xref: /openbmc/linux/fs/buffer.c (revision 3c6a73cc)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69 
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 	clear_bit_unlock(BH_Lock, &bh->b_state);
73 	smp_mb__after_atomic();
74 	wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77 
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84 				     bool *dirty, bool *writeback)
85 {
86 	struct buffer_head *head, *bh;
87 	*dirty = false;
88 	*writeback = false;
89 
90 	BUG_ON(!PageLocked(page));
91 
92 	if (!page_has_buffers(page))
93 		return;
94 
95 	if (PageWriteback(page))
96 		*writeback = true;
97 
98 	head = page_buffers(page);
99 	bh = head;
100 	do {
101 		if (buffer_locked(bh))
102 			*writeback = true;
103 
104 		if (buffer_dirty(bh))
105 			*dirty = true;
106 
107 		bh = bh->b_this_page;
108 	} while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111 
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122 
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126 	ClearPagePrivate(page);
127 	set_page_private(page, 0);
128 	page_cache_release(page);
129 }
130 
131 
132 static int quiet_error(struct buffer_head *bh)
133 {
134 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135 		return 0;
136 	return 1;
137 }
138 
139 
140 static void buffer_io_error(struct buffer_head *bh)
141 {
142 	char b[BDEVNAME_SIZE];
143 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144 			bdevname(bh->b_bdev, b),
145 			(unsigned long long)bh->b_blocknr);
146 }
147 
148 /*
149  * End-of-IO handler helper function which does not touch the bh after
150  * unlocking it.
151  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152  * a race there is benign: unlock_buffer() only use the bh's address for
153  * hashing after unlocking the buffer, so it doesn't actually touch the bh
154  * itself.
155  */
156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
157 {
158 	if (uptodate) {
159 		set_buffer_uptodate(bh);
160 	} else {
161 		/* This happens, due to failed READA attempts. */
162 		clear_buffer_uptodate(bh);
163 	}
164 	unlock_buffer(bh);
165 }
166 
167 /*
168  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
169  * unlock the buffer. This is what ll_rw_block uses too.
170  */
171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172 {
173 	__end_buffer_read_notouch(bh, uptodate);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_read_sync);
177 
178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179 {
180 	char b[BDEVNAME_SIZE];
181 
182 	if (uptodate) {
183 		set_buffer_uptodate(bh);
184 	} else {
185 		if (!quiet_error(bh)) {
186 			buffer_io_error(bh);
187 			printk(KERN_WARNING "lost page write due to "
188 					"I/O error on %s\n",
189 				       bdevname(bh->b_bdev, b));
190 		}
191 		set_buffer_write_io_error(bh);
192 		clear_buffer_uptodate(bh);
193 	}
194 	unlock_buffer(bh);
195 	put_bh(bh);
196 }
197 EXPORT_SYMBOL(end_buffer_write_sync);
198 
199 /*
200  * Various filesystems appear to want __find_get_block to be non-blocking.
201  * But it's the page lock which protects the buffers.  To get around this,
202  * we get exclusion from try_to_free_buffers with the blockdev mapping's
203  * private_lock.
204  *
205  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206  * may be quite high.  This code could TryLock the page, and if that
207  * succeeds, there is no need to take private_lock. (But if
208  * private_lock is contended then so is mapping->tree_lock).
209  */
210 static struct buffer_head *
211 __find_get_block_slow(struct block_device *bdev, sector_t block)
212 {
213 	struct inode *bd_inode = bdev->bd_inode;
214 	struct address_space *bd_mapping = bd_inode->i_mapping;
215 	struct buffer_head *ret = NULL;
216 	pgoff_t index;
217 	struct buffer_head *bh;
218 	struct buffer_head *head;
219 	struct page *page;
220 	int all_mapped = 1;
221 
222 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
223 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
224 	if (!page)
225 		goto out;
226 
227 	spin_lock(&bd_mapping->private_lock);
228 	if (!page_has_buffers(page))
229 		goto out_unlock;
230 	head = page_buffers(page);
231 	bh = head;
232 	do {
233 		if (!buffer_mapped(bh))
234 			all_mapped = 0;
235 		else if (bh->b_blocknr == block) {
236 			ret = bh;
237 			get_bh(bh);
238 			goto out_unlock;
239 		}
240 		bh = bh->b_this_page;
241 	} while (bh != head);
242 
243 	/* we might be here because some of the buffers on this page are
244 	 * not mapped.  This is due to various races between
245 	 * file io on the block device and getblk.  It gets dealt with
246 	 * elsewhere, don't buffer_error if we had some unmapped buffers
247 	 */
248 	if (all_mapped) {
249 		char b[BDEVNAME_SIZE];
250 
251 		printk("__find_get_block_slow() failed. "
252 			"block=%llu, b_blocknr=%llu\n",
253 			(unsigned long long)block,
254 			(unsigned long long)bh->b_blocknr);
255 		printk("b_state=0x%08lx, b_size=%zu\n",
256 			bh->b_state, bh->b_size);
257 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
258 			1 << bd_inode->i_blkbits);
259 	}
260 out_unlock:
261 	spin_unlock(&bd_mapping->private_lock);
262 	page_cache_release(page);
263 out:
264 	return ret;
265 }
266 
267 /*
268  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
269  */
270 static void free_more_memory(void)
271 {
272 	struct zone *zone;
273 	int nid;
274 
275 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
276 	yield();
277 
278 	for_each_online_node(nid) {
279 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280 						gfp_zone(GFP_NOFS), NULL,
281 						&zone);
282 		if (zone)
283 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
284 						GFP_NOFS, NULL);
285 	}
286 }
287 
288 /*
289  * I/O completion handler for block_read_full_page() - pages
290  * which come unlocked at the end of I/O.
291  */
292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293 {
294 	unsigned long flags;
295 	struct buffer_head *first;
296 	struct buffer_head *tmp;
297 	struct page *page;
298 	int page_uptodate = 1;
299 
300 	BUG_ON(!buffer_async_read(bh));
301 
302 	page = bh->b_page;
303 	if (uptodate) {
304 		set_buffer_uptodate(bh);
305 	} else {
306 		clear_buffer_uptodate(bh);
307 		if (!quiet_error(bh))
308 			buffer_io_error(bh);
309 		SetPageError(page);
310 	}
311 
312 	/*
313 	 * Be _very_ careful from here on. Bad things can happen if
314 	 * two buffer heads end IO at almost the same time and both
315 	 * decide that the page is now completely done.
316 	 */
317 	first = page_buffers(page);
318 	local_irq_save(flags);
319 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
320 	clear_buffer_async_read(bh);
321 	unlock_buffer(bh);
322 	tmp = bh;
323 	do {
324 		if (!buffer_uptodate(tmp))
325 			page_uptodate = 0;
326 		if (buffer_async_read(tmp)) {
327 			BUG_ON(!buffer_locked(tmp));
328 			goto still_busy;
329 		}
330 		tmp = tmp->b_this_page;
331 	} while (tmp != bh);
332 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 	local_irq_restore(flags);
334 
335 	/*
336 	 * If none of the buffers had errors and they are all
337 	 * uptodate then we can set the page uptodate.
338 	 */
339 	if (page_uptodate && !PageError(page))
340 		SetPageUptodate(page);
341 	unlock_page(page);
342 	return;
343 
344 still_busy:
345 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 	local_irq_restore(flags);
347 	return;
348 }
349 
350 /*
351  * Completion handler for block_write_full_page() - pages which are unlocked
352  * during I/O, and which have PageWriteback cleared upon I/O completion.
353  */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356 	char b[BDEVNAME_SIZE];
357 	unsigned long flags;
358 	struct buffer_head *first;
359 	struct buffer_head *tmp;
360 	struct page *page;
361 
362 	BUG_ON(!buffer_async_write(bh));
363 
364 	page = bh->b_page;
365 	if (uptodate) {
366 		set_buffer_uptodate(bh);
367 	} else {
368 		if (!quiet_error(bh)) {
369 			buffer_io_error(bh);
370 			printk(KERN_WARNING "lost page write due to "
371 					"I/O error on %s\n",
372 			       bdevname(bh->b_bdev, b));
373 		}
374 		set_bit(AS_EIO, &page->mapping->flags);
375 		set_buffer_write_io_error(bh);
376 		clear_buffer_uptodate(bh);
377 		SetPageError(page);
378 	}
379 
380 	first = page_buffers(page);
381 	local_irq_save(flags);
382 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383 
384 	clear_buffer_async_write(bh);
385 	unlock_buffer(bh);
386 	tmp = bh->b_this_page;
387 	while (tmp != bh) {
388 		if (buffer_async_write(tmp)) {
389 			BUG_ON(!buffer_locked(tmp));
390 			goto still_busy;
391 		}
392 		tmp = tmp->b_this_page;
393 	}
394 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395 	local_irq_restore(flags);
396 	end_page_writeback(page);
397 	return;
398 
399 still_busy:
400 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401 	local_irq_restore(flags);
402 	return;
403 }
404 EXPORT_SYMBOL(end_buffer_async_write);
405 
406 /*
407  * If a page's buffers are under async readin (end_buffer_async_read
408  * completion) then there is a possibility that another thread of
409  * control could lock one of the buffers after it has completed
410  * but while some of the other buffers have not completed.  This
411  * locked buffer would confuse end_buffer_async_read() into not unlocking
412  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
413  * that this buffer is not under async I/O.
414  *
415  * The page comes unlocked when it has no locked buffer_async buffers
416  * left.
417  *
418  * PageLocked prevents anyone starting new async I/O reads any of
419  * the buffers.
420  *
421  * PageWriteback is used to prevent simultaneous writeout of the same
422  * page.
423  *
424  * PageLocked prevents anyone from starting writeback of a page which is
425  * under read I/O (PageWriteback is only ever set against a locked page).
426  */
427 static void mark_buffer_async_read(struct buffer_head *bh)
428 {
429 	bh->b_end_io = end_buffer_async_read;
430 	set_buffer_async_read(bh);
431 }
432 
433 static void mark_buffer_async_write_endio(struct buffer_head *bh,
434 					  bh_end_io_t *handler)
435 {
436 	bh->b_end_io = handler;
437 	set_buffer_async_write(bh);
438 }
439 
440 void mark_buffer_async_write(struct buffer_head *bh)
441 {
442 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
443 }
444 EXPORT_SYMBOL(mark_buffer_async_write);
445 
446 
447 /*
448  * fs/buffer.c contains helper functions for buffer-backed address space's
449  * fsync functions.  A common requirement for buffer-based filesystems is
450  * that certain data from the backing blockdev needs to be written out for
451  * a successful fsync().  For example, ext2 indirect blocks need to be
452  * written back and waited upon before fsync() returns.
453  *
454  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456  * management of a list of dependent buffers at ->i_mapping->private_list.
457  *
458  * Locking is a little subtle: try_to_free_buffers() will remove buffers
459  * from their controlling inode's queue when they are being freed.  But
460  * try_to_free_buffers() will be operating against the *blockdev* mapping
461  * at the time, not against the S_ISREG file which depends on those buffers.
462  * So the locking for private_list is via the private_lock in the address_space
463  * which backs the buffers.  Which is different from the address_space
464  * against which the buffers are listed.  So for a particular address_space,
465  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
466  * mapping->private_list will always be protected by the backing blockdev's
467  * ->private_lock.
468  *
469  * Which introduces a requirement: all buffers on an address_space's
470  * ->private_list must be from the same address_space: the blockdev's.
471  *
472  * address_spaces which do not place buffers at ->private_list via these
473  * utility functions are free to use private_lock and private_list for
474  * whatever they want.  The only requirement is that list_empty(private_list)
475  * be true at clear_inode() time.
476  *
477  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
478  * filesystems should do that.  invalidate_inode_buffers() should just go
479  * BUG_ON(!list_empty).
480  *
481  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
482  * take an address_space, not an inode.  And it should be called
483  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484  * queued up.
485  *
486  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487  * list if it is already on a list.  Because if the buffer is on a list,
488  * it *must* already be on the right one.  If not, the filesystem is being
489  * silly.  This will save a ton of locking.  But first we have to ensure
490  * that buffers are taken *off* the old inode's list when they are freed
491  * (presumably in truncate).  That requires careful auditing of all
492  * filesystems (do it inside bforget()).  It could also be done by bringing
493  * b_inode back.
494  */
495 
496 /*
497  * The buffer's backing address_space's private_lock must be held
498  */
499 static void __remove_assoc_queue(struct buffer_head *bh)
500 {
501 	list_del_init(&bh->b_assoc_buffers);
502 	WARN_ON(!bh->b_assoc_map);
503 	if (buffer_write_io_error(bh))
504 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
505 	bh->b_assoc_map = NULL;
506 }
507 
508 int inode_has_buffers(struct inode *inode)
509 {
510 	return !list_empty(&inode->i_data.private_list);
511 }
512 
513 /*
514  * osync is designed to support O_SYNC io.  It waits synchronously for
515  * all already-submitted IO to complete, but does not queue any new
516  * writes to the disk.
517  *
518  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519  * you dirty the buffers, and then use osync_inode_buffers to wait for
520  * completion.  Any other dirty buffers which are not yet queued for
521  * write will not be flushed to disk by the osync.
