xref: /openbmc/linux/fs/buffer.c (revision 49531192)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void unlock_buffer(struct buffer_head *bh)
79 {
80 	clear_bit_unlock(BH_Lock, &bh->b_state);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 EXPORT_SYMBOL(unlock_buffer);
85 
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 EXPORT_SYMBOL(__wait_on_buffer);
96 
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100 	ClearPagePrivate(page);
101 	set_page_private(page, 0);
102 	page_cache_release(page);
103 }
104 
105 
106 static int quiet_error(struct buffer_head *bh)
107 {
108 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 		return 0;
110 	return 1;
111 }
112 
113 
114 static void buffer_io_error(struct buffer_head *bh)
115 {
116 	char b[BDEVNAME_SIZE];
117 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 			bdevname(bh->b_bdev, b),
119 			(unsigned long long)bh->b_blocknr);
120 }
121 
122 /*
123  * End-of-IO handler helper function which does not touch the bh after
124  * unlocking it.
125  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126  * a race there is benign: unlock_buffer() only use the bh's address for
127  * hashing after unlocking the buffer, so it doesn't actually touch the bh
128  * itself.
129  */
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 {
132 	if (uptodate) {
133 		set_buffer_uptodate(bh);
134 	} else {
135 		/* This happens, due to failed READA attempts. */
136 		clear_buffer_uptodate(bh);
137 	}
138 	unlock_buffer(bh);
139 }
140 
141 /*
142  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
143  * unlock the buffer. This is what ll_rw_block uses too.
144  */
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 {
147 	__end_buffer_read_notouch(bh, uptodate);
148 	put_bh(bh);
149 }
150 EXPORT_SYMBOL(end_buffer_read_sync);
151 
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 {
154 	char b[BDEVNAME_SIZE];
155 
156 	if (uptodate) {
157 		set_buffer_uptodate(bh);
158 	} else {
159 		if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
160 			buffer_io_error(bh);
161 			printk(KERN_WARNING "lost page write due to "
162 					"I/O error on %s\n",
163 				       bdevname(bh->b_bdev, b));
164 		}
165 		set_buffer_write_io_error(bh);
166 		clear_buffer_uptodate(bh);
167 	}
168 	unlock_buffer(bh);
169 	put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_write_sync);
172 
173 /*
174  * Various filesystems appear to want __find_get_block to be non-blocking.
175  * But it's the page lock which protects the buffers.  To get around this,
176  * we get exclusion from try_to_free_buffers with the blockdev mapping's
177  * private_lock.
178  *
179  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180  * may be quite high.  This code could TryLock the page, and if that
181  * succeeds, there is no need to take private_lock. (But if
182  * private_lock is contended then so is mapping->tree_lock).
183  */
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 {
187 	struct inode *bd_inode = bdev->bd_inode;
188 	struct address_space *bd_mapping = bd_inode->i_mapping;
189 	struct buffer_head *ret = NULL;
190 	pgoff_t index;
191 	struct buffer_head *bh;
192 	struct buffer_head *head;
193 	struct page *page;
194 	int all_mapped = 1;
195 
196 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 	page = find_get_page(bd_mapping, index);
198 	if (!page)
199 		goto out;
200 
201 	spin_lock(&bd_mapping->private_lock);
202 	if (!page_has_buffers(page))
203 		goto out_unlock;
204 	head = page_buffers(page);
205 	bh = head;
206 	do {
207 		if (!buffer_mapped(bh))
208 			all_mapped = 0;
209 		else if (bh->b_blocknr == block) {
210 			ret = bh;
211 			get_bh(bh);
212 			goto out_unlock;
213 		}
214 		bh = bh->b_this_page;
215 	} while (bh != head);
216 
217 	/* we might be here because some of the buffers on this page are
218 	 * not mapped.  This is due to various races between
219 	 * file io on the block device and getblk.  It gets dealt with
220 	 * elsewhere, don't buffer_error if we had some unmapped buffers
221 	 */
222 	if (all_mapped) {
223 		printk("__find_get_block_slow() failed. "
224 			"block=%llu, b_blocknr=%llu\n",
225 			(unsigned long long)block,
226 			(unsigned long long)bh->b_blocknr);
227 		printk("b_state=0x%08lx, b_size=%zu\n",
228 			bh->b_state, bh->b_size);
229 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 	}
231 out_unlock:
232 	spin_unlock(&bd_mapping->private_lock);
233 	page_cache_release(page);
234 out:
235 	return ret;
236 }
237 
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239    of fs corruption is going on. Trashing dirty data always imply losing
240    information that was supposed to be just stored on the physical layer
241    by the user.
242 
243    Thus invalidate_buffers in general usage is not allwowed to trash
244    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245    be preserved.  These buffers are simply skipped.
246 
247    We also skip buffers which are still in use.  For example this can
248    happen if a userspace program is reading the block device.
249 
250    NOTE: In the case where the user removed a removable-media-disk even if
251    there's still dirty data not synced on disk (due a bug in the device driver
252    or due an error of the user), by not destroying the dirty buffers we could
253    generate corruption also on the next media inserted, thus a parameter is
254    necessary to handle this case in the most safe way possible (trying
255    to not corrupt also the new disk inserted with the data belonging to
256    the old now corrupted disk). Also for the ramdisk the natural thing
257    to do in order to release the ramdisk memory is to destroy dirty buffers.
258 
259    These are two special cases. Normal usage imply the device driver
260    to issue a sync on the device (without waiting I/O completion) and
261    then an invalidate_buffers call that doesn't trash dirty buffers.
262 
263    For handling cache coherency with the blkdev pagecache the 'update' case
264    is been introduced. It is needed to re-read from disk any pinned
265    buffer. NOTE: re-reading from disk is destructive so we can do it only
266    when we assume nobody is changing the buffercache under our I/O and when
267    we think the disk contains more recent information than the buffercache.
268    The update == 1 pass marks the buffers we need to update, the update == 2
269    pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
271 {
272 	struct address_space *mapping = bdev->bd_inode->i_mapping;
273 
274 	if (mapping->nrpages == 0)
275 		return;
276 
277 	invalidate_bh_lrus();
278 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
279 	invalidate_mapping_pages(mapping, 0, -1);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282 
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288 	struct zone *zone;
289 	int nid;
290 
291 	wakeup_flusher_threads(1024);
292 	yield();
293 
294 	for_each_online_node(nid) {
295 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 						gfp_zone(GFP_NOFS), NULL,
297 						&zone);
298 		if (zone)
299 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300 						GFP_NOFS, NULL);
301 	}
302 }
303 
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310 	unsigned long flags;
311 	struct buffer_head *first;
312 	struct buffer_head *tmp;
313 	struct page *page;
314 	int page_uptodate = 1;
315 
316 	BUG_ON(!buffer_async_read(bh));
317 
318 	page = bh->b_page;
319 	if (uptodate) {
320 		set_buffer_uptodate(bh);
321 	} else {
322 		clear_buffer_uptodate(bh);
323 		if (!quiet_error(bh))
324 			buffer_io_error(bh);
325 		SetPageError(page);
326 	}
327 
328 	/*
329 	 * Be _very_ careful from here on. Bad things can happen if
330 	 * two buffer heads end IO at almost the same time and both
331 	 * decide that the page is now completely done.
332 	 */
333 	first = page_buffers(page);
334 	local_irq_save(flags);
335 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 	clear_buffer_async_read(bh);
337 	unlock_buffer(bh);
338 	tmp = bh;
339 	do {
340 		if (!buffer_uptodate(tmp))
341 			page_uptodate = 0;
342 		if (buffer_async_read(tmp)) {
343 			BUG_ON(!buffer_locked(tmp));
344 			goto still_busy;
345 		}
346 		tmp = tmp->b_this_page;
347 	} while (tmp != bh);
348 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 	local_irq_restore(flags);
350 
351 	/*
352 	 * If none of the buffers had errors and they are all
353 	 * uptodate then we can set the page uptodate.
354 	 */
355 	if (page_uptodate && !PageError(page))
356 		SetPageUptodate(page);
357 	unlock_page(page);
358 	return;
359 
360 still_busy:
361 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 	local_irq_restore(flags);
363 	return;
364 }
365 
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372 	char b[BDEVNAME_SIZE];
373 	unsigned long flags;
374 	struct buffer_head *first;
375 	struct buffer_head *tmp;
376 	struct page *page;
377 
378 	BUG_ON(!buffer_async_write(bh));
379 
380 	page = bh->b_page;
381 	if (uptodate) {
382 		set_buffer_uptodate(bh);
383 	} else {
384 		if (!quiet_error(bh)) {
385 			buffer_io_error(bh);
386 			printk(KERN_WARNING "lost page write due to "
387 					"I/O error on %s\n",
388 			       bdevname(bh->b_bdev, b));
389 		}
390 		set_bit(AS_EIO, &page->mapping->flags);
391 		set_buffer_write_io_error(bh);
392 		clear_buffer_uptodate(bh);
393 		SetPageError(page);
394 	}
395 
396 	first = page_buffers(page);
397 	local_irq_save(flags);
398 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 	local_irq_restore(flags);
412 	end_page_writeback(page);
413 	return;
414 
415 still_busy:
416 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 	local_irq_restore(flags);
418 	return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421 
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445 	bh->b_end_io = end_buffer_async_read;
446 	set_buffer_async_read(bh);
447 }
448 
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 					  bh_end_io_t *handler)
451 {
452 	bh->b_end_io = handler;
453 	set_buffer_async_write(bh);
454 }
455 
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461 
462 
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511 
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517 	list_del_init(&bh->b_assoc_buffers);
518 	WARN_ON(!bh->b_assoc_map);
519 	if (buffer_write_io_error(bh))
520 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 	bh->b_assoc_map = NULL;
522 }
523 
524 int inode_has_buffers(struct inode *inode)
525 {
526 	return !list_empty(&inode->i_data.private_list);
527 }
528 
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541 	struct buffer_head *bh;
542 	struct list_head *p;
543 	int err = 0;
544 
545 	spin_lock(lock);
546 repeat:
547 	list_for_each_prev(p, list) {
548 		bh = BH_ENTRY(p);
549 		if (buffer_locked(bh)) {
550 			get_bh(bh);
551 			spin_unlock(lock);
552 			wait_on_buffer(bh);
553 			if (!buffer_uptodate(bh))
554 				err = -EIO;
555 			brelse(bh);
556 			spin_lock(lock);
557 			goto repeat;
558 		}
559 	}
560 	spin_unlock(lock);
561 	return err;
562 }
563 
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566 	char b[BDEVNAME_SIZE];
567 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 		printk(KERN_WARNING "Emergency Thaw on %s\n",
569 		       bdevname(sb->s_bdev, b));
570 }
571 
572 static void do_thaw_all(struct work_struct *work)
573 {
574 	iterate_supers(do_thaw_one, NULL);
575 	kfree(work);
576 	printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578 
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586 	struct work_struct *work;
587 
588 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 	if (work) {
590 		INIT_WORK(work, do_thaw_all);
591 		schedule_work(work);
592 	}
593 }
594 
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608 	struct address_space *buffer_mapping = mapping->assoc_mapping;
609 
610 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 		return 0;
612 
613 	return fsync_buffers_list(&buffer_mapping->private_lock,
614 					&mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617 
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625 			sector_t bblock, unsigned blocksize)
626 {
627 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 	if (bh) {
629 		if (buffer_dirty(bh))
630 			ll_rw_block(WRITE, 1, &bh);
631 		put_bh(bh);
632 	}
633 }
634 
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637 	struct address_space *mapping = inode->i_mapping;
638 	struct address_space *buffer_mapping = bh->b_page->mapping;
639 
640 	mark_buffer_dirty(bh);
641 	if (!mapping->assoc_mapping) {
642 		mapping->assoc_mapping = buffer_mapping;
643 	} else {
644 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
645 	}
646 	if (!bh->b_assoc_map) {
647 		spin_lock(&buffer_mapping->private_lock);
648 		list_move_tail(&bh->b_assoc_buffers,
649 				&mapping->private_list);
650 		bh->b_assoc_map = mapping;
651 		spin_unlock(&buffer_mapping->private_lock);
652 	}
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655 
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664 		struct address_space *mapping, int warn)
665 {
666 	spin_lock_irq(&mapping->tree_lock);
667 	if (page->mapping) {	/* Race with truncate? */
668 		WARN_ON_ONCE(warn && !PageUptodate(page));
669 		account_page_dirtied(page, mapping);
670 		radix_tree_tag_set(&mapping->page_tree,
671 				page_index(page), PAGECACHE_TAG_DIRTY);
672 	}
673 	spin_unlock_irq(&mapping->tree_lock);
674 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 }
676 
677 /*
678  * Add a page to the dirty page list.
679  *
680  * It is a sad fact of life that this function is called from several places
681  * deeply under spinlocking.  It may not sleep.
682  *
683  * If the page has buffers, the uptodate buffers are set dirty, to preserve
684  * dirty-state coherency between the page and the buffers.  It the page does
685  * not have buffers then when they are later attached they will all be set
686  * dirty.
687  *
688  * The buffers are dirtied before the page is dirtied.  There's a small race
689  * window in which a writepage caller may see the page cleanness but not the
690  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
691  * before the buffers, a concurrent writepage caller could clear the page dirty
692  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693  * page on the dirty page list.
