*
1276  * The LRU management algorithm is dopey-but-simple.  Sorry.
1277  */
1278 static void bh_lru_install(struct buffer_head *bh)
1279 {
1280 	struct buffer_head *evictee = NULL;
1281 
1282 	check_irqs_on();
1283 	bh_lru_lock();
1284 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285 		struct buffer_head *bhs[BH_LRU_SIZE];
1286 		int in;
1287 		int out = 0;
1288 
1289 		get_bh(bh);
1290 		bhs[out++] = bh;
1291 		for (in = 0; in < BH_LRU_SIZE; in++) {
1292 			struct buffer_head *bh2 =
1293 				__this_cpu_read(bh_lrus.bhs[in]);
1294 
1295 			if (bh2 == bh) {
1296 				__brelse(bh2);
1297 			} else {
1298 				if (out >= BH_LRU_SIZE) {
1299 					BUG_ON(evictee != NULL);
1300 					evictee = bh2;
1301 				} else {
1302 					bhs[out++] = bh2;
1303 				}
1304 			}
1305 		}
1306 		while (out < BH_LRU_SIZE)
1307 			bhs[out++] = NULL;
1308 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309 	}
1310 	bh_lru_unlock();
1311 
1312 	if (evictee)
1313 		__brelse(evictee);
1314 }
1315 
1316 /*
1317  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1318  */
1319 static struct buffer_head *
1320 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321 {
1322 	struct buffer_head *ret = NULL;
1323 	unsigned int i;
1324 
1325 	check_irqs_on();
1326 	bh_lru_lock();
1327 	for (i = 0; i < BH_LRU_SIZE; i++) {
1328 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329 
1330 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331 		    bh->b_size == size) {
1332 			if (i) {
1333 				while (i) {
1334 					__this_cpu_write(bh_lrus.bhs[i],
1335 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1336 					i--;
1337 				}
1338 				__this_cpu_write(bh_lrus.bhs[0], bh);
1339 			}
1340 			get_bh(bh);
1341 			ret = bh;
1342 			break;
1343 		}
1344 	}
1345 	bh_lru_unlock();
1346 	return ret;
1347 }
1348 
1349 /*
1350  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1351  * it in the LRU and mark it as accessed.  If it is not present then return
1352  * NULL
1353  */
1354 struct buffer_head *
1355 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356 {
1357 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358 
1359 	if (bh == NULL) {
1360 		/* __find_get_block_slow will mark the page accessed */
1361 		bh = __find_get_block_slow(bdev, block);
1362 		if (bh)
1363 			bh_lru_install(bh);
1364 	} else
1365 		touch_buffer(bh);
1366 
1367 	return bh;
1368 }
1369 EXPORT_SYMBOL(__find_get_block);
1370 
1371 /*
1372  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373  * which corresponds to the passed block_device, block and size. The
1374  * returned buffer has its reference count incremented.
1375  *
1376  * __getblk_gfp() will lock up the machine if grow_dev_page's
1377  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1378  */
1379 struct buffer_head *
1380 __getblk_gfp(struct block_device *bdev, sector_t block,
1381 	     unsigned size, gfp_t gfp)
1382 {
1383 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1384 
1385 	might_sleep();
1386 	if (bh == NULL)
1387 		bh = __getblk_slow(bdev, block, size, gfp);
1388 	return bh;
1389 }
1390 EXPORT_SYMBOL(__getblk_gfp);
1391 
1392 /*
1393  * Do async read-ahead on a buffer..
1394  */
1395 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396 {
1397 	struct buffer_head *bh = __getblk(bdev, block, size);
1398 	if (likely(bh)) {
1399 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400 		brelse(bh);
1401 	}
1402 }
1403 EXPORT_SYMBOL(__breadahead);
1404 
1405 /**
1406  *  __bread_gfp() - reads a specified block and returns the bh
1407  *  @bdev: the block_device to read from
1408  *  @block: number of block
1409  *  @size: size (in bytes) to read
1410  *  @gfp: page allocation flag
1411  *
1412  *  Reads a specified block, and returns buffer head that contains it.
1413  *  The page cache can be allocated from non-movable area
1414  *  not to prevent page migration if you set gfp to zero.
1415  *  It returns NULL if the block was unreadable.
1416  */
1417 struct buffer_head *
1418 __bread_gfp(struct block_device *bdev, sector_t block,
1419 		   unsigned size, gfp_t gfp)
1420 {
1421 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422 
1423 	if (likely(bh) && !buffer_uptodate(bh))
1424 		bh = __bread_slow(bh);
1425 	return bh;
1426 }
1427 EXPORT_SYMBOL(__bread_gfp);
1428 
1429 /*
1430  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431  * This doesn't race because it runs in each cpu either in irq
1432  * or with preempt disabled.
1433  */
1434 static void invalidate_bh_lru(void *arg)
1435 {
1436 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1437 	int i;
1438 
1439 	for (i = 0; i < BH_LRU_SIZE; i++) {
1440 		brelse(b->bhs[i]);
1441 		b->bhs[i] = NULL;
1442 	}
1443 	put_cpu_var(bh_lrus);
1444 }
1445 
1446 static bool has_bh_in_lru(int cpu, void *dummy)
1447 {
1448 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449 	int i;
1450 
1451 	for (i = 0; i < BH_LRU_SIZE; i++) {
1452 		if (b->bhs[i])
1453 			return 1;
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 void invalidate_bh_lrus(void)
1460 {
1461 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462 }
1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464 
1465 void set_bh_page(struct buffer_head *bh,
1466 		struct page *page, unsigned long offset)
1467 {
1468 	bh->b_page = page;
1469 	BUG_ON(offset >= PAGE_SIZE);
1470 	if (PageHighMem(page))
1471 		/*
1472 		 * This catches illegal uses and preserves the offset:
1473 		 */
1474 		bh->b_data = (char *)(0 + offset);
1475 	else
1476 		bh->b_data = page_address(page) + offset;
1477 }
1478 EXPORT_SYMBOL(set_bh_page);
1479 
1480 /*
1481  * Called when truncating a buffer on a page completely.
1482  */
1483 
1484 /* Bits that are cleared during an invalidate */
1485 #define BUFFER_FLAGS_DISCARD \
1486 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487 	 1 << BH_Delay | 1 << BH_Unwritten)
1488 
1489 static void discard_buffer(struct buffer_head * bh)
1490 {
1491 	unsigned long b_state, b_state_old;
1492 
1493 	lock_buffer(bh);
1494 	clear_buffer_dirty(bh);
1495 	bh->b_bdev = NULL;
1496 	b_state = bh->b_state;
1497 	for (;;) {
1498 		b_state_old = cmpxchg(&bh->b_state, b_state,
1499 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1500 		if (b_state_old == b_state)
1501 			break;
1502 		b_state = b_state_old;
1503 	}
1504 	unlock_buffer(bh);
1505 }
1506 
1507 /**
1508  * block_invalidatepage - invalidate part or all of a buffer-backed page
1509  *
1510  * @page: the page which is affected
1511  * @offset: start of the range to invalidate
1512  * @length: length of the range to invalidate
1513  *
1514  * block_invalidatepage() is called when all or part of the page has become
1515  * invalidated by a truncate operation.
1516  *
1517  * block_invalidatepage() does not have to release all buffers, but it must
1518  * ensure that no dirty buffer is left outside @offset and that no I/O
1519  * is underway against any of the blocks which are outside the truncation
1520  * point.  Because the caller is about to free (and possibly reuse) those
1521  * blocks on-disk.
1522  */
1523 void block_invalidatepage(struct page *page, unsigned int offset,
1524 			  unsigned int length)
1525 {
1526 	struct buffer_head *head, *bh, *next;
1527 	unsigned int curr_off = 0;
1528 	unsigned int stop = length + offset;
1529 
1530 	BUG_ON(!PageLocked(page));
1531 	if (!page_has_buffers(page))
1532 		goto out;
1533 
1534 	/*
1535 	 * Check for overflow
1536 	 */
1537 	BUG_ON(stop > PAGE_SIZE || stop < length);
1538 
1539 	head = page_buffers(page);
1540 	bh = head;
1541 	do {
1542 		unsigned int next_off = curr_off + bh->b_size;
1543 		next = bh->b_this_page;
1544 
1545 		/*
1546 		 * Are we still fully in range ?
1547 		 */
1548 		if (next_off > stop)
1549 			goto out;
1550 
1551 		/*
1552 		 * is this block fully invalidated?
1553 		 */
1554 		if (offset <= curr_off)
1555 			discard_buffer(bh);
1556 		curr_off = next_off;
1557 		bh = next;
1558 	} while (bh != head);
1559 
1560 	/*
1561 	 * We release buffers only if the entire page is being invalidated.
1562 	 * The get_block cached value has been unconditionally invalidated,
1563 	 * so real IO is not possible anymore.
1564 	 */
1565 	if (offset == 0)
1566 		try_to_release_page(page, 0);
1567 out:
1568 	return;
1569 }
1570 EXPORT_SYMBOL(block_invalidatepage);
1571 
1572 
1573 /*
1574  * We attach and possibly dirty the buffers atomically wrt
1575  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1576  * is already excluded via the page lock.