522  */
523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524 {
525 	struct buffer_head *bh;
526 	struct list_head *p;
527 	int err = 0;
528 
529 	spin_lock(lock);
530 repeat:
531 	list_for_each_prev(p, list) {
532 		bh = BH_ENTRY(p);
533 		if (buffer_locked(bh)) {
534 			get_bh(bh);
535 			spin_unlock(lock);
536 			wait_on_buffer(bh);
537 			if (!buffer_uptodate(bh))
538 				err = -EIO;
539 			brelse(bh);
540 			spin_lock(lock);
541 			goto repeat;
542 		}
543 	}
544 	spin_unlock(lock);
545 	return err;
546 }
547 
548 static void do_thaw_one(struct super_block *sb, void *unused)
549 {
550 	char b[BDEVNAME_SIZE];
551 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552 		printk(KERN_WARNING "Emergency Thaw on %s\n",
553 		       bdevname(sb->s_bdev, b));
554 }
555 
556 static void do_thaw_all(struct work_struct *work)
557 {
558 	iterate_supers(do_thaw_one, NULL);
559 	kfree(work);
560 	printk(KERN_WARNING "Emergency Thaw complete\n");
561 }
562 
563 /**
564  * emergency_thaw_all -- forcibly thaw every frozen filesystem
565  *
566  * Used for emergency unfreeze of all filesystems via SysRq
567  */
568 void emergency_thaw_all(void)
569 {
570 	struct work_struct *work;
571 
572 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
573 	if (work) {
574 		INIT_WORK(work, do_thaw_all);
575 		schedule_work(work);
576 	}
577 }
578 
579 /**
580  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
581  * @mapping: the mapping which wants those buffers written
582  *
583  * Starts I/O against the buffers at mapping->private_list, and waits upon
584  * that I/O.
585  *
586  * Basically, this is a convenience function for fsync().
587  * @mapping is a file or directory which needs those buffers to be written for
588  * a successful fsync().
589  */
590 int sync_mapping_buffers(struct address_space *mapping)
591 {
592 	struct address_space *buffer_mapping = mapping->private_data;
593 
594 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595 		return 0;
596 
597 	return fsync_buffers_list(&buffer_mapping->private_lock,
598 					&mapping->private_list);
599 }
600 EXPORT_SYMBOL(sync_mapping_buffers);
601 
602 /*
603  * Called when we've recently written block `bblock', and it is known that
604  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
605  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
606  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
607  */
608 void write_boundary_block(struct block_device *bdev,
609 			sector_t bblock, unsigned blocksize)
610 {
611 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612 	if (bh) {
613 		if (buffer_dirty(bh))
614 			ll_rw_block(WRITE, 1, &bh);
615 		put_bh(bh);
616 	}
617 }
618 
619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620 {
621 	struct address_space *mapping = inode->i_mapping;
622 	struct address_space *buffer_mapping = bh->b_page->mapping;
623 
624 	mark_buffer_dirty(bh);
625 	if (!mapping->private_data) {
626 		mapping->private_data = buffer_mapping;
627 	} else {
628 		BUG_ON(mapping->private_data != buffer_mapping);
629 	}
630 	if (!bh->b_assoc_map) {
631 		spin_lock(&buffer_mapping->private_lock);
632 		list_move_tail(&bh->b_assoc_buffers,
633 				&mapping->private_list);
634 		bh->b_assoc_map = mapping;
635 		spin_unlock(&buffer_mapping->private_lock);
636 	}
637 }
638 EXPORT_SYMBOL(mark_buffer_dirty_inode);
639 
640 /*
641  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642  * dirty.
643  *
644  * If warn is true, then emit a warning if the page is not uptodate and has
645  * not been truncated.
646  */
647 static void __set_page_dirty(struct page *page,
648 		struct address_space *mapping, int warn)
649 {
650 	unsigned long flags;
651 
652 	spin_lock_irqsave(&mapping->tree_lock, flags);
653 	if (page->mapping) {	/* Race with truncate? */
654 		WARN_ON_ONCE(warn && !PageUptodate(page));
655 		account_page_dirtied(page, mapping);
656 		radix_tree_tag_set(&mapping->page_tree,
657 				page_index(page), PAGECACHE_TAG_DIRTY);
658 	}
659 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
660 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
661 }
662 
663 /*
664  * Add a page to the dirty page list.
665  *
666  * It is a sad fact of life that this function is called from several places
667  * deeply under spinlocking.  It may not sleep.
668  *
669  * If the page has buffers, the uptodate buffers are set dirty, to preserve
670  * dirty-state coherency between the page and the buffers.  It the page does
671  * not have buffers then when they are later attached they will all be set
672  * dirty.
673  *
674  * The buffers are dirtied before the page is dirtied.  There's a small race
675  * window in which a writepage caller may see the page cleanness but not the
676  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
677  * before the buffers, a concurrent writepage caller could clear the page dirty
678  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679  * page on the dirty page list.
680  *
681  * We use private_lock to lock against try_to_free_buffers while using the
682  * page's buffer list.  Also use this to protect against clean buffers being
683  * added to the page after it was set dirty.
684  *
685  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
686  * address_space though.
687  */
688 int __set_page_dirty_buffers(struct page *page)
689 {
690 	int newly_dirty;
691 	struct address_space *mapping = page_mapping(page);
692 
693 	if (unlikely(!mapping))
694 		return !TestSetPageDirty(page);
695 
696 	spin_lock(&mapping->private_lock);
697 	if (page_has_buffers(page)) {
698 		struct buffer_head *head = page_buffers(page);
699 		struct buffer_head *bh = head;
700 
701 		do {
702 			set_buffer_dirty(bh);
703 			bh = bh->b_this_page;
704 		} while (bh != head);
705 	}
706 	newly_dirty = !TestSetPageDirty(page);
707 	spin_unlock(&mapping->private_lock);
708 
709 	if (newly_dirty)
710 		__set_page_dirty(page, mapping, 1);
711 	return newly_dirty;
712 }
713 EXPORT_SYMBOL(__set_page_dirty_buffers);
714 
715 /*
716  * Write out and wait upon a list of buffers.
717  *
718  * We have conflicting pressures: we want to make sure that all
719  * initially dirty buffers get waited on, but that any subsequently
720  * dirtied buffers don't.  After all, we don't want fsync to last
721  * forever if somebody is actively writing to the file.
722  *
723  * Do this in two main stages: first we copy dirty buffers to a
724  * temporary inode list, queueing the writes as we go.  Then we clean
725  * up, waiting for those writes to complete.
726  *
727  * During this second stage, any subsequent updates to the file may end
728  * up refiling the buffer on the original inode's dirty list again, so
729  * there is a chance we will end up with a buffer queued for write but
730  * not yet completed on that list.  So, as a final cleanup we go through
731  * the osync code to catch these locked, dirty buffers without requeuing
732  * any newly dirty buffers for write.
733  */
734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735 {
736 	struct buffer_head *bh;
737 	struct list_head tmp;
738 	struct address_space *mapping;
739 	int err = 0, err2;
740 	struct blk_plug plug;
741 
742 	INIT_LIST_HEAD(&tmp);
743 	blk_start_plug(&plug);
744 
745 	spin_lock(lock);
746 	while (!list_empty(list)) {
747 		bh = BH_ENTRY(list->next);
748 		mapping = bh->b_assoc_map;
749 		__remove_assoc_queue(bh);
750 		/* Avoid race with mark_buffer_dirty_inode() which does
751 		 * a lockless check and we rely on seeing the dirty bit */
752 		smp_mb();
753 		if (buffer_dirty(bh) || buffer_locked(bh)) {
754 			list_add(&bh->b_assoc_buffers, &tmp);
755 			bh->b_assoc_map = mapping;
756 			if (buffer_dirty(bh)) {
757 				get_bh(bh);
758 				spin_unlock(lock);
759 				/*
760 				 * Ensure any pending I/O completes so that
761 				 * write_dirty_buffer() actually writes the
762 				 * current contents - it is a noop if I/O is
763 				 * still in flight on potentially older
764 				 * contents.
765 				 */
766 				write_dirty_buffer(bh, WRITE_SYNC);
767 
768 				/*
769 				 * Kick off IO for the previous mapping. Note
770 				 * that we will not run the very last mapping,
771 				 * wait_on_buffer() will do that for us
772 				 * through sync_buffer().
773 				 */
774 				brelse(bh);
775 				spin_lock(lock);
776 			}
777 		}
778 	}
779 
780 	spin_unlock(lock);
781 	blk_finish_plug(&plug);
782 	spin_lock(lock);
783 
784 	while (!list_empty(&tmp)) {
785 		bh = BH_ENTRY(tmp.prev);
786 		get_bh(bh);
787 		mapping = bh->b_assoc_map;
788 		__remove_assoc_queue(bh);
789 		/* Avoid race with mark_buffer_dirty_inode() which does
790 		 * a lockless check and we rely on seeing the dirty bit */
791 		smp_mb();
792 		if (buffer_dirty(bh)) {
793 			list_add(&bh->b_assoc_buffers,
794 				 &mapping->private_list);
795 			bh->b_assoc_map = mapping;
796 		}
797 		spin_unlock(lock);
798 		wait_on_buffer(bh);
799 		if (!buffer_uptodate(bh))
800 			err = -EIO;
801 		brelse(bh);
802 		spin_lock(lock);
803 	}
804 
805 	spin_unlock(lock);
806 	err2 = osync_buffers_list(lock, list);
807 	if (err)
808 		return err;
809 	else
810 		return err2;
811 }
812 
813 /*
814  * Invalidate any and all dirty buffers on a given inode.  We are
815  * probably unmounting the fs, but that doesn't mean we have already
816  * done a sync().  Just drop the buffers from the inode list.
817  *
818  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
819  * assumes that all the buffers are against the blockdev.  Not true
820  * for reiserfs.
821  */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824 	if (inode_has_buffers(inode)) {
825 		struct address_space *mapping = &inode->i_data;
826 		struct list_head *list = &mapping->private_list;
827 		struct address_space *buffer_mapping = mapping->private_data;
828 
829 		spin_lock(&buffer_mapping->private_lock);
830 		while (!list_empty(list))
831 			__remove_assoc_queue(BH_ENTRY(list->next));
832 		spin_unlock(&buffer_mapping->private_lock);
833 	}
834 }
835 EXPORT_SYMBOL(invalidate_inode_buffers);
836 
837 /*
838  * Remove any clean buffers from the inode's buffer list.  This is called
839  * when we're trying to free the inode itself.  Those buffers can pin it.
840  *
841  * Returns true if all buffers were removed.
842  */
843 int remove_inode_buffers(struct inode *inode)
844 {
845 	int ret = 1;
846 
847 	if (inode_has_buffers(inode)) {
848 		struct address_space *mapping = &inode->i_data;
849 		struct list_head *list = &mapping->private_list;
850 		struct address_space *buffer_mapping = mapping->private_data;
851 
852 		spin_lock(&buffer_mapping->private_lock);
853 		while (!list_empty(list)) {
854 			struct buffer_head *bh = BH_ENTRY(list->next);
855 			if (buffer_dirty(bh)) {
856 				ret = 0;
857 				break;
858 			}
859 			__remove_assoc_queue(bh);
860 		}
861 		spin_unlock(&buffer_mapping->private_lock);
862 	}
863 	return ret;
864 }
865 
866 /*
867  * Create the appropriate buffers when given a page for data area and
868  * the size of each buffer.. Use the bh->b_this_page linked list to
869  * follow the buffers created.  Return NULL if unable to create more
870  * buffers.
871  *
872  * The retry flag is used to differentiate async IO (paging, swapping)
873  * which may not fail from ordinary buffer allocations.
874  */
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876 		int retry)
877 {
878 	struct buffer_head *bh, *head;
879 	long offset;
880 
881 try_again:
882 	head = NULL;
883 	offset = PAGE_SIZE;
884 	while ((offset -= size) >= 0) {
885 		bh = alloc_buffer_head(GFP_NOFS);
886 		if (!bh)
887 			goto no_grow;
888 
889 		bh->b_this_page = head;
890 		bh->b_blocknr = -1;
891 		head = bh;
892 
893 		bh->b_size = size;
894 
895 		/* Link the buffer to its page */
896 		set_bh_page(bh, page, offset);
897 	}
898 	return head;
899 /*
900  * In case anything failed, we just free everything we got.
901  */
902 no_grow:
903 	if (head) {
904 		do {
905 			bh = head;
906 			head = head->b_this_page;
907 			free_buffer_head(bh);
908 		} while (head);
909 	}
910 
911 	/*
912 	 * Return failure for non-async IO requests.  Async IO requests
913 	 * are not allowed to fail, so we have to wait until buffer heads
914 	 * become available.  But we don't want tasks sleeping with
915 	 * partially complete buffers, so all were released above.
916 	 */
917 	if (!retry)
918 		return NULL;
919 
920 	/* We're _really_ low on memory. Now we just
921 	 * wait for old buffer heads to become free due to
922 	 * finishing IO.  Since this is an async request and
923 	 * the reserve list is empty, we're sure there are
924 	 * async buffer heads in use.
925 	 */
926 	free_more_memory();
927 	goto try_again;
928 }
929 EXPORT_SYMBOL_GPL(alloc_page_buffers);
930 
931 static inline void
932 link_dev_buffers(struct page *page, struct buffer_head *head)
933 {
934 	struct buffer_head *bh, *tail;
935 
936 	bh = head;
937 	do {
938 		tail = bh;
939 		bh = bh->b_this_page;
940 	} while (bh);
941 	tail->b_this_page = head;
942 	attach_page_buffers(page, head);
943 }
944 
945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946 {
947 	sector_t retval = ~((sector_t)0);
948 	loff_t sz = i_size_read(bdev->bd_inode);
949 
950 	if (sz) {
951 		unsigned int sizebits = blksize_bits(size);
952 		retval = (sz >> sizebits);
953 	}
954 	return retval;
955 }
956 
957 /*
958  * Initialise the state of a blockdev page's buffers.
