xref: /openbmc/linux/fs/buffer.c (revision 28dce2c4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 #include "internal.h"
53 
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 			 enum rw_hint hint, struct writeback_control *wbc);
57 
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59 
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 	trace_block_touch_buffer(bh);
63 	mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66 
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72 
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 	clear_bit_unlock(BH_Lock, &bh->b_state);
76 	smp_mb__after_atomic();
77 	wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80 
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87 				     bool *dirty, bool *writeback)
88 {
89 	struct buffer_head *head, *bh;
90 	*dirty = false;
91 	*writeback = false;
92 
93 	BUG_ON(!PageLocked(page));
94 
95 	if (!page_has_buffers(page))
96 		return;
97 
98 	if (PageWriteback(page))
99 		*writeback = true;
100 
101 	head = page_buffers(page);
102 	bh = head;
103 	do {
104 		if (buffer_locked(bh))
105 			*writeback = true;
106 
107 		if (buffer_dirty(bh))
108 			*dirty = true;
109 
110 		bh = bh->b_this_page;
111 	} while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 	if (!test_bit(BH_Quiet, &bh->b_state))
129 		printk_ratelimited(KERN_ERR
130 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
131 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133 
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 	if (uptodate) {
145 		set_buffer_uptodate(bh);
146 	} else {
147 		/* This happens, due to failed read-ahead attempts. */
148 		clear_buffer_uptodate(bh);
149 	}
150 	unlock_buffer(bh);
151 }
152 
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 	__end_buffer_read_notouch(bh, uptodate);
160 	put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163 
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 	if (uptodate) {
167 		set_buffer_uptodate(bh);
168 	} else {
169 		buffer_io_error(bh, ", lost sync page write");
170 		mark_buffer_write_io_error(bh);
171 		clear_buffer_uptodate(bh);
172 	}
173 	unlock_buffer(bh);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177 
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 	struct inode *bd_inode = bdev->bd_inode;
192 	struct address_space *bd_mapping = bd_inode->i_mapping;
193 	struct buffer_head *ret = NULL;
194 	pgoff_t index;
195 	struct buffer_head *bh;
196 	struct buffer_head *head;
197 	struct page *page;
198 	int all_mapped = 1;
199 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200 
201 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 	if (!page)
204 		goto out;
205 
206 	spin_lock(&bd_mapping->private_lock);
207 	if (!page_has_buffers(page))
208 		goto out_unlock;
209 	head = page_buffers(page);
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << bd_inode->i_blkbits);
236 	}
237 out_unlock:
238 	spin_unlock(&bd_mapping->private_lock);
239 	put_page(page);
240 out:
241 	return ret;
242 }
243 
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 	unsigned long flags;
247 	struct buffer_head *first;
248 	struct buffer_head *tmp;
249 	struct page *page;
250 	int page_uptodate = 1;
251 
252 	BUG_ON(!buffer_async_read(bh));
253 
254 	page = bh->b_page;
255 	if (uptodate) {
256 		set_buffer_uptodate(bh);
257 	} else {
258 		clear_buffer_uptodate(bh);
259 		buffer_io_error(bh, ", async page read");
260 		SetPageError(page);
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = page_buffers(page);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			page_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	/*
285 	 * If none of the buffers had errors and they are all
286 	 * uptodate then we can set the page uptodate.
287 	 */
288 	if (page_uptodate && !PageError(page))
289 		SetPageUptodate(page);
290 	unlock_page(page);
291 	return;
292 
293 still_busy:
294 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 	return;
296 }
297 
298 struct decrypt_bh_ctx {
299 	struct work_struct work;
300 	struct buffer_head *bh;
301 };
302 
303 static void decrypt_bh(struct work_struct *work)
304 {
305 	struct decrypt_bh_ctx *ctx =
306 		container_of(work, struct decrypt_bh_ctx, work);
307 	struct buffer_head *bh = ctx->bh;
308 	int err;
309 
310 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 					       bh_offset(bh));
312 	end_buffer_async_read(bh, err == 0);
313 	kfree(ctx);
314 }
315 
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 	/* Decrypt if needed */
323 	if (uptodate &&
324 	    fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326 
327 		if (ctx) {
328 			INIT_WORK(&ctx->work, decrypt_bh);
329 			ctx->bh = bh;
330 			fscrypt_enqueue_decrypt_work(&ctx->work);
331 			return;
332 		}
333 		uptodate = 0;
334 	}
335 	end_buffer_async_read(bh, uptodate);
336 }
337 
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 	unsigned long flags;
345 	struct buffer_head *first;
346 	struct buffer_head *tmp;
347 	struct page *page;
348 
349 	BUG_ON(!buffer_async_write(bh));
350 
351 	page = bh->b_page;
352 	if (uptodate) {
353 		set_buffer_uptodate(bh);
354 	} else {
355 		buffer_io_error(bh, ", lost async page write");
356 		mark_buffer_write_io_error(bh);
357 		clear_buffer_uptodate(bh);
358 		SetPageError(page);
359 	}
360 
361 	first = page_buffers(page);
362 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
363 
364 	clear_buffer_async_write(bh);
365 	unlock_buffer(bh);
366 	tmp = bh->b_this_page;
367 	while (tmp != bh) {
368 		if (buffer_async_write(tmp)) {
369 			BUG_ON(!buffer_locked(tmp));
370 			goto still_busy;
371 		}
372 		tmp = tmp->b_this_page;
373 	}
374 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 	end_page_writeback(page);
376 	return;
377 
378 still_busy:
379 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 	return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383 
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 	bh->b_end_io = end_buffer_async_read_io;
408 	set_buffer_async_read(bh);
409 }
410 
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 					  bh_end_io_t *handler)
413 {
414 	bh->b_end_io = handler;
415 	set_buffer_async_write(bh);
416 }
417 
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423 
424 
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473 
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 	list_del_init(&bh->b_assoc_buffers);
480 	WARN_ON(!bh->b_assoc_map);
481 	bh->b_assoc_map = NULL;
482 }
483 
484 int inode_has_buffers(struct inode *inode)
485 {
486 	return !list_empty(&inode->i_data.private_list);
487 }
488 
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 	struct buffer_head *bh;
502 	struct list_head *p;
503 	int err = 0;
504 
505 	spin_lock(lock);
506 repeat:
507 	list_for_each_prev(p, list) {
508 		bh = BH_ENTRY(p);
509 		if (buffer_locked(bh)) {
510 			get_bh(bh);
511 			spin_unlock(lock);
512 			wait_on_buffer(bh);
513 			if (!buffer_uptodate(bh))
514 				err = -EIO;
515 			brelse(bh);
516 			spin_lock(lock);
517 			goto repeat;
518 		}
519 	}
520 	spin_unlock(lock);
521 	return err;
522 }
523 
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529 
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 	struct address_space *buffer_mapping = mapping->private_data;
544 
545 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 		return 0;
547 
548 	return fsync_buffers_list(&buffer_mapping->private_lock,
549 					&mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552 
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560 			sector_t bblock, unsigned blocksize)
561 {
562 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 	if (bh) {
564 		if (buffer_dirty(bh))
565 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 		put_bh(bh);
567 	}
568 }
569 
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 	struct address_space *mapping = inode->i_mapping;
573 	struct address_space *buffer_mapping = bh->b_page->mapping;
574 
575 	mark_buffer_dirty(bh);
576 	if (!mapping->private_data) {
577 		mapping->private_data = buffer_mapping;
578 	} else {
579 		BUG_ON(mapping->private_data != buffer_mapping);
580 	}
581 	if (!bh->b_assoc_map) {
582 		spin_lock(&buffer_mapping->private_lock);
583 		list_move_tail(&bh->b_assoc_buffers,
584 				&mapping->private_list);
585 		bh->b_assoc_map = mapping;
586 		spin_unlock(&buffer_mapping->private_lock);
587 	}
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590 
591 /*
592  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593  * dirty.
594  *
595  * If warn is true, then emit a warning if the page is not uptodate and has
596  * not been truncated.
597  *
598  * The caller must hold lock_page_memcg().
599  */
600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601 			     int warn)
602 {
603 	unsigned long flags;
604 
605 	xa_lock_irqsave(&mapping->i_pages, flags);
606 	if (page->mapping) {	/* Race with truncate? */
607 		WARN_ON_ONCE(warn && !PageUptodate(page));
608 		account_page_dirtied(page, mapping);
609 		__xa_set_mark(&mapping->i_pages, page_index(page),
610 				PAGECACHE_TAG_DIRTY);
611 	}
612 	xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615 
616 /*
617  * Add a page to the dirty page list.
