xref: /openbmc/linux/fs/buffer.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 
51 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
52 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
53 			 enum rw_hint hint, struct writeback_control *wbc);
54 
55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69 
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 	clear_bit_unlock(BH_Lock, &bh->b_state);
73 	smp_mb__after_atomic();
74 	wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77 
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84 				     bool *dirty, bool *writeback)
85 {
86 	struct buffer_head *head, *bh;
87 	*dirty = false;
88 	*writeback = false;
89 
90 	BUG_ON(!PageLocked(page));
91 
92 	if (!page_has_buffers(page))
93 		return;
94 
95 	if (PageWriteback(page))
96 		*writeback = true;
97 
98 	head = page_buffers(page);
99 	bh = head;
100 	do {
101 		if (buffer_locked(bh))
102 			*writeback = true;
103 
104 		if (buffer_dirty(bh))
105 			*dirty = true;
106 
107 		bh = bh->b_this_page;
108 	} while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111 
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122 
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126 	ClearPagePrivate(page);
127 	set_page_private(page, 0);
128 	put_page(page);
129 }
130 
131 static void buffer_io_error(struct buffer_head *bh, char *msg)
132 {
133 	if (!test_bit(BH_Quiet, &bh->b_state))
134 		printk_ratelimited(KERN_ERR
135 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
136 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
137 }
138 
139 /*
140  * End-of-IO handler helper function which does not touch the bh after
141  * unlocking it.
142  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
143  * a race there is benign: unlock_buffer() only use the bh's address for
144  * hashing after unlocking the buffer, so it doesn't actually touch the bh
145  * itself.
146  */
147 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
148 {
149 	if (uptodate) {
150 		set_buffer_uptodate(bh);
151 	} else {
152 		/* This happens, due to failed read-ahead attempts. */
153 		clear_buffer_uptodate(bh);
154 	}
155 	unlock_buffer(bh);
156 }
157 
158 /*
159  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
160  * unlock the buffer. This is what ll_rw_block uses too.
161  */
162 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
163 {
164 	__end_buffer_read_notouch(bh, uptodate);
165 	put_bh(bh);
166 }
167 EXPORT_SYMBOL(end_buffer_read_sync);
168 
169 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
170 {
171 	if (uptodate) {
172 		set_buffer_uptodate(bh);
173 	} else {
174 		buffer_io_error(bh, ", lost sync page write");
175 		mark_buffer_write_io_error(bh);
176 		clear_buffer_uptodate(bh);
177 	}
178 	unlock_buffer(bh);
179 	put_bh(bh);
180 }
181 EXPORT_SYMBOL(end_buffer_write_sync);
182 
183 /*
184  * Various filesystems appear to want __find_get_block to be non-blocking.
185  * But it's the page lock which protects the buffers.  To get around this,
186  * we get exclusion from try_to_free_buffers with the blockdev mapping's
187  * private_lock.
188  *
189  * Hack idea: for the blockdev mapping, private_lock contention
190  * may be quite high.  This code could TryLock the page, and if that
191  * succeeds, there is no need to take private_lock.
192  */
193 static struct buffer_head *
194 __find_get_block_slow(struct block_device *bdev, sector_t block)
195 {
196 	struct inode *bd_inode = bdev->bd_inode;
197 	struct address_space *bd_mapping = bd_inode->i_mapping;
198 	struct buffer_head *ret = NULL;
199 	pgoff_t index;
200 	struct buffer_head *bh;
201 	struct buffer_head *head;
202 	struct page *page;
203 	int all_mapped = 1;
204 
205 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
206 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
207 	if (!page)
208 		goto out;
209 
210 	spin_lock(&bd_mapping->private_lock);
211 	if (!page_has_buffers(page))
212 		goto out_unlock;
213 	head = page_buffers(page);
214 	bh = head;
215 	do {
216 		if (!buffer_mapped(bh))
217 			all_mapped = 0;
218 		else if (bh->b_blocknr == block) {
219 			ret = bh;
220 			get_bh(bh);
221 			goto out_unlock;
222 		}
223 		bh = bh->b_this_page;
224 	} while (bh != head);
225 
226 	/* we might be here because some of the buffers on this page are
227 	 * not mapped.  This is due to various races between
228 	 * file io on the block device and getblk.  It gets dealt with
229 	 * elsewhere, don't buffer_error if we had some unmapped buffers
230 	 */
231 	if (all_mapped) {
232 		printk("__find_get_block_slow() failed. "
233 			"block=%llu, b_blocknr=%llu\n",
234 			(unsigned long long)block,
235 			(unsigned long long)bh->b_blocknr);
236 		printk("b_state=0x%08lx, b_size=%zu\n",
237 			bh->b_state, bh->b_size);
238 		printk("device %pg blocksize: %d\n", bdev,
239 			1 << bd_inode->i_blkbits);
240 	}
241 out_unlock:
242 	spin_unlock(&bd_mapping->private_lock);
243 	put_page(page);
244 out:
245 	return ret;
246 }
247 
248 /*
249  * I/O completion handler for block_read_full_page() - pages
250  * which come unlocked at the end of I/O.
251  */
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254 	unsigned long flags;
255 	struct buffer_head *first;
256 	struct buffer_head *tmp;
257 	struct page *page;
258 	int page_uptodate = 1;
259 
260 	BUG_ON(!buffer_async_read(bh));
261 
262 	page = bh->b_page;
263 	if (uptodate) {
264 		set_buffer_uptodate(bh);
265 	} else {
266 		clear_buffer_uptodate(bh);
267 		buffer_io_error(bh, ", async page read");
268 		SetPageError(page);
269 	}
270 
271 	/*
272 	 * Be _very_ careful from here on. Bad things can happen if
273 	 * two buffer heads end IO at almost the same time and both
274 	 * decide that the page is now completely done.
275 	 */
276 	first = page_buffers(page);
277 	local_irq_save(flags);
278 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
279 	clear_buffer_async_read(bh);
280 	unlock_buffer(bh);
281 	tmp = bh;
282 	do {
283 		if (!buffer_uptodate(tmp))
284 			page_uptodate = 0;
285 		if (buffer_async_read(tmp)) {
286 			BUG_ON(!buffer_locked(tmp));
287 			goto still_busy;
288 		}
289 		tmp = tmp->b_this_page;
290 	} while (tmp != bh);
291 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
292 	local_irq_restore(flags);
293 
294 	/*
295 	 * If none of the buffers had errors and they are all
296 	 * uptodate then we can set the page uptodate.
297 	 */
298 	if (page_uptodate && !PageError(page))
299 		SetPageUptodate(page);
300 	unlock_page(page);
301 	return;
302 
303 still_busy:
304 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
305 	local_irq_restore(flags);
306 	return;
307 }
308 
309 /*
310  * Completion handler for block_write_full_page() - pages which are unlocked
311  * during I/O, and which have PageWriteback cleared upon I/O completion.
312  */
313 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
314 {
315 	unsigned long flags;
316 	struct buffer_head *first;
317 	struct buffer_head *tmp;
318 	struct page *page;
319 
320 	BUG_ON(!buffer_async_write(bh));
321 
322 	page = bh->b_page;
323 	if (uptodate) {
324 		set_buffer_uptodate(bh);
325 	} else {
326 		buffer_io_error(bh, ", lost async page write");
327 		mark_buffer_write_io_error(bh);
328 		clear_buffer_uptodate(bh);
329 		SetPageError(page);
330 	}
331 
332 	first = page_buffers(page);
333 	local_irq_save(flags);
334 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
335 
336 	clear_buffer_async_write(bh);
337 	unlock_buffer(bh);
338 	tmp = bh->b_this_page;
339 	while (tmp != bh) {
340 		if (buffer_async_write(tmp)) {
341 			BUG_ON(!buffer_locked(tmp));
342 			goto still_busy;
343 		}
344 		tmp = tmp->b_this_page;
345 	}
346 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
347 	local_irq_restore(flags);
348 	end_page_writeback(page);
349 	return;
350 
351 still_busy:
352 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 	local_irq_restore(flags);
354 	return;
355 }
356 EXPORT_SYMBOL(end_buffer_async_write);
357 
358 /*
359  * If a page's buffers are under async readin (end_buffer_async_read
360  * completion) then there is a possibility that another thread of
361  * control could lock one of the buffers after it has completed
362  * but while some of the other buffers have not completed.  This
363  * locked buffer would confuse end_buffer_async_read() into not unlocking
364  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
365  * that this buffer is not under async I/O.
366  *
367  * The page comes unlocked when it has no locked buffer_async buffers
368  * left.
369  *
370  * PageLocked prevents anyone starting new async I/O reads any of
371  * the buffers.
372  *
373  * PageWriteback is used to prevent simultaneous writeout of the same
374  * page.
375  *
376  * PageLocked prevents anyone from starting writeback of a page which is
377  * under read I/O (PageWriteback is only ever set against a locked page).
378  */
379 static void mark_buffer_async_read(struct buffer_head *bh)
380 {
381 	bh->b_end_io = end_buffer_async_read;
382 	set_buffer_async_read(bh);
383 }
384 
385 static void mark_buffer_async_write_endio(struct buffer_head *bh,
386 					  bh_end_io_t *handler)
387 {
388 	bh->b_end_io = handler;
389 	set_buffer_async_write(bh);
390 }
391 
392 void mark_buffer_async_write(struct buffer_head *bh)
393 {
394 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
395 }
396 EXPORT_SYMBOL(mark_buffer_async_write);
397 
398 
399 /*
400  * fs/buffer.c contains helper functions for buffer-backed address space's
401  * fsync functions.  A common requirement for buffer-based filesystems is
402  * that certain data from the backing blockdev needs to be written out for
403  * a successful fsync().  For example, ext2 indirect blocks need to be
404  * written back and waited upon before fsync() returns.
405  *
406  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
407  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
408  * management of a list of dependent buffers at ->i_mapping->private_list.
409  *
410  * Locking is a little subtle: try_to_free_buffers() will remove buffers
411  * from their controlling inode's queue when they are being freed.  But
412  * try_to_free_buffers() will be operating against the *blockdev* mapping
413  * at the time, not against the S_ISREG file which depends on those buffers.
414  * So the locking for private_list is via the private_lock in the address_space
415  * which backs the buffers.  Which is different from the address_space
416  * against which the buffers are listed.  So for a particular address_space,
417  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
418  * mapping->private_list will always be protected by the backing blockdev's
419  * ->private_lock.
420  *
421  * Which introduces a requirement: all buffers on an address_space's
422  * ->private_list must be from the same address_space: the blockdev's.
423  *
424  * address_spaces which do not place buffers at ->private_list via these
425  * utility functions are free to use private_lock and private_list for
426  * whatever they want.  The only requirement is that list_empty(private_list)
427  * be true at clear_inode() time.
428  *
429  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
430  * filesystems should do that.  invalidate_inode_buffers() should just go
431  * BUG_ON(!list_empty).
432  *
433  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
434  * take an address_space, not an inode.  And it should be called
435  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
436  * queued up.
437  *
438  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
439  * list if it is already on a list.  Because if the buffer is on a list,
440  * it *must* already be on the right one.  If not, the filesystem is being
441  * silly.  This will save a ton of locking.  But first we have to ensure
442  * that buffers are taken *off* the old inode's list when they are freed
443  * (presumably in truncate).  That requires careful auditing of all
444  * filesystems (do it inside bforget()).  It could also be done by bringing
445  * b_inode back.
446  */
447 
448 /*
449  * The buffer's backing address_space's private_lock must be held
450  */
451 static void __remove_assoc_queue(struct buffer_head *bh)
452 {
453 	list_del_init(&bh->b_assoc_buffers);
454 	WARN_ON(!bh->b_assoc_map);
455 	bh->b_assoc_map = NULL;
456 }
457 
458 int inode_has_buffers(struct inode *inode)
459 {
460 	return !list_empty(&inode->i_data.private_list);
461 }
462 
463 /*
464  * osync is designed to support O_SYNC io.  It waits synchronously for
465  * all already-submitted IO to complete, but does not queue any new
466  * writes to the disk.
467  *
468  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
469  * you dirty the buffers, and then use osync_inode_buffers to wait for
470  * completion.  Any other dirty buffers which are not yet queued for
471  * write will not be flushed to disk by the osync.
472  */
473 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
474 {
475 	struct buffer_head *bh;
476 	struct list_head *p;
477 	int err = 0;
478 
479 	spin_lock(lock);
480 repeat:
481 	list_for_each_prev(p, list) {
482 		bh = BH_ENTRY(p);
483 		if (buffer_locked(bh)) {
484 			get_bh(bh);
485 			spin_unlock(lock);
486 			wait_on_buffer(bh);
487 			if (!buffer_uptodate(bh))
488 				err = -EIO;
489 			brelse(bh);
490 			spin_lock(lock);
491 			goto repeat;
492 		}
493 	}
494 	spin_unlock(lock);
495 	return err;
496 }
497 
498 void emergency_thaw_bdev(struct super_block *sb)
499 {
500 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
501 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
502 }
503 
504 /**
505  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
506  * @mapping: the mapping which wants those buffers written
507  *
508  * Starts I/O against the buffers at mapping->private_list, and waits upon
509  * that I/O.
510  *
511  * Basically, this is a convenience function for fsync().
512  * @mapping is a file or directory which needs those buffers to be written for
513  * a successful fsync().