694  *
695  * We use private_lock to lock against try_to_free_buffers while using the
696  * page's buffer list.  Also use this to protect against clean buffers being
697  * added to the page after it was set dirty.
698  *
699  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
700  * address_space though.
701  */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704 	int newly_dirty;
705 	struct address_space *mapping = page_mapping(page);
706 
707 	if (unlikely(!mapping))
708 		return !TestSetPageDirty(page);
709 
710 	spin_lock(&mapping->private_lock);
711 	if (page_has_buffers(page)) {
712 		struct buffer_head *head = page_buffers(page);
713 		struct buffer_head *bh = head;
714 
715 		do {
716 			set_buffer_dirty(bh);
717 			bh = bh->b_this_page;
718 		} while (bh != head);
719 	}
720 	newly_dirty = !TestSetPageDirty(page);
721 	spin_unlock(&mapping->private_lock);
722 
723 	if (newly_dirty)
724 		__set_page_dirty(page, mapping, 1);
725 	return newly_dirty;
726 }
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
728 
729 /*
730  * Write out and wait upon a list of buffers.
731  *
732  * We have conflicting pressures: we want to make sure that all
733  * initially dirty buffers get waited on, but that any subsequently
734  * dirtied buffers don't.  After all, we don't want fsync to last
735  * forever if somebody is actively writing to the file.
736  *
737  * Do this in two main stages: first we copy dirty buffers to a
738  * temporary inode list, queueing the writes as we go.  Then we clean
739  * up, waiting for those writes to complete.
740  *
741  * During this second stage, any subsequent updates to the file may end
742  * up refiling the buffer on the original inode's dirty list again, so
743  * there is a chance we will end up with a buffer queued for write but
744  * not yet completed on that list.  So, as a final cleanup we go through
745  * the osync code to catch these locked, dirty buffers without requeuing
746  * any newly dirty buffers for write.
747  */
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750 	struct buffer_head *bh;
751 	struct list_head tmp;
752 	struct address_space *mapping, *prev_mapping = NULL;
753 	int err = 0, err2;
754 
755 	INIT_LIST_HEAD(&tmp);
756 
757 	spin_lock(lock);
758 	while (!list_empty(list)) {
759 		bh = BH_ENTRY(list->next);
760 		mapping = bh->b_assoc_map;
761 		__remove_assoc_queue(bh);
762 		/* Avoid race with mark_buffer_dirty_inode() which does
763 		 * a lockless check and we rely on seeing the dirty bit */
764 		smp_mb();
765 		if (buffer_dirty(bh) || buffer_locked(bh)) {
766 			list_add(&bh->b_assoc_buffers, &tmp);
767 			bh->b_assoc_map = mapping;
768 			if (buffer_dirty(bh)) {
769 				get_bh(bh);
770 				spin_unlock(lock);
771 				/*
772 				 * Ensure any pending I/O completes so that
773 				 * ll_rw_block() actually writes the current
774 				 * contents - it is a noop if I/O is still in
775 				 * flight on potentially older contents.
776 				 */
777 				ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
778 
779 				/*
780 				 * Kick off IO for the previous mapping. Note
781 				 * that we will not run the very last mapping,
782 				 * wait_on_buffer() will do that for us
783 				 * through sync_buffer().
784 				 */
785 				if (prev_mapping && prev_mapping != mapping)
786 					blk_run_address_space(prev_mapping);
787 				prev_mapping = mapping;
788 
789 				brelse(bh);
790 				spin_lock(lock);
791 			}
792 		}
793 	}
794 
795 	while (!list_empty(&tmp)) {
796 		bh = BH_ENTRY(tmp.prev);
797 		get_bh(bh);
798 		mapping = bh->b_assoc_map;
799 		__remove_assoc_queue(bh);
800 		/* Avoid race with mark_buffer_dirty_inode() which does
801 		 * a lockless check and we rely on seeing the dirty bit */
802 		smp_mb();
803 		if (buffer_dirty(bh)) {
804 			list_add(&bh->b_assoc_buffers,
805 				 &mapping->private_list);
806 			bh->b_assoc_map = mapping;
807 		}
808 		spin_unlock(lock);
809 		wait_on_buffer(bh);
810 		if (!buffer_uptodate(bh))
811 			err = -EIO;
812 		brelse(bh);
813 		spin_lock(lock);
814 	}
815 
816 	spin_unlock(lock);
817 	err2 = osync_buffers_list(lock, list);
818 	if (err)
819 		return err;
820 	else
821 		return err2;
822 }
823 
824 /*
825  * Invalidate any and all dirty buffers on a given inode.  We are
826  * probably unmounting the fs, but that doesn't mean we have already
827  * done a sync().  Just drop the buffers from the inode list.
828  *
829  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
830  * assumes that all the buffers are against the blockdev.  Not true
831  * for reiserfs.
832  */
833 void invalidate_inode_buffers(struct inode *inode)
834 {
835 	if (inode_has_buffers(inode)) {
836 		struct address_space *mapping = &inode->i_data;
837 		struct list_head *list = &mapping->private_list;
838 		struct address_space *buffer_mapping = mapping->assoc_mapping;
839 
840 		spin_lock(&buffer_mapping->private_lock);
841 		while (!list_empty(list))
842 			__remove_assoc_queue(BH_ENTRY(list->next));
843 		spin_unlock(&buffer_mapping->private_lock);
844 	}
845 }
846 EXPORT_SYMBOL(invalidate_inode_buffers);
847 
848 /*
849  * Remove any clean buffers from the inode's buffer list.  This is called
850  * when we're trying to free the inode itself.  Those buffers can pin it.
851  *
852  * Returns true if all buffers were removed.
853  */
854 int remove_inode_buffers(struct inode *inode)
855 {
856 	int ret = 1;
857 
858 	if (inode_has_buffers(inode)) {
859 		struct address_space *mapping = &inode->i_data;
860 		struct list_head *list = &mapping->private_list;
861 		struct address_space *buffer_mapping = mapping->assoc_mapping;
862 
863 		spin_lock(&buffer_mapping->private_lock);
864 		while (!list_empty(list)) {
865 			struct buffer_head *bh = BH_ENTRY(list->next);
866 			if (buffer_dirty(bh)) {
867 				ret = 0;
868 				break;
869 			}
870 			__remove_assoc_queue(bh);
871 		}
872 		spin_unlock(&buffer_mapping->private_lock);
873 	}
874 	return ret;
875 }
876 
877 /*
878  * Create the appropriate buffers when given a page for data area and
879  * the size of each buffer.. Use the bh->b_this_page linked list to
880  * follow the buffers created.  Return NULL if unable to create more
881  * buffers.
882  *
883  * The retry flag is used to differentiate async IO (paging, swapping)
884  * which may not fail from ordinary buffer allocations.
885  */
886 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
887 		int retry)
888 {
889 	struct buffer_head *bh, *head;
890 	long offset;
891 
892 try_again:
893 	head = NULL;
894 	offset = PAGE_SIZE;
895 	while ((offset -= size) >= 0) {
896 		bh = alloc_buffer_head(GFP_NOFS);
897 		if (!bh)
898 			goto no_grow;
899 
900 		bh->b_bdev = NULL;
901 		bh->b_this_page = head;
902 		bh->b_blocknr = -1;
903 		head = bh;
904 
905 		bh->b_state = 0;
906 		atomic_set(&bh->b_count, 0);
907 		bh->b_private = NULL;
908 		bh->b_size = size;
909 
910 		/* Link the buffer to its page */
911 		set_bh_page(bh, page, offset);
912 
913 		init_buffer(bh, NULL, NULL);
914 	}
915 	return head;
916 /*
917  * In case anything failed, we just free everything we got.
918  */
919 no_grow:
920 	if (head) {
921 		do {
922 			bh = head;
923 			head = head->b_this_page;
924 			free_buffer_head(bh);
925 		} while (head);
926 	}
927 
928 	/*
929 	 * Return failure for non-async IO requests.  Async IO requests
930 	 * are not allowed to fail, so we have to wait until buffer heads
931 	 * become available.  But we don't want tasks sleeping with
932 	 * partially complete buffers, so all were released above.
933 	 */
934 	if (!retry)
935 		return NULL;
936 
937 	/* We're _really_ low on memory. Now we just
938 	 * wait for old buffer heads to become free due to
939 	 * finishing IO.  Since this is an async request and
940 	 * the reserve list is empty, we're sure there are
941 	 * async buffer heads in use.
942 	 */
943 	free_more_memory();
944 	goto try_again;
945 }
946 EXPORT_SYMBOL_GPL(alloc_page_buffers);
947 
948 static inline void
949 link_dev_buffers(struct page *page, struct buffer_head *head)
950 {
951 	struct buffer_head *bh, *tail;
952 
953 	bh = head;
954 	do {
955 		tail = bh;
956 		bh = bh->b_this_page;
957 	} while (bh);
958 	tail->b_this_page = head;
959 	attach_page_buffers(page, head);
960 }
961 
962 /*
963  * Initialise the state of a blockdev page's buffers.
964  */
965 static void
966 init_page_buffers(struct page *page, struct block_device *bdev,
967 			sector_t block, int size)
968 {
969 	struct buffer_head *head = page_buffers(page);
970 	struct buffer_head *bh = head;
971 	int uptodate = PageUptodate(page);
972 
973 	do {
974 		if (!buffer_mapped(bh)) {
975 			init_buffer(bh, NULL, NULL);
976 			bh->b_bdev = bdev;
977 			bh->b_blocknr = block;
978 			if (uptodate)
979 				set_buffer_uptodate(bh);
980 			set_buffer_mapped(bh);
981 		}
982 		block++;
983 		bh = bh->b_this_page;
984 	} while (bh != head);
985 }
986 
987 /*
988  * Create the page-cache page that contains the requested block.
989  *
990  * This is user purely for blockdev mappings.
991  */
992 static struct page *
993 grow_dev_page(struct block_device *bdev, sector_t block,
994 		pgoff_t index, int size)
995 {
996 	struct inode *inode = bdev->bd_inode;
997 	struct page *page;
998 	struct buffer_head *bh;
999 
1000 	page = find_or_create_page(inode->i_mapping, index,
1001 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1002 	if (!page)
1003 		return NULL;
1004 
1005 	BUG_ON(!PageLocked(page));
1006 
1007 	if (page_has_buffers(page)) {
1008 		bh = page_buffers(page);
1009 		if (bh->b_size == size) {
1010 			init_page_buffers(page, bdev, block, size);
1011 			return page;
1012 		}
1013 		if (!try_to_free_buffers(page))
1014 			goto failed;
1015 	}
1016 
1017 	/*
1018 	 * Allocate some buffers for this page
1019 	 */
1020 	bh = alloc_page_buffers(page, size, 0);
1021 	if (!bh)
1022 		goto failed;
1023 
1024 	/*
1025 	 * Link the page to the buffers and initialise them.  Take the
1026 	 * lock to be atomic wrt __find_get_block(), which does not
1027 	 * run under the page lock.
1028 	 */
1029 	spin_lock(&inode->i_mapping->private_lock);
1030 	link_dev_buffers(page, bh);
1031 	init_page_buffers(page, bdev, block, size);
1032 	spin_unlock(&inode->i_mapping->private_lock);
1033 	return page;
1034 
1035 failed:
1036 	BUG();
1037 	unlock_page(page);
1038 	page_cache_release(page);
1039 	return NULL;
1040 }
1041 
1042 /*
1043  * Create buffers for the specified block device block's page.  If
1044  * that page was dirty, the buffers are set dirty also.
1045  */
1046 static int
1047 grow_buffers(struct block_device *bdev, sector_t block, int size)
1048 {
1049 	struct page *page;
1050 	pgoff_t index;
1051 	int sizebits;
1052 
1053 	sizebits = -1;
1054 	do {
1055 		sizebits++;
1056 	} while ((size << sizebits) < PAGE_SIZE);
1057 
1058 	index = block >> sizebits;
1059 
1060 	/*
1061 	 * Check for a block which wants to lie outside our maximum possible
1062 	 * pagecache index.  (this comparison is done using sector_t types).
1063 	 */
1064 	if (unlikely(index != block >> sizebits)) {
1065 		char b[BDEVNAME_SIZE];
1066 
1067 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1068 			"device %s\n",
1069 			__func__, (unsigned long long)block,
1070 			bdevname(bdev, b));
1071 		return -EIO;
1072 	}
1073 	block = index << sizebits;
1074 	/* Create a page with the proper size buffers.. */
1075 	page = grow_dev_page(bdev, block, index, size);
1076 	if (!page)
1077 		return 0;
1078 	unlock_page(page);
1079 	page_cache_release(page);
1080 	return 1;
1081 }
1082 
1083 static struct buffer_head *
1084 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1085 {
1086 	/* Size must be multiple of hard sectorsize */
1087 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 			(size < 512 || size > PAGE_SIZE))) {
1089 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 					size);
1091 		printk(KERN_ERR "logical block size: %d\n",
1092 					bdev_logical_block_size(bdev));
1093 
1094 		dump_stack();
1095 		return NULL;
1096 	}
1097 
1098 	for (;;) {
1099 		struct buffer_head * bh;
1100 		int ret;
1101 
1102 		bh = __find_get_block(bdev, block, size);
1103 		if (bh)
1104 			return bh;
1105 
1106 		ret = grow_buffers(bdev, block, size);
1107 		if (ret < 0)
1108 			return NULL;
1109 		if (ret == 0)
1110 			free_more_memory();
1111 	}
1112 }
1113 
1114 /*
1115  * The relationship between dirty buffers and dirty pages:
1116  *
1117  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118  * the page is tagged dirty in its radix tree.