618  *
619  * It is a sad fact of life that this function is called from several places
620  * deeply under spinlocking.  It may not sleep.
621  *
622  * If the page has buffers, the uptodate buffers are set dirty, to preserve
623  * dirty-state coherency between the page and the buffers.  It the page does
624  * not have buffers then when they are later attached they will all be set
625  * dirty.
626  *
627  * The buffers are dirtied before the page is dirtied.  There's a small race
628  * window in which a writepage caller may see the page cleanness but not the
629  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
630  * before the buffers, a concurrent writepage caller could clear the page dirty
631  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632  * page on the dirty page list.
633  *
634  * We use private_lock to lock against try_to_free_buffers while using the
635  * page's buffer list.  Also use this to protect against clean buffers being
636  * added to the page after it was set dirty.
637  *
638  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
639  * address_space though.
640  */
641 int __set_page_dirty_buffers(struct page *page)
642 {
643 	int newly_dirty;
644 	struct address_space *mapping = page_mapping(page);
645 
646 	if (unlikely(!mapping))
647 		return !TestSetPageDirty(page);
648 
649 	spin_lock(&mapping->private_lock);
650 	if (page_has_buffers(page)) {
651 		struct buffer_head *head = page_buffers(page);
652 		struct buffer_head *bh = head;
653 
654 		do {
655 			set_buffer_dirty(bh);
656 			bh = bh->b_this_page;
657 		} while (bh != head);
658 	}
659 	/*
660 	 * Lock out page's memcg migration to keep PageDirty
661 	 * synchronized with per-memcg dirty page counters.
662 	 */
663 	lock_page_memcg(page);
664 	newly_dirty = !TestSetPageDirty(page);
665 	spin_unlock(&mapping->private_lock);
666 
667 	if (newly_dirty)
668 		__set_page_dirty(page, mapping, 1);
669 
670 	unlock_page_memcg(page);
671 
672 	if (newly_dirty)
673 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674 
675 	return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678 
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  *
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 	struct buffer_head *bh;
701 	struct list_head tmp;
702 	struct address_space *mapping;
703 	int err = 0, err2;
704 	struct blk_plug plug;
705 
706 	INIT_LIST_HEAD(&tmp);
707 	blk_start_plug(&plug);
708 
709 	spin_lock(lock);
710 	while (!list_empty(list)) {
711 		bh = BH_ENTRY(list->next);
712 		mapping = bh->b_assoc_map;
713 		__remove_assoc_queue(bh);
714 		/* Avoid race with mark_buffer_dirty_inode() which does
715 		 * a lockless check and we rely on seeing the dirty bit */
716 		smp_mb();
717 		if (buffer_dirty(bh) || buffer_locked(bh)) {
718 			list_add(&bh->b_assoc_buffers, &tmp);
719 			bh->b_assoc_map = mapping;
720 			if (buffer_dirty(bh)) {
721 				get_bh(bh);
722 				spin_unlock(lock);
723 				/*
724 				 * Ensure any pending I/O completes so that
725 				 * write_dirty_buffer() actually writes the
726 				 * current contents - it is a noop if I/O is
727 				 * still in flight on potentially older
728 				 * contents.
729 				 */
730 				write_dirty_buffer(bh, REQ_SYNC);
731 
732 				/*
733 				 * Kick off IO for the previous mapping. Note
734 				 * that we will not run the very last mapping,
735 				 * wait_on_buffer() will do that for us
736 				 * through sync_buffer().
737 				 */
738 				brelse(bh);
739 				spin_lock(lock);
740 			}
741 		}
742 	}
743 
744 	spin_unlock(lock);
745 	blk_finish_plug(&plug);
746 	spin_lock(lock);
747 
748 	while (!list_empty(&tmp)) {
749 		bh = BH_ENTRY(tmp.prev);
750 		get_bh(bh);
751 		mapping = bh->b_assoc_map;
752 		__remove_assoc_queue(bh);
753 		/* Avoid race with mark_buffer_dirty_inode() which does
754 		 * a lockless check and we rely on seeing the dirty bit */
755 		smp_mb();
756 		if (buffer_dirty(bh)) {
757 			list_add(&bh->b_assoc_buffers,
758 				 &mapping->private_list);
759 			bh->b_assoc_map = mapping;
760 		}
761 		spin_unlock(lock);
762 		wait_on_buffer(bh);
763 		if (!buffer_uptodate(bh))
764 			err = -EIO;
765 		brelse(bh);
766 		spin_lock(lock);
767 	}
768 
769 	spin_unlock(lock);
770 	err2 = osync_buffers_list(lock, list);
771 	if (err)
772 		return err;
773 	else
774 		return err2;
775 }
776 
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 	if (inode_has_buffers(inode)) {
789 		struct address_space *mapping = &inode->i_data;
790 		struct list_head *list = &mapping->private_list;
791 		struct address_space *buffer_mapping = mapping->private_data;
792 
793 		spin_lock(&buffer_mapping->private_lock);
794 		while (!list_empty(list))
795 			__remove_assoc_queue(BH_ENTRY(list->next));
796 		spin_unlock(&buffer_mapping->private_lock);
797 	}
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800 
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
807 int remove_inode_buffers(struct inode *inode)
808 {
809 	int ret = 1;
810 
811 	if (inode_has_buffers(inode)) {
812 		struct address_space *mapping = &inode->i_data;
813 		struct list_head *list = &mapping->private_list;
814 		struct address_space *buffer_mapping = mapping->private_data;
815 
816 		spin_lock(&buffer_mapping->private_lock);
817 		while (!list_empty(list)) {
818 			struct buffer_head *bh = BH_ENTRY(list->next);
819 			if (buffer_dirty(bh)) {
820 				ret = 0;
821 				break;
822 			}
823 			__remove_assoc_queue(bh);
824 		}
825 		spin_unlock(&buffer_mapping->private_lock);
826 	}
827 	return ret;
828 }
829 
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 		bool retry)
841 {
842 	struct buffer_head *bh, *head;
843 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844 	long offset;
845 	struct mem_cgroup *memcg, *old_memcg;
846 
847 	if (retry)
848 		gfp |= __GFP_NOFAIL;
849 
850 	/* The page lock pins the memcg */
851 	memcg = page_memcg(page);
852 	old_memcg = set_active_memcg(memcg);
853 
854 	head = NULL;
855 	offset = PAGE_SIZE;
856 	while ((offset -= size) >= 0) {
857 		bh = alloc_buffer_head(gfp);
858 		if (!bh)
859 			goto no_grow;
860 
861 		bh->b_this_page = head;
862 		bh->b_blocknr = -1;
863 		head = bh;
864 
865 		bh->b_size = size;
866 
867 		/* Link the buffer to its page */
868 		set_bh_page(bh, page, offset);
869 	}
870 out:
871 	set_active_memcg(old_memcg);
872 	return head;
873 /*
874  * In case anything failed, we just free everything we got.
875  */
876 no_grow:
877 	if (head) {
878 		do {
879 			bh = head;
880 			head = head->b_this_page;
881 			free_buffer_head(bh);
882 		} while (head);
883 	}
884 
885 	goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888 
889 static inline void
890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892 	struct buffer_head *bh, *tail;
893 
894 	bh = head;
895 	do {
896 		tail = bh;
897 		bh = bh->b_this_page;
898 	} while (bh);
899 	tail->b_this_page = head;
900 	attach_page_private(page, head);
901 }
902 
903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905 	sector_t retval = ~((sector_t)0);
906 	loff_t sz = i_size_read(bdev->bd_inode);
907 
908 	if (sz) {
909 		unsigned int sizebits = blksize_bits(size);
910 		retval = (sz >> sizebits);
911 	}
912 	return retval;
913 }
914 
915 /*
916  * Initialise the state of a blockdev page's buffers.