959  */
960 static sector_t
961 init_page_buffers(struct page *page, struct block_device *bdev,
962 			sector_t block, int size)
963 {
964 	struct buffer_head *head = page_buffers(page);
965 	struct buffer_head *bh = head;
966 	int uptodate = PageUptodate(page);
967 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
968 
969 	do {
970 		if (!buffer_mapped(bh)) {
971 			init_buffer(bh, NULL, NULL);
972 			bh->b_bdev = bdev;
973 			bh->b_blocknr = block;
974 			if (uptodate)
975 				set_buffer_uptodate(bh);
976 			if (block < end_block)
977 				set_buffer_mapped(bh);
978 		}
979 		block++;
980 		bh = bh->b_this_page;
981 	} while (bh != head);
982 
983 	/*
984 	 * Caller needs to validate requested block against end of device.
985 	 */
986 	return end_block;
987 }
988 
989 /*
990  * Create the page-cache page that contains the requested block.
991  *
992  * This is used purely for blockdev mappings.
993  */
994 static int
995 grow_dev_page(struct block_device *bdev, sector_t block,
996 		pgoff_t index, int size, int sizebits)
997 {
998 	struct inode *inode = bdev->bd_inode;
999 	struct page *page;
1000 	struct buffer_head *bh;
1001 	sector_t end_block;
1002 	int ret = 0;		/* Will call free_more_memory() */
1003 	gfp_t gfp_mask;
1004 
1005 	gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1006 	gfp_mask |= __GFP_MOVABLE;
1007 	/*
1008 	 * XXX: __getblk_slow() can not really deal with failure and
1009 	 * will endlessly loop on improvised global reclaim.  Prefer
1010 	 * looping in the allocator rather than here, at least that
1011 	 * code knows what it's doing.
1012 	 */
1013 	gfp_mask |= __GFP_NOFAIL;
1014 
1015 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1016 	if (!page)
1017 		return ret;
1018 
1019 	BUG_ON(!PageLocked(page));
1020 
1021 	if (page_has_buffers(page)) {
1022 		bh = page_buffers(page);
1023 		if (bh->b_size == size) {
1024 			end_block = init_page_buffers(page, bdev,
1025 						(sector_t)index << sizebits,
1026 						size);
1027 			goto done;
1028 		}
1029 		if (!try_to_free_buffers(page))
1030 			goto failed;
1031 	}
1032 
1033 	/*
1034 	 * Allocate some buffers for this page
1035 	 */
1036 	bh = alloc_page_buffers(page, size, 0);
1037 	if (!bh)
1038 		goto failed;
1039 
1040 	/*
1041 	 * Link the page to the buffers and initialise them.  Take the
1042 	 * lock to be atomic wrt __find_get_block(), which does not
1043 	 * run under the page lock.
1044 	 */
1045 	spin_lock(&inode->i_mapping->private_lock);
1046 	link_dev_buffers(page, bh);
1047 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1048 			size);
1049 	spin_unlock(&inode->i_mapping->private_lock);
1050 done:
1051 	ret = (block < end_block) ? 1 : -ENXIO;
1052 failed:
1053 	unlock_page(page);
1054 	page_cache_release(page);
1055 	return ret;
1056 }
1057 
1058 /*
1059  * Create buffers for the specified block device block's page.  If
1060  * that page was dirty, the buffers are set dirty also.
1061  */
1062 static int
1063 grow_buffers(struct block_device *bdev, sector_t block, int size)
1064 {
1065 	pgoff_t index;
1066 	int sizebits;
1067 
1068 	sizebits = -1;
1069 	do {
1070 		sizebits++;
1071 	} while ((size << sizebits) < PAGE_SIZE);
1072 
1073 	index = block >> sizebits;
1074 
1075 	/*
1076 	 * Check for a block which wants to lie outside our maximum possible
1077 	 * pagecache index.  (this comparison is done using sector_t types).
1078 	 */
1079 	if (unlikely(index != block >> sizebits)) {
1080 		char b[BDEVNAME_SIZE];
1081 
1082 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1083 			"device %s\n",
1084 			__func__, (unsigned long long)block,
1085 			bdevname(bdev, b));
1086 		return -EIO;
1087 	}
1088 
1089 	/* Create a page with the proper size buffers.. */
1090 	return grow_dev_page(bdev, block, index, size, sizebits);
1091 }
1092 
1093 static struct buffer_head *
1094 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1095 {
1096 	/* Size must be multiple of hard sectorsize */
1097 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1098 			(size < 512 || size > PAGE_SIZE))) {
1099 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1100 					size);
1101 		printk(KERN_ERR "logical block size: %d\n",
1102 					bdev_logical_block_size(bdev));
1103 
1104 		dump_stack();
1105 		return NULL;
1106 	}
1107 
1108 	for (;;) {
1109 		struct buffer_head *bh;
1110 		int ret;
1111 
1112 		bh = __find_get_block(bdev, block, size);
1113 		if (bh)
1114 			return bh;
1115 
1116 		ret = grow_buffers(bdev, block, size);
1117 		if (ret < 0)
1118 			return NULL;
1119 		if (ret == 0)
1120 			free_more_memory();
1121 	}
1122 }
1123 
1124 /*
1125  * The relationship between dirty buffers and dirty pages:
1126  *
1127  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1128  * the page is tagged dirty in its radix tree.
1129  *
1130  * At all times, the dirtiness of the buffers represents the dirtiness of
1131  * subsections of the page.  If the page has buffers, the page dirty bit is
1132  * merely a hint about the true dirty state.
1133  *
1134  * When a page is set dirty in its entirety, all its buffers are marked dirty
1135  * (if the page has buffers).
1136  *
1137  * When a buffer is marked dirty, its page is dirtied, but the page's other
1138  * buffers are not.
1139  *
1140  * Also.  When blockdev buffers are explicitly read with bread(), they
1141  * individually become uptodate.  But their backing page remains not
1142  * uptodate - even if all of its buffers are uptodate.  A subsequent
1143  * block_read_full_page() against that page will discover all the uptodate
1144  * buffers, will set the page uptodate and will perform no I/O.
1145  */
1146 
1147 /**
1148  * mark_buffer_dirty - mark a buffer_head as needing writeout
1149  * @bh: the buffer_head to mark dirty
1150  *
1151  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1152  * backing page dirty, then tag the page as dirty in its address_space's radix
1153  * tree and then attach the address_space's inode to its superblock's dirty
1154  * inode list.
1155  *
1156  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1157  * mapping->tree_lock and mapping->host->i_lock.
1158  */
1159 void mark_buffer_dirty(struct buffer_head *bh)
1160 {
1161 	WARN_ON_ONCE(!buffer_uptodate(bh));
1162 
1163 	trace_block_dirty_buffer(bh);
1164 
1165 	/*
1166 	 * Very *carefully* optimize the it-is-already-dirty case.
1167 	 *
1168 	 * Don't let the final "is it dirty" escape to before we
1169 	 * perhaps modified the buffer.
1170 	 */
1171 	if (buffer_dirty(bh)) {
1172 		smp_mb();
1173 		if (buffer_dirty(bh))
1174 			return;
1175 	}
1176 
1177 	if (!test_set_buffer_dirty(bh)) {
1178 		struct page *page = bh->b_page;
1179 		if (!TestSetPageDirty(page)) {
1180 			struct address_space *mapping = page_mapping(page);
1181 			if (mapping)
1182 				__set_page_dirty(page, mapping, 0);
1183 		}
1184 	}
1185 }
1186 EXPORT_SYMBOL(mark_buffer_dirty);
1187 
1188 /*
1189  * Decrement a buffer_head's reference count.  If all buffers against a page
1190  * have zero reference count, are clean and unlocked, and if the page is clean
1191  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1192  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1193  * a page but it ends up not being freed, and buffers may later be reattached).
1194  */
1195 void __brelse(struct buffer_head * buf)
1196 {
1197 	if (atomic_read(&buf->b_count)) {
1198 		put_bh(buf);
1199 		return;
1200 	}
1201 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1202 }
1203 EXPORT_SYMBOL(__brelse);
1204 
1205 /*
1206  * bforget() is like brelse(), except it discards any
1207  * potentially dirty data.
1208  */
1209 void __bforget(struct buffer_head *bh)
1210 {
1211 	clear_buffer_dirty(bh);
1212 	if (bh->b_assoc_map) {
1213 		struct address_space *buffer_mapping = bh->b_page->mapping;
1214 
1215 		spin_lock(&buffer_mapping->private_lock);
1216 		list_del_init(&bh->b_assoc_buffers);
1217 		bh->b_assoc_map = NULL;
1218 		spin_unlock(&buffer_mapping->private_lock);
1219 	}
1220 	__brelse(bh);
1221 }
1222 EXPORT_SYMBOL(__bforget);
1223 
1224 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1225 {
1226 	lock_buffer(bh);
1227 	if (buffer_uptodate(bh)) {
1228 		unlock_buffer(bh);
1229 		return bh;
1230 	} else {
1231 		get_bh(bh);
1232 		bh->b_end_io = end_buffer_read_sync;
1233 		submit_bh(READ, bh);
1234 		wait_on_buffer(bh);
1235 		if (buffer_uptodate(bh))
1236 			return bh;
1237 	}
1238 	brelse(bh);
1239 	return NULL;
1240 }
1241 
1242 /*
1243  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1244  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1245  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1246  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1247  * CPU's LRUs at the same time.
1248  *
1249  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1250  * sb_find_get_block().
1251  *
1252  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1253  * a local interrupt disable for that.
1254  */
1255 
1256 #define BH_LRU_SIZE	16
1257 
1258 struct bh_lru {
1259 	struct buffer_head *bhs[BH_LRU_SIZE];
1260 };
1261 
1262 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1263 
1264 #ifdef CONFIG_SMP
1265 #define bh_lru_lock()	local_irq_disable()
1266 #define bh_lru_unlock()	local_irq_enable()
1267 #else
1268 #define bh_lru_lock()	preempt_disable()
1269 #define bh_lru_unlock()	preempt_enable()
1270 #endif
1271 
1272 static inline void check_irqs_on(void)
1273 {
1274 #ifdef irqs_disabled
1275 	BUG_ON(irqs_disabled());
1276 #endif
1277 }
1278 
1279 /*
1280  * The LRU management algorithm is dopey-but-simple.  Sorry.
1281  */
1282 static void bh_lru_install(struct buffer_head *bh)
1283 {
1284 	struct buffer_head *evictee = NULL;
1285 
1286 	check_irqs_on();
1287 	bh_lru_lock();
1288 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1289 		struct buffer_head *bhs[BH_LRU_SIZE];
1290 		int in;
1291 		int out = 0;
1292 
1293 		get_bh(bh);
1294 		bhs[out++] = bh;
1295 		for (in = 0; in < BH_LRU_SIZE; in++) {
1296 			struct buffer_head *bh2 =
1297 				__this_cpu_read(bh_lrus.bhs[in]);
1298 
1299 			if (bh2 == bh) {
1300 				__brelse(bh2);
1301 			} else {
1302 				if (out >= BH_LRU_SIZE) {
1303 					BUG_ON(evictee != NULL);
1304 					evictee = bh2;
1305 				} else {
1306 					bhs[out++] = bh2;
1307 				}
1308 			}
1309 		}
1310 		while (out < BH_LRU_SIZE)
1311 			bhs[out++] = NULL;
1312 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1313 	}
1314 	bh_lru_unlock();
1315 
1316 	if (evictee)
1317 		__brelse(evictee);
1318 }
1319 
1320 /*
1321  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1322  */
1323 static struct buffer_head *
1324 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1325 {
1326 	struct buffer_head *ret = NULL;
1327 	unsigned int i;
1328 
1329 	check_irqs_on();
1330 	bh_lru_lock();
1331 	for (i = 0; i < BH_LRU_SIZE; i++) {
1332 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1333 
1334 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1335 		    bh->b_size == size) {
1336 			if (i) {
1337 				while (i) {
1338 					__this_cpu_write(bh_lrus.bhs[i],
1339 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1340 					i--;
1341 				}
1342 				__this_cpu_write(bh_lrus.bhs[0], bh);
1343 			}
1344 			get_bh(bh);
1345 			ret = bh;
1346 			break;
1347 		}
1348 	}
1349 	bh_lru_unlock();
1350 	return ret;
1351 }
1352 
1353 /*
1354  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1355  * it in the LRU and mark it as accessed.  If it is not present then return
1356  * NULL
1357  */
1358 struct buffer_head *
1359 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1360 {
1361 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1362 
1363 	if (bh == NULL) {
1364 		/* __find_get_block_slow will mark the page accessed */
1365 		bh = __find_get_block_slow(bdev, block);
1366 		if (bh)
1367 			bh_lru_install(bh);
1368 	} else
1369 		touch_buffer(bh);
1370 
1371 	return bh;
1372 }
1373 EXPORT_SYMBOL(__find_get_block);
1374 
1375 /*
1376  * __getblk will locate (and, if necessary, create) the buffer_head
1377  * which corresponds to the passed block_device, block and size. The
1378  * returned buffer has its reference count incremented.
1379  *
1380  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1381  * attempt is failing.  FIXME, perhaps?
1382  */
1383 struct buffer_head *
1384 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1385 {
1386 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1387 
1388 	might_sleep();
1389 	if (bh == NULL)
1390 		bh = __getblk_slow(bdev, block, size);
1391 	return bh;
1392 }
1393 EXPORT_SYMBOL(__getblk);
1394 
1395 /*
1396  * Do async read-ahead on a buffer..
