xref: /openbmc/linux/fs/buffer.c (revision 462cd772)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 #include "internal.h"
53 
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
56 			 struct writeback_control *wbc);
57 
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59 
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 	trace_block_touch_buffer(bh);
63 	mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66 
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72 
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 	clear_bit_unlock(BH_Lock, &bh->b_state);
76 	smp_mb__after_atomic();
77 	wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80 
81 /*
82  * Returns if the folio has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the folio_test_dirty information is stale. If
84  * any of the buffers are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct folio *folio,
87 				     bool *dirty, bool *writeback)
88 {
89 	struct buffer_head *head, *bh;
90 	*dirty = false;
91 	*writeback = false;
92 
93 	BUG_ON(!folio_test_locked(folio));
94 
95 	head = folio_buffers(folio);
96 	if (!head)
97 		return;
98 
99 	if (folio_test_writeback(folio))
100 		*writeback = true;
101 
102 	bh = head;
103 	do {
104 		if (buffer_locked(bh))
105 			*writeback = true;
106 
107 		if (buffer_dirty(bh))
108 			*dirty = true;
109 
110 		bh = bh->b_this_page;
111 	} while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 	if (!test_bit(BH_Quiet, &bh->b_state))
129 		printk_ratelimited(KERN_ERR
130 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
131 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133 
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 	if (uptodate) {
145 		set_buffer_uptodate(bh);
146 	} else {
147 		/* This happens, due to failed read-ahead attempts. */
148 		clear_buffer_uptodate(bh);
149 	}
150 	unlock_buffer(bh);
151 }
152 
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 	__end_buffer_read_notouch(bh, uptodate);
160 	put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163 
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 	if (uptodate) {
167 		set_buffer_uptodate(bh);
168 	} else {
169 		buffer_io_error(bh, ", lost sync page write");
170 		mark_buffer_write_io_error(bh);
171 		clear_buffer_uptodate(bh);
172 	}
173 	unlock_buffer(bh);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177 
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 	struct inode *bd_inode = bdev->bd_inode;
192 	struct address_space *bd_mapping = bd_inode->i_mapping;
193 	struct buffer_head *ret = NULL;
194 	pgoff_t index;
195 	struct buffer_head *bh;
196 	struct buffer_head *head;
197 	struct page *page;
198 	int all_mapped = 1;
199 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200 
201 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 	if (!page)
204 		goto out;
205 
206 	spin_lock(&bd_mapping->private_lock);
207 	if (!page_has_buffers(page))
208 		goto out_unlock;
209 	head = page_buffers(page);
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << bd_inode->i_blkbits);
236 	}
237 out_unlock:
238 	spin_unlock(&bd_mapping->private_lock);
239 	put_page(page);
240 out:
241 	return ret;
242 }
243 
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 	unsigned long flags;
247 	struct buffer_head *first;
248 	struct buffer_head *tmp;
249 	struct page *page;
250 	int page_uptodate = 1;
251 
252 	BUG_ON(!buffer_async_read(bh));
253 
254 	page = bh->b_page;
255 	if (uptodate) {
256 		set_buffer_uptodate(bh);
257 	} else {
258 		clear_buffer_uptodate(bh);
259 		buffer_io_error(bh, ", async page read");
260 		SetPageError(page);
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = page_buffers(page);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			page_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	/*
285 	 * If all of the buffers are uptodate then we can set the page
286 	 * uptodate.
287 	 */
288 	if (page_uptodate)
289 		SetPageUptodate(page);
290 	unlock_page(page);
291 	return;
292 
293 still_busy:
294 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 	return;
296 }
297 
298 struct decrypt_bh_ctx {
299 	struct work_struct work;
300 	struct buffer_head *bh;
301 };
302 
303 static void decrypt_bh(struct work_struct *work)
304 {
305 	struct decrypt_bh_ctx *ctx =
306 		container_of(work, struct decrypt_bh_ctx, work);
307 	struct buffer_head *bh = ctx->bh;
308 	int err;
309 
310 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 					       bh_offset(bh));
312 	end_buffer_async_read(bh, err == 0);
313 	kfree(ctx);
314 }
315 
316 /*
317  * I/O completion handler for block_read_full_folio() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 	/* Decrypt if needed */
323 	if (uptodate &&
324 	    fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326 
327 		if (ctx) {
328 			INIT_WORK(&ctx->work, decrypt_bh);
329 			ctx->bh = bh;
330 			fscrypt_enqueue_decrypt_work(&ctx->work);
331 			return;
332 		}
333 		uptodate = 0;
334 	}
335 	end_buffer_async_read(bh, uptodate);
336 }
337 
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 	unsigned long flags;
345 	struct buffer_head *first;
346 	struct buffer_head *tmp;
347 	struct page *page;
348 
349 	BUG_ON(!buffer_async_write(bh));
350 
351 	page = bh->b_page;
352 	if (uptodate) {
353 		set_buffer_uptodate(bh);
354 	} else {
355 		buffer_io_error(bh, ", lost async page write");
356 		mark_buffer_write_io_error(bh);
357 		clear_buffer_uptodate(bh);
358 		SetPageError(page);
359 	}
360 
361 	first = page_buffers(page);
362 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
363 
364 	clear_buffer_async_write(bh);
365 	unlock_buffer(bh);
366 	tmp = bh->b_this_page;
367 	while (tmp != bh) {
368 		if (buffer_async_write(tmp)) {
369 			BUG_ON(!buffer_locked(tmp));
370 			goto still_busy;
371 		}
372 		tmp = tmp->b_this_page;
373 	}
374 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 	end_page_writeback(page);
376 	return;
377 
378 still_busy:
379 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 	return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383 
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 	bh->b_end_io = end_buffer_async_read_io;
408 	set_buffer_async_read(bh);
409 }
410 
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 					  bh_end_io_t *handler)
413 {
414 	bh->b_end_io = handler;
415 	set_buffer_async_write(bh);
416 }
417 
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423 
424 
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473 
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 	list_del_init(&bh->b_assoc_buffers);
480 	WARN_ON(!bh->b_assoc_map);
481 	bh->b_assoc_map = NULL;
482 }
483 
484 int inode_has_buffers(struct inode *inode)
485 {
486 	return !list_empty(&inode->i_data.private_list);
487 }
488 
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 	struct buffer_head *bh;
502 	struct list_head *p;
503 	int err = 0;
504 
505 	spin_lock(lock);
506 repeat:
507 	list_for_each_prev(p, list) {
508 		bh = BH_ENTRY(p);
509 		if (buffer_locked(bh)) {
510 			get_bh(bh);
511 			spin_unlock(lock);
512 			wait_on_buffer(bh);
513 			if (!buffer_uptodate(bh))
514 				err = -EIO;
515 			brelse(bh);
516 			spin_lock(lock);
517 			goto repeat;
518 		}
519 	}
520 	spin_unlock(lock);
521 	return err;
522 }
523 
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529 
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 	struct address_space *buffer_mapping = mapping->private_data;
544 
545 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 		return 0;
547 
548 	return fsync_buffers_list(&buffer_mapping->private_lock,
549 					&mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552 
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560 			sector_t bblock, unsigned blocksize)
561 {
562 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 	if (bh) {
564 		if (buffer_dirty(bh))
565 			ll_rw_block(REQ_OP_WRITE, 1, &bh);
566 		put_bh(bh);
567 	}
568 }
569 
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 	struct address_space *mapping = inode->i_mapping;
573 	struct address_space *buffer_mapping = bh->b_page->mapping;
574 
575 	mark_buffer_dirty(bh);
576 	if (!mapping->private_data) {
577 		mapping->private_data = buffer_mapping;
578 	} else {
579 		BUG_ON(mapping->private_data != buffer_mapping);
580 	}
581 	if (!bh->b_assoc_map) {
582 		spin_lock(&buffer_mapping->private_lock);
583 		list_move_tail(&bh->b_assoc_buffers,
584 				&mapping->private_list);
585 		bh->b_assoc_map = mapping;
586 		spin_unlock(&buffer_mapping->private_lock);
587 	}
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590 
591 /*
592  * Add a page to the dirty page list.
593  *
594  * It is a sad fact of life that this function is called from several places
595  * deeply under spinlocking.  It may not sleep.
596  *
597  * If the page has buffers, the uptodate buffers are set dirty, to preserve
598  * dirty-state coherency between the page and the buffers.  It the page does
599  * not have buffers then when they are later attached they will all be set
600  * dirty.
601  *
602  * The buffers are dirtied before the page is dirtied.  There's a small race
603  * window in which a writepage caller may see the page cleanness but not the
604  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
605  * before the buffers, a concurrent writepage caller could clear the page dirty
606  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607  * page on the dirty page list.
608  *
609  * We use private_lock to lock against try_to_free_buffers while using the
610  * page's buffer list.  Also use this to protect against clean buffers being
611  * added to the page after it was set dirty.
612  *
613  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
614  * address_space though.
615  */
616 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
617 {
618 	struct buffer_head *head;
619 	bool newly_dirty;
620 
621 	spin_lock(&mapping->private_lock);
622 	head = folio_buffers(folio);
623 	if (head) {
624 		struct buffer_head *bh = head;
625 
626 		do {
627 			set_buffer_dirty(bh);
628 			bh = bh->b_this_page;
629 		} while (bh != head);
630 	}
631 	/*
632 	 * Lock out page's memcg migration to keep PageDirty
633 	 * synchronized with per-memcg dirty page counters.
634 	 */
635 	folio_memcg_lock(folio);
636 	newly_dirty = !folio_test_set_dirty(folio);
637 	spin_unlock(&mapping->private_lock);
638 
639 	if (newly_dirty)
640 		__folio_mark_dirty(folio, mapping, 1);
641 
642 	folio_memcg_unlock(folio);
643 
644 	if (newly_dirty)
645 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
646 
647 	return newly_dirty;
648 }
649 EXPORT_SYMBOL(block_dirty_folio);
650 
651 /*
652  * Write out and wait upon a list of buffers.
653  *
654  * We have conflicting pressures: we want to make sure that all
655  * initially dirty buffers get waited on, but that any subsequently
656  * dirtied buffers don't.  After all, we don't want fsync to last
657  * forever if somebody is actively writing to the file.
658  *
659  * Do this in two main stages: first we copy dirty buffers to a
660  * temporary inode list, queueing the writes as we go.  Then we clean
661  * up, waiting for those writes to complete.
662  *
663  * During this second stage, any subsequent updates to the file may end
664  * up refiling the buffer on the original inode's dirty list again, so
665  * there is a chance we will end up with a buffer queued for write but
666  * not yet completed on that list.  So, as a final cleanup we go through
667  * the osync code to catch these locked, dirty buffers without requeuing
668  * any newly dirty buffers for write.