1577  */
1578 void create_empty_buffers(struct page *page,
1579 			unsigned long blocksize, unsigned long b_state)
1580 {
1581 	struct buffer_head *bh, *head, *tail;
1582 
1583 	head = alloc_page_buffers(page, blocksize, 1);
1584 	bh = head;
1585 	do {
1586 		bh->b_state |= b_state;
1587 		tail = bh;
1588 		bh = bh->b_this_page;
1589 	} while (bh);
1590 	tail->b_this_page = head;
1591 
1592 	spin_lock(&page->mapping->private_lock);
1593 	if (PageUptodate(page) || PageDirty(page)) {
1594 		bh = head;
1595 		do {
1596 			if (PageDirty(page))
1597 				set_buffer_dirty(bh);
1598 			if (PageUptodate(page))
1599 				set_buffer_uptodate(bh);
1600 			bh = bh->b_this_page;
1601 		} while (bh != head);
1602 	}
1603 	attach_page_buffers(page, head);
1604 	spin_unlock(&page->mapping->private_lock);
1605 }
1606 EXPORT_SYMBOL(create_empty_buffers);
1607 
1608 /*
1609  * We are taking a block for data and we don't want any output from any
1610  * buffer-cache aliases starting from return from that function and
1611  * until the moment when something will explicitly mark the buffer
1612  * dirty (hopefully that will not happen until we will free that block ;-)
1613  * We don't even need to mark it not-uptodate - nobody can expect
1614  * anything from a newly allocated buffer anyway. We used to used
1615  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1616  * don't want to mark the alias unmapped, for example - it would confuse
1617  * anyone who might pick it with bread() afterwards...
1618  *
1619  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1620  * be writeout I/O going on against recently-freed buffers.  We don't
1621  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1622  * only if we really need to.  That happens here.
1623  */
1624 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1625 {
1626 	struct buffer_head *old_bh;
1627 
1628 	might_sleep();
1629 
1630 	old_bh = __find_get_block_slow(bdev, block);
1631 	if (old_bh) {
1632 		clear_buffer_dirty(old_bh);
1633 		wait_on_buffer(old_bh);
1634 		clear_buffer_req(old_bh);
1635 		__brelse(old_bh);
1636 	}
1637 }
1638 EXPORT_SYMBOL(unmap_underlying_metadata);
1639 
1640 /*
1641  * Size is a power-of-two in the range 512..PAGE_SIZE,
1642  * and the case we care about most is PAGE_SIZE.
1643  *
1644  * So this *could* possibly be written with those
1645  * constraints in mind (relevant mostly if some
1646  * architecture has a slow bit-scan instruction)
1647  */
1648 static inline int block_size_bits(unsigned int blocksize)
1649 {
1650 	return ilog2(blocksize);
1651 }
1652 
1653 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1654 {
1655 	BUG_ON(!PageLocked(page));
1656 
1657 	if (!page_has_buffers(page))
1658 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1659 	return page_buffers(page);
1660 }
1661 
1662 /*
1663  * NOTE! All mapped/uptodate combinations are valid:
1664  *
1665  *	Mapped	Uptodate	Meaning
1666  *
1667  *	No	No		"unknown" - must do get_block()
1668  *	No	Yes		"hole" - zero-filled
1669  *	Yes	No		"allocated" - allocated on disk, not read in
1670  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1671  *
1672  * "Dirty" is valid only with the last case (mapped+uptodate).
1673  */
1674 
1675 /*
1676  * While block_write_full_page is writing back the dirty buffers under
1677  * the page lock, whoever dirtied the buffers may decide to clean them
1678  * again at any time.  We handle that by only looking at the buffer
1679  * state inside lock_buffer().
1680  *
1681  * If block_write_full_page() is called for regular writeback
1682  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1683  * locked buffer.   This only can happen if someone has written the buffer
1684  * directly, with submit_bh().  At the address_space level PageWriteback
1685  * prevents this contention from occurring.
1686  *
1687  * If block_write_full_page() is called with wbc->sync_mode ==
1688  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1689  * causes the writes to be flagged as synchronous writes.
1690  */
1691 int __block_write_full_page(struct inode *inode, struct page *page,
1692 			get_block_t *get_block, struct writeback_control *wbc,
1693 			bh_end_io_t *handler)
1694 {
1695 	int err;
1696 	sector_t block;
1697 	sector_t last_block;
1698 	struct buffer_head *bh, *head;
1699 	unsigned int blocksize, bbits;
1700 	int nr_underway = 0;
1701 	int write_flags = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : 0);
1702 
1703 	head = create_page_buffers(page, inode,
1704 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1705 
1706 	/*
1707 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1708 	 * here, and the (potentially unmapped) buffers may become dirty at
1709 	 * any time.  If a buffer becomes dirty here after we've inspected it
1710 	 * then we just miss that fact, and the page stays dirty.
1711 	 *
1712 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1713 	 * handle that here by just cleaning them.
1714 	 */
1715 
1716 	bh = head;
1717 	blocksize = bh->b_size;
1718 	bbits = block_size_bits(blocksize);
1719 
1720 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1721 	last_block = (i_size_read(inode) - 1) >> bbits;
1722 
1723 	/*
1724 	 * Get all the dirty buffers mapped to disk addresses and
1725 	 * handle any aliases from the underlying blockdev's mapping.
1726 	 */
1727 	do {
1728 		if (block > last_block) {
1729 			/*
1730 			 * mapped buffers outside i_size will occur, because
1731 			 * this page can be outside i_size when there is a
1732 			 * truncate in progress.
1733 			 */
1734 			/*
1735 			 * The buffer was zeroed by block_write_full_page()
1736 			 */
1737 			clear_buffer_dirty(bh);
1738 			set_buffer_uptodate(bh);
1739 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1740 			   buffer_dirty(bh)) {
1741 			WARN_ON(bh->b_size != blocksize);
1742 			err = get_block(inode, block, bh, 1);
1743 			if (err)
1744 				goto recover;
1745 			clear_buffer_delay(bh);
1746 			if (buffer_new(bh)) {
1747 				/* blockdev mappings never come here */
1748 				clear_buffer_new(bh);
1749 				unmap_underlying_metadata(bh->b_bdev,
1750 							bh->b_blocknr);
1751 			}
1752 		}
1753 		bh = bh->b_this_page;
1754 		block++;
1755 	} while (bh != head);
1756 
1757 	do {
1758 		if (!buffer_mapped(bh))
1759 			continue;
1760 		/*
1761 		 * If it's a fully non-blocking write attempt and we cannot
1762 		 * lock the buffer then redirty the page.  Note that this can
1763 		 * potentially cause a busy-wait loop from writeback threads
1764 		 * and kswapd activity, but those code paths have their own
1765 		 * higher-level throttling.
1766 		 */
1767 		if (wbc->sync_mode != WB_SYNC_NONE) {
1768 			lock_buffer(bh);
1769 		} else if (!trylock_buffer(bh)) {
1770 			redirty_page_for_writepage(wbc, page);
1771 			continue;
1772 		}
1773 		if (test_clear_buffer_dirty(bh)) {
1774 			mark_buffer_async_write_endio(bh, handler);
1775 		} else {
1776 			unlock_buffer(bh);
1777 		}
1778 	} while ((bh = bh->b_this_page) != head);
1779 
1780 	/*
1781 	 * The page and its buffers are protected by PageWriteback(), so we can
1782 	 * drop the bh refcounts early.
1783 	 */
1784 	BUG_ON(PageWriteback(page));
1785 	set_page_writeback(page);
1786 
1787 	do {
1788 		struct buffer_head *next = bh->b_this_page;
1789 		if (buffer_async_write(bh)) {
1790 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1791 			nr_underway++;
1792 		}
1793 		bh = next;
1794 	} while (bh != head);
1795 	unlock_page(page);
1796 
1797 	err = 0;
1798 done:
1799 	if (nr_underway == 0) {
1800 		/*
1801 		 * The page was marked dirty, but the buffers were
1802 		 * clean.  Someone wrote them back by hand with
1803 		 * ll_rw_block/submit_bh.  A rare case.
1804 		 */
1805 		end_page_writeback(page);
1806 
1807 		/*
1808 		 * The page and buffer_heads can be released at any time from
1809 		 * here on.
1810 		 */
1811 	}
1812 	return err;
1813 
1814 recover:
1815 	/*
1816 	 * ENOSPC, or some other error.  We may already have added some
1817 	 * blocks to the file, so we need to write these out to avoid
1818 	 * exposing stale data.
1819 	 * The page is currently locked and not marked for writeback
1820 	 */
1821 	bh = head;
1822 	/* Recovery: lock and submit the mapped buffers */
1823 	do {
1824 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1825 		    !buffer_delay(bh)) {
1826 			lock_buffer(bh);
1827 			mark_buffer_async_write_endio(bh, handler);
1828 		} else {
1829 			/*
1830 			 * The buffer may have been set dirty during
1831 			 * attachment to a dirty page.