917  */
918 static sector_t
919 init_page_buffers(struct page *page, struct block_device *bdev,
920 			sector_t block, int size)
921 {
922 	struct buffer_head *head = page_buffers(page);
923 	struct buffer_head *bh = head;
924 	int uptodate = PageUptodate(page);
925 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926 
927 	do {
928 		if (!buffer_mapped(bh)) {
929 			bh->b_end_io = NULL;
930 			bh->b_private = NULL;
931 			bh->b_bdev = bdev;
932 			bh->b_blocknr = block;
933 			if (uptodate)
934 				set_buffer_uptodate(bh);
935 			if (block < end_block)
936 				set_buffer_mapped(bh);
937 		}
938 		block++;
939 		bh = bh->b_this_page;
940 	} while (bh != head);
941 
942 	/*
943 	 * Caller needs to validate requested block against end of device.
944 	 */
945 	return end_block;
946 }
947 
948 /*
949  * Create the page-cache page that contains the requested block.
950  *
951  * This is used purely for blockdev mappings.
952  */
953 static int
954 grow_dev_page(struct block_device *bdev, sector_t block,
955 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957 	struct inode *inode = bdev->bd_inode;
958 	struct page *page;
959 	struct buffer_head *bh;
960 	sector_t end_block;
961 	int ret = 0;
962 	gfp_t gfp_mask;
963 
964 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965 
966 	/*
967 	 * XXX: __getblk_slow() can not really deal with failure and
968 	 * will endlessly loop on improvised global reclaim.  Prefer
969 	 * looping in the allocator rather than here, at least that
970 	 * code knows what it's doing.
971 	 */
972 	gfp_mask |= __GFP_NOFAIL;
973 
974 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975 
976 	BUG_ON(!PageLocked(page));
977 
978 	if (page_has_buffers(page)) {
979 		bh = page_buffers(page);
980 		if (bh->b_size == size) {
981 			end_block = init_page_buffers(page, bdev,
982 						(sector_t)index << sizebits,
983 						size);
984 			goto done;
985 		}
986 		if (!try_to_free_buffers(page))
987 			goto failed;
988 	}
989 
990 	/*
991 	 * Allocate some buffers for this page
992 	 */
993 	bh = alloc_page_buffers(page, size, true);
994 
995 	/*
996 	 * Link the page to the buffers and initialise them.  Take the
997 	 * lock to be atomic wrt __find_get_block(), which does not
998 	 * run under the page lock.
999 	 */
1000 	spin_lock(&inode->i_mapping->private_lock);
1001 	link_dev_buffers(page, bh);
1002 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003 			size);
1004 	spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006 	ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008 	unlock_page(page);
1009 	put_page(page);
1010 	return ret;
1011 }
1012 
1013 /*
1014  * Create buffers for the specified block device block's page.  If
1015  * that page was dirty, the buffers are set dirty also.
1016  */
1017 static int
1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020 	pgoff_t index;
1021 	int sizebits;
1022 
1023 	sizebits = PAGE_SHIFT - __ffs(size);
1024 	index = block >> sizebits;
1025 
1026 	/*
1027 	 * Check for a block which wants to lie outside our maximum possible
1028 	 * pagecache index.  (this comparison is done using sector_t types).
1029 	 */
1030 	if (unlikely(index != block >> sizebits)) {
1031 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1032 			"device %pg\n",
1033 			__func__, (unsigned long long)block,
1034 			bdev);
1035 		return -EIO;
1036 	}
1037 
1038 	/* Create a page with the proper size buffers.. */
1039 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1040 }
1041 
1042 static struct buffer_head *
1043 __getblk_slow(struct block_device *bdev, sector_t block,
1044 	     unsigned size, gfp_t gfp)
1045 {
1046 	/* Size must be multiple of hard sectorsize */
1047 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1048 			(size < 512 || size > PAGE_SIZE))) {
1049 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1050 					size);
1051 		printk(KERN_ERR "logical block size: %d\n",
1052 					bdev_logical_block_size(bdev));
1053 
1054 		dump_stack();
1055 		return NULL;
1056 	}
1057 
1058 	for (;;) {
1059 		struct buffer_head *bh;
1060 		int ret;
1061 
1062 		bh = __find_get_block(bdev, block, size);
1063 		if (bh)
1064 			return bh;
1065 
1066 		ret = grow_buffers(bdev, block, size, gfp);
1067 		if (ret < 0)
1068 			return NULL;
1069 	}
1070 }
1071 
1072 /*
1073  * The relationship between dirty buffers and dirty pages:
1074  *
1075  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1076  * the page is tagged dirty in the page cache.
1077  *
1078  * At all times, the dirtiness of the buffers represents the dirtiness of
1079  * subsections of the page.  If the page has buffers, the page dirty bit is
1080  * merely a hint about the true dirty state.
1081  *
1082  * When a page is set dirty in its entirety, all its buffers are marked dirty
1083  * (if the page has buffers).
1084  *
1085  * When a buffer is marked dirty, its page is dirtied, but the page's other
1086  * buffers are not.
1087  *
1088  * Also.  When blockdev buffers are explicitly read with bread(), they
1089  * individually become uptodate.  But their backing page remains not
1090  * uptodate - even if all of its buffers are uptodate.  A subsequent
1091  * block_read_full_page() against that page will discover all the uptodate
1092  * buffers, will set the page uptodate and will perform no I/O.
1093  */
1094 
1095 /**
1096  * mark_buffer_dirty - mark a buffer_head as needing writeout
1097  * @bh: the buffer_head to mark dirty
1098  *
1099  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1100  * its backing page dirty, then tag the page as dirty in the page cache
1101  * and then attach the address_space's inode to its superblock's dirty
1102  * inode list.
1103  *
1104  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1105  * i_pages lock and mapping->host->i_lock.
1106  */
1107 void mark_buffer_dirty(struct buffer_head *bh)
1108 {
1109 	WARN_ON_ONCE(!buffer_uptodate(bh));
1110 
1111 	trace_block_dirty_buffer(bh);
1112 
1113 	/*
1114 	 * Very *carefully* optimize the it-is-already-dirty case.
1115 	 *
1116 	 * Don't let the final "is it dirty" escape to before we
1117 	 * perhaps modified the buffer.
1118 	 */
1119 	if (buffer_dirty(bh)) {
1120 		smp_mb();
1121 		if (buffer_dirty(bh))
1122 			return;
1123 	}
1124 
1125 	if (!test_set_buffer_dirty(bh)) {
1126 		struct page *page = bh->b_page;
1127 		struct address_space *mapping = NULL;
1128 
1129 		lock_page_memcg(page);
1130 		if (!TestSetPageDirty(page)) {
1131 			mapping = page_mapping(page);
1132 			if (mapping)
1133 				__set_page_dirty(page, mapping, 0);
1134 		}
1135 		unlock_page_memcg(page);
1136 		if (mapping)
1137 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1138 	}
1139 }
1140 EXPORT_SYMBOL(mark_buffer_dirty);
1141 
1142 void mark_buffer_write_io_error(struct buffer_head *bh)
1143 {
1144 	struct super_block *sb;
1145 
1146 	set_buffer_write_io_error(bh);
1147 	/* FIXME: do we need to set this in both places? */
1148 	if (bh->b_page && bh->b_page->mapping)
1149 		mapping_set_error(bh->b_page->mapping, -EIO);
1150 	if (bh->b_assoc_map)
1151 		mapping_set_error(bh->b_assoc_map, -EIO);
1152 	rcu_read_lock();
1153 	sb = READ_ONCE(bh->b_bdev->bd_super);
1154 	if (sb)
1155 		errseq_set(&sb->s_wb_err, -EIO);
1156 	rcu_read_unlock();
1157 }
1158 EXPORT_SYMBOL(mark_buffer_write_io_error);
1159 
1160 /*
1161  * Decrement a buffer_head's reference count.  If all buffers against a page
1162  * have zero reference count, are clean and unlocked, and if the page is clean
1163  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1164  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1165  * a page but it ends up not being freed, and buffers may later be reattached).
1166  */
1167 void __brelse(struct buffer_head * buf)
1168 {
1169 	if (atomic_read(&buf->b_count)) {
1170 		put_bh(buf);
1171 		return;
1172 	}
1173 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1174 }
1175 EXPORT_SYMBOL(__brelse);
1176 
1177 /*
1178  * bforget() is like brelse(), except it discards any
1179  * potentially dirty data.