514  */
515 int sync_mapping_buffers(struct address_space *mapping)
516 {
517 	struct address_space *buffer_mapping = mapping->private_data;
518 
519 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
520 		return 0;
521 
522 	return fsync_buffers_list(&buffer_mapping->private_lock,
523 					&mapping->private_list);
524 }
525 EXPORT_SYMBOL(sync_mapping_buffers);
526 
527 /*
528  * Called when we've recently written block `bblock', and it is known that
529  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
530  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
531  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
532  */
533 void write_boundary_block(struct block_device *bdev,
534 			sector_t bblock, unsigned blocksize)
535 {
536 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
537 	if (bh) {
538 		if (buffer_dirty(bh))
539 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
540 		put_bh(bh);
541 	}
542 }
543 
544 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
545 {
546 	struct address_space *mapping = inode->i_mapping;
547 	struct address_space *buffer_mapping = bh->b_page->mapping;
548 
549 	mark_buffer_dirty(bh);
550 	if (!mapping->private_data) {
551 		mapping->private_data = buffer_mapping;
552 	} else {
553 		BUG_ON(mapping->private_data != buffer_mapping);
554 	}
555 	if (!bh->b_assoc_map) {
556 		spin_lock(&buffer_mapping->private_lock);
557 		list_move_tail(&bh->b_assoc_buffers,
558 				&mapping->private_list);
559 		bh->b_assoc_map = mapping;
560 		spin_unlock(&buffer_mapping->private_lock);
561 	}
562 }
563 EXPORT_SYMBOL(mark_buffer_dirty_inode);
564 
565 /*
566  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
567  * dirty.
568  *
569  * If warn is true, then emit a warning if the page is not uptodate and has
570  * not been truncated.
571  *
572  * The caller must hold lock_page_memcg().
573  */
574 void __set_page_dirty(struct page *page, struct address_space *mapping,
575 			     int warn)
576 {
577 	unsigned long flags;
578 
579 	xa_lock_irqsave(&mapping->i_pages, flags);
580 	if (page->mapping) {	/* Race with truncate? */
581 		WARN_ON_ONCE(warn && !PageUptodate(page));
582 		account_page_dirtied(page, mapping);
583 		radix_tree_tag_set(&mapping->i_pages,
584 				page_index(page), PAGECACHE_TAG_DIRTY);
585 	}
586 	xa_unlock_irqrestore(&mapping->i_pages, flags);
587 }
588 EXPORT_SYMBOL_GPL(__set_page_dirty);
589 
590 /*
591  * Add a page to the dirty page list.
592  *
593  * It is a sad fact of life that this function is called from several places
594  * deeply under spinlocking.  It may not sleep.
595  *
596  * If the page has buffers, the uptodate buffers are set dirty, to preserve
597  * dirty-state coherency between the page and the buffers.  It the page does
598  * not have buffers then when they are later attached they will all be set
599  * dirty.
600  *
601  * The buffers are dirtied before the page is dirtied.  There's a small race
602  * window in which a writepage caller may see the page cleanness but not the
603  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
604  * before the buffers, a concurrent writepage caller could clear the page dirty
605  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
606  * page on the dirty page list.
607  *
608  * We use private_lock to lock against try_to_free_buffers while using the
609  * page's buffer list.  Also use this to protect against clean buffers being
610  * added to the page after it was set dirty.
611  *
612  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
613  * address_space though.
614  */
615 int __set_page_dirty_buffers(struct page *page)
616 {
617 	int newly_dirty;
618 	struct address_space *mapping = page_mapping(page);
619 
620 	if (unlikely(!mapping))
621 		return !TestSetPageDirty(page);
622 
623 	spin_lock(&mapping->private_lock);
624 	if (page_has_buffers(page)) {
625 		struct buffer_head *head = page_buffers(page);
626 		struct buffer_head *bh = head;
627 
628 		do {
629 			set_buffer_dirty(bh);
630 			bh = bh->b_this_page;
631 		} while (bh != head);
632 	}
633 	/*
634 	 * Lock out page->mem_cgroup migration to keep PageDirty
635 	 * synchronized with per-memcg dirty page counters.
636 	 */
637 	lock_page_memcg(page);
638 	newly_dirty = !TestSetPageDirty(page);
639 	spin_unlock(&mapping->private_lock);
640 
641 	if (newly_dirty)
642 		__set_page_dirty(page, mapping, 1);
643 
644 	unlock_page_memcg(page);
645 
646 	if (newly_dirty)
647 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
648 
649 	return newly_dirty;
650 }
651 EXPORT_SYMBOL(__set_page_dirty_buffers);
652 
653 /*
654  * Write out and wait upon a list of buffers.
655  *
656  * We have conflicting pressures: we want to make sure that all
657  * initially dirty buffers get waited on, but that any subsequently
658  * dirtied buffers don't.  After all, we don't want fsync to last
659  * forever if somebody is actively writing to the file.
660  *
661  * Do this in two main stages: first we copy dirty buffers to a
662  * temporary inode list, queueing the writes as we go.  Then we clean
663  * up, waiting for those writes to complete.
664  *
665  * During this second stage, any subsequent updates to the file may end
666  * up refiling the buffer on the original inode's dirty list again, so
667  * there is a chance we will end up with a buffer queued for write but
668  * not yet completed on that list.  So, as a final cleanup we go through
669  * the osync code to catch these locked, dirty buffers without requeuing
670  * any newly dirty buffers for write.
671  */
672 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
673 {
674 	struct buffer_head *bh;
675 	struct list_head tmp;
676 	struct address_space *mapping;
677 	int err = 0, err2;
678 	struct blk_plug plug;
679 
680 	INIT_LIST_HEAD(&tmp);
681 	blk_start_plug(&plug);
682 
683 	spin_lock(lock);
684 	while (!list_empty(list)) {
685 		bh = BH_ENTRY(list->next);
686 		mapping = bh->b_assoc_map;
687 		__remove_assoc_queue(bh);
688 		/* Avoid race with mark_buffer_dirty_inode() which does
689 		 * a lockless check and we rely on seeing the dirty bit */
690 		smp_mb();
691 		if (buffer_dirty(bh) || buffer_locked(bh)) {
692 			list_add(&bh->b_assoc_buffers, &tmp);
693 			bh->b_assoc_map = mapping;
694 			if (buffer_dirty(bh)) {
695 				get_bh(bh);
696 				spin_unlock(lock);
697 				/*
698 				 * Ensure any pending I/O completes so that
699 				 * write_dirty_buffer() actually writes the
700 				 * current contents - it is a noop if I/O is
701 				 * still in flight on potentially older
702 				 * contents.
703 				 */
704 				write_dirty_buffer(bh, REQ_SYNC);
705 
706 				/*
707 				 * Kick off IO for the previous mapping. Note
708 				 * that we will not run the very last mapping,
709 				 * wait_on_buffer() will do that for us
710 				 * through sync_buffer().
711 				 */
712 				brelse(bh);
713 				spin_lock(lock);
714 			}
715 		}
716 	}
717 
718 	spin_unlock(lock);
719 	blk_finish_plug(&plug);
720 	spin_lock(lock);
721 
722 	while (!list_empty(&tmp)) {
723 		bh = BH_ENTRY(tmp.prev);
724 		get_bh(bh);
725 		mapping = bh->b_assoc_map;
726 		__remove_assoc_queue(bh);
727 		/* Avoid race with mark_buffer_dirty_inode() which does
728 		 * a lockless check and we rely on seeing the dirty bit */
729 		smp_mb();
730 		if (buffer_dirty(bh)) {
731 			list_add(&bh->b_assoc_buffers,
732 				 &mapping->private_list);
733 			bh->b_assoc_map = mapping;
734 		}
735 		spin_unlock(lock);
736 		wait_on_buffer(bh);
737 		if (!buffer_uptodate(bh))
738 			err = -EIO;
739 		brelse(bh);
740 		spin_lock(lock);
741 	}
742 
743 	spin_unlock(lock);
744 	err2 = osync_buffers_list(lock, list);
745 	if (err)
746 		return err;
747 	else
748 		return err2;
749 }
750 
751 /*
752  * Invalidate any and all dirty buffers on a given inode.  We are
753  * probably unmounting the fs, but that doesn't mean we have already
754  * done a sync().  Just drop the buffers from the inode list.
755  *
756  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
757  * assumes that all the buffers are against the blockdev.  Not true
758  * for reiserfs.
759  */
760 void invalidate_inode_buffers(struct inode *inode)
761 {
762 	if (inode_has_buffers(inode)) {
763 		struct address_space *mapping = &inode->i_data;
764 		struct list_head *list = &mapping->private_list;
765 		struct address_space *buffer_mapping = mapping->private_data;
766 
767 		spin_lock(&buffer_mapping->private_lock);
768 		while (!list_empty(list))
769 			__remove_assoc_queue(BH_ENTRY(list->next));
770 		spin_unlock(&buffer_mapping->private_lock);
771 	}
772 }
773 EXPORT_SYMBOL(invalidate_inode_buffers);
774 
775 /*
776  * Remove any clean buffers from the inode's buffer list.  This is called
777  * when we're trying to free the inode itself.  Those buffers can pin it.
778  *
779  * Returns true if all buffers were removed.
780  */
781 int remove_inode_buffers(struct inode *inode)
782 {
783 	int ret = 1;
784 
785 	if (inode_has_buffers(inode)) {
786 		struct address_space *mapping = &inode->i_data;
787 		struct list_head *list = &mapping->private_list;
788 		struct address_space *buffer_mapping = mapping->private_data;
789 
790 		spin_lock(&buffer_mapping->private_lock);
791 		while (!list_empty(list)) {
792 			struct buffer_head *bh = BH_ENTRY(list->next);
793 			if (buffer_dirty(bh)) {
794 				ret = 0;
795 				break;
796 			}
797 			__remove_assoc_queue(bh);
798 		}
799 		spin_unlock(&buffer_mapping->private_lock);
800 	}
801 	return ret;
802 }
803 
804 /*
805  * Create the appropriate buffers when given a page for data area and
806  * the size of each buffer.. Use the bh->b_this_page linked list to
807  * follow the buffers created.  Return NULL if unable to create more
808  * buffers.
809  *
810  * The retry flag is used to differentiate async IO (paging, swapping)
811  * which may not fail from ordinary buffer allocations.
812  */
813 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
814 		bool retry)
815 {
816 	struct buffer_head *bh, *head;
817 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
818 	long offset;
819 	struct mem_cgroup *memcg;
820 
821 	if (retry)
822 		gfp |= __GFP_NOFAIL;
823 
824 	memcg = get_mem_cgroup_from_page(page);
825 	memalloc_use_memcg(memcg);
826 
827 	head = NULL;
828 	offset = PAGE_SIZE;
829 	while ((offset -= size) >= 0) {
830 		bh = alloc_buffer_head(gfp);
831 		if (!bh)
832 			goto no_grow;
833 
834 		bh->b_this_page = head;
835 		bh->b_blocknr = -1;
836 		head = bh;
837 
838 		bh->b_size = size;
839 
840 		/* Link the buffer to its page */
841 		set_bh_page(bh, page, offset);
842 	}
843 out:
844 	memalloc_unuse_memcg();
845 	mem_cgroup_put(memcg);
846 	return head;
847 /*
848  * In case anything failed, we just free everything we got.
849  */
850 no_grow:
851 	if (head) {
852 		do {
853 			bh = head;
854 			head = head->b_this_page;
855 			free_buffer_head(bh);
856 		} while (head);
857 	}
858 
859 	goto out;
860 }
861 EXPORT_SYMBOL_GPL(alloc_page_buffers);
862 
863 static inline void
864 link_dev_buffers(struct page *page, struct buffer_head *head)
865 {
866 	struct buffer_head *bh, *tail;
867 
868 	bh = head;
869 	do {
870 		tail = bh;
871 		bh = bh->b_this_page;
872 	} while (bh);
873 	tail->b_this_page = head;
874 	attach_page_buffers(page, head);
875 }
876 
877 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
878 {
879 	sector_t retval = ~((sector_t)0);
880 	loff_t sz = i_size_read(bdev->bd_inode);
881 
882 	if (sz) {
883 		unsigned int sizebits = blksize_bits(size);
884 		retval = (sz >> sizebits);
885 	}
886 	return retval;
887 }
888 
889 /*
890  * Initialise the state of a blockdev page's buffers.
891  */
892 static sector_t
893 init_page_buffers(struct page *page, struct block_device *bdev,
894 			sector_t block, int size)
895 {
896 	struct buffer_head *head = page_buffers(page);
897 	struct buffer_head *bh = head;
898 	int uptodate = PageUptodate(page);
899 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
900 
901 	do {
902 		if (!buffer_mapped(bh)) {
903 			bh->b_end_io = NULL;
904 			bh->b_private = NULL;
905 			bh->b_bdev = bdev;
906 			bh->b_blocknr = block;
907 			if (uptodate)
908 				set_buffer_uptodate(bh);
909 			if (block < end_block)
910 				set_buffer_mapped(bh);
911 		}
912 		block++;
913 		bh = bh->b_this_page;
914 	} while (bh != head);
915 
916 	/*
917 	 * Caller needs to validate requested block against end of device.
918 	 */
919 	return end_block;
920 }
921 
922 /*
923  * Create the page-cache page that contains the requested block.
924  *
925  * This is used purely for blockdev mappings.
926  */
927 static int
928 grow_dev_page(struct block_device *bdev, sector_t block,
929 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
930 {
931 	struct inode *inode = bdev->bd_inode;
932 	struct page *page;
933 	struct buffer_head *bh;
934 	sector_t end_block;
935 	int ret = 0;		/* Will call free_more_memory() */
936 	gfp_t gfp_mask;
937 
938 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
939 
940 	/*
941 	 * XXX: __getblk_slow() can not really deal with failure and
942 	 * will endlessly loop on improvised global reclaim.  Prefer
943 	 * looping in the allocator rather than here, at least that
944 	 * code knows what it's doing.
