xref: /openbmc/linux/fs/buffer.c (revision 32981ea5)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/backing-dev.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45 #include <trace/events/block.h>
46 
47 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 static int submit_bh_wbc(int rw, struct buffer_head *bh,
49 			 unsigned long bio_flags,
50 			 struct writeback_control *wbc);
51 
52 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
53 
54 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
55 {
56 	bh->b_end_io = handler;
57 	bh->b_private = private;
58 }
59 EXPORT_SYMBOL(init_buffer);
60 
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 	trace_block_touch_buffer(bh);
64 	mark_page_accessed(bh->b_page);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67 
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73 
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 	clear_bit_unlock(BH_Lock, &bh->b_state);
77 	smp_mb__after_atomic();
78 	wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81 
82 /*
83  * Returns if the page has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the PageDirty information is stale. If
85  * any of the pages are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct page *page,
88 				     bool *dirty, bool *writeback)
89 {
90 	struct buffer_head *head, *bh;
91 	*dirty = false;
92 	*writeback = false;
93 
94 	BUG_ON(!PageLocked(page));
95 
96 	if (!page_has_buffers(page))
97 		return;
98 
99 	if (PageWriteback(page))
100 		*writeback = true;
101 
102 	head = page_buffers(page);
103 	bh = head;
104 	do {
105 		if (buffer_locked(bh))
106 			*writeback = true;
107 
108 		if (buffer_dirty(bh))
109 			*dirty = true;
110 
111 		bh = bh->b_this_page;
112 	} while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void
128 __clear_page_buffers(struct page *page)
129 {
130 	ClearPagePrivate(page);
131 	set_page_private(page, 0);
132 	put_page(page);
133 }
134 
135 static void buffer_io_error(struct buffer_head *bh, char *msg)
136 {
137 	if (!test_bit(BH_Quiet, &bh->b_state))
138 		printk_ratelimited(KERN_ERR
139 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
140 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
141 }
142 
143 /*
144  * End-of-IO handler helper function which does not touch the bh after
145  * unlocking it.
146  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
147  * a race there is benign: unlock_buffer() only use the bh's address for
148  * hashing after unlocking the buffer, so it doesn't actually touch the bh
149  * itself.
150  */
151 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
152 {
153 	if (uptodate) {
154 		set_buffer_uptodate(bh);
155 	} else {
156 		/* This happens, due to failed READA attempts. */
157 		clear_buffer_uptodate(bh);
158 	}
159 	unlock_buffer(bh);
160 }
161 
162 /*
163  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
164  * unlock the buffer. This is what ll_rw_block uses too.
165  */
166 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
167 {
168 	__end_buffer_read_notouch(bh, uptodate);
169 	put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_read_sync);
172 
173 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
174 {
175 	if (uptodate) {
176 		set_buffer_uptodate(bh);
177 	} else {
178 		buffer_io_error(bh, ", lost sync page write");
179 		set_buffer_write_io_error(bh);
180 		clear_buffer_uptodate(bh);
181 	}
182 	unlock_buffer(bh);
183 	put_bh(bh);
184 }
185 EXPORT_SYMBOL(end_buffer_write_sync);
186 
187 /*
188  * Various filesystems appear to want __find_get_block to be non-blocking.
189  * But it's the page lock which protects the buffers.  To get around this,
190  * we get exclusion from try_to_free_buffers with the blockdev mapping's
191  * private_lock.
192  *
193  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
194  * may be quite high.  This code could TryLock the page, and if that
195  * succeeds, there is no need to take private_lock. (But if
196  * private_lock is contended then so is mapping->tree_lock).
197  */
198 static struct buffer_head *
199 __find_get_block_slow(struct block_device *bdev, sector_t block)
200 {
201 	struct inode *bd_inode = bdev->bd_inode;
202 	struct address_space *bd_mapping = bd_inode->i_mapping;
203 	struct buffer_head *ret = NULL;
204 	pgoff_t index;
205 	struct buffer_head *bh;
206 	struct buffer_head *head;
207 	struct page *page;
208 	int all_mapped = 1;
209 
210 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
211 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
212 	if (!page)
213 		goto out;
214 
215 	spin_lock(&bd_mapping->private_lock);
216 	if (!page_has_buffers(page))
217 		goto out_unlock;
218 	head = page_buffers(page);
219 	bh = head;
220 	do {
221 		if (!buffer_mapped(bh))
222 			all_mapped = 0;
223 		else if (bh->b_blocknr == block) {
224 			ret = bh;
225 			get_bh(bh);
226 			goto out_unlock;
227 		}
228 		bh = bh->b_this_page;
229 	} while (bh != head);
230 
231 	/* we might be here because some of the buffers on this page are
232 	 * not mapped.  This is due to various races between
233 	 * file io on the block device and getblk.  It gets dealt with
234 	 * elsewhere, don't buffer_error if we had some unmapped buffers
235 	 */
236 	if (all_mapped) {
237 		printk("__find_get_block_slow() failed. "
238 			"block=%llu, b_blocknr=%llu\n",
239 			(unsigned long long)block,
240 			(unsigned long long)bh->b_blocknr);
241 		printk("b_state=0x%08lx, b_size=%zu\n",
242 			bh->b_state, bh->b_size);
243 		printk("device %pg blocksize: %d\n", bdev,
244 			1 << bd_inode->i_blkbits);
245 	}
246 out_unlock:
247 	spin_unlock(&bd_mapping->private_lock);
248 	put_page(page);
249 out:
250 	return ret;
251 }
252 
253 /*
254  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
255  */
256 static void free_more_memory(void)
257 {
258 	struct zoneref *z;
259 	int nid;
260 
261 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
262 	yield();
263 
264 	for_each_online_node(nid) {
265 
266 		z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
267 						gfp_zone(GFP_NOFS), NULL);
268 		if (z->zone)
269 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
270 						GFP_NOFS, NULL);
271 	}
272 }
273 
274 /*
275  * I/O completion handler for block_read_full_page() - pages
276  * which come unlocked at the end of I/O.
277  */
278 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
279 {
280 	unsigned long flags;
281 	struct buffer_head *first;
282 	struct buffer_head *tmp;
283 	struct page *page;
284 	int page_uptodate = 1;
285 
286 	BUG_ON(!buffer_async_read(bh));
287 
288 	page = bh->b_page;
289 	if (uptodate) {
290 		set_buffer_uptodate(bh);
291 	} else {
292 		clear_buffer_uptodate(bh);
293 		buffer_io_error(bh, ", async page read");
294 		SetPageError(page);
295 	}
296 
297 	/*
298 	 * Be _very_ careful from here on. Bad things can happen if
299 	 * two buffer heads end IO at almost the same time and both
300 	 * decide that the page is now completely done.
301 	 */
302 	first = page_buffers(page);
303 	local_irq_save(flags);
304 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
305 	clear_buffer_async_read(bh);
306 	unlock_buffer(bh);
307 	tmp = bh;
308 	do {
309 		if (!buffer_uptodate(tmp))
310 			page_uptodate = 0;
311 		if (buffer_async_read(tmp)) {
312 			BUG_ON(!buffer_locked(tmp));
313 			goto still_busy;
314 		}
315 		tmp = tmp->b_this_page;
316 	} while (tmp != bh);
317 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
318 	local_irq_restore(flags);
319 
320 	/*
321 	 * If none of the buffers had errors and they are all
322 	 * uptodate then we can set the page uptodate.
323 	 */
324 	if (page_uptodate && !PageError(page))
325 		SetPageUptodate(page);
326 	unlock_page(page);
327 	return;
328 
329 still_busy:
330 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
331 	local_irq_restore(flags);
332 	return;
333 }
334 
335 /*
336  * Completion handler for block_write_full_page() - pages which are unlocked
337  * during I/O, and which have PageWriteback cleared upon I/O completion.
338  */
339 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
340 {
341 	unsigned long flags;
342 	struct buffer_head *first;
343 	struct buffer_head *tmp;
344 	struct page *page;
345 
346 	BUG_ON(!buffer_async_write(bh));
347 
348 	page = bh->b_page;
349 	if (uptodate) {
350 		set_buffer_uptodate(bh);
351 	} else {
352 		buffer_io_error(bh, ", lost async page write");
353 		set_bit(AS_EIO, &page->mapping->flags);
354 		set_buffer_write_io_error(bh);
355 		clear_buffer_uptodate(bh);
356 		SetPageError(page);
357 	}
358 
359 	first = page_buffers(page);
360 	local_irq_save(flags);
361 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
362 
363 	clear_buffer_async_write(bh);
364 	unlock_buffer(bh);
365 	tmp = bh->b_this_page;
366 	while (tmp != bh) {
367 		if (buffer_async_write(tmp)) {
368 			BUG_ON(!buffer_locked(tmp));
369 			goto still_busy;
370 		}
371 		tmp = tmp->b_this_page;
372 	}
373 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 	local_irq_restore(flags);
375 	end_page_writeback(page);
376 	return;
377 
378 still_busy:
379 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
380 	local_irq_restore(flags);
381 	return;
382 }
383 EXPORT_SYMBOL(end_buffer_async_write);
384 
385 /*
386  * If a page's buffers are under async readin (end_buffer_async_read
387  * completion) then there is a possibility that another thread of
388  * control could lock one of the buffers after it has completed
389  * but while some of the other buffers have not completed.  This
390  * locked buffer would confuse end_buffer_async_read() into not unlocking
391  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
392  * that this buffer is not under async I/O.
393  *
394  * The page comes unlocked when it has no locked buffer_async buffers
395  * left.
396  *
397  * PageLocked prevents anyone starting new async I/O reads any of
398  * the buffers.
399  *
400  * PageWriteback is used to prevent simultaneous writeout of the same
401  * page.
402  *
403  * PageLocked prevents anyone from starting writeback of a page which is
404  * under read I/O (PageWriteback is only ever set against a locked page).
405  */
406 static void mark_buffer_async_read(struct buffer_head *bh)
407 {
408 	bh->b_end_io = end_buffer_async_read;
409 	set_buffer_async_read(bh);
410 }
411 
412 static void mark_buffer_async_write_endio(struct buffer_head *bh,
413 					  bh_end_io_t *handler)
414 {
415 	bh->b_end_io = handler;
416 	set_buffer_async_write(bh);
417 }
418 
419 void mark_buffer_async_write(struct buffer_head *bh)
420 {
421 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
422 }
423 EXPORT_SYMBOL(mark_buffer_async_write);
424 
425 
426 /*
427  * fs/buffer.c contains helper functions for buffer-backed address space's
428  * fsync functions.  A common requirement for buffer-based filesystems is
429  * that certain data from the backing blockdev needs to be written out for
430  * a successful fsync().  For example, ext2 indirect blocks need to be
431  * written back and waited upon before fsync() returns.
432  *
433  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435  * management of a list of dependent buffers at ->i_mapping->private_list.
436  *
437  * Locking is a little subtle: try_to_free_buffers() will remove buffers
438  * from their controlling inode's queue when they are being freed.  But
439  * try_to_free_buffers() will be operating against the *blockdev* mapping
440  * at the time, not against the S_ISREG file which depends on those buffers.
441  * So the locking for private_list is via the private_lock in the address_space
442  * which backs the buffers.  Which is different from the address_space
443  * against which the buffers are listed.  So for a particular address_space,
444  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
445  * mapping->private_list will always be protected by the backing blockdev's
446  * ->private_lock.
447  *
448  * Which introduces a requirement: all buffers on an address_space's
449  * ->private_list must be from the same address_space: the blockdev's.
450  *
451  * address_spaces which do not place buffers at ->private_list via these
452  * utility functions are free to use private_lock and private_list for
453  * whatever they want.  The only requirement is that list_empty(private_list)
454  * be true at clear_inode() time.
455  *
456  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
457  * filesystems should do that.  invalidate_inode_buffers() should just go
458  * BUG_ON(!list_empty).
459  *
460  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
461  * take an address_space, not an inode.  And it should be called
462  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463  * queued up.
464  *
465  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466  * list if it is already on a list.  Because if the buffer is on a list,
467  * it *must* already be on the right one.  If not, the filesystem is being
468  * silly.  This will save a ton of locking.  But first we have to ensure
469  * that buffers are taken *off* the old inode's list when they are freed
470  * (presumably in truncate).  That requires careful auditing of all
471  * filesystems (do it inside bforget()).  It could also be done by bringing
472  * b_inode back.
473  */
474 
475 /*
476  * The buffer's backing address_space's private_lock must be held
477  */
478 static void __remove_assoc_queue(struct buffer_head *bh)
479 {
480 	list_del_init(&bh->b_assoc_buffers);
481 	WARN_ON(!bh->b_assoc_map);
482 	if (buffer_write_io_error(bh))
483 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
484 	bh->b_assoc_map = NULL;
485 }
486 
487 int inode_has_buffers(struct inode *inode)
488 {
489 	return !list_empty(&inode->i_data.private_list);
490 }
491 
492 /*
493  * osync is designed to support O_SYNC io.  It waits synchronously for
494  * all already-submitted IO to complete, but does not queue any new
495  * writes to the disk.
496  *
497  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
498  * you dirty the buffers, and then use osync_inode_buffers to wait for
499  * completion.  Any other dirty buffers which are not yet queued for
500  * write will not be flushed to disk by the osync.