1180  */
1181 void __bforget(struct buffer_head *bh)
1182 {
1183 	clear_buffer_dirty(bh);
1184 	if (bh->b_assoc_map) {
1185 		struct address_space *buffer_mapping = bh->b_page->mapping;
1186 
1187 		spin_lock(&buffer_mapping->private_lock);
1188 		list_del_init(&bh->b_assoc_buffers);
1189 		bh->b_assoc_map = NULL;
1190 		spin_unlock(&buffer_mapping->private_lock);
1191 	}
1192 	__brelse(bh);
1193 }
1194 EXPORT_SYMBOL(__bforget);
1195 
1196 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1197 {
1198 	lock_buffer(bh);
1199 	if (buffer_uptodate(bh)) {
1200 		unlock_buffer(bh);
1201 		return bh;
1202 	} else {
1203 		get_bh(bh);
1204 		bh->b_end_io = end_buffer_read_sync;
1205 		submit_bh(REQ_OP_READ, 0, bh);
1206 		wait_on_buffer(bh);
1207 		if (buffer_uptodate(bh))
1208 			return bh;
1209 	}
1210 	brelse(bh);
1211 	return NULL;
1212 }
1213 
1214 /*
1215  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1216  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1217  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1218  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1219  * CPU's LRUs at the same time.
1220  *
1221  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1222  * sb_find_get_block().
1223  *
1224  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1225  * a local interrupt disable for that.
1226  */
1227 
1228 #define BH_LRU_SIZE	16
1229 
1230 struct bh_lru {
1231 	struct buffer_head *bhs[BH_LRU_SIZE];
1232 };
1233 
1234 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1235 
1236 #ifdef CONFIG_SMP
1237 #define bh_lru_lock()	local_irq_disable()
1238 #define bh_lru_unlock()	local_irq_enable()
1239 #else
1240 #define bh_lru_lock()	preempt_disable()
1241 #define bh_lru_unlock()	preempt_enable()
1242 #endif
1243 
1244 static inline void check_irqs_on(void)
1245 {
1246 #ifdef irqs_disabled
1247 	BUG_ON(irqs_disabled());
1248 #endif
1249 }
1250 
1251 /*
1252  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1253  * inserted at the front, and the buffer_head at the back if any is evicted.
1254  * Or, if already in the LRU it is moved to the front.
1255  */
1256 static void bh_lru_install(struct buffer_head *bh)
1257 {
1258 	struct buffer_head *evictee = bh;
1259 	struct bh_lru *b;
1260 	int i;
1261 
1262 	check_irqs_on();
1263 	/*
1264 	 * the refcount of buffer_head in bh_lru prevents dropping the
1265 	 * attached page(i.e., try_to_free_buffers) so it could cause
1266 	 * failing page migration.
1267 	 * Skip putting upcoming bh into bh_lru until migration is done.
1268 	 */
1269 	if (lru_cache_disabled())
1270 		return;
1271 
1272 	bh_lru_lock();
1273 
1274 	b = this_cpu_ptr(&bh_lrus);
1275 	for (i = 0; i < BH_LRU_SIZE; i++) {
1276 		swap(evictee, b->bhs[i]);
1277 		if (evictee == bh) {
1278 			bh_lru_unlock();
1279 			return;
1280 		}
1281 	}
1282 
1283 	get_bh(bh);
1284 	bh_lru_unlock();
1285 	brelse(evictee);
1286 }
1287 
1288 /*
1289  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1290  */
1291 static struct buffer_head *
1292 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1293 {
1294 	struct buffer_head *ret = NULL;
1295 	unsigned int i;
1296 
1297 	check_irqs_on();
1298 	bh_lru_lock();
1299 	for (i = 0; i < BH_LRU_SIZE; i++) {
1300 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1301 
1302 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1303 		    bh->b_size == size) {
1304 			if (i) {
1305 				while (i) {
1306 					__this_cpu_write(bh_lrus.bhs[i],
1307 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1308 					i--;
1309 				}
1310 				__this_cpu_write(bh_lrus.bhs[0], bh);
1311 			}
1312 			get_bh(bh);
1313 			ret = bh;
1314 			break;
1315 		}
1316 	}
1317 	bh_lru_unlock();
1318 	return ret;
1319 }
1320 
1321 /*
1322  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1323  * it in the LRU and mark it as accessed.  If it is not present then return
1324  * NULL
1325  */
1326 struct buffer_head *
1327 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1328 {
1329 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1330 
1331 	if (bh == NULL) {
1332 		/* __find_get_block_slow will mark the page accessed */
1333 		bh = __find_get_block_slow(bdev, block);
1334 		if (bh)
1335 			bh_lru_install(bh);
1336 	} else
1337 		touch_buffer(bh);
1338 
1339 	return bh;
1340 }
1341 EXPORT_SYMBOL(__find_get_block);
1342 
1343 /*
1344  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1345  * which corresponds to the passed block_device, block and size. The
1346  * returned buffer has its reference count incremented.
1347  *
1348  * __getblk_gfp() will lock up the machine if grow_dev_page's
1349  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1350  */
1351 struct buffer_head *
1352 __getblk_gfp(struct block_device *bdev, sector_t block,
1353 	     unsigned size, gfp_t gfp)
1354 {
1355 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1356 
1357 	might_sleep();
1358 	if (bh == NULL)
1359 		bh = __getblk_slow(bdev, block, size, gfp);
1360 	return bh;
1361 }
1362 EXPORT_SYMBOL(__getblk_gfp);
1363 
1364 /*
1365  * Do async read-ahead on a buffer..
1366  */
1367 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1368 {
1369 	struct buffer_head *bh = __getblk(bdev, block, size);
1370 	if (likely(bh)) {
1371 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1372 		brelse(bh);
1373 	}
1374 }
1375 EXPORT_SYMBOL(__breadahead);
1376 
1377 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1378 		      gfp_t gfp)
1379 {
1380 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1381 	if (likely(bh)) {
1382 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1383 		brelse(bh);
1384 	}
1385 }
1386 EXPORT_SYMBOL(__breadahead_gfp);
1387 
1388 /**
1389  *  __bread_gfp() - reads a specified block and returns the bh
1390  *  @bdev: the block_device to read from
1391  *  @block: number of block
1392  *  @size: size (in bytes) to read
1393  *  @gfp: page allocation flag
1394  *
1395  *  Reads a specified block, and returns buffer head that contains it.
1396  *  The page cache can be allocated from non-movable area
1397  *  not to prevent page migration if you set gfp to zero.
1398  *  It returns NULL if the block was unreadable.
1399  */
1400 struct buffer_head *
1401 __bread_gfp(struct block_device *bdev, sector_t block,
1402 		   unsigned size, gfp_t gfp)
1403 {
1404 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1405 
1406 	if (likely(bh) && !buffer_uptodate(bh))
1407 		bh = __bread_slow(bh);
1408 	return bh;
1409 }
1410 EXPORT_SYMBOL(__bread_gfp);
1411 
1412 static void __invalidate_bh_lrus(struct bh_lru *b)
1413 {
1414 	int i;
1415 
1416 	for (i = 0; i < BH_LRU_SIZE; i++) {
1417 		brelse(b->bhs[i]);
1418 		b->bhs[i] = NULL;
1419 	}
1420 }
1421 /*
1422  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423  * This doesn't race because it runs in each cpu either in irq
1424  * or with preempt disabled.
1425  */
1426 static void invalidate_bh_lru(void *arg)
1427 {
1428 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1429 
1430 	__invalidate_bh_lrus(b);
1431 	put_cpu_var(bh_lrus);
1432 }
1433 
1434 bool has_bh_in_lru(int cpu, void *dummy)
1435 {
1436 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1437 	int i;
1438 
1439 	for (i = 0; i < BH_LRU_SIZE; i++) {
1440 		if (b->bhs[i])
1441 			return true;
1442 	}
1443 
1444 	return false;
1445 }
1446 
1447 void invalidate_bh_lrus(void)
1448 {
1449 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1450 }
1451 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1452 
1453 void invalidate_bh_lrus_cpu(int cpu)
1454 {
1455 	struct bh_lru *b;
1456 
1457 	bh_lru_lock();
1458 	b = per_cpu_ptr(&bh_lrus, cpu);
1459 	__invalidate_bh_lrus(b);
1460 	bh_lru_unlock();
1461 }
1462 
1463 void set_bh_page(struct buffer_head *bh,
1464 		struct page *page, unsigned long offset)
1465 {
1466 	bh->b_page = page;
1467 	BUG_ON(offset >= PAGE_SIZE);
1468 	if (PageHighMem(page))
1469 		/*
1470 		 * This catches illegal uses and preserves the offset:
1471 		 */
1472 		bh->b_data = (char *)(0 + offset);
1473 	else
1474 		bh->b_data = page_address(page) + offset;
1475 }
1476 EXPORT_SYMBOL(set_bh_page);
1477 
1478 /*
1479  * Called when truncating a buffer on a page completely.