1119  *
1120  * At all times, the dirtiness of the buffers represents the dirtiness of
1121  * subsections of the page.  If the page has buffers, the page dirty bit is
1122  * merely a hint about the true dirty state.
1123  *
1124  * When a page is set dirty in its entirety, all its buffers are marked dirty
1125  * (if the page has buffers).
1126  *
1127  * When a buffer is marked dirty, its page is dirtied, but the page's other
1128  * buffers are not.
1129  *
1130  * Also.  When blockdev buffers are explicitly read with bread(), they
1131  * individually become uptodate.  But their backing page remains not
1132  * uptodate - even if all of its buffers are uptodate.  A subsequent
1133  * block_read_full_page() against that page will discover all the uptodate
1134  * buffers, will set the page uptodate and will perform no I/O.
1135  */
1136 
1137 /**
1138  * mark_buffer_dirty - mark a buffer_head as needing writeout
1139  * @bh: the buffer_head to mark dirty
1140  *
1141  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142  * backing page dirty, then tag the page as dirty in its address_space's radix
1143  * tree and then attach the address_space's inode to its superblock's dirty
1144  * inode list.
1145  *
1146  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147  * mapping->tree_lock and the global inode_lock.
1148  */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151 	WARN_ON_ONCE(!buffer_uptodate(bh));
1152 
1153 	/*
1154 	 * Very *carefully* optimize the it-is-already-dirty case.
1155 	 *
1156 	 * Don't let the final "is it dirty" escape to before we
1157 	 * perhaps modified the buffer.
1158 	 */
1159 	if (buffer_dirty(bh)) {
1160 		smp_mb();
1161 		if (buffer_dirty(bh))
1162 			return;
1163 	}
1164 
1165 	if (!test_set_buffer_dirty(bh)) {
1166 		struct page *page = bh->b_page;
1167 		if (!TestSetPageDirty(page)) {
1168 			struct address_space *mapping = page_mapping(page);
1169 			if (mapping)
1170 				__set_page_dirty(page, mapping, 0);
1171 		}
1172 	}
1173 }
1174 EXPORT_SYMBOL(mark_buffer_dirty);
1175 
1176 /*
1177  * Decrement a buffer_head's reference count.  If all buffers against a page
1178  * have zero reference count, are clean and unlocked, and if the page is clean
1179  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1180  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1181  * a page but it ends up not being freed, and buffers may later be reattached).
1182  */
1183 void __brelse(struct buffer_head * buf)
1184 {
1185 	if (atomic_read(&buf->b_count)) {
1186 		put_bh(buf);
1187 		return;
1188 	}
1189 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1190 }
1191 EXPORT_SYMBOL(__brelse);
1192 
1193 /*
1194  * bforget() is like brelse(), except it discards any
1195  * potentially dirty data.
1196  */
1197 void __bforget(struct buffer_head *bh)
1198 {
1199 	clear_buffer_dirty(bh);
1200 	if (bh->b_assoc_map) {
1201 		struct address_space *buffer_mapping = bh->b_page->mapping;
1202 
1203 		spin_lock(&buffer_mapping->private_lock);
1204 		list_del_init(&bh->b_assoc_buffers);
1205 		bh->b_assoc_map = NULL;
1206 		spin_unlock(&buffer_mapping->private_lock);
1207 	}
1208 	__brelse(bh);
1209 }
1210 EXPORT_SYMBOL(__bforget);
1211 
1212 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1213 {
1214 	lock_buffer(bh);
1215 	if (buffer_uptodate(bh)) {
1216 		unlock_buffer(bh);
1217 		return bh;
1218 	} else {
1219 		get_bh(bh);
1220 		bh->b_end_io = end_buffer_read_sync;
1221 		submit_bh(READ, bh);
1222 		wait_on_buffer(bh);
1223 		if (buffer_uptodate(bh))
1224 			return bh;
1225 	}
1226 	brelse(bh);
1227 	return NULL;
1228 }
1229 
1230 /*
1231  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1232  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1233  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1234  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1235  * CPU's LRUs at the same time.
1236  *
1237  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1238  * sb_find_get_block().
1239  *
1240  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1241  * a local interrupt disable for that.
1242  */
1243 
1244 #define BH_LRU_SIZE	8
1245 
1246 struct bh_lru {
1247 	struct buffer_head *bhs[BH_LRU_SIZE];
1248 };
1249 
1250 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1251 
1252 #ifdef CONFIG_SMP
1253 #define bh_lru_lock()	local_irq_disable()
1254 #define bh_lru_unlock()	local_irq_enable()
1255 #else
1256 #define bh_lru_lock()	preempt_disable()
1257 #define bh_lru_unlock()	preempt_enable()
1258 #endif
1259 
1260 static inline void check_irqs_on(void)
1261 {
1262 #ifdef irqs_disabled
1263 	BUG_ON(irqs_disabled());
1264 #endif
1265 }
1266 
1267 /*
1268  * The LRU management algorithm is dopey-but-simple.  Sorry.
1269  */
1270 static void bh_lru_install(struct buffer_head *bh)
1271 {
1272 	struct buffer_head *evictee = NULL;
1273 	struct bh_lru *lru;
1274 
1275 	check_irqs_on();
1276 	bh_lru_lock();
1277 	lru = &__get_cpu_var(bh_lrus);
1278 	if (lru->bhs[0] != bh) {
1279 		struct buffer_head *bhs[BH_LRU_SIZE];
1280 		int in;
1281 		int out = 0;
1282 
1283 		get_bh(bh);
1284 		bhs[out++] = bh;
1285 		for (in = 0; in < BH_LRU_SIZE; in++) {
1286 			struct buffer_head *bh2 = lru->bhs[in];
1287 
1288 			if (bh2 == bh) {
1289 				__brelse(bh2);
1290 			} else {
1291 				if (out >= BH_LRU_SIZE) {
1292 					BUG_ON(evictee != NULL);
1293 					evictee = bh2;
1294 				} else {
1295 					bhs[out++] = bh2;
1296 				}
1297 			}
1298 		}
1299 		while (out < BH_LRU_SIZE)
1300 			bhs[out++] = NULL;
1301 		memcpy(lru->bhs, bhs, sizeof(bhs));
1302 	}
1303 	bh_lru_unlock();
1304 
1305 	if (evictee)
1306 		__brelse(evictee);
1307 }
1308 
1309 /*
1310  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1311  */
1312 static struct buffer_head *
1313 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1314 {
1315 	struct buffer_head *ret = NULL;
1316 	struct bh_lru *lru;
1317 	unsigned int i;
1318 
1319 	check_irqs_on();
1320 	bh_lru_lock();
1321 	lru = &__get_cpu_var(bh_lrus);
1322 	for (i = 0; i < BH_LRU_SIZE; i++) {
1323 		struct buffer_head *bh = lru->bhs[i];
1324 
1325 		if (bh && bh->b_bdev == bdev &&
1326 				bh->b_blocknr == block && bh->b_size == size) {
1327 			if (i) {
1328 				while (i) {
1329 					lru->bhs[i] = lru->bhs[i - 1];
1330 					i--;
1331 				}
1332 				lru->bhs[0] = bh;
1333 			}
1334 			get_bh(bh);
1335 			ret = bh;
1336 			break;
1337 		}
1338 	}
1339 	bh_lru_unlock();
1340 	return ret;
1341 }
1342 
1343 /*
1344  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1345  * it in the LRU and mark it as accessed.  If it is not present then return
1346  * NULL
1347  */
1348 struct buffer_head *
1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1350 {
1351 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1352 
1353 	if (bh == NULL) {
1354 		bh = __find_get_block_slow(bdev, block);
1355 		if (bh)
1356 			bh_lru_install(bh);
1357 	}
1358 	if (bh)
1359 		touch_buffer(bh);
1360 	return bh;
1361 }
1362 EXPORT_SYMBOL(__find_get_block);
1363 
1364 /*
1365  * __getblk will locate (and, if necessary, create) the buffer_head
1366  * which corresponds to the passed block_device, block and size. The
1367  * returned buffer has its reference count incremented.
1368  *
1369  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1370  * illegal block number, __getblk() will happily return a buffer_head
1371  * which represents the non-existent block.  Very weird.
1372  *
1373  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1374  * attempt is failing.  FIXME, perhaps?
1375  */
1376 struct buffer_head *
1377 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1378 {
1379 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1380 
1381 	might_sleep();
1382 	if (bh == NULL)
1383 		bh = __getblk_slow(bdev, block, size);
1384 	return bh;
1385 }
1386 EXPORT_SYMBOL(__getblk);
1387 
1388 /*
1389  * Do async read-ahead on a buffer..
1390  */
1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 {
1393 	struct buffer_head *bh = __getblk(bdev, block, size);
1394 	if (likely(bh)) {
1395 		ll_rw_block(READA, 1, &bh);
1396 		brelse(bh);
1397 	}
1398 }
1399 EXPORT_SYMBOL(__breadahead);
1400 
1401 /**
1402  *  __bread() - reads a specified block and returns the bh
1403  *  @bdev: the block_device to read from
1404  *  @block: number of block
1405  *  @size: size (in bytes) to read
1406  *
1407  *  Reads a specified block, and returns buffer head that contains it.
1408  *  It returns NULL if the block was unreadable.
1409  */
1410 struct buffer_head *
1411 __bread(struct block_device *bdev, sector_t block, unsigned size)
1412 {
1413 	struct buffer_head *bh = __getblk(bdev, block, size);
1414 
1415 	if (likely(bh) && !buffer_uptodate(bh))
1416 		bh = __bread_slow(bh);
1417 	return bh;
1418 }
1419 EXPORT_SYMBOL(__bread);
1420 
1421 /*
1422  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423  * This doesn't race because it runs in each cpu either in irq
1424  * or with preempt disabled.
1425  */
1426 static void invalidate_bh_lru(void *arg)
1427 {
1428 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1429 	int i;
1430 
1431 	for (i = 0; i < BH_LRU_SIZE; i++) {
1432 		brelse(b->bhs[i]);
1433 		b->bhs[i] = NULL;
1434 	}
1435 	put_cpu_var(bh_lrus);
1436 }
1437 
1438 void invalidate_bh_lrus(void)
1439 {
1440 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1441 }
1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1443 
1444 void set_bh_page(struct buffer_head *bh,
1445 		struct page *page, unsigned long offset)
1446 {
1447 	bh->b_page = page;
1448 	BUG_ON(offset >= PAGE_SIZE);
1449 	if (PageHighMem(page))
1450 		/*
1451 		 * This catches illegal uses and preserves the offset:
1452 		 */
1453 		bh->b_data = (char *)(0 + offset);
1454 	else
1455 		bh->b_data = page_address(page) + offset;
1456 }
1457 EXPORT_SYMBOL(set_bh_page);
1458 
1459 /*
1460  * Called when truncating a buffer on a page completely.
1461  */
1462 static void discard_buffer(struct buffer_head * bh)
1463 {
1464 	lock_buffer(bh);
1465 	clear_buffer_dirty(bh);
1466 	bh->b_bdev = NULL;
1467 	clear_buffer_mapped(bh);
1468 	clear_buffer_req(bh);
1469 	clear_buffer_new(bh);
1470 	clear_buffer_delay(bh);
1471 	clear_buffer_unwritten(bh);
1472 	unlock_buffer(bh);
1473 }
1474 
1475 /**
1476  * block_invalidatepage - invalidate part of all of a buffer-backed page
1477  *
1478  * @page: the page which is affected
1479  * @offset: the index of the truncation point
1480  *
1481  * block_invalidatepage() is called when all or part of the page has become
1482  * invalidatedby a truncate operation.
1483  *
1484  * block_invalidatepage() does not have to release all buffers, but it must
1485  * ensure that no dirty buffer is left outside @offset and that no I/O
1486  * is underway against any of the blocks which are outside the truncation
1487  * point.  Because the caller is about to free (and possibly reuse) those
1488  * blocks on-disk.
1489  */
1490 void block_invalidatepage(struct page *page, unsigned long offset)
1491 {
1492 	struct buffer_head *head, *bh, *next;
1493 	unsigned int curr_off = 0;
1494 
1495 	BUG_ON(!PageLocked(page));
1496 	if (!page_has_buffers(page))
1497 		goto out;
1498 
1499 	head = page_buffers(page);
1500 	bh = head;
1501 	do {
1502 		unsigned int next_off = curr_off + bh->b_size;
1503 		next = bh->b_this_page;
1504 
1505 		/*
1506 		 * is this block fully invalidated?