501  */
502 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503 {
504 	struct buffer_head *bh;
505 	struct list_head *p;
506 	int err = 0;
507 
508 	spin_lock(lock);
509 repeat:
510 	list_for_each_prev(p, list) {
511 		bh = BH_ENTRY(p);
512 		if (buffer_locked(bh)) {
513 			get_bh(bh);
514 			spin_unlock(lock);
515 			wait_on_buffer(bh);
516 			if (!buffer_uptodate(bh))
517 				err = -EIO;
518 			brelse(bh);
519 			spin_lock(lock);
520 			goto repeat;
521 		}
522 	}
523 	spin_unlock(lock);
524 	return err;
525 }
526 
527 static void do_thaw_one(struct super_block *sb, void *unused)
528 {
529 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
530 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
531 }
532 
533 static void do_thaw_all(struct work_struct *work)
534 {
535 	iterate_supers(do_thaw_one, NULL);
536 	kfree(work);
537 	printk(KERN_WARNING "Emergency Thaw complete\n");
538 }
539 
540 /**
541  * emergency_thaw_all -- forcibly thaw every frozen filesystem
542  *
543  * Used for emergency unfreeze of all filesystems via SysRq
544  */
545 void emergency_thaw_all(void)
546 {
547 	struct work_struct *work;
548 
549 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
550 	if (work) {
551 		INIT_WORK(work, do_thaw_all);
552 		schedule_work(work);
553 	}
554 }
555 
556 /**
557  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
558  * @mapping: the mapping which wants those buffers written
559  *
560  * Starts I/O against the buffers at mapping->private_list, and waits upon
561  * that I/O.
562  *
563  * Basically, this is a convenience function for fsync().
564  * @mapping is a file or directory which needs those buffers to be written for
565  * a successful fsync().
566  */
567 int sync_mapping_buffers(struct address_space *mapping)
568 {
569 	struct address_space *buffer_mapping = mapping->private_data;
570 
571 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
572 		return 0;
573 
574 	return fsync_buffers_list(&buffer_mapping->private_lock,
575 					&mapping->private_list);
576 }
577 EXPORT_SYMBOL(sync_mapping_buffers);
578 
579 /*
580  * Called when we've recently written block `bblock', and it is known that
581  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
582  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
583  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
584  */
585 void write_boundary_block(struct block_device *bdev,
586 			sector_t bblock, unsigned blocksize)
587 {
588 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589 	if (bh) {
590 		if (buffer_dirty(bh))
591 			ll_rw_block(WRITE, 1, &bh);
592 		put_bh(bh);
593 	}
594 }
595 
596 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597 {
598 	struct address_space *mapping = inode->i_mapping;
599 	struct address_space *buffer_mapping = bh->b_page->mapping;
600 
601 	mark_buffer_dirty(bh);
602 	if (!mapping->private_data) {
603 		mapping->private_data = buffer_mapping;
604 	} else {
605 		BUG_ON(mapping->private_data != buffer_mapping);
606 	}
607 	if (!bh->b_assoc_map) {
608 		spin_lock(&buffer_mapping->private_lock);
609 		list_move_tail(&bh->b_assoc_buffers,
610 				&mapping->private_list);
611 		bh->b_assoc_map = mapping;
612 		spin_unlock(&buffer_mapping->private_lock);
613 	}
614 }
615 EXPORT_SYMBOL(mark_buffer_dirty_inode);
616 
617 /*
618  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
619  * dirty.
620  *
621  * If warn is true, then emit a warning if the page is not uptodate and has
622  * not been truncated.
623  *
624  * The caller must hold lock_page_memcg().
625  */
626 static void __set_page_dirty(struct page *page, struct address_space *mapping,
627 			     int warn)
628 {
629 	unsigned long flags;
630 
631 	spin_lock_irqsave(&mapping->tree_lock, flags);
632 	if (page->mapping) {	/* Race with truncate? */
633 		WARN_ON_ONCE(warn && !PageUptodate(page));
634 		account_page_dirtied(page, mapping);
635 		radix_tree_tag_set(&mapping->page_tree,
636 				page_index(page), PAGECACHE_TAG_DIRTY);
637 	}
638 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
639 }
640 
641 /*
642  * Add a page to the dirty page list.
643  *
644  * It is a sad fact of life that this function is called from several places
645  * deeply under spinlocking.  It may not sleep.
646  *
647  * If the page has buffers, the uptodate buffers are set dirty, to preserve
648  * dirty-state coherency between the page and the buffers.  It the page does
649  * not have buffers then when they are later attached they will all be set
650  * dirty.
651  *
652  * The buffers are dirtied before the page is dirtied.  There's a small race
653  * window in which a writepage caller may see the page cleanness but not the
654  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
655  * before the buffers, a concurrent writepage caller could clear the page dirty
656  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
657  * page on the dirty page list.
658  *
659  * We use private_lock to lock against try_to_free_buffers while using the
660  * page's buffer list.  Also use this to protect against clean buffers being
661  * added to the page after it was set dirty.
662  *
663  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
664  * address_space though.
665  */
666 int __set_page_dirty_buffers(struct page *page)
667 {
668 	int newly_dirty;
669 	struct address_space *mapping = page_mapping(page);
670 
671 	if (unlikely(!mapping))
672 		return !TestSetPageDirty(page);
673 
674 	spin_lock(&mapping->private_lock);
675 	if (page_has_buffers(page)) {
676 		struct buffer_head *head = page_buffers(page);
677 		struct buffer_head *bh = head;
678 
679 		do {
680 			set_buffer_dirty(bh);
681 			bh = bh->b_this_page;
682 		} while (bh != head);
683 	}
684 	/*
685 	 * Lock out page->mem_cgroup migration to keep PageDirty
686 	 * synchronized with per-memcg dirty page counters.
687 	 */
688 	lock_page_memcg(page);
689 	newly_dirty = !TestSetPageDirty(page);
690 	spin_unlock(&mapping->private_lock);
691 
692 	if (newly_dirty)
693 		__set_page_dirty(page, mapping, 1);
694 
695 	unlock_page_memcg(page);
696 
697 	if (newly_dirty)
698 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
699 
700 	return newly_dirty;
701 }
702 EXPORT_SYMBOL(__set_page_dirty_buffers);
703 
704 /*
705  * Write out and wait upon a list of buffers.
706  *
707  * We have conflicting pressures: we want to make sure that all
708  * initially dirty buffers get waited on, but that any subsequently
709  * dirtied buffers don't.  After all, we don't want fsync to last
710  * forever if somebody is actively writing to the file.
711  *
712  * Do this in two main stages: first we copy dirty buffers to a
713  * temporary inode list, queueing the writes as we go.  Then we clean
714  * up, waiting for those writes to complete.
715  *
716  * During this second stage, any subsequent updates to the file may end
717  * up refiling the buffer on the original inode's dirty list again, so
718  * there is a chance we will end up with a buffer queued for write but
719  * not yet completed on that list.  So, as a final cleanup we go through
720  * the osync code to catch these locked, dirty buffers without requeuing
721  * any newly dirty buffers for write.
722  */
723 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
724 {
725 	struct buffer_head *bh;
726 	struct list_head tmp;
727 	struct address_space *mapping;
728 	int err = 0, err2;
729 	struct blk_plug plug;
730 
731 	INIT_LIST_HEAD(&tmp);
732 	blk_start_plug(&plug);
733 
734 	spin_lock(lock);
735 	while (!list_empty(list)) {
736 		bh = BH_ENTRY(list->next);
737 		mapping = bh->b_assoc_map;
738 		__remove_assoc_queue(bh);
739 		/* Avoid race with mark_buffer_dirty_inode() which does
740 		 * a lockless check and we rely on seeing the dirty bit */
741 		smp_mb();
742 		if (buffer_dirty(bh) || buffer_locked(bh)) {
743 			list_add(&bh->b_assoc_buffers, &tmp);
744 			bh->b_assoc_map = mapping;
745 			if (buffer_dirty(bh)) {
746 				get_bh(bh);
747 				spin_unlock(lock);
748 				/*
749 				 * Ensure any pending I/O completes so that
750 				 * write_dirty_buffer() actually writes the
751 				 * current contents - it is a noop if I/O is
752 				 * still in flight on potentially older
753 				 * contents.
754 				 */
755 				write_dirty_buffer(bh, WRITE_SYNC);
756 
757 				/*
758 				 * Kick off IO for the previous mapping. Note
759 				 * that we will not run the very last mapping,
760 				 * wait_on_buffer() will do that for us
761 				 * through sync_buffer().
762 				 */
763 				brelse(bh);
764 				spin_lock(lock);
765 			}
766 		}
767 	}
768 
769 	spin_unlock(lock);
770 	blk_finish_plug(&plug);
771 	spin_lock(lock);
772 
773 	while (!list_empty(&tmp)) {
774 		bh = BH_ENTRY(tmp.prev);
775 		get_bh(bh);
776 		mapping = bh->b_assoc_map;
777 		__remove_assoc_queue(bh);
778 		/* Avoid race with mark_buffer_dirty_inode() which does
779 		 * a lockless check and we rely on seeing the dirty bit */
780 		smp_mb();
781 		if (buffer_dirty(bh)) {
782 			list_add(&bh->b_assoc_buffers,
783 				 &mapping->private_list);
784 			bh->b_assoc_map = mapping;
785 		}
786 		spin_unlock(lock);
787 		wait_on_buffer(bh);
788 		if (!buffer_uptodate(bh))
789 			err = -EIO;
790 		brelse(bh);
791 		spin_lock(lock);
792 	}
793 
794 	spin_unlock(lock);
795 	err2 = osync_buffers_list(lock, list);
796 	if (err)
797 		return err;
798 	else
799 		return err2;
800 }
801 
802 /*
803  * Invalidate any and all dirty buffers on a given inode.  We are
804  * probably unmounting the fs, but that doesn't mean we have already
805  * done a sync().  Just drop the buffers from the inode list.
806  *
807  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
808  * assumes that all the buffers are against the blockdev.  Not true
809  * for reiserfs.
810  */
811 void invalidate_inode_buffers(struct inode *inode)
812 {
813 	if (inode_has_buffers(inode)) {
814 		struct address_space *mapping = &inode->i_data;
815 		struct list_head *list = &mapping->private_list;
816 		struct address_space *buffer_mapping = mapping->private_data;
817 
818 		spin_lock(&buffer_mapping->private_lock);
819 		while (!list_empty(list))
820 			__remove_assoc_queue(BH_ENTRY(list->next));
821 		spin_unlock(&buffer_mapping->private_lock);
822 	}
823 }
824 EXPORT_SYMBOL(invalidate_inode_buffers);
825 
826 /*
827  * Remove any clean buffers from the inode's buffer list.  This is called
828  * when we're trying to free the inode itself.  Those buffers can pin it.
829  *
830  * Returns true if all buffers were removed.
831  */
832 int remove_inode_buffers(struct inode *inode)
833 {
834 	int ret = 1;
835 
836 	if (inode_has_buffers(inode)) {
837 		struct address_space *mapping = &inode->i_data;
838 		struct list_head *list = &mapping->private_list;
839 		struct address_space *buffer_mapping = mapping->private_data;
840 
841 		spin_lock(&buffer_mapping->private_lock);
842 		while (!list_empty(list)) {
843 			struct buffer_head *bh = BH_ENTRY(list->next);
844 			if (buffer_dirty(bh)) {
845 				ret = 0;
846 				break;
847 			}
848 			__remove_assoc_queue(bh);
849 		}
850 		spin_unlock(&buffer_mapping->private_lock);
851 	}
852 	return ret;
853 }
854 
855 /*
856  * Create the appropriate buffers when given a page for data area and
857  * the size of each buffer.. Use the bh->b_this_page linked list to
858  * follow the buffers created.  Return NULL if unable to create more
859  * buffers.
860  *
861  * The retry flag is used to differentiate async IO (paging, swapping)
862  * which may not fail from ordinary buffer allocations.
863  */
864 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
865 		int retry)
866 {
867 	struct buffer_head *bh, *head;
868 	long offset;
869 
870 try_again:
871 	head = NULL;
872 	offset = PAGE_SIZE;
873 	while ((offset -= size) >= 0) {
874 		bh = alloc_buffer_head(GFP_NOFS);
875 		if (!bh)
876 			goto no_grow;
877 
878 		bh->b_this_page = head;
879 		bh->b_blocknr = -1;
880 		head = bh;
881 
882 		bh->b_size = size;
883 
884 		/* Link the buffer to its page */
885 		set_bh_page(bh, page, offset);
886 	}
887 	return head;
888 /*
889  * In case anything failed, we just free everything we got.
890  */
891 no_grow:
892 	if (head) {
893 		do {
894 			bh = head;
895 			head = head->b_this_page;
896 			free_buffer_head(bh);
897 		} while (head);
898 	}
899 
900 	/*
901 	 * Return failure for non-async IO requests.  Async IO requests
902 	 * are not allowed to fail, so we have to wait until buffer heads
903 	 * become available.  But we don't want tasks sleeping with
904 	 * partially complete buffers, so all were released above.
905 	 */
906 	if (!retry)
907 		return NULL;
908 
909 	/* We're _really_ low on memory. Now we just
910 	 * wait for old buffer heads to become free due to
911 	 * finishing IO.  Since this is an async request and
912 	 * the reserve list is empty, we're sure there are
913 	 * async buffer heads in use.
914 	 */
915 	free_more_memory();
916 	goto try_again;
917 }
918 EXPORT_SYMBOL_GPL(alloc_page_buffers);
919 
920 static inline void
921 link_dev_buffers(struct page *page, struct buffer_head *head)
922 {
923 	struct buffer_head *bh, *tail;
924 
925 	bh = head;
926 	do {
927 		tail = bh;
928 		bh = bh->b_this_page;
929 	} while (bh);
930 	tail->b_this_page = head;
931 	attach_page_buffers(page, head);
932 }
933 
934 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
935 {
936 	sector_t retval = ~((sector_t)0);
937 	loff_t sz = i_size_read(bdev->bd_inode);
938 
939 	if (sz) {
940 		unsigned int sizebits = blksize_bits(size);
941 		retval = (sz >> sizebits);
942 	}
943 	return retval;
944 }
945 
946 /*
947  * Initialise the state of a blockdev page's buffers.