1480  */
1481 
1482 /* Bits that are cleared during an invalidate */
1483 #define BUFFER_FLAGS_DISCARD \
1484 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1485 	 1 << BH_Delay | 1 << BH_Unwritten)
1486 
1487 static void discard_buffer(struct buffer_head * bh)
1488 {
1489 	unsigned long b_state, b_state_old;
1490 
1491 	lock_buffer(bh);
1492 	clear_buffer_dirty(bh);
1493 	bh->b_bdev = NULL;
1494 	b_state = bh->b_state;
1495 	for (;;) {
1496 		b_state_old = cmpxchg(&bh->b_state, b_state,
1497 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1498 		if (b_state_old == b_state)
1499 			break;
1500 		b_state = b_state_old;
1501 	}
1502 	unlock_buffer(bh);
1503 }
1504 
1505 /**
1506  * block_invalidatepage - invalidate part or all of a buffer-backed page
1507  *
1508  * @page: the page which is affected
1509  * @offset: start of the range to invalidate
1510  * @length: length of the range to invalidate
1511  *
1512  * block_invalidatepage() is called when all or part of the page has become
1513  * invalidated by a truncate operation.
1514  *
1515  * block_invalidatepage() does not have to release all buffers, but it must
1516  * ensure that no dirty buffer is left outside @offset and that no I/O
1517  * is underway against any of the blocks which are outside the truncation
1518  * point.  Because the caller is about to free (and possibly reuse) those
1519  * blocks on-disk.
1520  */
1521 void block_invalidatepage(struct page *page, unsigned int offset,
1522 			  unsigned int length)
1523 {
1524 	struct buffer_head *head, *bh, *next;
1525 	unsigned int curr_off = 0;
1526 	unsigned int stop = length + offset;
1527 
1528 	BUG_ON(!PageLocked(page));
1529 	if (!page_has_buffers(page))
1530 		goto out;
1531 
1532 	/*
1533 	 * Check for overflow
1534 	 */
1535 	BUG_ON(stop > PAGE_SIZE || stop < length);
1536 
1537 	head = page_buffers(page);
1538 	bh = head;
1539 	do {
1540 		unsigned int next_off = curr_off + bh->b_size;
1541 		next = bh->b_this_page;
1542 
1543 		/*
1544 		 * Are we still fully in range ?
1545 		 */
1546 		if (next_off > stop)
1547 			goto out;
1548 
1549 		/*
1550 		 * is this block fully invalidated?
1551 		 */
1552 		if (offset <= curr_off)
1553 			discard_buffer(bh);
1554 		curr_off = next_off;
1555 		bh = next;
1556 	} while (bh != head);
1557 
1558 	/*
1559 	 * We release buffers only if the entire page is being invalidated.
1560 	 * The get_block cached value has been unconditionally invalidated,
1561 	 * so real IO is not possible anymore.
1562 	 */
1563 	if (length == PAGE_SIZE)
1564 		try_to_release_page(page, 0);
1565 out:
1566 	return;
1567 }
1568 EXPORT_SYMBOL(block_invalidatepage);
1569 
1570 
1571 /*
1572  * We attach and possibly dirty the buffers atomically wrt
1573  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1574  * is already excluded via the page lock.
1575  */
1576 void create_empty_buffers(struct page *page,
1577 			unsigned long blocksize, unsigned long b_state)
1578 {
1579 	struct buffer_head *bh, *head, *tail;
1580 
1581 	head = alloc_page_buffers(page, blocksize, true);
1582 	bh = head;
1583 	do {
1584 		bh->b_state |= b_state;
1585 		tail = bh;
1586 		bh = bh->b_this_page;
1587 	} while (bh);
1588 	tail->b_this_page = head;
1589 
1590 	spin_lock(&page->mapping->private_lock);
1591 	if (PageUptodate(page) || PageDirty(page)) {
1592 		bh = head;
1593 		do {
1594 			if (PageDirty(page))
1595 				set_buffer_dirty(bh);
1596 			if (PageUptodate(page))
1597 				set_buffer_uptodate(bh);
1598 			bh = bh->b_this_page;
1599 		} while (bh != head);
1600 	}
1601 	attach_page_private(page, head);
1602 	spin_unlock(&page->mapping->private_lock);
1603 }
1604 EXPORT_SYMBOL(create_empty_buffers);
1605 
1606 /**
1607  * clean_bdev_aliases: clean a range of buffers in block device
1608  * @bdev: Block device to clean buffers in
1609  * @block: Start of a range of blocks to clean
1610  * @len: Number of blocks to clean
1611  *
1612  * We are taking a range of blocks for data and we don't want writeback of any
1613  * buffer-cache aliases starting from return from this function and until the
1614  * moment when something will explicitly mark the buffer dirty (hopefully that
1615  * will not happen until we will free that block ;-) We don't even need to mark
1616  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1617  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1618  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1619  * would confuse anyone who might pick it with bread() afterwards...
1620  *
1621  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1622  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1623  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1624  * need to.  That happens here.
1625  */
1626 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1627 {
1628 	struct inode *bd_inode = bdev->bd_inode;
1629 	struct address_space *bd_mapping = bd_inode->i_mapping;
1630 	struct pagevec pvec;
1631 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1632 	pgoff_t end;
1633 	int i, count;
1634 	struct buffer_head *bh;
1635 	struct buffer_head *head;
1636 
1637 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1638 	pagevec_init(&pvec);
1639 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1640 		count = pagevec_count(&pvec);
1641 		for (i = 0; i < count; i++) {
1642 			struct page *page = pvec.pages[i];
1643 
1644 			if (!page_has_buffers(page))
1645 				continue;
1646 			/*
1647 			 * We use page lock instead of bd_mapping->private_lock
1648 			 * to pin buffers here since we can afford to sleep and
1649 			 * it scales better than a global spinlock lock.
1650 			 */
1651 			lock_page(page);
1652 			/* Recheck when the page is locked which pins bhs */
1653 			if (!page_has_buffers(page))
1654 				goto unlock_page;
1655 			head = page_buffers(page);
1656 			bh = head;
1657 			do {
1658 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1659 					goto next;
1660 				if (bh->b_blocknr >= block + len)
1661 					break;
1662 				clear_buffer_dirty(bh);
1663 				wait_on_buffer(bh);
1664 				clear_buffer_req(bh);
1665 next:
1666 				bh = bh->b_this_page;
1667 			} while (bh != head);
1668 unlock_page:
1669 			unlock_page(page);
1670 		}
1671 		pagevec_release(&pvec);
1672 		cond_resched();
1673 		/* End of range already reached? */
1674 		if (index > end || !index)
1675 			break;
1676 	}
1677 }
1678 EXPORT_SYMBOL(clean_bdev_aliases);
1679 
1680 /*
1681  * Size is a power-of-two in the range 512..PAGE_SIZE,
1682  * and the case we care about most is PAGE_SIZE.
1683  *
1684  * So this *could* possibly be written with those
1685  * constraints in mind (relevant mostly if some
1686  * architecture has a slow bit-scan instruction)
1687  */
1688 static inline int block_size_bits(unsigned int blocksize)
1689 {
1690 	return ilog2(blocksize);
1691 }
1692 
1693 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1694 {
1695 	BUG_ON(!PageLocked(page));
1696 
1697 	if (!page_has_buffers(page))
1698 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1699 				     b_state);
1700 	return page_buffers(page);
1701 }
1702 
1703 /*
1704  * NOTE! All mapped/uptodate combinations are valid:
1705  *
1706  *	Mapped	Uptodate	Meaning
1707  *
1708  *	No	No		"unknown" - must do get_block()
1709  *	No	Yes		"hole" - zero-filled
1710  *	Yes	No		"allocated" - allocated on disk, not read in
1711  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1712  *
1713  * "Dirty" is valid only with the last case (mapped+uptodate).
1714  */
1715 
1716 /*
1717  * While block_write_full_page is writing back the dirty buffers under
1718  * the page lock, whoever dirtied the buffers may decide to clean them
1719  * again at any time.  We handle that by only looking at the buffer
1720  * state inside lock_buffer().