1507 		 */
1508 		if (offset <= curr_off)
1509 			discard_buffer(bh);
1510 		curr_off = next_off;
1511 		bh = next;
1512 	} while (bh != head);
1513 
1514 	/*
1515 	 * We release buffers only if the entire page is being invalidated.
1516 	 * The get_block cached value has been unconditionally invalidated,
1517 	 * so real IO is not possible anymore.
1518 	 */
1519 	if (offset == 0)
1520 		try_to_release_page(page, 0);
1521 out:
1522 	return;
1523 }
1524 EXPORT_SYMBOL(block_invalidatepage);
1525 
1526 /*
1527  * We attach and possibly dirty the buffers atomically wrt
1528  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1529  * is already excluded via the page lock.
1530  */
1531 void create_empty_buffers(struct page *page,
1532 			unsigned long blocksize, unsigned long b_state)
1533 {
1534 	struct buffer_head *bh, *head, *tail;
1535 
1536 	head = alloc_page_buffers(page, blocksize, 1);
1537 	bh = head;
1538 	do {
1539 		bh->b_state |= b_state;
1540 		tail = bh;
1541 		bh = bh->b_this_page;
1542 	} while (bh);
1543 	tail->b_this_page = head;
1544 
1545 	spin_lock(&page->mapping->private_lock);
1546 	if (PageUptodate(page) || PageDirty(page)) {
1547 		bh = head;
1548 		do {
1549 			if (PageDirty(page))
1550 				set_buffer_dirty(bh);
1551 			if (PageUptodate(page))
1552 				set_buffer_uptodate(bh);
1553 			bh = bh->b_this_page;
1554 		} while (bh != head);
1555 	}
1556 	attach_page_buffers(page, head);
1557 	spin_unlock(&page->mapping->private_lock);
1558 }
1559 EXPORT_SYMBOL(create_empty_buffers);
1560 
1561 /*
1562  * We are taking a block for data and we don't want any output from any
1563  * buffer-cache aliases starting from return from that function and
1564  * until the moment when something will explicitly mark the buffer
1565  * dirty (hopefully that will not happen until we will free that block ;-)
1566  * We don't even need to mark it not-uptodate - nobody can expect
1567  * anything from a newly allocated buffer anyway. We used to used
1568  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1569  * don't want to mark the alias unmapped, for example - it would confuse
1570  * anyone who might pick it with bread() afterwards...
1571  *
1572  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1573  * be writeout I/O going on against recently-freed buffers.  We don't
1574  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1575  * only if we really need to.  That happens here.
1576  */
1577 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1578 {
1579 	struct buffer_head *old_bh;
1580 
1581 	might_sleep();
1582 
1583 	old_bh = __find_get_block_slow(bdev, block);
1584 	if (old_bh) {
1585 		clear_buffer_dirty(old_bh);
1586 		wait_on_buffer(old_bh);
1587 		clear_buffer_req(old_bh);
1588 		__brelse(old_bh);
1589 	}
1590 }
1591 EXPORT_SYMBOL(unmap_underlying_metadata);
1592 
1593 /*
1594  * NOTE! All mapped/uptodate combinations are valid:
1595  *
1596  *	Mapped	Uptodate	Meaning
1597  *
1598  *	No	No		"unknown" - must do get_block()
1599  *	No	Yes		"hole" - zero-filled
1600  *	Yes	No		"allocated" - allocated on disk, not read in
1601  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1602  *
1603  * "Dirty" is valid only with the last case (mapped+uptodate).
1604  */
1605 
1606 /*
1607  * While block_write_full_page is writing back the dirty buffers under
1608  * the page lock, whoever dirtied the buffers may decide to clean them
1609  * again at any time.  We handle that by only looking at the buffer
1610  * state inside lock_buffer().
1611  *
1612  * If block_write_full_page() is called for regular writeback
1613  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614  * locked buffer.   This only can happen if someone has written the buffer
1615  * directly, with submit_bh().  At the address_space level PageWriteback
1616  * prevents this contention from occurring.
1617  *
1618  * If block_write_full_page() is called with wbc->sync_mode ==
1619  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1620  * causes the writes to be flagged as synchronous writes, but the
1621  * block device queue will NOT be unplugged, since usually many pages
1622  * will be pushed to the out before the higher-level caller actually
1623  * waits for the writes to be completed.  The various wait functions,
1624  * such as wait_on_writeback_range() will ultimately call sync_page()
1625  * which will ultimately call blk_run_backing_dev(), which will end up
1626  * unplugging the device queue.
1627  */
1628 static int __block_write_full_page(struct inode *inode, struct page *page,
1629 			get_block_t *get_block, struct writeback_control *wbc,
1630 			bh_end_io_t *handler)
1631 {
1632 	int err;
1633 	sector_t block;
1634 	sector_t last_block;
1635 	struct buffer_head *bh, *head;
1636 	const unsigned blocksize = 1 << inode->i_blkbits;
1637 	int nr_underway = 0;
1638 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1639 			WRITE_SYNC_PLUG : WRITE);
1640 
1641 	BUG_ON(!PageLocked(page));
1642 
1643 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1644 
1645 	if (!page_has_buffers(page)) {
1646 		create_empty_buffers(page, blocksize,
1647 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1648 	}
1649 
1650 	/*
1651 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1652 	 * here, and the (potentially unmapped) buffers may become dirty at
1653 	 * any time.  If a buffer becomes dirty here after we've inspected it
1654 	 * then we just miss that fact, and the page stays dirty.
1655 	 *
1656 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1657 	 * handle that here by just cleaning them.
1658 	 */
1659 
1660 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1661 	head = page_buffers(page);
1662 	bh = head;
1663 
1664 	/*
1665 	 * Get all the dirty buffers mapped to disk addresses and
1666 	 * handle any aliases from the underlying blockdev's mapping.
1667 	 */
1668 	do {
1669 		if (block > last_block) {
1670 			/*
1671 			 * mapped buffers outside i_size will occur, because
1672 			 * this page can be outside i_size when there is a
1673 			 * truncate in progress.
1674 			 */
1675 			/*
1676 			 * The buffer was zeroed by block_write_full_page()
1677 			 */
1678 			clear_buffer_dirty(bh);
1679 			set_buffer_uptodate(bh);
1680 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1681 			   buffer_dirty(bh)) {
1682 			WARN_ON(bh->b_size != blocksize);
1683 			err = get_block(inode, block, bh, 1);
1684 			if (err)
1685 				goto recover;
1686 			clear_buffer_delay(bh);
1687 			if (buffer_new(bh)) {
1688 				/* blockdev mappings never come here */
1689 				clear_buffer_new(bh);
1690 				unmap_underlying_metadata(bh->b_bdev,
1691 							bh->b_blocknr);
1692 			}
1693 		}
1694 		bh = bh->b_this_page;
1695 		block++;
1696 	} while (bh != head);
1697 
1698 	do {
1699 		if (!buffer_mapped(bh))
1700 			continue;
1701 		/*
1702 		 * If it's a fully non-blocking write attempt and we cannot
1703 		 * lock the buffer then redirty the page.  Note that this can
1704 		 * potentially cause a busy-wait loop from writeback threads
1705 		 * and kswapd activity, but those code paths have their own
1706 		 * higher-level throttling.
1707 		 */
1708 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1709 			lock_buffer(bh);
1710 		} else if (!trylock_buffer(bh)) {
1711 			redirty_page_for_writepage(wbc, page);
1712 			continue;
1713 		}
1714 		if (test_clear_buffer_dirty(bh)) {
1715 			mark_buffer_async_write_endio(bh, handler);
1716 		} else {
1717 			unlock_buffer(bh);
1718 		}
1719 	} while ((bh = bh->b_this_page) != head);
1720 
1721 	/*
1722 	 * The page and its buffers are protected by PageWriteback(), so we can
1723 	 * drop the bh refcounts early.
1724 	 */
1725 	BUG_ON(PageWriteback(page));
1726 	set_page_writeback(page);
1727 
1728 	do {
1729 		struct buffer_head *next = bh->b_this_page;
1730 		if (buffer_async_write(bh)) {
1731 			submit_bh(write_op, bh);
1732 			nr_underway++;
1733 		}
1734 		bh = next;
1735 	} while (bh != head);
1736 	unlock_page(page);
1737 
1738 	err = 0;
1739 done:
1740 	if (nr_underway == 0) {
1741 		/*
1742 		 * The page was marked dirty, but the buffers were
1743 		 * clean.  Someone wrote them back by hand with
1744 		 * ll_rw_block/submit_bh.  A rare case.
1745 		 */
1746 		end_page_writeback(page);
1747 
1748 		/*
1749 		 * The page and buffer_heads can be released at any time from
1750 		 * here on.
1751 		 */
1752 	}
1753 	return err;
1754 
1755 recover:
1756 	/*
1757 	 * ENOSPC, or some other error.  We may already have added some
1758 	 * blocks to the file, so we need to write these out to avoid
1759 	 * exposing stale data.
1760 	 * The page is currently locked and not marked for writeback
1761 	 */
1762 	bh = head;
1763 	/* Recovery: lock and submit the mapped buffers */
1764 	do {
1765 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1766 		    !buffer_delay(bh)) {
1767 			lock_buffer(bh);
1768 			mark_buffer_async_write_endio(bh, handler);
1769 		} else {
1770 			/*
1771 			 * The buffer may have been set dirty during
1772 			 * attachment to a dirty page.
1773 			 */
1774 			clear_buffer_dirty(bh);
1775 		}
1776 	} while ((bh = bh->b_this_page) != head);
1777 	SetPageError(page);
1778 	BUG_ON(PageWriteback(page));
1779 	mapping_set_error(page->mapping, err);
1780 	set_page_writeback(page);
1781 	do {
1782 		struct buffer_head *next = bh->b_this_page;
1783 		if (buffer_async_write(bh)) {
1784 			clear_buffer_dirty(bh);
1785 			submit_bh(write_op, bh);
1786 			nr_underway++;
1787 		}
1788 		bh = next;
1789 	} while (bh != head);
1790 	unlock_page(page);
1791 	goto done;
1792 }
1793 
1794 /*
1795  * If a page has any new buffers, zero them out here, and mark them uptodate
1796  * and dirty so they'll be written out (in order to prevent uninitialised
1797  * block data from leaking). And clear the new bit.
1798  */
1799 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1800 {
1801 	unsigned int block_start, block_end;
1802 	struct buffer_head *head, *bh;
1803 
1804 	BUG_ON(!PageLocked(page));
1805 	if (!page_has_buffers(page))
1806 		return;
1807 
1808 	bh = head = page_buffers(page);
1809 	block_start = 0;
1810 	do {
1811 		block_end = block_start + bh->b_size;
1812 
1813 		if (buffer_new(bh)) {
1814 			if (block_end > from && block_start < to) {
1815 				if (!PageUptodate(page)) {
1816 					unsigned start, size;
1817 
1818 					start = max(from, block_start);
1819 					size = min(to, block_end) - start;
1820 
1821 					zero_user(page, start, size);
1822 					set_buffer_uptodate(bh);
1823 				}
1824 
1825 				clear_buffer_new(bh);
1826 				mark_buffer_dirty(bh);
1827 			}
1828 		}
1829 
1830 		block_start = block_end;
1831 		bh = bh->b_this_page;
1832 	} while (bh != head);
1833 }
1834 EXPORT_SYMBOL(page_zero_new_buffers);
1835 
1836 static int __block_prepare_write(struct inode *inode, struct page *page,
1837 		unsigned from, unsigned to, get_block_t *get_block)
1838 {
1839 	unsigned block_start, block_end;
1840 	sector_t block;
1841 	int err = 0;
1842 	unsigned blocksize, bbits;
1843 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1844 
1845 	BUG_ON(!PageLocked(page));
1846 	BUG_ON(from > PAGE_CACHE_SIZE);
1847 	BUG_ON(to > PAGE_CACHE_SIZE);
1848 	BUG_ON(from > to);
1849 
1850 	blocksize = 1 << inode->i_blkbits;
1851 	if (!page_has_buffers(page))
1852 		create_empty_buffers(page, blocksize, 0);
1853 	head = page_buffers(page);
1854 
1855 	bbits = inode->i_blkbits;
1856 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1857 
1858 	for(bh = head, block_start = 0; bh != head || !block_start;
1859 	    block++, block_start=block_end, bh = bh->b_this_page) {
1860 		block_end = block_start + blocksize;
1861 		if (block_end <= from || block_start >= to) {
1862 			if (PageUptodate(page)) {
1863 				if (!buffer_uptodate(bh))
1864 					set_buffer_uptodate(bh);
1865 			}
1866 			continue;
1867 		}
1868 		if (buffer_new(bh))
1869 			clear_buffer_new(bh);
1870 		if (!buffer_mapped(bh)) {
1871 			WARN_ON(bh->b_size != blocksize);
1872 			err = get_block(inode, block, bh, 1);
1873 			if (err)
1874 				break;
1875 			if (buffer_new(bh)) {
1876 				unmap_underlying_metadata(bh->b_bdev,
1877 							bh->b_blocknr);
1878 				if (PageUptodate(page)) {
1879 					clear_buffer_new(bh);
1880 					set_buffer_uptodate(bh);
1881 					mark_buffer_dirty(bh);
1882 					continue;
1883 				}
1884 				if (block_end > to || block_start < from)
1885 					zero_user_segments(page,
1886 						to, block_end,
1887 						block_start, from);
1888 				continue;
1889 			}
1890 		}
1891 		if (PageUptodate(page)) {
1892 			if (!buffer_uptodate(bh))
1893 				set_buffer_uptodate(bh);
1894 			continue;
1895 		}
1896 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1897 		    !buffer_unwritten(bh) &&
1898 		     (block_start < from || block_end > to)) {
1899 			ll_rw_block(READ, 1, &bh);
1900 			*wait_bh++=bh;
1901 		}
1902 	}
1903 	/*
1904 	 * If we issued read requests - let them complete.