948  */
949 static sector_t
950 init_page_buffers(struct page *page, struct block_device *bdev,
951 			sector_t block, int size)
952 {
953 	struct buffer_head *head = page_buffers(page);
954 	struct buffer_head *bh = head;
955 	int uptodate = PageUptodate(page);
956 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
957 
958 	do {
959 		if (!buffer_mapped(bh)) {
960 			init_buffer(bh, NULL, NULL);
961 			bh->b_bdev = bdev;
962 			bh->b_blocknr = block;
963 			if (uptodate)
964 				set_buffer_uptodate(bh);
965 			if (block < end_block)
966 				set_buffer_mapped(bh);
967 		}
968 		block++;
969 		bh = bh->b_this_page;
970 	} while (bh != head);
971 
972 	/*
973 	 * Caller needs to validate requested block against end of device.
974 	 */
975 	return end_block;
976 }
977 
978 /*
979  * Create the page-cache page that contains the requested block.
980  *
981  * This is used purely for blockdev mappings.
982  */
983 static int
984 grow_dev_page(struct block_device *bdev, sector_t block,
985 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
986 {
987 	struct inode *inode = bdev->bd_inode;
988 	struct page *page;
989 	struct buffer_head *bh;
990 	sector_t end_block;
991 	int ret = 0;		/* Will call free_more_memory() */
992 	gfp_t gfp_mask;
993 
994 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
995 
996 	/*
997 	 * XXX: __getblk_slow() can not really deal with failure and
998 	 * will endlessly loop on improvised global reclaim.  Prefer
999 	 * looping in the allocator rather than here, at least that
1000 	 * code knows what it's doing.
1001 	 */
1002 	gfp_mask |= __GFP_NOFAIL;
1003 
1004 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1005 	if (!page)
1006 		return ret;
1007 
1008 	BUG_ON(!PageLocked(page));
1009 
1010 	if (page_has_buffers(page)) {
1011 		bh = page_buffers(page);
1012 		if (bh->b_size == size) {
1013 			end_block = init_page_buffers(page, bdev,
1014 						(sector_t)index << sizebits,
1015 						size);
1016 			goto done;
1017 		}
1018 		if (!try_to_free_buffers(page))
1019 			goto failed;
1020 	}
1021 
1022 	/*
1023 	 * Allocate some buffers for this page
1024 	 */
1025 	bh = alloc_page_buffers(page, size, 0);
1026 	if (!bh)
1027 		goto failed;
1028 
1029 	/*
1030 	 * Link the page to the buffers and initialise them.  Take the
1031 	 * lock to be atomic wrt __find_get_block(), which does not
1032 	 * run under the page lock.
1033 	 */
1034 	spin_lock(&inode->i_mapping->private_lock);
1035 	link_dev_buffers(page, bh);
1036 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1037 			size);
1038 	spin_unlock(&inode->i_mapping->private_lock);
1039 done:
1040 	ret = (block < end_block) ? 1 : -ENXIO;
1041 failed:
1042 	unlock_page(page);
1043 	put_page(page);
1044 	return ret;
1045 }
1046 
1047 /*
1048  * Create buffers for the specified block device block's page.  If
1049  * that page was dirty, the buffers are set dirty also.
1050  */
1051 static int
1052 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1053 {
1054 	pgoff_t index;
1055 	int sizebits;
1056 
1057 	sizebits = -1;
1058 	do {
1059 		sizebits++;
1060 	} while ((size << sizebits) < PAGE_SIZE);
1061 
1062 	index = block >> sizebits;
1063 
1064 	/*
1065 	 * Check for a block which wants to lie outside our maximum possible
1066 	 * pagecache index.  (this comparison is done using sector_t types).
1067 	 */
1068 	if (unlikely(index != block >> sizebits)) {
1069 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1070 			"device %pg\n",
1071 			__func__, (unsigned long long)block,
1072 			bdev);
1073 		return -EIO;
1074 	}
1075 
1076 	/* Create a page with the proper size buffers.. */
1077 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1078 }
1079 
1080 struct buffer_head *
1081 __getblk_slow(struct block_device *bdev, sector_t block,
1082 	     unsigned size, gfp_t gfp)
1083 {
1084 	/* Size must be multiple of hard sectorsize */
1085 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1086 			(size < 512 || size > PAGE_SIZE))) {
1087 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1088 					size);
1089 		printk(KERN_ERR "logical block size: %d\n",
1090 					bdev_logical_block_size(bdev));
1091 
1092 		dump_stack();
1093 		return NULL;
1094 	}
1095 
1096 	for (;;) {
1097 		struct buffer_head *bh;
1098 		int ret;
1099 
1100 		bh = __find_get_block(bdev, block, size);
1101 		if (bh)
1102 			return bh;
1103 
1104 		ret = grow_buffers(bdev, block, size, gfp);
1105 		if (ret < 0)
1106 			return NULL;
1107 		if (ret == 0)
1108 			free_more_memory();
1109 	}
1110 }
1111 EXPORT_SYMBOL(__getblk_slow);
1112 
1113 /*
1114  * The relationship between dirty buffers and dirty pages:
1115  *
1116  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117  * the page is tagged dirty in its radix tree.
1118  *
1119  * At all times, the dirtiness of the buffers represents the dirtiness of
1120  * subsections of the page.  If the page has buffers, the page dirty bit is
1121  * merely a hint about the true dirty state.
1122  *
1123  * When a page is set dirty in its entirety, all its buffers are marked dirty
1124  * (if the page has buffers).
1125  *
1126  * When a buffer is marked dirty, its page is dirtied, but the page's other
1127  * buffers are not.
1128  *
1129  * Also.  When blockdev buffers are explicitly read with bread(), they
1130  * individually become uptodate.  But their backing page remains not
1131  * uptodate - even if all of its buffers are uptodate.  A subsequent
1132  * block_read_full_page() against that page will discover all the uptodate
1133  * buffers, will set the page uptodate and will perform no I/O.
1134  */
1135 
1136 /**
1137  * mark_buffer_dirty - mark a buffer_head as needing writeout
1138  * @bh: the buffer_head to mark dirty
1139  *
1140  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141  * backing page dirty, then tag the page as dirty in its address_space's radix
1142  * tree and then attach the address_space's inode to its superblock's dirty
1143  * inode list.
1144  *
1145  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1146  * mapping->tree_lock and mapping->host->i_lock.
1147  */
1148 void mark_buffer_dirty(struct buffer_head *bh)
1149 {
1150 	WARN_ON_ONCE(!buffer_uptodate(bh));
1151 
1152 	trace_block_dirty_buffer(bh);
1153 
1154 	/*
1155 	 * Very *carefully* optimize the it-is-already-dirty case.
1156 	 *
1157 	 * Don't let the final "is it dirty" escape to before we
1158 	 * perhaps modified the buffer.
1159 	 */
1160 	if (buffer_dirty(bh)) {
1161 		smp_mb();
1162 		if (buffer_dirty(bh))
1163 			return;
1164 	}
1165 
1166 	if (!test_set_buffer_dirty(bh)) {
1167 		struct page *page = bh->b_page;
1168 		struct address_space *mapping = NULL;
1169 
1170 		lock_page_memcg(page);
1171 		if (!TestSetPageDirty(page)) {
1172 			mapping = page_mapping(page);
1173 			if (mapping)
1174 				__set_page_dirty(page, mapping, 0);
1175 		}
1176 		unlock_page_memcg(page);
1177 		if (mapping)
1178 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1179 	}
1180 }
1181 EXPORT_SYMBOL(mark_buffer_dirty);
1182 
1183 /*
1184  * Decrement a buffer_head's reference count.  If all buffers against a page
1185  * have zero reference count, are clean and unlocked, and if the page is clean
1186  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1187  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1188  * a page but it ends up not being freed, and buffers may later be reattached).
1189  */
1190 void __brelse(struct buffer_head * buf)
1191 {
1192 	if (atomic_read(&buf->b_count)) {
1193 		put_bh(buf);
1194 		return;
1195 	}
1196 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1197 }
1198 EXPORT_SYMBOL(__brelse);
1199 
1200 /*
1201  * bforget() is like brelse(), except it discards any
1202  * potentially dirty data.
1203  */
1204 void __bforget(struct buffer_head *bh)
1205 {
1206 	clear_buffer_dirty(bh);
1207 	if (bh->b_assoc_map) {
1208 		struct address_space *buffer_mapping = bh->b_page->mapping;
1209 
1210 		spin_lock(&buffer_mapping->private_lock);
1211 		list_del_init(&bh->b_assoc_buffers);
1212 		bh->b_assoc_map = NULL;
1213 		spin_unlock(&buffer_mapping->private_lock);
1214 	}
1215 	__brelse(bh);
1216 }
1217 EXPORT_SYMBOL(__bforget);
1218 
1219 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1220 {
1221 	lock_buffer(bh);
1222 	if (buffer_uptodate(bh)) {
1223 		unlock_buffer(bh);
1224 		return bh;
1225 	} else {
1226 		get_bh(bh);
1227 		bh->b_end_io = end_buffer_read_sync;
1228 		submit_bh(READ, bh);
1229 		wait_on_buffer(bh);
1230 		if (buffer_uptodate(bh))
1231 			return bh;
1232 	}
1233 	brelse(bh);
1234 	return NULL;
1235 }
1236 
1237 /*
1238  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1239  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1240  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1241  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1242  * CPU's LRUs at the same time.
1243  *
1244  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1245  * sb_find_get_block().
1246  *
1247  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1248  * a local interrupt disable for that.
1249  */
1250 
1251 #define BH_LRU_SIZE	16
1252 
1253 struct bh_lru {
1254 	struct buffer_head *bhs[BH_LRU_SIZE];
1255 };
1256 
1257 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1258 
1259 #ifdef CONFIG_SMP
1260 #define bh_lru_lock()	local_irq_disable()
1261 #define bh_lru_unlock()	local_irq_enable()
1262 #else
1263 #define bh_lru_lock()	preempt_disable()
1264 #define bh_lru_unlock()	preempt_enable()
1265 #endif
1266 
1267 static inline void check_irqs_on(void)
1268 {
1269 #ifdef irqs_disabled
1270 	BUG_ON(irqs_disabled());
1271 #endif
1272 }
1273 
1274 /*
1275  * The LRU management algorithm is dopey-but-simple.  Sorry.
1276  */
1277 static void bh_lru_install(struct buffer_head *bh)
1278 {
1279 	struct buffer_head *evictee = NULL;
1280 
1281 	check_irqs_on();
1282 	bh_lru_lock();
1283 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1284 		struct buffer_head *bhs[BH_LRU_SIZE];
1285 		int in;
1286 		int out = 0;
1287 
1288 		get_bh(bh);
1289 		bhs[out++] = bh;
1290 		for (in = 0; in < BH_LRU_SIZE; in++) {
1291 			struct buffer_head *bh2 =
1292 				__this_cpu_read(bh_lrus.bhs[in]);
1293 
1294 			if (bh2 == bh) {
1295 				__brelse(bh2);
1296 			} else {
1297 				if (out >= BH_LRU_SIZE) {
1298 					BUG_ON(evictee != NULL);
1299 					evictee = bh2;
1300 				} else {
1301 					bhs[out++] = bh2;
1302 				}
1303 			}
1304 		}
1305 		while (out < BH_LRU_SIZE)
1306 			bhs[out++] = NULL;
1307 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1308 	}
1309 	bh_lru_unlock();
1310 
1311 	if (evictee)
1312 		__brelse(evictee);
1313 }
1314 
1315 /*
1316  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1317  */
1318 static struct buffer_head *
1319 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1320 {
1321 	struct buffer_head *ret = NULL;
1322 	unsigned int i;
1323 
1324 	check_irqs_on();
1325 	bh_lru_lock();
1326 	for (i = 0; i < BH_LRU_SIZE; i++) {
1327 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1328 
1329 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1330 		    bh->b_size == size) {
1331 			if (i) {
1332 				while (i) {
1333 					__this_cpu_write(bh_lrus.bhs[i],
1334 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1335 					i--;
1336 				}
1337 				__this_cpu_write(bh_lrus.bhs[0], bh);
1338 			}
1339 			get_bh(bh);
1340 			ret = bh;
1341 			break;
1342 		}
1343 	}
1344 	bh_lru_unlock();
1345 	return ret;
1346 }
1347 
1348 /*
1349  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1350  * it in the LRU and mark it as accessed.  If it is not present then return
1351  * NULL
1352  */
1353 struct buffer_head *
1354 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1355 {
1356 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1357 
1358 	if (bh == NULL) {
1359 		/* __find_get_block_slow will mark the page accessed */
1360 		bh = __find_get_block_slow(bdev, block);
1361 		if (bh)
1362 			bh_lru_install(bh);
1363 	} else
1364 		touch_buffer(bh);
1365 
1366 	return bh;
1367 }
1368 EXPORT_SYMBOL(__find_get_block);
1369 
1370 /*
1371  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1372  * which corresponds to the passed block_device, block and size. The
1373  * returned buffer has its reference count incremented.
1374  *
1375  * __getblk_gfp() will lock up the machine if grow_dev_page's
1376  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1377  */
1378 struct buffer_head *
1379 __getblk_gfp(struct block_device *bdev, sector_t block,
1380 	     unsigned size, gfp_t gfp)
1381 {
1382 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1383 
1384 	might_sleep();
1385 	if (bh == NULL)
1386 		bh = __getblk_slow(bdev, block, size, gfp);
1387 	return bh;
1388 }
1389 EXPORT_SYMBOL(__getblk_gfp);
1390 
1391 /*
1392  * Do async read-ahead on a buffer..