669  */
670 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
671 {
672 	struct buffer_head *bh;
673 	struct list_head tmp;
674 	struct address_space *mapping;
675 	int err = 0, err2;
676 	struct blk_plug plug;
677 
678 	INIT_LIST_HEAD(&tmp);
679 	blk_start_plug(&plug);
680 
681 	spin_lock(lock);
682 	while (!list_empty(list)) {
683 		bh = BH_ENTRY(list->next);
684 		mapping = bh->b_assoc_map;
685 		__remove_assoc_queue(bh);
686 		/* Avoid race with mark_buffer_dirty_inode() which does
687 		 * a lockless check and we rely on seeing the dirty bit */
688 		smp_mb();
689 		if (buffer_dirty(bh) || buffer_locked(bh)) {
690 			list_add(&bh->b_assoc_buffers, &tmp);
691 			bh->b_assoc_map = mapping;
692 			if (buffer_dirty(bh)) {
693 				get_bh(bh);
694 				spin_unlock(lock);
695 				/*
696 				 * Ensure any pending I/O completes so that
697 				 * write_dirty_buffer() actually writes the
698 				 * current contents - it is a noop if I/O is
699 				 * still in flight on potentially older
700 				 * contents.
701 				 */
702 				write_dirty_buffer(bh, REQ_SYNC);
703 
704 				/*
705 				 * Kick off IO for the previous mapping. Note
706 				 * that we will not run the very last mapping,
707 				 * wait_on_buffer() will do that for us
708 				 * through sync_buffer().
709 				 */
710 				brelse(bh);
711 				spin_lock(lock);
712 			}
713 		}
714 	}
715 
716 	spin_unlock(lock);
717 	blk_finish_plug(&plug);
718 	spin_lock(lock);
719 
720 	while (!list_empty(&tmp)) {
721 		bh = BH_ENTRY(tmp.prev);
722 		get_bh(bh);
723 		mapping = bh->b_assoc_map;
724 		__remove_assoc_queue(bh);
725 		/* Avoid race with mark_buffer_dirty_inode() which does
726 		 * a lockless check and we rely on seeing the dirty bit */
727 		smp_mb();
728 		if (buffer_dirty(bh)) {
729 			list_add(&bh->b_assoc_buffers,
730 				 &mapping->private_list);
731 			bh->b_assoc_map = mapping;
732 		}
733 		spin_unlock(lock);
734 		wait_on_buffer(bh);
735 		if (!buffer_uptodate(bh))
736 			err = -EIO;
737 		brelse(bh);
738 		spin_lock(lock);
739 	}
740 
741 	spin_unlock(lock);
742 	err2 = osync_buffers_list(lock, list);
743 	if (err)
744 		return err;
745 	else
746 		return err2;
747 }
748 
749 /*
750  * Invalidate any and all dirty buffers on a given inode.  We are
751  * probably unmounting the fs, but that doesn't mean we have already
752  * done a sync().  Just drop the buffers from the inode list.
753  *
754  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
755  * assumes that all the buffers are against the blockdev.  Not true
756  * for reiserfs.
757  */
758 void invalidate_inode_buffers(struct inode *inode)
759 {
760 	if (inode_has_buffers(inode)) {
761 		struct address_space *mapping = &inode->i_data;
762 		struct list_head *list = &mapping->private_list;
763 		struct address_space *buffer_mapping = mapping->private_data;
764 
765 		spin_lock(&buffer_mapping->private_lock);
766 		while (!list_empty(list))
767 			__remove_assoc_queue(BH_ENTRY(list->next));
768 		spin_unlock(&buffer_mapping->private_lock);
769 	}
770 }
771 EXPORT_SYMBOL(invalidate_inode_buffers);
772 
773 /*
774  * Remove any clean buffers from the inode's buffer list.  This is called
775  * when we're trying to free the inode itself.  Those buffers can pin it.
776  *
777  * Returns true if all buffers were removed.
778  */
779 int remove_inode_buffers(struct inode *inode)
780 {
781 	int ret = 1;
782 
783 	if (inode_has_buffers(inode)) {
784 		struct address_space *mapping = &inode->i_data;
785 		struct list_head *list = &mapping->private_list;
786 		struct address_space *buffer_mapping = mapping->private_data;
787 
788 		spin_lock(&buffer_mapping->private_lock);
789 		while (!list_empty(list)) {
790 			struct buffer_head *bh = BH_ENTRY(list->next);
791 			if (buffer_dirty(bh)) {
792 				ret = 0;
793 				break;
794 			}
795 			__remove_assoc_queue(bh);
796 		}
797 		spin_unlock(&buffer_mapping->private_lock);
798 	}
799 	return ret;
800 }
801 
802 /*
803  * Create the appropriate buffers when given a page for data area and
804  * the size of each buffer.. Use the bh->b_this_page linked list to
805  * follow the buffers created.  Return NULL if unable to create more
806  * buffers.
807  *
808  * The retry flag is used to differentiate async IO (paging, swapping)
809  * which may not fail from ordinary buffer allocations.
810  */
811 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
812 		bool retry)
813 {
814 	struct buffer_head *bh, *head;
815 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
816 	long offset;
817 	struct mem_cgroup *memcg, *old_memcg;
818 
819 	if (retry)
820 		gfp |= __GFP_NOFAIL;
821 
822 	/* The page lock pins the memcg */
823 	memcg = page_memcg(page);
824 	old_memcg = set_active_memcg(memcg);
825 
826 	head = NULL;
827 	offset = PAGE_SIZE;
828 	while ((offset -= size) >= 0) {
829 		bh = alloc_buffer_head(gfp);
830 		if (!bh)
831 			goto no_grow;
832 
833 		bh->b_this_page = head;
834 		bh->b_blocknr = -1;
835 		head = bh;
836 
837 		bh->b_size = size;
838 
839 		/* Link the buffer to its page */
840 		set_bh_page(bh, page, offset);
841 	}
842 out:
843 	set_active_memcg(old_memcg);
844 	return head;
845 /*
846  * In case anything failed, we just free everything we got.
847  */
848 no_grow:
849 	if (head) {
850 		do {
851 			bh = head;
852 			head = head->b_this_page;
853 			free_buffer_head(bh);
854 		} while (head);
855 	}
856 
857 	goto out;
858 }
859 EXPORT_SYMBOL_GPL(alloc_page_buffers);
860 
861 static inline void
862 link_dev_buffers(struct page *page, struct buffer_head *head)
863 {
864 	struct buffer_head *bh, *tail;
865 
866 	bh = head;
867 	do {
868 		tail = bh;
869 		bh = bh->b_this_page;
870 	} while (bh);
871 	tail->b_this_page = head;
872 	attach_page_private(page, head);
873 }
874 
875 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
876 {
877 	sector_t retval = ~((sector_t)0);
878 	loff_t sz = bdev_nr_bytes(bdev);
879 
880 	if (sz) {
881 		unsigned int sizebits = blksize_bits(size);
882 		retval = (sz >> sizebits);
883 	}
884 	return retval;
885 }
886 
887 /*
888  * Initialise the state of a blockdev page's buffers.
889  */
890 static sector_t
891 init_page_buffers(struct page *page, struct block_device *bdev,
892 			sector_t block, int size)
893 {
894 	struct buffer_head *head = page_buffers(page);
895 	struct buffer_head *bh = head;
896 	int uptodate = PageUptodate(page);
897 	sector_t end_block = blkdev_max_block(bdev, size);
898 
899 	do {
900 		if (!buffer_mapped(bh)) {
901 			bh->b_end_io = NULL;
902 			bh->b_private = NULL;
903 			bh->b_bdev = bdev;
904 			bh->b_blocknr = block;
905 			if (uptodate)
906 				set_buffer_uptodate(bh);
907 			if (block < end_block)
908 				set_buffer_mapped(bh);
909 		}
910 		block++;
911 		bh = bh->b_this_page;
912 	} while (bh != head);
913 
914 	/*
915 	 * Caller needs to validate requested block against end of device.
916 	 */
917 	return end_block;
918 }
919 
920 /*
921  * Create the page-cache page that contains the requested block.
922  *
923  * This is used purely for blockdev mappings.
924  */
925 static int
926 grow_dev_page(struct block_device *bdev, sector_t block,
927 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
928 {
929 	struct inode *inode = bdev->bd_inode;
930 	struct page *page;
931 	struct buffer_head *bh;
932 	sector_t end_block;
933 	int ret = 0;
934 	gfp_t gfp_mask;
935 
936 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
937 
938 	/*
939 	 * XXX: __getblk_slow() can not really deal with failure and
940 	 * will endlessly loop on improvised global reclaim.  Prefer
941 	 * looping in the allocator rather than here, at least that
942 	 * code knows what it's doing.
943 	 */
944 	gfp_mask |= __GFP_NOFAIL;
945 
946 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
947 
948 	BUG_ON(!PageLocked(page));
949 
950 	if (page_has_buffers(page)) {
951 		bh = page_buffers(page);
952 		if (bh->b_size == size) {
953 			end_block = init_page_buffers(page, bdev,
954 						(sector_t)index << sizebits,
955 						size);
956 			goto done;
957 		}
958 		if (!try_to_free_buffers(page_folio(page)))
959 			goto failed;
960 	}
961 
962 	/*
963 	 * Allocate some buffers for this page
964 	 */
965 	bh = alloc_page_buffers(page, size, true);
966 
967 	/*
968 	 * Link the page to the buffers and initialise them.  Take the
969 	 * lock to be atomic wrt __find_get_block(), which does not
970 	 * run under the page lock.
971 	 */
972 	spin_lock(&inode->i_mapping->private_lock);
973 	link_dev_buffers(page, bh);
974 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
975 			size);
976 	spin_unlock(&inode->i_mapping->private_lock);
977 done:
978 	ret = (block < end_block) ? 1 : -ENXIO;
979 failed:
980 	unlock_page(page);
981 	put_page(page);
982 	return ret;
983 }
984 
985 /*
986  * Create buffers for the specified block device block's page.  If
987  * that page was dirty, the buffers are set dirty also.
988  */
989 static int
990 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
991 {
992 	pgoff_t index;
993 	int sizebits;
994 
995 	sizebits = PAGE_SHIFT - __ffs(size);
996 	index = block >> sizebits;
997 
998 	/*
999 	 * Check for a block which wants to lie outside our maximum possible
1000 	 * pagecache index.  (this comparison is done using sector_t types).
1001 	 */
1002 	if (unlikely(index != block >> sizebits)) {
1003 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1004 			"device %pg\n",
1005 			__func__, (unsigned long long)block,
1006 			bdev);
1007 		return -EIO;
1008 	}
1009 
1010 	/* Create a page with the proper size buffers.. */
1011 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1012 }
1013 
1014 static struct buffer_head *
1015 __getblk_slow(struct block_device *bdev, sector_t block,
1016 	     unsigned size, gfp_t gfp)
1017 {
1018 	/* Size must be multiple of hard sectorsize */
1019 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1020 			(size < 512 || size > PAGE_SIZE))) {
1021 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1022 					size);
1023 		printk(KERN_ERR "logical block size: %d\n",
1024 					bdev_logical_block_size(bdev));
1025 
1026 		dump_stack();
1027 		return NULL;
1028 	}
1029 
1030 	for (;;) {
1031 		struct buffer_head *bh;
1032 		int ret;
1033 
1034 		bh = __find_get_block(bdev, block, size);
1035 		if (bh)
1036 			return bh;
1037 
1038 		ret = grow_buffers(bdev, block, size, gfp);
1039 		if (ret < 0)
1040 			return NULL;
1041 	}
1042 }
1043 
1044 /*
1045  * The relationship between dirty buffers and dirty pages:
1046  *
1047  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1048  * the page is tagged dirty in the page cache.