945 	 */
946 	gfp_mask |= __GFP_NOFAIL;
947 
948 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
949 
950 	BUG_ON(!PageLocked(page));
951 
952 	if (page_has_buffers(page)) {
953 		bh = page_buffers(page);
954 		if (bh->b_size == size) {
955 			end_block = init_page_buffers(page, bdev,
956 						(sector_t)index << sizebits,
957 						size);
958 			goto done;
959 		}
960 		if (!try_to_free_buffers(page))
961 			goto failed;
962 	}
963 
964 	/*
965 	 * Allocate some buffers for this page
966 	 */
967 	bh = alloc_page_buffers(page, size, true);
968 
969 	/*
970 	 * Link the page to the buffers and initialise them.  Take the
971 	 * lock to be atomic wrt __find_get_block(), which does not
972 	 * run under the page lock.
973 	 */
974 	spin_lock(&inode->i_mapping->private_lock);
975 	link_dev_buffers(page, bh);
976 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
977 			size);
978 	spin_unlock(&inode->i_mapping->private_lock);
979 done:
980 	ret = (block < end_block) ? 1 : -ENXIO;
981 failed:
982 	unlock_page(page);
983 	put_page(page);
984 	return ret;
985 }
986 
987 /*
988  * Create buffers for the specified block device block's page.  If
989  * that page was dirty, the buffers are set dirty also.
990  */
991 static int
992 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
993 {
994 	pgoff_t index;
995 	int sizebits;
996 
997 	sizebits = -1;
998 	do {
999 		sizebits++;
1000 	} while ((size << sizebits) < PAGE_SIZE);
1001 
1002 	index = block >> sizebits;
1003 
1004 	/*
1005 	 * Check for a block which wants to lie outside our maximum possible
1006 	 * pagecache index.  (this comparison is done using sector_t types).
1007 	 */
1008 	if (unlikely(index != block >> sizebits)) {
1009 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1010 			"device %pg\n",
1011 			__func__, (unsigned long long)block,
1012 			bdev);
1013 		return -EIO;
1014 	}
1015 
1016 	/* Create a page with the proper size buffers.. */
1017 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1018 }
1019 
1020 static struct buffer_head *
1021 __getblk_slow(struct block_device *bdev, sector_t block,
1022 	     unsigned size, gfp_t gfp)
1023 {
1024 	/* Size must be multiple of hard sectorsize */
1025 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1026 			(size < 512 || size > PAGE_SIZE))) {
1027 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1028 					size);
1029 		printk(KERN_ERR "logical block size: %d\n",
1030 					bdev_logical_block_size(bdev));
1031 
1032 		dump_stack();
1033 		return NULL;
1034 	}
1035 
1036 	for (;;) {
1037 		struct buffer_head *bh;
1038 		int ret;
1039 
1040 		bh = __find_get_block(bdev, block, size);
1041 		if (bh)
1042 			return bh;
1043 
1044 		ret = grow_buffers(bdev, block, size, gfp);
1045 		if (ret < 0)
1046 			return NULL;
1047 	}
1048 }
1049 
1050 /*
1051  * The relationship between dirty buffers and dirty pages:
1052  *
1053  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1054  * the page is tagged dirty in its radix tree.
1055  *
1056  * At all times, the dirtiness of the buffers represents the dirtiness of
1057  * subsections of the page.  If the page has buffers, the page dirty bit is
1058  * merely a hint about the true dirty state.
1059  *
1060  * When a page is set dirty in its entirety, all its buffers are marked dirty
1061  * (if the page has buffers).
1062  *
1063  * When a buffer is marked dirty, its page is dirtied, but the page's other
1064  * buffers are not.
1065  *
1066  * Also.  When blockdev buffers are explicitly read with bread(), they
1067  * individually become uptodate.  But their backing page remains not
1068  * uptodate - even if all of its buffers are uptodate.  A subsequent
1069  * block_read_full_page() against that page will discover all the uptodate
1070  * buffers, will set the page uptodate and will perform no I/O.
1071  */
1072 
1073 /**
1074  * mark_buffer_dirty - mark a buffer_head as needing writeout
1075  * @bh: the buffer_head to mark dirty
1076  *
1077  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1078  * backing page dirty, then tag the page as dirty in its address_space's radix
1079  * tree and then attach the address_space's inode to its superblock's dirty
1080  * inode list.
1081  *
1082  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1083  * i_pages lock and mapping->host->i_lock.
1084  */
1085 void mark_buffer_dirty(struct buffer_head *bh)
1086 {
1087 	WARN_ON_ONCE(!buffer_uptodate(bh));
1088 
1089 	trace_block_dirty_buffer(bh);
1090 
1091 	/*
1092 	 * Very *carefully* optimize the it-is-already-dirty case.
1093 	 *
1094 	 * Don't let the final "is it dirty" escape to before we
1095 	 * perhaps modified the buffer.
1096 	 */
1097 	if (buffer_dirty(bh)) {
1098 		smp_mb();
1099 		if (buffer_dirty(bh))
1100 			return;
1101 	}
1102 
1103 	if (!test_set_buffer_dirty(bh)) {
1104 		struct page *page = bh->b_page;
1105 		struct address_space *mapping = NULL;
1106 
1107 		lock_page_memcg(page);
1108 		if (!TestSetPageDirty(page)) {
1109 			mapping = page_mapping(page);
1110 			if (mapping)
1111 				__set_page_dirty(page, mapping, 0);
1112 		}
1113 		unlock_page_memcg(page);
1114 		if (mapping)
1115 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1116 	}
1117 }
1118 EXPORT_SYMBOL(mark_buffer_dirty);
1119 
1120 void mark_buffer_write_io_error(struct buffer_head *bh)
1121 {
1122 	set_buffer_write_io_error(bh);
1123 	/* FIXME: do we need to set this in both places? */
1124 	if (bh->b_page && bh->b_page->mapping)
1125 		mapping_set_error(bh->b_page->mapping, -EIO);
1126 	if (bh->b_assoc_map)
1127 		mapping_set_error(bh->b_assoc_map, -EIO);
1128 }
1129 EXPORT_SYMBOL(mark_buffer_write_io_error);
1130 
1131 /*
1132  * Decrement a buffer_head's reference count.  If all buffers against a page
1133  * have zero reference count, are clean and unlocked, and if the page is clean
1134  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1135  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1136  * a page but it ends up not being freed, and buffers may later be reattached).
1137  */
1138 void __brelse(struct buffer_head * buf)
1139 {
1140 	if (atomic_read(&buf->b_count)) {
1141 		put_bh(buf);
1142 		return;
1143 	}
1144 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1145 }
1146 EXPORT_SYMBOL(__brelse);
1147 
1148 /*
1149  * bforget() is like brelse(), except it discards any
1150  * potentially dirty data.
1151  */
1152 void __bforget(struct buffer_head *bh)
1153 {
1154 	clear_buffer_dirty(bh);
1155 	if (bh->b_assoc_map) {
1156 		struct address_space *buffer_mapping = bh->b_page->mapping;
1157 
1158 		spin_lock(&buffer_mapping->private_lock);
1159 		list_del_init(&bh->b_assoc_buffers);
1160 		bh->b_assoc_map = NULL;
1161 		spin_unlock(&buffer_mapping->private_lock);
1162 	}
1163 	__brelse(bh);
1164 }
1165 EXPORT_SYMBOL(__bforget);
1166 
1167 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1168 {
1169 	lock_buffer(bh);
1170 	if (buffer_uptodate(bh)) {
1171 		unlock_buffer(bh);
1172 		return bh;
1173 	} else {
1174 		get_bh(bh);
1175 		bh->b_end_io = end_buffer_read_sync;
1176 		submit_bh(REQ_OP_READ, 0, bh);
1177 		wait_on_buffer(bh);
1178 		if (buffer_uptodate(bh))
1179 			return bh;
1180 	}
1181 	brelse(bh);
1182 	return NULL;
1183 }
1184 
1185 /*
1186  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1187  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1188  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1189  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1190  * CPU's LRUs at the same time.
1191  *
1192  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1193  * sb_find_get_block().
1194  *
1195  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1196  * a local interrupt disable for that.
1197  */
1198 
1199 #define BH_LRU_SIZE	16
1200 
1201 struct bh_lru {
1202 	struct buffer_head *bhs[BH_LRU_SIZE];
1203 };
1204 
1205 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1206 
1207 #ifdef CONFIG_SMP
1208 #define bh_lru_lock()	local_irq_disable()
1209 #define bh_lru_unlock()	local_irq_enable()
1210 #else
1211 #define bh_lru_lock()	preempt_disable()
1212 #define bh_lru_unlock()	preempt_enable()
1213 #endif
1214 
1215 static inline void check_irqs_on(void)
1216 {
1217 #ifdef irqs_disabled
1218 	BUG_ON(irqs_disabled());
1219 #endif
1220 }
1221 
1222 /*
1223  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1224  * inserted at the front, and the buffer_head at the back if any is evicted.
1225  * Or, if already in the LRU it is moved to the front.
1226  */
1227 static void bh_lru_install(struct buffer_head *bh)
1228 {
1229 	struct buffer_head *evictee = bh;
1230 	struct bh_lru *b;
1231 	int i;
1232 
1233 	check_irqs_on();
1234 	bh_lru_lock();
1235 
1236 	b = this_cpu_ptr(&bh_lrus);
1237 	for (i = 0; i < BH_LRU_SIZE; i++) {
1238 		swap(evictee, b->bhs[i]);
1239 		if (evictee == bh) {
1240 			bh_lru_unlock();
1241 			return;
1242 		}
1243 	}
1244 
1245 	get_bh(bh);
1246 	bh_lru_unlock();
1247 	brelse(evictee);
1248 }
1249 
1250 /*
1251  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1252  */
1253 static struct buffer_head *
1254 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1255 {
1256 	struct buffer_head *ret = NULL;
1257 	unsigned int i;
1258 
1259 	check_irqs_on();
1260 	bh_lru_lock();
1261 	for (i = 0; i < BH_LRU_SIZE; i++) {
1262 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1263 
1264 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1265 		    bh->b_size == size) {
1266 			if (i) {
1267 				while (i) {
1268 					__this_cpu_write(bh_lrus.bhs[i],
1269 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1270 					i--;
1271 				}
1272 				__this_cpu_write(bh_lrus.bhs[0], bh);
1273 			}
1274 			get_bh(bh);
1275 			ret = bh;
1276 			break;
1277 		}
1278 	}
1279 	bh_lru_unlock();
1280 	return ret;
1281 }
1282 
1283 /*
1284  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1285  * it in the LRU and mark it as accessed.  If it is not present then return
1286  * NULL
1287  */
1288 struct buffer_head *
1289 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1290 {
1291 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1292 
1293 	if (bh == NULL) {
1294 		/* __find_get_block_slow will mark the page accessed */
1295 		bh = __find_get_block_slow(bdev, block);
1296 		if (bh)
1297 			bh_lru_install(bh);
1298 	} else
1299 		touch_buffer(bh);
1300 
1301 	return bh;
1302 }
1303 EXPORT_SYMBOL(__find_get_block);
1304 
1305 /*
1306  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1307  * which corresponds to the passed block_device, block and size. The
1308  * returned buffer has its reference count incremented.
1309  *
1310  * __getblk_gfp() will lock up the machine if grow_dev_page's
1311  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1312  */
1313 struct buffer_head *
1314 __getblk_gfp(struct block_device *bdev, sector_t block,
1315 	     unsigned size, gfp_t gfp)
1316 {
1317 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1318 
1319 	might_sleep();
1320 	if (bh == NULL)
1321 		bh = __getblk_slow(bdev, block, size, gfp);
1322 	return bh;
1323 }
1324 EXPORT_SYMBOL(__getblk_gfp);
1325 
1326 /*
1327  * Do async read-ahead on a buffer..
1328  */
1329 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1330 {
1331 	struct buffer_head *bh = __getblk(bdev, block, size);
1332 	if (likely(bh)) {
1333 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1334 		brelse(bh);
1335 	}
1336 }
1337 EXPORT_SYMBOL(__breadahead);
1338 
1339 /**
1340  *  __bread_gfp() - reads a specified block and returns the bh
1341  *  @bdev: the block_device to read from
1342  *  @block: number of block
1343  *  @size: size (in bytes) to read
1344  *  @gfp: page allocation flag
1345  *
1346  *  Reads a specified block, and returns buffer head that contains it.
1347  *  The page cache can be allocated from non-movable area
1348  *  not to prevent page migration if you set gfp to zero.
1349  *  It returns NULL if the block was unreadable.
1350  */
1351 struct buffer_head *
1352 __bread_gfp(struct block_device *bdev, sector_t block,
1353 		   unsigned size, gfp_t gfp)
1354 {
1355 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1356 
1357 	if (likely(bh) && !buffer_uptodate(bh))
1358 		bh = __bread_slow(bh);
1359 	return bh;
1360 }
1361 EXPORT_SYMBOL(__bread_gfp);
1362 
1363 /*
1364  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1365  * This doesn't race because it runs in each cpu either in irq
1366  * or with preempt disabled.
1367  */
1368 static void invalidate_bh_lru(void *arg)
1369 {
1370 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1371 	int i;
1372 
1373 	for (i = 0; i < BH_LRU_SIZE; i++) {
1374 		brelse(b->bhs[i]);
1375 		b->bhs[i] = NULL;
1376 	}
1377 	put_cpu_var(bh_lrus);
1378 }
1379 
1380 static bool has_bh_in_lru(int cpu, void *dummy)
1381 {
1382 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1383 	int i;
1384 
1385 	for (i = 0; i < BH_LRU_SIZE; i++) {
1386 		if (b->bhs[i])
1387 			return 1;
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 void invalidate_bh_lrus(void)
1394 {
1395 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1396 }
1397 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1398 
1399 void set_bh_page(struct buffer_head *bh,
1400 		struct page *page, unsigned long offset)
1401 {
1402 	bh->b_page = page;
1403 	BUG_ON(offset >= PAGE_SIZE);
1404 	if (PageHighMem(page))
1405 		/*
1406 		 * This catches illegal uses and preserves the offset:
1407 		 */
1408 		bh->b_data = (char *)(0 + offset);
1409 	else
1410 		bh->b_data = page_address(page) + offset;
1411 }
1412 EXPORT_SYMBOL(set_bh_page);
1413 
1414 /*
1415  * Called when truncating a buffer on a page completely.