1393  */
1394 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1395 {
1396 	struct buffer_head *bh = __getblk(bdev, block, size);
1397 	if (likely(bh)) {
1398 		ll_rw_block(READA, 1, &bh);
1399 		brelse(bh);
1400 	}
1401 }
1402 EXPORT_SYMBOL(__breadahead);
1403 
1404 /**
1405  *  __bread_gfp() - reads a specified block and returns the bh
1406  *  @bdev: the block_device to read from
1407  *  @block: number of block
1408  *  @size: size (in bytes) to read
1409  *  @gfp: page allocation flag
1410  *
1411  *  Reads a specified block, and returns buffer head that contains it.
1412  *  The page cache can be allocated from non-movable area
1413  *  not to prevent page migration if you set gfp to zero.
1414  *  It returns NULL if the block was unreadable.
1415  */
1416 struct buffer_head *
1417 __bread_gfp(struct block_device *bdev, sector_t block,
1418 		   unsigned size, gfp_t gfp)
1419 {
1420 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1421 
1422 	if (likely(bh) && !buffer_uptodate(bh))
1423 		bh = __bread_slow(bh);
1424 	return bh;
1425 }
1426 EXPORT_SYMBOL(__bread_gfp);
1427 
1428 /*
1429  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430  * This doesn't race because it runs in each cpu either in irq
1431  * or with preempt disabled.
1432  */
1433 static void invalidate_bh_lru(void *arg)
1434 {
1435 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1436 	int i;
1437 
1438 	for (i = 0; i < BH_LRU_SIZE; i++) {
1439 		brelse(b->bhs[i]);
1440 		b->bhs[i] = NULL;
1441 	}
1442 	put_cpu_var(bh_lrus);
1443 }
1444 
1445 static bool has_bh_in_lru(int cpu, void *dummy)
1446 {
1447 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448 	int i;
1449 
1450 	for (i = 0; i < BH_LRU_SIZE; i++) {
1451 		if (b->bhs[i])
1452 			return 1;
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 void invalidate_bh_lrus(void)
1459 {
1460 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1461 }
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463 
1464 void set_bh_page(struct buffer_head *bh,
1465 		struct page *page, unsigned long offset)
1466 {
1467 	bh->b_page = page;
1468 	BUG_ON(offset >= PAGE_SIZE);
1469 	if (PageHighMem(page))
1470 		/*
1471 		 * This catches illegal uses and preserves the offset:
1472 		 */
1473 		bh->b_data = (char *)(0 + offset);
1474 	else
1475 		bh->b_data = page_address(page) + offset;
1476 }
1477 EXPORT_SYMBOL(set_bh_page);
1478 
1479 /*
1480  * Called when truncating a buffer on a page completely.
1481  */
1482 
1483 /* Bits that are cleared during an invalidate */
1484 #define BUFFER_FLAGS_DISCARD \
1485 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 	 1 << BH_Delay | 1 << BH_Unwritten)
1487 
1488 static void discard_buffer(struct buffer_head * bh)
1489 {
1490 	unsigned long b_state, b_state_old;
1491 
1492 	lock_buffer(bh);
1493 	clear_buffer_dirty(bh);
1494 	bh->b_bdev = NULL;
1495 	b_state = bh->b_state;
1496 	for (;;) {
1497 		b_state_old = cmpxchg(&bh->b_state, b_state,
1498 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1499 		if (b_state_old == b_state)
1500 			break;
1501 		b_state = b_state_old;
1502 	}
1503 	unlock_buffer(bh);
1504 }
1505 
1506 /**
1507  * block_invalidatepage - invalidate part or all of a buffer-backed page
1508  *
1509  * @page: the page which is affected
1510  * @offset: start of the range to invalidate
1511  * @length: length of the range to invalidate
1512  *
1513  * block_invalidatepage() is called when all or part of the page has become
1514  * invalidated by a truncate operation.
1515  *
1516  * block_invalidatepage() does not have to release all buffers, but it must
1517  * ensure that no dirty buffer is left outside @offset and that no I/O
1518  * is underway against any of the blocks which are outside the truncation
1519  * point.  Because the caller is about to free (and possibly reuse) those
1520  * blocks on-disk.
1521  */
1522 void block_invalidatepage(struct page *page, unsigned int offset,
1523 			  unsigned int length)
1524 {
1525 	struct buffer_head *head, *bh, *next;
1526 	unsigned int curr_off = 0;
1527 	unsigned int stop = length + offset;
1528 
1529 	BUG_ON(!PageLocked(page));
1530 	if (!page_has_buffers(page))
1531 		goto out;
1532 
1533 	/*
1534 	 * Check for overflow
1535 	 */
1536 	BUG_ON(stop > PAGE_SIZE || stop < length);
1537 
1538 	head = page_buffers(page);
1539 	bh = head;
1540 	do {
1541 		unsigned int next_off = curr_off + bh->b_size;
1542 		next = bh->b_this_page;
1543 
1544 		/*
1545 		 * Are we still fully in range ?
1546 		 */
1547 		if (next_off > stop)
1548 			goto out;
1549 
1550 		/*
1551 		 * is this block fully invalidated?
1552 		 */
1553 		if (offset <= curr_off)
1554 			discard_buffer(bh);
1555 		curr_off = next_off;
1556 		bh = next;
1557 	} while (bh != head);
1558 
1559 	/*
1560 	 * We release buffers only if the entire page is being invalidated.
1561 	 * The get_block cached value has been unconditionally invalidated,
1562 	 * so real IO is not possible anymore.
1563 	 */
1564 	if (offset == 0)
1565 		try_to_release_page(page, 0);
1566 out:
1567 	return;
1568 }
1569 EXPORT_SYMBOL(block_invalidatepage);
1570 
1571 
1572 /*
1573  * We attach and possibly dirty the buffers atomically wrt
1574  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1575  * is already excluded via the page lock.
1576  */
1577 void create_empty_buffers(struct page *page,
1578 			unsigned long blocksize, unsigned long b_state)
1579 {
1580 	struct buffer_head *bh, *head, *tail;
1581 
1582 	head = alloc_page_buffers(page, blocksize, 1);
1583 	bh = head;
1584 	do {
1585 		bh->b_state |= b_state;
1586 		tail = bh;
1587 		bh = bh->b_this_page;
1588 	} while (bh);
1589 	tail->b_this_page = head;
1590 
1591 	spin_lock(&page->mapping->private_lock);
1592 	if (PageUptodate(page) || PageDirty(page)) {
1593 		bh = head;
1594 		do {
1595 			if (PageDirty(page))
1596 				set_buffer_dirty(bh);
1597 			if (PageUptodate(page))
1598 				set_buffer_uptodate(bh);
1599 			bh = bh->b_this_page;
1600 		} while (bh != head);
1601 	}
1602 	attach_page_buffers(page, head);
1603 	spin_unlock(&page->mapping->private_lock);
1604 }
1605 EXPORT_SYMBOL(create_empty_buffers);
1606 
1607 /*
1608  * We are taking a block for data and we don't want any output from any
1609  * buffer-cache aliases starting from return from that function and
1610  * until the moment when something will explicitly mark the buffer
1611  * dirty (hopefully that will not happen until we will free that block ;-)
1612  * We don't even need to mark it not-uptodate - nobody can expect
1613  * anything from a newly allocated buffer anyway. We used to used
1614  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615  * don't want to mark the alias unmapped, for example - it would confuse
1616  * anyone who might pick it with bread() afterwards...
1617  *
1618  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1619  * be writeout I/O going on against recently-freed buffers.  We don't
1620  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621  * only if we really need to.  That happens here.
1622  */
1623 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1624 {
1625 	struct buffer_head *old_bh;
1626 
1627 	might_sleep();
1628 
1629 	old_bh = __find_get_block_slow(bdev, block);
1630 	if (old_bh) {
1631 		clear_buffer_dirty(old_bh);
1632 		wait_on_buffer(old_bh);
1633 		clear_buffer_req(old_bh);
1634 		__brelse(old_bh);
1635 	}
1636 }
1637 EXPORT_SYMBOL(unmap_underlying_metadata);
1638 
1639 /*
1640  * Size is a power-of-two in the range 512..PAGE_SIZE,
1641  * and the case we care about most is PAGE_SIZE.
1642  *
1643  * So this *could* possibly be written with those
1644  * constraints in mind (relevant mostly if some
1645  * architecture has a slow bit-scan instruction)
1646  */
1647 static inline int block_size_bits(unsigned int blocksize)
1648 {
1649 	return ilog2(blocksize);
1650 }
1651 
1652 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1653 {
1654 	BUG_ON(!PageLocked(page));
1655 
1656 	if (!page_has_buffers(page))
1657 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658 	return page_buffers(page);
1659 }
1660 
1661 /*
1662  * NOTE! All mapped/uptodate combinations are valid:
1663  *
1664  *	Mapped	Uptodate	Meaning
1665  *
1666  *	No	No		"unknown" - must do get_block()
1667  *	No	Yes		"hole" - zero-filled
1668  *	Yes	No		"allocated" - allocated on disk, not read in
1669  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1670  *
1671  * "Dirty" is valid only with the last case (mapped+uptodate).
1672  */
1673 
1674 /*
1675  * While block_write_full_page is writing back the dirty buffers under
1676  * the page lock, whoever dirtied the buffers may decide to clean them
1677  * again at any time.  We handle that by only looking at the buffer
1678  * state inside lock_buffer().
1679  *
1680  * If block_write_full_page() is called for regular writeback
1681  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682  * locked buffer.   This only can happen if someone has written the buffer
1683  * directly, with submit_bh().  At the address_space level PageWriteback
1684  * prevents this contention from occurring.
1685  *
1686  * If block_write_full_page() is called with wbc->sync_mode ==
1687  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688  * causes the writes to be flagged as synchronous writes.
1689  */
1690 static int __block_write_full_page(struct inode *inode, struct page *page,
1691 			get_block_t *get_block, struct writeback_control *wbc,
1692 			bh_end_io_t *handler)
1693 {
1694 	int err;
1695 	sector_t block;
1696 	sector_t last_block;
1697 	struct buffer_head *bh, *head;
1698 	unsigned int blocksize, bbits;
1699 	int nr_underway = 0;
1700 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1701 
1702 	head = create_page_buffers(page, inode,
1703 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1704 
1705 	/*
1706 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1707 	 * here, and the (potentially unmapped) buffers may become dirty at
1708 	 * any time.  If a buffer becomes dirty here after we've inspected it
1709 	 * then we just miss that fact, and the page stays dirty.
1710 	 *
1711 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1712 	 * handle that here by just cleaning them.
1713 	 */
1714 
1715 	bh = head;
1716 	blocksize = bh->b_size;
1717 	bbits = block_size_bits(blocksize);
1718 
1719 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1720 	last_block = (i_size_read(inode) - 1) >> bbits;
1721 
1722 	/*
1723 	 * Get all the dirty buffers mapped to disk addresses and
1724 	 * handle any aliases from the underlying blockdev's mapping.
1725 	 */
1726 	do {
1727 		if (block > last_block) {
1728 			/*
1729 			 * mapped buffers outside i_size will occur, because
1730 			 * this page can be outside i_size when there is a
1731 			 * truncate in progress.
1732 			 */
1733 			/*
1734 			 * The buffer was zeroed by block_write_full_page()
1735 			 */
1736 			clear_buffer_dirty(bh);
1737 			set_buffer_uptodate(bh);
1738 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1739 			   buffer_dirty(bh)) {
1740 			WARN_ON(bh->b_size != blocksize);
1741 			err = get_block(inode, block, bh, 1);
1742 			if (err)
1743 				goto recover;
1744 			clear_buffer_delay(bh);
1745 			if (buffer_new(bh)) {
1746 				/* blockdev mappings never come here */
1747 				clear_buffer_new(bh);
1748 				unmap_underlying_metadata(bh->b_bdev,
1749 							bh->b_blocknr);
1750 			}
1751 		}
1752 		bh = bh->b_this_page;
1753 		block++;
1754 	} while (bh != head);
1755 
1756 	do {
1757 		if (!buffer_mapped(bh))
1758 			continue;
1759 		/*
1760 		 * If it's a fully non-blocking write attempt and we cannot
1761 		 * lock the buffer then redirty the page.  Note that this can
1762 		 * potentially cause a busy-wait loop from writeback threads
1763 		 * and kswapd activity, but those code paths have their own
1764 		 * higher-level throttling.
1765 		 */
1766 		if (wbc->sync_mode != WB_SYNC_NONE) {
1767 			lock_buffer(bh);
1768 		} else if (!trylock_buffer(bh)) {
1769 			redirty_page_for_writepage(wbc, page);
1770 			continue;
1771 		}
1772 		if (test_clear_buffer_dirty(bh)) {
1773 			mark_buffer_async_write_endio(bh, handler);
1774 		} else {
1775 			unlock_buffer(bh);
1776 		}
1777 	} while ((bh = bh->b_this_page) != head);
1778 
1779 	/*
1780 	 * The page and its buffers are protected by PageWriteback(), so we can
1781 	 * drop the bh refcounts early.
1782 	 */
1783 	BUG_ON(PageWriteback(page));
1784 	set_page_writeback(page);
1785 
1786 	do {
1787 		struct buffer_head *next = bh->b_this_page;
1788 		if (buffer_async_write(bh)) {
1789 			submit_bh_wbc(write_op, bh, 0, wbc);
1790 			nr_underway++;
1791 		}
1792 		bh = next;
1793 	} while (bh != head);
1794 	unlock_page(page);
1795 
1796 	err = 0;
1797 done:
1798 	if (nr_underway == 0) {
1799 		/*
1800 		 * The page was marked dirty, but the buffers were
1801 		 * clean.  Someone wrote them back by hand with
1802 		 * ll_rw_block/submit_bh.  A rare case.