1049  *
1050  * At all times, the dirtiness of the buffers represents the dirtiness of
1051  * subsections of the page.  If the page has buffers, the page dirty bit is
1052  * merely a hint about the true dirty state.
1053  *
1054  * When a page is set dirty in its entirety, all its buffers are marked dirty
1055  * (if the page has buffers).
1056  *
1057  * When a buffer is marked dirty, its page is dirtied, but the page's other
1058  * buffers are not.
1059  *
1060  * Also.  When blockdev buffers are explicitly read with bread(), they
1061  * individually become uptodate.  But their backing page remains not
1062  * uptodate - even if all of its buffers are uptodate.  A subsequent
1063  * block_read_full_folio() against that folio will discover all the uptodate
1064  * buffers, will set the folio uptodate and will perform no I/O.
1065  */
1066 
1067 /**
1068  * mark_buffer_dirty - mark a buffer_head as needing writeout
1069  * @bh: the buffer_head to mark dirty
1070  *
1071  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1072  * its backing page dirty, then tag the page as dirty in the page cache
1073  * and then attach the address_space's inode to its superblock's dirty
1074  * inode list.
1075  *
1076  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1077  * i_pages lock and mapping->host->i_lock.
1078  */
1079 void mark_buffer_dirty(struct buffer_head *bh)
1080 {
1081 	WARN_ON_ONCE(!buffer_uptodate(bh));
1082 
1083 	trace_block_dirty_buffer(bh);
1084 
1085 	/*
1086 	 * Very *carefully* optimize the it-is-already-dirty case.
1087 	 *
1088 	 * Don't let the final "is it dirty" escape to before we
1089 	 * perhaps modified the buffer.
1090 	 */
1091 	if (buffer_dirty(bh)) {
1092 		smp_mb();
1093 		if (buffer_dirty(bh))
1094 			return;
1095 	}
1096 
1097 	if (!test_set_buffer_dirty(bh)) {
1098 		struct page *page = bh->b_page;
1099 		struct address_space *mapping = NULL;
1100 
1101 		lock_page_memcg(page);
1102 		if (!TestSetPageDirty(page)) {
1103 			mapping = page_mapping(page);
1104 			if (mapping)
1105 				__set_page_dirty(page, mapping, 0);
1106 		}
1107 		unlock_page_memcg(page);
1108 		if (mapping)
1109 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1110 	}
1111 }
1112 EXPORT_SYMBOL(mark_buffer_dirty);
1113 
1114 void mark_buffer_write_io_error(struct buffer_head *bh)
1115 {
1116 	struct super_block *sb;
1117 
1118 	set_buffer_write_io_error(bh);
1119 	/* FIXME: do we need to set this in both places? */
1120 	if (bh->b_page && bh->b_page->mapping)
1121 		mapping_set_error(bh->b_page->mapping, -EIO);
1122 	if (bh->b_assoc_map)
1123 		mapping_set_error(bh->b_assoc_map, -EIO);
1124 	rcu_read_lock();
1125 	sb = READ_ONCE(bh->b_bdev->bd_super);
1126 	if (sb)
1127 		errseq_set(&sb->s_wb_err, -EIO);
1128 	rcu_read_unlock();
1129 }
1130 EXPORT_SYMBOL(mark_buffer_write_io_error);
1131 
1132 /*
1133  * Decrement a buffer_head's reference count.  If all buffers against a page
1134  * have zero reference count, are clean and unlocked, and if the page is clean
1135  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137  * a page but it ends up not being freed, and buffers may later be reattached).
1138  */
1139 void __brelse(struct buffer_head * buf)
1140 {
1141 	if (atomic_read(&buf->b_count)) {
1142 		put_bh(buf);
1143 		return;
1144 	}
1145 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146 }
1147 EXPORT_SYMBOL(__brelse);
1148 
1149 /*
1150  * bforget() is like brelse(), except it discards any
1151  * potentially dirty data.
1152  */
1153 void __bforget(struct buffer_head *bh)
1154 {
1155 	clear_buffer_dirty(bh);
1156 	if (bh->b_assoc_map) {
1157 		struct address_space *buffer_mapping = bh->b_page->mapping;
1158 
1159 		spin_lock(&buffer_mapping->private_lock);
1160 		list_del_init(&bh->b_assoc_buffers);
1161 		bh->b_assoc_map = NULL;
1162 		spin_unlock(&buffer_mapping->private_lock);
1163 	}
1164 	__brelse(bh);
1165 }
1166 EXPORT_SYMBOL(__bforget);
1167 
1168 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169 {
1170 	lock_buffer(bh);
1171 	if (buffer_uptodate(bh)) {
1172 		unlock_buffer(bh);
1173 		return bh;
1174 	} else {
1175 		get_bh(bh);
1176 		bh->b_end_io = end_buffer_read_sync;
1177 		submit_bh(REQ_OP_READ, bh);
1178 		wait_on_buffer(bh);
1179 		if (buffer_uptodate(bh))
1180 			return bh;
1181 	}
1182 	brelse(bh);
1183 	return NULL;
1184 }
1185 
1186 /*
1187  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1188  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1189  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1190  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1191  * CPU's LRUs at the same time.
1192  *
1193  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194  * sb_find_get_block().
1195  *
1196  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1197  * a local interrupt disable for that.
1198  */
1199 
1200 #define BH_LRU_SIZE	16
1201 
1202 struct bh_lru {
1203 	struct buffer_head *bhs[BH_LRU_SIZE];
1204 };
1205 
1206 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207 
1208 #ifdef CONFIG_SMP
1209 #define bh_lru_lock()	local_irq_disable()
1210 #define bh_lru_unlock()	local_irq_enable()
1211 #else
1212 #define bh_lru_lock()	preempt_disable()
1213 #define bh_lru_unlock()	preempt_enable()
1214 #endif
1215 
1216 static inline void check_irqs_on(void)
1217 {
1218 #ifdef irqs_disabled
1219 	BUG_ON(irqs_disabled());
1220 #endif
1221 }
1222 
1223 /*
1224  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1225  * inserted at the front, and the buffer_head at the back if any is evicted.
1226  * Or, if already in the LRU it is moved to the front.
1227  */
1228 static void bh_lru_install(struct buffer_head *bh)
1229 {
1230 	struct buffer_head *evictee = bh;
1231 	struct bh_lru *b;
1232 	int i;
1233 
1234 	check_irqs_on();
1235 	bh_lru_lock();
1236 
1237 	/*
1238 	 * the refcount of buffer_head in bh_lru prevents dropping the
1239 	 * attached page(i.e., try_to_free_buffers) so it could cause
1240 	 * failing page migration.
1241 	 * Skip putting upcoming bh into bh_lru until migration is done.
1242 	 */
1243 	if (lru_cache_disabled()) {
1244 		bh_lru_unlock();
1245 		return;
1246 	}
1247 
1248 	b = this_cpu_ptr(&bh_lrus);
1249 	for (i = 0; i < BH_LRU_SIZE; i++) {
1250 		swap(evictee, b->bhs[i]);
1251 		if (evictee == bh) {
1252 			bh_lru_unlock();
1253 			return;
1254 		}
1255 	}
1256 
1257 	get_bh(bh);
1258 	bh_lru_unlock();
1259 	brelse(evictee);
1260 }
1261 
1262 /*
1263  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1264  */
1265 static struct buffer_head *
1266 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1267 {
1268 	struct buffer_head *ret = NULL;
1269 	unsigned int i;
1270 
1271 	check_irqs_on();
1272 	bh_lru_lock();
1273 	for (i = 0; i < BH_LRU_SIZE; i++) {
1274 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1275 
1276 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1277 		    bh->b_size == size) {
1278 			if (i) {
1279 				while (i) {
1280 					__this_cpu_write(bh_lrus.bhs[i],
1281 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1282 					i--;
1283 				}
1284 				__this_cpu_write(bh_lrus.bhs[0], bh);
1285 			}
1286 			get_bh(bh);
1287 			ret = bh;
1288 			break;
1289 		}
1290 	}
1291 	bh_lru_unlock();
1292 	return ret;
1293 }
1294 
1295 /*
1296  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1297  * it in the LRU and mark it as accessed.  If it is not present then return
1298  * NULL
1299  */
1300 struct buffer_head *
1301 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1302 {
1303 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1304 
1305 	if (bh == NULL) {
1306 		/* __find_get_block_slow will mark the page accessed */
1307 		bh = __find_get_block_slow(bdev, block);
1308 		if (bh)
1309 			bh_lru_install(bh);
1310 	} else
1311 		touch_buffer(bh);
1312 
1313 	return bh;
1314 }
1315 EXPORT_SYMBOL(__find_get_block);
1316 
1317 /*
1318  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1319  * which corresponds to the passed block_device, block and size. The
1320  * returned buffer has its reference count incremented.
1321  *
1322  * __getblk_gfp() will lock up the machine if grow_dev_page's
1323  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1324  */
1325 struct buffer_head *
1326 __getblk_gfp(struct block_device *bdev, sector_t block,
1327 	     unsigned size, gfp_t gfp)
1328 {
1329 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1330 
1331 	might_sleep();
1332 	if (bh == NULL)
1333 		bh = __getblk_slow(bdev, block, size, gfp);
1334 	return bh;
1335 }
1336 EXPORT_SYMBOL(__getblk_gfp);
1337 
1338 /*
1339  * Do async read-ahead on a buffer..
1340  */
1341 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1342 {
1343 	struct buffer_head *bh = __getblk(bdev, block, size);
1344 	if (likely(bh)) {
1345 		ll_rw_block(REQ_OP_READ | REQ_RAHEAD, 1, &bh);
1346 		brelse(bh);
1347 	}
1348 }
1349 EXPORT_SYMBOL(__breadahead);
1350 
1351 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1352 		      gfp_t gfp)
1353 {
1354 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1355 	if (likely(bh)) {
1356 		ll_rw_block(REQ_OP_READ | REQ_RAHEAD, 1, &bh);
1357 		brelse(bh);
1358 	}
1359 }
1360 EXPORT_SYMBOL(__breadahead_gfp);
1361 
1362 /**
1363  *  __bread_gfp() - reads a specified block and returns the bh
1364  *  @bdev: the block_device to read from
1365  *  @block: number of block
1366  *  @size: size (in bytes) to read
1367  *  @gfp: page allocation flag
1368  *
1369  *  Reads a specified block, and returns buffer head that contains it.
1370  *  The page cache can be allocated from non-movable area
1371  *  not to prevent page migration if you set gfp to zero.
1372  *  It returns NULL if the block was unreadable.
1373  */
1374 struct buffer_head *
1375 __bread_gfp(struct block_device *bdev, sector_t block,
1376 		   unsigned size, gfp_t gfp)
1377 {
1378 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1379 
1380 	if (likely(bh) && !buffer_uptodate(bh))
1381 		bh = __bread_slow(bh);
1382 	return bh;
1383 }
1384 EXPORT_SYMBOL(__bread_gfp);
1385 
1386 static void __invalidate_bh_lrus(struct bh_lru *b)
1387 {
1388 	int i;
1389 
1390 	for (i = 0; i < BH_LRU_SIZE; i++) {
1391 		brelse(b->bhs[i]);
1392 		b->bhs[i] = NULL;
1393 	}
1394 }
1395 /*
1396  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1397  * This doesn't race because it runs in each cpu either in irq
1398  * or with preempt disabled.