1416  */
1417 
1418 /* Bits that are cleared during an invalidate */
1419 #define BUFFER_FLAGS_DISCARD \
1420 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1421 	 1 << BH_Delay | 1 << BH_Unwritten)
1422 
1423 static void discard_buffer(struct buffer_head * bh)
1424 {
1425 	unsigned long b_state, b_state_old;
1426 
1427 	lock_buffer(bh);
1428 	clear_buffer_dirty(bh);
1429 	bh->b_bdev = NULL;
1430 	b_state = bh->b_state;
1431 	for (;;) {
1432 		b_state_old = cmpxchg(&bh->b_state, b_state,
1433 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1434 		if (b_state_old == b_state)
1435 			break;
1436 		b_state = b_state_old;
1437 	}
1438 	unlock_buffer(bh);
1439 }
1440 
1441 /**
1442  * block_invalidatepage - invalidate part or all of a buffer-backed page
1443  *
1444  * @page: the page which is affected
1445  * @offset: start of the range to invalidate
1446  * @length: length of the range to invalidate
1447  *
1448  * block_invalidatepage() is called when all or part of the page has become
1449  * invalidated by a truncate operation.
1450  *
1451  * block_invalidatepage() does not have to release all buffers, but it must
1452  * ensure that no dirty buffer is left outside @offset and that no I/O
1453  * is underway against any of the blocks which are outside the truncation
1454  * point.  Because the caller is about to free (and possibly reuse) those
1455  * blocks on-disk.
1456  */
1457 void block_invalidatepage(struct page *page, unsigned int offset,
1458 			  unsigned int length)
1459 {
1460 	struct buffer_head *head, *bh, *next;
1461 	unsigned int curr_off = 0;
1462 	unsigned int stop = length + offset;
1463 
1464 	BUG_ON(!PageLocked(page));
1465 	if (!page_has_buffers(page))
1466 		goto out;
1467 
1468 	/*
1469 	 * Check for overflow
1470 	 */
1471 	BUG_ON(stop > PAGE_SIZE || stop < length);
1472 
1473 	head = page_buffers(page);
1474 	bh = head;
1475 	do {
1476 		unsigned int next_off = curr_off + bh->b_size;
1477 		next = bh->b_this_page;
1478 
1479 		/*
1480 		 * Are we still fully in range ?
1481 		 */
1482 		if (next_off > stop)
1483 			goto out;
1484 
1485 		/*
1486 		 * is this block fully invalidated?
1487 		 */
1488 		if (offset <= curr_off)
1489 			discard_buffer(bh);
1490 		curr_off = next_off;
1491 		bh = next;
1492 	} while (bh != head);
1493 
1494 	/*
1495 	 * We release buffers only if the entire page is being invalidated.
1496 	 * The get_block cached value has been unconditionally invalidated,
1497 	 * so real IO is not possible anymore.
1498 	 */
1499 	if (length == PAGE_SIZE)
1500 		try_to_release_page(page, 0);
1501 out:
1502 	return;
1503 }
1504 EXPORT_SYMBOL(block_invalidatepage);
1505 
1506 
1507 /*
1508  * We attach and possibly dirty the buffers atomically wrt
1509  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1510  * is already excluded via the page lock.
1511  */
1512 void create_empty_buffers(struct page *page,
1513 			unsigned long blocksize, unsigned long b_state)
1514 {
1515 	struct buffer_head *bh, *head, *tail;
1516 
1517 	head = alloc_page_buffers(page, blocksize, true);
1518 	bh = head;
1519 	do {
1520 		bh->b_state |= b_state;
1521 		tail = bh;
1522 		bh = bh->b_this_page;
1523 	} while (bh);
1524 	tail->b_this_page = head;
1525 
1526 	spin_lock(&page->mapping->private_lock);
1527 	if (PageUptodate(page) || PageDirty(page)) {
1528 		bh = head;
1529 		do {
1530 			if (PageDirty(page))
1531 				set_buffer_dirty(bh);
1532 			if (PageUptodate(page))
1533 				set_buffer_uptodate(bh);
1534 			bh = bh->b_this_page;
1535 		} while (bh != head);
1536 	}
1537 	attach_page_buffers(page, head);
1538 	spin_unlock(&page->mapping->private_lock);
1539 }
1540 EXPORT_SYMBOL(create_empty_buffers);
1541 
1542 /**
1543  * clean_bdev_aliases: clean a range of buffers in block device
1544  * @bdev: Block device to clean buffers in
1545  * @block: Start of a range of blocks to clean
1546  * @len: Number of blocks to clean
1547  *
1548  * We are taking a range of blocks for data and we don't want writeback of any
1549  * buffer-cache aliases starting from return from this function and until the
1550  * moment when something will explicitly mark the buffer dirty (hopefully that
1551  * will not happen until we will free that block ;-) We don't even need to mark
1552  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1553  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1554  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1555  * would confuse anyone who might pick it with bread() afterwards...
1556  *
1557  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1558  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1559  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1560  * need to.  That happens here.
1561  */
1562 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1563 {
1564 	struct inode *bd_inode = bdev->bd_inode;
1565 	struct address_space *bd_mapping = bd_inode->i_mapping;
1566 	struct pagevec pvec;
1567 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1568 	pgoff_t end;
1569 	int i, count;
1570 	struct buffer_head *bh;
1571 	struct buffer_head *head;
1572 
1573 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1574 	pagevec_init(&pvec);
1575 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1576 		count = pagevec_count(&pvec);
1577 		for (i = 0; i < count; i++) {
1578 			struct page *page = pvec.pages[i];
1579 
1580 			if (!page_has_buffers(page))
1581 				continue;
1582 			/*
1583 			 * We use page lock instead of bd_mapping->private_lock
1584 			 * to pin buffers here since we can afford to sleep and
1585 			 * it scales better than a global spinlock lock.
1586 			 */
1587 			lock_page(page);
1588 			/* Recheck when the page is locked which pins bhs */
1589 			if (!page_has_buffers(page))
1590 				goto unlock_page;
1591 			head = page_buffers(page);
1592 			bh = head;
1593 			do {
1594 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1595 					goto next;
1596 				if (bh->b_blocknr >= block + len)
1597 					break;
1598 				clear_buffer_dirty(bh);
1599 				wait_on_buffer(bh);
1600 				clear_buffer_req(bh);
1601 next:
1602 				bh = bh->b_this_page;
1603 			} while (bh != head);
1604 unlock_page:
1605 			unlock_page(page);
1606 		}
1607 		pagevec_release(&pvec);
1608 		cond_resched();
1609 		/* End of range already reached? */
1610 		if (index > end || !index)
1611 			break;
1612 	}
1613 }
1614 EXPORT_SYMBOL(clean_bdev_aliases);
1615 
1616 /*
1617  * Size is a power-of-two in the range 512..PAGE_SIZE,
1618  * and the case we care about most is PAGE_SIZE.
1619  *
1620  * So this *could* possibly be written with those
1621  * constraints in mind (relevant mostly if some
1622  * architecture has a slow bit-scan instruction)
1623  */
1624 static inline int block_size_bits(unsigned int blocksize)
1625 {
1626 	return ilog2(blocksize);
1627 }
1628 
1629 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1630 {
1631 	BUG_ON(!PageLocked(page));
1632 
1633 	if (!page_has_buffers(page))
1634 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1635 				     b_state);
1636 	return page_buffers(page);
1637 }
1638 
1639 /*
1640  * NOTE! All mapped/uptodate combinations are valid:
1641  *
1642  *	Mapped	Uptodate	Meaning
1643  *
1644  *	No	No		"unknown" - must do get_block()
1645  *	No	Yes		"hole" - zero-filled
1646  *	Yes	No		"allocated" - allocated on disk, not read in
1647  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1648  *
1649  * "Dirty" is valid only with the last case (mapped+uptodate).
1650  */
1651 
1652 /*
1653  * While block_write_full_page is writing back the dirty buffers under
1654  * the page lock, whoever dirtied the buffers may decide to clean them
1655  * again at any time.  We handle that by only looking at the buffer
1656  * state inside lock_buffer().
1657  *
1658  * If block_write_full_page() is called for regular writeback
1659  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1660  * locked buffer.   This only can happen if someone has written the buffer
1661  * directly, with submit_bh().  At the address_space level PageWriteback
1662  * prevents this contention from occurring.
1663  *
1664  * If block_write_full_page() is called with wbc->sync_mode ==
1665  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1666  * causes the writes to be flagged as synchronous writes.
1667  */
1668 int __block_write_full_page(struct inode *inode, struct page *page,
1669 			get_block_t *get_block, struct writeback_control *wbc,
1670 			bh_end_io_t *handler)
1671 {
1672 	int err;
1673 	sector_t block;
1674 	sector_t last_block;
1675 	struct buffer_head *bh, *head;
1676 	unsigned int blocksize, bbits;
1677 	int nr_underway = 0;
1678 	int write_flags = wbc_to_write_flags(wbc);
1679 
1680 	head = create_page_buffers(page, inode,
1681 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1682 
1683 	/*
1684 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1685 	 * here, and the (potentially unmapped) buffers may become dirty at
1686 	 * any time.  If a buffer becomes dirty here after we've inspected it
1687 	 * then we just miss that fact, and the page stays dirty.
1688 	 *
1689 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1690 	 * handle that here by just cleaning them.
1691 	 */
1692 
1693 	bh = head;
1694 	blocksize = bh->b_size;
1695 	bbits = block_size_bits(blocksize);
1696 
1697 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1698 	last_block = (i_size_read(inode) - 1) >> bbits;
1699 
1700 	/*
1701 	 * Get all the dirty buffers mapped to disk addresses and
1702 	 * handle any aliases from the underlying blockdev's mapping.
1703 	 */
1704 	do {
1705 		if (block > last_block) {
1706 			/*
1707 			 * mapped buffers outside i_size will occur, because
1708 			 * this page can be outside i_size when there is a
1709 			 * truncate in progress.
1710 			 */
1711 			/*
1712 			 * The buffer was zeroed by block_write_full_page()
1713 			 */
1714 			clear_buffer_dirty(bh);
1715 			set_buffer_uptodate(bh);
1716 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1717 			   buffer_dirty(bh)) {
1718 			WARN_ON(bh->b_size != blocksize);
1719 			err = get_block(inode, block, bh, 1);
1720 			if (err)
1721 				goto recover;
1722 			clear_buffer_delay(bh);
1723 			if (buffer_new(bh)) {
1724 				/* blockdev mappings never come here */
1725 				clear_buffer_new(bh);
1726 				clean_bdev_bh_alias(bh);
1727 			}
1728 		}
1729 		bh = bh->b_this_page;
1730 		block++;
1731 	} while (bh != head);
1732 
1733 	do {
1734 		if (!buffer_mapped(bh))
1735 			continue;
1736 		/*
1737 		 * If it's a fully non-blocking write attempt and we cannot
1738 		 * lock the buffer then redirty the page.  Note that this can
1739 		 * potentially cause a busy-wait loop from writeback threads
1740 		 * and kswapd activity, but those code paths have their own
1741 		 * higher-level throttling.
1742 		 */
1743 		if (wbc->sync_mode != WB_SYNC_NONE) {
1744 			lock_buffer(bh);
1745 		} else if (!trylock_buffer(bh)) {
1746 			redirty_page_for_writepage(wbc, page);
1747 			continue;
1748 		}
1749 		if (test_clear_buffer_dirty(bh)) {
1750 			mark_buffer_async_write_endio(bh, handler);
1751 		} else {
1752 			unlock_buffer(bh);
1753 		}
1754 	} while ((bh = bh->b_this_page) != head);
1755 
1756 	/*
1757 	 * The page and its buffers are protected by PageWriteback(), so we can
1758 	 * drop the bh refcounts early.
1759 	 */
1760 	BUG_ON(PageWriteback(page));
1761 	set_page_writeback(page);
1762 
1763 	do {
1764 		struct buffer_head *next = bh->b_this_page;
1765 		if (buffer_async_write(bh)) {
1766 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1767 					inode->i_write_hint, wbc);
1768 			nr_underway++;
1769 		}
1770 		bh = next;
1771 	} while (bh != head);
1772 	unlock_page(page);
1773 
1774 	err = 0;
1775 done:
1776 	if (nr_underway == 0) {
1777 		/*
1778 		 * The page was marked dirty, but the buffers were
1779 		 * clean.  Someone wrote them back by hand with
1780 		 * ll_rw_block/submit_bh.  A rare case.
1781 		 */
1782 		end_page_writeback(page);
1783 
1784 		/*
1785 		 * The page and buffer_heads can be released at any time from
1786 		 * here on.
1787 		 */
1788 	}
1789 	return err;
1790 
1791 recover:
1792 	/*
1793 	 * ENOSPC, or some other error.  We may already have added some
1794 	 * blocks to the file, so we need to write these out to avoid
1795 	 * exposing stale data.
1796 	 * The page is currently locked and not marked for writeback
1797 	 */
1798 	bh = head;
1799 	/* Recovery: lock and submit the mapped buffers */
1800 	do {
1801 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1802 		    !buffer_delay(bh)) {
1803 			lock_buffer(bh);
1804 			mark_buffer_async_write_endio(bh, handler);
1805 		} else {
1806 			/*
1807 			 * The buffer may have been set dirty during
1808 			 * attachment to a dirty page.
