1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 #include "internal.h" 53 54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 56 enum rw_hint hint, struct writeback_control *wbc); 57 58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 59 60 inline void touch_buffer(struct buffer_head *bh) 61 { 62 trace_block_touch_buffer(bh); 63 mark_page_accessed(bh->b_page); 64 } 65 EXPORT_SYMBOL(touch_buffer); 66 67 void __lock_buffer(struct buffer_head *bh) 68 { 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 70 } 71 EXPORT_SYMBOL(__lock_buffer); 72 73 void unlock_buffer(struct buffer_head *bh) 74 { 75 clear_bit_unlock(BH_Lock, &bh->b_state); 76 smp_mb__after_atomic(); 77 wake_up_bit(&bh->b_state, BH_Lock); 78 } 79 EXPORT_SYMBOL(unlock_buffer); 80 81 /* 82 * Returns if the page has dirty or writeback buffers. If all the buffers 83 * are unlocked and clean then the PageDirty information is stale. If 84 * any of the pages are locked, it is assumed they are locked for IO. 85 */ 86 void buffer_check_dirty_writeback(struct page *page, 87 bool *dirty, bool *writeback) 88 { 89 struct buffer_head *head, *bh; 90 *dirty = false; 91 *writeback = false; 92 93 BUG_ON(!PageLocked(page)); 94 95 if (!page_has_buffers(page)) 96 return; 97 98 if (PageWriteback(page)) 99 *writeback = true; 100 101 head = page_buffers(page); 102 bh = head; 103 do { 104 if (buffer_locked(bh)) 105 *writeback = true; 106 107 if (buffer_dirty(bh)) 108 *dirty = true; 109 110 bh = bh->b_this_page; 111 } while (bh != head); 112 } 113 EXPORT_SYMBOL(buffer_check_dirty_writeback); 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void 127 __clear_page_buffers(struct page *page) 128 { 129 ClearPagePrivate(page); 130 set_page_private(page, 0); 131 put_page(page); 132 } 133 134 static void buffer_io_error(struct buffer_head *bh, char *msg) 135 { 136 if (!test_bit(BH_Quiet, &bh->b_state)) 137 printk_ratelimited(KERN_ERR 138 "Buffer I/O error on dev %pg, logical block %llu%s\n", 139 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 140 } 141 142 /* 143 * End-of-IO handler helper function which does not touch the bh after 144 * unlocking it. 145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 146 * a race there is benign: unlock_buffer() only use the bh's address for 147 * hashing after unlocking the buffer, so it doesn't actually touch the bh 148 * itself. 149 */ 150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 151 { 152 if (uptodate) { 153 set_buffer_uptodate(bh); 154 } else { 155 /* This happens, due to failed read-ahead attempts. */ 156 clear_buffer_uptodate(bh); 157 } 158 unlock_buffer(bh); 159 } 160 161 /* 162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 163 * unlock the buffer. This is what ll_rw_block uses too. 164 */ 165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 166 { 167 __end_buffer_read_notouch(bh, uptodate); 168 put_bh(bh); 169 } 170 EXPORT_SYMBOL(end_buffer_read_sync); 171 172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 173 { 174 if (uptodate) { 175 set_buffer_uptodate(bh); 176 } else { 177 buffer_io_error(bh, ", lost sync page write"); 178 mark_buffer_write_io_error(bh); 179 clear_buffer_uptodate(bh); 180 } 181 unlock_buffer(bh); 182 put_bh(bh); 183 } 184 EXPORT_SYMBOL(end_buffer_write_sync); 185 186 /* 187 * Various filesystems appear to want __find_get_block to be non-blocking. 188 * But it's the page lock which protects the buffers. To get around this, 189 * we get exclusion from try_to_free_buffers with the blockdev mapping's 190 * private_lock. 191 * 192 * Hack idea: for the blockdev mapping, private_lock contention 193 * may be quite high. This code could TryLock the page, and if that 194 * succeeds, there is no need to take private_lock. 195 */ 196 static struct buffer_head * 197 __find_get_block_slow(struct block_device *bdev, sector_t block) 198 { 199 struct inode *bd_inode = bdev->bd_inode; 200 struct address_space *bd_mapping = bd_inode->i_mapping; 201 struct buffer_head *ret = NULL; 202 pgoff_t index; 203 struct buffer_head *bh; 204 struct buffer_head *head; 205 struct page *page; 206 int all_mapped = 1; 207 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 208 209 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 210 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 211 if (!page) 212 goto out; 213 214 spin_lock(&bd_mapping->private_lock); 215 if (!page_has_buffers(page)) 216 goto out_unlock; 217 head = page_buffers(page); 218 bh = head; 219 do { 220 if (!buffer_mapped(bh)) 221 all_mapped = 0; 222 else if (bh->b_blocknr == block) { 223 ret = bh; 224 get_bh(bh); 225 goto out_unlock; 226 } 227 bh = bh->b_this_page; 228 } while (bh != head); 229 230 /* we might be here because some of the buffers on this page are 231 * not mapped. This is due to various races between 232 * file io on the block device and getblk. It gets dealt with 233 * elsewhere, don't buffer_error if we had some unmapped buffers 234 */ 235 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 236 if (all_mapped && __ratelimit(&last_warned)) { 237 printk("__find_get_block_slow() failed. block=%llu, " 238 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 239 "device %pg blocksize: %d\n", 240 (unsigned long long)block, 241 (unsigned long long)bh->b_blocknr, 242 bh->b_state, bh->b_size, bdev, 243 1 << bd_inode->i_blkbits); 244 } 245 out_unlock: 246 spin_unlock(&bd_mapping->private_lock); 247 put_page(page); 248 out: 249 return ret; 250 } 251 252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 253 { 254 unsigned long flags; 255 struct buffer_head *first; 256 struct buffer_head *tmp; 257 struct page *page; 258 int page_uptodate = 1; 259 260 BUG_ON(!buffer_async_read(bh)); 261 262 page = bh->b_page; 263 if (uptodate) { 264 set_buffer_uptodate(bh); 265 } else { 266 clear_buffer_uptodate(bh); 267 buffer_io_error(bh, ", async page read"); 268 SetPageError(page); 269 } 270 271 /* 272 * Be _very_ careful from here on. Bad things can happen if 273 * two buffer heads end IO at almost the same time and both 274 * decide that the page is now completely done. 275 */ 276 first = page_buffers(page); 277 local_irq_save(flags); 278 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 279 clear_buffer_async_read(bh); 280 unlock_buffer(bh); 281 tmp = bh; 282 do { 283 if (!buffer_uptodate(tmp)) 284 page_uptodate = 0; 285 if (buffer_async_read(tmp)) { 286 BUG_ON(!buffer_locked(tmp)); 287 goto still_busy; 288 } 289 tmp = tmp->b_this_page; 290 } while (tmp != bh); 291 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 292 local_irq_restore(flags); 293 294 /* 295 * If none of the buffers had errors and they are all 296 * uptodate then we can set the page uptodate. 297 */ 298 if (page_uptodate && !PageError(page)) 299 SetPageUptodate(page); 300 unlock_page(page); 301 return; 302 303 still_busy: 304 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 305 local_irq_restore(flags); 306 return; 307 } 308 309 struct decrypt_bh_ctx { 310 struct work_struct work; 311 struct buffer_head *bh; 312 }; 313 314 static void decrypt_bh(struct work_struct *work) 315 { 316 struct decrypt_bh_ctx *ctx = 317 container_of(work, struct decrypt_bh_ctx, work); 318 struct buffer_head *bh = ctx->bh; 319 int err; 320 321 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 322 bh_offset(bh)); 323 end_buffer_async_read(bh, err == 0); 324 kfree(ctx); 325 } 326 327 /* 328 * I/O completion handler for block_read_full_page() - pages 329 * which come unlocked at the end of I/O. 330 */ 331 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 332 { 333 /* Decrypt if needed */ 334 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) && 335 IS_ENCRYPTED(bh->b_page->mapping->host) && 336 S_ISREG(bh->b_page->mapping->host->i_mode)) { 337 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 338 339 if (ctx) { 340 INIT_WORK(&ctx->work, decrypt_bh); 341 ctx->bh = bh; 342 fscrypt_enqueue_decrypt_work(&ctx->work); 343 return; 344 } 345 uptodate = 0; 346 } 347 end_buffer_async_read(bh, uptodate); 348 } 349 350 /* 351 * Completion handler for block_write_full_page() - pages which are unlocked 352 * during I/O, and which have PageWriteback cleared upon I/O completion. 353 */ 354 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 355 { 356 unsigned long flags; 357 struct buffer_head *first; 358 struct buffer_head *tmp; 359 struct page *page; 360 361 BUG_ON(!buffer_async_write(bh)); 362 363 page = bh->b_page; 364 if (uptodate) { 365 set_buffer_uptodate(bh); 366 } else { 367 buffer_io_error(bh, ", lost async page write"); 368 mark_buffer_write_io_error(bh); 369 clear_buffer_uptodate(bh); 370 SetPageError(page); 371 } 372 373 first = page_buffers(page); 374 local_irq_save(flags); 375 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 376 377 clear_buffer_async_write(bh); 378 unlock_buffer(bh); 379 tmp = bh->b_this_page; 380 while (tmp != bh) { 381 if (buffer_async_write(tmp)) { 382 BUG_ON(!buffer_locked(tmp)); 383 goto still_busy; 384 } 385 tmp = tmp->b_this_page; 386 } 387 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 388 local_irq_restore(flags); 389 end_page_writeback(page); 390 return; 391 392 still_busy: 393 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 394 local_irq_restore(flags); 395 return; 396 } 397 EXPORT_SYMBOL(end_buffer_async_write); 398 399 /* 400 * If a page's buffers are under async readin (end_buffer_async_read 401 * completion) then there is a possibility that another thread of 402 * control could lock one of the buffers after it has completed 403 * but while some of the other buffers have not completed. This 404 * locked buffer would confuse end_buffer_async_read() into not unlocking 405 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 406 * that this buffer is not under async I/O. 407 * 408 * The page comes unlocked when it has no locked buffer_async buffers 409 * left. 410 * 411 * PageLocked prevents anyone starting new async I/O reads any of 412 * the buffers. 413 * 414 * PageWriteback is used to prevent simultaneous writeout of the same 415 * page. 416 * 417 * PageLocked prevents anyone from starting writeback of a page which is 418 * under read I/O (PageWriteback is only ever set against a locked page). 419 */ 420 static void mark_buffer_async_read(struct buffer_head *bh) 421 { 422 bh->b_end_io = end_buffer_async_read_io; 423 set_buffer_async_read(bh); 424 } 425 426 static void mark_buffer_async_write_endio(struct buffer_head *bh, 427 bh_end_io_t *handler) 428 { 429 bh->b_end_io = handler; 430 set_buffer_async_write(bh); 431 } 432 433 void mark_buffer_async_write(struct buffer_head *bh) 434 { 435 mark_buffer_async_write_endio(bh, end_buffer_async_write); 436 } 437 EXPORT_SYMBOL(mark_buffer_async_write); 438 439 440 /* 441 * fs/buffer.c contains helper functions for buffer-backed address space's 442 * fsync functions. A common requirement for buffer-based filesystems is 443 * that certain data from the backing blockdev needs to be written out for 444 * a successful fsync(). For example, ext2 indirect blocks need to be 445 * written back and waited upon before fsync() returns. 446 * 447 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 448 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 449 * management of a list of dependent buffers at ->i_mapping->private_list. 450 * 451 * Locking is a little subtle: try_to_free_buffers() will remove buffers 452 * from their controlling inode's queue when they are being freed. But 453 * try_to_free_buffers() will be operating against the *blockdev* mapping 454 * at the time, not against the S_ISREG file which depends on those buffers. 455 * So the locking for private_list is via the private_lock in the address_space 456 * which backs the buffers. Which is different from the address_space 457 * against which the buffers are listed. So for a particular address_space, 458 * mapping->private_lock does *not* protect mapping->private_list! In fact, 459 * mapping->private_list will always be protected by the backing blockdev's 460 * ->private_lock. 461 * 462 * Which introduces a requirement: all buffers on an address_space's 463 * ->private_list must be from the same address_space: the blockdev's. 464 * 465 * address_spaces which do not place buffers at ->private_list via these 466 * utility functions are free to use private_lock and private_list for 467 * whatever they want. The only requirement is that list_empty(private_list) 468 * be true at clear_inode() time. 469 * 470 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 471 * filesystems should do that. invalidate_inode_buffers() should just go 472 * BUG_ON(!list_empty). 