1721  *
1722  * If block_write_full_page() is called for regular writeback
1723  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1724  * locked buffer.   This only can happen if someone has written the buffer
1725  * directly, with submit_bh().  At the address_space level PageWriteback
1726  * prevents this contention from occurring.
1727  *
1728  * If block_write_full_page() is called with wbc->sync_mode ==
1729  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1730  * causes the writes to be flagged as synchronous writes.
1731  */
1732 int __block_write_full_page(struct inode *inode, struct page *page,
1733 			get_block_t *get_block, struct writeback_control *wbc,
1734 			bh_end_io_t *handler)
1735 {
1736 	int err;
1737 	sector_t block;
1738 	sector_t last_block;
1739 	struct buffer_head *bh, *head;
1740 	unsigned int blocksize, bbits;
1741 	int nr_underway = 0;
1742 	int write_flags = wbc_to_write_flags(wbc);
1743 
1744 	head = create_page_buffers(page, inode,
1745 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1746 
1747 	/*
1748 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1749 	 * here, and the (potentially unmapped) buffers may become dirty at
1750 	 * any time.  If a buffer becomes dirty here after we've inspected it
1751 	 * then we just miss that fact, and the page stays dirty.
1752 	 *
1753 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1754 	 * handle that here by just cleaning them.
1755 	 */
1756 
1757 	bh = head;
1758 	blocksize = bh->b_size;
1759 	bbits = block_size_bits(blocksize);
1760 
1761 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1762 	last_block = (i_size_read(inode) - 1) >> bbits;
1763 
1764 	/*
1765 	 * Get all the dirty buffers mapped to disk addresses and
1766 	 * handle any aliases from the underlying blockdev's mapping.
1767 	 */
1768 	do {
1769 		if (block > last_block) {
1770 			/*
1771 			 * mapped buffers outside i_size will occur, because
1772 			 * this page can be outside i_size when there is a
1773 			 * truncate in progress.
1774 			 */
1775 			/*
1776 			 * The buffer was zeroed by block_write_full_page()
1777 			 */
1778 			clear_buffer_dirty(bh);
1779 			set_buffer_uptodate(bh);
1780 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1781 			   buffer_dirty(bh)) {
1782 			WARN_ON(bh->b_size != blocksize);
1783 			err = get_block(inode, block, bh, 1);
1784 			if (err)
1785 				goto recover;
1786 			clear_buffer_delay(bh);
1787 			if (buffer_new(bh)) {
1788 				/* blockdev mappings never come here */
1789 				clear_buffer_new(bh);
1790 				clean_bdev_bh_alias(bh);
1791 			}
1792 		}
1793 		bh = bh->b_this_page;
1794 		block++;
1795 	} while (bh != head);
1796 
1797 	do {
1798 		if (!buffer_mapped(bh))
1799 			continue;
1800 		/*
1801 		 * If it's a fully non-blocking write attempt and we cannot
1802 		 * lock the buffer then redirty the page.  Note that this can
1803 		 * potentially cause a busy-wait loop from writeback threads
1804 		 * and kswapd activity, but those code paths have their own
1805 		 * higher-level throttling.
1806 		 */
1807 		if (wbc->sync_mode != WB_SYNC_NONE) {
1808 			lock_buffer(bh);
1809 		} else if (!trylock_buffer(bh)) {
1810 			redirty_page_for_writepage(wbc, page);
1811 			continue;
1812 		}
1813 		if (test_clear_buffer_dirty(bh)) {
1814 			mark_buffer_async_write_endio(bh, handler);
1815 		} else {
1816 			unlock_buffer(bh);
1817 		}
1818 	} while ((bh = bh->b_this_page) != head);
1819 
1820 	/*
1821 	 * The page and its buffers are protected by PageWriteback(), so we can
1822 	 * drop the bh refcounts early.
1823 	 */
1824 	BUG_ON(PageWriteback(page));
1825 	set_page_writeback(page);
1826 
1827 	do {
1828 		struct buffer_head *next = bh->b_this_page;
1829 		if (buffer_async_write(bh)) {
1830 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1831 					inode->i_write_hint, wbc);
1832 			nr_underway++;
1833 		}
1834 		bh = next;
1835 	} while (bh != head);
1836 	unlock_page(page);
1837 
1838 	err = 0;
1839 done:
1840 	if (nr_underway == 0) {
1841 		/*
1842 		 * The page was marked dirty, but the buffers were
1843 		 * clean.  Someone wrote them back by hand with
1844 		 * ll_rw_block/submit_bh.  A rare case.
1845 		 */
1846 		end_page_writeback(page);
1847 
1848 		/*
1849 		 * The page and buffer_heads can be released at any time from
1850 		 * here on.
1851 		 */
1852 	}
1853 	return err;
1854 
1855 recover:
1856 	/*
1857 	 * ENOSPC, or some other error.  We may already have added some
1858 	 * blocks to the file, so we need to write these out to avoid
1859 	 * exposing stale data.
1860 	 * The page is currently locked and not marked for writeback
1861 	 */
1862 	bh = head;
1863 	/* Recovery: lock and submit the mapped buffers */
1864 	do {
1865 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1866 		    !buffer_delay(bh)) {
1867 			lock_buffer(bh);
1868 			mark_buffer_async_write_endio(bh, handler);
1869 		} else {
1870 			/*
1871 			 * The buffer may have been set dirty during
1872 			 * attachment to a dirty page.
1873 			 */
1874 			clear_buffer_dirty(bh);
1875 		}
1876 	} while ((bh = bh->b_this_page) != head);
1877 	SetPageError(page);
1878 	BUG_ON(PageWriteback(page));
1879 	mapping_set_error(page->mapping, err);
1880 	set_page_writeback(page);
1881 	do {
1882 		struct buffer_head *next = bh->b_this_page;
1883 		if (buffer_async_write(bh)) {
1884 			clear_buffer_dirty(bh);
1885 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1886 					inode->i_write_hint, wbc);
1887 			nr_underway++;
1888 		}
1889 		bh = next;
1890 	} while (bh != head);
1891 	unlock_page(page);
1892 	goto done;
1893 }
1894 EXPORT_SYMBOL(__block_write_full_page);
1895 
1896 /*
1897  * If a page has any new buffers, zero them out here, and mark them uptodate
1898  * and dirty so they'll be written out (in order to prevent uninitialised
1899  * block data from leaking). And clear the new bit.
1900  */
1901 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902 {
1903 	unsigned int block_start, block_end;
1904 	struct buffer_head *head, *bh;
1905 
1906 	BUG_ON(!PageLocked(page));
1907 	if (!page_has_buffers(page))
1908 		return;
1909 
1910 	bh = head = page_buffers(page);
1911 	block_start = 0;
1912 	do {
1913 		block_end = block_start + bh->b_size;
1914 
1915 		if (buffer_new(bh)) {
1916 			if (block_end > from && block_start < to) {
1917 				if (!PageUptodate(page)) {
1918 					unsigned start, size;
1919 
1920 					start = max(from, block_start);
1921 					size = min(to, block_end) - start;
1922 
1923 					zero_user(page, start, size);
1924 					set_buffer_uptodate(bh);
1925 				}
1926 
1927 				clear_buffer_new(bh);
1928 				mark_buffer_dirty(bh);
1929 			}
1930 		}
1931 
1932 		block_start = block_end;
1933 		bh = bh->b_this_page;
1934 	} while (bh != head);
1935 }
1936 EXPORT_SYMBOL(page_zero_new_buffers);
1937 
1938 static void
1939 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940 		struct iomap *iomap)
1941 {
1942 	loff_t offset = block << inode->i_blkbits;
1943 
1944 	bh->b_bdev = iomap->bdev;
1945 
1946 	/*
1947 	 * Block points to offset in file we need to map, iomap contains
1948 	 * the offset at which the map starts. If the map ends before the
1949 	 * current block, then do not map the buffer and let the caller
1950 	 * handle it.
1951 	 */
1952 	BUG_ON(offset >= iomap->offset + iomap->length);
1953 
1954 	switch (iomap->type) {
1955 	case IOMAP_HOLE:
1956 		/*
1957 		 * If the buffer is not up to date or beyond the current EOF,
1958 		 * we need to mark it as new to ensure sub-block zeroing is
1959 		 * executed if necessary.