1397  */
1398 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1399 {
1400 	struct buffer_head *bh = __getblk(bdev, block, size);
1401 	if (likely(bh)) {
1402 		ll_rw_block(READA, 1, &bh);
1403 		brelse(bh);
1404 	}
1405 }
1406 EXPORT_SYMBOL(__breadahead);
1407 
1408 /**
1409  *  __bread() - reads a specified block and returns the bh
1410  *  @bdev: the block_device to read from
1411  *  @block: number of block
1412  *  @size: size (in bytes) to read
1413  *
1414  *  Reads a specified block, and returns buffer head that contains it.
1415  *  It returns NULL if the block was unreadable.
1416  */
1417 struct buffer_head *
1418 __bread(struct block_device *bdev, sector_t block, unsigned size)
1419 {
1420 	struct buffer_head *bh = __getblk(bdev, block, size);
1421 
1422 	if (likely(bh) && !buffer_uptodate(bh))
1423 		bh = __bread_slow(bh);
1424 	return bh;
1425 }
1426 EXPORT_SYMBOL(__bread);
1427 
1428 /*
1429  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430  * This doesn't race because it runs in each cpu either in irq
1431  * or with preempt disabled.
1432  */
1433 static void invalidate_bh_lru(void *arg)
1434 {
1435 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1436 	int i;
1437 
1438 	for (i = 0; i < BH_LRU_SIZE; i++) {
1439 		brelse(b->bhs[i]);
1440 		b->bhs[i] = NULL;
1441 	}
1442 	put_cpu_var(bh_lrus);
1443 }
1444 
1445 static bool has_bh_in_lru(int cpu, void *dummy)
1446 {
1447 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448 	int i;
1449 
1450 	for (i = 0; i < BH_LRU_SIZE; i++) {
1451 		if (b->bhs[i])
1452 			return 1;
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 void invalidate_bh_lrus(void)
1459 {
1460 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1461 }
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463 
1464 void set_bh_page(struct buffer_head *bh,
1465 		struct page *page, unsigned long offset)
1466 {
1467 	bh->b_page = page;
1468 	BUG_ON(offset >= PAGE_SIZE);
1469 	if (PageHighMem(page))
1470 		/*
1471 		 * This catches illegal uses and preserves the offset:
1472 		 */
1473 		bh->b_data = (char *)(0 + offset);
1474 	else
1475 		bh->b_data = page_address(page) + offset;
1476 }
1477 EXPORT_SYMBOL(set_bh_page);
1478 
1479 /*
1480  * Called when truncating a buffer on a page completely.
1481  */
1482 
1483 /* Bits that are cleared during an invalidate */
1484 #define BUFFER_FLAGS_DISCARD \
1485 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 	 1 << BH_Delay | 1 << BH_Unwritten)
1487 
1488 static void discard_buffer(struct buffer_head * bh)
1489 {
1490 	unsigned long b_state, b_state_old;
1491 
1492 	lock_buffer(bh);
1493 	clear_buffer_dirty(bh);
1494 	bh->b_bdev = NULL;
1495 	b_state = bh->b_state;
1496 	for (;;) {
1497 		b_state_old = cmpxchg(&bh->b_state, b_state,
1498 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1499 		if (b_state_old == b_state)
1500 			break;
1501 		b_state = b_state_old;
1502 	}
1503 	unlock_buffer(bh);
1504 }
1505 
1506 /**
1507  * block_invalidatepage - invalidate part or all of a buffer-backed page
1508  *
1509  * @page: the page which is affected
1510  * @offset: start of the range to invalidate
1511  * @length: length of the range to invalidate
1512  *
1513  * block_invalidatepage() is called when all or part of the page has become
1514  * invalidated by a truncate operation.
1515  *
1516  * block_invalidatepage() does not have to release all buffers, but it must
1517  * ensure that no dirty buffer is left outside @offset and that no I/O
1518  * is underway against any of the blocks which are outside the truncation
1519  * point.  Because the caller is about to free (and possibly reuse) those
1520  * blocks on-disk.
1521  */
1522 void block_invalidatepage(struct page *page, unsigned int offset,
1523 			  unsigned int length)
1524 {
1525 	struct buffer_head *head, *bh, *next;
1526 	unsigned int curr_off = 0;
1527 	unsigned int stop = length + offset;
1528 
1529 	BUG_ON(!PageLocked(page));
1530 	if (!page_has_buffers(page))
1531 		goto out;
1532 
1533 	/*
1534 	 * Check for overflow
1535 	 */
1536 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1537 
1538 	head = page_buffers(page);
1539 	bh = head;
1540 	do {
1541 		unsigned int next_off = curr_off + bh->b_size;
1542 		next = bh->b_this_page;
1543 
1544 		/*
1545 		 * Are we still fully in range ?
1546 		 */
1547 		if (next_off > stop)
1548 			goto out;
1549 
1550 		/*
1551 		 * is this block fully invalidated?
1552 		 */
1553 		if (offset <= curr_off)
1554 			discard_buffer(bh);
1555 		curr_off = next_off;
1556 		bh = next;
1557 	} while (bh != head);
1558 
1559 	/*
1560 	 * We release buffers only if the entire page is being invalidated.
1561 	 * The get_block cached value has been unconditionally invalidated,
1562 	 * so real IO is not possible anymore.
1563 	 */
1564 	if (offset == 0)
1565 		try_to_release_page(page, 0);
1566 out:
1567 	return;
1568 }
1569 EXPORT_SYMBOL(block_invalidatepage);
1570 
1571 
1572 /*
1573  * We attach and possibly dirty the buffers atomically wrt
1574  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1575  * is already excluded via the page lock.
1576  */
1577 void create_empty_buffers(struct page *page,
1578 			unsigned long blocksize, unsigned long b_state)
1579 {
1580 	struct buffer_head *bh, *head, *tail;
1581 
1582 	head = alloc_page_buffers(page, blocksize, 1);
1583 	bh = head;
1584 	do {
1585 		bh->b_state |= b_state;
1586 		tail = bh;
1587 		bh = bh->b_this_page;
1588 	} while (bh);
1589 	tail->b_this_page = head;
1590 
1591 	spin_lock(&page->mapping->private_lock);
1592 	if (PageUptodate(page) || PageDirty(page)) {
1593 		bh = head;
1594 		do {
1595 			if (PageDirty(page))
1596 				set_buffer_dirty(bh);
1597 			if (PageUptodate(page))
1598 				set_buffer_uptodate(bh);
1599 			bh = bh->b_this_page;
1600 		} while (bh != head);
1601 	}
1602 	attach_page_buffers(page, head);
1603 	spin_unlock(&page->mapping->private_lock);
1604 }
1605 EXPORT_SYMBOL(create_empty_buffers);
1606 
1607 /*
1608  * We are taking a block for data and we don't want any output from any
1609  * buffer-cache aliases starting from return from that function and
1610  * until the moment when something will explicitly mark the buffer
1611  * dirty (hopefully that will not happen until we will free that block ;-)
1612  * We don't even need to mark it not-uptodate - nobody can expect
1613  * anything from a newly allocated buffer anyway. We used to used
1614  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615  * don't want to mark the alias unmapped, for example - it would confuse
1616  * anyone who might pick it with bread() afterwards...
1617  *
1618  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1619  * be writeout I/O going on against recently-freed buffers.  We don't
1620  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621  * only if we really need to.  That happens here.
1622  */
1623 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1624 {
1625 	struct buffer_head *old_bh;
1626 
1627 	might_sleep();
1628 
1629 	old_bh = __find_get_block_slow(bdev, block);
1630 	if (old_bh) {
1631 		clear_buffer_dirty(old_bh);
1632 		wait_on_buffer(old_bh);
1633 		clear_buffer_req(old_bh);
1634 		__brelse(old_bh);
1635 	}
1636 }
1637 EXPORT_SYMBOL(unmap_underlying_metadata);
1638 
1639 /*
1640  * Size is a power-of-two in the range 512..PAGE_SIZE,
1641  * and the case we care about most is PAGE_SIZE.
1642  *
1643  * So this *could* possibly be written with those
1644  * constraints in mind (relevant mostly if some
1645  * architecture has a slow bit-scan instruction)
1646  */
1647 static inline int block_size_bits(unsigned int blocksize)
1648 {
1649 	return ilog2(blocksize);
1650 }
1651 
1652 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1653 {
1654 	BUG_ON(!PageLocked(page));
1655 
1656 	if (!page_has_buffers(page))
1657 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658 	return page_buffers(page);
1659 }
1660 
1661 /*
1662  * NOTE! All mapped/uptodate combinations are valid:
1663  *
1664  *	Mapped	Uptodate	Meaning
1665  *
1666  *	No	No		"unknown" - must do get_block()
1667  *	No	Yes		"hole" - zero-filled
1668  *	Yes	No		"allocated" - allocated on disk, not read in
1669  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1670  *
1671  * "Dirty" is valid only with the last case (mapped+uptodate).
1672  */
1673 
1674 /*
1675  * While block_write_full_page is writing back the dirty buffers under
1676  * the page lock, whoever dirtied the buffers may decide to clean them
1677  * again at any time.  We handle that by only looking at the buffer
1678  * state inside lock_buffer().
1679  *
1680  * If block_write_full_page() is called for regular writeback
1681  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682  * locked buffer.   This only can happen if someone has written the buffer
1683  * directly, with submit_bh().  At the address_space level PageWriteback
1684  * prevents this contention from occurring.
1685  *
1686  * If block_write_full_page() is called with wbc->sync_mode ==
1687  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688  * causes the writes to be flagged as synchronous writes.
1689  */
1690 static int __block_write_full_page(struct inode *inode, struct page *page,
1691 			get_block_t *get_block, struct writeback_control *wbc,
1692 			bh_end_io_t *handler)
1693 {
1694 	int err;
1695 	sector_t block;
1696 	sector_t last_block;
1697 	struct buffer_head *bh, *head;
1698 	unsigned int blocksize, bbits;
1699 	int nr_underway = 0;
1700 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1701 			WRITE_SYNC : WRITE);
1702 
1703 	head = create_page_buffers(page, inode,
1704 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1705 
1706 	/*
1707 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1708 	 * here, and the (potentially unmapped) buffers may become dirty at
1709 	 * any time.  If a buffer becomes dirty here after we've inspected it
1710 	 * then we just miss that fact, and the page stays dirty.
1711 	 *
1712 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1713 	 * handle that here by just cleaning them.
1714 	 */
1715 
1716 	bh = head;
1717 	blocksize = bh->b_size;
1718 	bbits = block_size_bits(blocksize);
1719 
1720 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1721 	last_block = (i_size_read(inode) - 1) >> bbits;
1722 
1723 	/*
1724 	 * Get all the dirty buffers mapped to disk addresses and
1725 	 * handle any aliases from the underlying blockdev's mapping.
1726 	 */
1727 	do {
1728 		if (block > last_block) {
1729 			/*
1730 			 * mapped buffers outside i_size will occur, because
1731 			 * this page can be outside i_size when there is a
1732 			 * truncate in progress.
1733 			 */
1734 			/*
1735 			 * The buffer was zeroed by block_write_full_page()
1736 			 */
1737 			clear_buffer_dirty(bh);
1738 			set_buffer_uptodate(bh);
1739 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1740 			   buffer_dirty(bh)) {
1741 			WARN_ON(bh->b_size != blocksize);
1742 			err = get_block(inode, block, bh, 1);
1743 			if (err)
1744 				goto recover;
1745 			clear_buffer_delay(bh);
1746 			if (buffer_new(bh)) {
1747 				/* blockdev mappings never come here */
1748 				clear_buffer_new(bh);
1749 				unmap_underlying_metadata(bh->b_bdev,
1750 							bh->b_blocknr);
1751 			}
1752 		}
1753 		bh = bh->b_this_page;
1754 		block++;
1755 	} while (bh != head);
1756 
1757 	do {
1758 		if (!buffer_mapped(bh))
1759 			continue;
1760 		/*
1761 		 * If it's a fully non-blocking write attempt and we cannot
1762 		 * lock the buffer then redirty the page.  Note that this can
1763 		 * potentially cause a busy-wait loop from writeback threads
1764 		 * and kswapd activity, but those code paths have their own
1765 		 * higher-level throttling.
1766 		 */
1767 		if (wbc->sync_mode != WB_SYNC_NONE) {
1768 			lock_buffer(bh);
1769 		} else if (!trylock_buffer(bh)) {
1770 			redirty_page_for_writepage(wbc, page);
1771 			continue;
1772 		}
1773 		if (test_clear_buffer_dirty(bh)) {
1774 			mark_buffer_async_write_endio(bh, handler);
1775 		} else {
1776 			unlock_buffer(bh);
1777 		}
1778 	} while ((bh = bh->b_this_page) != head);
1779 
1780 	/*
1781 	 * The page and its buffers are protected by PageWriteback(), so we can
1782 	 * drop the bh refcounts early.
1783 	 */
1784 	BUG_ON(PageWriteback(page));
1785 	set_page_writeback(page);
1786 
1787 	do {
1788 		struct buffer_head *next = bh->b_this_page;
1789 		if (buffer_async_write(bh)) {
1790 			submit_bh(write_op, bh);
1791 			nr_underway++;
1792 		}
1793 		bh = next;
1794 	} while (bh != head);
1795 	unlock_page(page);
1796 
1797 	err = 0;
1798 done:
1799 	if (nr_underway == 0) {
1800 		/*
1801 		 * The page was marked dirty, but the buffers were
1802 		 * clean.  Someone wrote them back by hand with
1803 		 * ll_rw_block/submit_bh.  A rare case.