1832 			 */
1833 			clear_buffer_dirty(bh);
1834 		}
1835 	} while ((bh = bh->b_this_page) != head);
1836 	SetPageError(page);
1837 	BUG_ON(PageWriteback(page));
1838 	mapping_set_error(page->mapping, err);
1839 	set_page_writeback(page);
1840 	do {
1841 		struct buffer_head *next = bh->b_this_page;
1842 		if (buffer_async_write(bh)) {
1843 			clear_buffer_dirty(bh);
1844 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1845 			nr_underway++;
1846 		}
1847 		bh = next;
1848 	} while (bh != head);
1849 	unlock_page(page);
1850 	goto done;
1851 }
1852 EXPORT_SYMBOL(__block_write_full_page);
1853 
1854 /*
1855  * If a page has any new buffers, zero them out here, and mark them uptodate
1856  * and dirty so they'll be written out (in order to prevent uninitialised
1857  * block data from leaking). And clear the new bit.
1858  */
1859 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1860 {
1861 	unsigned int block_start, block_end;
1862 	struct buffer_head *head, *bh;
1863 
1864 	BUG_ON(!PageLocked(page));
1865 	if (!page_has_buffers(page))
1866 		return;
1867 
1868 	bh = head = page_buffers(page);
1869 	block_start = 0;
1870 	do {
1871 		block_end = block_start + bh->b_size;
1872 
1873 		if (buffer_new(bh)) {
1874 			if (block_end > from && block_start < to) {
1875 				if (!PageUptodate(page)) {
1876 					unsigned start, size;
1877 
1878 					start = max(from, block_start);
1879 					size = min(to, block_end) - start;
1880 
1881 					zero_user(page, start, size);
1882 					set_buffer_uptodate(bh);
1883 				}
1884 
1885 				clear_buffer_new(bh);
1886 				mark_buffer_dirty(bh);
1887 			}
1888 		}
1889 
1890 		block_start = block_end;
1891 		bh = bh->b_this_page;
1892 	} while (bh != head);
1893 }
1894 EXPORT_SYMBOL(page_zero_new_buffers);
1895 
1896 static void
1897 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1898 		struct iomap *iomap)
1899 {
1900 	loff_t offset = block << inode->i_blkbits;
1901 
1902 	bh->b_bdev = iomap->bdev;
1903 
1904 	/*
1905 	 * Block points to offset in file we need to map, iomap contains
1906 	 * the offset at which the map starts. If the map ends before the
1907 	 * current block, then do not map the buffer and let the caller
1908 	 * handle it.
1909 	 */
1910 	BUG_ON(offset >= iomap->offset + iomap->length);
1911 
1912 	switch (iomap->type) {
1913 	case IOMAP_HOLE:
1914 		/*
1915 		 * If the buffer is not up to date or beyond the current EOF,
1916 		 * we need to mark it as new to ensure sub-block zeroing is
1917 		 * executed if necessary.
1918 		 */
1919 		if (!buffer_uptodate(bh) ||
1920 		    (offset >= i_size_read(inode)))
1921 			set_buffer_new(bh);
1922 		break;
1923 	case IOMAP_DELALLOC:
1924 		if (!buffer_uptodate(bh) ||
1925 		    (offset >= i_size_read(inode)))
1926 			set_buffer_new(bh);
1927 		set_buffer_uptodate(bh);
1928 		set_buffer_mapped(bh);
1929 		set_buffer_delay(bh);
1930 		break;
1931 	case IOMAP_UNWRITTEN:
1932 		/*
1933 		 * For unwritten regions, we always need to ensure that
1934 		 * sub-block writes cause the regions in the block we are not
1935 		 * writing to are zeroed. Set the buffer as new to ensure this.
1936 		 */
1937 		set_buffer_new(bh);
1938 		set_buffer_unwritten(bh);
1939 		/* FALLTHRU */
1940 	case IOMAP_MAPPED:
1941 		if (offset >= i_size_read(inode))
1942 			set_buffer_new(bh);
1943 		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1944 				((offset - iomap->offset) >> inode->i_blkbits);
1945 		set_buffer_mapped(bh);
1946 		break;
1947 	}
1948 }
1949 
1950 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1951 		get_block_t *get_block, struct iomap *iomap)
1952 {
1953 	unsigned from = pos & (PAGE_SIZE - 1);
1954 	unsigned to = from + len;
1955 	struct inode *inode = page->mapping->host;
1956 	unsigned block_start, block_end;
1957 	sector_t block;
1958 	int err = 0;
1959 	unsigned blocksize, bbits;
1960 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1961 
1962 	BUG_ON(!PageLocked(page));
1963 	BUG_ON(from > PAGE_SIZE);
1964 	BUG_ON(to > PAGE_SIZE);
1965 	BUG_ON(from > to);
1966 
1967 	head = create_page_buffers(page, inode, 0);
1968 	blocksize = head->b_size;
1969 	bbits = block_size_bits(blocksize);
1970 
1971 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1972 
1973 	for(bh = head, block_start = 0; bh != head || !block_start;
1974 	    block++, block_start=block_end, bh = bh->b_this_page) {
1975 		block_end = block_start + blocksize;
1976 		if (block_end <= from || block_start >= to) {
1977 			if (PageUptodate(page)) {
1978 				if (!buffer_uptodate(bh))
1979 					set_buffer_uptodate(bh);
1980 			}
1981 			continue;
1982 		}
1983 		if (buffer_new(bh))
1984 			clear_buffer_new(bh);
1985 		if (!buffer_mapped(bh)) {
1986 			WARN_ON(bh->b_size != blocksize);
1987 			if (get_block) {
1988 				err = get_block(inode, block, bh, 1);
1989 				if (err)
1990 					break;
1991 			} else {
1992 				iomap_to_bh(inode, block, bh, iomap);
1993 			}
1994 
1995 			if (buffer_new(bh)) {
1996 				unmap_underlying_metadata(bh->b_bdev,
1997 							bh->b_blocknr);
1998 				if (PageUptodate(page)) {
1999 					clear_buffer_new(bh);
2000 					set_buffer_uptodate(bh);
2001 					mark_buffer_dirty(bh);
2002 					continue;
2003 				}
2004 				if (block_end > to || block_start < from)
2005 					zero_user_segments(page,
2006 						to, block_end,
2007 						block_start, from);
2008 				continue;
2009 			}
2010 		}
2011 		if (PageUptodate(page)) {
2012 			if (!buffer_uptodate(bh))
2013 				set_buffer_uptodate(bh);
2014 			continue;
2015 		}
2016 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2017 		    !buffer_unwritten(bh) &&
2018 		     (block_start < from || block_end > to)) {
2019 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2020 			*wait_bh++=bh;
2021 		}
2022 	}
2023 	/*
2024 	 * If we issued read requests - let them complete.
2025 	 */
2026 	while(wait_bh > wait) {
2027 		wait_on_buffer(*--wait_bh);
2028 		if (!buffer_uptodate(*wait_bh))
2029 			err = -EIO;
2030 	}
2031 	if (unlikely(err))
2032 		page_zero_new_buffers(page, from, to);
2033 	return err;
2034 }
2035 
2036 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2037 		get_block_t *get_block)
2038 {
2039 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2040 }
2041 EXPORT_SYMBOL(__block_write_begin);
2042 
2043 static int __block_commit_write(struct inode *inode, struct page *page,
2044 		unsigned from, unsigned to)
2045 {
2046 	unsigned block_start, block_end;
2047 	int partial = 0;
2048 	unsigned blocksize;
2049 	struct buffer_head *bh, *head;
2050 
2051 	bh = head = page_buffers(page);
2052 	blocksize = bh->b_size;
2053 
2054 	block_start = 0;
2055 	do {
2056 		block_end = block_start + blocksize;
2057 		if (block_end <= from || block_start >= to) {
2058 			if (!buffer_uptodate(bh))
2059 				partial = 1;
2060 		} else {
2061 			set_buffer_uptodate(bh);
2062 			mark_buffer_dirty(bh);
2063 		}
2064 		clear_buffer_new(bh);
2065 
2066 		block_start = block_end;
2067 		bh = bh->b_this_page;
2068 	} while (bh != head);
2069 
2070 	/*
2071 	 * If this is a partial write which happened to make all buffers
2072 	 * uptodate then we can optimize away a bogus readpage() for
2073 	 * the next read(). Here we 'discover' whether the page went
2074 	 * uptodate as a result of this (potentially partial) write.
2075 	 */
2076 	if (!partial)
2077 		SetPageUptodate(page);
2078 	return 0;
2079 }
2080 
2081 /*
2082  * block_write_begin takes care of the basic task of block allocation and
2083  * bringing partial write blocks uptodate first.
2084  *
2085  * The filesystem needs to handle block truncation upon failure.
2086  */
2087 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2088 		unsigned flags, struct page **pagep, get_block_t *get_block)
2089 {
2090 	pgoff_t index = pos >> PAGE_SHIFT;
2091 	struct page *page;
2092 	int status;
2093 
2094 	page = grab_cache_page_write_begin(mapping, index, flags);
2095 	if (!page)
2096 		return -ENOMEM;
2097 
2098 	status = __block_write_begin(page, pos, len, get_block);
2099 	if (unlikely(status)) {
2100 		unlock_page(page);
2101 		put_page(page);
2102 		page = NULL;
2103 	}
2104 
2105 	*pagep = page;
2106 	return status;
2107 }
2108 EXPORT_SYMBOL(block_write_begin);
2109 
2110 int block_write_end(struct file *file, struct address_space *mapping,
2111 			loff_t pos, unsigned len, unsigned copied,
2112 			struct page *page, void *fsdata)
2113 {
2114 	struct inode *inode = mapping->host;
2115 	unsigned start;
2116 
2117 	start = pos & (PAGE_SIZE - 1);
2118 
2119 	if (unlikely(copied < len)) {
2120 		/*
2121 		 * The buffers that were written will now be uptodate, so we
2122 		 * don't have to worry about a readpage reading them and
2123 		 * overwriting a partial write. However if we have encountered
2124 		 * a short write and only partially written into a buffer, it
2125 		 * will not be marked uptodate, so a readpage might come in and
2126 		 * destroy our partial write.