1905 	 */
1906 	while(wait_bh > wait) {
1907 		wait_on_buffer(*--wait_bh);
1908 		if (!buffer_uptodate(*wait_bh))
1909 			err = -EIO;
1910 	}
1911 	if (unlikely(err))
1912 		page_zero_new_buffers(page, from, to);
1913 	return err;
1914 }
1915 
1916 static int __block_commit_write(struct inode *inode, struct page *page,
1917 		unsigned from, unsigned to)
1918 {
1919 	unsigned block_start, block_end;
1920 	int partial = 0;
1921 	unsigned blocksize;
1922 	struct buffer_head *bh, *head;
1923 
1924 	blocksize = 1 << inode->i_blkbits;
1925 
1926 	for(bh = head = page_buffers(page), block_start = 0;
1927 	    bh != head || !block_start;
1928 	    block_start=block_end, bh = bh->b_this_page) {
1929 		block_end = block_start + blocksize;
1930 		if (block_end <= from || block_start >= to) {
1931 			if (!buffer_uptodate(bh))
1932 				partial = 1;
1933 		} else {
1934 			set_buffer_uptodate(bh);
1935 			mark_buffer_dirty(bh);
1936 		}
1937 		clear_buffer_new(bh);
1938 	}
1939 
1940 	/*
1941 	 * If this is a partial write which happened to make all buffers
1942 	 * uptodate then we can optimize away a bogus readpage() for
1943 	 * the next read(). Here we 'discover' whether the page went
1944 	 * uptodate as a result of this (potentially partial) write.
1945 	 */
1946 	if (!partial)
1947 		SetPageUptodate(page);
1948 	return 0;
1949 }
1950 
1951 /*
1952  * Filesystems implementing the new truncate sequence should use the
1953  * _newtrunc postfix variant which won't incorrectly call vmtruncate.
1954  * The filesystem needs to handle block truncation upon failure.
1955  */
1956 int block_write_begin_newtrunc(struct file *file, struct address_space *mapping,
1957 			loff_t pos, unsigned len, unsigned flags,
1958 			struct page **pagep, void **fsdata,
1959 			get_block_t *get_block)
1960 {
1961 	struct inode *inode = mapping->host;
1962 	int status = 0;
1963 	struct page *page;
1964 	pgoff_t index;
1965 	unsigned start, end;
1966 	int ownpage = 0;
1967 
1968 	index = pos >> PAGE_CACHE_SHIFT;
1969 	start = pos & (PAGE_CACHE_SIZE - 1);
1970 	end = start + len;
1971 
1972 	page = *pagep;
1973 	if (page == NULL) {
1974 		ownpage = 1;
1975 		page = grab_cache_page_write_begin(mapping, index, flags);
1976 		if (!page) {
1977 			status = -ENOMEM;
1978 			goto out;
1979 		}
1980 		*pagep = page;
1981 	} else
1982 		BUG_ON(!PageLocked(page));
1983 
1984 	status = __block_prepare_write(inode, page, start, end, get_block);
1985 	if (unlikely(status)) {
1986 		ClearPageUptodate(page);
1987 
1988 		if (ownpage) {
1989 			unlock_page(page);
1990 			page_cache_release(page);
1991 			*pagep = NULL;
1992 		}
1993 	}
1994 
1995 out:
1996 	return status;
1997 }
1998 EXPORT_SYMBOL(block_write_begin_newtrunc);
1999 
2000 /*
2001  * block_write_begin takes care of the basic task of block allocation and
2002  * bringing partial write blocks uptodate first.
2003  *
2004  * If *pagep is not NULL, then block_write_begin uses the locked page
2005  * at *pagep rather than allocating its own. In this case, the page will
2006  * not be unlocked or deallocated on failure.
2007  */
2008 int block_write_begin(struct file *file, struct address_space *mapping,
2009 			loff_t pos, unsigned len, unsigned flags,
2010 			struct page **pagep, void **fsdata,
2011 			get_block_t *get_block)
2012 {
2013 	int ret;
2014 
2015 	ret = block_write_begin_newtrunc(file, mapping, pos, len, flags,
2016 					pagep, fsdata, get_block);
2017 
2018 	/*
2019 	 * prepare_write() may have instantiated a few blocks
2020 	 * outside i_size.  Trim these off again. Don't need
2021 	 * i_size_read because we hold i_mutex.
2022 	 *
2023 	 * Filesystems which pass down their own page also cannot
2024 	 * call into vmtruncate here because it would lead to lock
2025 	 * inversion problems (*pagep is locked). This is a further
2026 	 * example of where the old truncate sequence is inadequate.
2027 	 */
2028 	if (unlikely(ret) && *pagep == NULL) {
2029 		loff_t isize = mapping->host->i_size;
2030 		if (pos + len > isize)
2031 			vmtruncate(mapping->host, isize);
2032 	}
2033 
2034 	return ret;
2035 }
2036 EXPORT_SYMBOL(block_write_begin);
2037 
2038 int block_write_end(struct file *file, struct address_space *mapping,
2039 			loff_t pos, unsigned len, unsigned copied,
2040 			struct page *page, void *fsdata)
2041 {
2042 	struct inode *inode = mapping->host;
2043 	unsigned start;
2044 
2045 	start = pos & (PAGE_CACHE_SIZE - 1);
2046 
2047 	if (unlikely(copied < len)) {
2048 		/*
2049 		 * The buffers that were written will now be uptodate, so we
2050 		 * don't have to worry about a readpage reading them and
2051 		 * overwriting a partial write. However if we have encountered
2052 		 * a short write and only partially written into a buffer, it
2053 		 * will not be marked uptodate, so a readpage might come in and
2054 		 * destroy our partial write.
2055 		 *
2056 		 * Do the simplest thing, and just treat any short write to a
2057 		 * non uptodate page as a zero-length write, and force the
2058 		 * caller to redo the whole thing.
2059 		 */
2060 		if (!PageUptodate(page))
2061 			copied = 0;
2062 
2063 		page_zero_new_buffers(page, start+copied, start+len);
2064 	}
2065 	flush_dcache_page(page);
2066 
2067 	/* This could be a short (even 0-length) commit */
2068 	__block_commit_write(inode, page, start, start+copied);
2069 
2070 	return copied;
2071 }
2072 EXPORT_SYMBOL(block_write_end);
2073 
2074 int generic_write_end(struct file *file, struct address_space *mapping,
2075 			loff_t pos, unsigned len, unsigned copied,
2076 			struct page *page, void *fsdata)
2077 {
2078 	struct inode *inode = mapping->host;
2079 	int i_size_changed = 0;
2080 
2081 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2082 
2083 	/*
2084 	 * No need to use i_size_read() here, the i_size
2085 	 * cannot change under us because we hold i_mutex.
2086 	 *
2087 	 * But it's important to update i_size while still holding page lock:
2088 	 * page writeout could otherwise come in and zero beyond i_size.
2089 	 */
2090 	if (pos+copied > inode->i_size) {
2091 		i_size_write(inode, pos+copied);
2092 		i_size_changed = 1;
2093 	}
2094 
2095 	unlock_page(page);
2096 	page_cache_release(page);
2097 
2098 	/*
2099 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2100 	 * makes the holding time of page lock longer. Second, it forces lock
2101 	 * ordering of page lock and transaction start for journaling
2102 	 * filesystems.
2103 	 */
2104 	if (i_size_changed)
2105 		mark_inode_dirty(inode);
2106 
2107 	return copied;
2108 }
2109 EXPORT_SYMBOL(generic_write_end);
2110 
2111 /*
2112  * block_is_partially_uptodate checks whether buffers within a page are
2113  * uptodate or not.
2114  *
2115  * Returns true if all buffers which correspond to a file portion
2116  * we want to read are uptodate.
2117  */
2118 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2119 					unsigned long from)
2120 {
2121 	struct inode *inode = page->mapping->host;
2122 	unsigned block_start, block_end, blocksize;
2123 	unsigned to;
2124 	struct buffer_head *bh, *head;
2125 	int ret = 1;
2126 
2127 	if (!page_has_buffers(page))
2128 		return 0;
2129 
2130 	blocksize = 1 << inode->i_blkbits;
2131 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2132 	to = from + to;
2133 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2134 		return 0;
2135 
2136 	head = page_buffers(page);
2137 	bh = head;
2138 	block_start = 0;
2139 	do {
2140 		block_end = block_start + blocksize;
2141 		if (block_end > from && block_start < to) {
2142 			if (!buffer_uptodate(bh)) {
2143 				ret = 0;
2144 				break;
2145 			}
2146 			if (block_end >= to)
2147 				break;
2148 		}
2149 		block_start = block_end;
2150 		bh = bh->b_this_page;
2151 	} while (bh != head);
2152 
2153 	return ret;
2154 }
2155 EXPORT_SYMBOL(block_is_partially_uptodate);
2156 
2157 /*
2158  * Generic "read page" function for block devices that have the normal
2159  * get_block functionality. This is most of the block device filesystems.
2160  * Reads the page asynchronously --- the unlock_buffer() and
2161  * set/clear_buffer_uptodate() functions propagate buffer state into the
2162  * page struct once IO has completed.
2163  */
2164 int block_read_full_page(struct page *page, get_block_t *get_block)
2165 {
2166 	struct inode *inode = page->mapping->host;
2167 	sector_t iblock, lblock;
2168 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2169 	unsigned int blocksize;
2170 	int nr, i;
2171 	int fully_mapped = 1;
2172 
2173 	BUG_ON(!PageLocked(page));
2174 	blocksize = 1 << inode->i_blkbits;
2175 	if (!page_has_buffers(page))
2176 		create_empty_buffers(page, blocksize, 0);
2177 	head = page_buffers(page);
2178 
2179 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2180 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2181 	bh = head;
2182 	nr = 0;
2183 	i = 0;
2184 
2185 	do {
2186 		if (buffer_uptodate(bh))
2187 			continue;
2188 
2189 		if (!buffer_mapped(bh)) {
2190 			int err = 0;
2191 
2192 			fully_mapped = 0;
2193 			if (iblock < lblock) {
2194 				WARN_ON(bh->b_size != blocksize);
2195 				err = get_block(inode, iblock, bh, 0);
2196 				if (err)
2197 					SetPageError(page);
2198 			}
2199 			if (!buffer_mapped(bh)) {
2200 				zero_user(page, i * blocksize, blocksize);
2201 				if (!err)
2202 					set_buffer_uptodate(bh);
2203 				continue;
2204 			}
2205 			/*
2206 			 * get_block() might have updated the buffer
2207 			 * synchronously
2208 			 */
2209 			if (buffer_uptodate(bh))
2210 				continue;
2211 		}
2212 		arr[nr++] = bh;
2213 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2214 
2215 	if (fully_mapped)
2216 		SetPageMappedToDisk(page);
2217 
2218 	if (!nr) {
2219 		/*
2220 		 * All buffers are uptodate - we can set the page uptodate
2221 		 * as well. But not if get_block() returned an error.
2222 		 */
2223 		if (!PageError(page))
2224 			SetPageUptodate(page);
2225 		unlock_page(page);
2226 		return 0;
2227 	}
2228 
2229 	/* Stage two: lock the buffers */
2230 	for (i = 0; i < nr; i++) {
2231 		bh = arr[i];
2232 		lock_buffer(bh);
2233 		mark_buffer_async_read(bh);
2234 	}
2235 
2236 	/*
2237 	 * Stage 3: start the IO.  Check for uptodateness
2238 	 * inside the buffer lock in case another process reading
2239 	 * the underlying blockdev brought it uptodate (the sct fix).
2240 	 */
2241 	for (i = 0; i < nr; i++) {
2242 		bh = arr[i];
2243 		if (buffer_uptodate(bh))
2244 			end_buffer_async_read(bh, 1);
2245 		else
2246 			submit_bh(READ, bh);
2247 	}
2248 	return 0;
2249 }
2250 EXPORT_SYMBOL(block_read_full_page);
2251 
2252 /* utility function for filesystems that need to do work on expanding
2253  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2254  * deal with the hole.