473 * 474 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 475 * take an address_space, not an inode. And it should be called 476 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 477 * queued up. 478 * 479 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 480 * list if it is already on a list. Because if the buffer is on a list, 481 * it *must* already be on the right one. If not, the filesystem is being 482 * silly. This will save a ton of locking. But first we have to ensure 483 * that buffers are taken *off* the old inode's list when they are freed 484 * (presumably in truncate). That requires careful auditing of all 485 * filesystems (do it inside bforget()). It could also be done by bringing 486 * b_inode back. 487 */ 488 489 /* 490 * The buffer's backing address_space's private_lock must be held 491 */ 492 static void __remove_assoc_queue(struct buffer_head *bh) 493 { 494 list_del_init(&bh->b_assoc_buffers); 495 WARN_ON(!bh->b_assoc_map); 496 bh->b_assoc_map = NULL; 497 } 498 499 int inode_has_buffers(struct inode *inode) 500 { 501 return !list_empty(&inode->i_data.private_list); 502 } 503 504 /* 505 * osync is designed to support O_SYNC io. It waits synchronously for 506 * all already-submitted IO to complete, but does not queue any new 507 * writes to the disk. 508 * 509 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 510 * you dirty the buffers, and then use osync_inode_buffers to wait for 511 * completion. Any other dirty buffers which are not yet queued for 512 * write will not be flushed to disk by the osync. 513 */ 514 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 515 { 516 struct buffer_head *bh; 517 struct list_head *p; 518 int err = 0; 519 520 spin_lock(lock); 521 repeat: 522 list_for_each_prev(p, list) { 523 bh = BH_ENTRY(p); 524 if (buffer_locked(bh)) { 525 get_bh(bh); 526 spin_unlock(lock); 527 wait_on_buffer(bh); 528 if (!buffer_uptodate(bh)) 529 err = -EIO; 530 brelse(bh); 531 spin_lock(lock); 532 goto repeat; 533 } 534 } 535 spin_unlock(lock); 536 return err; 537 } 538 539 void emergency_thaw_bdev(struct super_block *sb) 540 { 541 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 542 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 543 } 544 545 /** 546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 547 * @mapping: the mapping which wants those buffers written 548 * 549 * Starts I/O against the buffers at mapping->private_list, and waits upon 550 * that I/O. 551 * 552 * Basically, this is a convenience function for fsync(). 553 * @mapping is a file or directory which needs those buffers to be written for 554 * a successful fsync(). 555 */ 556 int sync_mapping_buffers(struct address_space *mapping) 557 { 558 struct address_space *buffer_mapping = mapping->private_data; 559 560 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 561 return 0; 562 563 return fsync_buffers_list(&buffer_mapping->private_lock, 564 &mapping->private_list); 565 } 566 EXPORT_SYMBOL(sync_mapping_buffers); 567 568 /* 569 * Called when we've recently written block `bblock', and it is known that 570 * `bblock' was for a buffer_boundary() buffer. This means that the block at 571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 572 * dirty, schedule it for IO. So that indirects merge nicely with their data. 573 */ 574 void write_boundary_block(struct block_device *bdev, 575 sector_t bblock, unsigned blocksize) 576 { 577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 578 if (bh) { 579 if (buffer_dirty(bh)) 580 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 581 put_bh(bh); 582 } 583 } 584 585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 586 { 587 struct address_space *mapping = inode->i_mapping; 588 struct address_space *buffer_mapping = bh->b_page->mapping; 589 590 mark_buffer_dirty(bh); 591 if (!mapping->private_data) { 592 mapping->private_data = buffer_mapping; 593 } else { 594 BUG_ON(mapping->private_data != buffer_mapping); 595 } 596 if (!bh->b_assoc_map) { 597 spin_lock(&buffer_mapping->private_lock); 598 list_move_tail(&bh->b_assoc_buffers, 599 &mapping->private_list); 600 bh->b_assoc_map = mapping; 601 spin_unlock(&buffer_mapping->private_lock); 602 } 603 } 604 EXPORT_SYMBOL(mark_buffer_dirty_inode); 605 606 /* 607 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 608 * dirty. 609 * 610 * If warn is true, then emit a warning if the page is not uptodate and has 611 * not been truncated. 612 * 613 * The caller must hold lock_page_memcg(). 614 */ 615 void __set_page_dirty(struct page *page, struct address_space *mapping, 616 int warn) 617 { 618 unsigned long flags; 619 620 xa_lock_irqsave(&mapping->i_pages, flags); 621 if (page->mapping) { /* Race with truncate? */ 622 WARN_ON_ONCE(warn && !PageUptodate(page)); 623 account_page_dirtied(page, mapping); 624 __xa_set_mark(&mapping->i_pages, page_index(page), 625 PAGECACHE_TAG_DIRTY); 626 } 627 xa_unlock_irqrestore(&mapping->i_pages, flags); 628 } 629 EXPORT_SYMBOL_GPL(__set_page_dirty); 630 631 /* 632 * Add a page to the dirty page list. 633 * 634 * It is a sad fact of life that this function is called from several places 635 * deeply under spinlocking. It may not sleep. 636 * 637 * If the page has buffers, the uptodate buffers are set dirty, to preserve 638 * dirty-state coherency between the page and the buffers. It the page does 639 * not have buffers then when they are later attached they will all be set 640 * dirty. 641 * 642 * The buffers are dirtied before the page is dirtied. There's a small race 643 * window in which a writepage caller may see the page cleanness but not the 644 * buffer dirtiness. That's fine. If this code were to set the page dirty 645 * before the buffers, a concurrent writepage caller could clear the page dirty 646 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 647 * page on the dirty page list. 648 * 649 * We use private_lock to lock against try_to_free_buffers while using the 650 * page's buffer list. Also use this to protect against clean buffers being 651 * added to the page after it was set dirty. 652 * 653 * FIXME: may need to call ->reservepage here as well. That's rather up to the 654 * address_space though. 655 */ 656 int __set_page_dirty_buffers(struct page *page) 657 { 658 int newly_dirty; 659 struct address_space *mapping = page_mapping(page); 660 661 if (unlikely(!mapping)) 662 return !TestSetPageDirty(page); 663 664 spin_lock(&mapping->private_lock); 665 if (page_has_buffers(page)) { 666 struct buffer_head *head = page_buffers(page); 667 struct buffer_head *bh = head; 668 669 do { 670 set_buffer_dirty(bh); 671 bh = bh->b_this_page; 672 } while (bh != head); 673 } 674 /* 675 * Lock out page->mem_cgroup migration to keep PageDirty 676 * synchronized with per-memcg dirty page counters. 677 */ 678 lock_page_memcg(page); 679 newly_dirty = !TestSetPageDirty(page); 680 spin_unlock(&mapping->private_lock); 681 682 if (newly_dirty) 683 __set_page_dirty(page, mapping, 1); 684 685 unlock_page_memcg(page); 686 687 if (newly_dirty) 688 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 689 690 return newly_dirty; 691 } 692 EXPORT_SYMBOL(__set_page_dirty_buffers); 693 694 /* 695 * Write out and wait upon a list of buffers. 696 * 697 * We have conflicting pressures: we want to make sure that all 698 * initially dirty buffers get waited on, but that any subsequently 699 * dirtied buffers don't. After all, we don't want fsync to last 700 * forever if somebody is actively writing to the file. 701 * 702 * Do this in two main stages: first we copy dirty buffers to a 703 * temporary inode list, queueing the writes as we go. Then we clean 704 * up, waiting for those writes to complete. 705 * 706 * During this second stage, any subsequent updates to the file may end 707 * up refiling the buffer on the original inode's dirty list again, so 708 * there is a chance we will end up with a buffer queued for write but 709 * not yet completed on that list. So, as a final cleanup we go through 710 * the osync code to catch these locked, dirty buffers without requeuing 711 * any newly dirty buffers for write. 712 */ 713 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 714 { 715 struct buffer_head *bh; 716 struct list_head tmp; 717 struct address_space *mapping; 718 int err = 0, err2; 719 struct blk_plug plug; 720 721 INIT_LIST_HEAD(&tmp); 722 blk_start_plug(&plug); 723 724 spin_lock(lock); 725 while (!list_empty(list)) { 726 bh = BH_ENTRY(list->next); 727 mapping = bh->b_assoc_map; 728 __remove_assoc_queue(bh); 729 /* Avoid race with mark_buffer_dirty_inode() which does 730 * a lockless check and we rely on seeing the dirty bit */ 731 smp_mb(); 732 if (buffer_dirty(bh) || buffer_locked(bh)) { 733 list_add(&bh->b_assoc_buffers, &tmp); 734 bh->b_assoc_map = mapping; 735 if (buffer_dirty(bh)) { 736 get_bh(bh); 737 spin_unlock(lock); 738 /* 739 * Ensure any pending I/O completes so that 740 * write_dirty_buffer() actually writes the 741 * current contents - it is a noop if I/O is 742 * still in flight on potentially older 743 * contents. 744 */ 745 write_dirty_buffer(bh, REQ_SYNC); 746 747 /* 748 * Kick off IO for the previous mapping. Note 749 * that we will not run the very last mapping, 750 * wait_on_buffer() will do that for us 751 * through sync_buffer(). 752 */ 753 brelse(bh); 754 spin_lock(lock); 755 } 756 } 757 } 758 759 spin_unlock(lock); 760 blk_finish_plug(&plug); 761 spin_lock(lock); 762 763 while (!list_empty(&tmp)) { 764 bh = BH_ENTRY(tmp.prev); 765 get_bh(bh); 766 mapping = bh->b_assoc_map; 767 __remove_assoc_queue(bh); 768 /* Avoid race with mark_buffer_dirty_inode() which does 769 * a lockless check and we rely on seeing the dirty bit */ 770 smp_mb(); 771 if (buffer_dirty(bh)) { 772 list_add(&bh->b_assoc_buffers, 773 &mapping->private_list); 774 bh->b_assoc_map = mapping; 775 } 776 spin_unlock(lock); 777 wait_on_buffer(bh); 778 if (!buffer_uptodate(bh)) 779 err = -EIO; 780 brelse(bh); 781 spin_lock(lock); 782 } 783 784 spin_unlock(lock); 785 err2 = osync_buffers_list(lock, list); 786 if (err) 787 return err; 788 else 789 return err2; 790 } 791 792 /* 793 * Invalidate any and all dirty buffers on a given inode. We are 794 * probably unmounting the fs, but that doesn't mean we have already 795 * done a sync(). Just drop the buffers from the inode list. 796 * 797 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 798 * assumes that all the buffers are against the blockdev. Not true 799 * for reiserfs. 800 */ 801 void invalidate_inode_buffers(struct inode *inode) 802 { 803 if (inode_has_buffers(inode)) { 804 struct address_space *mapping = &inode->i_data; 805 struct list_head *list = &mapping->private_list; 806 struct address_space *buffer_mapping = mapping->private_data; 807 808 spin_lock(&buffer_mapping->private_lock); 809 while (!list_empty(list)) 810 __remove_assoc_queue(BH_ENTRY(list->next)); 811 spin_unlock(&buffer_mapping->private_lock); 812 } 813 } 814 EXPORT_SYMBOL(invalidate_inode_buffers); 815 816 /* 817 * Remove any clean buffers from the inode's buffer list. This is called 818 * when we're trying to free the inode itself. Those buffers can pin it. 819 * 820 * Returns true if all buffers were removed. 821 */ 822 int remove_inode_buffers(struct inode *inode) 823 { 824 int ret = 1; 825 826 if (inode_has_buffers(inode)) { 827 struct address_space *mapping = &inode->i_data; 828 struct list_head *list = &mapping->private_list; 829 struct address_space *buffer_mapping = mapping->private_data; 830 831 spin_lock(&buffer_mapping->private_lock); 832 while (!list_empty(list)) { 833 struct buffer_head *bh = BH_ENTRY(list->next); 834 if (buffer_dirty(bh)) { 835 ret = 0; 836 break; 837 } 838 __remove_assoc_queue(bh); 839 } 840 spin_unlock(&buffer_mapping->private_lock); 841 } 842 return ret; 843 } 844 845 /* 846 * Create the appropriate buffers when given a page for data area and 847 * the size of each buffer.. Use the bh->b_this_page linked list to 848 * follow the buffers created. Return NULL if unable to create more 849 * buffers. 850 * 851 * The retry flag is used to differentiate async IO (paging, swapping) 852 * which may not fail from ordinary buffer allocations. 