1809 			 */
1810 			clear_buffer_dirty(bh);
1811 		}
1812 	} while ((bh = bh->b_this_page) != head);
1813 	SetPageError(page);
1814 	BUG_ON(PageWriteback(page));
1815 	mapping_set_error(page->mapping, err);
1816 	set_page_writeback(page);
1817 	do {
1818 		struct buffer_head *next = bh->b_this_page;
1819 		if (buffer_async_write(bh)) {
1820 			clear_buffer_dirty(bh);
1821 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1822 					inode->i_write_hint, wbc);
1823 			nr_underway++;
1824 		}
1825 		bh = next;
1826 	} while (bh != head);
1827 	unlock_page(page);
1828 	goto done;
1829 }
1830 EXPORT_SYMBOL(__block_write_full_page);
1831 
1832 /*
1833  * If a page has any new buffers, zero them out here, and mark them uptodate
1834  * and dirty so they'll be written out (in order to prevent uninitialised
1835  * block data from leaking). And clear the new bit.
1836  */
1837 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1838 {
1839 	unsigned int block_start, block_end;
1840 	struct buffer_head *head, *bh;
1841 
1842 	BUG_ON(!PageLocked(page));
1843 	if (!page_has_buffers(page))
1844 		return;
1845 
1846 	bh = head = page_buffers(page);
1847 	block_start = 0;
1848 	do {
1849 		block_end = block_start + bh->b_size;
1850 
1851 		if (buffer_new(bh)) {
1852 			if (block_end > from && block_start < to) {
1853 				if (!PageUptodate(page)) {
1854 					unsigned start, size;
1855 
1856 					start = max(from, block_start);
1857 					size = min(to, block_end) - start;
1858 
1859 					zero_user(page, start, size);
1860 					set_buffer_uptodate(bh);
1861 				}
1862 
1863 				clear_buffer_new(bh);
1864 				mark_buffer_dirty(bh);
1865 			}
1866 		}
1867 
1868 		block_start = block_end;
1869 		bh = bh->b_this_page;
1870 	} while (bh != head);
1871 }
1872 EXPORT_SYMBOL(page_zero_new_buffers);
1873 
1874 static void
1875 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1876 		struct iomap *iomap)
1877 {
1878 	loff_t offset = block << inode->i_blkbits;
1879 
1880 	bh->b_bdev = iomap->bdev;
1881 
1882 	/*
1883 	 * Block points to offset in file we need to map, iomap contains
1884 	 * the offset at which the map starts. If the map ends before the
1885 	 * current block, then do not map the buffer and let the caller
1886 	 * handle it.
1887 	 */
1888 	BUG_ON(offset >= iomap->offset + iomap->length);
1889 
1890 	switch (iomap->type) {
1891 	case IOMAP_HOLE:
1892 		/*
1893 		 * If the buffer is not up to date or beyond the current EOF,
1894 		 * we need to mark it as new to ensure sub-block zeroing is
1895 		 * executed if necessary.
1896 		 */
1897 		if (!buffer_uptodate(bh) ||
1898 		    (offset >= i_size_read(inode)))
1899 			set_buffer_new(bh);
1900 		break;
1901 	case IOMAP_DELALLOC:
1902 		if (!buffer_uptodate(bh) ||
1903 		    (offset >= i_size_read(inode)))
1904 			set_buffer_new(bh);
1905 		set_buffer_uptodate(bh);
1906 		set_buffer_mapped(bh);
1907 		set_buffer_delay(bh);
1908 		break;
1909 	case IOMAP_UNWRITTEN:
1910 		/*
1911 		 * For unwritten regions, we always need to ensure that regions
1912 		 * in the block we are not writing to are zeroed. Mark the
1913 		 * buffer as new to ensure this.
1914 		 */
1915 		set_buffer_new(bh);
1916 		set_buffer_unwritten(bh);
1917 		/* FALLTHRU */
1918 	case IOMAP_MAPPED:
1919 		if ((iomap->flags & IOMAP_F_NEW) ||
1920 		    offset >= i_size_read(inode))
1921 			set_buffer_new(bh);
1922 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1923 				inode->i_blkbits;
1924 		set_buffer_mapped(bh);
1925 		break;
1926 	}
1927 }
1928 
1929 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1930 		get_block_t *get_block, struct iomap *iomap)
1931 {
1932 	unsigned from = pos & (PAGE_SIZE - 1);
1933 	unsigned to = from + len;
1934 	struct inode *inode = page->mapping->host;
1935 	unsigned block_start, block_end;
1936 	sector_t block;
1937 	int err = 0;
1938 	unsigned blocksize, bbits;
1939 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1940 
1941 	BUG_ON(!PageLocked(page));
1942 	BUG_ON(from > PAGE_SIZE);
1943 	BUG_ON(to > PAGE_SIZE);
1944 	BUG_ON(from > to);
1945 
1946 	head = create_page_buffers(page, inode, 0);
1947 	blocksize = head->b_size;
1948 	bbits = block_size_bits(blocksize);
1949 
1950 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1951 
1952 	for(bh = head, block_start = 0; bh != head || !block_start;
1953 	    block++, block_start=block_end, bh = bh->b_this_page) {
1954 		block_end = block_start + blocksize;
1955 		if (block_end <= from || block_start >= to) {
1956 			if (PageUptodate(page)) {
1957 				if (!buffer_uptodate(bh))
1958 					set_buffer_uptodate(bh);
1959 			}
1960 			continue;
1961 		}
1962 		if (buffer_new(bh))
1963 			clear_buffer_new(bh);
1964 		if (!buffer_mapped(bh)) {
1965 			WARN_ON(bh->b_size != blocksize);
1966 			if (get_block) {
1967 				err = get_block(inode, block, bh, 1);
1968 				if (err)
1969 					break;
1970 			} else {
1971 				iomap_to_bh(inode, block, bh, iomap);
1972 			}
1973 
1974 			if (buffer_new(bh)) {
1975 				clean_bdev_bh_alias(bh);
1976 				if (PageUptodate(page)) {
1977 					clear_buffer_new(bh);
1978 					set_buffer_uptodate(bh);
1979 					mark_buffer_dirty(bh);
1980 					continue;
1981 				}
1982 				if (block_end > to || block_start < from)
1983 					zero_user_segments(page,
1984 						to, block_end,
1985 						block_start, from);
1986 				continue;
1987 			}
1988 		}
1989 		if (PageUptodate(page)) {
1990 			if (!buffer_uptodate(bh))
1991 				set_buffer_uptodate(bh);
1992 			continue;
1993 		}
1994 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1995 		    !buffer_unwritten(bh) &&
1996 		     (block_start < from || block_end > to)) {
1997 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1998 			*wait_bh++=bh;
1999 		}
2000 	}
2001 	/*
2002 	 * If we issued read requests - let them complete.
2003 	 */
2004 	while(wait_bh > wait) {
2005 		wait_on_buffer(*--wait_bh);
2006 		if (!buffer_uptodate(*wait_bh))
2007 			err = -EIO;
2008 	}
2009 	if (unlikely(err))
2010 		page_zero_new_buffers(page, from, to);
2011 	return err;
2012 }
2013 
2014 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2015 		get_block_t *get_block)
2016 {
2017 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2018 }
2019 EXPORT_SYMBOL(__block_write_begin);
2020 
2021 static int __block_commit_write(struct inode *inode, struct page *page,
2022 		unsigned from, unsigned to)
2023 {
2024 	unsigned block_start, block_end;
2025 	int partial = 0;
2026 	unsigned blocksize;
2027 	struct buffer_head *bh, *head;
2028 
2029 	bh = head = page_buffers(page);
2030 	blocksize = bh->b_size;
2031 
2032 	block_start = 0;
2033 	do {
2034 		block_end = block_start + blocksize;
2035 		if (block_end <= from || block_start >= to) {
2036 			if (!buffer_uptodate(bh))
2037 				partial = 1;
2038 		} else {
2039 			set_buffer_uptodate(bh);
2040 			mark_buffer_dirty(bh);
2041 		}
2042 		clear_buffer_new(bh);
2043 
2044 		block_start = block_end;
2045 		bh = bh->b_this_page;
2046 	} while (bh != head);
2047 
2048 	/*
2049 	 * If this is a partial write which happened to make all buffers
2050 	 * uptodate then we can optimize away a bogus readpage() for
2051 	 * the next read(). Here we 'discover' whether the page went
2052 	 * uptodate as a result of this (potentially partial) write.
2053 	 */
2054 	if (!partial)
2055 		SetPageUptodate(page);
2056 	return 0;
2057 }
2058 
2059 /*
2060  * block_write_begin takes care of the basic task of block allocation and
2061  * bringing partial write blocks uptodate first.
2062  *
2063  * The filesystem needs to handle block truncation upon failure.
2064  */
2065 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2066 		unsigned flags, struct page **pagep, get_block_t *get_block)
2067 {
2068 	pgoff_t index = pos >> PAGE_SHIFT;
2069 	struct page *page;
2070 	int status;
2071 
2072 	page = grab_cache_page_write_begin(mapping, index, flags);
2073 	if (!page)
2074 		return -ENOMEM;
2075 
2076 	status = __block_write_begin(page, pos, len, get_block);
2077 	if (unlikely(status)) {
2078 		unlock_page(page);
2079 		put_page(page);
2080 		page = NULL;
2081 	}
2082 
2083 	*pagep = page;
2084 	return status;
2085 }
2086 EXPORT_SYMBOL(block_write_begin);
2087 
2088 int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
2089 		struct page *page)
2090 {
2091 	loff_t old_size = inode->i_size;
2092 	bool i_size_changed = false;
2093 
2094 	/*
2095 	 * No need to use i_size_read() here, the i_size cannot change under us
2096 	 * because we hold i_rwsem.
2097 	 *
2098 	 * But it's important to update i_size while still holding page lock:
2099 	 * page writeout could otherwise come in and zero beyond i_size.
2100 	 */
2101 	if (pos + copied > inode->i_size) {
2102 		i_size_write(inode, pos + copied);
2103 		i_size_changed = true;
2104 	}
2105 
2106 	unlock_page(page);
2107 	put_page(page);
2108 
2109 	if (old_size < pos)
2110 		pagecache_isize_extended(inode, old_size, pos);
2111 	/*
2112 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2113 	 * makes the holding time of page lock longer. Second, it forces lock
2114 	 * ordering of page lock and transaction start for journaling
2115 	 * filesystems.
2116 	 */
2117 	if (i_size_changed)
2118 		mark_inode_dirty(inode);
2119 	return copied;
2120 }
2121 
2122 int block_write_end(struct file *file, struct address_space *mapping,
2123 			loff_t pos, unsigned len, unsigned copied,
2124 			struct page *page, void *fsdata)
2125 {
2126 	struct inode *inode = mapping->host;
2127 	unsigned start;
2128 
2129 	start = pos & (PAGE_SIZE - 1);
2130 
2131 	if (unlikely(copied < len)) {
2132 		/*
2133 		 * The buffers that were written will now be uptodate, so we
2134 		 * don't have to worry about a readpage reading them and
2135 		 * overwriting a partial write. However if we have encountered
2136 		 * a short write and only partially written into a buffer, it
2137 		 * will not be marked uptodate, so a readpage might come in and
2138 		 * destroy our partial write.
2139 		 *
2140 		 * Do the simplest thing, and just treat any short write to a
2141 		 * non uptodate page as a zero-length write, and force the
2142 		 * caller to redo the whole thing.
2143 		 */
2144 		if (!PageUptodate(page))
2145 			copied = 0;
2146 
2147 		page_zero_new_buffers(page, start+copied, start+len);
2148 	}
2149 	flush_dcache_page(page);
2150 
2151 	/* This could be a short (even 0-length) commit */
2152 	__block_commit_write(inode, page, start, start+copied);
2153 
2154 	return copied;
2155 }
2156 EXPORT_SYMBOL(block_write_end);
2157 
2158 int generic_write_end(struct file *file, struct address_space *mapping,
2159 			loff_t pos, unsigned len, unsigned copied,
2160 			struct page *page, void *fsdata)
2161 {
2162 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2163 	return __generic_write_end(mapping->host, pos, copied, page);
2164 }
2165 EXPORT_SYMBOL(generic_write_end);
2166 
2167 /*
2168  * block_is_partially_uptodate checks whether buffers within a page are
2169  * uptodate or not.
2170  *
2171  * Returns true if all buffers which correspond to a file portion
2172  * we want to read are uptodate.
2173  */
2174 int block_is_partially_uptodate(struct page *page, unsigned long from,
2175 					unsigned long count)
2176 {
2177 	unsigned block_start, block_end, blocksize;
2178 	unsigned to;
2179 	struct buffer_head *bh, *head;
2180 	int ret = 1;
2181 
2182 	if (!page_has_buffers(page))
2183 		return 0;
2184 
2185 	head = page_buffers(page);
2186 	blocksize = head->b_size;
2187 	to = min_t(unsigned, PAGE_SIZE - from, count);
2188 	to = from + to;
2189 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2190 		return 0;
2191 
2192 	bh = head;
2193 	block_start = 0;
2194 	do {
2195 		block_end = block_start + blocksize;
2196 		if (block_end > from && block_start < to) {
2197 			if (!buffer_uptodate(bh)) {
2198 				ret = 0;
2199 				break;
2200 			}
2201 			if (block_end >= to)
2202 				break;
2203 		}
2204 		block_start = block_end;
2205 		bh = bh->b_this_page;
2206 	} while (bh != head);
2207 
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL(block_is_partially_uptodate);
2211 
2212 /*
2213  * Generic "read page" function for block devices that have the normal
2214  * get_block functionality. This is most of the block device filesystems.
2215  * Reads the page asynchronously --- the unlock_buffer() and
2216  * set/clear_buffer_uptodate() functions propagate buffer state into the
2217  * page struct once IO has completed.