2127 		 *
2128 		 * Do the simplest thing, and just treat any short write to a
2129 		 * non uptodate page as a zero-length write, and force the
2130 		 * caller to redo the whole thing.
2131 		 */
2132 		if (!PageUptodate(page))
2133 			copied = 0;
2134 
2135 		page_zero_new_buffers(page, start+copied, start+len);
2136 	}
2137 	flush_dcache_page(page);
2138 
2139 	/* This could be a short (even 0-length) commit */
2140 	__block_commit_write(inode, page, start, start+copied);
2141 
2142 	return copied;
2143 }
2144 EXPORT_SYMBOL(block_write_end);
2145 
2146 int generic_write_end(struct file *file, struct address_space *mapping,
2147 			loff_t pos, unsigned len, unsigned copied,
2148 			struct page *page, void *fsdata)
2149 {
2150 	struct inode *inode = mapping->host;
2151 	loff_t old_size = inode->i_size;
2152 	int i_size_changed = 0;
2153 
2154 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2155 
2156 	/*
2157 	 * No need to use i_size_read() here, the i_size
2158 	 * cannot change under us because we hold i_mutex.
2159 	 *
2160 	 * But it's important to update i_size while still holding page lock:
2161 	 * page writeout could otherwise come in and zero beyond i_size.
2162 	 */
2163 	if (pos+copied > inode->i_size) {
2164 		i_size_write(inode, pos+copied);
2165 		i_size_changed = 1;
2166 	}
2167 
2168 	unlock_page(page);
2169 	put_page(page);
2170 
2171 	if (old_size < pos)
2172 		pagecache_isize_extended(inode, old_size, pos);
2173 	/*
2174 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2175 	 * makes the holding time of page lock longer. Second, it forces lock
2176 	 * ordering of page lock and transaction start for journaling
2177 	 * filesystems.
2178 	 */
2179 	if (i_size_changed)
2180 		mark_inode_dirty(inode);
2181 
2182 	return copied;
2183 }
2184 EXPORT_SYMBOL(generic_write_end);
2185 
2186 /*
2187  * block_is_partially_uptodate checks whether buffers within a page are
2188  * uptodate or not.
2189  *
2190  * Returns true if all buffers which correspond to a file portion
2191  * we want to read are uptodate.
2192  */
2193 int block_is_partially_uptodate(struct page *page, unsigned long from,
2194 					unsigned long count)
2195 {
2196 	unsigned block_start, block_end, blocksize;
2197 	unsigned to;
2198 	struct buffer_head *bh, *head;
2199 	int ret = 1;
2200 
2201 	if (!page_has_buffers(page))
2202 		return 0;
2203 
2204 	head = page_buffers(page);
2205 	blocksize = head->b_size;
2206 	to = min_t(unsigned, PAGE_SIZE - from, count);
2207 	to = from + to;
2208 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2209 		return 0;
2210 
2211 	bh = head;
2212 	block_start = 0;
2213 	do {
2214 		block_end = block_start + blocksize;
2215 		if (block_end > from && block_start < to) {
2216 			if (!buffer_uptodate(bh)) {
2217 				ret = 0;
2218 				break;
2219 			}
2220 			if (block_end >= to)
2221 				break;
2222 		}
2223 		block_start = block_end;
2224 		bh = bh->b_this_page;
2225 	} while (bh != head);
2226 
2227 	return ret;
2228 }
2229 EXPORT_SYMBOL(block_is_partially_uptodate);
2230 
2231 /*
2232  * Generic "read page" function for block devices that have the normal
2233  * get_block functionality. This is most of the block device filesystems.
2234  * Reads the page asynchronously --- the unlock_buffer() and
2235  * set/clear_buffer_uptodate() functions propagate buffer state into the
2236  * page struct once IO has completed.
2237  */
2238 int block_read_full_page(struct page *page, get_block_t *get_block)
2239 {
2240 	struct inode *inode = page->mapping->host;
2241 	sector_t iblock, lblock;
2242 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2243 	unsigned int blocksize, bbits;
2244 	int nr, i;
2245 	int fully_mapped = 1;
2246 
2247 	head = create_page_buffers(page, inode, 0);
2248 	blocksize = head->b_size;
2249 	bbits = block_size_bits(blocksize);
2250 
2251 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2252 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2253 	bh = head;
2254 	nr = 0;
2255 	i = 0;
2256 
2257 	do {
2258 		if (buffer_uptodate(bh))
2259 			continue;
2260 
2261 		if (!buffer_mapped(bh)) {
2262 			int err = 0;
2263 
2264 			fully_mapped = 0;
2265 			if (iblock < lblock) {
2266 				WARN_ON(bh->b_size != blocksize);
2267 				err = get_block(inode, iblock, bh, 0);
2268 				if (err)
2269 					SetPageError(page);
2270 			}
2271 			if (!buffer_mapped(bh)) {
2272 				zero_user(page, i * blocksize, blocksize);
2273 				if (!err)
2274 					set_buffer_uptodate(bh);
2275 				continue;
2276 			}
2277 			/*
2278 			 * get_block() might have updated the buffer
2279 			 * synchronously
2280 			 */
2281 			if (buffer_uptodate(bh))
2282 				continue;
2283 		}
2284 		arr[nr++] = bh;
2285 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2286 
2287 	if (fully_mapped)
2288 		SetPageMappedToDisk(page);
2289 
2290 	if (!nr) {
2291 		/*
2292 		 * All buffers are uptodate - we can set the page uptodate
2293 		 * as well. But not if get_block() returned an error.
2294 		 */
2295 		if (!PageError(page))
2296 			SetPageUptodate(page);
2297 		unlock_page(page);
2298 		return 0;
2299 	}
2300 
2301 	/* Stage two: lock the buffers */
2302 	for (i = 0; i < nr; i++) {
2303 		bh = arr[i];
2304 		lock_buffer(bh);
2305 		mark_buffer_async_read(bh);
2306 	}
2307 
2308 	/*
2309 	 * Stage 3: start the IO.  Check for uptodateness
2310 	 * inside the buffer lock in case another process reading
2311 	 * the underlying blockdev brought it uptodate (the sct fix).
2312 	 */
2313 	for (i = 0; i < nr; i++) {
2314 		bh = arr[i];
2315 		if (buffer_uptodate(bh))
2316 			end_buffer_async_read(bh, 1);
2317 		else
2318 			submit_bh(REQ_OP_READ, 0, bh);
2319 	}
2320 	return 0;
2321 }
2322 EXPORT_SYMBOL(block_read_full_page);
2323 
2324 /* utility function for filesystems that need to do work on expanding
2325  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2326  * deal with the hole.
2327  */
2328 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2329 {
2330 	struct address_space *mapping = inode->i_mapping;
2331 	struct page *page;
2332 	void *fsdata;
2333 	int err;
2334 
2335 	err = inode_newsize_ok(inode, size);
2336 	if (err)
2337 		goto out;
2338 
2339 	err = pagecache_write_begin(NULL, mapping, size, 0,
2340 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2341 				&page, &fsdata);
2342 	if (err)
2343 		goto out;
2344 
2345 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2346 	BUG_ON(err > 0);
2347 
2348 out:
2349 	return err;
2350 }
2351 EXPORT_SYMBOL(generic_cont_expand_simple);
2352 
2353 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2354 			    loff_t pos, loff_t *bytes)
2355 {
2356 	struct inode *inode = mapping->host;
2357 	unsigned blocksize = 1 << inode->i_blkbits;
2358 	struct page *page;
2359 	void *fsdata;
2360 	pgoff_t index, curidx;
2361 	loff_t curpos;
2362 	unsigned zerofrom, offset, len;
2363 	int err = 0;
2364 
2365 	index = pos >> PAGE_SHIFT;
2366 	offset = pos & ~PAGE_MASK;
2367 
2368 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2369 		zerofrom = curpos & ~PAGE_MASK;
2370 		if (zerofrom & (blocksize-1)) {
2371 			*bytes |= (blocksize-1);
2372 			(*bytes)++;
2373 		}
2374 		len = PAGE_SIZE - zerofrom;
2375 
2376 		err = pagecache_write_begin(file, mapping, curpos, len,
2377 						AOP_FLAG_UNINTERRUPTIBLE,
2378 						&page, &fsdata);
2379 		if (err)
2380 			goto out;
2381 		zero_user(page, zerofrom, len);
2382 		err = pagecache_write_end(file, mapping, curpos, len, len,
2383 						page, fsdata);
2384 		if (err < 0)
2385 			goto out;
2386 		BUG_ON(err != len);
2387 		err = 0;
2388 
2389 		balance_dirty_pages_ratelimited(mapping);
2390 
2391 		if (unlikely(fatal_signal_pending(current))) {
2392 			err = -EINTR;
2393 			goto out;
2394 		}
2395 	}
2396 
2397 	/* page covers the boundary, find the boundary offset */
2398 	if (index == curidx) {
2399 		zerofrom = curpos & ~PAGE_MASK;
2400 		/* if we will expand the thing last block will be filled */
2401 		if (offset <= zerofrom) {
2402 			goto out;
2403 		}
2404 		if (zerofrom & (blocksize-1)) {
2405 			*bytes |= (blocksize-1);
2406 			(*bytes)++;
2407 		}
2408 		len = offset - zerofrom;
2409 
2410 		err = pagecache_write_begin(file, mapping, curpos, len,
2411 						AOP_FLAG_UNINTERRUPTIBLE,
2412 						&page, &fsdata);
2413 		if (err)
2414 			goto out;
2415 		zero_user(page, zerofrom, len);
2416 		err = pagecache_write_end(file, mapping, curpos, len, len,
2417 						page, fsdata);
2418 		if (err < 0)
2419 			goto out;
2420 		BUG_ON(err != len);
2421 		err = 0;
2422 	}
2423 out:
2424 	return err;
2425 }
2426 
2427 /*
2428  * For moronic filesystems that do not allow holes in file.