2255  */
2256 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2257 {
2258 	struct address_space *mapping = inode->i_mapping;
2259 	struct page *page;
2260 	void *fsdata;
2261 	int err;
2262 
2263 	err = inode_newsize_ok(inode, size);
2264 	if (err)
2265 		goto out;
2266 
2267 	err = pagecache_write_begin(NULL, mapping, size, 0,
2268 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2269 				&page, &fsdata);
2270 	if (err)
2271 		goto out;
2272 
2273 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2274 	BUG_ON(err > 0);
2275 
2276 out:
2277 	return err;
2278 }
2279 EXPORT_SYMBOL(generic_cont_expand_simple);
2280 
2281 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2282 			    loff_t pos, loff_t *bytes)
2283 {
2284 	struct inode *inode = mapping->host;
2285 	unsigned blocksize = 1 << inode->i_blkbits;
2286 	struct page *page;
2287 	void *fsdata;
2288 	pgoff_t index, curidx;
2289 	loff_t curpos;
2290 	unsigned zerofrom, offset, len;
2291 	int err = 0;
2292 
2293 	index = pos >> PAGE_CACHE_SHIFT;
2294 	offset = pos & ~PAGE_CACHE_MASK;
2295 
2296 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2297 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2298 		if (zerofrom & (blocksize-1)) {
2299 			*bytes |= (blocksize-1);
2300 			(*bytes)++;
2301 		}
2302 		len = PAGE_CACHE_SIZE - zerofrom;
2303 
2304 		err = pagecache_write_begin(file, mapping, curpos, len,
2305 						AOP_FLAG_UNINTERRUPTIBLE,
2306 						&page, &fsdata);
2307 		if (err)
2308 			goto out;
2309 		zero_user(page, zerofrom, len);
2310 		err = pagecache_write_end(file, mapping, curpos, len, len,
2311 						page, fsdata);
2312 		if (err < 0)
2313 			goto out;
2314 		BUG_ON(err != len);
2315 		err = 0;
2316 
2317 		balance_dirty_pages_ratelimited(mapping);
2318 	}
2319 
2320 	/* page covers the boundary, find the boundary offset */
2321 	if (index == curidx) {
2322 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2323 		/* if we will expand the thing last block will be filled */
2324 		if (offset <= zerofrom) {
2325 			goto out;
2326 		}
2327 		if (zerofrom & (blocksize-1)) {
2328 			*bytes |= (blocksize-1);
2329 			(*bytes)++;
2330 		}
2331 		len = offset - zerofrom;
2332 
2333 		err = pagecache_write_begin(file, mapping, curpos, len,
2334 						AOP_FLAG_UNINTERRUPTIBLE,
2335 						&page, &fsdata);
2336 		if (err)
2337 			goto out;
2338 		zero_user(page, zerofrom, len);
2339 		err = pagecache_write_end(file, mapping, curpos, len, len,
2340 						page, fsdata);
2341 		if (err < 0)
2342 			goto out;
2343 		BUG_ON(err != len);
2344 		err = 0;
2345 	}
2346 out:
2347 	return err;
2348 }
2349 
2350 /*
2351  * For moronic filesystems that do not allow holes in file.
2352  * We may have to extend the file.
2353  */
2354 int cont_write_begin_newtrunc(struct file *file, struct address_space *mapping,
2355 			loff_t pos, unsigned len, unsigned flags,
2356 			struct page **pagep, void **fsdata,
2357 			get_block_t *get_block, loff_t *bytes)
2358 {
2359 	struct inode *inode = mapping->host;
2360 	unsigned blocksize = 1 << inode->i_blkbits;
2361 	unsigned zerofrom;
2362 	int err;
2363 
2364 	err = cont_expand_zero(file, mapping, pos, bytes);
2365 	if (err)
2366 		goto out;
2367 
2368 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2369 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2370 		*bytes |= (blocksize-1);
2371 		(*bytes)++;
2372 	}
2373 
2374 	*pagep = NULL;
2375 	err = block_write_begin_newtrunc(file, mapping, pos, len,
2376 				flags, pagep, fsdata, get_block);
2377 out:
2378 	return err;
2379 }
2380 EXPORT_SYMBOL(cont_write_begin_newtrunc);
2381 
2382 int cont_write_begin(struct file *file, struct address_space *mapping,
2383 			loff_t pos, unsigned len, unsigned flags,
2384 			struct page **pagep, void **fsdata,
2385 			get_block_t *get_block, loff_t *bytes)
2386 {
2387 	int ret;
2388 
2389 	ret = cont_write_begin_newtrunc(file, mapping, pos, len, flags,
2390 					pagep, fsdata, get_block, bytes);
2391 	if (unlikely(ret)) {
2392 		loff_t isize = mapping->host->i_size;
2393 		if (pos + len > isize)
2394 			vmtruncate(mapping->host, isize);
2395 	}
2396 
2397 	return ret;
2398 }
2399 EXPORT_SYMBOL(cont_write_begin);
2400 
2401 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2402 			get_block_t *get_block)
2403 {
2404 	struct inode *inode = page->mapping->host;
2405 	int err = __block_prepare_write(inode, page, from, to, get_block);
2406 	if (err)
2407 		ClearPageUptodate(page);
2408 	return err;
2409 }
2410 EXPORT_SYMBOL(block_prepare_write);
2411 
2412 int block_commit_write(struct page *page, unsigned from, unsigned to)
2413 {
2414 	struct inode *inode = page->mapping->host;
2415 	__block_commit_write(inode,page,from,to);
2416 	return 0;
2417 }
2418 EXPORT_SYMBOL(block_commit_write);
2419 
2420 /*
2421  * block_page_mkwrite() is not allowed to change the file size as it gets
2422  * called from a page fault handler when a page is first dirtied. Hence we must
2423  * be careful to check for EOF conditions here. We set the page up correctly
2424  * for a written page which means we get ENOSPC checking when writing into
2425  * holes and correct delalloc and unwritten extent mapping on filesystems that
2426  * support these features.
2427  *
2428  * We are not allowed to take the i_mutex here so we have to play games to
2429  * protect against truncate races as the page could now be beyond EOF.  Because
2430  * truncate writes the inode size before removing pages, once we have the
2431  * page lock we can determine safely if the page is beyond EOF. If it is not
2432  * beyond EOF, then the page is guaranteed safe against truncation until we
2433  * unlock the page.
2434  */
2435 int
2436 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2437 		   get_block_t get_block)
2438 {
2439 	struct page *page = vmf->page;
2440 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2441 	unsigned long end;
2442 	loff_t size;
2443 	int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2444 
2445 	lock_page(page);
2446 	size = i_size_read(inode);
2447 	if ((page->mapping != inode->i_mapping) ||
2448 	    (page_offset(page) > size)) {
2449 		/* page got truncated out from underneath us */
2450 		unlock_page(page);
2451 		goto out;
2452 	}
2453 
2454 	/* page is wholly or partially inside EOF */
2455 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2456 		end = size & ~PAGE_CACHE_MASK;
2457 	else
2458 		end = PAGE_CACHE_SIZE;
2459 
2460 	ret = block_prepare_write(page, 0, end, get_block);
2461 	if (!ret)
2462 		ret = block_commit_write(page, 0, end);
2463 
2464 	if (unlikely(ret)) {
2465 		unlock_page(page);
2466 		if (ret == -ENOMEM)
2467 			ret = VM_FAULT_OOM;
2468 		else /* -ENOSPC, -EIO, etc */
2469 			ret = VM_FAULT_SIGBUS;
2470 	} else
2471 		ret = VM_FAULT_LOCKED;
2472 
2473 out:
2474 	return ret;
2475 }
2476 EXPORT_SYMBOL(block_page_mkwrite);
2477 
2478 /*
2479  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2480  * immediately, while under the page lock.  So it needs a special end_io
2481  * handler which does not touch the bh after unlocking it.
2482  */
2483 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2484 {
2485 	__end_buffer_read_notouch(bh, uptodate);
2486 }
2487 
2488 /*
2489  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2490  * the page (converting it to circular linked list and taking care of page
2491  * dirty races).
2492  */
2493 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2494 {
2495 	struct buffer_head *bh;
2496 
2497 	BUG_ON(!PageLocked(page));
2498 
2499 	spin_lock(&page->mapping->private_lock);
2500 	bh = head;
2501 	do {
2502 		if (PageDirty(page))
2503 			set_buffer_dirty(bh);
2504 		if (!bh->b_this_page)
2505 			bh->b_this_page = head;
2506 		bh = bh->b_this_page;
2507 	} while (bh != head);
2508 	attach_page_buffers(page, head);
2509 	spin_unlock(&page->mapping->private_lock);
2510 }
2511 
2512 /*
2513  * Filesystems implementing the new truncate sequence should use the
2514  * _newtrunc postfix variant which won't incorrectly call vmtruncate.
2515  * The filesystem needs to handle block truncation upon failure.
2516  */
2517 int nobh_write_begin_newtrunc(struct file *file, struct address_space *mapping,
2518 			loff_t pos, unsigned len, unsigned flags,
2519 			struct page **pagep, void **fsdata,
2520 			get_block_t *get_block)
2521 {
2522 	struct inode *inode = mapping->host;
2523 	const unsigned blkbits = inode->i_blkbits;
2524 	const unsigned blocksize = 1 << blkbits;
2525 	struct buffer_head *head, *bh;
2526 	struct page *page;
2527 	pgoff_t index;
2528 	unsigned from, to;
2529 	unsigned block_in_page;
2530 	unsigned block_start, block_end;
2531 	sector_t block_in_file;
2532 	int nr_reads = 0;
2533 	int ret = 0;
2534 	int is_mapped_to_disk = 1;
2535 
2536 	index = pos >> PAGE_CACHE_SHIFT;
2537 	from = pos & (PAGE_CACHE_SIZE - 1);
2538 	to = from + len;
2539 
2540 	page = grab_cache_page_write_begin(mapping, index, flags);
2541 	if (!page)
2542 		return -ENOMEM;
2543 	*pagep = page;
2544 	*fsdata = NULL;
2545 
2546 	if (page_has_buffers(page)) {
2547 		unlock_page(page);
2548 		page_cache_release(page);
2549 		*pagep = NULL;
2550 		return block_write_begin_newtrunc(file, mapping, pos, len,
2551 					flags, pagep, fsdata, get_block);
2552 	}
2553 
2554 	if (PageMappedToDisk(page))
2555 		return 0;
2556 
2557 	/*
2558 	 * Allocate buffers so that we can keep track of state, and potentially
2559 	 * attach them to the page if an error occurs. In the common case of
2560 	 * no error, they will just be freed again without ever being attached
2561 	 * to the page (which is all OK, because we're under the page lock).
2562 	 *
2563 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2564 	 * than the circular one we're used to.
2565 	 */
2566 	head = alloc_page_buffers(page, blocksize, 0);
2567 	if (!head) {
2568 		ret = -ENOMEM;
2569 		goto out_release;
2570 	}
2571 
2572 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2573 
2574 	/*
2575 	 * We loop across all blocks in the page, whether or not they are
2576 	 * part of the affected region.  This is so we can discover if the
2577 	 * page is fully mapped-to-disk.
2578 	 */
2579 	for (block_start = 0, block_in_page = 0, bh = head;
2580 		  block_start < PAGE_CACHE_SIZE;
2581 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2582 		int create;
2583 
2584 		block_end = block_start + blocksize;
2585 		bh->b_state = 0;
2586 		create = 1;
2587 		if (block_start >= to)
2588 			create = 0;
2589 		ret = get_block(inode, block_in_file + block_in_page,
2590 					bh, create);
2591 		if (ret)
2592 			goto failed;
2593 		if (!buffer_mapped(bh))
2594 			is_mapped_to_disk = 0;
2595 		if (buffer_new(bh))
2596 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2597 		if (PageUptodate(page)) {
2598 			set_buffer_uptodate(bh);
2599 			continue;
2600 		}
2601 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2602 			zero_user_segments(page, block_start, from,
2603 							to, block_end);
2604 			continue;
2605 		}
2606 		if (buffer_uptodate(bh))
2607 			continue;	/* reiserfs does this */
2608 		if (block_start < from || block_end > to) {
2609 			lock_buffer(bh);
2610 			bh->b_end_io = end_buffer_read_nobh;
2611 			submit_bh(READ, bh);
2612 			nr_reads++;
2613 		}
2614 	}
2615 
2616 	if (nr_reads) {
2617 		/*
2618 		 * The page is locked, so these buffers are protected from
2619 		 * any VM or truncate activity.  Hence we don't need to care
2620 		 * for the buffer_head refcounts.
2621 		 */
2622 		for (bh = head; bh; bh = bh->b_this_page) {
2623 			wait_on_buffer(bh);
2624 			if (!buffer_uptodate(bh))
2625 				ret = -EIO;
2626 		}
2627 		if (ret)
2628 			goto failed;
2629 	}
2630 
2631 	if (is_mapped_to_disk)
2632 		SetPageMappedToDisk(page);
2633 
2634 	*fsdata = head; /* to be released by nobh_write_end */
2635 
2636 	return 0;
2637 
2638 failed:
2639 	BUG_ON(!ret);
2640 	/*
2641 	 * Error recovery is a bit difficult. We need to zero out blocks that
2642 	 * were newly allocated, and dirty them to ensure they get written out.
2643 	 * Buffers need to be attached to the page at this point, otherwise
2644 	 * the handling of potential IO errors during writeout would be hard
2645 	 * (could try doing synchronous writeout, but what if that fails too?)