1399  */
1400 static void invalidate_bh_lru(void *arg)
1401 {
1402 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1403 
1404 	__invalidate_bh_lrus(b);
1405 	put_cpu_var(bh_lrus);
1406 }
1407 
1408 bool has_bh_in_lru(int cpu, void *dummy)
1409 {
1410 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1411 	int i;
1412 
1413 	for (i = 0; i < BH_LRU_SIZE; i++) {
1414 		if (b->bhs[i])
1415 			return true;
1416 	}
1417 
1418 	return false;
1419 }
1420 
1421 void invalidate_bh_lrus(void)
1422 {
1423 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1424 }
1425 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1426 
1427 /*
1428  * It's called from workqueue context so we need a bh_lru_lock to close
1429  * the race with preemption/irq.
1430  */
1431 void invalidate_bh_lrus_cpu(void)
1432 {
1433 	struct bh_lru *b;
1434 
1435 	bh_lru_lock();
1436 	b = this_cpu_ptr(&bh_lrus);
1437 	__invalidate_bh_lrus(b);
1438 	bh_lru_unlock();
1439 }
1440 
1441 void set_bh_page(struct buffer_head *bh,
1442 		struct page *page, unsigned long offset)
1443 {
1444 	bh->b_page = page;
1445 	BUG_ON(offset >= PAGE_SIZE);
1446 	if (PageHighMem(page))
1447 		/*
1448 		 * This catches illegal uses and preserves the offset:
1449 		 */
1450 		bh->b_data = (char *)(0 + offset);
1451 	else
1452 		bh->b_data = page_address(page) + offset;
1453 }
1454 EXPORT_SYMBOL(set_bh_page);
1455 
1456 /*
1457  * Called when truncating a buffer on a page completely.
1458  */
1459 
1460 /* Bits that are cleared during an invalidate */
1461 #define BUFFER_FLAGS_DISCARD \
1462 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1463 	 1 << BH_Delay | 1 << BH_Unwritten)
1464 
1465 static void discard_buffer(struct buffer_head * bh)
1466 {
1467 	unsigned long b_state;
1468 
1469 	lock_buffer(bh);
1470 	clear_buffer_dirty(bh);
1471 	bh->b_bdev = NULL;
1472 	b_state = READ_ONCE(bh->b_state);
1473 	do {
1474 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1475 			      b_state & ~BUFFER_FLAGS_DISCARD));
1476 	unlock_buffer(bh);
1477 }
1478 
1479 /**
1480  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1481  * @folio: The folio which is affected.
1482  * @offset: start of the range to invalidate
1483  * @length: length of the range to invalidate
1484  *
1485  * block_invalidate_folio() is called when all or part of the folio has been
1486  * invalidated by a truncate operation.
1487  *
1488  * block_invalidate_folio() does not have to release all buffers, but it must
1489  * ensure that no dirty buffer is left outside @offset and that no I/O
1490  * is underway against any of the blocks which are outside the truncation
1491  * point.  Because the caller is about to free (and possibly reuse) those
1492  * blocks on-disk.
1493  */
1494 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1495 {
1496 	struct buffer_head *head, *bh, *next;
1497 	size_t curr_off = 0;
1498 	size_t stop = length + offset;
1499 
1500 	BUG_ON(!folio_test_locked(folio));
1501 
1502 	/*
1503 	 * Check for overflow
1504 	 */
1505 	BUG_ON(stop > folio_size(folio) || stop < length);
1506 
1507 	head = folio_buffers(folio);
1508 	if (!head)
1509 		return;
1510 
1511 	bh = head;
1512 	do {
1513 		size_t next_off = curr_off + bh->b_size;
1514 		next = bh->b_this_page;
1515 
1516 		/*
1517 		 * Are we still fully in range ?
1518 		 */
1519 		if (next_off > stop)
1520 			goto out;
1521 
1522 		/*
1523 		 * is this block fully invalidated?
1524 		 */
1525 		if (offset <= curr_off)
1526 			discard_buffer(bh);
1527 		curr_off = next_off;
1528 		bh = next;
1529 	} while (bh != head);
1530 
1531 	/*
1532 	 * We release buffers only if the entire folio is being invalidated.
1533 	 * The get_block cached value has been unconditionally invalidated,
1534 	 * so real IO is not possible anymore.
1535 	 */
1536 	if (length == folio_size(folio))
1537 		filemap_release_folio(folio, 0);
1538 out:
1539 	return;
1540 }
1541 EXPORT_SYMBOL(block_invalidate_folio);
1542 
1543 
1544 /*
1545  * We attach and possibly dirty the buffers atomically wrt
1546  * block_dirty_folio() via private_lock.  try_to_free_buffers
1547  * is already excluded via the page lock.
1548  */
1549 void create_empty_buffers(struct page *page,
1550 			unsigned long blocksize, unsigned long b_state)
1551 {
1552 	struct buffer_head *bh, *head, *tail;
1553 
1554 	head = alloc_page_buffers(page, blocksize, true);
1555 	bh = head;
1556 	do {
1557 		bh->b_state |= b_state;
1558 		tail = bh;
1559 		bh = bh->b_this_page;
1560 	} while (bh);
1561 	tail->b_this_page = head;
1562 
1563 	spin_lock(&page->mapping->private_lock);
1564 	if (PageUptodate(page) || PageDirty(page)) {
1565 		bh = head;
1566 		do {
1567 			if (PageDirty(page))
1568 				set_buffer_dirty(bh);
1569 			if (PageUptodate(page))
1570 				set_buffer_uptodate(bh);
1571 			bh = bh->b_this_page;
1572 		} while (bh != head);
1573 	}
1574 	attach_page_private(page, head);
1575 	spin_unlock(&page->mapping->private_lock);
1576 }
1577 EXPORT_SYMBOL(create_empty_buffers);
1578 
1579 /**
1580  * clean_bdev_aliases: clean a range of buffers in block device
1581  * @bdev: Block device to clean buffers in
1582  * @block: Start of a range of blocks to clean
1583  * @len: Number of blocks to clean
1584  *
1585  * We are taking a range of blocks for data and we don't want writeback of any
1586  * buffer-cache aliases starting from return from this function and until the
1587  * moment when something will explicitly mark the buffer dirty (hopefully that
1588  * will not happen until we will free that block ;-) We don't even need to mark
1589  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1590  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1591  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1592  * would confuse anyone who might pick it with bread() afterwards...
1593  *
1594  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1595  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1596  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1597  * need to.  That happens here.
1598  */
1599 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1600 {
1601 	struct inode *bd_inode = bdev->bd_inode;
1602 	struct address_space *bd_mapping = bd_inode->i_mapping;
1603 	struct folio_batch fbatch;
1604 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1605 	pgoff_t end;
1606 	int i, count;
1607 	struct buffer_head *bh;
1608 	struct buffer_head *head;
1609 
1610 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1611 	folio_batch_init(&fbatch);
1612 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1613 		count = folio_batch_count(&fbatch);
1614 		for (i = 0; i < count; i++) {
1615 			struct folio *folio = fbatch.folios[i];
1616 
1617 			if (!folio_buffers(folio))
1618 				continue;
1619 			/*
1620 			 * We use folio lock instead of bd_mapping->private_lock
1621 			 * to pin buffers here since we can afford to sleep and
1622 			 * it scales better than a global spinlock lock.
1623 			 */
1624 			folio_lock(folio);
1625 			/* Recheck when the folio is locked which pins bhs */
1626 			head = folio_buffers(folio);
1627 			if (!head)
1628 				goto unlock_page;
1629 			bh = head;
1630 			do {
1631 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1632 					goto next;
1633 				if (bh->b_blocknr >= block + len)
1634 					break;
1635 				clear_buffer_dirty(bh);
1636 				wait_on_buffer(bh);
1637 				clear_buffer_req(bh);
1638 next:
1639 				bh = bh->b_this_page;
1640 			} while (bh != head);
1641 unlock_page:
1642 			folio_unlock(folio);
1643 		}
1644 		folio_batch_release(&fbatch);
1645 		cond_resched();
1646 		/* End of range already reached? */
1647 		if (index > end || !index)
1648 			break;
1649 	}
1650 }
1651 EXPORT_SYMBOL(clean_bdev_aliases);
1652 
1653 /*
1654  * Size is a power-of-two in the range 512..PAGE_SIZE,
1655  * and the case we care about most is PAGE_SIZE.
1656  *
1657  * So this *could* possibly be written with those
1658  * constraints in mind (relevant mostly if some
1659  * architecture has a slow bit-scan instruction)
1660  */
1661 static inline int block_size_bits(unsigned int blocksize)
1662 {
1663 	return ilog2(blocksize);
1664 }
1665 
1666 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1667 {
1668 	BUG_ON(!PageLocked(page));
1669 
1670 	if (!page_has_buffers(page))
1671 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1672 				     b_state);
1673 	return page_buffers(page);
1674 }
1675 
1676 /*
1677  * NOTE! All mapped/uptodate combinations are valid:
1678  *
1679  *	Mapped	Uptodate	Meaning
1680  *
1681  *	No	No		"unknown" - must do get_block()
1682  *	No	Yes		"hole" - zero-filled
1683  *	Yes	No		"allocated" - allocated on disk, not read in
1684  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1685  *
1686  * "Dirty" is valid only with the last case (mapped+uptodate).
1687  */
1688 
1689 /*
1690  * While block_write_full_page is writing back the dirty buffers under
1691  * the page lock, whoever dirtied the buffers may decide to clean them
1692  * again at any time.  We handle that by only looking at the buffer
1693  * state inside lock_buffer().
1694  *
1695  * If block_write_full_page() is called for regular writeback
1696  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1697  * locked buffer.   This only can happen if someone has written the buffer
1698  * directly, with submit_bh().  At the address_space level PageWriteback
1699  * prevents this contention from occurring.
1700  *
1701  * If block_write_full_page() is called with wbc->sync_mode ==
1702  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1703  * causes the writes to be flagged as synchronous writes.
1704  */
1705 int __block_write_full_page(struct inode *inode, struct page *page,
1706 			get_block_t *get_block, struct writeback_control *wbc,
1707 			bh_end_io_t *handler)
1708 {
1709 	int err;
1710 	sector_t block;
1711 	sector_t last_block;
1712 	struct buffer_head *bh, *head;
1713 	unsigned int blocksize, bbits;
1714 	int nr_underway = 0;
1715 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1716 
1717 	head = create_page_buffers(page, inode,
1718 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1719 
1720 	/*
1721 	 * Be very careful.  We have no exclusion from block_dirty_folio
1722 	 * here, and the (potentially unmapped) buffers may become dirty at
1723 	 * any time.  If a buffer becomes dirty here after we've inspected it
1724 	 * then we just miss that fact, and the page stays dirty.
1725 	 *
1726 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1727 	 * handle that here by just cleaning them.
1728 	 */
1729 
1730 	bh = head;
1731 	blocksize = bh->b_size;
1732 	bbits = block_size_bits(blocksize);
1733 
1734 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1735 	last_block = (i_size_read(inode) - 1) >> bbits;
1736 
1737 	/*
1738 	 * Get all the dirty buffers mapped to disk addresses and
1739 	 * handle any aliases from the underlying blockdev's mapping.