1803 		 */
1804 		end_page_writeback(page);
1805 
1806 		/*
1807 		 * The page and buffer_heads can be released at any time from
1808 		 * here on.
1809 		 */
1810 	}
1811 	return err;
1812 
1813 recover:
1814 	/*
1815 	 * ENOSPC, or some other error.  We may already have added some
1816 	 * blocks to the file, so we need to write these out to avoid
1817 	 * exposing stale data.
1818 	 * The page is currently locked and not marked for writeback
1819 	 */
1820 	bh = head;
1821 	/* Recovery: lock and submit the mapped buffers */
1822 	do {
1823 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1824 		    !buffer_delay(bh)) {
1825 			lock_buffer(bh);
1826 			mark_buffer_async_write_endio(bh, handler);
1827 		} else {
1828 			/*
1829 			 * The buffer may have been set dirty during
1830 			 * attachment to a dirty page.
1831 			 */
1832 			clear_buffer_dirty(bh);
1833 		}
1834 	} while ((bh = bh->b_this_page) != head);
1835 	SetPageError(page);
1836 	BUG_ON(PageWriteback(page));
1837 	mapping_set_error(page->mapping, err);
1838 	set_page_writeback(page);
1839 	do {
1840 		struct buffer_head *next = bh->b_this_page;
1841 		if (buffer_async_write(bh)) {
1842 			clear_buffer_dirty(bh);
1843 			submit_bh_wbc(write_op, bh, 0, wbc);
1844 			nr_underway++;
1845 		}
1846 		bh = next;
1847 	} while (bh != head);
1848 	unlock_page(page);
1849 	goto done;
1850 }
1851 
1852 /*
1853  * If a page has any new buffers, zero them out here, and mark them uptodate
1854  * and dirty so they'll be written out (in order to prevent uninitialised
1855  * block data from leaking). And clear the new bit.
1856  */
1857 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1858 {
1859 	unsigned int block_start, block_end;
1860 	struct buffer_head *head, *bh;
1861 
1862 	BUG_ON(!PageLocked(page));
1863 	if (!page_has_buffers(page))
1864 		return;
1865 
1866 	bh = head = page_buffers(page);
1867 	block_start = 0;
1868 	do {
1869 		block_end = block_start + bh->b_size;
1870 
1871 		if (buffer_new(bh)) {
1872 			if (block_end > from && block_start < to) {
1873 				if (!PageUptodate(page)) {
1874 					unsigned start, size;
1875 
1876 					start = max(from, block_start);
1877 					size = min(to, block_end) - start;
1878 
1879 					zero_user(page, start, size);
1880 					set_buffer_uptodate(bh);
1881 				}
1882 
1883 				clear_buffer_new(bh);
1884 				mark_buffer_dirty(bh);
1885 			}
1886 		}
1887 
1888 		block_start = block_end;
1889 		bh = bh->b_this_page;
1890 	} while (bh != head);
1891 }
1892 EXPORT_SYMBOL(page_zero_new_buffers);
1893 
1894 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1895 		get_block_t *get_block)
1896 {
1897 	unsigned from = pos & (PAGE_SIZE - 1);
1898 	unsigned to = from + len;
1899 	struct inode *inode = page->mapping->host;
1900 	unsigned block_start, block_end;
1901 	sector_t block;
1902 	int err = 0;
1903 	unsigned blocksize, bbits;
1904 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1905 
1906 	BUG_ON(!PageLocked(page));
1907 	BUG_ON(from > PAGE_SIZE);
1908 	BUG_ON(to > PAGE_SIZE);
1909 	BUG_ON(from > to);
1910 
1911 	head = create_page_buffers(page, inode, 0);
1912 	blocksize = head->b_size;
1913 	bbits = block_size_bits(blocksize);
1914 
1915 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1916 
1917 	for(bh = head, block_start = 0; bh != head || !block_start;
1918 	    block++, block_start=block_end, bh = bh->b_this_page) {
1919 		block_end = block_start + blocksize;
1920 		if (block_end <= from || block_start >= to) {
1921 			if (PageUptodate(page)) {
1922 				if (!buffer_uptodate(bh))
1923 					set_buffer_uptodate(bh);
1924 			}
1925 			continue;
1926 		}
1927 		if (buffer_new(bh))
1928 			clear_buffer_new(bh);
1929 		if (!buffer_mapped(bh)) {
1930 			WARN_ON(bh->b_size != blocksize);
1931 			err = get_block(inode, block, bh, 1);
1932 			if (err)
1933 				break;
1934 			if (buffer_new(bh)) {
1935 				unmap_underlying_metadata(bh->b_bdev,
1936 							bh->b_blocknr);
1937 				if (PageUptodate(page)) {
1938 					clear_buffer_new(bh);
1939 					set_buffer_uptodate(bh);
1940 					mark_buffer_dirty(bh);
1941 					continue;
1942 				}
1943 				if (block_end > to || block_start < from)
1944 					zero_user_segments(page,
1945 						to, block_end,
1946 						block_start, from);
1947 				continue;
1948 			}
1949 		}
1950 		if (PageUptodate(page)) {
1951 			if (!buffer_uptodate(bh))
1952 				set_buffer_uptodate(bh);
1953 			continue;
1954 		}
1955 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1956 		    !buffer_unwritten(bh) &&
1957 		     (block_start < from || block_end > to)) {
1958 			ll_rw_block(READ, 1, &bh);
1959 			*wait_bh++=bh;
1960 		}
1961 	}
1962 	/*
1963 	 * If we issued read requests - let them complete.
1964 	 */
1965 	while(wait_bh > wait) {
1966 		wait_on_buffer(*--wait_bh);
1967 		if (!buffer_uptodate(*wait_bh))
1968 			err = -EIO;
1969 	}
1970 	if (unlikely(err))
1971 		page_zero_new_buffers(page, from, to);
1972 	return err;
1973 }
1974 EXPORT_SYMBOL(__block_write_begin);
1975 
1976 static int __block_commit_write(struct inode *inode, struct page *page,
1977 		unsigned from, unsigned to)
1978 {
1979 	unsigned block_start, block_end;
1980 	int partial = 0;
1981 	unsigned blocksize;
1982 	struct buffer_head *bh, *head;
1983 
1984 	bh = head = page_buffers(page);
1985 	blocksize = bh->b_size;
1986 
1987 	block_start = 0;
1988 	do {
1989 		block_end = block_start + blocksize;
1990 		if (block_end <= from || block_start >= to) {
1991 			if (!buffer_uptodate(bh))
1992 				partial = 1;
1993 		} else {
1994 			set_buffer_uptodate(bh);
1995 			mark_buffer_dirty(bh);
1996 		}
1997 		clear_buffer_new(bh);
1998 
1999 		block_start = block_end;
2000 		bh = bh->b_this_page;
2001 	} while (bh != head);
2002 
2003 	/*
2004 	 * If this is a partial write which happened to make all buffers
2005 	 * uptodate then we can optimize away a bogus readpage() for
2006 	 * the next read(). Here we 'discover' whether the page went
2007 	 * uptodate as a result of this (potentially partial) write.
2008 	 */
2009 	if (!partial)
2010 		SetPageUptodate(page);
2011 	return 0;
2012 }
2013 
2014 /*
2015  * block_write_begin takes care of the basic task of block allocation and
2016  * bringing partial write blocks uptodate first.
2017  *
2018  * The filesystem needs to handle block truncation upon failure.
2019  */
2020 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2021 		unsigned flags, struct page **pagep, get_block_t *get_block)
2022 {
2023 	pgoff_t index = pos >> PAGE_SHIFT;
2024 	struct page *page;
2025 	int status;
2026 
2027 	page = grab_cache_page_write_begin(mapping, index, flags);
2028 	if (!page)
2029 		return -ENOMEM;
2030 
2031 	status = __block_write_begin(page, pos, len, get_block);
2032 	if (unlikely(status)) {
2033 		unlock_page(page);
2034 		put_page(page);
2035 		page = NULL;
2036 	}
2037 
2038 	*pagep = page;
2039 	return status;
2040 }
2041 EXPORT_SYMBOL(block_write_begin);
2042 
2043 int block_write_end(struct file *file, struct address_space *mapping,
2044 			loff_t pos, unsigned len, unsigned copied,
2045 			struct page *page, void *fsdata)
2046 {
2047 	struct inode *inode = mapping->host;
2048 	unsigned start;
2049 
2050 	start = pos & (PAGE_SIZE - 1);
2051 
2052 	if (unlikely(copied < len)) {
2053 		/*
2054 		 * The buffers that were written will now be uptodate, so we
2055 		 * don't have to worry about a readpage reading them and
2056 		 * overwriting a partial write. However if we have encountered
2057 		 * a short write and only partially written into a buffer, it
2058 		 * will not be marked uptodate, so a readpage might come in and
2059 		 * destroy our partial write.
2060 		 *
2061 		 * Do the simplest thing, and just treat any short write to a
2062 		 * non uptodate page as a zero-length write, and force the
2063 		 * caller to redo the whole thing.
2064 		 */
2065 		if (!PageUptodate(page))
2066 			copied = 0;
2067 
2068 		page_zero_new_buffers(page, start+copied, start+len);
2069 	}
2070 	flush_dcache_page(page);
2071 
2072 	/* This could be a short (even 0-length) commit */
2073 	__block_commit_write(inode, page, start, start+copied);
2074 
2075 	return copied;
2076 }
2077 EXPORT_SYMBOL(block_write_end);
2078 
2079 int generic_write_end(struct file *file, struct address_space *mapping,
2080 			loff_t pos, unsigned len, unsigned copied,
2081 			struct page *page, void *fsdata)
2082 {
2083 	struct inode *inode = mapping->host;
2084 	loff_t old_size = inode->i_size;
2085 	int i_size_changed = 0;
2086 
2087 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2088 
2089 	/*
2090 	 * No need to use i_size_read() here, the i_size
2091 	 * cannot change under us because we hold i_mutex.
2092 	 *
2093 	 * But it's important to update i_size while still holding page lock:
2094 	 * page writeout could otherwise come in and zero beyond i_size.
2095 	 */
2096 	if (pos+copied > inode->i_size) {
2097 		i_size_write(inode, pos+copied);
2098 		i_size_changed = 1;
2099 	}
2100 
2101 	unlock_page(page);
2102 	put_page(page);
2103 
2104 	if (old_size < pos)
2105 		pagecache_isize_extended(inode, old_size, pos);
2106 	/*
2107 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2108 	 * makes the holding time of page lock longer. Second, it forces lock
2109 	 * ordering of page lock and transaction start for journaling
2110 	 * filesystems.
2111 	 */
2112 	if (i_size_changed)
2113 		mark_inode_dirty(inode);
2114 
2115 	return copied;
2116 }
2117 EXPORT_SYMBOL(generic_write_end);
2118 
2119 /*
2120  * block_is_partially_uptodate checks whether buffers within a page are
2121  * uptodate or not.
2122  *
2123  * Returns true if all buffers which correspond to a file portion
2124  * we want to read are uptodate.
2125  */
2126 int block_is_partially_uptodate(struct page *page, unsigned long from,
2127 					unsigned long count)
2128 {
2129 	unsigned block_start, block_end, blocksize;
2130 	unsigned to;
2131 	struct buffer_head *bh, *head;
2132 	int ret = 1;
2133 
2134 	if (!page_has_buffers(page))
2135 		return 0;
2136 
2137 	head = page_buffers(page);
2138 	blocksize = head->b_size;
2139 	to = min_t(unsigned, PAGE_SIZE - from, count);
2140 	to = from + to;
2141 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2142 		return 0;
2143 
2144 	bh = head;
2145 	block_start = 0;
2146 	do {
2147 		block_end = block_start + blocksize;
2148 		if (block_end > from && block_start < to) {
2149 			if (!buffer_uptodate(bh)) {
2150 				ret = 0;
2151 				break;
2152 			}
2153 			if (block_end >= to)
2154 				break;
2155 		}
2156 		block_start = block_end;
2157 		bh = bh->b_this_page;
2158 	} while (bh != head);
2159 
2160 	return ret;
2161 }
2162 EXPORT_SYMBOL(block_is_partially_uptodate);
2163 
2164 /*
2165  * Generic "read page" function for block devices that have the normal
2166  * get_block functionality. This is most of the block device filesystems.
2167  * Reads the page asynchronously --- the unlock_buffer() and
2168  * set/clear_buffer_uptodate() functions propagate buffer state into the
2169  * page struct once IO has completed.
2170  */
2171 int block_read_full_page(struct page *page, get_block_t *get_block)
2172 {
2173 	struct inode *inode = page->mapping->host;
2174 	sector_t iblock, lblock;
2175 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2176 	unsigned int blocksize, bbits;
2177 	int nr, i;
2178 	int fully_mapped = 1;
2179 
2180 	head = create_page_buffers(page, inode, 0);
2181 	blocksize = head->b_size;
2182 	bbits = block_size_bits(blocksize);
2183 
2184 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2185 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2186 	bh = head;
2187 	nr = 0;
2188 	i = 0;
2189 
2190 	do {
2191 		if (buffer_uptodate(bh))
2192 			continue;
2193 
2194 		if (!buffer_mapped(bh)) {
2195 			int err = 0;
2196 
2197 			fully_mapped = 0;
2198 			if (iblock < lblock) {
2199 				WARN_ON(bh->b_size != blocksize);
2200 				err = get_block(inode, iblock, bh, 0);
2201 				if (err)
2202 					SetPageError(page);
2203 			}
2204 			if (!buffer_mapped(bh)) {
2205 				zero_user(page, i * blocksize, blocksize);
2206 				if (!err)
2207 					set_buffer_uptodate(bh);
2208 				continue;
2209 			}
2210 			/*
2211 			 * get_block() might have updated the buffer
2212 			 * synchronously
2213 			 */
2214 			if (buffer_uptodate(bh))
2215 				continue;
2216 		}
2217 		arr[nr++] = bh;
2218 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2219 
2220 	if (fully_mapped)
2221 		SetPageMappedToDisk(page);
2222 
2223 	if (!nr) {
2224 		/*
2225 		 * All buffers are uptodate - we can set the page uptodate
2226 		 * as well. But not if get_block() returned an error.