2429  * We may have to extend the file.
2430  */
2431 int cont_write_begin(struct file *file, struct address_space *mapping,
2432 			loff_t pos, unsigned len, unsigned flags,
2433 			struct page **pagep, void **fsdata,
2434 			get_block_t *get_block, loff_t *bytes)
2435 {
2436 	struct inode *inode = mapping->host;
2437 	unsigned blocksize = 1 << inode->i_blkbits;
2438 	unsigned zerofrom;
2439 	int err;
2440 
2441 	err = cont_expand_zero(file, mapping, pos, bytes);
2442 	if (err)
2443 		return err;
2444 
2445 	zerofrom = *bytes & ~PAGE_MASK;
2446 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2447 		*bytes |= (blocksize-1);
2448 		(*bytes)++;
2449 	}
2450 
2451 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2452 }
2453 EXPORT_SYMBOL(cont_write_begin);
2454 
2455 int block_commit_write(struct page *page, unsigned from, unsigned to)
2456 {
2457 	struct inode *inode = page->mapping->host;
2458 	__block_commit_write(inode,page,from,to);
2459 	return 0;
2460 }
2461 EXPORT_SYMBOL(block_commit_write);
2462 
2463 /*
2464  * block_page_mkwrite() is not allowed to change the file size as it gets
2465  * called from a page fault handler when a page is first dirtied. Hence we must
2466  * be careful to check for EOF conditions here. We set the page up correctly
2467  * for a written page which means we get ENOSPC checking when writing into
2468  * holes and correct delalloc and unwritten extent mapping on filesystems that
2469  * support these features.
2470  *
2471  * We are not allowed to take the i_mutex here so we have to play games to
2472  * protect against truncate races as the page could now be beyond EOF.  Because
2473  * truncate writes the inode size before removing pages, once we have the
2474  * page lock we can determine safely if the page is beyond EOF. If it is not
2475  * beyond EOF, then the page is guaranteed safe against truncation until we
2476  * unlock the page.
2477  *
2478  * Direct callers of this function should protect against filesystem freezing
2479  * using sb_start_pagefault() - sb_end_pagefault() functions.
2480  */
2481 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2482 			 get_block_t get_block)
2483 {
2484 	struct page *page = vmf->page;
2485 	struct inode *inode = file_inode(vma->vm_file);
2486 	unsigned long end;
2487 	loff_t size;
2488 	int ret;
2489 
2490 	lock_page(page);
2491 	size = i_size_read(inode);
2492 	if ((page->mapping != inode->i_mapping) ||
2493 	    (page_offset(page) > size)) {
2494 		/* We overload EFAULT to mean page got truncated */
2495 		ret = -EFAULT;
2496 		goto out_unlock;
2497 	}
2498 
2499 	/* page is wholly or partially inside EOF */
2500 	if (((page->index + 1) << PAGE_SHIFT) > size)
2501 		end = size & ~PAGE_MASK;
2502 	else
2503 		end = PAGE_SIZE;
2504 
2505 	ret = __block_write_begin(page, 0, end, get_block);
2506 	if (!ret)
2507 		ret = block_commit_write(page, 0, end);
2508 
2509 	if (unlikely(ret < 0))
2510 		goto out_unlock;
2511 	set_page_dirty(page);
2512 	wait_for_stable_page(page);
2513 	return 0;
2514 out_unlock:
2515 	unlock_page(page);
2516 	return ret;
2517 }
2518 EXPORT_SYMBOL(block_page_mkwrite);
2519 
2520 /*
2521  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2522  * immediately, while under the page lock.  So it needs a special end_io
2523  * handler which does not touch the bh after unlocking it.
2524  */
2525 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2526 {
2527 	__end_buffer_read_notouch(bh, uptodate);
2528 }
2529 
2530 /*
2531  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2532  * the page (converting it to circular linked list and taking care of page
2533  * dirty races).
2534  */
2535 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2536 {
2537 	struct buffer_head *bh;
2538 
2539 	BUG_ON(!PageLocked(page));
2540 
2541 	spin_lock(&page->mapping->private_lock);
2542 	bh = head;
2543 	do {
2544 		if (PageDirty(page))
2545 			set_buffer_dirty(bh);
2546 		if (!bh->b_this_page)
2547 			bh->b_this_page = head;
2548 		bh = bh->b_this_page;
2549 	} while (bh != head);
2550 	attach_page_buffers(page, head);
2551 	spin_unlock(&page->mapping->private_lock);
2552 }
2553 
2554 /*
2555  * On entry, the page is fully not uptodate.
2556  * On exit the page is fully uptodate in the areas outside (from,to)
2557  * The filesystem needs to handle block truncation upon failure.
2558  */
2559 int nobh_write_begin(struct address_space *mapping,
2560 			loff_t pos, unsigned len, unsigned flags,
2561 			struct page **pagep, void **fsdata,
2562 			get_block_t *get_block)
2563 {
2564 	struct inode *inode = mapping->host;
2565 	const unsigned blkbits = inode->i_blkbits;
2566 	const unsigned blocksize = 1 << blkbits;
2567 	struct buffer_head *head, *bh;
2568 	struct page *page;
2569 	pgoff_t index;
2570 	unsigned from, to;
2571 	unsigned block_in_page;
2572 	unsigned block_start, block_end;
2573 	sector_t block_in_file;
2574 	int nr_reads = 0;
2575 	int ret = 0;
2576 	int is_mapped_to_disk = 1;
2577 
2578 	index = pos >> PAGE_SHIFT;
2579 	from = pos & (PAGE_SIZE - 1);
2580 	to = from + len;
2581 
2582 	page = grab_cache_page_write_begin(mapping, index, flags);
2583 	if (!page)
2584 		return -ENOMEM;
2585 	*pagep = page;
2586 	*fsdata = NULL;
2587 
2588 	if (page_has_buffers(page)) {
2589 		ret = __block_write_begin(page, pos, len, get_block);
2590 		if (unlikely(ret))
2591 			goto out_release;
2592 		return ret;
2593 	}
2594 
2595 	if (PageMappedToDisk(page))
2596 		return 0;
2597 
2598 	/*
2599 	 * Allocate buffers so that we can keep track of state, and potentially
2600 	 * attach them to the page if an error occurs. In the common case of
2601 	 * no error, they will just be freed again without ever being attached
2602 	 * to the page (which is all OK, because we're under the page lock).
2603 	 *
2604 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2605 	 * than the circular one we're used to.
2606 	 */
2607 	head = alloc_page_buffers(page, blocksize, 0);
2608 	if (!head) {
2609 		ret = -ENOMEM;
2610 		goto out_release;
2611 	}
2612 
2613 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2614 
2615 	/*
2616 	 * We loop across all blocks in the page, whether or not they are
2617 	 * part of the affected region.  This is so we can discover if the
2618 	 * page is fully mapped-to-disk.
2619 	 */
2620 	for (block_start = 0, block_in_page = 0, bh = head;
2621 		  block_start < PAGE_SIZE;
2622 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2623 		int create;
2624 
2625 		block_end = block_start + blocksize;
2626 		bh->b_state = 0;
2627 		create = 1;
2628 		if (block_start >= to)
2629 			create = 0;
2630 		ret = get_block(inode, block_in_file + block_in_page,
2631 					bh, create);
2632 		if (ret)
2633 			goto failed;
2634 		if (!buffer_mapped(bh))
2635 			is_mapped_to_disk = 0;
2636 		if (buffer_new(bh))
2637 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2638 		if (PageUptodate(page)) {
2639 			set_buffer_uptodate(bh);
2640 			continue;
2641 		}
2642 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2643 			zero_user_segments(page, block_start, from,
2644 							to, block_end);
2645 			continue;
2646 		}
2647 		if (buffer_uptodate(bh))
2648 			continue;	/* reiserfs does this */
2649 		if (block_start < from || block_end > to) {
2650 			lock_buffer(bh);
2651 			bh->b_end_io = end_buffer_read_nobh;
2652 			submit_bh(REQ_OP_READ, 0, bh);
2653 			nr_reads++;
2654 		}
2655 	}
2656 
2657 	if (nr_reads) {
2658 		/*
2659 		 * The page is locked, so these buffers are protected from
2660 		 * any VM or truncate activity.  Hence we don't need to care
2661 		 * for the buffer_head refcounts.