853 */ 854 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 855 bool retry) 856 { 857 struct buffer_head *bh, *head; 858 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 859 long offset; 860 struct mem_cgroup *memcg; 861 862 if (retry) 863 gfp |= __GFP_NOFAIL; 864 865 memcg = get_mem_cgroup_from_page(page); 866 memalloc_use_memcg(memcg); 867 868 head = NULL; 869 offset = PAGE_SIZE; 870 while ((offset -= size) >= 0) { 871 bh = alloc_buffer_head(gfp); 872 if (!bh) 873 goto no_grow; 874 875 bh->b_this_page = head; 876 bh->b_blocknr = -1; 877 head = bh; 878 879 bh->b_size = size; 880 881 /* Link the buffer to its page */ 882 set_bh_page(bh, page, offset); 883 } 884 out: 885 memalloc_unuse_memcg(); 886 mem_cgroup_put(memcg); 887 return head; 888 /* 889 * In case anything failed, we just free everything we got. 890 */ 891 no_grow: 892 if (head) { 893 do { 894 bh = head; 895 head = head->b_this_page; 896 free_buffer_head(bh); 897 } while (head); 898 } 899 900 goto out; 901 } 902 EXPORT_SYMBOL_GPL(alloc_page_buffers); 903 904 static inline void 905 link_dev_buffers(struct page *page, struct buffer_head *head) 906 { 907 struct buffer_head *bh, *tail; 908 909 bh = head; 910 do { 911 tail = bh; 912 bh = bh->b_this_page; 913 } while (bh); 914 tail->b_this_page = head; 915 attach_page_buffers(page, head); 916 } 917 918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 919 { 920 sector_t retval = ~((sector_t)0); 921 loff_t sz = i_size_read(bdev->bd_inode); 922 923 if (sz) { 924 unsigned int sizebits = blksize_bits(size); 925 retval = (sz >> sizebits); 926 } 927 return retval; 928 } 929 930 /* 931 * Initialise the state of a blockdev page's buffers. 932 */ 933 static sector_t 934 init_page_buffers(struct page *page, struct block_device *bdev, 935 sector_t block, int size) 936 { 937 struct buffer_head *head = page_buffers(page); 938 struct buffer_head *bh = head; 939 int uptodate = PageUptodate(page); 940 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 941 942 do { 943 if (!buffer_mapped(bh)) { 944 bh->b_end_io = NULL; 945 bh->b_private = NULL; 946 bh->b_bdev = bdev; 947 bh->b_blocknr = block; 948 if (uptodate) 949 set_buffer_uptodate(bh); 950 if (block < end_block) 951 set_buffer_mapped(bh); 952 } 953 block++; 954 bh = bh->b_this_page; 955 } while (bh != head); 956 957 /* 958 * Caller needs to validate requested block against end of device. 959 */ 960 return end_block; 961 } 962 963 /* 964 * Create the page-cache page that contains the requested block. 965 * 966 * This is used purely for blockdev mappings. 967 */ 968 static int 969 grow_dev_page(struct block_device *bdev, sector_t block, 970 pgoff_t index, int size, int sizebits, gfp_t gfp) 971 { 972 struct inode *inode = bdev->bd_inode; 973 struct page *page; 974 struct buffer_head *bh; 975 sector_t end_block; 976 int ret = 0; /* Will call free_more_memory() */ 977 gfp_t gfp_mask; 978 979 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 980 981 /* 982 * XXX: __getblk_slow() can not really deal with failure and 983 * will endlessly loop on improvised global reclaim. Prefer 984 * looping in the allocator rather than here, at least that 985 * code knows what it's doing. 986 */ 987 gfp_mask |= __GFP_NOFAIL; 988 989 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 990 991 BUG_ON(!PageLocked(page)); 992 993 if (page_has_buffers(page)) { 994 bh = page_buffers(page); 995 if (bh->b_size == size) { 996 end_block = init_page_buffers(page, bdev, 997 (sector_t)index << sizebits, 998 size); 999 goto done; 1000 } 1001 if (!try_to_free_buffers(page)) 1002 goto failed; 1003 } 1004 1005 /* 1006 * Allocate some buffers for this page 1007 */ 1008 bh = alloc_page_buffers(page, size, true); 1009 1010 /* 1011 * Link the page to the buffers and initialise them. Take the 1012 * lock to be atomic wrt __find_get_block(), which does not 1013 * run under the page lock. 1014 */ 1015 spin_lock(&inode->i_mapping->private_lock); 1016 link_dev_buffers(page, bh); 1017 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1018 size); 1019 spin_unlock(&inode->i_mapping->private_lock); 1020 done: 1021 ret = (block < end_block) ? 1 : -ENXIO; 1022 failed: 1023 unlock_page(page); 1024 put_page(page); 1025 return ret; 1026 } 1027 1028 /* 1029 * Create buffers for the specified block device block's page. If 1030 * that page was dirty, the buffers are set dirty also. 1031 */ 1032 static int 1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1034 { 1035 pgoff_t index; 1036 int sizebits; 1037 1038 sizebits = -1; 1039 do { 1040 sizebits++; 1041 } while ((size << sizebits) < PAGE_SIZE); 1042 1043 index = block >> sizebits; 1044 1045 /* 1046 * Check for a block which wants to lie outside our maximum possible 1047 * pagecache index. (this comparison is done using sector_t types). 1048 */ 1049 if (unlikely(index != block >> sizebits)) { 1050 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1051 "device %pg\n", 1052 __func__, (unsigned long long)block, 1053 bdev); 1054 return -EIO; 1055 } 1056 1057 /* Create a page with the proper size buffers.. */ 1058 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1059 } 1060 1061 static struct buffer_head * 1062 __getblk_slow(struct block_device *bdev, sector_t block, 1063 unsigned size, gfp_t gfp) 1064 { 1065 /* Size must be multiple of hard sectorsize */ 1066 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1067 (size < 512 || size > PAGE_SIZE))) { 1068 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1069 size); 1070 printk(KERN_ERR "logical block size: %d\n", 1071 bdev_logical_block_size(bdev)); 1072 1073 dump_stack(); 1074 return NULL; 1075 } 1076 1077 for (;;) { 1078 struct buffer_head *bh; 1079 int ret; 1080 1081 bh = __find_get_block(bdev, block, size); 1082 if (bh) 1083 return bh; 1084 1085 ret = grow_buffers(bdev, block, size, gfp); 1086 if (ret < 0) 1087 return NULL; 1088 } 1089 } 1090 1091 /* 1092 * The relationship between dirty buffers and dirty pages: 1093 * 1094 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1095 * the page is tagged dirty in the page cache. 1096 * 1097 * At all times, the dirtiness of the buffers represents the dirtiness of 1098 * subsections of the page. If the page has buffers, the page dirty bit is 1099 * merely a hint about the true dirty state. 1100 * 1101 * When a page is set dirty in its entirety, all its buffers are marked dirty 1102 * (if the page has buffers). 1103 * 1104 * When a buffer is marked dirty, its page is dirtied, but the page's other 1105 * buffers are not. 1106 * 1107 * Also. When blockdev buffers are explicitly read with bread(), they 1108 * individually become uptodate. But their backing page remains not 1109 * uptodate - even if all of its buffers are uptodate. A subsequent 1110 * block_read_full_page() against that page will discover all the uptodate 1111 * buffers, will set the page uptodate and will perform no I/O. 1112 */ 1113 1114 /** 1115 * mark_buffer_dirty - mark a buffer_head as needing writeout 1116 * @bh: the buffer_head to mark dirty 1117 * 1118 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1119 * its backing page dirty, then tag the page as dirty in the page cache 1120 * and then attach the address_space's inode to its superblock's dirty 1121 * inode list. 1122 * 1123 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1124 * i_pages lock and mapping->host->i_lock. 1125 */ 1126 void mark_buffer_dirty(struct buffer_head *bh) 1127 { 1128 WARN_ON_ONCE(!buffer_uptodate(bh)); 1129 1130 trace_block_dirty_buffer(bh); 1131 1132 /* 1133 * Very *carefully* optimize the it-is-already-dirty case. 1134 * 1135 * Don't let the final "is it dirty" escape to before we 1136 * perhaps modified the buffer. 1137 */ 1138 if (buffer_dirty(bh)) { 1139 smp_mb(); 1140 if (buffer_dirty(bh)) 1141 return; 1142 } 1143 1144 if (!test_set_buffer_dirty(bh)) { 1145 struct page *page = bh->b_page; 1146 struct address_space *mapping = NULL; 1147 1148 lock_page_memcg(page); 1149 if (!TestSetPageDirty(page)) { 1150 mapping = page_mapping(page); 1151 if (mapping) 1152 __set_page_dirty(page, mapping, 0); 1153 } 1154 unlock_page_memcg(page); 1155 if (mapping) 1156 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1157 } 1158 } 1159 EXPORT_SYMBOL(mark_buffer_dirty); 1160 1161 void mark_buffer_write_io_error(struct buffer_head *bh) 1162 { 1163 set_buffer_write_io_error(bh); 1164 /* FIXME: do we need to set this in both places? */ 1165 if (bh->b_page && bh->b_page->mapping) 1166 mapping_set_error(bh->b_page->mapping, -EIO); 1167 if (bh->b_assoc_map) 1168 mapping_set_error(bh->b_assoc_map, -EIO); 1169 } 1170 EXPORT_SYMBOL(mark_buffer_write_io_error); 1171 1172 /* 1173 * Decrement a buffer_head's reference count. If all buffers against a page 1174 * have zero reference count, are clean and unlocked, and if the page is clean 1175 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1176 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1177 * a page but it ends up not being freed, and buffers may later be reattached). 1178 */ 1179 void __brelse(struct buffer_head * buf) 1180 { 1181 if (atomic_read(&buf->b_count)) { 1182 put_bh(buf); 1183 return; 1184 } 1185 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1186 } 1187 EXPORT_SYMBOL(__brelse); 1188 1189 /* 1190 * bforget() is like brelse(), except it discards any 1191 * potentially dirty data. 1192 */ 1193 void __bforget(struct buffer_head *bh) 1194 { 1195 clear_buffer_dirty(bh); 1196 if (bh->b_assoc_map) { 1197 struct address_space *buffer_mapping = bh->b_page->mapping; 1198 1199 spin_lock(&buffer_mapping->private_lock); 1200 list_del_init(&bh->b_assoc_buffers); 1201 bh->b_assoc_map = NULL; 1202 spin_unlock(&buffer_mapping->private_lock); 1203 } 1204 __brelse(bh); 1205 } 1206 EXPORT_SYMBOL(__bforget); 1207 1208 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1209 { 1210 lock_buffer(bh); 1211 if (buffer_uptodate(bh)) { 1212 unlock_buffer(bh); 1213 return bh; 1214 } else { 1215 get_bh(bh); 1216 bh->b_end_io = end_buffer_read_sync; 1217 submit_bh(REQ_OP_READ, 0, bh); 1218 wait_on_buffer(bh); 1219 if (buffer_uptodate(bh)) 1220 return bh; 1221 } 1222 brelse(bh); 1223 return NULL; 1224 } 1225 1226 /* 1227 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1228 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1229 * refcount elevated by one when they're in an LRU. A buffer can only appear 1230 * once in a particular CPU's LRU. A single buffer can be present in multiple 1231 * CPU's LRUs at the same time. 1232 * 1233 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1234 * sb_find_get_block(). 1235 * 1236 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1237 * a local interrupt disable for that. 1238 */ 1239 1240 #define BH_LRU_SIZE 16 1241 1242 struct bh_lru { 1243 struct buffer_head *bhs[BH_LRU_SIZE]; 1244 }; 1245 1246 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1247 1248 #ifdef CONFIG_SMP 1249 #define bh_lru_lock() local_irq_disable() 1250 #define bh_lru_unlock() local_irq_enable() 1251 #else 1252 #define bh_lru_lock() preempt_disable() 1253 #define bh_lru_unlock() preempt_enable() 1254 #endif 1255 1256 static inline void check_irqs_on(void) 1257 { 1258 #ifdef irqs_disabled 1259 BUG_ON(irqs_disabled()); 1260 #endif 1261 } 1262 1263 /* 1264 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1265 * inserted at the front, and the buffer_head at the back if any is evicted. 1266 * Or, if already in the LRU it is moved to the front. 1267 */ 1268 static void bh_lru_install(struct buffer_head *bh) 1269 { 1270 struct buffer_head *evictee = bh; 1271 struct bh_lru *b; 1272 int i; 1273 1274 check_irqs_on(); 1275 bh_lru_lock(); 1276 1277 b = this_cpu_ptr(&bh_lrus); 1278 for (i = 0; i < BH_LRU_SIZE; i++) { 1279 swap(evictee, b->bhs[i]); 1280 if (evictee == bh) { 1281 bh_lru_unlock(); 1282 return; 1283 } 1284 } 1285 1286 get_bh(bh); 1287 bh_lru_unlock(); 1288 brelse(evictee); 1289 } 1290 1291 /* 1292 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1293 */ 1294 static struct buffer_head * 1295 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1296 { 1297 struct buffer_head *ret = NULL; 1298 unsigned int i; 1299 1300 check_irqs_on(); 1301 bh_lru_lock(); 1302 for (i = 0; i < BH_LRU_SIZE; i++) { 1303 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1304 1305 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1306 bh->b_size == size) { 1307 if (i) { 1308 while (i) { 1309 __this_cpu_write(bh_lrus.bhs[i], 1310 __this_cpu_read(bh_lrus.bhs[i - 1])); 1311 i--; 1312 } 1313 __this_cpu_write(bh_lrus.bhs[0], bh); 1314 } 1315 get_bh(bh); 1316 ret = bh; 1317 break; 1318 } 1319 } 1320 bh_lru_unlock(); 1321 return ret; 1322 } 1323 1324 /* 1325 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1326 * it in the LRU and mark it as accessed. If it is not present then return 1327 * NULL 1328 */ 1329 struct buffer_head * 1330 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1331 { 1332 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1333 1334 if (bh == NULL) { 1335 /* __find_get_block_slow will mark the page accessed */ 1336 bh = __find_get_block_slow(bdev, block); 1337 if (bh) 1338 bh_lru_install(bh); 1339 } else 1340 touch_buffer(bh); 1341 1342 return bh; 1343 } 1344 EXPORT_SYMBOL(__find_get_block); 1345 1346 /* 1347 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1348 * which corresponds to the passed block_device, block and size. The 1349 * returned buffer has its reference count incremented. 