1960 		 */
1961 		if (!buffer_uptodate(bh) ||
1962 		    (offset >= i_size_read(inode)))
1963 			set_buffer_new(bh);
1964 		break;
1965 	case IOMAP_DELALLOC:
1966 		if (!buffer_uptodate(bh) ||
1967 		    (offset >= i_size_read(inode)))
1968 			set_buffer_new(bh);
1969 		set_buffer_uptodate(bh);
1970 		set_buffer_mapped(bh);
1971 		set_buffer_delay(bh);
1972 		break;
1973 	case IOMAP_UNWRITTEN:
1974 		/*
1975 		 * For unwritten regions, we always need to ensure that regions
1976 		 * in the block we are not writing to are zeroed. Mark the
1977 		 * buffer as new to ensure this.
1978 		 */
1979 		set_buffer_new(bh);
1980 		set_buffer_unwritten(bh);
1981 		fallthrough;
1982 	case IOMAP_MAPPED:
1983 		if ((iomap->flags & IOMAP_F_NEW) ||
1984 		    offset >= i_size_read(inode))
1985 			set_buffer_new(bh);
1986 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1987 				inode->i_blkbits;
1988 		set_buffer_mapped(bh);
1989 		break;
1990 	}
1991 }
1992 
1993 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1994 		get_block_t *get_block, struct iomap *iomap)
1995 {
1996 	unsigned from = pos & (PAGE_SIZE - 1);
1997 	unsigned to = from + len;
1998 	struct inode *inode = page->mapping->host;
1999 	unsigned block_start, block_end;
2000 	sector_t block;
2001 	int err = 0;
2002 	unsigned blocksize, bbits;
2003 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2004 
2005 	BUG_ON(!PageLocked(page));
2006 	BUG_ON(from > PAGE_SIZE);
2007 	BUG_ON(to > PAGE_SIZE);
2008 	BUG_ON(from > to);
2009 
2010 	head = create_page_buffers(page, inode, 0);
2011 	blocksize = head->b_size;
2012 	bbits = block_size_bits(blocksize);
2013 
2014 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2015 
2016 	for(bh = head, block_start = 0; bh != head || !block_start;
2017 	    block++, block_start=block_end, bh = bh->b_this_page) {
2018 		block_end = block_start + blocksize;
2019 		if (block_end <= from || block_start >= to) {
2020 			if (PageUptodate(page)) {
2021 				if (!buffer_uptodate(bh))
2022 					set_buffer_uptodate(bh);
2023 			}
2024 			continue;
2025 		}
2026 		if (buffer_new(bh))
2027 			clear_buffer_new(bh);
2028 		if (!buffer_mapped(bh)) {
2029 			WARN_ON(bh->b_size != blocksize);
2030 			if (get_block) {
2031 				err = get_block(inode, block, bh, 1);
2032 				if (err)
2033 					break;
2034 			} else {
2035 				iomap_to_bh(inode, block, bh, iomap);
2036 			}
2037 
2038 			if (buffer_new(bh)) {
2039 				clean_bdev_bh_alias(bh);
2040 				if (PageUptodate(page)) {
2041 					clear_buffer_new(bh);
2042 					set_buffer_uptodate(bh);
2043 					mark_buffer_dirty(bh);
2044 					continue;
2045 				}
2046 				if (block_end > to || block_start < from)
2047 					zero_user_segments(page,
2048 						to, block_end,
2049 						block_start, from);
2050 				continue;
2051 			}
2052 		}
2053 		if (PageUptodate(page)) {
2054 			if (!buffer_uptodate(bh))
2055 				set_buffer_uptodate(bh);
2056 			continue;
2057 		}
2058 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2059 		    !buffer_unwritten(bh) &&
2060 		     (block_start < from || block_end > to)) {
2061 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2062 			*wait_bh++=bh;
2063 		}
2064 	}
2065 	/*
2066 	 * If we issued read requests - let them complete.
2067 	 */
2068 	while(wait_bh > wait) {
2069 		wait_on_buffer(*--wait_bh);
2070 		if (!buffer_uptodate(*wait_bh))
2071 			err = -EIO;
2072 	}
2073 	if (unlikely(err))
2074 		page_zero_new_buffers(page, from, to);
2075 	return err;
2076 }
2077 
2078 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2079 		get_block_t *get_block)
2080 {
2081 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2082 }
2083 EXPORT_SYMBOL(__block_write_begin);
2084 
2085 static int __block_commit_write(struct inode *inode, struct page *page,
2086 		unsigned from, unsigned to)
2087 {
2088 	unsigned block_start, block_end;
2089 	int partial = 0;
2090 	unsigned blocksize;
2091 	struct buffer_head *bh, *head;
2092 
2093 	bh = head = page_buffers(page);
2094 	blocksize = bh->b_size;
2095 
2096 	block_start = 0;
2097 	do {
2098 		block_end = block_start + blocksize;
2099 		if (block_end <= from || block_start >= to) {
2100 			if (!buffer_uptodate(bh))
2101 				partial = 1;
2102 		} else {
2103 			set_buffer_uptodate(bh);
2104 			mark_buffer_dirty(bh);
2105 		}
2106 		if (buffer_new(bh))
2107 			clear_buffer_new(bh);
2108 
2109 		block_start = block_end;
2110 		bh = bh->b_this_page;
2111 	} while (bh != head);
2112 
2113 	/*
2114 	 * If this is a partial write which happened to make all buffers
2115 	 * uptodate then we can optimize away a bogus readpage() for
2116 	 * the next read(). Here we 'discover' whether the page went
2117 	 * uptodate as a result of this (potentially partial) write.
2118 	 */
2119 	if (!partial)
2120 		SetPageUptodate(page);
2121 	return 0;
2122 }
2123 
2124 /*
2125  * block_write_begin takes care of the basic task of block allocation and
2126  * bringing partial write blocks uptodate first.
2127  *
2128  * The filesystem needs to handle block truncation upon failure.
2129  */
2130 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2131 		unsigned flags, struct page **pagep, get_block_t *get_block)
2132 {
2133 	pgoff_t index = pos >> PAGE_SHIFT;
2134 	struct page *page;
2135 	int status;
2136 
2137 	page = grab_cache_page_write_begin(mapping, index, flags);
2138 	if (!page)
2139 		return -ENOMEM;
2140 
2141 	status = __block_write_begin(page, pos, len, get_block);
2142 	if (unlikely(status)) {
2143 		unlock_page(page);
2144 		put_page(page);
2145 		page = NULL;
2146 	}
2147 
2148 	*pagep = page;
2149 	return status;
2150 }
2151 EXPORT_SYMBOL(block_write_begin);
2152 
2153 int block_write_end(struct file *file, struct address_space *mapping,
2154 			loff_t pos, unsigned len, unsigned copied,
2155 			struct page *page, void *fsdata)
2156 {
2157 	struct inode *inode = mapping->host;
2158 	unsigned start;
2159 
2160 	start = pos & (PAGE_SIZE - 1);
2161 
2162 	if (unlikely(copied < len)) {
2163 		/*
2164 		 * The buffers that were written will now be uptodate, so we
2165 		 * don't have to worry about a readpage reading them and
2166 		 * overwriting a partial write. However if we have encountered
2167 		 * a short write and only partially written into a buffer, it
2168 		 * will not be marked uptodate, so a readpage might come in and
2169 		 * destroy our partial write.
2170 		 *
2171 		 * Do the simplest thing, and just treat any short write to a
2172 		 * non uptodate page as a zero-length write, and force the
2173 		 * caller to redo the whole thing.
2174 		 */
2175 		if (!PageUptodate(page))
2176 			copied = 0;
2177 
2178 		page_zero_new_buffers(page, start+copied, start+len);
2179 	}
2180 	flush_dcache_page(page);
2181 
2182 	/* This could be a short (even 0-length) commit */
2183 	__block_commit_write(inode, page, start, start+copied);
2184 
2185 	return copied;
2186 }
2187 EXPORT_SYMBOL(block_write_end);
2188 
2189 int generic_write_end(struct file *file, struct address_space *mapping,
2190 			loff_t pos, unsigned len, unsigned copied,
2191 			struct page *page, void *fsdata)
2192 {
2193 	struct inode *inode = mapping->host;
2194 	loff_t old_size = inode->i_size;
2195 	bool i_size_changed = false;
2196 
2197 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2198 
2199 	/*
2200 	 * No need to use i_size_read() here, the i_size cannot change under us
2201 	 * because we hold i_rwsem.