1740 	 */
1741 	do {
1742 		if (block > last_block) {
1743 			/*
1744 			 * mapped buffers outside i_size will occur, because
1745 			 * this page can be outside i_size when there is a
1746 			 * truncate in progress.
1747 			 */
1748 			/*
1749 			 * The buffer was zeroed by block_write_full_page()
1750 			 */
1751 			clear_buffer_dirty(bh);
1752 			set_buffer_uptodate(bh);
1753 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1754 			   buffer_dirty(bh)) {
1755 			WARN_ON(bh->b_size != blocksize);
1756 			err = get_block(inode, block, bh, 1);
1757 			if (err)
1758 				goto recover;
1759 			clear_buffer_delay(bh);
1760 			if (buffer_new(bh)) {
1761 				/* blockdev mappings never come here */
1762 				clear_buffer_new(bh);
1763 				clean_bdev_bh_alias(bh);
1764 			}
1765 		}
1766 		bh = bh->b_this_page;
1767 		block++;
1768 	} while (bh != head);
1769 
1770 	do {
1771 		if (!buffer_mapped(bh))
1772 			continue;
1773 		/*
1774 		 * If it's a fully non-blocking write attempt and we cannot
1775 		 * lock the buffer then redirty the page.  Note that this can
1776 		 * potentially cause a busy-wait loop from writeback threads
1777 		 * and kswapd activity, but those code paths have their own
1778 		 * higher-level throttling.
1779 		 */
1780 		if (wbc->sync_mode != WB_SYNC_NONE) {
1781 			lock_buffer(bh);
1782 		} else if (!trylock_buffer(bh)) {
1783 			redirty_page_for_writepage(wbc, page);
1784 			continue;
1785 		}
1786 		if (test_clear_buffer_dirty(bh)) {
1787 			mark_buffer_async_write_endio(bh, handler);
1788 		} else {
1789 			unlock_buffer(bh);
1790 		}
1791 	} while ((bh = bh->b_this_page) != head);
1792 
1793 	/*
1794 	 * The page and its buffers are protected by PageWriteback(), so we can
1795 	 * drop the bh refcounts early.
1796 	 */
1797 	BUG_ON(PageWriteback(page));
1798 	set_page_writeback(page);
1799 
1800 	do {
1801 		struct buffer_head *next = bh->b_this_page;
1802 		if (buffer_async_write(bh)) {
1803 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1804 			nr_underway++;
1805 		}
1806 		bh = next;
1807 	} while (bh != head);
1808 	unlock_page(page);
1809 
1810 	err = 0;
1811 done:
1812 	if (nr_underway == 0) {
1813 		/*
1814 		 * The page was marked dirty, but the buffers were
1815 		 * clean.  Someone wrote them back by hand with
1816 		 * ll_rw_block/submit_bh.  A rare case.
1817 		 */
1818 		end_page_writeback(page);
1819 
1820 		/*
1821 		 * The page and buffer_heads can be released at any time from
1822 		 * here on.
1823 		 */
1824 	}
1825 	return err;
1826 
1827 recover:
1828 	/*
1829 	 * ENOSPC, or some other error.  We may already have added some
1830 	 * blocks to the file, so we need to write these out to avoid
1831 	 * exposing stale data.
1832 	 * The page is currently locked and not marked for writeback
1833 	 */
1834 	bh = head;
1835 	/* Recovery: lock and submit the mapped buffers */
1836 	do {
1837 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1838 		    !buffer_delay(bh)) {
1839 			lock_buffer(bh);
1840 			mark_buffer_async_write_endio(bh, handler);
1841 		} else {
1842 			/*
1843 			 * The buffer may have been set dirty during
1844 			 * attachment to a dirty page.
1845 			 */
1846 			clear_buffer_dirty(bh);
1847 		}
1848 	} while ((bh = bh->b_this_page) != head);
1849 	SetPageError(page);
1850 	BUG_ON(PageWriteback(page));
1851 	mapping_set_error(page->mapping, err);
1852 	set_page_writeback(page);
1853 	do {
1854 		struct buffer_head *next = bh->b_this_page;
1855 		if (buffer_async_write(bh)) {
1856 			clear_buffer_dirty(bh);
1857 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1858 			nr_underway++;
1859 		}
1860 		bh = next;
1861 	} while (bh != head);
1862 	unlock_page(page);
1863 	goto done;
1864 }
1865 EXPORT_SYMBOL(__block_write_full_page);
1866 
1867 /*
1868  * If a page has any new buffers, zero them out here, and mark them uptodate
1869  * and dirty so they'll be written out (in order to prevent uninitialised
1870  * block data from leaking). And clear the new bit.
1871  */
1872 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1873 {
1874 	unsigned int block_start, block_end;
1875 	struct buffer_head *head, *bh;
1876 
1877 	BUG_ON(!PageLocked(page));
1878 	if (!page_has_buffers(page))
1879 		return;
1880 
1881 	bh = head = page_buffers(page);
1882 	block_start = 0;
1883 	do {
1884 		block_end = block_start + bh->b_size;
1885 
1886 		if (buffer_new(bh)) {
1887 			if (block_end > from && block_start < to) {
1888 				if (!PageUptodate(page)) {
1889 					unsigned start, size;
1890 
1891 					start = max(from, block_start);
1892 					size = min(to, block_end) - start;
1893 
1894 					zero_user(page, start, size);
1895 					set_buffer_uptodate(bh);
1896 				}
1897 
1898 				clear_buffer_new(bh);
1899 				mark_buffer_dirty(bh);
1900 			}
1901 		}
1902 
1903 		block_start = block_end;
1904 		bh = bh->b_this_page;
1905 	} while (bh != head);
1906 }
1907 EXPORT_SYMBOL(page_zero_new_buffers);
1908 
1909 static void
1910 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1911 		const struct iomap *iomap)
1912 {
1913 	loff_t offset = block << inode->i_blkbits;
1914 
1915 	bh->b_bdev = iomap->bdev;
1916 
1917 	/*
1918 	 * Block points to offset in file we need to map, iomap contains
1919 	 * the offset at which the map starts. If the map ends before the
1920 	 * current block, then do not map the buffer and let the caller
1921 	 * handle it.
1922 	 */
1923 	BUG_ON(offset >= iomap->offset + iomap->length);
1924 
1925 	switch (iomap->type) {
1926 	case IOMAP_HOLE:
1927 		/*
1928 		 * If the buffer is not up to date or beyond the current EOF,
1929 		 * we need to mark it as new to ensure sub-block zeroing is
1930 		 * executed if necessary.
1931 		 */
1932 		if (!buffer_uptodate(bh) ||
1933 		    (offset >= i_size_read(inode)))
1934 			set_buffer_new(bh);
1935 		break;
1936 	case IOMAP_DELALLOC:
1937 		if (!buffer_uptodate(bh) ||
1938 		    (offset >= i_size_read(inode)))
1939 			set_buffer_new(bh);
1940 		set_buffer_uptodate(bh);
1941 		set_buffer_mapped(bh);
1942 		set_buffer_delay(bh);
1943 		break;
1944 	case IOMAP_UNWRITTEN:
1945 		/*
1946 		 * For unwritten regions, we always need to ensure that regions
1947 		 * in the block we are not writing to are zeroed. Mark the
1948 		 * buffer as new to ensure this.
1949 		 */
1950 		set_buffer_new(bh);
1951 		set_buffer_unwritten(bh);
1952 		fallthrough;
1953 	case IOMAP_MAPPED:
1954 		if ((iomap->flags & IOMAP_F_NEW) ||
1955 		    offset >= i_size_read(inode))
1956 			set_buffer_new(bh);
1957 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1958 				inode->i_blkbits;
1959 		set_buffer_mapped(bh);
1960 		break;
1961 	}
1962 }
1963 
1964 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1965 		get_block_t *get_block, const struct iomap *iomap)
1966 {
1967 	unsigned from = pos & (PAGE_SIZE - 1);
1968 	unsigned to = from + len;
1969 	struct inode *inode = folio->mapping->host;
1970 	unsigned block_start, block_end;
1971 	sector_t block;
1972 	int err = 0;
1973 	unsigned blocksize, bbits;
1974 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1975 
1976 	BUG_ON(!folio_test_locked(folio));
1977 	BUG_ON(from > PAGE_SIZE);
1978 	BUG_ON(to > PAGE_SIZE);
1979 	BUG_ON(from > to);
1980 
1981 	head = create_page_buffers(&folio->page, inode, 0);
1982 	blocksize = head->b_size;
1983 	bbits = block_size_bits(blocksize);
1984 
1985 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1986 
1987 	for(bh = head, block_start = 0; bh != head || !block_start;
1988 	    block++, block_start=block_end, bh = bh->b_this_page) {
1989 		block_end = block_start + blocksize;
1990 		if (block_end <= from || block_start >= to) {
1991 			if (folio_test_uptodate(folio)) {
1992 				if (!buffer_uptodate(bh))
1993 					set_buffer_uptodate(bh);
1994 			}
1995 			continue;
1996 		}
1997 		if (buffer_new(bh))
1998 			clear_buffer_new(bh);
1999 		if (!buffer_mapped(bh)) {
2000 			WARN_ON(bh->b_size != blocksize);
2001 			if (get_block) {
2002 				err = get_block(inode, block, bh, 1);
2003 				if (err)
2004 					break;
2005 			} else {
2006 				iomap_to_bh(inode, block, bh, iomap);
2007 			}
2008 
2009 			if (buffer_new(bh)) {
2010 				clean_bdev_bh_alias(bh);
2011 				if (folio_test_uptodate(folio)) {
2012 					clear_buffer_new(bh);
2013 					set_buffer_uptodate(bh);
2014 					mark_buffer_dirty(bh);
2015 					continue;
2016 				}
2017 				if (block_end > to || block_start < from)
2018 					folio_zero_segments(folio,
2019 						to, block_end,
2020 						block_start, from);
2021 				continue;
2022 			}
2023 		}
2024 		if (folio_test_uptodate(folio)) {
2025 			if (!buffer_uptodate(bh))
2026 				set_buffer_uptodate(bh);
2027 			continue;
2028 		}
2029 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2030 		    !buffer_unwritten(bh) &&
2031 		     (block_start < from || block_end > to)) {
2032 			ll_rw_block(REQ_OP_READ, 1, &bh);
2033 			*wait_bh++=bh;
2034 		}
2035 	}
2036 	/*
2037 	 * If we issued read requests - let them complete.