1350 * 1351 * __getblk_gfp() will lock up the machine if grow_dev_page's 1352 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1353 */ 1354 struct buffer_head * 1355 __getblk_gfp(struct block_device *bdev, sector_t block, 1356 unsigned size, gfp_t gfp) 1357 { 1358 struct buffer_head *bh = __find_get_block(bdev, block, size); 1359 1360 might_sleep(); 1361 if (bh == NULL) 1362 bh = __getblk_slow(bdev, block, size, gfp); 1363 return bh; 1364 } 1365 EXPORT_SYMBOL(__getblk_gfp); 1366 1367 /* 1368 * Do async read-ahead on a buffer.. 1369 */ 1370 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1371 { 1372 struct buffer_head *bh = __getblk(bdev, block, size); 1373 if (likely(bh)) { 1374 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1375 brelse(bh); 1376 } 1377 } 1378 EXPORT_SYMBOL(__breadahead); 1379 1380 /** 1381 * __bread_gfp() - reads a specified block and returns the bh 1382 * @bdev: the block_device to read from 1383 * @block: number of block 1384 * @size: size (in bytes) to read 1385 * @gfp: page allocation flag 1386 * 1387 * Reads a specified block, and returns buffer head that contains it. 1388 * The page cache can be allocated from non-movable area 1389 * not to prevent page migration if you set gfp to zero. 1390 * It returns NULL if the block was unreadable. 1391 */ 1392 struct buffer_head * 1393 __bread_gfp(struct block_device *bdev, sector_t block, 1394 unsigned size, gfp_t gfp) 1395 { 1396 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1397 1398 if (likely(bh) && !buffer_uptodate(bh)) 1399 bh = __bread_slow(bh); 1400 return bh; 1401 } 1402 EXPORT_SYMBOL(__bread_gfp); 1403 1404 /* 1405 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1406 * This doesn't race because it runs in each cpu either in irq 1407 * or with preempt disabled. 1408 */ 1409 static void invalidate_bh_lru(void *arg) 1410 { 1411 struct bh_lru *b = &get_cpu_var(bh_lrus); 1412 int i; 1413 1414 for (i = 0; i < BH_LRU_SIZE; i++) { 1415 brelse(b->bhs[i]); 1416 b->bhs[i] = NULL; 1417 } 1418 put_cpu_var(bh_lrus); 1419 } 1420 1421 static bool has_bh_in_lru(int cpu, void *dummy) 1422 { 1423 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1424 int i; 1425 1426 for (i = 0; i < BH_LRU_SIZE; i++) { 1427 if (b->bhs[i]) 1428 return true; 1429 } 1430 1431 return false; 1432 } 1433 1434 void invalidate_bh_lrus(void) 1435 { 1436 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1437 } 1438 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1439 1440 void set_bh_page(struct buffer_head *bh, 1441 struct page *page, unsigned long offset) 1442 { 1443 bh->b_page = page; 1444 BUG_ON(offset >= PAGE_SIZE); 1445 if (PageHighMem(page)) 1446 /* 1447 * This catches illegal uses and preserves the offset: 1448 */ 1449 bh->b_data = (char *)(0 + offset); 1450 else 1451 bh->b_data = page_address(page) + offset; 1452 } 1453 EXPORT_SYMBOL(set_bh_page); 1454 1455 /* 1456 * Called when truncating a buffer on a page completely. 1457 */ 1458 1459 /* Bits that are cleared during an invalidate */ 1460 #define BUFFER_FLAGS_DISCARD \ 1461 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1462 1 << BH_Delay | 1 << BH_Unwritten) 1463 1464 static void discard_buffer(struct buffer_head * bh) 1465 { 1466 unsigned long b_state, b_state_old; 1467 1468 lock_buffer(bh); 1469 clear_buffer_dirty(bh); 1470 bh->b_bdev = NULL; 1471 b_state = bh->b_state; 1472 for (;;) { 1473 b_state_old = cmpxchg(&bh->b_state, b_state, 1474 (b_state & ~BUFFER_FLAGS_DISCARD)); 1475 if (b_state_old == b_state) 1476 break; 1477 b_state = b_state_old; 1478 } 1479 unlock_buffer(bh); 1480 } 1481 1482 /** 1483 * block_invalidatepage - invalidate part or all of a buffer-backed page 1484 * 1485 * @page: the page which is affected 1486 * @offset: start of the range to invalidate 1487 * @length: length of the range to invalidate 1488 * 1489 * block_invalidatepage() is called when all or part of the page has become 1490 * invalidated by a truncate operation. 1491 * 1492 * block_invalidatepage() does not have to release all buffers, but it must 1493 * ensure that no dirty buffer is left outside @offset and that no I/O 1494 * is underway against any of the blocks which are outside the truncation 1495 * point. Because the caller is about to free (and possibly reuse) those 1496 * blocks on-disk. 1497 */ 1498 void block_invalidatepage(struct page *page, unsigned int offset, 1499 unsigned int length) 1500 { 1501 struct buffer_head *head, *bh, *next; 1502 unsigned int curr_off = 0; 1503 unsigned int stop = length + offset; 1504 1505 BUG_ON(!PageLocked(page)); 1506 if (!page_has_buffers(page)) 1507 goto out; 1508 1509 /* 1510 * Check for overflow 1511 */ 1512 BUG_ON(stop > PAGE_SIZE || stop < length); 1513 1514 head = page_buffers(page); 1515 bh = head; 1516 do { 1517 unsigned int next_off = curr_off + bh->b_size; 1518 next = bh->b_this_page; 1519 1520 /* 1521 * Are we still fully in range ? 1522 */ 1523 if (next_off > stop) 1524 goto out; 1525 1526 /* 1527 * is this block fully invalidated? 1528 */ 1529 if (offset <= curr_off) 1530 discard_buffer(bh); 1531 curr_off = next_off; 1532 bh = next; 1533 } while (bh != head); 1534 1535 /* 1536 * We release buffers only if the entire page is being invalidated. 1537 * The get_block cached value has been unconditionally invalidated, 1538 * so real IO is not possible anymore. 1539 */ 1540 if (length == PAGE_SIZE) 1541 try_to_release_page(page, 0); 1542 out: 1543 return; 1544 } 1545 EXPORT_SYMBOL(block_invalidatepage); 1546 1547 1548 /* 1549 * We attach and possibly dirty the buffers atomically wrt 1550 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1551 * is already excluded via the page lock. 1552 */ 1553 void create_empty_buffers(struct page *page, 1554 unsigned long blocksize, unsigned long b_state) 1555 { 1556 struct buffer_head *bh, *head, *tail; 1557 1558 head = alloc_page_buffers(page, blocksize, true); 1559 bh = head; 1560 do { 1561 bh->b_state |= b_state; 1562 tail = bh; 1563 bh = bh->b_this_page; 1564 } while (bh); 1565 tail->b_this_page = head; 1566 1567 spin_lock(&page->mapping->private_lock); 1568 if (PageUptodate(page) || PageDirty(page)) { 1569 bh = head; 1570 do { 1571 if (PageDirty(page)) 1572 set_buffer_dirty(bh); 1573 if (PageUptodate(page)) 1574 set_buffer_uptodate(bh); 1575 bh = bh->b_this_page; 1576 } while (bh != head); 1577 } 1578 attach_page_buffers(page, head); 1579 spin_unlock(&page->mapping->private_lock); 1580 } 1581 EXPORT_SYMBOL(create_empty_buffers); 1582 1583 /** 1584 * clean_bdev_aliases: clean a range of buffers in block device 1585 * @bdev: Block device to clean buffers in 1586 * @block: Start of a range of blocks to clean 1587 * @len: Number of blocks to clean 1588 * 1589 * We are taking a range of blocks for data and we don't want writeback of any 1590 * buffer-cache aliases starting from return from this function and until the 1591 * moment when something will explicitly mark the buffer dirty (hopefully that 1592 * will not happen until we will free that block ;-) We don't even need to mark 1593 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1594 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1595 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1596 * would confuse anyone who might pick it with bread() afterwards... 1597 * 1598 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1599 * writeout I/O going on against recently-freed buffers. We don't wait on that 1600 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1601 * need to. That happens here. 1602 */ 1603 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1604 { 1605 struct inode *bd_inode = bdev->bd_inode; 1606 struct address_space *bd_mapping = bd_inode->i_mapping; 1607 struct pagevec pvec; 1608 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1609 pgoff_t end; 1610 int i, count; 1611 struct buffer_head *bh; 1612 struct buffer_head *head; 1613 1614 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1615 pagevec_init(&pvec); 1616 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1617 count = pagevec_count(&pvec); 1618 for (i = 0; i < count; i++) { 1619 struct page *page = pvec.pages[i]; 1620 1621 if (!page_has_buffers(page)) 1622 continue; 1623 /* 1624 * We use page lock instead of bd_mapping->private_lock 1625 * to pin buffers here since we can afford to sleep and 1626 * it scales better than a global spinlock lock. 1627 */ 1628 lock_page(page); 1629 /* Recheck when the page is locked which pins bhs */ 1630 if (!page_has_buffers(page)) 1631 goto unlock_page; 1632 head = page_buffers(page); 1633 bh = head; 1634 do { 1635 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1636 goto next; 1637 if (bh->b_blocknr >= block + len) 1638 break; 1639 clear_buffer_dirty(bh); 1640 wait_on_buffer(bh); 1641 clear_buffer_req(bh); 1642 next: 1643 bh = bh->b_this_page; 1644 } while (bh != head); 1645 unlock_page: 1646 unlock_page(page); 1647 } 1648 pagevec_release(&pvec); 1649 cond_resched(); 1650 /* End of range already reached? */ 1651 if (index > end || !index) 1652 break; 1653 } 1654 } 1655 EXPORT_SYMBOL(clean_bdev_aliases); 1656 1657 /* 1658 * Size is a power-of-two in the range 512..PAGE_SIZE, 1659 * and the case we care about most is PAGE_SIZE. 1660 * 1661 * So this *could* possibly be written with those 1662 * constraints in mind (relevant mostly if some 1663 * architecture has a slow bit-scan instruction) 1664 */ 1665 static inline int block_size_bits(unsigned int blocksize) 1666 { 1667 return ilog2(blocksize); 1668 } 1669 1670 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1671 { 1672 BUG_ON(!PageLocked(page)); 1673 1674 if (!page_has_buffers(page)) 1675 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1676 b_state); 1677 return page_buffers(page); 1678 } 1679 1680 /* 1681 * NOTE! All mapped/uptodate combinations are valid: 1682 * 1683 * Mapped Uptodate Meaning 1684 * 1685 * No No "unknown" - must do get_block() 1686 * No Yes "hole" - zero-filled 1687 * Yes No "allocated" - allocated on disk, not read in 1688 * Yes Yes "valid" - allocated and up-to-date in memory. 1689 * 1690 * "Dirty" is valid only with the last case (mapped+uptodate). 1691 */ 1692 1693 /* 1694 * While block_write_full_page is writing back the dirty buffers under 1695 * the page lock, whoever dirtied the buffers may decide to clean them 1696 * again at any time. We handle that by only looking at the buffer 1697 * state inside lock_buffer(). 1698 * 1699 * If block_write_full_page() is called for regular writeback 1700 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1701 * locked buffer. This only can happen if someone has written the buffer 1702 * directly, with submit_bh(). At the address_space level PageWriteback 1703 * prevents this contention from occurring. 1704 * 1705 * If block_write_full_page() is called with wbc->sync_mode == 1706 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1707 * causes the writes to be flagged as synchronous writes. 1708 */ 1709 int __block_write_full_page(struct inode *inode, struct page *page, 1710 get_block_t *get_block, struct writeback_control *wbc, 1711 bh_end_io_t *handler) 1712 { 1713 int err; 1714 sector_t block; 1715 sector_t last_block; 1716 struct buffer_head *bh, *head; 1717 unsigned int blocksize, bbits; 1718 int nr_underway = 0; 1719 int write_flags = wbc_to_write_flags(wbc); 1720 1721 head = create_page_buffers(page, inode, 1722 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1723 1724 /* 1725 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1726 * here, and the (potentially unmapped) buffers may become dirty at 1727 * any time. If a buffer becomes dirty here after we've inspected it 1728 * then we just miss that fact, and the page stays dirty. 