1804 		 */
1805 		end_page_writeback(page);
1806 
1807 		/*
1808 		 * The page and buffer_heads can be released at any time from
1809 		 * here on.
1810 		 */
1811 	}
1812 	return err;
1813 
1814 recover:
1815 	/*
1816 	 * ENOSPC, or some other error.  We may already have added some
1817 	 * blocks to the file, so we need to write these out to avoid
1818 	 * exposing stale data.
1819 	 * The page is currently locked and not marked for writeback
1820 	 */
1821 	bh = head;
1822 	/* Recovery: lock and submit the mapped buffers */
1823 	do {
1824 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1825 		    !buffer_delay(bh)) {
1826 			lock_buffer(bh);
1827 			mark_buffer_async_write_endio(bh, handler);
1828 		} else {
1829 			/*
1830 			 * The buffer may have been set dirty during
1831 			 * attachment to a dirty page.
1832 			 */
1833 			clear_buffer_dirty(bh);
1834 		}
1835 	} while ((bh = bh->b_this_page) != head);
1836 	SetPageError(page);
1837 	BUG_ON(PageWriteback(page));
1838 	mapping_set_error(page->mapping, err);
1839 	set_page_writeback(page);
1840 	do {
1841 		struct buffer_head *next = bh->b_this_page;
1842 		if (buffer_async_write(bh)) {
1843 			clear_buffer_dirty(bh);
1844 			submit_bh(write_op, bh);
1845 			nr_underway++;
1846 		}
1847 		bh = next;
1848 	} while (bh != head);
1849 	unlock_page(page);
1850 	goto done;
1851 }
1852 
1853 /*
1854  * If a page has any new buffers, zero them out here, and mark them uptodate
1855  * and dirty so they'll be written out (in order to prevent uninitialised
1856  * block data from leaking). And clear the new bit.
1857  */
1858 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859 {
1860 	unsigned int block_start, block_end;
1861 	struct buffer_head *head, *bh;
1862 
1863 	BUG_ON(!PageLocked(page));
1864 	if (!page_has_buffers(page))
1865 		return;
1866 
1867 	bh = head = page_buffers(page);
1868 	block_start = 0;
1869 	do {
1870 		block_end = block_start + bh->b_size;
1871 
1872 		if (buffer_new(bh)) {
1873 			if (block_end > from && block_start < to) {
1874 				if (!PageUptodate(page)) {
1875 					unsigned start, size;
1876 
1877 					start = max(from, block_start);
1878 					size = min(to, block_end) - start;
1879 
1880 					zero_user(page, start, size);
1881 					set_buffer_uptodate(bh);
1882 				}
1883 
1884 				clear_buffer_new(bh);
1885 				mark_buffer_dirty(bh);
1886 			}
1887 		}
1888 
1889 		block_start = block_end;
1890 		bh = bh->b_this_page;
1891 	} while (bh != head);
1892 }
1893 EXPORT_SYMBOL(page_zero_new_buffers);
1894 
1895 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1896 		get_block_t *get_block)
1897 {
1898 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1899 	unsigned to = from + len;
1900 	struct inode *inode = page->mapping->host;
1901 	unsigned block_start, block_end;
1902 	sector_t block;
1903 	int err = 0;
1904 	unsigned blocksize, bbits;
1905 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1906 
1907 	BUG_ON(!PageLocked(page));
1908 	BUG_ON(from > PAGE_CACHE_SIZE);
1909 	BUG_ON(to > PAGE_CACHE_SIZE);
1910 	BUG_ON(from > to);
1911 
1912 	head = create_page_buffers(page, inode, 0);
1913 	blocksize = head->b_size;
1914 	bbits = block_size_bits(blocksize);
1915 
1916 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1917 
1918 	for(bh = head, block_start = 0; bh != head || !block_start;
1919 	    block++, block_start=block_end, bh = bh->b_this_page) {
1920 		block_end = block_start + blocksize;
1921 		if (block_end <= from || block_start >= to) {
1922 			if (PageUptodate(page)) {
1923 				if (!buffer_uptodate(bh))
1924 					set_buffer_uptodate(bh);
1925 			}
1926 			continue;
1927 		}
1928 		if (buffer_new(bh))
1929 			clear_buffer_new(bh);
1930 		if (!buffer_mapped(bh)) {
1931 			WARN_ON(bh->b_size != blocksize);
1932 			err = get_block(inode, block, bh, 1);
1933 			if (err)
1934 				break;
1935 			if (buffer_new(bh)) {
1936 				unmap_underlying_metadata(bh->b_bdev,
1937 							bh->b_blocknr);
1938 				if (PageUptodate(page)) {
1939 					clear_buffer_new(bh);
1940 					set_buffer_uptodate(bh);
1941 					mark_buffer_dirty(bh);
1942 					continue;
1943 				}
1944 				if (block_end > to || block_start < from)
1945 					zero_user_segments(page,
1946 						to, block_end,
1947 						block_start, from);
1948 				continue;
1949 			}
1950 		}
1951 		if (PageUptodate(page)) {
1952 			if (!buffer_uptodate(bh))
1953 				set_buffer_uptodate(bh);
1954 			continue;
1955 		}
1956 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1957 		    !buffer_unwritten(bh) &&
1958 		     (block_start < from || block_end > to)) {
1959 			ll_rw_block(READ, 1, &bh);
1960 			*wait_bh++=bh;
1961 		}
1962 	}
1963 	/*
1964 	 * If we issued read requests - let them complete.
1965 	 */
1966 	while(wait_bh > wait) {
1967 		wait_on_buffer(*--wait_bh);
1968 		if (!buffer_uptodate(*wait_bh))
1969 			err = -EIO;
1970 	}
1971 	if (unlikely(err))
1972 		page_zero_new_buffers(page, from, to);
1973 	return err;
1974 }
1975 EXPORT_SYMBOL(__block_write_begin);
1976 
1977 static int __block_commit_write(struct inode *inode, struct page *page,
1978 		unsigned from, unsigned to)
1979 {
1980 	unsigned block_start, block_end;
1981 	int partial = 0;
1982 	unsigned blocksize;
1983 	struct buffer_head *bh, *head;
1984 
1985 	bh = head = page_buffers(page);
1986 	blocksize = bh->b_size;
1987 
1988 	block_start = 0;
1989 	do {
1990 		block_end = block_start + blocksize;
1991 		if (block_end <= from || block_start >= to) {
1992 			if (!buffer_uptodate(bh))
1993 				partial = 1;
1994 		} else {
1995 			set_buffer_uptodate(bh);
1996 			mark_buffer_dirty(bh);
1997 		}
1998 		clear_buffer_new(bh);
1999 
2000 		block_start = block_end;
2001 		bh = bh->b_this_page;
2002 	} while (bh != head);
2003 
2004 	/*
2005 	 * If this is a partial write which happened to make all buffers
2006 	 * uptodate then we can optimize away a bogus readpage() for
2007 	 * the next read(). Here we 'discover' whether the page went
2008 	 * uptodate as a result of this (potentially partial) write.
2009 	 */
2010 	if (!partial)
2011 		SetPageUptodate(page);
2012 	return 0;
2013 }
2014 
2015 /*
2016  * block_write_begin takes care of the basic task of block allocation and
2017  * bringing partial write blocks uptodate first.
2018  *
2019  * The filesystem needs to handle block truncation upon failure.
2020  */
2021 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2022 		unsigned flags, struct page **pagep, get_block_t *get_block)
2023 {
2024 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2025 	struct page *page;
2026 	int status;
2027 
2028 	page = grab_cache_page_write_begin(mapping, index, flags);
2029 	if (!page)
2030 		return -ENOMEM;
2031 
2032 	status = __block_write_begin(page, pos, len, get_block);
2033 	if (unlikely(status)) {
2034 		unlock_page(page);
2035 		page_cache_release(page);
2036 		page = NULL;
2037 	}
2038 
2039 	*pagep = page;
2040 	return status;
2041 }
2042 EXPORT_SYMBOL(block_write_begin);
2043 
2044 int block_write_end(struct file *file, struct address_space *mapping,
2045 			loff_t pos, unsigned len, unsigned copied,
2046 			struct page *page, void *fsdata)
2047 {
2048 	struct inode *inode = mapping->host;
2049 	unsigned start;
2050 
2051 	start = pos & (PAGE_CACHE_SIZE - 1);
2052 
2053 	if (unlikely(copied < len)) {
2054 		/*
2055 		 * The buffers that were written will now be uptodate, so we
2056 		 * don't have to worry about a readpage reading them and
2057 		 * overwriting a partial write. However if we have encountered
2058 		 * a short write and only partially written into a buffer, it
2059 		 * will not be marked uptodate, so a readpage might come in and
2060 		 * destroy our partial write.
2061 		 *
2062 		 * Do the simplest thing, and just treat any short write to a
2063 		 * non uptodate page as a zero-length write, and force the
2064 		 * caller to redo the whole thing.
2065 		 */
2066 		if (!PageUptodate(page))
2067 			copied = 0;
2068 
2069 		page_zero_new_buffers(page, start+copied, start+len);
2070 	}
2071 	flush_dcache_page(page);
2072 
2073 	/* This could be a short (even 0-length) commit */
2074 	__block_commit_write(inode, page, start, start+copied);
2075 
2076 	return copied;
2077 }
2078 EXPORT_SYMBOL(block_write_end);
2079 
2080 int generic_write_end(struct file *file, struct address_space *mapping,
2081 			loff_t pos, unsigned len, unsigned copied,
2082 			struct page *page, void *fsdata)
2083 {
2084 	struct inode *inode = mapping->host;
2085 	int i_size_changed = 0;
2086 
2087 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2088 
2089 	/*
2090 	 * No need to use i_size_read() here, the i_size
2091 	 * cannot change under us because we hold i_mutex.
2092 	 *
2093 	 * But it's important to update i_size while still holding page lock:
2094 	 * page writeout could otherwise come in and zero beyond i_size.
2095 	 */
2096 	if (pos+copied > inode->i_size) {
2097 		i_size_write(inode, pos+copied);
2098 		i_size_changed = 1;
2099 	}
2100 
2101 	unlock_page(page);
2102 	page_cache_release(page);
2103 
2104 	/*
2105 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2106 	 * makes the holding time of page lock longer. Second, it forces lock
2107 	 * ordering of page lock and transaction start for journaling
2108 	 * filesystems.
2109 	 */
2110 	if (i_size_changed)
2111 		mark_inode_dirty(inode);
2112 
2113 	return copied;
2114 }
2115 EXPORT_SYMBOL(generic_write_end);
2116 
2117 /*
2118  * block_is_partially_uptodate checks whether buffers within a page are
2119  * uptodate or not.
2120  *
2121  * Returns true if all buffers which correspond to a file portion
2122  * we want to read are uptodate.
2123  */
2124 int block_is_partially_uptodate(struct page *page, unsigned long from,
2125 					unsigned long count)
2126 {
2127 	unsigned block_start, block_end, blocksize;
2128 	unsigned to;
2129 	struct buffer_head *bh, *head;
2130 	int ret = 1;
2131 
2132 	if (!page_has_buffers(page))
2133 		return 0;
2134 
2135 	head = page_buffers(page);
2136 	blocksize = head->b_size;
2137 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2138 	to = from + to;
2139 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2140 		return 0;
2141 
2142 	bh = head;
2143 	block_start = 0;
2144 	do {
2145 		block_end = block_start + blocksize;
2146 		if (block_end > from && block_start < to) {
2147 			if (!buffer_uptodate(bh)) {
2148 				ret = 0;
2149 				break;
2150 			}
2151 			if (block_end >= to)
2152 				break;
2153 		}
2154 		block_start = block_end;
2155 		bh = bh->b_this_page;
2156 	} while (bh != head);
2157 
2158 	return ret;
2159 }
2160 EXPORT_SYMBOL(block_is_partially_uptodate);
2161 
2162 /*
2163  * Generic "read page" function for block devices that have the normal
2164  * get_block functionality. This is most of the block device filesystems.
2165  * Reads the page asynchronously --- the unlock_buffer() and
2166  * set/clear_buffer_uptodate() functions propagate buffer state into the
2167  * page struct once IO has completed.
2168  */
2169 int block_read_full_page(struct page *page, get_block_t *get_block)
2170 {
2171 	struct inode *inode = page->mapping->host;
2172 	sector_t iblock, lblock;
2173 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2174 	unsigned int blocksize, bbits;
2175 	int nr, i;
2176 	int fully_mapped = 1;
2177 
2178 	head = create_page_buffers(page, inode, 0);
2179 	blocksize = head->b_size;
2180 	bbits = block_size_bits(blocksize);
2181 
2182 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2183 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2184 	bh = head;
2185 	nr = 0;
2186 	i = 0;
2187 
2188 	do {
2189 		if (buffer_uptodate(bh))
2190 			continue;
2191 
2192 		if (!buffer_mapped(bh)) {
2193 			int err = 0;
2194 
2195 			fully_mapped = 0;
2196 			if (iblock < lblock) {
2197 				WARN_ON(bh->b_size != blocksize);
2198 				err = get_block(inode, iblock, bh, 0);
2199 				if (err)
2200 					SetPageError(page);
2201 			}
2202 			if (!buffer_mapped(bh)) {
2203 				zero_user(page, i * blocksize, blocksize);
2204 				if (!err)
2205 					set_buffer_uptodate(bh);
2206 				continue;
2207 			}
2208 			/*
2209 			 * get_block() might have updated the buffer
2210 			 * synchronously
2211 			 */
2212 			if (buffer_uptodate(bh))
2213 				continue;
2214 		}
2215 		arr[nr++] = bh;
2216 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2217 
2218 	if (fully_mapped)
2219 		SetPageMappedToDisk(page);
2220 
2221 	if (!nr) {
2222 		/*
2223 		 * All buffers are uptodate - we can set the page uptodate
2224 		 * as well. But not if get_block() returned an error.