2038 	 */
2039 	while(wait_bh > wait) {
2040 		wait_on_buffer(*--wait_bh);
2041 		if (!buffer_uptodate(*wait_bh))
2042 			err = -EIO;
2043 	}
2044 	if (unlikely(err))
2045 		page_zero_new_buffers(&folio->page, from, to);
2046 	return err;
2047 }
2048 
2049 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2050 		get_block_t *get_block)
2051 {
2052 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2053 				       NULL);
2054 }
2055 EXPORT_SYMBOL(__block_write_begin);
2056 
2057 static int __block_commit_write(struct inode *inode, struct page *page,
2058 		unsigned from, unsigned to)
2059 {
2060 	unsigned block_start, block_end;
2061 	int partial = 0;
2062 	unsigned blocksize;
2063 	struct buffer_head *bh, *head;
2064 
2065 	bh = head = page_buffers(page);
2066 	blocksize = bh->b_size;
2067 
2068 	block_start = 0;
2069 	do {
2070 		block_end = block_start + blocksize;
2071 		if (block_end <= from || block_start >= to) {
2072 			if (!buffer_uptodate(bh))
2073 				partial = 1;
2074 		} else {
2075 			set_buffer_uptodate(bh);
2076 			mark_buffer_dirty(bh);
2077 		}
2078 		if (buffer_new(bh))
2079 			clear_buffer_new(bh);
2080 
2081 		block_start = block_end;
2082 		bh = bh->b_this_page;
2083 	} while (bh != head);
2084 
2085 	/*
2086 	 * If this is a partial write which happened to make all buffers
2087 	 * uptodate then we can optimize away a bogus read_folio() for
2088 	 * the next read(). Here we 'discover' whether the page went
2089 	 * uptodate as a result of this (potentially partial) write.
2090 	 */
2091 	if (!partial)
2092 		SetPageUptodate(page);
2093 	return 0;
2094 }
2095 
2096 /*
2097  * block_write_begin takes care of the basic task of block allocation and
2098  * bringing partial write blocks uptodate first.
2099  *
2100  * The filesystem needs to handle block truncation upon failure.
2101  */
2102 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2103 		struct page **pagep, get_block_t *get_block)
2104 {
2105 	pgoff_t index = pos >> PAGE_SHIFT;
2106 	struct page *page;
2107 	int status;
2108 
2109 	page = grab_cache_page_write_begin(mapping, index);
2110 	if (!page)
2111 		return -ENOMEM;
2112 
2113 	status = __block_write_begin(page, pos, len, get_block);
2114 	if (unlikely(status)) {
2115 		unlock_page(page);
2116 		put_page(page);
2117 		page = NULL;
2118 	}
2119 
2120 	*pagep = page;
2121 	return status;
2122 }
2123 EXPORT_SYMBOL(block_write_begin);
2124 
2125 int block_write_end(struct file *file, struct address_space *mapping,
2126 			loff_t pos, unsigned len, unsigned copied,
2127 			struct page *page, void *fsdata)
2128 {
2129 	struct inode *inode = mapping->host;
2130 	unsigned start;
2131 
2132 	start = pos & (PAGE_SIZE - 1);
2133 
2134 	if (unlikely(copied < len)) {
2135 		/*
2136 		 * The buffers that were written will now be uptodate, so
2137 		 * we don't have to worry about a read_folio reading them
2138 		 * and overwriting a partial write. However if we have
2139 		 * encountered a short write and only partially written
2140 		 * into a buffer, it will not be marked uptodate, so a
2141 		 * read_folio might come in and destroy our partial write.
2142 		 *
2143 		 * Do the simplest thing, and just treat any short write to a
2144 		 * non uptodate page as a zero-length write, and force the
2145 		 * caller to redo the whole thing.
2146 		 */
2147 		if (!PageUptodate(page))
2148 			copied = 0;
2149 
2150 		page_zero_new_buffers(page, start+copied, start+len);
2151 	}
2152 	flush_dcache_page(page);
2153 
2154 	/* This could be a short (even 0-length) commit */
2155 	__block_commit_write(inode, page, start, start+copied);
2156 
2157 	return copied;
2158 }
2159 EXPORT_SYMBOL(block_write_end);
2160 
2161 int generic_write_end(struct file *file, struct address_space *mapping,
2162 			loff_t pos, unsigned len, unsigned copied,
2163 			struct page *page, void *fsdata)
2164 {
2165 	struct inode *inode = mapping->host;
2166 	loff_t old_size = inode->i_size;
2167 	bool i_size_changed = false;
2168 
2169 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2170 
2171 	/*
2172 	 * No need to use i_size_read() here, the i_size cannot change under us
2173 	 * because we hold i_rwsem.
2174 	 *
2175 	 * But it's important to update i_size while still holding page lock:
2176 	 * page writeout could otherwise come in and zero beyond i_size.
2177 	 */
2178 	if (pos + copied > inode->i_size) {
2179 		i_size_write(inode, pos + copied);
2180 		i_size_changed = true;
2181 	}
2182 
2183 	unlock_page(page);
2184 	put_page(page);
2185 
2186 	if (old_size < pos)
2187 		pagecache_isize_extended(inode, old_size, pos);
2188 	/*
2189 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2190 	 * makes the holding time of page lock longer. Second, it forces lock
2191 	 * ordering of page lock and transaction start for journaling
2192 	 * filesystems.
2193 	 */
2194 	if (i_size_changed)
2195 		mark_inode_dirty(inode);
2196 	return copied;
2197 }
2198 EXPORT_SYMBOL(generic_write_end);
2199 
2200 /*
2201  * block_is_partially_uptodate checks whether buffers within a folio are
2202  * uptodate or not.
2203  *
2204  * Returns true if all buffers which correspond to the specified part
2205  * of the folio are uptodate.
2206  */
2207 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2208 {
2209 	unsigned block_start, block_end, blocksize;
2210 	unsigned to;
2211 	struct buffer_head *bh, *head;
2212 	bool ret = true;
2213 
2214 	head = folio_buffers(folio);
2215 	if (!head)
2216 		return false;
2217 	blocksize = head->b_size;
2218 	to = min_t(unsigned, folio_size(folio) - from, count);
2219 	to = from + to;
2220 	if (from < blocksize && to > folio_size(folio) - blocksize)
2221 		return false;
2222 
2223 	bh = head;
2224 	block_start = 0;
2225 	do {
2226 		block_end = block_start + blocksize;
2227 		if (block_end > from && block_start < to) {
2228 			if (!buffer_uptodate(bh)) {
2229 				ret = false;
2230 				break;
2231 			}
2232 			if (block_end >= to)
2233 				break;
2234 		}
2235 		block_start = block_end;
2236 		bh = bh->b_this_page;
2237 	} while (bh != head);
2238 
2239 	return ret;
2240 }
2241 EXPORT_SYMBOL(block_is_partially_uptodate);
2242 
2243 /*
2244  * Generic "read_folio" function for block devices that have the normal
2245  * get_block functionality. This is most of the block device filesystems.
2246  * Reads the folio asynchronously --- the unlock_buffer() and
2247  * set/clear_buffer_uptodate() functions propagate buffer state into the
2248  * folio once IO has completed.
2249  */
2250 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2251 {
2252 	struct inode *inode = folio->mapping->host;
2253 	sector_t iblock, lblock;
2254 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2255 	unsigned int blocksize, bbits;
2256 	int nr, i;
2257 	int fully_mapped = 1;
2258 	bool page_error = false;
2259 
2260 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2261 
2262 	head = create_page_buffers(&folio->page, inode, 0);
2263 	blocksize = head->b_size;
2264 	bbits = block_size_bits(blocksize);
2265 
2266 	iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2267 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2268 	bh = head;
2269 	nr = 0;
2270 	i = 0;
2271 
2272 	do {
2273 		if (buffer_uptodate(bh))
2274 			continue;
2275 
2276 		if (!buffer_mapped(bh)) {
2277 			int err = 0;
2278 
2279 			fully_mapped = 0;
2280 			if (iblock < lblock) {
2281 				WARN_ON(bh->b_size != blocksize);
2282 				err = get_block(inode, iblock, bh, 0);
2283 				if (err) {
2284 					folio_set_error(folio);
2285 					page_error = true;
2286 				}
2287 			}
2288 			if (!buffer_mapped(bh)) {
2289 				folio_zero_range(folio, i * blocksize,
2290 						blocksize);
2291 				if (!err)
2292 					set_buffer_uptodate(bh);
2293 				continue;
2294 			}
2295 			/*
2296 			 * get_block() might have updated the buffer
2297 			 * synchronously
2298 			 */
2299 			if (buffer_uptodate(bh))
2300 				continue;
2301 		}
2302 		arr[nr++] = bh;
2303 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2304 
2305 	if (fully_mapped)
2306 		folio_set_mappedtodisk(folio);
2307 
2308 	if (!nr) {
2309 		/*
2310 		 * All buffers are uptodate - we can set the folio uptodate
2311 		 * as well. But not if get_block() returned an error.
2312 		 */
2313 		if (!page_error)
2314 			folio_mark_uptodate(folio);
2315 		folio_unlock(folio);
2316 		return 0;
2317 	}
2318 
2319 	/* Stage two: lock the buffers */
2320 	for (i = 0; i < nr; i++) {
2321 		bh = arr[i];
2322 		lock_buffer(bh);
2323 		mark_buffer_async_read(bh);
2324 	}
2325 
2326 	/*
2327 	 * Stage 3: start the IO.  Check for uptodateness
2328 	 * inside the buffer lock in case another process reading
2329 	 * the underlying blockdev brought it uptodate (the sct fix).
2330 	 */
2331 	for (i = 0; i < nr; i++) {
2332 		bh = arr[i];
2333 		if (buffer_uptodate(bh))
2334 			end_buffer_async_read(bh, 1);
2335 		else
2336 			submit_bh(REQ_OP_READ, bh);
2337 	}
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(block_read_full_folio);
2341 
2342 /* utility function for filesystems that need to do work on expanding
2343  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2344  * deal with the hole.
2345  */
2346 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2347 {
2348 	struct address_space *mapping = inode->i_mapping;
2349 	const struct address_space_operations *aops = mapping->a_ops;
2350 	struct page *page;
2351 	void *fsdata;
2352 	int err;
2353 
2354 	err = inode_newsize_ok(inode, size);
2355 	if (err)
2356 		goto out;
2357 
2358 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2359 	if (err)
2360 		goto out;
2361 
2362 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2363 	BUG_ON(err > 0);
2364 
2365 out:
2366 	return err;
2367 }
2368 EXPORT_SYMBOL(generic_cont_expand_simple);
2369 
2370 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2371 			    loff_t pos, loff_t *bytes)
2372 {
2373 	struct inode *inode = mapping->host;
2374 	const struct address_space_operations *aops = mapping->a_ops;
2375 	unsigned int blocksize = i_blocksize(inode);
2376 	struct page *page;
2377 	void *fsdata;
2378 	pgoff_t index, curidx;
2379 	loff_t curpos;
2380 	unsigned zerofrom, offset, len;
2381 	int err = 0;
2382 
2383 	index = pos >> PAGE_SHIFT;
2384 	offset = pos & ~PAGE_MASK;
2385 
2386 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2387 		zerofrom = curpos & ~PAGE_MASK;
2388 		if (zerofrom & (blocksize-1)) {
2389 			*bytes |= (blocksize-1);
2390 			(*bytes)++;
2391 		}
2392 		len = PAGE_SIZE - zerofrom;
2393 
2394 		err = aops->write_begin(file, mapping, curpos, len,
2395 					    &page, &fsdata);
2396 		if (err)
2397 			goto out;
2398 		zero_user(page, zerofrom, len);
2399 		err = aops->write_end(file, mapping, curpos, len, len,
2400 						page, fsdata);
2401 		if (err < 0)
2402 			goto out;
2403 		BUG_ON(err != len);
2404 		err = 0;
2405 
2406 		balance_dirty_pages_ratelimited(mapping);
2407 
2408 		if (fatal_signal_pending(current)) {
2409 			err = -EINTR;
2410 			goto out;
2411 		}
2412 	}
2413 
2414 	/* page covers the boundary, find the boundary offset */
2415 	if (index == curidx) {
2416 		zerofrom = curpos & ~PAGE_MASK;
2417 		/* if we will expand the thing last block will be filled */
2418 		if (offset <= zerofrom) {
2419 			goto out;
2420 		}
2421 		if (zerofrom & (blocksize-1)) {
2422 			*bytes |= (blocksize-1);
2423 			(*bytes)++;
2424 		}
2425 		len = offset - zerofrom;
2426 
2427 		err = aops->write_begin(file, mapping, curpos, len,
2428 					    &page, &fsdata);
2429 		if (err)
2430 			goto out;
2431 		zero_user(page, zerofrom, len);
2432 		err = aops->write_end(file, mapping, curpos, len, len,
2433 						page, fsdata);
2434 		if (err < 0)
2435 			goto out;
2436 		BUG_ON(err != len);
2437 		err = 0;
2438 	}
2439 out:
2440 	return err;
2441 }
2442 
2443 /*
2444  * For moronic filesystems that do not allow holes in file.