1729 * 1730 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1731 * handle that here by just cleaning them. 1732 */ 1733 1734 bh = head; 1735 blocksize = bh->b_size; 1736 bbits = block_size_bits(blocksize); 1737 1738 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1739 last_block = (i_size_read(inode) - 1) >> bbits; 1740 1741 /* 1742 * Get all the dirty buffers mapped to disk addresses and 1743 * handle any aliases from the underlying blockdev's mapping. 1744 */ 1745 do { 1746 if (block > last_block) { 1747 /* 1748 * mapped buffers outside i_size will occur, because 1749 * this page can be outside i_size when there is a 1750 * truncate in progress. 1751 */ 1752 /* 1753 * The buffer was zeroed by block_write_full_page() 1754 */ 1755 clear_buffer_dirty(bh); 1756 set_buffer_uptodate(bh); 1757 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1758 buffer_dirty(bh)) { 1759 WARN_ON(bh->b_size != blocksize); 1760 err = get_block(inode, block, bh, 1); 1761 if (err) 1762 goto recover; 1763 clear_buffer_delay(bh); 1764 if (buffer_new(bh)) { 1765 /* blockdev mappings never come here */ 1766 clear_buffer_new(bh); 1767 clean_bdev_bh_alias(bh); 1768 } 1769 } 1770 bh = bh->b_this_page; 1771 block++; 1772 } while (bh != head); 1773 1774 do { 1775 if (!buffer_mapped(bh)) 1776 continue; 1777 /* 1778 * If it's a fully non-blocking write attempt and we cannot 1779 * lock the buffer then redirty the page. Note that this can 1780 * potentially cause a busy-wait loop from writeback threads 1781 * and kswapd activity, but those code paths have their own 1782 * higher-level throttling. 1783 */ 1784 if (wbc->sync_mode != WB_SYNC_NONE) { 1785 lock_buffer(bh); 1786 } else if (!trylock_buffer(bh)) { 1787 redirty_page_for_writepage(wbc, page); 1788 continue; 1789 } 1790 if (test_clear_buffer_dirty(bh)) { 1791 mark_buffer_async_write_endio(bh, handler); 1792 } else { 1793 unlock_buffer(bh); 1794 } 1795 } while ((bh = bh->b_this_page) != head); 1796 1797 /* 1798 * The page and its buffers are protected by PageWriteback(), so we can 1799 * drop the bh refcounts early. 1800 */ 1801 BUG_ON(PageWriteback(page)); 1802 set_page_writeback(page); 1803 1804 do { 1805 struct buffer_head *next = bh->b_this_page; 1806 if (buffer_async_write(bh)) { 1807 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1808 inode->i_write_hint, wbc); 1809 nr_underway++; 1810 } 1811 bh = next; 1812 } while (bh != head); 1813 unlock_page(page); 1814 1815 err = 0; 1816 done: 1817 if (nr_underway == 0) { 1818 /* 1819 * The page was marked dirty, but the buffers were 1820 * clean. Someone wrote them back by hand with 1821 * ll_rw_block/submit_bh. A rare case. 1822 */ 1823 end_page_writeback(page); 1824 1825 /* 1826 * The page and buffer_heads can be released at any time from 1827 * here on. 1828 */ 1829 } 1830 return err; 1831 1832 recover: 1833 /* 1834 * ENOSPC, or some other error. We may already have added some 1835 * blocks to the file, so we need to write these out to avoid 1836 * exposing stale data. 1837 * The page is currently locked and not marked for writeback 1838 */ 1839 bh = head; 1840 /* Recovery: lock and submit the mapped buffers */ 1841 do { 1842 if (buffer_mapped(bh) && buffer_dirty(bh) && 1843 !buffer_delay(bh)) { 1844 lock_buffer(bh); 1845 mark_buffer_async_write_endio(bh, handler); 1846 } else { 1847 /* 1848 * The buffer may have been set dirty during 1849 * attachment to a dirty page. 1850 */ 1851 clear_buffer_dirty(bh); 1852 } 1853 } while ((bh = bh->b_this_page) != head); 1854 SetPageError(page); 1855 BUG_ON(PageWriteback(page)); 1856 mapping_set_error(page->mapping, err); 1857 set_page_writeback(page); 1858 do { 1859 struct buffer_head *next = bh->b_this_page; 1860 if (buffer_async_write(bh)) { 1861 clear_buffer_dirty(bh); 1862 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1863 inode->i_write_hint, wbc); 1864 nr_underway++; 1865 } 1866 bh = next; 1867 } while (bh != head); 1868 unlock_page(page); 1869 goto done; 1870 } 1871 EXPORT_SYMBOL(__block_write_full_page); 1872 1873 /* 1874 * If a page has any new buffers, zero them out here, and mark them uptodate 1875 * and dirty so they'll be written out (in order to prevent uninitialised 1876 * block data from leaking). And clear the new bit. 1877 */ 1878 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1879 { 1880 unsigned int block_start, block_end; 1881 struct buffer_head *head, *bh; 1882 1883 BUG_ON(!PageLocked(page)); 1884 if (!page_has_buffers(page)) 1885 return; 1886 1887 bh = head = page_buffers(page); 1888 block_start = 0; 1889 do { 1890 block_end = block_start + bh->b_size; 1891 1892 if (buffer_new(bh)) { 1893 if (block_end > from && block_start < to) { 1894 if (!PageUptodate(page)) { 1895 unsigned start, size; 1896 1897 start = max(from, block_start); 1898 size = min(to, block_end) - start; 1899 1900 zero_user(page, start, size); 1901 set_buffer_uptodate(bh); 1902 } 1903 1904 clear_buffer_new(bh); 1905 mark_buffer_dirty(bh); 1906 } 1907 } 1908 1909 block_start = block_end; 1910 bh = bh->b_this_page; 1911 } while (bh != head); 1912 } 1913 EXPORT_SYMBOL(page_zero_new_buffers); 1914 1915 static void 1916 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1917 struct iomap *iomap) 1918 { 1919 loff_t offset = block << inode->i_blkbits; 1920 1921 bh->b_bdev = iomap->bdev; 1922 1923 /* 1924 * Block points to offset in file we need to map, iomap contains 1925 * the offset at which the map starts. If the map ends before the 1926 * current block, then do not map the buffer and let the caller 1927 * handle it. 1928 */ 1929 BUG_ON(offset >= iomap->offset + iomap->length); 1930 1931 switch (iomap->type) { 1932 case IOMAP_HOLE: 1933 /* 1934 * If the buffer is not up to date or beyond the current EOF, 1935 * we need to mark it as new to ensure sub-block zeroing is 1936 * executed if necessary. 1937 */ 1938 if (!buffer_uptodate(bh) || 1939 (offset >= i_size_read(inode))) 1940 set_buffer_new(bh); 1941 break; 1942 case IOMAP_DELALLOC: 1943 if (!buffer_uptodate(bh) || 1944 (offset >= i_size_read(inode))) 1945 set_buffer_new(bh); 1946 set_buffer_uptodate(bh); 1947 set_buffer_mapped(bh); 1948 set_buffer_delay(bh); 1949 break; 1950 case IOMAP_UNWRITTEN: 1951 /* 1952 * For unwritten regions, we always need to ensure that regions 1953 * in the block we are not writing to are zeroed. Mark the 1954 * buffer as new to ensure this. 1955 */ 1956 set_buffer_new(bh); 1957 set_buffer_unwritten(bh); 1958 /* FALLTHRU */ 1959 case IOMAP_MAPPED: 1960 if ((iomap->flags & IOMAP_F_NEW) || 1961 offset >= i_size_read(inode)) 1962 set_buffer_new(bh); 1963 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1964 inode->i_blkbits; 1965 set_buffer_mapped(bh); 1966 break; 1967 } 1968 } 1969 1970 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1971 get_block_t *get_block, struct iomap *iomap) 1972 { 1973 unsigned from = pos & (PAGE_SIZE - 1); 1974 unsigned to = from + len; 1975 struct inode *inode = page->mapping->host; 1976 unsigned block_start, block_end; 1977 sector_t block; 1978 int err = 0; 1979 unsigned blocksize, bbits; 1980 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1981 1982 BUG_ON(!PageLocked(page)); 1983 BUG_ON(from > PAGE_SIZE); 1984 BUG_ON(to > PAGE_SIZE); 1985 BUG_ON(from > to); 1986 1987 head = create_page_buffers(page, inode, 0); 1988 blocksize = head->b_size; 1989 bbits = block_size_bits(blocksize); 1990 1991 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1992 1993 for(bh = head, block_start = 0; bh != head || !block_start; 1994 block++, block_start=block_end, bh = bh->b_this_page) { 1995 block_end = block_start + blocksize; 1996 if (block_end <= from || block_start >= to) { 1997 if (PageUptodate(page)) { 1998 if (!buffer_uptodate(bh)) 1999 set_buffer_uptodate(bh); 2000 } 2001 continue; 2002 } 2003 if (buffer_new(bh)) 2004 clear_buffer_new(bh); 2005 if (!buffer_mapped(bh)) { 2006 WARN_ON(bh->b_size != blocksize); 2007 if (get_block) { 2008 err = get_block(inode, block, bh, 1); 2009 if (err) 2010 break; 2011 } else { 2012 iomap_to_bh(inode, block, bh, iomap); 2013 } 2014 2015 if (buffer_new(bh)) { 2016 clean_bdev_bh_alias(bh); 2017 if (PageUptodate(page)) { 2018 clear_buffer_new(bh); 2019 set_buffer_uptodate(bh); 2020 mark_buffer_dirty(bh); 2021 continue; 2022 } 2023 if (block_end > to || block_start < from) 2024 zero_user_segments(page, 2025 to, block_end, 2026 block_start, from); 2027 continue; 2028 } 2029 } 2030 if (PageUptodate(page)) { 2031 if (!buffer_uptodate(bh)) 2032 set_buffer_uptodate(bh); 2033 continue; 2034 } 2035 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2036 !buffer_unwritten(bh) && 2037 (block_start < from || block_end > to)) { 2038 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2039 *wait_bh++=bh; 2040 } 2041 } 2042 /* 2043 * If we issued read requests - let them complete. 2044 */ 2045 while(wait_bh > wait) { 2046 wait_on_buffer(*--wait_bh); 2047 if (!buffer_uptodate(*wait_bh)) 2048 err = -EIO; 2049 } 2050 if (unlikely(err)) 2051 page_zero_new_buffers(page, from, to); 2052 return err; 2053 } 2054 2055 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2056 get_block_t *get_block) 2057 { 2058 return __block_write_begin_int(page, pos, len, get_block, NULL); 2059 } 2060 EXPORT_SYMBOL(__block_write_begin); 2061 2062 static int __block_commit_write(struct inode *inode, struct page *page, 2063 unsigned from, unsigned to) 2064 { 2065 unsigned block_start, block_end; 2066 int partial = 0; 2067 unsigned blocksize; 2068 struct buffer_head *bh, *head; 2069 2070 bh = head = page_buffers(page); 2071 blocksize = bh->b_size; 2072 2073 block_start = 0; 2074 do { 2075 block_end = block_start + blocksize; 2076 if (block_end <= from || block_start >= to) { 2077 if (!buffer_uptodate(bh)) 2078 partial = 1; 2079 } else { 2080 set_buffer_uptodate(bh); 2081 mark_buffer_dirty(bh); 2082 } 2083 clear_buffer_new(bh); 2084 2085 block_start = block_end; 2086 bh = bh->b_this_page; 2087 } while (bh != head); 2088 2089 /* 2090 * If this is a partial write which happened to make all buffers 2091 * uptodate then we can optimize away a bogus readpage() for 2092 * the next read(). Here we 'discover' whether the page went 2093 * uptodate as a result of this (potentially partial) write. 2094 */ 2095 if (!partial) 2096 SetPageUptodate(page); 2097 return 0; 2098 } 2099 2100 /* 2101 * block_write_begin takes care of the basic task of block allocation and 2102 * bringing partial write blocks uptodate first. 2103 * 2104 * The filesystem needs to handle block truncation upon failure. 2105 */ 2106 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2107 unsigned flags, struct page **pagep, get_block_t *get_block) 2108 { 2109 pgoff_t index = pos >> PAGE_SHIFT; 2110 struct page *page; 2111 int status; 2112 2113 page = grab_cache_page_write_begin(mapping, index, flags); 2114 if (!page) 2115 return -ENOMEM; 2116 2117 status = __block_write_begin(page, pos, len, get_block); 2118 if (unlikely(status)) { 2119 unlock_page(page); 2120 put_page(page); 2121 page = NULL; 2122 } 2123 2124 *pagep = page; 2125 return status; 2126 } 2127 EXPORT_SYMBOL(block_write_begin); 2128 2129 int block_write_end(struct file *file, struct address_space *mapping, 2130 loff_t pos, unsigned len, unsigned copied, 2131 struct page *page, void *fsdata) 2132 { 2133 struct inode *inode = mapping->host; 2134 unsigned start; 2135 2136 start = pos & (PAGE_SIZE - 1); 2137 2138 if (unlikely(copied < len)) { 2139 /* 2140 * The buffers that were written will now be uptodate, so we 2141 * don't have to worry about a readpage reading them and 2142 * overwriting a partial write. However if we have encountered 2143 * a short write and only partially written into a buffer, it 2144 * will not be marked uptodate, so a readpage might come in and 2145 * destroy our partial write. 2146 * 2147 * Do the simplest thing, and just treat any short write to a 2148 * non uptodate page as a zero-length write, and force the 2149 * caller to redo the whole thing. 2150 */ 2151 if (!PageUptodate(page)) 2152 copied = 0; 2153 2154 page_zero_new_buffers(page, start+copied, start+len); 2155 } 2156 flush_dcache_page(page); 2157 2158 /* This could be a short (even 0-length) commit */ 2159 __block_commit_write(inode, page, start, start+copied); 2160 2161 return copied; 2162 } 2163 EXPORT_SYMBOL(block_write_end); 2164 2165 int generic_write_end(struct file *file, struct address_space *mapping, 2166 loff_t pos, unsigned len, unsigned copied, 2167 struct page *page, void *fsdata) 2168 { 2169 struct inode *inode = mapping->host; 2170 loff_t old_size = inode->i_size; 2171 bool i_size_changed = false; 2172 2173 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2174 2175 /* 2176 * No need to use i_size_read() here, the i_size cannot change under us 2177 * because we hold i_rwsem. 