2218  */
2219 int block_read_full_page(struct page *page, get_block_t *get_block)
2220 {
2221 	struct inode *inode = page->mapping->host;
2222 	sector_t iblock, lblock;
2223 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2224 	unsigned int blocksize, bbits;
2225 	int nr, i;
2226 	int fully_mapped = 1;
2227 
2228 	head = create_page_buffers(page, inode, 0);
2229 	blocksize = head->b_size;
2230 	bbits = block_size_bits(blocksize);
2231 
2232 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2233 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2234 	bh = head;
2235 	nr = 0;
2236 	i = 0;
2237 
2238 	do {
2239 		if (buffer_uptodate(bh))
2240 			continue;
2241 
2242 		if (!buffer_mapped(bh)) {
2243 			int err = 0;
2244 
2245 			fully_mapped = 0;
2246 			if (iblock < lblock) {
2247 				WARN_ON(bh->b_size != blocksize);
2248 				err = get_block(inode, iblock, bh, 0);
2249 				if (err)
2250 					SetPageError(page);
2251 			}
2252 			if (!buffer_mapped(bh)) {
2253 				zero_user(page, i * blocksize, blocksize);
2254 				if (!err)
2255 					set_buffer_uptodate(bh);
2256 				continue;
2257 			}
2258 			/*
2259 			 * get_block() might have updated the buffer
2260 			 * synchronously
2261 			 */
2262 			if (buffer_uptodate(bh))
2263 				continue;
2264 		}
2265 		arr[nr++] = bh;
2266 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2267 
2268 	if (fully_mapped)
2269 		SetPageMappedToDisk(page);
2270 
2271 	if (!nr) {
2272 		/*
2273 		 * All buffers are uptodate - we can set the page uptodate
2274 		 * as well. But not if get_block() returned an error.
2275 		 */
2276 		if (!PageError(page))
2277 			SetPageUptodate(page);
2278 		unlock_page(page);
2279 		return 0;
2280 	}
2281 
2282 	/* Stage two: lock the buffers */
2283 	for (i = 0; i < nr; i++) {
2284 		bh = arr[i];
2285 		lock_buffer(bh);
2286 		mark_buffer_async_read(bh);
2287 	}
2288 
2289 	/*
2290 	 * Stage 3: start the IO.  Check for uptodateness
2291 	 * inside the buffer lock in case another process reading
2292 	 * the underlying blockdev brought it uptodate (the sct fix).
2293 	 */
2294 	for (i = 0; i < nr; i++) {
2295 		bh = arr[i];
2296 		if (buffer_uptodate(bh))
2297 			end_buffer_async_read(bh, 1);
2298 		else
2299 			submit_bh(REQ_OP_READ, 0, bh);
2300 	}
2301 	return 0;
2302 }
2303 EXPORT_SYMBOL(block_read_full_page);
2304 
2305 /* utility function for filesystems that need to do work on expanding
2306  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2307  * deal with the hole.
2308  */
2309 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2310 {
2311 	struct address_space *mapping = inode->i_mapping;
2312 	struct page *page;
2313 	void *fsdata;
2314 	int err;
2315 
2316 	err = inode_newsize_ok(inode, size);
2317 	if (err)
2318 		goto out;
2319 
2320 	err = pagecache_write_begin(NULL, mapping, size, 0,
2321 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2322 	if (err)
2323 		goto out;
2324 
2325 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2326 	BUG_ON(err > 0);
2327 
2328 out:
2329 	return err;
2330 }
2331 EXPORT_SYMBOL(generic_cont_expand_simple);
2332 
2333 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2334 			    loff_t pos, loff_t *bytes)
2335 {
2336 	struct inode *inode = mapping->host;
2337 	unsigned int blocksize = i_blocksize(inode);
2338 	struct page *page;
2339 	void *fsdata;
2340 	pgoff_t index, curidx;
2341 	loff_t curpos;
2342 	unsigned zerofrom, offset, len;
2343 	int err = 0;
2344 
2345 	index = pos >> PAGE_SHIFT;
2346 	offset = pos & ~PAGE_MASK;
2347 
2348 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2349 		zerofrom = curpos & ~PAGE_MASK;
2350 		if (zerofrom & (blocksize-1)) {
2351 			*bytes |= (blocksize-1);
2352 			(*bytes)++;
2353 		}
2354 		len = PAGE_SIZE - zerofrom;
2355 
2356 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2357 					    &page, &fsdata);
2358 		if (err)
2359 			goto out;
2360 		zero_user(page, zerofrom, len);
2361 		err = pagecache_write_end(file, mapping, curpos, len, len,
2362 						page, fsdata);
2363 		if (err < 0)
2364 			goto out;
2365 		BUG_ON(err != len);
2366 		err = 0;
2367 
2368 		balance_dirty_pages_ratelimited(mapping);
2369 
2370 		if (unlikely(fatal_signal_pending(current))) {
2371 			err = -EINTR;
2372 			goto out;
2373 		}
2374 	}
2375 
2376 	/* page covers the boundary, find the boundary offset */
2377 	if (index == curidx) {
2378 		zerofrom = curpos & ~PAGE_MASK;
2379 		/* if we will expand the thing last block will be filled */
2380 		if (offset <= zerofrom) {
2381 			goto out;
2382 		}
2383 		if (zerofrom & (blocksize-1)) {
2384 			*bytes |= (blocksize-1);
2385 			(*bytes)++;
2386 		}
2387 		len = offset - zerofrom;
2388 
2389 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2390 					    &page, &fsdata);
2391 		if (err)
2392 			goto out;
2393 		zero_user(page, zerofrom, len);
2394 		err = pagecache_write_end(file, mapping, curpos, len, len,
2395 						page, fsdata);
2396 		if (err < 0)
2397 			goto out;
2398 		BUG_ON(err != len);
2399 		err = 0;
2400 	}
2401 out:
2402 	return err;
2403 }
2404 
2405 /*
2406  * For moronic filesystems that do not allow holes in file.
2407  * We may have to extend the file.
2408  */
2409 int cont_write_begin(struct file *file, struct address_space *mapping,
2410 			loff_t pos, unsigned len, unsigned flags,
2411 			struct page **pagep, void **fsdata,
2412 			get_block_t *get_block, loff_t *bytes)
2413 {
2414 	struct inode *inode = mapping->host;
2415 	unsigned int blocksize = i_blocksize(inode);
2416 	unsigned int zerofrom;
2417 	int err;
2418 
2419 	err = cont_expand_zero(file, mapping, pos, bytes);
2420 	if (err)
2421 		return err;
2422 
2423 	zerofrom = *bytes & ~PAGE_MASK;
2424 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2425 		*bytes |= (blocksize-1);
2426 		(*bytes)++;
2427 	}
2428 
2429 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2430 }
2431 EXPORT_SYMBOL(cont_write_begin);
2432 
2433 int block_commit_write(struct page *page, unsigned from, unsigned to)
2434 {
2435 	struct inode *inode = page->mapping->host;
2436 	__block_commit_write(inode,page,from,to);
2437 	return 0;
2438 }
2439 EXPORT_SYMBOL(block_commit_write);
2440 
2441 /*
2442  * block_page_mkwrite() is not allowed to change the file size as it gets
2443  * called from a page fault handler when a page is first dirtied. Hence we must
2444  * be careful to check for EOF conditions here. We set the page up correctly
2445  * for a written page which means we get ENOSPC checking when writing into
2446  * holes and correct delalloc and unwritten extent mapping on filesystems that
2447  * support these features.
2448  *
2449  * We are not allowed to take the i_mutex here so we have to play games to
2450  * protect against truncate races as the page could now be beyond EOF.  Because
2451  * truncate writes the inode size before removing pages, once we have the
2452  * page lock we can determine safely if the page is beyond EOF. If it is not
2453  * beyond EOF, then the page is guaranteed safe against truncation until we
2454  * unlock the page.
2455  *
2456  * Direct callers of this function should protect against filesystem freezing
2457  * using sb_start_pagefault() - sb_end_pagefault() functions.
2458  */
2459 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2460 			 get_block_t get_block)
2461 {
2462 	struct page *page = vmf->page;
2463 	struct inode *inode = file_inode(vma->vm_file);
2464 	unsigned long end;
2465 	loff_t size;
2466 	int ret;
2467 
2468 	lock_page(page);
2469 	size = i_size_read(inode);
2470 	if ((page->mapping != inode->i_mapping) ||
2471 	    (page_offset(page) > size)) {
2472 		/* We overload EFAULT to mean page got truncated */
2473 		ret = -EFAULT;
2474 		goto out_unlock;
2475 	}
2476 
2477 	/* page is wholly or partially inside EOF */
2478 	if (((page->index + 1) << PAGE_SHIFT) > size)
2479 		end = size & ~PAGE_MASK;
2480 	else
2481 		end = PAGE_SIZE;
2482 
2483 	ret = __block_write_begin(page, 0, end, get_block);
2484 	if (!ret)
2485 		ret = block_commit_write(page, 0, end);
2486 
2487 	if (unlikely(ret < 0))
2488 		goto out_unlock;
2489 	set_page_dirty(page);
2490 	wait_for_stable_page(page);
2491 	return 0;
2492 out_unlock:
2493 	unlock_page(page);
2494 	return ret;
2495 }
2496 EXPORT_SYMBOL(block_page_mkwrite);
2497 
2498 /*
2499  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2500  * immediately, while under the page lock.  So it needs a special end_io
2501  * handler which does not touch the bh after unlocking it.
2502  */
2503 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2504 {
2505 	__end_buffer_read_notouch(bh, uptodate);
2506 }
2507 
2508 /*
2509  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2510  * the page (converting it to circular linked list and taking care of page
2511  * dirty races).
2512  */
2513 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2514 {
2515 	struct buffer_head *bh;
2516 
2517 	BUG_ON(!PageLocked(page));
2518 
2519 	spin_lock(&page->mapping->private_lock);
2520 	bh = head;
2521 	do {
2522 		if (PageDirty(page))
2523 			set_buffer_dirty(bh);
2524 		if (!bh->b_this_page)
2525 			bh->b_this_page = head;
2526 		bh = bh->b_this_page;
2527 	} while (bh != head);
2528 	attach_page_buffers(page, head);
2529 	spin_unlock(&page->mapping->private_lock);
2530 }
2531 
2532 /*
2533  * On entry, the page is fully not uptodate.
2534  * On exit the page is fully uptodate in the areas outside (from,to)
2535  * The filesystem needs to handle block truncation upon failure.
2536  */
2537 int nobh_write_begin(struct address_space *mapping,
2538 			loff_t pos, unsigned len, unsigned flags,
2539 			struct page **pagep, void **fsdata,
2540 			get_block_t *get_block)
2541 {
2542 	struct inode *inode = mapping->host;
2543 	const unsigned blkbits = inode->i_blkbits;
2544 	const unsigned blocksize = 1 << blkbits;
2545 	struct buffer_head *head, *bh;
2546 	struct page *page;
2547 	pgoff_t index;
2548 	unsigned from, to;
2549 	unsigned block_in_page;
2550 	unsigned block_start, block_end;
2551 	sector_t block_in_file;
2552 	int nr_reads = 0;
2553 	int ret = 0;
2554 	int is_mapped_to_disk = 1;
2555 
2556 	index = pos >> PAGE_SHIFT;
2557 	from = pos & (PAGE_SIZE - 1);
2558 	to = from + len;
2559 
2560 	page = grab_cache_page_write_begin(mapping, index, flags);
2561 	if (!page)
2562 		return -ENOMEM;
2563 	*pagep = page;
2564 	*fsdata = NULL;
2565 
2566 	if (page_has_buffers(page)) {
2567 		ret = __block_write_begin(page, pos, len, get_block);
2568 		if (unlikely(ret))
2569 			goto out_release;
2570 		return ret;
2571 	}
2572 
2573 	if (PageMappedToDisk(page))
2574 		return 0;
2575 
2576 	/*
2577 	 * Allocate buffers so that we can keep track of state, and potentially
2578 	 * attach them to the page if an error occurs. In the common case of
2579 	 * no error, they will just be freed again without ever being attached
2580 	 * to the page (which is all OK, because we're under the page lock).
2581 	 *
2582 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2583 	 * than the circular one we're used to.
2584 	 */
2585 	head = alloc_page_buffers(page, blocksize, false);
2586 	if (!head) {
2587 		ret = -ENOMEM;
2588 		goto out_release;
2589 	}
2590 
2591 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2592 
2593 	/*
2594 	 * We loop across all blocks in the page, whether or not they are
2595 	 * part of the affected region.  This is so we can discover if the
2596 	 * page is fully mapped-to-disk.
2597 	 */
2598 	for (block_start = 0, block_in_page = 0, bh = head;
2599 		  block_start < PAGE_SIZE;
2600 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2601 		int create;
2602 
2603 		block_end = block_start + blocksize;
2604 		bh->b_state = 0;
2605 		create = 1;
2606 		if (block_start >= to)
2607 			create = 0;
2608 		ret = get_block(inode, block_in_file + block_in_page,
2609 					bh, create);
2610 		if (ret)
2611 			goto failed;
2612 		if (!buffer_mapped(bh))
2613 			is_mapped_to_disk = 0;
2614 		if (buffer_new(bh))
2615 			clean_bdev_bh_alias(bh);
2616 		if (PageUptodate(page)) {
2617 			set_buffer_uptodate(bh);
2618 			continue;
2619 		}
2620 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2621 			zero_user_segments(page, block_start, from,
2622 							to, block_end);
2623 			continue;
2624 		}
2625 		if (buffer_uptodate(bh))
2626 			continue;	/* reiserfs does this */
2627 		if (block_start < from || block_end > to) {
2628 			lock_buffer(bh);
2629 			bh->b_end_io = end_buffer_read_nobh;
2630 			submit_bh(REQ_OP_READ, 0, bh);
2631 			nr_reads++;
2632 		}
2633 	}
2634 
2635 	if (nr_reads) {
2636 		/*
2637 		 * The page is locked, so these buffers are protected from
2638 		 * any VM or truncate activity.  Hence we don't need to care
2639 		 * for the buffer_head refcounts.