2227 		 */
2228 		if (!PageError(page))
2229 			SetPageUptodate(page);
2230 		unlock_page(page);
2231 		return 0;
2232 	}
2233 
2234 	/* Stage two: lock the buffers */
2235 	for (i = 0; i < nr; i++) {
2236 		bh = arr[i];
2237 		lock_buffer(bh);
2238 		mark_buffer_async_read(bh);
2239 	}
2240 
2241 	/*
2242 	 * Stage 3: start the IO.  Check for uptodateness
2243 	 * inside the buffer lock in case another process reading
2244 	 * the underlying blockdev brought it uptodate (the sct fix).
2245 	 */
2246 	for (i = 0; i < nr; i++) {
2247 		bh = arr[i];
2248 		if (buffer_uptodate(bh))
2249 			end_buffer_async_read(bh, 1);
2250 		else
2251 			submit_bh(READ, bh);
2252 	}
2253 	return 0;
2254 }
2255 EXPORT_SYMBOL(block_read_full_page);
2256 
2257 /* utility function for filesystems that need to do work on expanding
2258  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2259  * deal with the hole.
2260  */
2261 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2262 {
2263 	struct address_space *mapping = inode->i_mapping;
2264 	struct page *page;
2265 	void *fsdata;
2266 	int err;
2267 
2268 	err = inode_newsize_ok(inode, size);
2269 	if (err)
2270 		goto out;
2271 
2272 	err = pagecache_write_begin(NULL, mapping, size, 0,
2273 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2274 				&page, &fsdata);
2275 	if (err)
2276 		goto out;
2277 
2278 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2279 	BUG_ON(err > 0);
2280 
2281 out:
2282 	return err;
2283 }
2284 EXPORT_SYMBOL(generic_cont_expand_simple);
2285 
2286 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2287 			    loff_t pos, loff_t *bytes)
2288 {
2289 	struct inode *inode = mapping->host;
2290 	unsigned blocksize = 1 << inode->i_blkbits;
2291 	struct page *page;
2292 	void *fsdata;
2293 	pgoff_t index, curidx;
2294 	loff_t curpos;
2295 	unsigned zerofrom, offset, len;
2296 	int err = 0;
2297 
2298 	index = pos >> PAGE_SHIFT;
2299 	offset = pos & ~PAGE_MASK;
2300 
2301 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2302 		zerofrom = curpos & ~PAGE_MASK;
2303 		if (zerofrom & (blocksize-1)) {
2304 			*bytes |= (blocksize-1);
2305 			(*bytes)++;
2306 		}
2307 		len = PAGE_SIZE - zerofrom;
2308 
2309 		err = pagecache_write_begin(file, mapping, curpos, len,
2310 						AOP_FLAG_UNINTERRUPTIBLE,
2311 						&page, &fsdata);
2312 		if (err)
2313 			goto out;
2314 		zero_user(page, zerofrom, len);
2315 		err = pagecache_write_end(file, mapping, curpos, len, len,
2316 						page, fsdata);
2317 		if (err < 0)
2318 			goto out;
2319 		BUG_ON(err != len);
2320 		err = 0;
2321 
2322 		balance_dirty_pages_ratelimited(mapping);
2323 
2324 		if (unlikely(fatal_signal_pending(current))) {
2325 			err = -EINTR;
2326 			goto out;
2327 		}
2328 	}
2329 
2330 	/* page covers the boundary, find the boundary offset */
2331 	if (index == curidx) {
2332 		zerofrom = curpos & ~PAGE_MASK;
2333 		/* if we will expand the thing last block will be filled */
2334 		if (offset <= zerofrom) {
2335 			goto out;
2336 		}
2337 		if (zerofrom & (blocksize-1)) {
2338 			*bytes |= (blocksize-1);
2339 			(*bytes)++;
2340 		}
2341 		len = offset - zerofrom;
2342 
2343 		err = pagecache_write_begin(file, mapping, curpos, len,
2344 						AOP_FLAG_UNINTERRUPTIBLE,
2345 						&page, &fsdata);
2346 		if (err)
2347 			goto out;
2348 		zero_user(page, zerofrom, len);
2349 		err = pagecache_write_end(file, mapping, curpos, len, len,
2350 						page, fsdata);
2351 		if (err < 0)
2352 			goto out;
2353 		BUG_ON(err != len);
2354 		err = 0;
2355 	}
2356 out:
2357 	return err;
2358 }
2359 
2360 /*
2361  * For moronic filesystems that do not allow holes in file.
2362  * We may have to extend the file.
2363  */
2364 int cont_write_begin(struct file *file, struct address_space *mapping,
2365 			loff_t pos, unsigned len, unsigned flags,
2366 			struct page **pagep, void **fsdata,
2367 			get_block_t *get_block, loff_t *bytes)
2368 {
2369 	struct inode *inode = mapping->host;
2370 	unsigned blocksize = 1 << inode->i_blkbits;
2371 	unsigned zerofrom;
2372 	int err;
2373 
2374 	err = cont_expand_zero(file, mapping, pos, bytes);
2375 	if (err)
2376 		return err;
2377 
2378 	zerofrom = *bytes & ~PAGE_MASK;
2379 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2380 		*bytes |= (blocksize-1);
2381 		(*bytes)++;
2382 	}
2383 
2384 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2385 }
2386 EXPORT_SYMBOL(cont_write_begin);
2387 
2388 int block_commit_write(struct page *page, unsigned from, unsigned to)
2389 {
2390 	struct inode *inode = page->mapping->host;
2391 	__block_commit_write(inode,page,from,to);
2392 	return 0;
2393 }
2394 EXPORT_SYMBOL(block_commit_write);
2395 
2396 /*
2397  * block_page_mkwrite() is not allowed to change the file size as it gets
2398  * called from a page fault handler when a page is first dirtied. Hence we must
2399  * be careful to check for EOF conditions here. We set the page up correctly
2400  * for a written page which means we get ENOSPC checking when writing into
2401  * holes and correct delalloc and unwritten extent mapping on filesystems that
2402  * support these features.
2403  *
2404  * We are not allowed to take the i_mutex here so we have to play games to
2405  * protect against truncate races as the page could now be beyond EOF.  Because
2406  * truncate writes the inode size before removing pages, once we have the
2407  * page lock we can determine safely if the page is beyond EOF. If it is not
2408  * beyond EOF, then the page is guaranteed safe against truncation until we
2409  * unlock the page.
2410  *
2411  * Direct callers of this function should protect against filesystem freezing
2412  * using sb_start_pagefault() - sb_end_pagefault() functions.
2413  */
2414 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2415 			 get_block_t get_block)
2416 {
2417 	struct page *page = vmf->page;
2418 	struct inode *inode = file_inode(vma->vm_file);
2419 	unsigned long end;
2420 	loff_t size;
2421 	int ret;
2422 
2423 	lock_page(page);
2424 	size = i_size_read(inode);
2425 	if ((page->mapping != inode->i_mapping) ||
2426 	    (page_offset(page) > size)) {
2427 		/* We overload EFAULT to mean page got truncated */
2428 		ret = -EFAULT;
2429 		goto out_unlock;
2430 	}
2431 
2432 	/* page is wholly or partially inside EOF */
2433 	if (((page->index + 1) << PAGE_SHIFT) > size)
2434 		end = size & ~PAGE_MASK;
2435 	else
2436 		end = PAGE_SIZE;
2437 
2438 	ret = __block_write_begin(page, 0, end, get_block);
2439 	if (!ret)
2440 		ret = block_commit_write(page, 0, end);
2441 
2442 	if (unlikely(ret < 0))
2443 		goto out_unlock;
2444 	set_page_dirty(page);
2445 	wait_for_stable_page(page);
2446 	return 0;
2447 out_unlock:
2448 	unlock_page(page);
2449 	return ret;
2450 }
2451 EXPORT_SYMBOL(block_page_mkwrite);
2452 
2453 /*
2454  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2455  * immediately, while under the page lock.  So it needs a special end_io
2456  * handler which does not touch the bh after unlocking it.
2457  */
2458 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2459 {
2460 	__end_buffer_read_notouch(bh, uptodate);
2461 }
2462 
2463 /*
2464  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2465  * the page (converting it to circular linked list and taking care of page
2466  * dirty races).
2467  */
2468 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2469 {
2470 	struct buffer_head *bh;
2471 
2472 	BUG_ON(!PageLocked(page));
2473 
2474 	spin_lock(&page->mapping->private_lock);
2475 	bh = head;
2476 	do {
2477 		if (PageDirty(page))
2478 			set_buffer_dirty(bh);
2479 		if (!bh->b_this_page)
2480 			bh->b_this_page = head;
2481 		bh = bh->b_this_page;
2482 	} while (bh != head);
2483 	attach_page_buffers(page, head);
2484 	spin_unlock(&page->mapping->private_lock);
2485 }
2486 
2487 /*
2488  * On entry, the page is fully not uptodate.
2489  * On exit the page is fully uptodate in the areas outside (from,to)
2490  * The filesystem needs to handle block truncation upon failure.
2491  */
2492 int nobh_write_begin(struct address_space *mapping,
2493 			loff_t pos, unsigned len, unsigned flags,
2494 			struct page **pagep, void **fsdata,
2495 			get_block_t *get_block)
2496 {
2497 	struct inode *inode = mapping->host;
2498 	const unsigned blkbits = inode->i_blkbits;
2499 	const unsigned blocksize = 1 << blkbits;
2500 	struct buffer_head *head, *bh;
2501 	struct page *page;
2502 	pgoff_t index;
2503 	unsigned from, to;
2504 	unsigned block_in_page;
2505 	unsigned block_start, block_end;
2506 	sector_t block_in_file;
2507 	int nr_reads = 0;
2508 	int ret = 0;
2509 	int is_mapped_to_disk = 1;
2510 
2511 	index = pos >> PAGE_SHIFT;
2512 	from = pos & (PAGE_SIZE - 1);
2513 	to = from + len;
2514 
2515 	page = grab_cache_page_write_begin(mapping, index, flags);
2516 	if (!page)
2517 		return -ENOMEM;
2518 	*pagep = page;
2519 	*fsdata = NULL;
2520 
2521 	if (page_has_buffers(page)) {
2522 		ret = __block_write_begin(page, pos, len, get_block);
2523 		if (unlikely(ret))
2524 			goto out_release;
2525 		return ret;
2526 	}
2527 
2528 	if (PageMappedToDisk(page))
2529 		return 0;
2530 
2531 	/*
2532 	 * Allocate buffers so that we can keep track of state, and potentially
2533 	 * attach them to the page if an error occurs. In the common case of
2534 	 * no error, they will just be freed again without ever being attached
2535 	 * to the page (which is all OK, because we're under the page lock).
2536 	 *
2537 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2538 	 * than the circular one we're used to.
2539 	 */
2540 	head = alloc_page_buffers(page, blocksize, 0);
2541 	if (!head) {
2542 		ret = -ENOMEM;
2543 		goto out_release;
2544 	}
2545 
2546 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2547 
2548 	/*
2549 	 * We loop across all blocks in the page, whether or not they are
2550 	 * part of the affected region.  This is so we can discover if the
2551 	 * page is fully mapped-to-disk.
2552 	 */
2553 	for (block_start = 0, block_in_page = 0, bh = head;
2554 		  block_start < PAGE_SIZE;
2555 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2556 		int create;
2557 
2558 		block_end = block_start + blocksize;
2559 		bh->b_state = 0;
2560 		create = 1;
2561 		if (block_start >= to)
2562 			create = 0;
2563 		ret = get_block(inode, block_in_file + block_in_page,
2564 					bh, create);
2565 		if (ret)
2566 			goto failed;
2567 		if (!buffer_mapped(bh))
2568 			is_mapped_to_disk = 0;
2569 		if (buffer_new(bh))
2570 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2571 		if (PageUptodate(page)) {
2572 			set_buffer_uptodate(bh);
2573 			continue;
2574 		}
2575 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2576 			zero_user_segments(page, block_start, from,
2577 							to, block_end);
2578 			continue;
2579 		}
2580 		if (buffer_uptodate(bh))
2581 			continue;	/* reiserfs does this */
2582 		if (block_start < from || block_end > to) {
2583 			lock_buffer(bh);
2584 			bh->b_end_io = end_buffer_read_nobh;
2585 			submit_bh(READ, bh);
2586 			nr_reads++;
2587 		}
2588 	}
2589 
2590 	if (nr_reads) {
2591 		/*
2592 		 * The page is locked, so these buffers are protected from
2593 		 * any VM or truncate activity.  Hence we don't need to care
2594 		 * for the buffer_head refcounts.