2178 * 2179 * But it's important to update i_size while still holding page lock: 2180 * page writeout could otherwise come in and zero beyond i_size. 2181 */ 2182 if (pos + copied > inode->i_size) { 2183 i_size_write(inode, pos + copied); 2184 i_size_changed = true; 2185 } 2186 2187 unlock_page(page); 2188 put_page(page); 2189 2190 if (old_size < pos) 2191 pagecache_isize_extended(inode, old_size, pos); 2192 /* 2193 * Don't mark the inode dirty under page lock. First, it unnecessarily 2194 * makes the holding time of page lock longer. Second, it forces lock 2195 * ordering of page lock and transaction start for journaling 2196 * filesystems. 2197 */ 2198 if (i_size_changed) 2199 mark_inode_dirty(inode); 2200 return copied; 2201 } 2202 EXPORT_SYMBOL(generic_write_end); 2203 2204 /* 2205 * block_is_partially_uptodate checks whether buffers within a page are 2206 * uptodate or not. 2207 * 2208 * Returns true if all buffers which correspond to a file portion 2209 * we want to read are uptodate. 2210 */ 2211 int block_is_partially_uptodate(struct page *page, unsigned long from, 2212 unsigned long count) 2213 { 2214 unsigned block_start, block_end, blocksize; 2215 unsigned to; 2216 struct buffer_head *bh, *head; 2217 int ret = 1; 2218 2219 if (!page_has_buffers(page)) 2220 return 0; 2221 2222 head = page_buffers(page); 2223 blocksize = head->b_size; 2224 to = min_t(unsigned, PAGE_SIZE - from, count); 2225 to = from + to; 2226 if (from < blocksize && to > PAGE_SIZE - blocksize) 2227 return 0; 2228 2229 bh = head; 2230 block_start = 0; 2231 do { 2232 block_end = block_start + blocksize; 2233 if (block_end > from && block_start < to) { 2234 if (!buffer_uptodate(bh)) { 2235 ret = 0; 2236 break; 2237 } 2238 if (block_end >= to) 2239 break; 2240 } 2241 block_start = block_end; 2242 bh = bh->b_this_page; 2243 } while (bh != head); 2244 2245 return ret; 2246 } 2247 EXPORT_SYMBOL(block_is_partially_uptodate); 2248 2249 /* 2250 * Generic "read page" function for block devices that have the normal 2251 * get_block functionality. This is most of the block device filesystems. 2252 * Reads the page asynchronously --- the unlock_buffer() and 2253 * set/clear_buffer_uptodate() functions propagate buffer state into the 2254 * page struct once IO has completed. 2255 */ 2256 int block_read_full_page(struct page *page, get_block_t *get_block) 2257 { 2258 struct inode *inode = page->mapping->host; 2259 sector_t iblock, lblock; 2260 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2261 unsigned int blocksize, bbits; 2262 int nr, i; 2263 int fully_mapped = 1; 2264 2265 head = create_page_buffers(page, inode, 0); 2266 blocksize = head->b_size; 2267 bbits = block_size_bits(blocksize); 2268 2269 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2270 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2271 bh = head; 2272 nr = 0; 2273 i = 0; 2274 2275 do { 2276 if (buffer_uptodate(bh)) 2277 continue; 2278 2279 if (!buffer_mapped(bh)) { 2280 int err = 0; 2281 2282 fully_mapped = 0; 2283 if (iblock < lblock) { 2284 WARN_ON(bh->b_size != blocksize); 2285 err = get_block(inode, iblock, bh, 0); 2286 if (err) 2287 SetPageError(page); 2288 } 2289 if (!buffer_mapped(bh)) { 2290 zero_user(page, i * blocksize, blocksize); 2291 if (!err) 2292 set_buffer_uptodate(bh); 2293 continue; 2294 } 2295 /* 2296 * get_block() might have updated the buffer 2297 * synchronously 2298 */ 2299 if (buffer_uptodate(bh)) 2300 continue; 2301 } 2302 arr[nr++] = bh; 2303 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2304 2305 if (fully_mapped) 2306 SetPageMappedToDisk(page); 2307 2308 if (!nr) { 2309 /* 2310 * All buffers are uptodate - we can set the page uptodate 2311 * as well. But not if get_block() returned an error. 2312 */ 2313 if (!PageError(page)) 2314 SetPageUptodate(page); 2315 unlock_page(page); 2316 return 0; 2317 } 2318 2319 /* Stage two: lock the buffers */ 2320 for (i = 0; i < nr; i++) { 2321 bh = arr[i]; 2322 lock_buffer(bh); 2323 mark_buffer_async_read(bh); 2324 } 2325 2326 /* 2327 * Stage 3: start the IO. Check for uptodateness 2328 * inside the buffer lock in case another process reading 2329 * the underlying blockdev brought it uptodate (the sct fix). 2330 */ 2331 for (i = 0; i < nr; i++) { 2332 bh = arr[i]; 2333 if (buffer_uptodate(bh)) 2334 end_buffer_async_read(bh, 1); 2335 else 2336 submit_bh(REQ_OP_READ, 0, bh); 2337 } 2338 return 0; 2339 } 2340 EXPORT_SYMBOL(block_read_full_page); 2341 2342 /* utility function for filesystems that need to do work on expanding 2343 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2344 * deal with the hole. 2345 */ 2346 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2347 { 2348 struct address_space *mapping = inode->i_mapping; 2349 struct page *page; 2350 void *fsdata; 2351 int err; 2352 2353 err = inode_newsize_ok(inode, size); 2354 if (err) 2355 goto out; 2356 2357 err = pagecache_write_begin(NULL, mapping, size, 0, 2358 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2359 if (err) 2360 goto out; 2361 2362 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2363 BUG_ON(err > 0); 2364 2365 out: 2366 return err; 2367 } 2368 EXPORT_SYMBOL(generic_cont_expand_simple); 2369 2370 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2371 loff_t pos, loff_t *bytes) 2372 { 2373 struct inode *inode = mapping->host; 2374 unsigned int blocksize = i_blocksize(inode); 2375 struct page *page; 2376 void *fsdata; 2377 pgoff_t index, curidx; 2378 loff_t curpos; 2379 unsigned zerofrom, offset, len; 2380 int err = 0; 2381 2382 index = pos >> PAGE_SHIFT; 2383 offset = pos & ~PAGE_MASK; 2384 2385 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2386 zerofrom = curpos & ~PAGE_MASK; 2387 if (zerofrom & (blocksize-1)) { 2388 *bytes |= (blocksize-1); 2389 (*bytes)++; 2390 } 2391 len = PAGE_SIZE - zerofrom; 2392 2393 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2394 &page, &fsdata); 2395 if (err) 2396 goto out; 2397 zero_user(page, zerofrom, len); 2398 err = pagecache_write_end(file, mapping, curpos, len, len, 2399 page, fsdata); 2400 if (err < 0) 2401 goto out; 2402 BUG_ON(err != len); 2403 err = 0; 2404 2405 balance_dirty_pages_ratelimited(mapping); 2406 2407 if (fatal_signal_pending(current)) { 2408 err = -EINTR; 2409 goto out; 2410 } 2411 } 2412 2413 /* page covers the boundary, find the boundary offset */ 2414 if (index == curidx) { 2415 zerofrom = curpos & ~PAGE_MASK; 2416 /* if we will expand the thing last block will be filled */ 2417 if (offset <= zerofrom) { 2418 goto out; 2419 } 2420 if (zerofrom & (blocksize-1)) { 2421 *bytes |= (blocksize-1); 2422 (*bytes)++; 2423 } 2424 len = offset - zerofrom; 2425 2426 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2427 &page, &fsdata); 2428 if (err) 2429 goto out; 2430 zero_user(page, zerofrom, len); 2431 err = pagecache_write_end(file, mapping, curpos, len, len, 2432 page, fsdata); 2433 if (err < 0) 2434 goto out; 2435 BUG_ON(err != len); 2436 err = 0; 2437 } 2438 out: 2439 return err; 2440 } 2441 2442 /* 2443 * For moronic filesystems that do not allow holes in file. 2444 * We may have to extend the file. 2445 */ 2446 int cont_write_begin(struct file *file, struct address_space *mapping, 2447 loff_t pos, unsigned len, unsigned flags, 2448 struct page **pagep, void **fsdata, 2449 get_block_t *get_block, loff_t *bytes) 2450 { 2451 struct inode *inode = mapping->host; 2452 unsigned int blocksize = i_blocksize(inode); 2453 unsigned int zerofrom; 2454 int err; 2455 2456 err = cont_expand_zero(file, mapping, pos, bytes); 2457 if (err) 2458 return err; 2459 2460 zerofrom = *bytes & ~PAGE_MASK; 2461 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2462 *bytes |= (blocksize-1); 2463 (*bytes)++; 2464 } 2465 2466 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2467 } 2468 EXPORT_SYMBOL(cont_write_begin); 2469 2470 int block_commit_write(struct page *page, unsigned from, unsigned to) 2471 { 2472 struct inode *inode = page->mapping->host; 2473 __block_commit_write(inode,page,from,to); 2474 return 0; 2475 } 2476 EXPORT_SYMBOL(block_commit_write); 2477 2478 /* 2479 * block_page_mkwrite() is not allowed to change the file size as it gets 2480 * called from a page fault handler when a page is first dirtied. Hence we must 2481 * be careful to check for EOF conditions here. We set the page up correctly 2482 * for a written page which means we get ENOSPC checking when writing into 2483 * holes and correct delalloc and unwritten extent mapping on filesystems that 2484 * support these features. 2485 * 2486 * We are not allowed to take the i_mutex here so we have to play games to 2487 * protect against truncate races as the page could now be beyond EOF. Because 2488 * truncate writes the inode size before removing pages, once we have the 2489 * page lock we can determine safely if the page is beyond EOF. If it is not 2490 * beyond EOF, then the page is guaranteed safe against truncation until we 2491 * unlock the page. 2492 * 2493 * Direct callers of this function should protect against filesystem freezing 2494 * using sb_start_pagefault() - sb_end_pagefault() functions. 2495 */ 2496 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2497 get_block_t get_block) 2498 { 2499 struct page *page = vmf->page; 2500 struct inode *inode = file_inode(vma->vm_file); 2501 unsigned long end; 2502 loff_t size; 2503 int ret; 2504 2505 lock_page(page); 2506 size = i_size_read(inode); 2507 if ((page->mapping != inode->i_mapping) || 2508 (page_offset(page) > size)) { 2509 /* We overload EFAULT to mean page got truncated */ 2510 ret = -EFAULT; 2511 goto out_unlock; 2512 } 2513 2514 /* page is wholly or partially inside EOF */ 2515 if (((page->index + 1) << PAGE_SHIFT) > size) 2516 end = size & ~PAGE_MASK; 2517 else 2518 end = PAGE_SIZE; 2519 2520 ret = __block_write_begin(page, 0, end, get_block); 2521 if (!ret) 2522 ret = block_commit_write(page, 0, end); 2523 2524 if (unlikely(ret < 0)) 2525 goto out_unlock; 2526 set_page_dirty(page); 2527 wait_for_stable_page(page); 2528 return 0; 2529 out_unlock: 2530 unlock_page(page); 2531 return ret; 2532 } 2533 EXPORT_SYMBOL(block_page_mkwrite); 2534 2535 /* 2536 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2537 * immediately, while under the page lock. So it needs a special end_io 2538 * handler which does not touch the bh after unlocking it. 2539 */ 2540 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2541 { 2542 __end_buffer_read_notouch(bh, uptodate); 2543 } 2544 2545 /* 2546 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2547 * the page (converting it to circular linked list and taking care of page 2548 * dirty races). 2549 */ 2550 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2551 { 2552 struct buffer_head *bh; 2553 2554 BUG_ON(!PageLocked(page)); 2555 2556 spin_lock(&page->mapping->private_lock); 2557 bh = head; 2558 do { 2559 if (PageDirty(page)) 2560 set_buffer_dirty(bh); 2561 if (!bh->b_this_page) 2562 bh->b_this_page = head; 2563 bh = bh->b_this_page; 2564 } while (bh != head); 2565 attach_page_buffers(page, head); 2566 spin_unlock(&page->mapping->private_lock); 2567 } 2568 2569 /* 2570 * On entry, the page is fully not uptodate. 2571 * On exit the page is fully uptodate in the areas outside (from,to) 2572 * The filesystem needs to handle block truncation upon failure. 2573 */ 2574 int nobh_write_begin(struct address_space *mapping, 2575 loff_t pos, unsigned len, unsigned flags, 2576 struct page **pagep, void **fsdata, 2577 get_block_t *get_block) 2578 { 2579 struct inode *inode = mapping->host; 2580 const unsigned blkbits = inode->i_blkbits; 2581 const unsigned blocksize = 1 << blkbits; 2582 struct buffer_head *head, *bh; 2583 struct page *page; 2584 pgoff_t index; 2585 unsigned from, to; 2586 unsigned block_in_page; 2587 unsigned block_start, block_end; 2588 sector_t block_in_file; 2589 int nr_reads = 0; 2590 int ret = 0; 2591 int is_mapped_to_disk = 1; 2592 2593 index = pos >> PAGE_SHIFT; 2594 from = pos & (PAGE_SIZE - 1); 2595 to = from + len; 2596 2597 page = grab_cache_page_write_begin(mapping, index, flags); 2598 if (!page) 2599 return -ENOMEM; 2600 *pagep = page; 2601 *fsdata = NULL; 2602 2603 if (page_has_buffers(page)) { 2604 ret = __block_write_begin(page, pos, len, get_block); 2605 if (unlikely(ret)) 2606 goto out_release; 2607 return ret; 2608 } 2609 2610 if (PageMappedToDisk(page)) 2611 return 0; 2612 2613 /* 2614 * Allocate buffers so that we can keep track of state, and potentially 2615 * attach them to the page if an error occurs. In the common case of 2616 * no error, they will just be freed again without ever being attached 2617 * to the page (which is all OK, because we're under the page lock). 