2445  * We may have to extend the file.
2446  */
2447 int cont_write_begin(struct file *file, struct address_space *mapping,
2448 			loff_t pos, unsigned len,
2449 			struct page **pagep, void **fsdata,
2450 			get_block_t *get_block, loff_t *bytes)
2451 {
2452 	struct inode *inode = mapping->host;
2453 	unsigned int blocksize = i_blocksize(inode);
2454 	unsigned int zerofrom;
2455 	int err;
2456 
2457 	err = cont_expand_zero(file, mapping, pos, bytes);
2458 	if (err)
2459 		return err;
2460 
2461 	zerofrom = *bytes & ~PAGE_MASK;
2462 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2463 		*bytes |= (blocksize-1);
2464 		(*bytes)++;
2465 	}
2466 
2467 	return block_write_begin(mapping, pos, len, pagep, get_block);
2468 }
2469 EXPORT_SYMBOL(cont_write_begin);
2470 
2471 int block_commit_write(struct page *page, unsigned from, unsigned to)
2472 {
2473 	struct inode *inode = page->mapping->host;
2474 	__block_commit_write(inode,page,from,to);
2475 	return 0;
2476 }
2477 EXPORT_SYMBOL(block_commit_write);
2478 
2479 /*
2480  * block_page_mkwrite() is not allowed to change the file size as it gets
2481  * called from a page fault handler when a page is first dirtied. Hence we must
2482  * be careful to check for EOF conditions here. We set the page up correctly
2483  * for a written page which means we get ENOSPC checking when writing into
2484  * holes and correct delalloc and unwritten extent mapping on filesystems that
2485  * support these features.
2486  *
2487  * We are not allowed to take the i_mutex here so we have to play games to
2488  * protect against truncate races as the page could now be beyond EOF.  Because
2489  * truncate writes the inode size before removing pages, once we have the
2490  * page lock we can determine safely if the page is beyond EOF. If it is not
2491  * beyond EOF, then the page is guaranteed safe against truncation until we
2492  * unlock the page.
2493  *
2494  * Direct callers of this function should protect against filesystem freezing
2495  * using sb_start_pagefault() - sb_end_pagefault() functions.
2496  */
2497 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2498 			 get_block_t get_block)
2499 {
2500 	struct page *page = vmf->page;
2501 	struct inode *inode = file_inode(vma->vm_file);
2502 	unsigned long end;
2503 	loff_t size;
2504 	int ret;
2505 
2506 	lock_page(page);
2507 	size = i_size_read(inode);
2508 	if ((page->mapping != inode->i_mapping) ||
2509 	    (page_offset(page) > size)) {
2510 		/* We overload EFAULT to mean page got truncated */
2511 		ret = -EFAULT;
2512 		goto out_unlock;
2513 	}
2514 
2515 	/* page is wholly or partially inside EOF */
2516 	if (((page->index + 1) << PAGE_SHIFT) > size)
2517 		end = size & ~PAGE_MASK;
2518 	else
2519 		end = PAGE_SIZE;
2520 
2521 	ret = __block_write_begin(page, 0, end, get_block);
2522 	if (!ret)
2523 		ret = block_commit_write(page, 0, end);
2524 
2525 	if (unlikely(ret < 0))
2526 		goto out_unlock;
2527 	set_page_dirty(page);
2528 	wait_for_stable_page(page);
2529 	return 0;
2530 out_unlock:
2531 	unlock_page(page);
2532 	return ret;
2533 }
2534 EXPORT_SYMBOL(block_page_mkwrite);
2535 
2536 int block_truncate_page(struct address_space *mapping,
2537 			loff_t from, get_block_t *get_block)
2538 {
2539 	pgoff_t index = from >> PAGE_SHIFT;
2540 	unsigned offset = from & (PAGE_SIZE-1);
2541 	unsigned blocksize;
2542 	sector_t iblock;
2543 	unsigned length, pos;
2544 	struct inode *inode = mapping->host;
2545 	struct page *page;
2546 	struct buffer_head *bh;
2547 	int err;
2548 
2549 	blocksize = i_blocksize(inode);
2550 	length = offset & (blocksize - 1);
2551 
2552 	/* Block boundary? Nothing to do */
2553 	if (!length)
2554 		return 0;
2555 
2556 	length = blocksize - length;
2557 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2558 
2559 	page = grab_cache_page(mapping, index);
2560 	err = -ENOMEM;
2561 	if (!page)
2562 		goto out;
2563 
2564 	if (!page_has_buffers(page))
2565 		create_empty_buffers(page, blocksize, 0);
2566 
2567 	/* Find the buffer that contains "offset" */
2568 	bh = page_buffers(page);
2569 	pos = blocksize;
2570 	while (offset >= pos) {
2571 		bh = bh->b_this_page;
2572 		iblock++;
2573 		pos += blocksize;
2574 	}
2575 
2576 	err = 0;
2577 	if (!buffer_mapped(bh)) {
2578 		WARN_ON(bh->b_size != blocksize);
2579 		err = get_block(inode, iblock, bh, 0);
2580 		if (err)
2581 			goto unlock;
2582 		/* unmapped? It's a hole - nothing to do */
2583 		if (!buffer_mapped(bh))
2584 			goto unlock;
2585 	}
2586 
2587 	/* Ok, it's mapped. Make sure it's up-to-date */
2588 	if (PageUptodate(page))
2589 		set_buffer_uptodate(bh);
2590 
2591 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2592 		err = -EIO;
2593 		ll_rw_block(REQ_OP_READ, 1, &bh);
2594 		wait_on_buffer(bh);
2595 		/* Uhhuh. Read error. Complain and punt. */
2596 		if (!buffer_uptodate(bh))
2597 			goto unlock;
2598 	}
2599 
2600 	zero_user(page, offset, length);
2601 	mark_buffer_dirty(bh);
2602 	err = 0;
2603 
2604 unlock:
2605 	unlock_page(page);
2606 	put_page(page);
2607 out:
2608 	return err;
2609 }
2610 EXPORT_SYMBOL(block_truncate_page);
2611 
2612 /*
2613  * The generic ->writepage function for buffer-backed address_spaces
2614  */
2615 int block_write_full_page(struct page *page, get_block_t *get_block,
2616 			struct writeback_control *wbc)
2617 {
2618 	struct inode * const inode = page->mapping->host;
2619 	loff_t i_size = i_size_read(inode);
2620 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2621 	unsigned offset;
2622 
2623 	/* Is the page fully inside i_size? */
2624 	if (page->index < end_index)
2625 		return __block_write_full_page(inode, page, get_block, wbc,
2626 					       end_buffer_async_write);
2627 
2628 	/* Is the page fully outside i_size? (truncate in progress) */
2629 	offset = i_size & (PAGE_SIZE-1);
2630 	if (page->index >= end_index+1 || !offset) {
2631 		unlock_page(page);
2632 		return 0; /* don't care */
2633 	}
2634 
2635 	/*
2636 	 * The page straddles i_size.  It must be zeroed out on each and every
2637 	 * writepage invocation because it may be mmapped.  "A file is mapped
2638 	 * in multiples of the page size.  For a file that is not a multiple of
2639 	 * the  page size, the remaining memory is zeroed when mapped, and
2640 	 * writes to that region are not written out to the file."
2641 	 */
2642 	zero_user_segment(page, offset, PAGE_SIZE);
2643 	return __block_write_full_page(inode, page, get_block, wbc,
2644 							end_buffer_async_write);
2645 }
2646 EXPORT_SYMBOL(block_write_full_page);
2647 
2648 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2649 			    get_block_t *get_block)
2650 {
2651 	struct inode *inode = mapping->host;
2652 	struct buffer_head tmp = {
2653 		.b_size = i_blocksize(inode),
2654 	};
2655 
2656 	get_block(inode, block, &tmp, 0);
2657 	return tmp.b_blocknr;
2658 }
2659 EXPORT_SYMBOL(generic_block_bmap);
2660 
2661 static void end_bio_bh_io_sync(struct bio *bio)
2662 {
2663 	struct buffer_head *bh = bio->bi_private;
2664 
2665 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2666 		set_bit(BH_Quiet, &bh->b_state);
2667 
2668 	bh->b_end_io(bh, !bio->bi_status);
2669 	bio_put(bio);
2670 }
2671 
2672 static int submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2673 			 struct writeback_control *wbc)
2674 {
2675 	const enum req_op op = opf & REQ_OP_MASK;
2676 	struct bio *bio;
2677 
2678 	BUG_ON(!buffer_locked(bh));
2679 	BUG_ON(!buffer_mapped(bh));
2680 	BUG_ON(!bh->b_end_io);
2681 	BUG_ON(buffer_delay(bh));
2682 	BUG_ON(buffer_unwritten(bh));
2683 
2684 	/*
2685 	 * Only clear out a write error when rewriting
2686 	 */
2687 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2688 		clear_buffer_write_io_error(bh);
2689 
2690 	if (buffer_meta(bh))
2691 		opf |= REQ_META;
2692 	if (buffer_prio(bh))
2693 		opf |= REQ_PRIO;
2694 
2695 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2696 
2697 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2698 
2699 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2700 
2701 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2702 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2703 
2704 	bio->bi_end_io = end_bio_bh_io_sync;
2705 	bio->bi_private = bh;
2706 
2707 	/* Take care of bh's that straddle the end of the device */
2708 	guard_bio_eod(bio);
2709 
2710 	if (wbc) {
2711 		wbc_init_bio(wbc, bio);
2712 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2713 	}
2714 
2715 	submit_bio(bio);
2716 	return 0;
2717 }
2718 
2719 int submit_bh(blk_opf_t opf, struct buffer_head *bh)
2720 {
2721 	return submit_bh_wbc(opf, bh, NULL);
2722 }
2723 EXPORT_SYMBOL(submit_bh);
2724 
2725 /**
2726  * ll_rw_block: low-level access to block devices (DEPRECATED)
2727  * @opf: block layer request operation and flags.
2728  * @nr: number of &struct buffer_heads in the array
2729  * @bhs: array of pointers to &struct buffer_head
2730  *
2731  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2732  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
2733  * @opf contains flags modifying the detailed I/O behavior, most notably
2734  * %REQ_RAHEAD.