2662 		 */
2663 		for (bh = head; bh; bh = bh->b_this_page) {
2664 			wait_on_buffer(bh);
2665 			if (!buffer_uptodate(bh))
2666 				ret = -EIO;
2667 		}
2668 		if (ret)
2669 			goto failed;
2670 	}
2671 
2672 	if (is_mapped_to_disk)
2673 		SetPageMappedToDisk(page);
2674 
2675 	*fsdata = head; /* to be released by nobh_write_end */
2676 
2677 	return 0;
2678 
2679 failed:
2680 	BUG_ON(!ret);
2681 	/*
2682 	 * Error recovery is a bit difficult. We need to zero out blocks that
2683 	 * were newly allocated, and dirty them to ensure they get written out.
2684 	 * Buffers need to be attached to the page at this point, otherwise
2685 	 * the handling of potential IO errors during writeout would be hard
2686 	 * (could try doing synchronous writeout, but what if that fails too?)
2687 	 */
2688 	attach_nobh_buffers(page, head);
2689 	page_zero_new_buffers(page, from, to);
2690 
2691 out_release:
2692 	unlock_page(page);
2693 	put_page(page);
2694 	*pagep = NULL;
2695 
2696 	return ret;
2697 }
2698 EXPORT_SYMBOL(nobh_write_begin);
2699 
2700 int nobh_write_end(struct file *file, struct address_space *mapping,
2701 			loff_t pos, unsigned len, unsigned copied,
2702 			struct page *page, void *fsdata)
2703 {
2704 	struct inode *inode = page->mapping->host;
2705 	struct buffer_head *head = fsdata;
2706 	struct buffer_head *bh;
2707 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2708 
2709 	if (unlikely(copied < len) && head)
2710 		attach_nobh_buffers(page, head);
2711 	if (page_has_buffers(page))
2712 		return generic_write_end(file, mapping, pos, len,
2713 					copied, page, fsdata);
2714 
2715 	SetPageUptodate(page);
2716 	set_page_dirty(page);
2717 	if (pos+copied > inode->i_size) {
2718 		i_size_write(inode, pos+copied);
2719 		mark_inode_dirty(inode);
2720 	}
2721 
2722 	unlock_page(page);
2723 	put_page(page);
2724 
2725 	while (head) {
2726 		bh = head;
2727 		head = head->b_this_page;
2728 		free_buffer_head(bh);
2729 	}
2730 
2731 	return copied;
2732 }
2733 EXPORT_SYMBOL(nobh_write_end);
2734 
2735 /*
2736  * nobh_writepage() - based on block_full_write_page() except
2737  * that it tries to operate without attaching bufferheads to
2738  * the page.
2739  */
2740 int nobh_writepage(struct page *page, get_block_t *get_block,
2741 			struct writeback_control *wbc)
2742 {
2743 	struct inode * const inode = page->mapping->host;
2744 	loff_t i_size = i_size_read(inode);
2745 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2746 	unsigned offset;
2747 	int ret;
2748 
2749 	/* Is the page fully inside i_size? */
2750 	if (page->index < end_index)
2751 		goto out;
2752 
2753 	/* Is the page fully outside i_size? (truncate in progress) */
2754 	offset = i_size & (PAGE_SIZE-1);
2755 	if (page->index >= end_index+1 || !offset) {
2756 		/*
2757 		 * The page may have dirty, unmapped buffers.  For example,
2758 		 * they may have been added in ext3_writepage().  Make them
2759 		 * freeable here, so the page does not leak.
2760 		 */
2761 #if 0
2762 		/* Not really sure about this  - do we need this ? */
2763 		if (page->mapping->a_ops->invalidatepage)
2764 			page->mapping->a_ops->invalidatepage(page, offset);
2765 #endif
2766 		unlock_page(page);
2767 		return 0; /* don't care */
2768 	}
2769 
2770 	/*
2771 	 * The page straddles i_size.  It must be zeroed out on each and every
2772 	 * writepage invocation because it may be mmapped.  "A file is mapped
2773 	 * in multiples of the page size.  For a file that is not a multiple of
2774 	 * the  page size, the remaining memory is zeroed when mapped, and
2775 	 * writes to that region are not written out to the file."
2776 	 */
2777 	zero_user_segment(page, offset, PAGE_SIZE);
2778 out:
2779 	ret = mpage_writepage(page, get_block, wbc);
2780 	if (ret == -EAGAIN)
2781 		ret = __block_write_full_page(inode, page, get_block, wbc,
2782 					      end_buffer_async_write);
2783 	return ret;
2784 }
2785 EXPORT_SYMBOL(nobh_writepage);
2786 
2787 int nobh_truncate_page(struct address_space *mapping,
2788 			loff_t from, get_block_t *get_block)
2789 {
2790 	pgoff_t index = from >> PAGE_SHIFT;
2791 	unsigned offset = from & (PAGE_SIZE-1);
2792 	unsigned blocksize;
2793 	sector_t iblock;
2794 	unsigned length, pos;
2795 	struct inode *inode = mapping->host;
2796 	struct page *page;
2797 	struct buffer_head map_bh;
2798 	int err;
2799 
2800 	blocksize = 1 << inode->i_blkbits;
2801 	length = offset & (blocksize - 1);
2802 
2803 	/* Block boundary? Nothing to do */
2804 	if (!length)
2805 		return 0;
2806 
2807 	length = blocksize - length;
2808 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2809 
2810 	page = grab_cache_page(mapping, index);
2811 	err = -ENOMEM;
2812 	if (!page)
2813 		goto out;
2814 
2815 	if (page_has_buffers(page)) {
2816 has_buffers:
2817 		unlock_page(page);
2818 		put_page(page);
2819 		return block_truncate_page(mapping, from, get_block);
2820 	}
2821 
2822 	/* Find the buffer that contains "offset" */
2823 	pos = blocksize;
2824 	while (offset >= pos) {
2825 		iblock++;
2826 		pos += blocksize;
2827 	}
2828 
2829 	map_bh.b_size = blocksize;
2830 	map_bh.b_state = 0;
2831 	err = get_block(inode, iblock, &map_bh, 0);
2832 	if (err)
2833 		goto unlock;
2834 	/* unmapped? It's a hole - nothing to do */
2835 	if (!buffer_mapped(&map_bh))
2836 		goto unlock;
2837 
2838 	/* Ok, it's mapped. Make sure it's up-to-date */
2839 	if (!PageUptodate(page)) {
2840 		err = mapping->a_ops->readpage(NULL, page);
2841 		if (err) {
2842 			put_page(page);
2843 			goto out;
2844 		}
2845 		lock_page(page);
2846 		if (!PageUptodate(page)) {
2847 			err = -EIO;
2848 			goto unlock;
2849 		}
2850 		if (page_has_buffers(page))
2851 			goto has_buffers;
2852 	}
2853 	zero_user(page, offset, length);
2854 	set_page_dirty(page);
2855 	err = 0;
2856 
2857 unlock:
2858 	unlock_page(page);
2859 	put_page(page);
2860 out:
2861 	return err;
2862 }
2863 EXPORT_SYMBOL(nobh_truncate_page);
2864 
2865 int block_truncate_page(struct address_space *mapping,
2866 			loff_t from, get_block_t *get_block)
2867 {
2868 	pgoff_t index = from >> PAGE_SHIFT;
2869 	unsigned offset = from & (PAGE_SIZE-1);
2870 	unsigned blocksize;
2871 	sector_t iblock;
2872 	unsigned length, pos;
2873 	struct inode *inode = mapping->host;
2874 	struct page *page;
2875 	struct buffer_head *bh;
2876 	int err;
2877 
2878 	blocksize = 1 << inode->i_blkbits;
2879 	length = offset & (blocksize - 1);
2880 
2881 	/* Block boundary? Nothing to do */
2882 	if (!length)
2883 		return 0;
2884 
2885 	length = blocksize - length;
2886 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2887 
2888 	page = grab_cache_page(mapping, index);
2889 	err = -ENOMEM;
2890 	if (!page)
2891 		goto out;
2892 
2893 	if (!page_has_buffers(page))
2894 		create_empty_buffers(page, blocksize, 0);
2895 
2896 	/* Find the buffer that contains "offset" */
2897 	bh = page_buffers(page);
2898 	pos = blocksize;
2899 	while (offset >= pos) {
2900 		bh = bh->b_this_page;
2901 		iblock++;
2902 		pos += blocksize;
2903 	}
2904 
2905 	err = 0;
2906 	if (!buffer_mapped(bh)) {
2907 		WARN_ON(bh->b_size != blocksize);
2908 		err = get_block(inode, iblock, bh, 0);
2909 		if (err)
2910 			goto unlock;
2911 		/* unmapped? It's a hole - nothing to do */
2912 		if (!buffer_mapped(bh))
2913 			goto unlock;
2914 	}
2915 
2916 	/* Ok, it's mapped. Make sure it's up-to-date */
2917 	if (PageUptodate(page))
2918 		set_buffer_uptodate(bh);
2919 
2920 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2921 		err = -EIO;
2922 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2923 		wait_on_buffer(bh);
2924 		/* Uhhuh. Read error. Complain and punt. */
2925 		if (!buffer_uptodate(bh))
2926 			goto unlock;
2927 	}
2928 
2929 	zero_user(page, offset, length);
2930 	mark_buffer_dirty(bh);
2931 	err = 0;
2932 
2933 unlock:
2934 	unlock_page(page);
2935 	put_page(page);
2936 out:
2937 	return err;
2938 }
2939 EXPORT_SYMBOL(block_truncate_page);
2940 
2941 /*
2942  * The generic ->writepage function for buffer-backed address_spaces
2943  */
2944 int block_write_full_page(struct page *page, get_block_t *get_block,
2945 			struct writeback_control *wbc)
2946 {
2947 	struct inode * const inode = page->mapping->host;
2948 	loff_t i_size = i_size_read(inode);
2949 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2950 	unsigned offset;
2951 
2952 	/* Is the page fully inside i_size? */
2953 	if (page->index < end_index)
2954 		return __block_write_full_page(inode, page, get_block, wbc,
2955 					       end_buffer_async_write);
2956 
2957 	/* Is the page fully outside i_size? (truncate in progress) */
2958 	offset = i_size & (PAGE_SIZE-1);
2959 	if (page->index >= end_index+1 || !offset) {
2960 		/*
2961 		 * The page may have dirty, unmapped buffers.  For example,
2962 		 * they may have been added in ext3_writepage().  Make them
2963 		 * freeable here, so the page does not leak.