2225 		 */
2226 		if (!PageError(page))
2227 			SetPageUptodate(page);
2228 		unlock_page(page);
2229 		return 0;
2230 	}
2231 
2232 	/* Stage two: lock the buffers */
2233 	for (i = 0; i < nr; i++) {
2234 		bh = arr[i];
2235 		lock_buffer(bh);
2236 		mark_buffer_async_read(bh);
2237 	}
2238 
2239 	/*
2240 	 * Stage 3: start the IO.  Check for uptodateness
2241 	 * inside the buffer lock in case another process reading
2242 	 * the underlying blockdev brought it uptodate (the sct fix).
2243 	 */
2244 	for (i = 0; i < nr; i++) {
2245 		bh = arr[i];
2246 		if (buffer_uptodate(bh))
2247 			end_buffer_async_read(bh, 1);
2248 		else
2249 			submit_bh(READ, bh);
2250 	}
2251 	return 0;
2252 }
2253 EXPORT_SYMBOL(block_read_full_page);
2254 
2255 /* utility function for filesystems that need to do work on expanding
2256  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2257  * deal with the hole.
2258  */
2259 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2260 {
2261 	struct address_space *mapping = inode->i_mapping;
2262 	struct page *page;
2263 	void *fsdata;
2264 	int err;
2265 
2266 	err = inode_newsize_ok(inode, size);
2267 	if (err)
2268 		goto out;
2269 
2270 	err = pagecache_write_begin(NULL, mapping, size, 0,
2271 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2272 				&page, &fsdata);
2273 	if (err)
2274 		goto out;
2275 
2276 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2277 	BUG_ON(err > 0);
2278 
2279 out:
2280 	return err;
2281 }
2282 EXPORT_SYMBOL(generic_cont_expand_simple);
2283 
2284 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2285 			    loff_t pos, loff_t *bytes)
2286 {
2287 	struct inode *inode = mapping->host;
2288 	unsigned blocksize = 1 << inode->i_blkbits;
2289 	struct page *page;
2290 	void *fsdata;
2291 	pgoff_t index, curidx;
2292 	loff_t curpos;
2293 	unsigned zerofrom, offset, len;
2294 	int err = 0;
2295 
2296 	index = pos >> PAGE_CACHE_SHIFT;
2297 	offset = pos & ~PAGE_CACHE_MASK;
2298 
2299 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2300 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2301 		if (zerofrom & (blocksize-1)) {
2302 			*bytes |= (blocksize-1);
2303 			(*bytes)++;
2304 		}
2305 		len = PAGE_CACHE_SIZE - zerofrom;
2306 
2307 		err = pagecache_write_begin(file, mapping, curpos, len,
2308 						AOP_FLAG_UNINTERRUPTIBLE,
2309 						&page, &fsdata);
2310 		if (err)
2311 			goto out;
2312 		zero_user(page, zerofrom, len);
2313 		err = pagecache_write_end(file, mapping, curpos, len, len,
2314 						page, fsdata);
2315 		if (err < 0)
2316 			goto out;
2317 		BUG_ON(err != len);
2318 		err = 0;
2319 
2320 		balance_dirty_pages_ratelimited(mapping);
2321 
2322 		if (unlikely(fatal_signal_pending(current))) {
2323 			err = -EINTR;
2324 			goto out;
2325 		}
2326 	}
2327 
2328 	/* page covers the boundary, find the boundary offset */
2329 	if (index == curidx) {
2330 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2331 		/* if we will expand the thing last block will be filled */
2332 		if (offset <= zerofrom) {
2333 			goto out;
2334 		}
2335 		if (zerofrom & (blocksize-1)) {
2336 			*bytes |= (blocksize-1);
2337 			(*bytes)++;
2338 		}
2339 		len = offset - zerofrom;
2340 
2341 		err = pagecache_write_begin(file, mapping, curpos, len,
2342 						AOP_FLAG_UNINTERRUPTIBLE,
2343 						&page, &fsdata);
2344 		if (err)
2345 			goto out;
2346 		zero_user(page, zerofrom, len);
2347 		err = pagecache_write_end(file, mapping, curpos, len, len,
2348 						page, fsdata);
2349 		if (err < 0)
2350 			goto out;
2351 		BUG_ON(err != len);
2352 		err = 0;
2353 	}
2354 out:
2355 	return err;
2356 }
2357 
2358 /*
2359  * For moronic filesystems that do not allow holes in file.
2360  * We may have to extend the file.
2361  */
2362 int cont_write_begin(struct file *file, struct address_space *mapping,
2363 			loff_t pos, unsigned len, unsigned flags,
2364 			struct page **pagep, void **fsdata,
2365 			get_block_t *get_block, loff_t *bytes)
2366 {
2367 	struct inode *inode = mapping->host;
2368 	unsigned blocksize = 1 << inode->i_blkbits;
2369 	unsigned zerofrom;
2370 	int err;
2371 
2372 	err = cont_expand_zero(file, mapping, pos, bytes);
2373 	if (err)
2374 		return err;
2375 
2376 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2377 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2378 		*bytes |= (blocksize-1);
2379 		(*bytes)++;
2380 	}
2381 
2382 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2383 }
2384 EXPORT_SYMBOL(cont_write_begin);
2385 
2386 int block_commit_write(struct page *page, unsigned from, unsigned to)
2387 {
2388 	struct inode *inode = page->mapping->host;
2389 	__block_commit_write(inode,page,from,to);
2390 	return 0;
2391 }
2392 EXPORT_SYMBOL(block_commit_write);
2393 
2394 /*
2395  * block_page_mkwrite() is not allowed to change the file size as it gets
2396  * called from a page fault handler when a page is first dirtied. Hence we must
2397  * be careful to check for EOF conditions here. We set the page up correctly
2398  * for a written page which means we get ENOSPC checking when writing into
2399  * holes and correct delalloc and unwritten extent mapping on filesystems that
2400  * support these features.
2401  *
2402  * We are not allowed to take the i_mutex here so we have to play games to
2403  * protect against truncate races as the page could now be beyond EOF.  Because
2404  * truncate writes the inode size before removing pages, once we have the
2405  * page lock we can determine safely if the page is beyond EOF. If it is not
2406  * beyond EOF, then the page is guaranteed safe against truncation until we
2407  * unlock the page.
2408  *
2409  * Direct callers of this function should protect against filesystem freezing
2410  * using sb_start_write() - sb_end_write() functions.
2411  */
2412 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2413 			 get_block_t get_block)
2414 {
2415 	struct page *page = vmf->page;
2416 	struct inode *inode = file_inode(vma->vm_file);
2417 	unsigned long end;
2418 	loff_t size;
2419 	int ret;
2420 
2421 	lock_page(page);
2422 	size = i_size_read(inode);
2423 	if ((page->mapping != inode->i_mapping) ||
2424 	    (page_offset(page) > size)) {
2425 		/* We overload EFAULT to mean page got truncated */
2426 		ret = -EFAULT;
2427 		goto out_unlock;
2428 	}
2429 
2430 	/* page is wholly or partially inside EOF */
2431 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2432 		end = size & ~PAGE_CACHE_MASK;
2433 	else
2434 		end = PAGE_CACHE_SIZE;
2435 
2436 	ret = __block_write_begin(page, 0, end, get_block);
2437 	if (!ret)
2438 		ret = block_commit_write(page, 0, end);
2439 
2440 	if (unlikely(ret < 0))
2441 		goto out_unlock;
2442 	set_page_dirty(page);
2443 	wait_for_stable_page(page);
2444 	return 0;
2445 out_unlock:
2446 	unlock_page(page);
2447 	return ret;
2448 }
2449 EXPORT_SYMBOL(__block_page_mkwrite);
2450 
2451 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2452 		   get_block_t get_block)
2453 {
2454 	int ret;
2455 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2456 
2457 	sb_start_pagefault(sb);
2458 
2459 	/*
2460 	 * Update file times before taking page lock. We may end up failing the
2461 	 * fault so this update may be superfluous but who really cares...
2462 	 */
2463 	file_update_time(vma->vm_file);
2464 
2465 	ret = __block_page_mkwrite(vma, vmf, get_block);
2466 	sb_end_pagefault(sb);
2467 	return block_page_mkwrite_return(ret);
2468 }
2469 EXPORT_SYMBOL(block_page_mkwrite);
2470 
2471 /*
2472  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2473  * immediately, while under the page lock.  So it needs a special end_io
2474  * handler which does not touch the bh after unlocking it.
2475  */
2476 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2477 {
2478 	__end_buffer_read_notouch(bh, uptodate);
2479 }
2480 
2481 /*
2482  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2483  * the page (converting it to circular linked list and taking care of page
2484  * dirty races).
2485  */
2486 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2487 {
2488 	struct buffer_head *bh;
2489 
2490 	BUG_ON(!PageLocked(page));
2491 
2492 	spin_lock(&page->mapping->private_lock);
2493 	bh = head;
2494 	do {
2495 		if (PageDirty(page))
2496 			set_buffer_dirty(bh);
2497 		if (!bh->b_this_page)
2498 			bh->b_this_page = head;
2499 		bh = bh->b_this_page;
2500 	} while (bh != head);
2501 	attach_page_buffers(page, head);
2502 	spin_unlock(&page->mapping->private_lock);
2503 }
2504 
2505 /*
2506  * On entry, the page is fully not uptodate.
2507  * On exit the page is fully uptodate in the areas outside (from,to)
2508  * The filesystem needs to handle block truncation upon failure.
2509  */
2510 int nobh_write_begin(struct address_space *mapping,
2511 			loff_t pos, unsigned len, unsigned flags,
2512 			struct page **pagep, void **fsdata,
2513 			get_block_t *get_block)
2514 {
2515 	struct inode *inode = mapping->host;
2516 	const unsigned blkbits = inode->i_blkbits;
2517 	const unsigned blocksize = 1 << blkbits;
2518 	struct buffer_head *head, *bh;
2519 	struct page *page;
2520 	pgoff_t index;
2521 	unsigned from, to;
2522 	unsigned block_in_page;
2523 	unsigned block_start, block_end;
2524 	sector_t block_in_file;
2525 	int nr_reads = 0;
2526 	int ret = 0;
2527 	int is_mapped_to_disk = 1;
2528 
2529 	index = pos >> PAGE_CACHE_SHIFT;
2530 	from = pos & (PAGE_CACHE_SIZE - 1);
2531 	to = from + len;
2532 
2533 	page = grab_cache_page_write_begin(mapping, index, flags);
2534 	if (!page)
2535 		return -ENOMEM;
2536 	*pagep = page;
2537 	*fsdata = NULL;
2538 
2539 	if (page_has_buffers(page)) {
2540 		ret = __block_write_begin(page, pos, len, get_block);
2541 		if (unlikely(ret))
2542 			goto out_release;
2543 		return ret;
2544 	}
2545 
2546 	if (PageMappedToDisk(page))
2547 		return 0;
2548 
2549 	/*
2550 	 * Allocate buffers so that we can keep track of state, and potentially
2551 	 * attach them to the page if an error occurs. In the common case of
2552 	 * no error, they will just be freed again without ever being attached
2553 	 * to the page (which is all OK, because we're under the page lock).
2554 	 *
2555 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2556 	 * than the circular one we're used to.
2557 	 */
2558 	head = alloc_page_buffers(page, blocksize, 0);
2559 	if (!head) {
2560 		ret = -ENOMEM;
2561 		goto out_release;
2562 	}
2563 
2564 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2565 
2566 	/*
2567 	 * We loop across all blocks in the page, whether or not they are
2568 	 * part of the affected region.  This is so we can discover if the
2569 	 * page is fully mapped-to-disk.
2570 	 */
2571 	for (block_start = 0, block_in_page = 0, bh = head;
2572 		  block_start < PAGE_CACHE_SIZE;
2573 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2574 		int create;
2575 
2576 		block_end = block_start + blocksize;
2577 		bh->b_state = 0;
2578 		create = 1;
2579 		if (block_start >= to)
2580 			create = 0;
2581 		ret = get_block(inode, block_in_file + block_in_page,
2582 					bh, create);
2583 		if (ret)
2584 			goto failed;
2585 		if (!buffer_mapped(bh))
2586 			is_mapped_to_disk = 0;
2587 		if (buffer_new(bh))
2588 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2589 		if (PageUptodate(page)) {
2590 			set_buffer_uptodate(bh);
2591 			continue;
2592 		}
2593 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2594 			zero_user_segments(page, block_start, from,
2595 							to, block_end);
2596 			continue;
2597 		}
2598 		if (buffer_uptodate(bh))
2599 			continue;	/* reiserfs does this */
2600 		if (block_start < from || block_end > to) {
2601 			lock_buffer(bh);
2602 			bh->b_end_io = end_buffer_read_nobh;
2603 			submit_bh(READ, bh);
2604 			nr_reads++;
2605 		}
2606 	}
2607 
2608 	if (nr_reads) {
2609 		/*
2610 		 * The page is locked, so these buffers are protected from
2611 		 * any VM or truncate activity.  Hence we don't need to care
2612 		 * for the buffer_head refcounts.