2618 * 2619 * Be careful: the buffer linked list is a NULL terminated one, rather 2620 * than the circular one we're used to. 2621 */ 2622 head = alloc_page_buffers(page, blocksize, false); 2623 if (!head) { 2624 ret = -ENOMEM; 2625 goto out_release; 2626 } 2627 2628 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2629 2630 /* 2631 * We loop across all blocks in the page, whether or not they are 2632 * part of the affected region. This is so we can discover if the 2633 * page is fully mapped-to-disk. 2634 */ 2635 for (block_start = 0, block_in_page = 0, bh = head; 2636 block_start < PAGE_SIZE; 2637 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2638 int create; 2639 2640 block_end = block_start + blocksize; 2641 bh->b_state = 0; 2642 create = 1; 2643 if (block_start >= to) 2644 create = 0; 2645 ret = get_block(inode, block_in_file + block_in_page, 2646 bh, create); 2647 if (ret) 2648 goto failed; 2649 if (!buffer_mapped(bh)) 2650 is_mapped_to_disk = 0; 2651 if (buffer_new(bh)) 2652 clean_bdev_bh_alias(bh); 2653 if (PageUptodate(page)) { 2654 set_buffer_uptodate(bh); 2655 continue; 2656 } 2657 if (buffer_new(bh) || !buffer_mapped(bh)) { 2658 zero_user_segments(page, block_start, from, 2659 to, block_end); 2660 continue; 2661 } 2662 if (buffer_uptodate(bh)) 2663 continue; /* reiserfs does this */ 2664 if (block_start < from || block_end > to) { 2665 lock_buffer(bh); 2666 bh->b_end_io = end_buffer_read_nobh; 2667 submit_bh(REQ_OP_READ, 0, bh); 2668 nr_reads++; 2669 } 2670 } 2671 2672 if (nr_reads) { 2673 /* 2674 * The page is locked, so these buffers are protected from 2675 * any VM or truncate activity. Hence we don't need to care 2676 * for the buffer_head refcounts. 2677 */ 2678 for (bh = head; bh; bh = bh->b_this_page) { 2679 wait_on_buffer(bh); 2680 if (!buffer_uptodate(bh)) 2681 ret = -EIO; 2682 } 2683 if (ret) 2684 goto failed; 2685 } 2686 2687 if (is_mapped_to_disk) 2688 SetPageMappedToDisk(page); 2689 2690 *fsdata = head; /* to be released by nobh_write_end */ 2691 2692 return 0; 2693 2694 failed: 2695 BUG_ON(!ret); 2696 /* 2697 * Error recovery is a bit difficult. We need to zero out blocks that 2698 * were newly allocated, and dirty them to ensure they get written out. 2699 * Buffers need to be attached to the page at this point, otherwise 2700 * the handling of potential IO errors during writeout would be hard 2701 * (could try doing synchronous writeout, but what if that fails too?) 2702 */ 2703 attach_nobh_buffers(page, head); 2704 page_zero_new_buffers(page, from, to); 2705 2706 out_release: 2707 unlock_page(page); 2708 put_page(page); 2709 *pagep = NULL; 2710 2711 return ret; 2712 } 2713 EXPORT_SYMBOL(nobh_write_begin); 2714 2715 int nobh_write_end(struct file *file, struct address_space *mapping, 2716 loff_t pos, unsigned len, unsigned copied, 2717 struct page *page, void *fsdata) 2718 { 2719 struct inode *inode = page->mapping->host; 2720 struct buffer_head *head = fsdata; 2721 struct buffer_head *bh; 2722 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2723 2724 if (unlikely(copied < len) && head) 2725 attach_nobh_buffers(page, head); 2726 if (page_has_buffers(page)) 2727 return generic_write_end(file, mapping, pos, len, 2728 copied, page, fsdata); 2729 2730 SetPageUptodate(page); 2731 set_page_dirty(page); 2732 if (pos+copied > inode->i_size) { 2733 i_size_write(inode, pos+copied); 2734 mark_inode_dirty(inode); 2735 } 2736 2737 unlock_page(page); 2738 put_page(page); 2739 2740 while (head) { 2741 bh = head; 2742 head = head->b_this_page; 2743 free_buffer_head(bh); 2744 } 2745 2746 return copied; 2747 } 2748 EXPORT_SYMBOL(nobh_write_end); 2749 2750 /* 2751 * nobh_writepage() - based on block_full_write_page() except 2752 * that it tries to operate without attaching bufferheads to 2753 * the page. 2754 */ 2755 int nobh_writepage(struct page *page, get_block_t *get_block, 2756 struct writeback_control *wbc) 2757 { 2758 struct inode * const inode = page->mapping->host; 2759 loff_t i_size = i_size_read(inode); 2760 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2761 unsigned offset; 2762 int ret; 2763 2764 /* Is the page fully inside i_size? */ 2765 if (page->index < end_index) 2766 goto out; 2767 2768 /* Is the page fully outside i_size? (truncate in progress) */ 2769 offset = i_size & (PAGE_SIZE-1); 2770 if (page->index >= end_index+1 || !offset) { 2771 /* 2772 * The page may have dirty, unmapped buffers. For example, 2773 * they may have been added in ext3_writepage(). Make them 2774 * freeable here, so the page does not leak. 2775 */ 2776 #if 0 2777 /* Not really sure about this - do we need this ? */ 2778 if (page->mapping->a_ops->invalidatepage) 2779 page->mapping->a_ops->invalidatepage(page, offset); 2780 #endif 2781 unlock_page(page); 2782 return 0; /* don't care */ 2783 } 2784 2785 /* 2786 * The page straddles i_size. It must be zeroed out on each and every 2787 * writepage invocation because it may be mmapped. "A file is mapped 2788 * in multiples of the page size. For a file that is not a multiple of 2789 * the page size, the remaining memory is zeroed when mapped, and 2790 * writes to that region are not written out to the file." 2791 */ 2792 zero_user_segment(page, offset, PAGE_SIZE); 2793 out: 2794 ret = mpage_writepage(page, get_block, wbc); 2795 if (ret == -EAGAIN) 2796 ret = __block_write_full_page(inode, page, get_block, wbc, 2797 end_buffer_async_write); 2798 return ret; 2799 } 2800 EXPORT_SYMBOL(nobh_writepage); 2801 2802 int nobh_truncate_page(struct address_space *mapping, 2803 loff_t from, get_block_t *get_block) 2804 { 2805 pgoff_t index = from >> PAGE_SHIFT; 2806 unsigned offset = from & (PAGE_SIZE-1); 2807 unsigned blocksize; 2808 sector_t iblock; 2809 unsigned length, pos; 2810 struct inode *inode = mapping->host; 2811 struct page *page; 2812 struct buffer_head map_bh; 2813 int err; 2814 2815 blocksize = i_blocksize(inode); 2816 length = offset & (blocksize - 1); 2817 2818 /* Block boundary? Nothing to do */ 2819 if (!length) 2820 return 0; 2821 2822 length = blocksize - length; 2823 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2824 2825 page = grab_cache_page(mapping, index); 2826 err = -ENOMEM; 2827 if (!page) 2828 goto out; 2829 2830 if (page_has_buffers(page)) { 2831 has_buffers: 2832 unlock_page(page); 2833 put_page(page); 2834 return block_truncate_page(mapping, from, get_block); 2835 } 2836 2837 /* Find the buffer that contains "offset" */ 2838 pos = blocksize; 2839 while (offset >= pos) { 2840 iblock++; 2841 pos += blocksize; 2842 } 2843 2844 map_bh.b_size = blocksize; 2845 map_bh.b_state = 0; 2846 err = get_block(inode, iblock, &map_bh, 0); 2847 if (err) 2848 goto unlock; 2849 /* unmapped? It's a hole - nothing to do */ 2850 if (!buffer_mapped(&map_bh)) 2851 goto unlock; 2852 2853 /* Ok, it's mapped. Make sure it's up-to-date */ 2854 if (!PageUptodate(page)) { 2855 err = mapping->a_ops->readpage(NULL, page); 2856 if (err) { 2857 put_page(page); 2858 goto out; 2859 } 2860 lock_page(page); 2861 if (!PageUptodate(page)) { 2862 err = -EIO; 2863 goto unlock; 2864 } 2865 if (page_has_buffers(page)) 2866 goto has_buffers; 2867 } 2868 zero_user(page, offset, length); 2869 set_page_dirty(page); 2870 err = 0; 2871 2872 unlock: 2873 unlock_page(page); 2874 put_page(page); 2875 out: 2876 return err; 2877 } 2878 EXPORT_SYMBOL(nobh_truncate_page); 2879 2880 int block_truncate_page(struct address_space *mapping, 2881 loff_t from, get_block_t *get_block) 2882 { 2883 pgoff_t index = from >> PAGE_SHIFT; 2884 unsigned offset = from & (PAGE_SIZE-1); 2885 unsigned blocksize; 2886 sector_t iblock; 2887 unsigned length, pos; 2888 struct inode *inode = mapping->host; 2889 struct page *page; 2890 struct buffer_head *bh; 2891 int err; 2892 2893 blocksize = i_blocksize(inode); 2894 length = offset & (blocksize - 1); 2895 2896 /* Block boundary? Nothing to do */ 2897 if (!length) 2898 return 0; 2899 2900 length = blocksize - length; 2901 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2902 2903 page = grab_cache_page(mapping, index); 2904 err = -ENOMEM; 2905 if (!page) 2906 goto out; 2907 2908 if (!page_has_buffers(page)) 2909 create_empty_buffers(page, blocksize, 0); 2910 2911 /* Find the buffer that contains "offset" */ 2912 bh = page_buffers(page); 2913 pos = blocksize; 2914 while (offset >= pos) { 2915 bh = bh->b_this_page; 2916 iblock++; 2917 pos += blocksize; 2918 } 2919 2920 err = 0; 2921 if (!buffer_mapped(bh)) { 2922 WARN_ON(bh->b_size != blocksize); 2923 err = get_block(inode, iblock, bh, 0); 2924 if (err) 2925 goto unlock; 2926 /* unmapped? It's a hole - nothing to do */ 2927 if (!buffer_mapped(bh)) 2928 goto unlock; 2929 } 2930 2931 /* Ok, it's mapped. Make sure it's up-to-date */ 2932 if (PageUptodate(page)) 2933 set_buffer_uptodate(bh); 2934 2935 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2936 err = -EIO; 2937 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2938 wait_on_buffer(bh); 2939 /* Uhhuh. Read error. Complain and punt. */ 2940 if (!buffer_uptodate(bh)) 2941 goto unlock; 2942 } 2943 2944 zero_user(page, offset, length); 2945 mark_buffer_dirty(bh); 2946 err = 0; 2947 2948 unlock: 2949 unlock_page(page); 2950 put_page(page); 2951 out: 2952 return err; 2953 } 2954 EXPORT_SYMBOL(block_truncate_page); 2955 2956 /* 2957 * The generic ->writepage function for buffer-backed address_spaces 2958 */ 2959 int block_write_full_page(struct page *page, get_block_t *get_block, 2960 struct writeback_control *wbc) 2961 { 2962 struct inode * const inode = page->mapping->host; 2963 loff_t i_size = i_size_read(inode); 2964 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2965 unsigned offset; 2966 2967 /* Is the page fully inside i_size? */ 2968 if (page->index < end_index) 2969 return __block_write_full_page(inode, page, get_block, wbc, 2970 end_buffer_async_write); 2971 2972 /* Is the page fully outside i_size? (truncate in progress) */ 2973 offset = i_size & (PAGE_SIZE-1); 2974 if (page->index >= end_index+1 || !offset) { 2975 /* 2976 * The page may have dirty, unmapped buffers. For example, 2977 * they may have been added in ext3_writepage(). Make them 2978 * freeable here, so the page does not leak. 2979 */ 2980 do_invalidatepage(page, 0, PAGE_SIZE); 2981 unlock_page(page); 2982 return 0; /* don't care */ 2983 } 2984 2985 /* 2986 * The page straddles i_size. It must be zeroed out on each and every 2987 * writepage invocation because it may be mmapped. "A file is mapped 2988 * in multiples of the page size. For a file that is not a multiple of 2989 * the page size, the remaining memory is zeroed when mapped, and 2990 * writes to that region are not written out to the file." 2991 */ 2992 zero_user_segment(page, offset, PAGE_SIZE); 2993 return __block_write_full_page(inode, page, get_block, wbc, 2994 end_buffer_async_write); 2995 } 2996 EXPORT_SYMBOL(block_write_full_page); 2997 2998 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2999 get_block_t *get_block) 3000 { 3001 struct inode *inode = mapping->host; 3002 struct buffer_head tmp = { 3003 .b_size = i_blocksize(inode), 3004 }; 3005 3006 get_block(inode, block, &tmp, 0); 3007 return tmp.b_blocknr; 3008 } 3009 EXPORT_SYMBOL(generic_block_bmap); 3010 3011 static void end_bio_bh_io_sync(struct bio *bio) 3012 { 3013 struct buffer_head *bh = bio->bi_private; 3014 3015 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3016 set_bit(BH_Quiet, &bh->b_state); 3017 3018 bh->b_end_io(bh, !bio->bi_status); 3019 bio_put(bio); 3020 } 3021 3022 /* 3023 * This allows us to do IO even on the odd last sectors 3024 * of a device, even if the block size is some multiple 3025 * of the physical sector size. 3026 * 3027 * We'll just truncate the bio to the size of the device, 3028 * and clear the end of the buffer head manually. 