2964 		 */
2965 		do_invalidatepage(page, 0, PAGE_SIZE);
2966 		unlock_page(page);
2967 		return 0; /* don't care */
2968 	}
2969 
2970 	/*
2971 	 * The page straddles i_size.  It must be zeroed out on each and every
2972 	 * writepage invocation because it may be mmapped.  "A file is mapped
2973 	 * in multiples of the page size.  For a file that is not a multiple of
2974 	 * the  page size, the remaining memory is zeroed when mapped, and
2975 	 * writes to that region are not written out to the file."
2976 	 */
2977 	zero_user_segment(page, offset, PAGE_SIZE);
2978 	return __block_write_full_page(inode, page, get_block, wbc,
2979 							end_buffer_async_write);
2980 }
2981 EXPORT_SYMBOL(block_write_full_page);
2982 
2983 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2984 			    get_block_t *get_block)
2985 {
2986 	struct buffer_head tmp;
2987 	struct inode *inode = mapping->host;
2988 	tmp.b_state = 0;
2989 	tmp.b_blocknr = 0;
2990 	tmp.b_size = 1 << inode->i_blkbits;
2991 	get_block(inode, block, &tmp, 0);
2992 	return tmp.b_blocknr;
2993 }
2994 EXPORT_SYMBOL(generic_block_bmap);
2995 
2996 static void end_bio_bh_io_sync(struct bio *bio)
2997 {
2998 	struct buffer_head *bh = bio->bi_private;
2999 
3000 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3001 		set_bit(BH_Quiet, &bh->b_state);
3002 
3003 	bh->b_end_io(bh, !bio->bi_error);
3004 	bio_put(bio);
3005 }
3006 
3007 /*
3008  * This allows us to do IO even on the odd last sectors
3009  * of a device, even if the block size is some multiple
3010  * of the physical sector size.
3011  *
3012  * We'll just truncate the bio to the size of the device,
3013  * and clear the end of the buffer head manually.
3014  *
3015  * Truly out-of-range accesses will turn into actual IO
3016  * errors, this only handles the "we need to be able to
3017  * do IO at the final sector" case.
3018  */
3019 void guard_bio_eod(int op, struct bio *bio)
3020 {
3021 	sector_t maxsector;
3022 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3023 	unsigned truncated_bytes;
3024 
3025 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3026 	if (!maxsector)
3027 		return;
3028 
3029 	/*
3030 	 * If the *whole* IO is past the end of the device,
3031 	 * let it through, and the IO layer will turn it into
3032 	 * an EIO.
3033 	 */
3034 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3035 		return;
3036 
3037 	maxsector -= bio->bi_iter.bi_sector;
3038 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3039 		return;
3040 
3041 	/* Uhhuh. We've got a bio that straddles the device size! */
3042 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3043 
3044 	/* Truncate the bio.. */
3045 	bio->bi_iter.bi_size -= truncated_bytes;
3046 	bvec->bv_len -= truncated_bytes;
3047 
3048 	/* ..and clear the end of the buffer for reads */
3049 	if (op == REQ_OP_READ) {
3050 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3051 				truncated_bytes);
3052 	}
3053 }
3054 
3055 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3056 			 unsigned long bio_flags, struct writeback_control *wbc)
3057 {
3058 	struct bio *bio;
3059 
3060 	BUG_ON(!buffer_locked(bh));
3061 	BUG_ON(!buffer_mapped(bh));
3062 	BUG_ON(!bh->b_end_io);
3063 	BUG_ON(buffer_delay(bh));
3064 	BUG_ON(buffer_unwritten(bh));
3065 
3066 	/*
3067 	 * Only clear out a write error when rewriting
3068 	 */
3069 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3070 		clear_buffer_write_io_error(bh);
3071 
3072 	/*
3073 	 * from here on down, it's all bio -- do the initial mapping,
3074 	 * submit_bio -> generic_make_request may further map this bio around
3075 	 */
3076 	bio = bio_alloc(GFP_NOIO, 1);
3077 
3078 	if (wbc) {
3079 		wbc_init_bio(wbc, bio);
3080 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3081 	}
3082 
3083 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3084 	bio->bi_bdev = bh->b_bdev;
3085 
3086 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3087 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3088 
3089 	bio->bi_end_io = end_bio_bh_io_sync;
3090 	bio->bi_private = bh;
3091 	bio->bi_flags |= bio_flags;
3092 
3093 	/* Take care of bh's that straddle the end of the device */
3094 	guard_bio_eod(op, bio);
3095 
3096 	if (buffer_meta(bh))
3097 		op_flags |= REQ_META;
3098 	if (buffer_prio(bh))
3099 		op_flags |= REQ_PRIO;
3100 	bio_set_op_attrs(bio, op, op_flags);
3101 
3102 	submit_bio(bio);
3103 	return 0;
3104 }
3105 
3106 int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3107 	       unsigned long bio_flags)
3108 {
3109 	return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3110 }
3111 EXPORT_SYMBOL_GPL(_submit_bh);
3112 
3113 int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3114 {
3115 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3116 }
3117 EXPORT_SYMBOL(submit_bh);
3118 
3119 /**
3120  * ll_rw_block: low-level access to block devices (DEPRECATED)
3121  * @op: whether to %READ or %WRITE
3122  * @op_flags: rq_flag_bits
3123  * @nr: number of &struct buffer_heads in the array
3124  * @bhs: array of pointers to &struct buffer_head
3125  *
3126  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3127  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3128  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3129  * %REQ_RAHEAD.
3130  *
3131  * This function drops any buffer that it cannot get a lock on (with the
3132  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3133  * request, and any buffer that appears to be up-to-date when doing read
3134  * request.  Further it marks as clean buffers that are processed for
3135  * writing (the buffer cache won't assume that they are actually clean
3136  * until the buffer gets unlocked).
3137  *
3138  * ll_rw_block sets b_end_io to simple completion handler that marks
3139  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3140  * any waiters.
3141  *
3142  * All of the buffers must be for the same device, and must also be a
3143  * multiple of the current approved size for the device.
3144  */
3145 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3146 {
3147 	int i;
3148 
3149 	for (i = 0; i < nr; i++) {
3150 		struct buffer_head *bh = bhs[i];
3151 
3152 		if (!trylock_buffer(bh))
3153 			continue;
3154 		if (op == WRITE) {
3155 			if (test_clear_buffer_dirty(bh)) {
3156 				bh->b_end_io = end_buffer_write_sync;
3157 				get_bh(bh);
3158 				submit_bh(op, op_flags, bh);
3159 				continue;
3160 			}
3161 		} else {
3162 			if (!buffer_uptodate(bh)) {
3163 				bh->b_end_io = end_buffer_read_sync;
3164 				get_bh(bh);
3165 				submit_bh(op, op_flags, bh);
3166 				continue;
3167 			}
3168 		}
3169 		unlock_buffer(bh);
3170 	}
3171 }
3172 EXPORT_SYMBOL(ll_rw_block);
3173 
3174 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3175 {
3176 	lock_buffer(bh);
3177 	if (!test_clear_buffer_dirty(bh)) {
3178 		unlock_buffer(bh);
3179 		return;
3180 	}
3181 	bh->b_end_io = end_buffer_write_sync;
3182 	get_bh(bh);
3183 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3184 }
3185 EXPORT_SYMBOL(write_dirty_buffer);
3186 
3187 /*
3188  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3189  * and then start new I/O and then wait upon it.  The caller must have a ref on
3190  * the buffer_head.