2613 		 */
2614 		for (bh = head; bh; bh = bh->b_this_page) {
2615 			wait_on_buffer(bh);
2616 			if (!buffer_uptodate(bh))
2617 				ret = -EIO;
2618 		}
2619 		if (ret)
2620 			goto failed;
2621 	}
2622 
2623 	if (is_mapped_to_disk)
2624 		SetPageMappedToDisk(page);
2625 
2626 	*fsdata = head; /* to be released by nobh_write_end */
2627 
2628 	return 0;
2629 
2630 failed:
2631 	BUG_ON(!ret);
2632 	/*
2633 	 * Error recovery is a bit difficult. We need to zero out blocks that
2634 	 * were newly allocated, and dirty them to ensure they get written out.
2635 	 * Buffers need to be attached to the page at this point, otherwise
2636 	 * the handling of potential IO errors during writeout would be hard
2637 	 * (could try doing synchronous writeout, but what if that fails too?)
2638 	 */
2639 	attach_nobh_buffers(page, head);
2640 	page_zero_new_buffers(page, from, to);
2641 
2642 out_release:
2643 	unlock_page(page);
2644 	page_cache_release(page);
2645 	*pagep = NULL;
2646 
2647 	return ret;
2648 }
2649 EXPORT_SYMBOL(nobh_write_begin);
2650 
2651 int nobh_write_end(struct file *file, struct address_space *mapping,
2652 			loff_t pos, unsigned len, unsigned copied,
2653 			struct page *page, void *fsdata)
2654 {
2655 	struct inode *inode = page->mapping->host;
2656 	struct buffer_head *head = fsdata;
2657 	struct buffer_head *bh;
2658 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2659 
2660 	if (unlikely(copied < len) && head)
2661 		attach_nobh_buffers(page, head);
2662 	if (page_has_buffers(page))
2663 		return generic_write_end(file, mapping, pos, len,
2664 					copied, page, fsdata);
2665 
2666 	SetPageUptodate(page);
2667 	set_page_dirty(page);
2668 	if (pos+copied > inode->i_size) {
2669 		i_size_write(inode, pos+copied);
2670 		mark_inode_dirty(inode);
2671 	}
2672 
2673 	unlock_page(page);
2674 	page_cache_release(page);
2675 
2676 	while (head) {
2677 		bh = head;
2678 		head = head->b_this_page;
2679 		free_buffer_head(bh);
2680 	}
2681 
2682 	return copied;
2683 }
2684 EXPORT_SYMBOL(nobh_write_end);
2685 
2686 /*
2687  * nobh_writepage() - based on block_full_write_page() except
2688  * that it tries to operate without attaching bufferheads to
2689  * the page.
2690  */
2691 int nobh_writepage(struct page *page, get_block_t *get_block,
2692 			struct writeback_control *wbc)
2693 {
2694 	struct inode * const inode = page->mapping->host;
2695 	loff_t i_size = i_size_read(inode);
2696 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2697 	unsigned offset;
2698 	int ret;
2699 
2700 	/* Is the page fully inside i_size? */
2701 	if (page->index < end_index)
2702 		goto out;
2703 
2704 	/* Is the page fully outside i_size? (truncate in progress) */
2705 	offset = i_size & (PAGE_CACHE_SIZE-1);
2706 	if (page->index >= end_index+1 || !offset) {
2707 		/*
2708 		 * The page may have dirty, unmapped buffers.  For example,
2709 		 * they may have been added in ext3_writepage().  Make them
2710 		 * freeable here, so the page does not leak.
2711 		 */
2712 #if 0
2713 		/* Not really sure about this  - do we need this ? */
2714 		if (page->mapping->a_ops->invalidatepage)
2715 			page->mapping->a_ops->invalidatepage(page, offset);
2716 #endif
2717 		unlock_page(page);
2718 		return 0; /* don't care */
2719 	}
2720 
2721 	/*
2722 	 * The page straddles i_size.  It must be zeroed out on each and every
2723 	 * writepage invocation because it may be mmapped.  "A file is mapped
2724 	 * in multiples of the page size.  For a file that is not a multiple of
2725 	 * the  page size, the remaining memory is zeroed when mapped, and
2726 	 * writes to that region are not written out to the file."
2727 	 */
2728 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2729 out:
2730 	ret = mpage_writepage(page, get_block, wbc);
2731 	if (ret == -EAGAIN)
2732 		ret = __block_write_full_page(inode, page, get_block, wbc,
2733 					      end_buffer_async_write);
2734 	return ret;
2735 }
2736 EXPORT_SYMBOL(nobh_writepage);
2737 
2738 int nobh_truncate_page(struct address_space *mapping,
2739 			loff_t from, get_block_t *get_block)
2740 {
2741 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2742 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2743 	unsigned blocksize;
2744 	sector_t iblock;
2745 	unsigned length, pos;
2746 	struct inode *inode = mapping->host;
2747 	struct page *page;
2748 	struct buffer_head map_bh;
2749 	int err;
2750 
2751 	blocksize = 1 << inode->i_blkbits;
2752 	length = offset & (blocksize - 1);
2753 
2754 	/* Block boundary? Nothing to do */
2755 	if (!length)
2756 		return 0;
2757 
2758 	length = blocksize - length;
2759 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2760 
2761 	page = grab_cache_page(mapping, index);
2762 	err = -ENOMEM;
2763 	if (!page)
2764 		goto out;
2765 
2766 	if (page_has_buffers(page)) {
2767 has_buffers:
2768 		unlock_page(page);
2769 		page_cache_release(page);
2770 		return block_truncate_page(mapping, from, get_block);
2771 	}
2772 
2773 	/* Find the buffer that contains "offset" */
2774 	pos = blocksize;
2775 	while (offset >= pos) {
2776 		iblock++;
2777 		pos += blocksize;
2778 	}
2779 
2780 	map_bh.b_size = blocksize;
2781 	map_bh.b_state = 0;
2782 	err = get_block(inode, iblock, &map_bh, 0);
2783 	if (err)
2784 		goto unlock;
2785 	/* unmapped? It's a hole - nothing to do */
2786 	if (!buffer_mapped(&map_bh))
2787 		goto unlock;
2788 
2789 	/* Ok, it's mapped. Make sure it's up-to-date */
2790 	if (!PageUptodate(page)) {
2791 		err = mapping->a_ops->readpage(NULL, page);
2792 		if (err) {
2793 			page_cache_release(page);
2794 			goto out;
2795 		}
2796 		lock_page(page);
2797 		if (!PageUptodate(page)) {
2798 			err = -EIO;
2799 			goto unlock;
2800 		}
2801 		if (page_has_buffers(page))
2802 			goto has_buffers;
2803 	}
2804 	zero_user(page, offset, length);
2805 	set_page_dirty(page);
2806 	err = 0;
2807 
2808 unlock:
2809 	unlock_page(page);
2810 	page_cache_release(page);
2811 out:
2812 	return err;
2813 }
2814 EXPORT_SYMBOL(nobh_truncate_page);
2815 
2816 int block_truncate_page(struct address_space *mapping,
2817 			loff_t from, get_block_t *get_block)
2818 {
2819 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2820 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2821 	unsigned blocksize;
2822 	sector_t iblock;
2823 	unsigned length, pos;
2824 	struct inode *inode = mapping->host;
2825 	struct page *page;
2826 	struct buffer_head *bh;
2827 	int err;
2828 
2829 	blocksize = 1 << inode->i_blkbits;
2830 	length = offset & (blocksize - 1);
2831 
2832 	/* Block boundary? Nothing to do */
2833 	if (!length)
2834 		return 0;
2835 
2836 	length = blocksize - length;
2837 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2838 
2839 	page = grab_cache_page(mapping, index);
2840 	err = -ENOMEM;
2841 	if (!page)
2842 		goto out;
2843 
2844 	if (!page_has_buffers(page))
2845 		create_empty_buffers(page, blocksize, 0);
2846 
2847 	/* Find the buffer that contains "offset" */
2848 	bh = page_buffers(page);
2849 	pos = blocksize;
2850 	while (offset >= pos) {
2851 		bh = bh->b_this_page;
2852 		iblock++;
2853 		pos += blocksize;
2854 	}
2855 
2856 	err = 0;
2857 	if (!buffer_mapped(bh)) {
2858 		WARN_ON(bh->b_size != blocksize);
2859 		err = get_block(inode, iblock, bh, 0);
2860 		if (err)
2861 			goto unlock;
2862 		/* unmapped? It's a hole - nothing to do */
2863 		if (!buffer_mapped(bh))
2864 			goto unlock;
2865 	}
2866 
2867 	/* Ok, it's mapped. Make sure it's up-to-date */
2868 	if (PageUptodate(page))
2869 		set_buffer_uptodate(bh);
2870 
2871 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2872 		err = -EIO;
2873 		ll_rw_block(READ, 1, &bh);
2874 		wait_on_buffer(bh);
2875 		/* Uhhuh. Read error. Complain and punt. */
2876 		if (!buffer_uptodate(bh))
2877 			goto unlock;
2878 	}
2879 
2880 	zero_user(page, offset, length);
2881 	mark_buffer_dirty(bh);
2882 	err = 0;
2883 
2884 unlock:
2885 	unlock_page(page);
2886 	page_cache_release(page);
2887 out:
2888 	return err;
2889 }
2890 EXPORT_SYMBOL(block_truncate_page);
2891 
2892 /*
2893  * The generic ->writepage function for buffer-backed address_spaces
2894  */
2895 int block_write_full_page(struct page *page, get_block_t *get_block,
2896 			struct writeback_control *wbc)
2897 {
2898 	struct inode * const inode = page->mapping->host;
2899 	loff_t i_size = i_size_read(inode);
2900 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2901 	unsigned offset;
2902 
2903 	/* Is the page fully inside i_size? */
2904 	if (page->index < end_index)
2905 		return __block_write_full_page(inode, page, get_block, wbc,
2906 					       end_buffer_async_write);
2907 
2908 	/* Is the page fully outside i_size? (truncate in progress) */
2909 	offset = i_size & (PAGE_CACHE_SIZE-1);
2910 	if (page->index >= end_index+1 || !offset) {
2911 		/*
2912 		 * The page may have dirty, unmapped buffers.  For example,
2913 		 * they may have been added in ext3_writepage().  Make them
2914 		 * freeable here, so the page does not leak.
2915 		 */
2916 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2917 		unlock_page(page);
2918 		return 0; /* don't care */
2919 	}
2920 
2921 	/*
2922 	 * The page straddles i_size.  It must be zeroed out on each and every
2923 	 * writepage invocation because it may be mmapped.  "A file is mapped
2924 	 * in multiples of the page size.  For a file that is not a multiple of
2925 	 * the  page size, the remaining memory is zeroed when mapped, and
2926 	 * writes to that region are not written out to the file."
2927 	 */
2928 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2929 	return __block_write_full_page(inode, page, get_block, wbc,
2930 							end_buffer_async_write);
2931 }
2932 EXPORT_SYMBOL(block_write_full_page);
2933 
2934 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2935 			    get_block_t *get_block)
2936 {
2937 	struct buffer_head tmp;
2938 	struct inode *inode = mapping->host;
2939 	tmp.b_state = 0;
2940 	tmp.b_blocknr = 0;
2941 	tmp.b_size = 1 << inode->i_blkbits;
2942 	get_block(inode, block, &tmp, 0);
2943 	return tmp.b_blocknr;
2944 }
2945 EXPORT_SYMBOL(generic_block_bmap);
2946 
2947 static void end_bio_bh_io_sync(struct bio *bio, int err)
2948 {
2949 	struct buffer_head *bh = bio->bi_private;
2950 
2951 	if (err == -EOPNOTSUPP) {
2952 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2953 	}
2954 
2955 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2956 		set_bit(BH_Quiet, &bh->b_state);
2957 
2958 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2959 	bio_put(bio);
2960 }
2961 
2962 /*
2963  * This allows us to do IO even on the odd last sectors
2964  * of a device, even if the block size is some multiple
2965  * of the physical sector size.
2966  *
2967  * We'll just truncate the bio to the size of the device,
2968  * and clear the end of the buffer head manually.
2969  *
2970  * Truly out-of-range accesses will turn into actual IO
2971  * errors, this only handles the "we need to be able to
2972  * do IO at the final sector" case.
2973  */
2974 void guard_bio_eod(int rw, struct bio *bio)
2975 {
2976 	sector_t maxsector;
2977 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2978 	unsigned truncated_bytes;
2979 
2980 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2981 	if (!maxsector)
2982 		return;
2983 
2984 	/*
2985 	 * If the *whole* IO is past the end of the device,
2986 	 * let it through, and the IO layer will turn it into
2987 	 * an EIO.