2595 		 */
2596 		for (bh = head; bh; bh = bh->b_this_page) {
2597 			wait_on_buffer(bh);
2598 			if (!buffer_uptodate(bh))
2599 				ret = -EIO;
2600 		}
2601 		if (ret)
2602 			goto failed;
2603 	}
2604 
2605 	if (is_mapped_to_disk)
2606 		SetPageMappedToDisk(page);
2607 
2608 	*fsdata = head; /* to be released by nobh_write_end */
2609 
2610 	return 0;
2611 
2612 failed:
2613 	BUG_ON(!ret);
2614 	/*
2615 	 * Error recovery is a bit difficult. We need to zero out blocks that
2616 	 * were newly allocated, and dirty them to ensure they get written out.
2617 	 * Buffers need to be attached to the page at this point, otherwise
2618 	 * the handling of potential IO errors during writeout would be hard
2619 	 * (could try doing synchronous writeout, but what if that fails too?)
2620 	 */
2621 	attach_nobh_buffers(page, head);
2622 	page_zero_new_buffers(page, from, to);
2623 
2624 out_release:
2625 	unlock_page(page);
2626 	put_page(page);
2627 	*pagep = NULL;
2628 
2629 	return ret;
2630 }
2631 EXPORT_SYMBOL(nobh_write_begin);
2632 
2633 int nobh_write_end(struct file *file, struct address_space *mapping,
2634 			loff_t pos, unsigned len, unsigned copied,
2635 			struct page *page, void *fsdata)
2636 {
2637 	struct inode *inode = page->mapping->host;
2638 	struct buffer_head *head = fsdata;
2639 	struct buffer_head *bh;
2640 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2641 
2642 	if (unlikely(copied < len) && head)
2643 		attach_nobh_buffers(page, head);
2644 	if (page_has_buffers(page))
2645 		return generic_write_end(file, mapping, pos, len,
2646 					copied, page, fsdata);
2647 
2648 	SetPageUptodate(page);
2649 	set_page_dirty(page);
2650 	if (pos+copied > inode->i_size) {
2651 		i_size_write(inode, pos+copied);
2652 		mark_inode_dirty(inode);
2653 	}
2654 
2655 	unlock_page(page);
2656 	put_page(page);
2657 
2658 	while (head) {
2659 		bh = head;
2660 		head = head->b_this_page;
2661 		free_buffer_head(bh);
2662 	}
2663 
2664 	return copied;
2665 }
2666 EXPORT_SYMBOL(nobh_write_end);
2667 
2668 /*
2669  * nobh_writepage() - based on block_full_write_page() except
2670  * that it tries to operate without attaching bufferheads to
2671  * the page.
2672  */
2673 int nobh_writepage(struct page *page, get_block_t *get_block,
2674 			struct writeback_control *wbc)
2675 {
2676 	struct inode * const inode = page->mapping->host;
2677 	loff_t i_size = i_size_read(inode);
2678 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2679 	unsigned offset;
2680 	int ret;
2681 
2682 	/* Is the page fully inside i_size? */
2683 	if (page->index < end_index)
2684 		goto out;
2685 
2686 	/* Is the page fully outside i_size? (truncate in progress) */
2687 	offset = i_size & (PAGE_SIZE-1);
2688 	if (page->index >= end_index+1 || !offset) {
2689 		/*
2690 		 * The page may have dirty, unmapped buffers.  For example,
2691 		 * they may have been added in ext3_writepage().  Make them
2692 		 * freeable here, so the page does not leak.
2693 		 */
2694 #if 0
2695 		/* Not really sure about this  - do we need this ? */
2696 		if (page->mapping->a_ops->invalidatepage)
2697 			page->mapping->a_ops->invalidatepage(page, offset);
2698 #endif
2699 		unlock_page(page);
2700 		return 0; /* don't care */
2701 	}
2702 
2703 	/*
2704 	 * The page straddles i_size.  It must be zeroed out on each and every
2705 	 * writepage invocation because it may be mmapped.  "A file is mapped
2706 	 * in multiples of the page size.  For a file that is not a multiple of
2707 	 * the  page size, the remaining memory is zeroed when mapped, and
2708 	 * writes to that region are not written out to the file."
2709 	 */
2710 	zero_user_segment(page, offset, PAGE_SIZE);
2711 out:
2712 	ret = mpage_writepage(page, get_block, wbc);
2713 	if (ret == -EAGAIN)
2714 		ret = __block_write_full_page(inode, page, get_block, wbc,
2715 					      end_buffer_async_write);
2716 	return ret;
2717 }
2718 EXPORT_SYMBOL(nobh_writepage);
2719 
2720 int nobh_truncate_page(struct address_space *mapping,
2721 			loff_t from, get_block_t *get_block)
2722 {
2723 	pgoff_t index = from >> PAGE_SHIFT;
2724 	unsigned offset = from & (PAGE_SIZE-1);
2725 	unsigned blocksize;
2726 	sector_t iblock;
2727 	unsigned length, pos;
2728 	struct inode *inode = mapping->host;
2729 	struct page *page;
2730 	struct buffer_head map_bh;
2731 	int err;
2732 
2733 	blocksize = 1 << inode->i_blkbits;
2734 	length = offset & (blocksize - 1);
2735 
2736 	/* Block boundary? Nothing to do */
2737 	if (!length)
2738 		return 0;
2739 
2740 	length = blocksize - length;
2741 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2742 
2743 	page = grab_cache_page(mapping, index);
2744 	err = -ENOMEM;
2745 	if (!page)
2746 		goto out;
2747 
2748 	if (page_has_buffers(page)) {
2749 has_buffers:
2750 		unlock_page(page);
2751 		put_page(page);
2752 		return block_truncate_page(mapping, from, get_block);
2753 	}
2754 
2755 	/* Find the buffer that contains "offset" */
2756 	pos = blocksize;
2757 	while (offset >= pos) {
2758 		iblock++;
2759 		pos += blocksize;
2760 	}
2761 
2762 	map_bh.b_size = blocksize;
2763 	map_bh.b_state = 0;
2764 	err = get_block(inode, iblock, &map_bh, 0);
2765 	if (err)
2766 		goto unlock;
2767 	/* unmapped? It's a hole - nothing to do */
2768 	if (!buffer_mapped(&map_bh))
2769 		goto unlock;
2770 
2771 	/* Ok, it's mapped. Make sure it's up-to-date */
2772 	if (!PageUptodate(page)) {
2773 		err = mapping->a_ops->readpage(NULL, page);
2774 		if (err) {
2775 			put_page(page);
2776 			goto out;
2777 		}
2778 		lock_page(page);
2779 		if (!PageUptodate(page)) {
2780 			err = -EIO;
2781 			goto unlock;
2782 		}
2783 		if (page_has_buffers(page))
2784 			goto has_buffers;
2785 	}
2786 	zero_user(page, offset, length);
2787 	set_page_dirty(page);
2788 	err = 0;
2789 
2790 unlock:
2791 	unlock_page(page);
2792 	put_page(page);
2793 out:
2794 	return err;
2795 }
2796 EXPORT_SYMBOL(nobh_truncate_page);
2797 
2798 int block_truncate_page(struct address_space *mapping,
2799 			loff_t from, get_block_t *get_block)
2800 {
2801 	pgoff_t index = from >> PAGE_SHIFT;
2802 	unsigned offset = from & (PAGE_SIZE-1);
2803 	unsigned blocksize;
2804 	sector_t iblock;
2805 	unsigned length, pos;
2806 	struct inode *inode = mapping->host;
2807 	struct page *page;
2808 	struct buffer_head *bh;
2809 	int err;
2810 
2811 	blocksize = 1 << inode->i_blkbits;
2812 	length = offset & (blocksize - 1);
2813 
2814 	/* Block boundary? Nothing to do */
2815 	if (!length)
2816 		return 0;
2817 
2818 	length = blocksize - length;
2819 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2820 
2821 	page = grab_cache_page(mapping, index);
2822 	err = -ENOMEM;
2823 	if (!page)
2824 		goto out;
2825 
2826 	if (!page_has_buffers(page))
2827 		create_empty_buffers(page, blocksize, 0);
2828 
2829 	/* Find the buffer that contains "offset" */
2830 	bh = page_buffers(page);
2831 	pos = blocksize;
2832 	while (offset >= pos) {
2833 		bh = bh->b_this_page;
2834 		iblock++;
2835 		pos += blocksize;
2836 	}
2837 
2838 	err = 0;
2839 	if (!buffer_mapped(bh)) {
2840 		WARN_ON(bh->b_size != blocksize);
2841 		err = get_block(inode, iblock, bh, 0);
2842 		if (err)
2843 			goto unlock;
2844 		/* unmapped? It's a hole - nothing to do */
2845 		if (!buffer_mapped(bh))
2846 			goto unlock;
2847 	}
2848 
2849 	/* Ok, it's mapped. Make sure it's up-to-date */
2850 	if (PageUptodate(page))
2851 		set_buffer_uptodate(bh);
2852 
2853 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2854 		err = -EIO;
2855 		ll_rw_block(READ, 1, &bh);
2856 		wait_on_buffer(bh);
2857 		/* Uhhuh. Read error. Complain and punt. */
2858 		if (!buffer_uptodate(bh))
2859 			goto unlock;
2860 	}
2861 
2862 	zero_user(page, offset, length);
2863 	mark_buffer_dirty(bh);
2864 	err = 0;
2865 
2866 unlock:
2867 	unlock_page(page);
2868 	put_page(page);
2869 out:
2870 	return err;
2871 }
2872 EXPORT_SYMBOL(block_truncate_page);
2873 
2874 /*
2875  * The generic ->writepage function for buffer-backed address_spaces
2876  */
2877 int block_write_full_page(struct page *page, get_block_t *get_block,
2878 			struct writeback_control *wbc)
2879 {
2880 	struct inode * const inode = page->mapping->host;
2881 	loff_t i_size = i_size_read(inode);
2882 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2883 	unsigned offset;
2884 
2885 	/* Is the page fully inside i_size? */
2886 	if (page->index < end_index)
2887 		return __block_write_full_page(inode, page, get_block, wbc,
2888 					       end_buffer_async_write);
2889 
2890 	/* Is the page fully outside i_size? (truncate in progress) */
2891 	offset = i_size & (PAGE_SIZE-1);
2892 	if (page->index >= end_index+1 || !offset) {
2893 		/*
2894 		 * The page may have dirty, unmapped buffers.  For example,
2895 		 * they may have been added in ext3_writepage().  Make them
2896 		 * freeable here, so the page does not leak.
2897 		 */
2898 		do_invalidatepage(page, 0, PAGE_SIZE);
2899 		unlock_page(page);
2900 		return 0; /* don't care */
2901 	}
2902 
2903 	/*
2904 	 * The page straddles i_size.  It must be zeroed out on each and every
2905 	 * writepage invocation because it may be mmapped.  "A file is mapped
2906 	 * in multiples of the page size.  For a file that is not a multiple of
2907 	 * the  page size, the remaining memory is zeroed when mapped, and
2908 	 * writes to that region are not written out to the file."
2909 	 */
2910 	zero_user_segment(page, offset, PAGE_SIZE);
2911 	return __block_write_full_page(inode, page, get_block, wbc,
2912 							end_buffer_async_write);
2913 }
2914 EXPORT_SYMBOL(block_write_full_page);
2915 
2916 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2917 			    get_block_t *get_block)
2918 {
2919 	struct buffer_head tmp;
2920 	struct inode *inode = mapping->host;
2921 	tmp.b_state = 0;
2922 	tmp.b_blocknr = 0;
2923 	tmp.b_size = 1 << inode->i_blkbits;
2924 	get_block(inode, block, &tmp, 0);
2925 	return tmp.b_blocknr;
2926 }
2927 EXPORT_SYMBOL(generic_block_bmap);
2928 
2929 static void end_bio_bh_io_sync(struct bio *bio)
2930 {
2931 	struct buffer_head *bh = bio->bi_private;
2932 
2933 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2934 		set_bit(BH_Quiet, &bh->b_state);
2935 
2936 	bh->b_end_io(bh, !bio->bi_error);
2937 	bio_put(bio);
2938 }
2939 
2940 /*
2941  * This allows us to do IO even on the odd last sectors
2942  * of a device, even if the block size is some multiple
2943  * of the physical sector size.
2944  *
2945  * We'll just truncate the bio to the size of the device,
2946  * and clear the end of the buffer head manually.
2947  *
2948  * Truly out-of-range accesses will turn into actual IO
2949  * errors, this only handles the "we need to be able to
2950  * do IO at the final sector" case.
2951  */
2952 void guard_bio_eod(int rw, struct bio *bio)
2953 {
2954 	sector_t maxsector;
2955 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2956 	unsigned truncated_bytes;
2957 
2958 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2959 	if (!maxsector)
2960 		return;
2961 
2962 	/*
2963 	 * If the *whole* IO is past the end of the device,
2964 	 * let it through, and the IO layer will turn it into
2965 	 * an EIO.