2640 		 */
2641 		for (bh = head; bh; bh = bh->b_this_page) {
2642 			wait_on_buffer(bh);
2643 			if (!buffer_uptodate(bh))
2644 				ret = -EIO;
2645 		}
2646 		if (ret)
2647 			goto failed;
2648 	}
2649 
2650 	if (is_mapped_to_disk)
2651 		SetPageMappedToDisk(page);
2652 
2653 	*fsdata = head; /* to be released by nobh_write_end */
2654 
2655 	return 0;
2656 
2657 failed:
2658 	BUG_ON(!ret);
2659 	/*
2660 	 * Error recovery is a bit difficult. We need to zero out blocks that
2661 	 * were newly allocated, and dirty them to ensure they get written out.
2662 	 * Buffers need to be attached to the page at this point, otherwise
2663 	 * the handling of potential IO errors during writeout would be hard
2664 	 * (could try doing synchronous writeout, but what if that fails too?)
2665 	 */
2666 	attach_nobh_buffers(page, head);
2667 	page_zero_new_buffers(page, from, to);
2668 
2669 out_release:
2670 	unlock_page(page);
2671 	put_page(page);
2672 	*pagep = NULL;
2673 
2674 	return ret;
2675 }
2676 EXPORT_SYMBOL(nobh_write_begin);
2677 
2678 int nobh_write_end(struct file *file, struct address_space *mapping,
2679 			loff_t pos, unsigned len, unsigned copied,
2680 			struct page *page, void *fsdata)
2681 {
2682 	struct inode *inode = page->mapping->host;
2683 	struct buffer_head *head = fsdata;
2684 	struct buffer_head *bh;
2685 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2686 
2687 	if (unlikely(copied < len) && head)
2688 		attach_nobh_buffers(page, head);
2689 	if (page_has_buffers(page))
2690 		return generic_write_end(file, mapping, pos, len,
2691 					copied, page, fsdata);
2692 
2693 	SetPageUptodate(page);
2694 	set_page_dirty(page);
2695 	if (pos+copied > inode->i_size) {
2696 		i_size_write(inode, pos+copied);
2697 		mark_inode_dirty(inode);
2698 	}
2699 
2700 	unlock_page(page);
2701 	put_page(page);
2702 
2703 	while (head) {
2704 		bh = head;
2705 		head = head->b_this_page;
2706 		free_buffer_head(bh);
2707 	}
2708 
2709 	return copied;
2710 }
2711 EXPORT_SYMBOL(nobh_write_end);
2712 
2713 /*
2714  * nobh_writepage() - based on block_full_write_page() except
2715  * that it tries to operate without attaching bufferheads to
2716  * the page.
2717  */
2718 int nobh_writepage(struct page *page, get_block_t *get_block,
2719 			struct writeback_control *wbc)
2720 {
2721 	struct inode * const inode = page->mapping->host;
2722 	loff_t i_size = i_size_read(inode);
2723 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2724 	unsigned offset;
2725 	int ret;
2726 
2727 	/* Is the page fully inside i_size? */
2728 	if (page->index < end_index)
2729 		goto out;
2730 
2731 	/* Is the page fully outside i_size? (truncate in progress) */
2732 	offset = i_size & (PAGE_SIZE-1);
2733 	if (page->index >= end_index+1 || !offset) {
2734 		/*
2735 		 * The page may have dirty, unmapped buffers.  For example,
2736 		 * they may have been added in ext3_writepage().  Make them
2737 		 * freeable here, so the page does not leak.
2738 		 */
2739 #if 0
2740 		/* Not really sure about this  - do we need this ? */
2741 		if (page->mapping->a_ops->invalidatepage)
2742 			page->mapping->a_ops->invalidatepage(page, offset);
2743 #endif
2744 		unlock_page(page);
2745 		return 0; /* don't care */
2746 	}
2747 
2748 	/*
2749 	 * The page straddles i_size.  It must be zeroed out on each and every
2750 	 * writepage invocation because it may be mmapped.  "A file is mapped
2751 	 * in multiples of the page size.  For a file that is not a multiple of
2752 	 * the  page size, the remaining memory is zeroed when mapped, and
2753 	 * writes to that region are not written out to the file."
2754 	 */
2755 	zero_user_segment(page, offset, PAGE_SIZE);
2756 out:
2757 	ret = mpage_writepage(page, get_block, wbc);
2758 	if (ret == -EAGAIN)
2759 		ret = __block_write_full_page(inode, page, get_block, wbc,
2760 					      end_buffer_async_write);
2761 	return ret;
2762 }
2763 EXPORT_SYMBOL(nobh_writepage);
2764 
2765 int nobh_truncate_page(struct address_space *mapping,
2766 			loff_t from, get_block_t *get_block)
2767 {
2768 	pgoff_t index = from >> PAGE_SHIFT;
2769 	unsigned offset = from & (PAGE_SIZE-1);
2770 	unsigned blocksize;
2771 	sector_t iblock;
2772 	unsigned length, pos;
2773 	struct inode *inode = mapping->host;
2774 	struct page *page;
2775 	struct buffer_head map_bh;
2776 	int err;
2777 
2778 	blocksize = i_blocksize(inode);
2779 	length = offset & (blocksize - 1);
2780 
2781 	/* Block boundary? Nothing to do */
2782 	if (!length)
2783 		return 0;
2784 
2785 	length = blocksize - length;
2786 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2787 
2788 	page = grab_cache_page(mapping, index);
2789 	err = -ENOMEM;
2790 	if (!page)
2791 		goto out;
2792 
2793 	if (page_has_buffers(page)) {
2794 has_buffers:
2795 		unlock_page(page);
2796 		put_page(page);
2797 		return block_truncate_page(mapping, from, get_block);
2798 	}
2799 
2800 	/* Find the buffer that contains "offset" */
2801 	pos = blocksize;
2802 	while (offset >= pos) {
2803 		iblock++;
2804 		pos += blocksize;
2805 	}
2806 
2807 	map_bh.b_size = blocksize;
2808 	map_bh.b_state = 0;
2809 	err = get_block(inode, iblock, &map_bh, 0);
2810 	if (err)
2811 		goto unlock;
2812 	/* unmapped? It's a hole - nothing to do */
2813 	if (!buffer_mapped(&map_bh))
2814 		goto unlock;
2815 
2816 	/* Ok, it's mapped. Make sure it's up-to-date */
2817 	if (!PageUptodate(page)) {
2818 		err = mapping->a_ops->readpage(NULL, page);
2819 		if (err) {
2820 			put_page(page);
2821 			goto out;
2822 		}
2823 		lock_page(page);
2824 		if (!PageUptodate(page)) {
2825 			err = -EIO;
2826 			goto unlock;
2827 		}
2828 		if (page_has_buffers(page))
2829 			goto has_buffers;
2830 	}
2831 	zero_user(page, offset, length);
2832 	set_page_dirty(page);
2833 	err = 0;
2834 
2835 unlock:
2836 	unlock_page(page);
2837 	put_page(page);
2838 out:
2839 	return err;
2840 }
2841 EXPORT_SYMBOL(nobh_truncate_page);
2842 
2843 int block_truncate_page(struct address_space *mapping,
2844 			loff_t from, get_block_t *get_block)
2845 {
2846 	pgoff_t index = from >> PAGE_SHIFT;
2847 	unsigned offset = from & (PAGE_SIZE-1);
2848 	unsigned blocksize;
2849 	sector_t iblock;
2850 	unsigned length, pos;
2851 	struct inode *inode = mapping->host;
2852 	struct page *page;
2853 	struct buffer_head *bh;
2854 	int err;
2855 
2856 	blocksize = i_blocksize(inode);
2857 	length = offset & (blocksize - 1);
2858 
2859 	/* Block boundary? Nothing to do */
2860 	if (!length)
2861 		return 0;
2862 
2863 	length = blocksize - length;
2864 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2865 
2866 	page = grab_cache_page(mapping, index);
2867 	err = -ENOMEM;
2868 	if (!page)
2869 		goto out;
2870 
2871 	if (!page_has_buffers(page))
2872 		create_empty_buffers(page, blocksize, 0);
2873 
2874 	/* Find the buffer that contains "offset" */
2875 	bh = page_buffers(page);
2876 	pos = blocksize;
2877 	while (offset >= pos) {
2878 		bh = bh->b_this_page;
2879 		iblock++;
2880 		pos += blocksize;
2881 	}
2882 
2883 	err = 0;
2884 	if (!buffer_mapped(bh)) {
2885 		WARN_ON(bh->b_size != blocksize);
2886 		err = get_block(inode, iblock, bh, 0);
2887 		if (err)
2888 			goto unlock;
2889 		/* unmapped? It's a hole - nothing to do */
2890 		if (!buffer_mapped(bh))
2891 			goto unlock;
2892 	}
2893 
2894 	/* Ok, it's mapped. Make sure it's up-to-date */
2895 	if (PageUptodate(page))
2896 		set_buffer_uptodate(bh);
2897 
2898 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2899 		err = -EIO;
2900 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2901 		wait_on_buffer(bh);
2902 		/* Uhhuh. Read error. Complain and punt. */
2903 		if (!buffer_uptodate(bh))
2904 			goto unlock;
2905 	}
2906 
2907 	zero_user(page, offset, length);
2908 	mark_buffer_dirty(bh);
2909 	err = 0;
2910 
2911 unlock:
2912 	unlock_page(page);
2913 	put_page(page);
2914 out:
2915 	return err;
2916 }
2917 EXPORT_SYMBOL(block_truncate_page);
2918 
2919 /*
2920  * The generic ->writepage function for buffer-backed address_spaces
2921  */
2922 int block_write_full_page(struct page *page, get_block_t *get_block,
2923 			struct writeback_control *wbc)
2924 {
2925 	struct inode * const inode = page->mapping->host;
2926 	loff_t i_size = i_size_read(inode);
2927 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2928 	unsigned offset;
2929 
2930 	/* Is the page fully inside i_size? */
2931 	if (page->index < end_index)
2932 		return __block_write_full_page(inode, page, get_block, wbc,
2933 					       end_buffer_async_write);
2934 
2935 	/* Is the page fully outside i_size? (truncate in progress) */
2936 	offset = i_size & (PAGE_SIZE-1);
2937 	if (page->index >= end_index+1 || !offset) {
2938 		/*
2939 		 * The page may have dirty, unmapped buffers.  For example,
2940 		 * they may have been added in ext3_writepage().  Make them
2941 		 * freeable here, so the page does not leak.
2942 		 */
2943 		do_invalidatepage(page, 0, PAGE_SIZE);
2944 		unlock_page(page);
2945 		return 0; /* don't care */
2946 	}
2947 
2948 	/*
2949 	 * The page straddles i_size.  It must be zeroed out on each and every
2950 	 * writepage invocation because it may be mmapped.  "A file is mapped
2951 	 * in multiples of the page size.  For a file that is not a multiple of
2952 	 * the  page size, the remaining memory is zeroed when mapped, and
2953 	 * writes to that region are not written out to the file."
2954 	 */
2955 	zero_user_segment(page, offset, PAGE_SIZE);
2956 	return __block_write_full_page(inode, page, get_block, wbc,
2957 							end_buffer_async_write);
2958 }
2959 EXPORT_SYMBOL(block_write_full_page);
2960 
2961 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2962 			    get_block_t *get_block)
2963 {
2964 	struct inode *inode = mapping->host;
2965 	struct buffer_head tmp = {
2966 		.b_size = i_blocksize(inode),
2967 	};
2968 
2969 	get_block(inode, block, &tmp, 0);
2970 	return tmp.b_blocknr;
2971 }
2972 EXPORT_SYMBOL(generic_block_bmap);
2973 
2974 static void end_bio_bh_io_sync(struct bio *bio)
2975 {
2976 	struct buffer_head *bh = bio->bi_private;
2977 
2978 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2979 		set_bit(BH_Quiet, &bh->b_state);
2980 
2981 	bh->b_end_io(bh, !bio->bi_status);
2982 	bio_put(bio);
2983 }
2984 
2985 /*
2986  * This allows us to do IO even on the odd last sectors
2987  * of a device, even if the block size is some multiple
2988  * of the physical sector size.
2989  *
2990  * We'll just truncate the bio to the size of the device,
2991  * and clear the end of the buffer head manually.
2992  *
2993  * Truly out-of-range accesses will turn into actual IO
2994  * errors, this only handles the "we need to be able to
2995  * do IO at the final sector" case.
2996  */
2997 void guard_bio_eod(int op, struct bio *bio)
2998 {
2999 	sector_t maxsector;
3000 	struct bio_vec *bvec = bio_last_bvec_all(bio);
3001 	unsigned truncated_bytes;
3002 	struct hd_struct *part;
3003 
3004 	rcu_read_lock();
3005 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3006 	if (part)
3007 		maxsector = part_nr_sects_read(part);
3008 	else
3009 		maxsector = get_capacity(bio->bi_disk);
3010 	rcu_read_unlock();
3011 
3012 	if (!maxsector)
3013 		return;
3014 
3015 	/*
3016 	 * If the *whole* IO is past the end of the device,
3017 	 * let it through, and the IO layer will turn it into
3018 	 * an EIO.