3191  */
3192 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3193 {
3194 	int ret = 0;
3195 
3196 	WARN_ON(atomic_read(&bh->b_count) < 1);
3197 	lock_buffer(bh);
3198 	if (test_clear_buffer_dirty(bh)) {
3199 		get_bh(bh);
3200 		bh->b_end_io = end_buffer_write_sync;
3201 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3202 		wait_on_buffer(bh);
3203 		if (!ret && !buffer_uptodate(bh))
3204 			ret = -EIO;
3205 	} else {
3206 		unlock_buffer(bh);
3207 	}
3208 	return ret;
3209 }
3210 EXPORT_SYMBOL(__sync_dirty_buffer);
3211 
3212 int sync_dirty_buffer(struct buffer_head *bh)
3213 {
3214 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3215 }
3216 EXPORT_SYMBOL(sync_dirty_buffer);
3217 
3218 /*
3219  * try_to_free_buffers() checks if all the buffers on this particular page
3220  * are unused, and releases them if so.
3221  *
3222  * Exclusion against try_to_free_buffers may be obtained by either
3223  * locking the page or by holding its mapping's private_lock.
3224  *
3225  * If the page is dirty but all the buffers are clean then we need to
3226  * be sure to mark the page clean as well.  This is because the page
3227  * may be against a block device, and a later reattachment of buffers
3228  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3229  * filesystem data on the same device.
3230  *
3231  * The same applies to regular filesystem pages: if all the buffers are
3232  * clean then we set the page clean and proceed.  To do that, we require
3233  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3234  * private_lock.
3235  *
3236  * try_to_free_buffers() is non-blocking.
3237  */
3238 static inline int buffer_busy(struct buffer_head *bh)
3239 {
3240 	return atomic_read(&bh->b_count) |
3241 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3242 }
3243 
3244 static int
3245 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3246 {
3247 	struct buffer_head *head = page_buffers(page);
3248 	struct buffer_head *bh;
3249 
3250 	bh = head;
3251 	do {
3252 		if (buffer_write_io_error(bh) && page->mapping)
3253 			set_bit(AS_EIO, &page->mapping->flags);
3254 		if (buffer_busy(bh))
3255 			goto failed;
3256 		bh = bh->b_this_page;
3257 	} while (bh != head);
3258 
3259 	do {
3260 		struct buffer_head *next = bh->b_this_page;
3261 
3262 		if (bh->b_assoc_map)
3263 			__remove_assoc_queue(bh);
3264 		bh = next;
3265 	} while (bh != head);
3266 	*buffers_to_free = head;
3267 	__clear_page_buffers(page);
3268 	return 1;
3269 failed:
3270 	return 0;
3271 }
3272 
3273 int try_to_free_buffers(struct page *page)
3274 {
3275 	struct address_space * const mapping = page->mapping;
3276 	struct buffer_head *buffers_to_free = NULL;
3277 	int ret = 0;
3278 
3279 	BUG_ON(!PageLocked(page));
3280 	if (PageWriteback(page))
3281 		return 0;
3282 
3283 	if (mapping == NULL) {		/* can this still happen? */
3284 		ret = drop_buffers(page, &buffers_to_free);
3285 		goto out;
3286 	}
3287 
3288 	spin_lock(&mapping->private_lock);
3289 	ret = drop_buffers(page, &buffers_to_free);
3290 
3291 	/*
3292 	 * If the filesystem writes its buffers by hand (eg ext3)
3293 	 * then we can have clean buffers against a dirty page.  We
3294 	 * clean the page here; otherwise the VM will never notice
3295 	 * that the filesystem did any IO at all.
3296 	 *
3297 	 * Also, during truncate, discard_buffer will have marked all
3298 	 * the page's buffers clean.  We discover that here and clean
3299 	 * the page also.
3300 	 *
3301 	 * private_lock must be held over this entire operation in order
3302 	 * to synchronise against __set_page_dirty_buffers and prevent the
3303 	 * dirty bit from being lost.
3304 	 */
3305 	if (ret)
3306 		cancel_dirty_page(page);
3307 	spin_unlock(&mapping->private_lock);
3308 out:
3309 	if (buffers_to_free) {
3310 		struct buffer_head *bh = buffers_to_free;
3311 
3312 		do {
3313 			struct buffer_head *next = bh->b_this_page;
3314 			free_buffer_head(bh);
3315 			bh = next;
3316 		} while (bh != buffers_to_free);
3317 	}
3318 	return ret;
3319 }
3320 EXPORT_SYMBOL(try_to_free_buffers);
3321 
3322 /*
3323  * There are no bdflush tunables left.  But distributions are
3324  * still running obsolete flush daemons, so we terminate them here.
3325  *
3326  * Use of bdflush() is deprecated and will be removed in a future kernel.
3327  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3328  */
3329 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3330 {
3331 	static int msg_count;
3332 
3333 	if (!capable(CAP_SYS_ADMIN))
3334 		return -EPERM;
3335 
3336 	if (msg_count < 5) {
3337 		msg_count++;
3338 		printk(KERN_INFO
3339 			"warning: process `%s' used the obsolete bdflush"
3340 			" system call\n", current->comm);
3341 		printk(KERN_INFO "Fix your initscripts?\n");
3342 	}
3343 
3344 	if (func == 1)
3345 		do_exit(0);
3346 	return 0;
3347 }
3348 
3349 /*
3350  * Buffer-head allocation
3351  */
3352 static struct kmem_cache *bh_cachep __read_mostly;
3353 
3354 /*
3355  * Once the number of bh's in the machine exceeds this level, we start
3356  * stripping them in writeback.
3357  */
3358 static unsigned long max_buffer_heads;
3359 
3360 int buffer_heads_over_limit;
3361 
3362 struct bh_accounting {
3363 	int nr;			/* Number of live bh's */
3364 	int ratelimit;		/* Limit cacheline bouncing */
3365 };
3366 
3367 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3368 
3369 static void recalc_bh_state(void)
3370 {
3371 	int i;
3372 	int tot = 0;
3373 
3374 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3375 		return;
3376 	__this_cpu_write(bh_accounting.ratelimit, 0);
3377 	for_each_online_cpu(i)
3378 		tot += per_cpu(bh_accounting, i).nr;
3379 	buffer_heads_over_limit = (tot > max_buffer_heads);
3380 }
3381 
3382 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3383 {
3384 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3385 	if (ret) {
3386 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3387 		preempt_disable();
3388 		__this_cpu_inc(bh_accounting.nr);
3389 		recalc_bh_state();
3390 		preempt_enable();
3391 	}
3392 	return ret;
3393 }
3394 EXPORT_SYMBOL(alloc_buffer_head);
3395 
3396 void free_buffer_head(struct buffer_head *bh)
3397 {
3398 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3399 	kmem_cache_free(bh_cachep, bh);
3400 	preempt_disable();
3401 	__this_cpu_dec(bh_accounting.nr);
3402 	recalc_bh_state();
3403 	preempt_enable();
3404 }
3405 EXPORT_SYMBOL(free_buffer_head);
3406 
3407 static void buffer_exit_cpu(int cpu)
3408 {
3409 	int i;
3410 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3411 
3412 	for (i = 0; i < BH_LRU_SIZE; i++) {
3413 		brelse(b->bhs[i]);
3414 		b->bhs[i] = NULL;
3415 	}
3416 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3417 	per_cpu(bh_accounting, cpu).nr = 0;
3418 }
3419 
3420 static int buffer_cpu_notify(struct notifier_block *self,
3421 			      unsigned long action, void *hcpu)
3422 {
3423 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3424 		buffer_exit_cpu((unsigned long)hcpu);
3425 	return NOTIFY_OK;
3426 }
3427 
3428 /**
3429  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3430  * @bh: struct buffer_head
3431  *
3432  * Return true if the buffer is up-to-date and false,
3433  * with the buffer locked, if not.
3434  */
3435 int bh_uptodate_or_lock(struct buffer_head *bh)
3436 {
3437 	if (!buffer_uptodate(bh)) {
3438 		lock_buffer(bh);
3439 		if (!buffer_uptodate(bh))
3440 			return 0;
3441 		unlock_buffer(bh);
3442 	}
3443 	return 1;
3444 }
3445 EXPORT_SYMBOL(bh_uptodate_or_lock);
3446 
3447 /**
3448  * bh_submit_read - Submit a locked buffer for reading
3449  * @bh: struct buffer_head
3450  *
3451  * Returns zero on success and -EIO on error.
3452  */
3453 int bh_submit_read(struct buffer_head *bh)
3454 {
3455 	BUG_ON(!buffer_locked(bh));
3456 
3457 	if (buffer_uptodate(bh)) {
3458 		unlock_buffer(bh);
3459 		return 0;
3460 	}
3461 
3462 	get_bh(bh);
3463 	bh->b_end_io = end_buffer_read_sync;
3464 	submit_bh(REQ_OP_READ, 0, bh);
3465 	wait_on_buffer(bh);
3466 	if (buffer_uptodate(bh))
3467 		return 0;
3468 	return -EIO;
3469 }
3470 EXPORT_SYMBOL(bh_submit_read);
3471 
3472 void __init buffer_init(void)
3473 {
3474 	unsigned long nrpages;
3475 
3476 	bh_cachep = kmem_cache_create("buffer_head",
3477 			sizeof(struct buffer_head), 0,
3478 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3479 				SLAB_MEM_SPREAD),
3480 				NULL);
3481 
3482 	/*
3483 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3484 	 */
3485 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3486 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3487 	hotcpu_notifier(buffer_cpu_notify, 0);
3488 }
3489