2966 	 */
2967 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2968 		return;
2969 
2970 	maxsector -= bio->bi_iter.bi_sector;
2971 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2972 		return;
2973 
2974 	/* Uhhuh. We've got a bio that straddles the device size! */
2975 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2976 
2977 	/* Truncate the bio.. */
2978 	bio->bi_iter.bi_size -= truncated_bytes;
2979 	bvec->bv_len -= truncated_bytes;
2980 
2981 	/* ..and clear the end of the buffer for reads */
2982 	if ((rw & RW_MASK) == READ) {
2983 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2984 				truncated_bytes);
2985 	}
2986 }
2987 
2988 static int submit_bh_wbc(int rw, struct buffer_head *bh,
2989 			 unsigned long bio_flags, struct writeback_control *wbc)
2990 {
2991 	struct bio *bio;
2992 
2993 	BUG_ON(!buffer_locked(bh));
2994 	BUG_ON(!buffer_mapped(bh));
2995 	BUG_ON(!bh->b_end_io);
2996 	BUG_ON(buffer_delay(bh));
2997 	BUG_ON(buffer_unwritten(bh));
2998 
2999 	/*
3000 	 * Only clear out a write error when rewriting
3001 	 */
3002 	if (test_set_buffer_req(bh) && (rw & WRITE))
3003 		clear_buffer_write_io_error(bh);
3004 
3005 	/*
3006 	 * from here on down, it's all bio -- do the initial mapping,
3007 	 * submit_bio -> generic_make_request may further map this bio around
3008 	 */
3009 	bio = bio_alloc(GFP_NOIO, 1);
3010 
3011 	if (wbc) {
3012 		wbc_init_bio(wbc, bio);
3013 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3014 	}
3015 
3016 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3017 	bio->bi_bdev = bh->b_bdev;
3018 
3019 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3020 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3021 
3022 	bio->bi_end_io = end_bio_bh_io_sync;
3023 	bio->bi_private = bh;
3024 	bio->bi_flags |= bio_flags;
3025 
3026 	/* Take care of bh's that straddle the end of the device */
3027 	guard_bio_eod(rw, bio);
3028 
3029 	if (buffer_meta(bh))
3030 		rw |= REQ_META;
3031 	if (buffer_prio(bh))
3032 		rw |= REQ_PRIO;
3033 
3034 	submit_bio(rw, bio);
3035 	return 0;
3036 }
3037 
3038 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3039 {
3040 	return submit_bh_wbc(rw, bh, bio_flags, NULL);
3041 }
3042 EXPORT_SYMBOL_GPL(_submit_bh);
3043 
3044 int submit_bh(int rw, struct buffer_head *bh)
3045 {
3046 	return submit_bh_wbc(rw, bh, 0, NULL);
3047 }
3048 EXPORT_SYMBOL(submit_bh);
3049 
3050 /**
3051  * ll_rw_block: low-level access to block devices (DEPRECATED)
3052  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3053  * @nr: number of &struct buffer_heads in the array
3054  * @bhs: array of pointers to &struct buffer_head
3055  *
3056  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3057  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3058  * %READA option is described in the documentation for generic_make_request()
3059  * which ll_rw_block() calls.
3060  *
3061  * This function drops any buffer that it cannot get a lock on (with the
3062  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3063  * request, and any buffer that appears to be up-to-date when doing read
3064  * request.  Further it marks as clean buffers that are processed for
3065  * writing (the buffer cache won't assume that they are actually clean
3066  * until the buffer gets unlocked).
3067  *
3068  * ll_rw_block sets b_end_io to simple completion handler that marks
3069  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3070  * any waiters.
3071  *
3072  * All of the buffers must be for the same device, and must also be a
3073  * multiple of the current approved size for the device.
3074  */
3075 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3076 {
3077 	int i;
3078 
3079 	for (i = 0; i < nr; i++) {
3080 		struct buffer_head *bh = bhs[i];
3081 
3082 		if (!trylock_buffer(bh))
3083 			continue;
3084 		if (rw == WRITE) {
3085 			if (test_clear_buffer_dirty(bh)) {
3086 				bh->b_end_io = end_buffer_write_sync;
3087 				get_bh(bh);
3088 				submit_bh(WRITE, bh);
3089 				continue;
3090 			}
3091 		} else {
3092 			if (!buffer_uptodate(bh)) {
3093 				bh->b_end_io = end_buffer_read_sync;
3094 				get_bh(bh);
3095 				submit_bh(rw, bh);
3096 				continue;
3097 			}
3098 		}
3099 		unlock_buffer(bh);
3100 	}
3101 }
3102 EXPORT_SYMBOL(ll_rw_block);
3103 
3104 void write_dirty_buffer(struct buffer_head *bh, int rw)
3105 {
3106 	lock_buffer(bh);
3107 	if (!test_clear_buffer_dirty(bh)) {
3108 		unlock_buffer(bh);
3109 		return;
3110 	}
3111 	bh->b_end_io = end_buffer_write_sync;
3112 	get_bh(bh);
3113 	submit_bh(rw, bh);
3114 }
3115 EXPORT_SYMBOL(write_dirty_buffer);
3116 
3117 /*
3118  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3119  * and then start new I/O and then wait upon it.  The caller must have a ref on
3120  * the buffer_head.
3121  */
3122 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3123 {
3124 	int ret = 0;
3125 
3126 	WARN_ON(atomic_read(&bh->b_count) < 1);
3127 	lock_buffer(bh);
3128 	if (test_clear_buffer_dirty(bh)) {
3129 		get_bh(bh);
3130 		bh->b_end_io = end_buffer_write_sync;
3131 		ret = submit_bh(rw, bh);
3132 		wait_on_buffer(bh);
3133 		if (!ret && !buffer_uptodate(bh))
3134 			ret = -EIO;
3135 	} else {
3136 		unlock_buffer(bh);
3137 	}
3138 	return ret;
3139 }
3140 EXPORT_SYMBOL(__sync_dirty_buffer);
3141 
3142 int sync_dirty_buffer(struct buffer_head *bh)
3143 {
3144 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3145 }
3146 EXPORT_SYMBOL(sync_dirty_buffer);
3147 
3148 /*
3149  * try_to_free_buffers() checks if all the buffers on this particular page
3150  * are unused, and releases them if so.
3151  *
3152  * Exclusion against try_to_free_buffers may be obtained by either
3153  * locking the page or by holding its mapping's private_lock.
3154  *
3155  * If the page is dirty but all the buffers are clean then we need to
3156  * be sure to mark the page clean as well.  This is because the page
3157  * may be against a block device, and a later reattachment of buffers
3158  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3159  * filesystem data on the same device.
3160  *
3161  * The same applies to regular filesystem pages: if all the buffers are
3162  * clean then we set the page clean and proceed.  To do that, we require
3163  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3164  * private_lock.
3165  *
3166  * try_to_free_buffers() is non-blocking.
3167  */
3168 static inline int buffer_busy(struct buffer_head *bh)
3169 {
3170 	return atomic_read(&bh->b_count) |
3171 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3172 }
3173 
3174 static int
3175 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3176 {
3177 	struct buffer_head *head = page_buffers(page);
3178 	struct buffer_head *bh;
3179 
3180 	bh = head;
3181 	do {
3182 		if (buffer_write_io_error(bh) && page->mapping)
3183 			set_bit(AS_EIO, &page->mapping->flags);
3184 		if (buffer_busy(bh))
3185 			goto failed;
3186 		bh = bh->b_this_page;
3187 	} while (bh != head);
3188 
3189 	do {
3190 		struct buffer_head *next = bh->b_this_page;
3191 
3192 		if (bh->b_assoc_map)
3193 			__remove_assoc_queue(bh);
3194 		bh = next;
3195 	} while (bh != head);
3196 	*buffers_to_free = head;
3197 	__clear_page_buffers(page);
3198 	return 1;
3199 failed:
3200 	return 0;
3201 }
3202 
3203 int try_to_free_buffers(struct page *page)
3204 {
3205 	struct address_space * const mapping = page->mapping;
3206 	struct buffer_head *buffers_to_free = NULL;
3207 	int ret = 0;
3208 
3209 	BUG_ON(!PageLocked(page));
3210 	if (PageWriteback(page))
3211 		return 0;
3212 
3213 	if (mapping == NULL) {		/* can this still happen? */
3214 		ret = drop_buffers(page, &buffers_to_free);
3215 		goto out;
3216 	}
3217 
3218 	spin_lock(&mapping->private_lock);
3219 	ret = drop_buffers(page, &buffers_to_free);
3220 
3221 	/*
3222 	 * If the filesystem writes its buffers by hand (eg ext3)
3223 	 * then we can have clean buffers against a dirty page.  We
3224 	 * clean the page here; otherwise the VM will never notice
3225 	 * that the filesystem did any IO at all.
3226 	 *
3227 	 * Also, during truncate, discard_buffer will have marked all
3228 	 * the page's buffers clean.  We discover that here and clean
3229 	 * the page also.
3230 	 *
3231 	 * private_lock must be held over this entire operation in order
3232 	 * to synchronise against __set_page_dirty_buffers and prevent the
3233 	 * dirty bit from being lost.
3234 	 */
3235 	if (ret)
3236 		cancel_dirty_page(page);
3237 	spin_unlock(&mapping->private_lock);
3238 out:
3239 	if (buffers_to_free) {
3240 		struct buffer_head *bh = buffers_to_free;
3241 
3242 		do {
3243 			struct buffer_head *next = bh->b_this_page;
3244 			free_buffer_head(bh);
3245 			bh = next;
3246 		} while (bh != buffers_to_free);
3247 	}
3248 	return ret;
3249 }
3250 EXPORT_SYMBOL(try_to_free_buffers);
3251 
3252 /*
3253  * There are no bdflush tunables left.  But distributions are
3254  * still running obsolete flush daemons, so we terminate them here.
3255  *
3256  * Use of bdflush() is deprecated and will be removed in a future kernel.
3257  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3258  */
3259 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3260 {
3261 	static int msg_count;
3262 
3263 	if (!capable(CAP_SYS_ADMIN))
3264 		return -EPERM;
3265 
3266 	if (msg_count < 5) {
3267 		msg_count++;
3268 		printk(KERN_INFO
3269 			"warning: process `%s' used the obsolete bdflush"
3270 			" system call\n", current->comm);
3271 		printk(KERN_INFO "Fix your initscripts?\n");
3272 	}
3273 
3274 	if (func == 1)
3275 		do_exit(0);
3276 	return 0;
3277 }
3278 
3279 /*
3280  * Buffer-head allocation
3281  */
3282 static struct kmem_cache *bh_cachep __read_mostly;
3283 
3284 /*
3285  * Once the number of bh's in the machine exceeds this level, we start
3286  * stripping them in writeback.
3287  */
3288 static unsigned long max_buffer_heads;
3289 
3290 int buffer_heads_over_limit;
3291 
3292 struct bh_accounting {
3293 	int nr;			/* Number of live bh's */
3294 	int ratelimit;		/* Limit cacheline bouncing */
3295 };
3296 
3297 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3298 
3299 static void recalc_bh_state(void)
3300 {
3301 	int i;
3302 	int tot = 0;
3303 
3304 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3305 		return;
3306 	__this_cpu_write(bh_accounting.ratelimit, 0);
3307 	for_each_online_cpu(i)
3308 		tot += per_cpu(bh_accounting, i).nr;
3309 	buffer_heads_over_limit = (tot > max_buffer_heads);
3310 }
3311 
3312 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3313 {
3314 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3315 	if (ret) {
3316 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3317 		preempt_disable();
3318 		__this_cpu_inc(bh_accounting.nr);
3319 		recalc_bh_state();
3320 		preempt_enable();
3321 	}
3322 	return ret;
3323 }
3324 EXPORT_SYMBOL(alloc_buffer_head);
3325 
3326 void free_buffer_head(struct buffer_head *bh)
3327 {
3328 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3329 	kmem_cache_free(bh_cachep, bh);
3330 	preempt_disable();
3331 	__this_cpu_dec(bh_accounting.nr);
3332 	recalc_bh_state();
3333 	preempt_enable();
3334 }
3335 EXPORT_SYMBOL(free_buffer_head);
3336 
3337 static void buffer_exit_cpu(int cpu)
3338 {
3339 	int i;
3340 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3341 
3342 	for (i = 0; i < BH_LRU_SIZE; i++) {
3343 		brelse(b->bhs[i]);
3344 		b->bhs[i] = NULL;
3345 	}
3346 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3347 	per_cpu(bh_accounting, cpu).nr = 0;
3348 }
3349 
3350 static int buffer_cpu_notify(struct notifier_block *self,
3351 			      unsigned long action, void *hcpu)
3352 {
3353 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3354 		buffer_exit_cpu((unsigned long)hcpu);
3355 	return NOTIFY_OK;
3356 }
3357 
3358 /**
3359  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3360  * @bh: struct buffer_head
3361  *
3362  * Return true if the buffer is up-to-date and false,
3363  * with the buffer locked, if not.
3364  */
3365 int bh_uptodate_or_lock(struct buffer_head *bh)
3366 {
3367 	if (!buffer_uptodate(bh)) {
3368 		lock_buffer(bh);
3369 		if (!buffer_uptodate(bh))
3370 			return 0;
3371 		unlock_buffer(bh);
3372 	}
3373 	return 1;
3374 }
3375 EXPORT_SYMBOL(bh_uptodate_or_lock);
3376 
3377 /**
3378  * bh_submit_read - Submit a locked buffer for reading
3379  * @bh: struct buffer_head
3380  *
3381  * Returns zero on success and -EIO on error.
3382  */
3383 int bh_submit_read(struct buffer_head *bh)
3384 {
3385 	BUG_ON(!buffer_locked(bh));
3386 
3387 	if (buffer_uptodate(bh)) {
3388 		unlock_buffer(bh);
3389 		return 0;
3390 	}
3391 
3392 	get_bh(bh);
3393 	bh->b_end_io = end_buffer_read_sync;
3394 	submit_bh(READ, bh);
3395 	wait_on_buffer(bh);
3396 	if (buffer_uptodate(bh))
3397 		return 0;
3398 	return -EIO;
3399 }
3400 EXPORT_SYMBOL(bh_submit_read);
3401 
3402 void __init buffer_init(void)
3403 {
3404 	unsigned long nrpages;
3405 
3406 	bh_cachep = kmem_cache_create("buffer_head",
3407 			sizeof(struct buffer_head), 0,
3408 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3409 				SLAB_MEM_SPREAD),
3410 				NULL);
3411 
3412 	/*
3413 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3414 	 */
3415 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3416 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3417 	hotcpu_notifier(buffer_cpu_notify, 0);
3418 }
3419