2735  *
2736  * This function drops any buffer that it cannot get a lock on (with the
2737  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2738  * request, and any buffer that appears to be up-to-date when doing read
2739  * request.  Further it marks as clean buffers that are processed for
2740  * writing (the buffer cache won't assume that they are actually clean
2741  * until the buffer gets unlocked).
2742  *
2743  * ll_rw_block sets b_end_io to simple completion handler that marks
2744  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
2745  * any waiters.
2746  *
2747  * All of the buffers must be for the same device, and must also be a
2748  * multiple of the current approved size for the device.
2749  */
2750 void ll_rw_block(const blk_opf_t opf, int nr, struct buffer_head *bhs[])
2751 {
2752 	const enum req_op op = opf & REQ_OP_MASK;
2753 	int i;
2754 
2755 	for (i = 0; i < nr; i++) {
2756 		struct buffer_head *bh = bhs[i];
2757 
2758 		if (!trylock_buffer(bh))
2759 			continue;
2760 		if (op == REQ_OP_WRITE) {
2761 			if (test_clear_buffer_dirty(bh)) {
2762 				bh->b_end_io = end_buffer_write_sync;
2763 				get_bh(bh);
2764 				submit_bh(opf, bh);
2765 				continue;
2766 			}
2767 		} else {
2768 			if (!buffer_uptodate(bh)) {
2769 				bh->b_end_io = end_buffer_read_sync;
2770 				get_bh(bh);
2771 				submit_bh(opf, bh);
2772 				continue;
2773 			}
2774 		}
2775 		unlock_buffer(bh);
2776 	}
2777 }
2778 EXPORT_SYMBOL(ll_rw_block);
2779 
2780 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2781 {
2782 	lock_buffer(bh);
2783 	if (!test_clear_buffer_dirty(bh)) {
2784 		unlock_buffer(bh);
2785 		return;
2786 	}
2787 	bh->b_end_io = end_buffer_write_sync;
2788 	get_bh(bh);
2789 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2790 }
2791 EXPORT_SYMBOL(write_dirty_buffer);
2792 
2793 /*
2794  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2795  * and then start new I/O and then wait upon it.  The caller must have a ref on
2796  * the buffer_head.
2797  */
2798 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2799 {
2800 	int ret = 0;
2801 
2802 	WARN_ON(atomic_read(&bh->b_count) < 1);
2803 	lock_buffer(bh);
2804 	if (test_clear_buffer_dirty(bh)) {
2805 		/*
2806 		 * The bh should be mapped, but it might not be if the
2807 		 * device was hot-removed. Not much we can do but fail the I/O.
2808 		 */
2809 		if (!buffer_mapped(bh)) {
2810 			unlock_buffer(bh);
2811 			return -EIO;
2812 		}
2813 
2814 		get_bh(bh);
2815 		bh->b_end_io = end_buffer_write_sync;
2816 		ret = submit_bh(REQ_OP_WRITE | op_flags, bh);
2817 		wait_on_buffer(bh);
2818 		if (!ret && !buffer_uptodate(bh))
2819 			ret = -EIO;
2820 	} else {
2821 		unlock_buffer(bh);
2822 	}
2823 	return ret;
2824 }
2825 EXPORT_SYMBOL(__sync_dirty_buffer);
2826 
2827 int sync_dirty_buffer(struct buffer_head *bh)
2828 {
2829 	return __sync_dirty_buffer(bh, REQ_SYNC);
2830 }
2831 EXPORT_SYMBOL(sync_dirty_buffer);
2832 
2833 /*
2834  * try_to_free_buffers() checks if all the buffers on this particular folio
2835  * are unused, and releases them if so.
2836  *
2837  * Exclusion against try_to_free_buffers may be obtained by either
2838  * locking the folio or by holding its mapping's private_lock.
2839  *
2840  * If the folio is dirty but all the buffers are clean then we need to
2841  * be sure to mark the folio clean as well.  This is because the folio
2842  * may be against a block device, and a later reattachment of buffers
2843  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2844  * filesystem data on the same device.
2845  *
2846  * The same applies to regular filesystem folios: if all the buffers are
2847  * clean then we set the folio clean and proceed.  To do that, we require
2848  * total exclusion from block_dirty_folio().  That is obtained with
2849  * private_lock.
2850  *
2851  * try_to_free_buffers() is non-blocking.
2852  */
2853 static inline int buffer_busy(struct buffer_head *bh)
2854 {
2855 	return atomic_read(&bh->b_count) |
2856 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2857 }
2858 
2859 static bool
2860 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2861 {
2862 	struct buffer_head *head = folio_buffers(folio);
2863 	struct buffer_head *bh;
2864 
2865 	bh = head;
2866 	do {
2867 		if (buffer_busy(bh))
2868 			goto failed;
2869 		bh = bh->b_this_page;
2870 	} while (bh != head);
2871 
2872 	do {
2873 		struct buffer_head *next = bh->b_this_page;
2874 
2875 		if (bh->b_assoc_map)
2876 			__remove_assoc_queue(bh);
2877 		bh = next;
2878 	} while (bh != head);
2879 	*buffers_to_free = head;
2880 	folio_detach_private(folio);
2881 	return true;
2882 failed:
2883 	return false;
2884 }
2885 
2886 bool try_to_free_buffers(struct folio *folio)
2887 {
2888 	struct address_space * const mapping = folio->mapping;
2889 	struct buffer_head *buffers_to_free = NULL;
2890 	bool ret = 0;
2891 
2892 	BUG_ON(!folio_test_locked(folio));
2893 	if (folio_test_writeback(folio))
2894 		return false;
2895 
2896 	if (mapping == NULL) {		/* can this still happen? */
2897 		ret = drop_buffers(folio, &buffers_to_free);
2898 		goto out;
2899 	}
2900 
2901 	spin_lock(&mapping->private_lock);
2902 	ret = drop_buffers(folio, &buffers_to_free);
2903 
2904 	/*
2905 	 * If the filesystem writes its buffers by hand (eg ext3)
2906 	 * then we can have clean buffers against a dirty folio.  We
2907 	 * clean the folio here; otherwise the VM will never notice
2908 	 * that the filesystem did any IO at all.
2909 	 *
2910 	 * Also, during truncate, discard_buffer will have marked all
2911 	 * the folio's buffers clean.  We discover that here and clean
2912 	 * the folio also.
2913 	 *
2914 	 * private_lock must be held over this entire operation in order
2915 	 * to synchronise against block_dirty_folio and prevent the
2916 	 * dirty bit from being lost.
2917 	 */
2918 	if (ret)
2919 		folio_cancel_dirty(folio);
2920 	spin_unlock(&mapping->private_lock);
2921 out:
2922 	if (buffers_to_free) {
2923 		struct buffer_head *bh = buffers_to_free;
2924 
2925 		do {
2926 			struct buffer_head *next = bh->b_this_page;
2927 			free_buffer_head(bh);
2928 			bh = next;
2929 		} while (bh != buffers_to_free);
2930 	}
2931 	return ret;
2932 }
2933 EXPORT_SYMBOL(try_to_free_buffers);
2934 
2935 /*
2936  * Buffer-head allocation
2937  */
2938 static struct kmem_cache *bh_cachep __read_mostly;
2939 
2940 /*
2941  * Once the number of bh's in the machine exceeds this level, we start
2942  * stripping them in writeback.
2943  */
2944 static unsigned long max_buffer_heads;
2945 
2946 int buffer_heads_over_limit;
2947 
2948 struct bh_accounting {
2949 	int nr;			/* Number of live bh's */
2950 	int ratelimit;		/* Limit cacheline bouncing */
2951 };
2952 
2953 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2954 
2955 static void recalc_bh_state(void)
2956 {
2957 	int i;
2958 	int tot = 0;
2959 
2960 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2961 		return;
2962 	__this_cpu_write(bh_accounting.ratelimit, 0);
2963 	for_each_online_cpu(i)
2964 		tot += per_cpu(bh_accounting, i).nr;
2965 	buffer_heads_over_limit = (tot > max_buffer_heads);
2966 }
2967 
2968 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2969 {
2970 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2971 	if (ret) {
2972 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
2973 		spin_lock_init(&ret->b_uptodate_lock);
2974 		preempt_disable();
2975 		__this_cpu_inc(bh_accounting.nr);
2976 		recalc_bh_state();
2977 		preempt_enable();
2978 	}
2979 	return ret;
2980 }
2981 EXPORT_SYMBOL(alloc_buffer_head);
2982 
2983 void free_buffer_head(struct buffer_head *bh)
2984 {
2985 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
2986 	kmem_cache_free(bh_cachep, bh);
2987 	preempt_disable();
2988 	__this_cpu_dec(bh_accounting.nr);
2989 	recalc_bh_state();
2990 	preempt_enable();
2991 }
2992 EXPORT_SYMBOL(free_buffer_head);
2993 
2994 static int buffer_exit_cpu_dead(unsigned int cpu)
2995 {
2996 	int i;
2997 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2998 
2999 	for (i = 0; i < BH_LRU_SIZE; i++) {
3000 		brelse(b->bhs[i]);
3001 		b->bhs[i] = NULL;
3002 	}
3003 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3004 	per_cpu(bh_accounting, cpu).nr = 0;
3005 	return 0;
3006 }
3007 
3008 /**
3009  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3010  * @bh: struct buffer_head
3011  *
3012  * Return true if the buffer is up-to-date and false,
3013  * with the buffer locked, if not.
3014  */
3015 int bh_uptodate_or_lock(struct buffer_head *bh)
3016 {
3017 	if (!buffer_uptodate(bh)) {
3018 		lock_buffer(bh);
3019 		if (!buffer_uptodate(bh))
3020 			return 0;
3021 		unlock_buffer(bh);
3022 	}
3023 	return 1;
3024 }
3025 EXPORT_SYMBOL(bh_uptodate_or_lock);
3026 
3027 /**
3028  * bh_submit_read - Submit a locked buffer for reading
3029  * @bh: struct buffer_head
3030  *
3031  * Returns zero on success and -EIO on error.
3032  */
3033 int bh_submit_read(struct buffer_head *bh)
3034 {
3035 	BUG_ON(!buffer_locked(bh));
3036 
3037 	if (buffer_uptodate(bh)) {
3038 		unlock_buffer(bh);
3039 		return 0;
3040 	}
3041 
3042 	get_bh(bh);
3043 	bh->b_end_io = end_buffer_read_sync;
3044 	submit_bh(REQ_OP_READ, bh);
3045 	wait_on_buffer(bh);
3046 	if (buffer_uptodate(bh))
3047 		return 0;
3048 	return -EIO;
3049 }
3050 EXPORT_SYMBOL(bh_submit_read);
3051 
3052 void __init buffer_init(void)
3053 {
3054 	unsigned long nrpages;
3055 	int ret;
3056 
3057 	bh_cachep = kmem_cache_create("buffer_head",
3058 			sizeof(struct buffer_head), 0,
3059 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3060 				SLAB_MEM_SPREAD),
3061 				NULL);
3062 
3063 	/*
3064 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3065 	 */
3066 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3067 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3068 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3069 					NULL, buffer_exit_cpu_dead);
3070 	WARN_ON(ret < 0);
3071 }
3072