3019 	 */
3020 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3021 		return;
3022 
3023 	maxsector -= bio->bi_iter.bi_sector;
3024 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3025 		return;
3026 
3027 	/* Uhhuh. We've got a bio that straddles the device size! */
3028 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3029 
3030 	/* Truncate the bio.. */
3031 	bio->bi_iter.bi_size -= truncated_bytes;
3032 	bvec->bv_len -= truncated_bytes;
3033 
3034 	/* ..and clear the end of the buffer for reads */
3035 	if (op == REQ_OP_READ) {
3036 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3037 				truncated_bytes);
3038 	}
3039 }
3040 
3041 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3042 			 enum rw_hint write_hint, struct writeback_control *wbc)
3043 {
3044 	struct bio *bio;
3045 
3046 	BUG_ON(!buffer_locked(bh));
3047 	BUG_ON(!buffer_mapped(bh));
3048 	BUG_ON(!bh->b_end_io);
3049 	BUG_ON(buffer_delay(bh));
3050 	BUG_ON(buffer_unwritten(bh));
3051 
3052 	/*
3053 	 * Only clear out a write error when rewriting
3054 	 */
3055 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3056 		clear_buffer_write_io_error(bh);
3057 
3058 	/*
3059 	 * from here on down, it's all bio -- do the initial mapping,
3060 	 * submit_bio -> generic_make_request may further map this bio around
3061 	 */
3062 	bio = bio_alloc(GFP_NOIO, 1);
3063 
3064 	if (wbc) {
3065 		wbc_init_bio(wbc, bio);
3066 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3067 	}
3068 
3069 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3070 	bio_set_dev(bio, bh->b_bdev);
3071 	bio->bi_write_hint = write_hint;
3072 
3073 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3074 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3075 
3076 	bio->bi_end_io = end_bio_bh_io_sync;
3077 	bio->bi_private = bh;
3078 
3079 	/* Take care of bh's that straddle the end of the device */
3080 	guard_bio_eod(op, bio);
3081 
3082 	if (buffer_meta(bh))
3083 		op_flags |= REQ_META;
3084 	if (buffer_prio(bh))
3085 		op_flags |= REQ_PRIO;
3086 	bio_set_op_attrs(bio, op, op_flags);
3087 
3088 	submit_bio(bio);
3089 	return 0;
3090 }
3091 
3092 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3093 {
3094 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3095 }
3096 EXPORT_SYMBOL(submit_bh);
3097 
3098 /**
3099  * ll_rw_block: low-level access to block devices (DEPRECATED)
3100  * @op: whether to %READ or %WRITE
3101  * @op_flags: req_flag_bits
3102  * @nr: number of &struct buffer_heads in the array
3103  * @bhs: array of pointers to &struct buffer_head
3104  *
3105  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3106  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3107  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3108  * %REQ_RAHEAD.
3109  *
3110  * This function drops any buffer that it cannot get a lock on (with the
3111  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3112  * request, and any buffer that appears to be up-to-date when doing read
3113  * request.  Further it marks as clean buffers that are processed for
3114  * writing (the buffer cache won't assume that they are actually clean
3115  * until the buffer gets unlocked).
3116  *
3117  * ll_rw_block sets b_end_io to simple completion handler that marks
3118  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3119  * any waiters.
3120  *
3121  * All of the buffers must be for the same device, and must also be a
3122  * multiple of the current approved size for the device.
3123  */
3124 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3125 {
3126 	int i;
3127 
3128 	for (i = 0; i < nr; i++) {
3129 		struct buffer_head *bh = bhs[i];
3130 
3131 		if (!trylock_buffer(bh))
3132 			continue;
3133 		if (op == WRITE) {
3134 			if (test_clear_buffer_dirty(bh)) {
3135 				bh->b_end_io = end_buffer_write_sync;
3136 				get_bh(bh);
3137 				submit_bh(op, op_flags, bh);
3138 				continue;
3139 			}
3140 		} else {
3141 			if (!buffer_uptodate(bh)) {
3142 				bh->b_end_io = end_buffer_read_sync;
3143 				get_bh(bh);
3144 				submit_bh(op, op_flags, bh);
3145 				continue;
3146 			}
3147 		}
3148 		unlock_buffer(bh);
3149 	}
3150 }
3151 EXPORT_SYMBOL(ll_rw_block);
3152 
3153 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3154 {
3155 	lock_buffer(bh);
3156 	if (!test_clear_buffer_dirty(bh)) {
3157 		unlock_buffer(bh);
3158 		return;
3159 	}
3160 	bh->b_end_io = end_buffer_write_sync;
3161 	get_bh(bh);
3162 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3163 }
3164 EXPORT_SYMBOL(write_dirty_buffer);
3165 
3166 /*
3167  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3168  * and then start new I/O and then wait upon it.  The caller must have a ref on
3169  * the buffer_head.
3170  */
3171 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3172 {
3173 	int ret = 0;
3174 
3175 	WARN_ON(atomic_read(&bh->b_count) < 1);
3176 	lock_buffer(bh);
3177 	if (test_clear_buffer_dirty(bh)) {
3178 		get_bh(bh);
3179 		bh->b_end_io = end_buffer_write_sync;
3180 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3181 		wait_on_buffer(bh);
3182 		if (!ret && !buffer_uptodate(bh))
3183 			ret = -EIO;
3184 	} else {
3185 		unlock_buffer(bh);
3186 	}
3187 	return ret;
3188 }
3189 EXPORT_SYMBOL(__sync_dirty_buffer);
3190 
3191 int sync_dirty_buffer(struct buffer_head *bh)
3192 {
3193 	return __sync_dirty_buffer(bh, REQ_SYNC);
3194 }
3195 EXPORT_SYMBOL(sync_dirty_buffer);
3196 
3197 /*
3198  * try_to_free_buffers() checks if all the buffers on this particular page
3199  * are unused, and releases them if so.
3200  *
3201  * Exclusion against try_to_free_buffers may be obtained by either
3202  * locking the page or by holding its mapping's private_lock.
3203  *
3204  * If the page is dirty but all the buffers are clean then we need to
3205  * be sure to mark the page clean as well.  This is because the page
3206  * may be against a block device, and a later reattachment of buffers
3207  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3208  * filesystem data on the same device.
3209  *
3210  * The same applies to regular filesystem pages: if all the buffers are
3211  * clean then we set the page clean and proceed.  To do that, we require
3212  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3213  * private_lock.
3214  *
3215  * try_to_free_buffers() is non-blocking.
3216  */
3217 static inline int buffer_busy(struct buffer_head *bh)
3218 {
3219 	return atomic_read(&bh->b_count) |
3220 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3221 }
3222 
3223 static int
3224 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3225 {
3226 	struct buffer_head *head = page_buffers(page);
3227 	struct buffer_head *bh;
3228 
3229 	bh = head;
3230 	do {
3231 		if (buffer_busy(bh))
3232 			goto failed;
3233 		bh = bh->b_this_page;
3234 	} while (bh != head);
3235 
3236 	do {
3237 		struct buffer_head *next = bh->b_this_page;
3238 
3239 		if (bh->b_assoc_map)
3240 			__remove_assoc_queue(bh);
3241 		bh = next;
3242 	} while (bh != head);
3243 	*buffers_to_free = head;
3244 	__clear_page_buffers(page);
3245 	return 1;
3246 failed:
3247 	return 0;
3248 }
3249 
3250 int try_to_free_buffers(struct page *page)
3251 {
3252 	struct address_space * const mapping = page->mapping;
3253 	struct buffer_head *buffers_to_free = NULL;
3254 	int ret = 0;
3255 
3256 	BUG_ON(!PageLocked(page));
3257 	if (PageWriteback(page))
3258 		return 0;
3259 
3260 	if (mapping == NULL) {		/* can this still happen? */
3261 		ret = drop_buffers(page, &buffers_to_free);
3262 		goto out;
3263 	}
3264 
3265 	spin_lock(&mapping->private_lock);
3266 	ret = drop_buffers(page, &buffers_to_free);
3267 
3268 	/*
3269 	 * If the filesystem writes its buffers by hand (eg ext3)
3270 	 * then we can have clean buffers against a dirty page.  We
3271 	 * clean the page here; otherwise the VM will never notice
3272 	 * that the filesystem did any IO at all.
3273 	 *
3274 	 * Also, during truncate, discard_buffer will have marked all
3275 	 * the page's buffers clean.  We discover that here and clean
3276 	 * the page also.
3277 	 *
3278 	 * private_lock must be held over this entire operation in order
3279 	 * to synchronise against __set_page_dirty_buffers and prevent the
3280 	 * dirty bit from being lost.
3281 	 */
3282 	if (ret)
3283 		cancel_dirty_page(page);
3284 	spin_unlock(&mapping->private_lock);
3285 out:
3286 	if (buffers_to_free) {
3287 		struct buffer_head *bh = buffers_to_free;
3288 
3289 		do {
3290 			struct buffer_head *next = bh->b_this_page;
3291 			free_buffer_head(bh);
3292 			bh = next;
3293 		} while (bh != buffers_to_free);
3294 	}
3295 	return ret;
3296 }
3297 EXPORT_SYMBOL(try_to_free_buffers);
3298 
3299 /*
3300  * There are no bdflush tunables left.  But distributions are
3301  * still running obsolete flush daemons, so we terminate them here.
3302  *
3303  * Use of bdflush() is deprecated and will be removed in a future kernel.
3304  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3305  */
3306 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3307 {
3308 	static int msg_count;
3309 
3310 	if (!capable(CAP_SYS_ADMIN))
3311 		return -EPERM;
3312 
3313 	if (msg_count < 5) {
3314 		msg_count++;
3315 		printk(KERN_INFO
3316 			"warning: process `%s' used the obsolete bdflush"
3317 			" system call\n", current->comm);
3318 		printk(KERN_INFO "Fix your initscripts?\n");
3319 	}
3320 
3321 	if (func == 1)
3322 		do_exit(0);
3323 	return 0;
3324 }
3325 
3326 /*
3327  * Buffer-head allocation
3328  */
3329 static struct kmem_cache *bh_cachep __read_mostly;
3330 
3331 /*
3332  * Once the number of bh's in the machine exceeds this level, we start
3333  * stripping them in writeback.
3334  */
3335 static unsigned long max_buffer_heads;
3336 
3337 int buffer_heads_over_limit;
3338 
3339 struct bh_accounting {
3340 	int nr;			/* Number of live bh's */
3341 	int ratelimit;		/* Limit cacheline bouncing */
3342 };
3343 
3344 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3345 
3346 static void recalc_bh_state(void)
3347 {
3348 	int i;
3349 	int tot = 0;
3350 
3351 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3352 		return;
3353 	__this_cpu_write(bh_accounting.ratelimit, 0);
3354 	for_each_online_cpu(i)
3355 		tot += per_cpu(bh_accounting, i).nr;
3356 	buffer_heads_over_limit = (tot > max_buffer_heads);
3357 }
3358 
3359 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3360 {
3361 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3362 	if (ret) {
3363 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3364 		preempt_disable();
3365 		__this_cpu_inc(bh_accounting.nr);
3366 		recalc_bh_state();
3367 		preempt_enable();
3368 	}
3369 	return ret;
3370 }
3371 EXPORT_SYMBOL(alloc_buffer_head);
3372 
3373 void free_buffer_head(struct buffer_head *bh)
3374 {
3375 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3376 	kmem_cache_free(bh_cachep, bh);
3377 	preempt_disable();
3378 	__this_cpu_dec(bh_accounting.nr);
3379 	recalc_bh_state();
3380 	preempt_enable();
3381 }
3382 EXPORT_SYMBOL(free_buffer_head);
3383 
3384 static int buffer_exit_cpu_dead(unsigned int cpu)
3385 {
3386 	int i;
3387 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3388 
3389 	for (i = 0; i < BH_LRU_SIZE; i++) {
3390 		brelse(b->bhs[i]);
3391 		b->bhs[i] = NULL;
3392 	}
3393 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3394 	per_cpu(bh_accounting, cpu).nr = 0;
3395 	return 0;
3396 }
3397 
3398 /**
3399  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3400  * @bh: struct buffer_head
3401  *
3402  * Return true if the buffer is up-to-date and false,
3403  * with the buffer locked, if not.
3404  */
3405 int bh_uptodate_or_lock(struct buffer_head *bh)
3406 {
3407 	if (!buffer_uptodate(bh)) {
3408 		lock_buffer(bh);
3409 		if (!buffer_uptodate(bh))
3410 			return 0;
3411 		unlock_buffer(bh);
3412 	}
3413 	return 1;
3414 }
3415 EXPORT_SYMBOL(bh_uptodate_or_lock);
3416 
3417 /**
3418  * bh_submit_read - Submit a locked buffer for reading
3419  * @bh: struct buffer_head
3420  *
3421  * Returns zero on success and -EIO on error.
3422  */
3423 int bh_submit_read(struct buffer_head *bh)
3424 {
3425 	BUG_ON(!buffer_locked(bh));
3426 
3427 	if (buffer_uptodate(bh)) {
3428 		unlock_buffer(bh);
3429 		return 0;
3430 	}
3431 
3432 	get_bh(bh);
3433 	bh->b_end_io = end_buffer_read_sync;
3434 	submit_bh(REQ_OP_READ, 0, bh);
3435 	wait_on_buffer(bh);
3436 	if (buffer_uptodate(bh))
3437 		return 0;
3438 	return -EIO;
3439 }
3440 EXPORT_SYMBOL(bh_submit_read);
3441 
3442 void __init buffer_init(void)
3443 {
3444 	unsigned long nrpages;
3445 	int ret;
3446 
3447 	bh_cachep = kmem_cache_create("buffer_head",
3448 			sizeof(struct buffer_head), 0,
3449 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3450 				SLAB_MEM_SPREAD),
3451 				NULL);
3452 
3453 	/*
3454 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3455 	 */
3456 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3457 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3458 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3459 					NULL, buffer_exit_cpu_dead);
3460 	WARN_ON(ret < 0);
3461 }
3462