3029 * 3030 * Truly out-of-range accesses will turn into actual IO 3031 * errors, this only handles the "we need to be able to 3032 * do IO at the final sector" case. 3033 */ 3034 void guard_bio_eod(struct bio *bio) 3035 { 3036 sector_t maxsector; 3037 struct hd_struct *part; 3038 3039 rcu_read_lock(); 3040 part = __disk_get_part(bio->bi_disk, bio->bi_partno); 3041 if (part) 3042 maxsector = part_nr_sects_read(part); 3043 else 3044 maxsector = get_capacity(bio->bi_disk); 3045 rcu_read_unlock(); 3046 3047 if (!maxsector) 3048 return; 3049 3050 /* 3051 * If the *whole* IO is past the end of the device, 3052 * let it through, and the IO layer will turn it into 3053 * an EIO. 3054 */ 3055 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3056 return; 3057 3058 maxsector -= bio->bi_iter.bi_sector; 3059 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3060 return; 3061 3062 bio_truncate(bio, maxsector << 9); 3063 } 3064 3065 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3066 enum rw_hint write_hint, struct writeback_control *wbc) 3067 { 3068 struct bio *bio; 3069 3070 BUG_ON(!buffer_locked(bh)); 3071 BUG_ON(!buffer_mapped(bh)); 3072 BUG_ON(!bh->b_end_io); 3073 BUG_ON(buffer_delay(bh)); 3074 BUG_ON(buffer_unwritten(bh)); 3075 3076 /* 3077 * Only clear out a write error when rewriting 3078 */ 3079 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3080 clear_buffer_write_io_error(bh); 3081 3082 /* 3083 * from here on down, it's all bio -- do the initial mapping, 3084 * submit_bio -> generic_make_request may further map this bio around 3085 */ 3086 bio = bio_alloc(GFP_NOIO, 1); 3087 3088 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3089 bio_set_dev(bio, bh->b_bdev); 3090 bio->bi_write_hint = write_hint; 3091 3092 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3093 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3094 3095 bio->bi_end_io = end_bio_bh_io_sync; 3096 bio->bi_private = bh; 3097 3098 if (buffer_meta(bh)) 3099 op_flags |= REQ_META; 3100 if (buffer_prio(bh)) 3101 op_flags |= REQ_PRIO; 3102 bio_set_op_attrs(bio, op, op_flags); 3103 3104 /* Take care of bh's that straddle the end of the device */ 3105 guard_bio_eod(bio); 3106 3107 if (wbc) { 3108 wbc_init_bio(wbc, bio); 3109 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 3110 } 3111 3112 submit_bio(bio); 3113 return 0; 3114 } 3115 3116 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3117 { 3118 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3119 } 3120 EXPORT_SYMBOL(submit_bh); 3121 3122 /** 3123 * ll_rw_block: low-level access to block devices (DEPRECATED) 3124 * @op: whether to %READ or %WRITE 3125 * @op_flags: req_flag_bits 3126 * @nr: number of &struct buffer_heads in the array 3127 * @bhs: array of pointers to &struct buffer_head 3128 * 3129 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3130 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3131 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3132 * %REQ_RAHEAD. 3133 * 3134 * This function drops any buffer that it cannot get a lock on (with the 3135 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3136 * request, and any buffer that appears to be up-to-date when doing read 3137 * request. Further it marks as clean buffers that are processed for 3138 * writing (the buffer cache won't assume that they are actually clean 3139 * until the buffer gets unlocked). 3140 * 3141 * ll_rw_block sets b_end_io to simple completion handler that marks 3142 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3143 * any waiters. 3144 * 3145 * All of the buffers must be for the same device, and must also be a 3146 * multiple of the current approved size for the device. 3147 */ 3148 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3149 { 3150 int i; 3151 3152 for (i = 0; i < nr; i++) { 3153 struct buffer_head *bh = bhs[i]; 3154 3155 if (!trylock_buffer(bh)) 3156 continue; 3157 if (op == WRITE) { 3158 if (test_clear_buffer_dirty(bh)) { 3159 bh->b_end_io = end_buffer_write_sync; 3160 get_bh(bh); 3161 submit_bh(op, op_flags, bh); 3162 continue; 3163 } 3164 } else { 3165 if (!buffer_uptodate(bh)) { 3166 bh->b_end_io = end_buffer_read_sync; 3167 get_bh(bh); 3168 submit_bh(op, op_flags, bh); 3169 continue; 3170 } 3171 } 3172 unlock_buffer(bh); 3173 } 3174 } 3175 EXPORT_SYMBOL(ll_rw_block); 3176 3177 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3178 { 3179 lock_buffer(bh); 3180 if (!test_clear_buffer_dirty(bh)) { 3181 unlock_buffer(bh); 3182 return; 3183 } 3184 bh->b_end_io = end_buffer_write_sync; 3185 get_bh(bh); 3186 submit_bh(REQ_OP_WRITE, op_flags, bh); 3187 } 3188 EXPORT_SYMBOL(write_dirty_buffer); 3189 3190 /* 3191 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3192 * and then start new I/O and then wait upon it. The caller must have a ref on 3193 * the buffer_head. 3194 */ 3195 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3196 { 3197 int ret = 0; 3198 3199 WARN_ON(atomic_read(&bh->b_count) < 1); 3200 lock_buffer(bh); 3201 if (test_clear_buffer_dirty(bh)) { 3202 get_bh(bh); 3203 bh->b_end_io = end_buffer_write_sync; 3204 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3205 wait_on_buffer(bh); 3206 if (!ret && !buffer_uptodate(bh)) 3207 ret = -EIO; 3208 } else { 3209 unlock_buffer(bh); 3210 } 3211 return ret; 3212 } 3213 EXPORT_SYMBOL(__sync_dirty_buffer); 3214 3215 int sync_dirty_buffer(struct buffer_head *bh) 3216 { 3217 return __sync_dirty_buffer(bh, REQ_SYNC); 3218 } 3219 EXPORT_SYMBOL(sync_dirty_buffer); 3220 3221 /* 3222 * try_to_free_buffers() checks if all the buffers on this particular page 3223 * are unused, and releases them if so. 3224 * 3225 * Exclusion against try_to_free_buffers may be obtained by either 3226 * locking the page or by holding its mapping's private_lock. 3227 * 3228 * If the page is dirty but all the buffers are clean then we need to 3229 * be sure to mark the page clean as well. This is because the page 3230 * may be against a block device, and a later reattachment of buffers 3231 * to a dirty page will set *all* buffers dirty. Which would corrupt 3232 * filesystem data on the same device. 3233 * 3234 * The same applies to regular filesystem pages: if all the buffers are 3235 * clean then we set the page clean and proceed. To do that, we require 3236 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3237 * private_lock. 3238 * 3239 * try_to_free_buffers() is non-blocking. 3240 */ 3241 static inline int buffer_busy(struct buffer_head *bh) 3242 { 3243 return atomic_read(&bh->b_count) | 3244 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3245 } 3246 3247 static int 3248 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3249 { 3250 struct buffer_head *head = page_buffers(page); 3251 struct buffer_head *bh; 3252 3253 bh = head; 3254 do { 3255 if (buffer_busy(bh)) 3256 goto failed; 3257 bh = bh->b_this_page; 3258 } while (bh != head); 3259 3260 do { 3261 struct buffer_head *next = bh->b_this_page; 3262 3263 if (bh->b_assoc_map) 3264 __remove_assoc_queue(bh); 3265 bh = next; 3266 } while (bh != head); 3267 *buffers_to_free = head; 3268 __clear_page_buffers(page); 3269 return 1; 3270 failed: 3271 return 0; 3272 } 3273 3274 int try_to_free_buffers(struct page *page) 3275 { 3276 struct address_space * const mapping = page->mapping; 3277 struct buffer_head *buffers_to_free = NULL; 3278 int ret = 0; 3279 3280 BUG_ON(!PageLocked(page)); 3281 if (PageWriteback(page)) 3282 return 0; 3283 3284 if (mapping == NULL) { /* can this still happen? */ 3285 ret = drop_buffers(page, &buffers_to_free); 3286 goto out; 3287 } 3288 3289 spin_lock(&mapping->private_lock); 3290 ret = drop_buffers(page, &buffers_to_free); 3291 3292 /* 3293 * If the filesystem writes its buffers by hand (eg ext3) 3294 * then we can have clean buffers against a dirty page. We 3295 * clean the page here; otherwise the VM will never notice 3296 * that the filesystem did any IO at all. 3297 * 3298 * Also, during truncate, discard_buffer will have marked all 3299 * the page's buffers clean. We discover that here and clean 3300 * the page also. 3301 * 3302 * private_lock must be held over this entire operation in order 3303 * to synchronise against __set_page_dirty_buffers and prevent the 3304 * dirty bit from being lost. 3305 */ 3306 if (ret) 3307 cancel_dirty_page(page); 3308 spin_unlock(&mapping->private_lock); 3309 out: 3310 if (buffers_to_free) { 3311 struct buffer_head *bh = buffers_to_free; 3312 3313 do { 3314 struct buffer_head *next = bh->b_this_page; 3315 free_buffer_head(bh); 3316 bh = next; 3317 } while (bh != buffers_to_free); 3318 } 3319 return ret; 3320 } 3321 EXPORT_SYMBOL(try_to_free_buffers); 3322 3323 /* 3324 * There are no bdflush tunables left. But distributions are 3325 * still running obsolete flush daemons, so we terminate them here. 3326 * 3327 * Use of bdflush() is deprecated and will be removed in a future kernel. 3328 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3329 */ 3330 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3331 { 3332 static int msg_count; 3333 3334 if (!capable(CAP_SYS_ADMIN)) 3335 return -EPERM; 3336 3337 if (msg_count < 5) { 3338 msg_count++; 3339 printk(KERN_INFO 3340 "warning: process `%s' used the obsolete bdflush" 3341 " system call\n", current->comm); 3342 printk(KERN_INFO "Fix your initscripts?\n"); 3343 } 3344 3345 if (func == 1) 3346 do_exit(0); 3347 return 0; 3348 } 3349 3350 /* 3351 * Buffer-head allocation 3352 */ 3353 static struct kmem_cache *bh_cachep __read_mostly; 3354 3355 /* 3356 * Once the number of bh's in the machine exceeds this level, we start 3357 * stripping them in writeback. 3358 */ 3359 static unsigned long max_buffer_heads; 3360 3361 int buffer_heads_over_limit; 3362 3363 struct bh_accounting { 3364 int nr; /* Number of live bh's */ 3365 int ratelimit; /* Limit cacheline bouncing */ 3366 }; 3367 3368 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3369 3370 static void recalc_bh_state(void) 3371 { 3372 int i; 3373 int tot = 0; 3374 3375 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3376 return; 3377 __this_cpu_write(bh_accounting.ratelimit, 0); 3378 for_each_online_cpu(i) 3379 tot += per_cpu(bh_accounting, i).nr; 3380 buffer_heads_over_limit = (tot > max_buffer_heads); 3381 } 3382 3383 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3384 { 3385 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3386 if (ret) { 3387 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3388 preempt_disable(); 3389 __this_cpu_inc(bh_accounting.nr); 3390 recalc_bh_state(); 3391 preempt_enable(); 3392 } 3393 return ret; 3394 } 3395 EXPORT_SYMBOL(alloc_buffer_head); 3396 3397 void free_buffer_head(struct buffer_head *bh) 3398 { 3399 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3400 kmem_cache_free(bh_cachep, bh); 3401 preempt_disable(); 3402 __this_cpu_dec(bh_accounting.nr); 3403 recalc_bh_state(); 3404 preempt_enable(); 3405 } 3406 EXPORT_SYMBOL(free_buffer_head); 3407 3408 static int buffer_exit_cpu_dead(unsigned int cpu) 3409 { 3410 int i; 3411 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3412 3413 for (i = 0; i < BH_LRU_SIZE; i++) { 3414 brelse(b->bhs[i]); 3415 b->bhs[i] = NULL; 3416 } 3417 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3418 per_cpu(bh_accounting, cpu).nr = 0; 3419 return 0; 3420 } 3421 3422 /** 3423 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3424 * @bh: struct buffer_head 3425 * 3426 * Return true if the buffer is up-to-date and false, 3427 * with the buffer locked, if not. 3428 */ 3429 int bh_uptodate_or_lock(struct buffer_head *bh) 3430 { 3431 if (!buffer_uptodate(bh)) { 3432 lock_buffer(bh); 3433 if (!buffer_uptodate(bh)) 3434 return 0; 3435 unlock_buffer(bh); 3436 } 3437 return 1; 3438 } 3439 EXPORT_SYMBOL(bh_uptodate_or_lock); 3440 3441 /** 3442 * bh_submit_read - Submit a locked buffer for reading 3443 * @bh: struct buffer_head 3444 * 3445 * Returns zero on success and -EIO on error. 3446 */ 3447 int bh_submit_read(struct buffer_head *bh) 3448 { 3449 BUG_ON(!buffer_locked(bh)); 3450 3451 if (buffer_uptodate(bh)) { 3452 unlock_buffer(bh); 3453 return 0; 3454 } 3455 3456 get_bh(bh); 3457 bh->b_end_io = end_buffer_read_sync; 3458 submit_bh(REQ_OP_READ, 0, bh); 3459 wait_on_buffer(bh); 3460 if (buffer_uptodate(bh)) 3461 return 0; 3462 return -EIO; 3463 } 3464 EXPORT_SYMBOL(bh_submit_read); 3465 3466 void __init buffer_init(void) 3467 { 3468 unsigned long nrpages; 3469 int ret; 3470 3471 bh_cachep = kmem_cache_create("buffer_head", 3472 sizeof(struct buffer_head), 0, 3473 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3474 SLAB_MEM_SPREAD), 3475 NULL); 3476 3477 /* 3478 * Limit the bh occupancy to 10% of ZONE_NORMAL 3479 */ 3480 nrpages = (nr_free_buffer_pages() * 10) / 100; 3481 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3482 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3483 NULL, buffer_exit_cpu_dead); 3484 WARN_ON(ret < 0); 3485 } 3486