2988 	 */
2989 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2990 		return;
2991 
2992 	maxsector -= bio->bi_iter.bi_sector;
2993 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2994 		return;
2995 
2996 	/* Uhhuh. We've got a bio that straddles the device size! */
2997 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2998 
2999 	/* Truncate the bio.. */
3000 	bio->bi_iter.bi_size -= truncated_bytes;
3001 	bvec->bv_len -= truncated_bytes;
3002 
3003 	/* ..and clear the end of the buffer for reads */
3004 	if ((rw & RW_MASK) == READ) {
3005 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3006 				truncated_bytes);
3007 	}
3008 }
3009 
3010 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3011 {
3012 	struct bio *bio;
3013 	int ret = 0;
3014 
3015 	BUG_ON(!buffer_locked(bh));
3016 	BUG_ON(!buffer_mapped(bh));
3017 	BUG_ON(!bh->b_end_io);
3018 	BUG_ON(buffer_delay(bh));
3019 	BUG_ON(buffer_unwritten(bh));
3020 
3021 	/*
3022 	 * Only clear out a write error when rewriting
3023 	 */
3024 	if (test_set_buffer_req(bh) && (rw & WRITE))
3025 		clear_buffer_write_io_error(bh);
3026 
3027 	/*
3028 	 * from here on down, it's all bio -- do the initial mapping,
3029 	 * submit_bio -> generic_make_request may further map this bio around
3030 	 */
3031 	bio = bio_alloc(GFP_NOIO, 1);
3032 
3033 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3034 	bio->bi_bdev = bh->b_bdev;
3035 	bio->bi_io_vec[0].bv_page = bh->b_page;
3036 	bio->bi_io_vec[0].bv_len = bh->b_size;
3037 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3038 
3039 	bio->bi_vcnt = 1;
3040 	bio->bi_iter.bi_size = bh->b_size;
3041 
3042 	bio->bi_end_io = end_bio_bh_io_sync;
3043 	bio->bi_private = bh;
3044 	bio->bi_flags |= bio_flags;
3045 
3046 	/* Take care of bh's that straddle the end of the device */
3047 	guard_bio_eod(rw, bio);
3048 
3049 	if (buffer_meta(bh))
3050 		rw |= REQ_META;
3051 	if (buffer_prio(bh))
3052 		rw |= REQ_PRIO;
3053 
3054 	bio_get(bio);
3055 	submit_bio(rw, bio);
3056 
3057 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3058 		ret = -EOPNOTSUPP;
3059 
3060 	bio_put(bio);
3061 	return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(_submit_bh);
3064 
3065 int submit_bh(int rw, struct buffer_head *bh)
3066 {
3067 	return _submit_bh(rw, bh, 0);
3068 }
3069 EXPORT_SYMBOL(submit_bh);
3070 
3071 /**
3072  * ll_rw_block: low-level access to block devices (DEPRECATED)
3073  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3074  * @nr: number of &struct buffer_heads in the array
3075  * @bhs: array of pointers to &struct buffer_head
3076  *
3077  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3078  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3079  * %READA option is described in the documentation for generic_make_request()
3080  * which ll_rw_block() calls.
3081  *
3082  * This function drops any buffer that it cannot get a lock on (with the
3083  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3084  * request, and any buffer that appears to be up-to-date when doing read
3085  * request.  Further it marks as clean buffers that are processed for
3086  * writing (the buffer cache won't assume that they are actually clean
3087  * until the buffer gets unlocked).
3088  *
3089  * ll_rw_block sets b_end_io to simple completion handler that marks
3090  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3091  * any waiters.
3092  *
3093  * All of the buffers must be for the same device, and must also be a
3094  * multiple of the current approved size for the device.
3095  */
3096 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3097 {
3098 	int i;
3099 
3100 	for (i = 0; i < nr; i++) {
3101 		struct buffer_head *bh = bhs[i];
3102 
3103 		if (!trylock_buffer(bh))
3104 			continue;
3105 		if (rw == WRITE) {
3106 			if (test_clear_buffer_dirty(bh)) {
3107 				bh->b_end_io = end_buffer_write_sync;
3108 				get_bh(bh);
3109 				submit_bh(WRITE, bh);
3110 				continue;
3111 			}
3112 		} else {
3113 			if (!buffer_uptodate(bh)) {
3114 				bh->b_end_io = end_buffer_read_sync;
3115 				get_bh(bh);
3116 				submit_bh(rw, bh);
3117 				continue;
3118 			}
3119 		}
3120 		unlock_buffer(bh);
3121 	}
3122 }
3123 EXPORT_SYMBOL(ll_rw_block);
3124 
3125 void write_dirty_buffer(struct buffer_head *bh, int rw)
3126 {
3127 	lock_buffer(bh);
3128 	if (!test_clear_buffer_dirty(bh)) {
3129 		unlock_buffer(bh);
3130 		return;
3131 	}
3132 	bh->b_end_io = end_buffer_write_sync;
3133 	get_bh(bh);
3134 	submit_bh(rw, bh);
3135 }
3136 EXPORT_SYMBOL(write_dirty_buffer);
3137 
3138 /*
3139  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3140  * and then start new I/O and then wait upon it.  The caller must have a ref on
3141  * the buffer_head.
3142  */
3143 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3144 {
3145 	int ret = 0;
3146 
3147 	WARN_ON(atomic_read(&bh->b_count) < 1);
3148 	lock_buffer(bh);
3149 	if (test_clear_buffer_dirty(bh)) {
3150 		get_bh(bh);
3151 		bh->b_end_io = end_buffer_write_sync;
3152 		ret = submit_bh(rw, bh);
3153 		wait_on_buffer(bh);
3154 		if (!ret && !buffer_uptodate(bh))
3155 			ret = -EIO;
3156 	} else {
3157 		unlock_buffer(bh);
3158 	}
3159 	return ret;
3160 }
3161 EXPORT_SYMBOL(__sync_dirty_buffer);
3162 
3163 int sync_dirty_buffer(struct buffer_head *bh)
3164 {
3165 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3166 }
3167 EXPORT_SYMBOL(sync_dirty_buffer);
3168 
3169 /*
3170  * try_to_free_buffers() checks if all the buffers on this particular page
3171  * are unused, and releases them if so.
3172  *
3173  * Exclusion against try_to_free_buffers may be obtained by either
3174  * locking the page or by holding its mapping's private_lock.
3175  *
3176  * If the page is dirty but all the buffers are clean then we need to
3177  * be sure to mark the page clean as well.  This is because the page
3178  * may be against a block device, and a later reattachment of buffers
3179  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3180  * filesystem data on the same device.
3181  *
3182  * The same applies to regular filesystem pages: if all the buffers are
3183  * clean then we set the page clean and proceed.  To do that, we require
3184  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3185  * private_lock.
3186  *
3187  * try_to_free_buffers() is non-blocking.
3188  */
3189 static inline int buffer_busy(struct buffer_head *bh)
3190 {
3191 	return atomic_read(&bh->b_count) |
3192 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3193 }
3194 
3195 static int
3196 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3197 {
3198 	struct buffer_head *head = page_buffers(page);
3199 	struct buffer_head *bh;
3200 
3201 	bh = head;
3202 	do {
3203 		if (buffer_write_io_error(bh) && page->mapping)
3204 			set_bit(AS_EIO, &page->mapping->flags);
3205 		if (buffer_busy(bh))
3206 			goto failed;
3207 		bh = bh->b_this_page;
3208 	} while (bh != head);
3209 
3210 	do {
3211 		struct buffer_head *next = bh->b_this_page;
3212 
3213 		if (bh->b_assoc_map)
3214 			__remove_assoc_queue(bh);
3215 		bh = next;
3216 	} while (bh != head);
3217 	*buffers_to_free = head;
3218 	__clear_page_buffers(page);
3219 	return 1;
3220 failed:
3221 	return 0;
3222 }
3223 
3224 int try_to_free_buffers(struct page *page)
3225 {
3226 	struct address_space * const mapping = page->mapping;
3227 	struct buffer_head *buffers_to_free = NULL;
3228 	int ret = 0;
3229 
3230 	BUG_ON(!PageLocked(page));
3231 	if (PageWriteback(page))
3232 		return 0;
3233 
3234 	if (mapping == NULL) {		/* can this still happen? */
3235 		ret = drop_buffers(page, &buffers_to_free);
3236 		goto out;
3237 	}
3238 
3239 	spin_lock(&mapping->private_lock);
3240 	ret = drop_buffers(page, &buffers_to_free);
3241 
3242 	/*
3243 	 * If the filesystem writes its buffers by hand (eg ext3)
3244 	 * then we can have clean buffers against a dirty page.  We
3245 	 * clean the page here; otherwise the VM will never notice
3246 	 * that the filesystem did any IO at all.
3247 	 *
3248 	 * Also, during truncate, discard_buffer will have marked all
3249 	 * the page's buffers clean.  We discover that here and clean
3250 	 * the page also.
3251 	 *
3252 	 * private_lock must be held over this entire operation in order
3253 	 * to synchronise against __set_page_dirty_buffers and prevent the
3254 	 * dirty bit from being lost.
3255 	 */
3256 	if (ret)
3257 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3258 	spin_unlock(&mapping->private_lock);
3259 out:
3260 	if (buffers_to_free) {
3261 		struct buffer_head *bh = buffers_to_free;
3262 
3263 		do {
3264 			struct buffer_head *next = bh->b_this_page;
3265 			free_buffer_head(bh);
3266 			bh = next;
3267 		} while (bh != buffers_to_free);
3268 	}
3269 	return ret;
3270 }
3271 EXPORT_SYMBOL(try_to_free_buffers);
3272 
3273 /*
3274  * There are no bdflush tunables left.  But distributions are
3275  * still running obsolete flush daemons, so we terminate them here.
3276  *
3277  * Use of bdflush() is deprecated and will be removed in a future kernel.
3278  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3279  */
3280 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3281 {
3282 	static int msg_count;
3283 
3284 	if (!capable(CAP_SYS_ADMIN))
3285 		return -EPERM;
3286 
3287 	if (msg_count < 5) {
3288 		msg_count++;
3289 		printk(KERN_INFO
3290 			"warning: process `%s' used the obsolete bdflush"
3291 			" system call\n", current->comm);
3292 		printk(KERN_INFO "Fix your initscripts?\n");
3293 	}
3294 
3295 	if (func == 1)
3296 		do_exit(0);
3297 	return 0;
3298 }
3299 
3300 /*
3301  * Buffer-head allocation
3302  */
3303 static struct kmem_cache *bh_cachep __read_mostly;
3304 
3305 /*
3306  * Once the number of bh's in the machine exceeds this level, we start
3307  * stripping them in writeback.
3308  */
3309 static unsigned long max_buffer_heads;
3310 
3311 int buffer_heads_over_limit;
3312 
3313 struct bh_accounting {
3314 	int nr;			/* Number of live bh's */
3315 	int ratelimit;		/* Limit cacheline bouncing */
3316 };
3317 
3318 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3319 
3320 static void recalc_bh_state(void)
3321 {
3322 	int i;
3323 	int tot = 0;
3324 
3325 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3326 		return;
3327 	__this_cpu_write(bh_accounting.ratelimit, 0);
3328 	for_each_online_cpu(i)
3329 		tot += per_cpu(bh_accounting, i).nr;
3330 	buffer_heads_over_limit = (tot > max_buffer_heads);
3331 }
3332 
3333 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3334 {
3335 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3336 	if (ret) {
3337 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3338 		preempt_disable();
3339 		__this_cpu_inc(bh_accounting.nr);
3340 		recalc_bh_state();
3341 		preempt_enable();
3342 	}
3343 	return ret;
3344 }
3345 EXPORT_SYMBOL(alloc_buffer_head);
3346 
3347 void free_buffer_head(struct buffer_head *bh)
3348 {
3349 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3350 	kmem_cache_free(bh_cachep, bh);
3351 	preempt_disable();
3352 	__this_cpu_dec(bh_accounting.nr);
3353 	recalc_bh_state();
3354 	preempt_enable();
3355 }
3356 EXPORT_SYMBOL(free_buffer_head);
3357 
3358 static void buffer_exit_cpu(int cpu)
3359 {
3360 	int i;
3361 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3362 
3363 	for (i = 0; i < BH_LRU_SIZE; i++) {
3364 		brelse(b->bhs[i]);
3365 		b->bhs[i] = NULL;
3366 	}
3367 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3368 	per_cpu(bh_accounting, cpu).nr = 0;
3369 }
3370 
3371 static int buffer_cpu_notify(struct notifier_block *self,
3372 			      unsigned long action, void *hcpu)
3373 {
3374 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3375 		buffer_exit_cpu((unsigned long)hcpu);
3376 	return NOTIFY_OK;
3377 }
3378 
3379 /**
3380  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3381  * @bh: struct buffer_head
3382  *
3383  * Return true if the buffer is up-to-date and false,
3384  * with the buffer locked, if not.
3385  */
3386 int bh_uptodate_or_lock(struct buffer_head *bh)
3387 {
3388 	if (!buffer_uptodate(bh)) {
3389 		lock_buffer(bh);
3390 		if (!buffer_uptodate(bh))
3391 			return 0;
3392 		unlock_buffer(bh);
3393 	}
3394 	return 1;
3395 }
3396 EXPORT_SYMBOL(bh_uptodate_or_lock);
3397 
3398 /**
3399  * bh_submit_read - Submit a locked buffer for reading
3400  * @bh: struct buffer_head
3401  *
3402  * Returns zero on success and -EIO on error.
3403  */
3404 int bh_submit_read(struct buffer_head *bh)
3405 {
3406 	BUG_ON(!buffer_locked(bh));
3407 
3408 	if (buffer_uptodate(bh)) {
3409 		unlock_buffer(bh);
3410 		return 0;
3411 	}
3412 
3413 	get_bh(bh);
3414 	bh->b_end_io = end_buffer_read_sync;
3415 	submit_bh(READ, bh);
3416 	wait_on_buffer(bh);
3417 	if (buffer_uptodate(bh))
3418 		return 0;
3419 	return -EIO;
3420 }
3421 EXPORT_SYMBOL(bh_submit_read);
3422 
3423 void __init buffer_init(void)
3424 {
3425 	unsigned long nrpages;
3426 
3427 	bh_cachep = kmem_cache_create("buffer_head",
3428 			sizeof(struct buffer_head), 0,
3429 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3430 				SLAB_MEM_SPREAD),
3431 				NULL);
3432 
3433 	/*
3434 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3435 	 */
3436 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3437 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3438 	hotcpu_notifier(buffer_cpu_notify, 0);
3439 }
3440