2646 	 */
2647 	attach_nobh_buffers(page, head);
2648 	page_zero_new_buffers(page, from, to);
2649 
2650 out_release:
2651 	unlock_page(page);
2652 	page_cache_release(page);
2653 	*pagep = NULL;
2654 
2655 	return ret;
2656 }
2657 EXPORT_SYMBOL(nobh_write_begin_newtrunc);
2658 
2659 /*
2660  * On entry, the page is fully not uptodate.
2661  * On exit the page is fully uptodate in the areas outside (from,to)
2662  */
2663 int nobh_write_begin(struct file *file, struct address_space *mapping,
2664 			loff_t pos, unsigned len, unsigned flags,
2665 			struct page **pagep, void **fsdata,
2666 			get_block_t *get_block)
2667 {
2668 	int ret;
2669 
2670 	ret = nobh_write_begin_newtrunc(file, mapping, pos, len, flags,
2671 					pagep, fsdata, get_block);
2672 
2673 	/*
2674 	 * prepare_write() may have instantiated a few blocks
2675 	 * outside i_size.  Trim these off again. Don't need
2676 	 * i_size_read because we hold i_mutex.
2677 	 */
2678 	if (unlikely(ret)) {
2679 		loff_t isize = mapping->host->i_size;
2680 		if (pos + len > isize)
2681 			vmtruncate(mapping->host, isize);
2682 	}
2683 
2684 	return ret;
2685 }
2686 EXPORT_SYMBOL(nobh_write_begin);
2687 
2688 int nobh_write_end(struct file *file, struct address_space *mapping,
2689 			loff_t pos, unsigned len, unsigned copied,
2690 			struct page *page, void *fsdata)
2691 {
2692 	struct inode *inode = page->mapping->host;
2693 	struct buffer_head *head = fsdata;
2694 	struct buffer_head *bh;
2695 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2696 
2697 	if (unlikely(copied < len) && head)
2698 		attach_nobh_buffers(page, head);
2699 	if (page_has_buffers(page))
2700 		return generic_write_end(file, mapping, pos, len,
2701 					copied, page, fsdata);
2702 
2703 	SetPageUptodate(page);
2704 	set_page_dirty(page);
2705 	if (pos+copied > inode->i_size) {
2706 		i_size_write(inode, pos+copied);
2707 		mark_inode_dirty(inode);
2708 	}
2709 
2710 	unlock_page(page);
2711 	page_cache_release(page);
2712 
2713 	while (head) {
2714 		bh = head;
2715 		head = head->b_this_page;
2716 		free_buffer_head(bh);
2717 	}
2718 
2719 	return copied;
2720 }
2721 EXPORT_SYMBOL(nobh_write_end);
2722 
2723 /*
2724  * nobh_writepage() - based on block_full_write_page() except
2725  * that it tries to operate without attaching bufferheads to
2726  * the page.
2727  */
2728 int nobh_writepage(struct page *page, get_block_t *get_block,
2729 			struct writeback_control *wbc)
2730 {
2731 	struct inode * const inode = page->mapping->host;
2732 	loff_t i_size = i_size_read(inode);
2733 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2734 	unsigned offset;
2735 	int ret;
2736 
2737 	/* Is the page fully inside i_size? */
2738 	if (page->index < end_index)
2739 		goto out;
2740 
2741 	/* Is the page fully outside i_size? (truncate in progress) */
2742 	offset = i_size & (PAGE_CACHE_SIZE-1);
2743 	if (page->index >= end_index+1 || !offset) {
2744 		/*
2745 		 * The page may have dirty, unmapped buffers.  For example,
2746 		 * they may have been added in ext3_writepage().  Make them
2747 		 * freeable here, so the page does not leak.
2748 		 */
2749 #if 0
2750 		/* Not really sure about this  - do we need this ? */
2751 		if (page->mapping->a_ops->invalidatepage)
2752 			page->mapping->a_ops->invalidatepage(page, offset);
2753 #endif
2754 		unlock_page(page);
2755 		return 0; /* don't care */
2756 	}
2757 
2758 	/*
2759 	 * The page straddles i_size.  It must be zeroed out on each and every
2760 	 * writepage invocation because it may be mmapped.  "A file is mapped
2761 	 * in multiples of the page size.  For a file that is not a multiple of
2762 	 * the  page size, the remaining memory is zeroed when mapped, and
2763 	 * writes to that region are not written out to the file."
2764 	 */
2765 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2766 out:
2767 	ret = mpage_writepage(page, get_block, wbc);
2768 	if (ret == -EAGAIN)
2769 		ret = __block_write_full_page(inode, page, get_block, wbc,
2770 					      end_buffer_async_write);
2771 	return ret;
2772 }
2773 EXPORT_SYMBOL(nobh_writepage);
2774 
2775 int nobh_truncate_page(struct address_space *mapping,
2776 			loff_t from, get_block_t *get_block)
2777 {
2778 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2779 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2780 	unsigned blocksize;
2781 	sector_t iblock;
2782 	unsigned length, pos;
2783 	struct inode *inode = mapping->host;
2784 	struct page *page;
2785 	struct buffer_head map_bh;
2786 	int err;
2787 
2788 	blocksize = 1 << inode->i_blkbits;
2789 	length = offset & (blocksize - 1);
2790 
2791 	/* Block boundary? Nothing to do */
2792 	if (!length)
2793 		return 0;
2794 
2795 	length = blocksize - length;
2796 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2797 
2798 	page = grab_cache_page(mapping, index);
2799 	err = -ENOMEM;
2800 	if (!page)
2801 		goto out;
2802 
2803 	if (page_has_buffers(page)) {
2804 has_buffers:
2805 		unlock_page(page);
2806 		page_cache_release(page);
2807 		return block_truncate_page(mapping, from, get_block);
2808 	}
2809 
2810 	/* Find the buffer that contains "offset" */
2811 	pos = blocksize;
2812 	while (offset >= pos) {
2813 		iblock++;
2814 		pos += blocksize;
2815 	}
2816 
2817 	map_bh.b_size = blocksize;
2818 	map_bh.b_state = 0;
2819 	err = get_block(inode, iblock, &map_bh, 0);
2820 	if (err)
2821 		goto unlock;
2822 	/* unmapped? It's a hole - nothing to do */
2823 	if (!buffer_mapped(&map_bh))
2824 		goto unlock;
2825 
2826 	/* Ok, it's mapped. Make sure it's up-to-date */
2827 	if (!PageUptodate(page)) {
2828 		err = mapping->a_ops->readpage(NULL, page);
2829 		if (err) {
2830 			page_cache_release(page);
2831 			goto out;
2832 		}
2833 		lock_page(page);
2834 		if (!PageUptodate(page)) {
2835 			err = -EIO;
2836 			goto unlock;
2837 		}
2838 		if (page_has_buffers(page))
2839 			goto has_buffers;
2840 	}
2841 	zero_user(page, offset, length);
2842 	set_page_dirty(page);
2843 	err = 0;
2844 
2845 unlock:
2846 	unlock_page(page);
2847 	page_cache_release(page);
2848 out:
2849 	return err;
2850 }
2851 EXPORT_SYMBOL(nobh_truncate_page);
2852 
2853 int block_truncate_page(struct address_space *mapping,
2854 			loff_t from, get_block_t *get_block)
2855 {
2856 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2857 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2858 	unsigned blocksize;
2859 	sector_t iblock;
2860 	unsigned length, pos;
2861 	struct inode *inode = mapping->host;
2862 	struct page *page;
2863 	struct buffer_head *bh;
2864 	int err;
2865 
2866 	blocksize = 1 << inode->i_blkbits;
2867 	length = offset & (blocksize - 1);
2868 
2869 	/* Block boundary? Nothing to do */
2870 	if (!length)
2871 		return 0;
2872 
2873 	length = blocksize - length;
2874 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2875 
2876 	page = grab_cache_page(mapping, index);
2877 	err = -ENOMEM;
2878 	if (!page)
2879 		goto out;
2880 
2881 	if (!page_has_buffers(page))
2882 		create_empty_buffers(page, blocksize, 0);
2883 
2884 	/* Find the buffer that contains "offset" */
2885 	bh = page_buffers(page);
2886 	pos = blocksize;
2887 	while (offset >= pos) {
2888 		bh = bh->b_this_page;
2889 		iblock++;
2890 		pos += blocksize;
2891 	}
2892 
2893 	err = 0;
2894 	if (!buffer_mapped(bh)) {
2895 		WARN_ON(bh->b_size != blocksize);
2896 		err = get_block(inode, iblock, bh, 0);
2897 		if (err)
2898 			goto unlock;
2899 		/* unmapped? It's a hole - nothing to do */
2900 		if (!buffer_mapped(bh))
2901 			goto unlock;
2902 	}
2903 
2904 	/* Ok, it's mapped. Make sure it's up-to-date */
2905 	if (PageUptodate(page))
2906 		set_buffer_uptodate(bh);
2907 
2908 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2909 		err = -EIO;
2910 		ll_rw_block(READ, 1, &bh);
2911 		wait_on_buffer(bh);
2912 		/* Uhhuh. Read error. Complain and punt. */
2913 		if (!buffer_uptodate(bh))
2914 			goto unlock;
2915 	}
2916 
2917 	zero_user(page, offset, length);
2918 	mark_buffer_dirty(bh);
2919 	err = 0;
2920 
2921 unlock:
2922 	unlock_page(page);
2923 	page_cache_release(page);
2924 out:
2925 	return err;
2926 }
2927 EXPORT_SYMBOL(block_truncate_page);
2928 
2929 /*
2930  * The generic ->writepage function for buffer-backed address_spaces
2931  * this form passes in the end_io handler used to finish the IO.
2932  */
2933 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2934 			struct writeback_control *wbc, bh_end_io_t *handler)
2935 {
2936 	struct inode * const inode = page->mapping->host;
2937 	loff_t i_size = i_size_read(inode);
2938 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2939 	unsigned offset;
2940 
2941 	/* Is the page fully inside i_size? */
2942 	if (page->index < end_index)
2943 		return __block_write_full_page(inode, page, get_block, wbc,
2944 					       handler);
2945 
2946 	/* Is the page fully outside i_size? (truncate in progress) */
2947 	offset = i_size & (PAGE_CACHE_SIZE-1);
2948 	if (page->index >= end_index+1 || !offset) {
2949 		/*
2950 		 * The page may have dirty, unmapped buffers.  For example,
2951 		 * they may have been added in ext3_writepage().  Make them
2952 		 * freeable here, so the page does not leak.
2953 		 */
2954 		do_invalidatepage(page, 0);
2955 		unlock_page(page);
2956 		return 0; /* don't care */
2957 	}
2958 
2959 	/*
2960 	 * The page straddles i_size.  It must be zeroed out on each and every
2961 	 * writepage invocation because it may be mmapped.  "A file is mapped
2962 	 * in multiples of the page size.  For a file that is not a multiple of
2963 	 * the  page size, the remaining memory is zeroed when mapped, and
2964 	 * writes to that region are not written out to the file."
2965 	 */
2966 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2967 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2968 }
2969 EXPORT_SYMBOL(block_write_full_page_endio);
2970 
2971 /*
2972  * The generic ->writepage function for buffer-backed address_spaces
2973  */
2974 int block_write_full_page(struct page *page, get_block_t *get_block,
2975 			struct writeback_control *wbc)
2976 {
2977 	return block_write_full_page_endio(page, get_block, wbc,
2978 					   end_buffer_async_write);
2979 }
2980 EXPORT_SYMBOL(block_write_full_page);
2981 
2982 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2983 			    get_block_t *get_block)
2984 {
2985 	struct buffer_head tmp;
2986 	struct inode *inode = mapping->host;
2987 	tmp.b_state = 0;
2988 	tmp.b_blocknr = 0;
2989 	tmp.b_size = 1 << inode->i_blkbits;
2990 	get_block(inode, block, &tmp, 0);
2991 	return tmp.b_blocknr;
2992 }
2993 EXPORT_SYMBOL(generic_block_bmap);
2994 
2995 static void end_bio_bh_io_sync(struct bio *bio, int err)
2996 {
2997 	struct buffer_head *bh = bio->bi_private;
2998 
2999 	if (err == -EOPNOTSUPP) {
3000 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3001 		set_bit(BH_Eopnotsupp, &bh->b_state);
3002 	}
3003 
3004 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
3005 		set_bit(BH_Quiet, &bh->b_state);
3006 
3007 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
3008 	bio_put(bio);
3009 }
3010 
3011 int submit_bh(int rw, struct buffer_head * bh)
3012 {
3013 	struct bio *bio;
3014 	int ret = 0;
3015 
3016 	BUG_ON(!buffer_locked(bh));
3017 	BUG_ON(!buffer_mapped(bh));
3018 	BUG_ON(!bh->b_end_io);
3019 	BUG_ON(buffer_delay(bh));
3020 	BUG_ON(buffer_unwritten(bh));
3021 
3022 	/*
3023 	 * Mask in barrier bit for a write (could be either a WRITE or a
3024 	 * WRITE_SYNC
3025 	 */
3026 	if (buffer_ordered(bh) && (rw & WRITE))
3027 		rw |= WRITE_BARRIER;
3028 
3029 	/*
3030 	 * Only clear out a write error when rewriting
3031 	 */
3032 	if (test_set_buffer_req(bh) && (rw & WRITE))
3033 		clear_buffer_write_io_error(bh);
3034 
3035 	/*
3036 	 * from here on down, it's all bio -- do the initial mapping,
3037 	 * submit_bio -> generic_make_request may further map this bio around
3038 	 */
3039 	bio = bio_alloc(GFP_NOIO, 1);
3040 
3041 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3042 	bio->bi_bdev = bh->b_bdev;
3043 	bio->bi_io_vec[0].bv_page = bh->b_page;
3044 	bio->bi_io_vec[0].bv_len = bh->b_size;
3045 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3046 
3047 	bio->bi_vcnt = 1;
3048 	bio->bi_idx = 0;
3049 	bio->bi_size = bh->b_size;
3050 
3051 	bio->bi_end_io = end_bio_bh_io_sync;
3052 	bio->bi_private = bh;
3053 
3054 	bio_get(bio);
3055 	submit_bio(rw, bio);
3056 
3057 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3058 		ret = -EOPNOTSUPP;
3059 
3060 	bio_put(bio);
3061 	return ret;
3062 }
3063 EXPORT_SYMBOL(submit_bh);
3064 
3065 /**
3066  * ll_rw_block: low-level access to block devices (DEPRECATED)
3067  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
3068  * @nr: number of &struct buffer_heads in the array
3069  * @bhs: array of pointers to &struct buffer_head
3070  *
3071  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3072  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3073  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3074  * are sent to disk. The fourth %READA option is described in the documentation
3075  * for generic_make_request() which ll_rw_block() calls.
3076  *
3077  * This function drops any buffer that it cannot get a lock on (with the
3078  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3079  * clean when doing a write request, and any buffer that appears to be
3080  * up-to-date when doing read request.  Further it marks as clean buffers that
3081  * are processed for writing (the buffer cache won't assume that they are
3082  * actually clean until the buffer gets unlocked).
3083  *
3084  * ll_rw_block sets b_end_io to simple completion handler that marks
3085  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3086  * any waiters.
3087  *
3088  * All of the buffers must be for the same device, and must also be a
3089  * multiple of the current approved size for the device.
3090  */
3091 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3092 {
3093 	int i;
3094 
3095 	for (i = 0; i < nr; i++) {
3096 		struct buffer_head *bh = bhs[i];
3097 
3098 		if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
3099 			lock_buffer(bh);
3100 		else if (!trylock_buffer(bh))
3101 			continue;
3102 
3103 		if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
3104 		    rw == SWRITE_SYNC_PLUG) {
3105 			if (test_clear_buffer_dirty(bh)) {
3106 				bh->b_end_io = end_buffer_write_sync;
3107 				get_bh(bh);
3108 				if (rw == SWRITE_SYNC)
3109 					submit_bh(WRITE_SYNC, bh);
3110 				else
3111 					submit_bh(WRITE, bh);
3112 				continue;
3113 			}
3114 		} else {
3115 			if (!buffer_uptodate(bh)) {
3116 				bh->b_end_io = end_buffer_read_sync;
3117 				get_bh(bh);
3118 				submit_bh(rw, bh);
3119 				continue;
3120 			}
3121 		}
3122 		unlock_buffer(bh);
3123 	}
3124 }
3125 EXPORT_SYMBOL(ll_rw_block);
3126 
3127 /*
3128  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3129  * and then start new I/O and then wait upon it.  The caller must have a ref on
3130  * the buffer_head.
3131  */
3132 int sync_dirty_buffer(struct buffer_head *bh)
3133 {
3134 	int ret = 0;
3135 
3136 	WARN_ON(atomic_read(&bh->b_count) < 1);
3137 	lock_buffer(bh);
3138 	if (test_clear_buffer_dirty(bh)) {
3139 		get_bh(bh);
3140 		bh->b_end_io = end_buffer_write_sync;
3141 		ret = submit_bh(WRITE_SYNC, bh);
3142 		wait_on_buffer(bh);
3143 		if (buffer_eopnotsupp(bh)) {
3144 			clear_buffer_eopnotsupp(bh);
3145 			ret = -EOPNOTSUPP;
3146 		}
3147 		if (!ret && !buffer_uptodate(bh))
3148 			ret = -EIO;
3149 	} else {
3150 		unlock_buffer(bh);
3151 	}
3152 	return ret;
3153 }
3154 EXPORT_SYMBOL(sync_dirty_buffer);
3155 
3156 /*
3157  * try_to_free_buffers() checks if all the buffers on this particular page
3158  * are unused, and releases them if so.
3159  *
3160  * Exclusion against try_to_free_buffers may be obtained by either
3161  * locking the page or by holding its mapping's private_lock.
3162  *
3163  * If the page is dirty but all the buffers are clean then we need to
3164  * be sure to mark the page clean as well.  This is because the page
3165  * may be against a block device, and a later reattachment of buffers
3166  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3167  * filesystem data on the same device.
3168  *
3169  * The same applies to regular filesystem pages: if all the buffers are
3170  * clean then we set the page clean and proceed.  To do that, we require
3171  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3172  * private_lock.
3173  *
3174  * try_to_free_buffers() is non-blocking.
3175  */
3176 static inline int buffer_busy(struct buffer_head *bh)
3177 {
3178 	return atomic_read(&bh->b_count) |
3179 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3180 }
3181 
3182 static int
3183 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3184 {
3185 	struct buffer_head *head = page_buffers(page);
3186 	struct buffer_head *bh;
3187 
3188 	bh = head;
3189 	do {
3190 		if (buffer_write_io_error(bh) && page->mapping)
3191 			set_bit(AS_EIO, &page->mapping->flags);
3192 		if (buffer_busy(bh))
3193 			goto failed;
3194 		bh = bh->b_this_page;
3195 	} while (bh != head);
3196 
3197 	do {
3198 		struct buffer_head *next = bh->b_this_page;
3199 
3200 		if (bh->b_assoc_map)
3201 			__remove_assoc_queue(bh);
3202 		bh = next;
3203 	} while (bh != head);
3204 	*buffers_to_free = head;
3205 	__clear_page_buffers(page);
3206 	return 1;
3207 failed:
3208 	return 0;
3209 }
3210 
3211 int try_to_free_buffers(struct page *page)
3212 {
3213 	struct address_space * const mapping = page->mapping;
3214 	struct buffer_head *buffers_to_free = NULL;
3215 	int ret = 0;
3216 
3217 	BUG_ON(!PageLocked(page));
3218 	if (PageWriteback(page))
3219 		return 0;
3220 
3221 	if (mapping == NULL) {		/* can this still happen? */
3222 		ret = drop_buffers(page, &buffers_to_free);
3223 		goto out;
3224 	}
3225 
3226 	spin_lock(&mapping->private_lock);
3227 	ret = drop_buffers(page, &buffers_to_free);
3228 
3229 	/*
3230 	 * If the filesystem writes its buffers by hand (eg ext3)
3231 	 * then we can have clean buffers against a dirty page.  We
3232 	 * clean the page here; otherwise the VM will never notice
3233 	 * that the filesystem did any IO at all.
3234 	 *
3235 	 * Also, during truncate, discard_buffer will have marked all
3236 	 * the page's buffers clean.  We discover that here and clean
3237 	 * the page also.
3238 	 *
3239 	 * private_lock must be held over this entire operation in order
3240 	 * to synchronise against __set_page_dirty_buffers and prevent the
3241 	 * dirty bit from being lost.
3242 	 */
3243 	if (ret)
3244 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3245 	spin_unlock(&mapping->private_lock);
3246 out:
3247 	if (buffers_to_free) {
3248 		struct buffer_head *bh = buffers_to_free;
3249 
3250 		do {
3251 			struct buffer_head *next = bh->b_this_page;
3252 			free_buffer_head(bh);
3253 			bh = next;
3254 		} while (bh != buffers_to_free);
3255 	}
3256 	return ret;
3257 }
3258 EXPORT_SYMBOL(try_to_free_buffers);
3259 
3260 void block_sync_page(struct page *page)
3261 {
3262 	struct address_space *mapping;
3263 
3264 	smp_mb();
3265 	mapping = page_mapping(page);
3266 	if (mapping)
3267 		blk_run_backing_dev(mapping->backing_dev_info, page);
3268 }
3269 EXPORT_SYMBOL(block_sync_page);
3270 
3271 /*
3272  * There are no bdflush tunables left.  But distributions are
3273  * still running obsolete flush daemons, so we terminate them here.
3274  *
3275  * Use of bdflush() is deprecated and will be removed in a future kernel.
3276  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3277  */
3278 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3279 {
3280 	static int msg_count;
3281 
3282 	if (!capable(CAP_SYS_ADMIN))
3283 		return -EPERM;
3284 
3285 	if (msg_count < 5) {
3286 		msg_count++;
3287 		printk(KERN_INFO
3288 			"warning: process `%s' used the obsolete bdflush"
3289 			" system call\n", current->comm);
3290 		printk(KERN_INFO "Fix your initscripts?\n");
3291 	}
3292 
3293 	if (func == 1)
3294 		do_exit(0);
3295 	return 0;
3296 }
3297 
3298 /*
3299  * Buffer-head allocation
3300  */
3301 static struct kmem_cache *bh_cachep;
3302 
3303 /*
3304  * Once the number of bh's in the machine exceeds this level, we start
3305  * stripping them in writeback.
3306  */
3307 static int max_buffer_heads;
3308 
3309 int buffer_heads_over_limit;
3310 
3311 struct bh_accounting {
3312 	int nr;			/* Number of live bh's */
3313 	int ratelimit;		/* Limit cacheline bouncing */
3314 };
3315 
3316 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3317 
3318 static void recalc_bh_state(void)
3319 {
3320 	int i;
3321 	int tot = 0;
3322 
3323 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3324 		return;
3325 	__get_cpu_var(bh_accounting).ratelimit = 0;
3326 	for_each_online_cpu(i)
3327 		tot += per_cpu(bh_accounting, i).nr;
3328 	buffer_heads_over_limit = (tot > max_buffer_heads);
3329 }
3330 
3331 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3332 {
3333 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3334 	if (ret) {
3335 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3336 		get_cpu_var(bh_accounting).nr++;
3337 		recalc_bh_state();
3338 		put_cpu_var(bh_accounting);
3339 	}
3340 	return ret;
3341 }
3342 EXPORT_SYMBOL(alloc_buffer_head);
3343 
3344 void free_buffer_head(struct buffer_head *bh)
3345 {
3346 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3347 	kmem_cache_free(bh_cachep, bh);
3348 	get_cpu_var(bh_accounting).nr--;
3349 	recalc_bh_state();
3350 	put_cpu_var(bh_accounting);
3351 }
3352 EXPORT_SYMBOL(free_buffer_head);
3353 
3354 static void buffer_exit_cpu(int cpu)
3355 {
3356 	int i;
3357 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3358 
3359 	for (i = 0; i < BH_LRU_SIZE; i++) {
3360 		brelse(b->bhs[i]);
3361 		b->bhs[i] = NULL;
3362 	}
3363 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3364 	per_cpu(bh_accounting, cpu).nr = 0;
3365 	put_cpu_var(bh_accounting);
3366 }
3367 
3368 static int buffer_cpu_notify(struct notifier_block *self,
3369 			      unsigned long action, void *hcpu)
3370 {
3371 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3372 		buffer_exit_cpu((unsigned long)hcpu);
3373 	return NOTIFY_OK;
3374 }
3375 
3376 /**
3377  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3378  * @bh: struct buffer_head
3379  *
3380  * Return true if the buffer is up-to-date and false,
3381  * with the buffer locked, if not.
3382  */
3383 int bh_uptodate_or_lock(struct buffer_head *bh)
3384 {
3385 	if (!buffer_uptodate(bh)) {
3386 		lock_buffer(bh);
3387 		if (!buffer_uptodate(bh))
3388 			return 0;
3389 		unlock_buffer(bh);
3390 	}
3391 	return 1;
3392 }
3393 EXPORT_SYMBOL(bh_uptodate_or_lock);
3394 
3395 /**
3396  * bh_submit_read - Submit a locked buffer for reading
3397  * @bh: struct buffer_head
3398  *
3399  * Returns zero on success and -EIO on error.
3400  */
3401 int bh_submit_read(struct buffer_head *bh)
3402 {
3403 	BUG_ON(!buffer_locked(bh));
3404 
3405 	if (buffer_uptodate(bh)) {
3406 		unlock_buffer(bh);
3407 		return 0;
3408 	}
3409 
3410 	get_bh(bh);
3411 	bh->b_end_io = end_buffer_read_sync;
3412 	submit_bh(READ, bh);
3413 	wait_on_buffer(bh);
3414 	if (buffer_uptodate(bh))
3415 		return 0;
3416 	return -EIO;
3417 }
3418 EXPORT_SYMBOL(bh_submit_read);
3419 
3420 void __init buffer_init(void)
3421 {
3422 	int nrpages;
3423 
3424 	bh_cachep = kmem_cache_create("buffer_head",
3425 			sizeof(struct buffer_head), 0,
3426 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3427 				SLAB_MEM_SPREAD),
3428 				NULL);
3429 
3430 	/*
3431 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3432 	 */
3433 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3434 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3435 	hotcpu_notifier(buffer_cpu_notify, 0);
3436 }
3437