2202 	 *
2203 	 * But it's important to update i_size while still holding page lock:
2204 	 * page writeout could otherwise come in and zero beyond i_size.
2205 	 */
2206 	if (pos + copied > inode->i_size) {
2207 		i_size_write(inode, pos + copied);
2208 		i_size_changed = true;
2209 	}
2210 
2211 	unlock_page(page);
2212 	put_page(page);
2213 
2214 	if (old_size < pos)
2215 		pagecache_isize_extended(inode, old_size, pos);
2216 	/*
2217 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2218 	 * makes the holding time of page lock longer. Second, it forces lock
2219 	 * ordering of page lock and transaction start for journaling
2220 	 * filesystems.
2221 	 */
2222 	if (i_size_changed)
2223 		mark_inode_dirty(inode);
2224 	return copied;
2225 }
2226 EXPORT_SYMBOL(generic_write_end);
2227 
2228 /*
2229  * block_is_partially_uptodate checks whether buffers within a page are
2230  * uptodate or not.
2231  *
2232  * Returns true if all buffers which correspond to a file portion
2233  * we want to read are uptodate.
2234  */
2235 int block_is_partially_uptodate(struct page *page, unsigned long from,
2236 					unsigned long count)
2237 {
2238 	unsigned block_start, block_end, blocksize;
2239 	unsigned to;
2240 	struct buffer_head *bh, *head;
2241 	int ret = 1;
2242 
2243 	if (!page_has_buffers(page))
2244 		return 0;
2245 
2246 	head = page_buffers(page);
2247 	blocksize = head->b_size;
2248 	to = min_t(unsigned, PAGE_SIZE - from, count);
2249 	to = from + to;
2250 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2251 		return 0;
2252 
2253 	bh = head;
2254 	block_start = 0;
2255 	do {
2256 		block_end = block_start + blocksize;
2257 		if (block_end > from && block_start < to) {
2258 			if (!buffer_uptodate(bh)) {
2259 				ret = 0;
2260 				break;
2261 			}
2262 			if (block_end >= to)
2263 				break;
2264 		}
2265 		block_start = block_end;
2266 		bh = bh->b_this_page;
2267 	} while (bh != head);
2268 
2269 	return ret;
2270 }
2271 EXPORT_SYMBOL(block_is_partially_uptodate);
2272 
2273 /*
2274  * Generic "read page" function for block devices that have the normal
2275  * get_block functionality. This is most of the block device filesystems.
2276  * Reads the page asynchronously --- the unlock_buffer() and
2277  * set/clear_buffer_uptodate() functions propagate buffer state into the
2278  * page struct once IO has completed.
2279  */
2280 int block_read_full_page(struct page *page, get_block_t *get_block)
2281 {
2282 	struct inode *inode = page->mapping->host;
2283 	sector_t iblock, lblock;
2284 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2285 	unsigned int blocksize, bbits;
2286 	int nr, i;
2287 	int fully_mapped = 1;
2288 
2289 	head = create_page_buffers(page, inode, 0);
2290 	blocksize = head->b_size;
2291 	bbits = block_size_bits(blocksize);
2292 
2293 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2294 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2295 	bh = head;
2296 	nr = 0;
2297 	i = 0;
2298 
2299 	do {
2300 		if (buffer_uptodate(bh))
2301 			continue;
2302 
2303 		if (!buffer_mapped(bh)) {
2304 			int err = 0;
2305 
2306 			fully_mapped = 0;
2307 			if (iblock < lblock) {
2308 				WARN_ON(bh->b_size != blocksize);
2309 				err = get_block(inode, iblock, bh, 0);
2310 				if (err)
2311 					SetPageError(page);
2312 			}
2313 			if (!buffer_mapped(bh)) {
2314 				zero_user(page, i * blocksize, blocksize);
2315 				if (!err)
2316 					set_buffer_uptodate(bh);
2317 				continue;
2318 			}
2319 			/*
2320 			 * get_block() might have updated the buffer
2321 			 * synchronously
2322 			 */
2323 			if (buffer_uptodate(bh))
2324 				continue;
2325 		}
2326 		arr[nr++] = bh;
2327 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2328 
2329 	if (fully_mapped)
2330 		SetPageMappedToDisk(page);
2331 
2332 	if (!nr) {
2333 		/*
2334 		 * All buffers are uptodate - we can set the page uptodate
2335 		 * as well. But not if get_block() returned an error.
2336 		 */
2337 		if (!PageError(page))
2338 			SetPageUptodate(page);
2339 		unlock_page(page);
2340 		return 0;
2341 	}
2342 
2343 	/* Stage two: lock the buffers */
2344 	for (i = 0; i < nr; i++) {
2345 		bh = arr[i];
2346 		lock_buffer(bh);
2347 		mark_buffer_async_read(bh);
2348 	}
2349 
2350 	/*
2351 	 * Stage 3: start the IO.  Check for uptodateness
2352 	 * inside the buffer lock in case another process reading
2353 	 * the underlying blockdev brought it uptodate (the sct fix).
2354 	 */
2355 	for (i = 0; i < nr; i++) {
2356 		bh = arr[i];
2357 		if (buffer_uptodate(bh))
2358 			end_buffer_async_read(bh, 1);
2359 		else
2360 			submit_bh(REQ_OP_READ, 0, bh);
2361 	}
2362 	return 0;
2363 }
2364 EXPORT_SYMBOL(block_read_full_page);
2365 
2366 /* utility function for filesystems that need to do work on expanding
2367  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2368  * deal with the hole.
2369  */
2370 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2371 {
2372 	struct address_space *mapping = inode->i_mapping;
2373 	struct page *page;
2374 	void *fsdata;
2375 	int err;
2376 
2377 	err = inode_newsize_ok(inode, size);
2378 	if (err)
2379 		goto out;
2380 
2381 	err = pagecache_write_begin(NULL, mapping, size, 0,
2382 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2383 	if (err)
2384 		goto out;
2385 
2386 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2387 	BUG_ON(err > 0);
2388 
2389 out:
2390 	return err;
2391 }
2392 EXPORT_SYMBOL(generic_cont_expand_simple);
2393 
2394 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2395 			    loff_t pos, loff_t *bytes)
2396 {
2397 	struct inode *inode = mapping->host;
2398 	unsigned int blocksize = i_blocksize(inode);
2399 	struct page *page;
2400 	void *fsdata;
2401 	pgoff_t index, curidx;
2402 	loff_t curpos;
2403 	unsigned zerofrom, offset, len;
2404 	int err = 0;
2405 
2406 	index = pos >> PAGE_SHIFT;
2407 	offset = pos & ~PAGE_MASK;
2408 
2409 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2410 		zerofrom = curpos & ~PAGE_MASK;
2411 		if (zerofrom & (blocksize-1)) {
2412 			*bytes |= (blocksize-1);
2413 			(*bytes)++;
2414 		}
2415 		len = PAGE_SIZE - zerofrom;
2416 
2417 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2418 					    &page, &fsdata);
2419 		if (err)
2420 			goto out;
2421 		zero_user(page, zerofrom, len);
2422 		err = pagecache_write_end(file, mapping, curpos, len, len,
2423 						page, fsdata);
2424 		if (err < 0)
2425 			goto out;
2426 		BUG_ON(err != len);
2427 		err = 0;
2428 
2429 		balance_dirty_pages_ratelimited(mapping);
2430 
2431 		if (fatal_signal_pending(current)) {
2432 			err = -EINTR;
2433 			goto out;
2434 		}
2435 	}
2436 
2437 	/* page covers the boundary, find the boundary offset */
2438 	if (index == curidx) {
2439 		zerofrom = curpos & ~PAGE_MASK;
2440 		/* if we will expand the thing last block will be filled */
2441 		if (offset <= zerofrom) {
2442 			goto out;
2443 		}
2444 		if (zerofrom & (blocksize-1)) {
2445 			*bytes |= (blocksize-1);
2446 			(*bytes)++;
2447 		}
2448 		len = offset - zerofrom;
2449 
2450 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2451 					    &page, &fsdata);
2452 		if (err)
2453 			goto out;
2454 		zero_user(page, zerofrom, len);
2455 		err = pagecache_write_end(file, mapping, curpos, len, len,
2456 						page, fsdata);
2457 		if (err < 0)
2458 			goto out;
2459 		BUG_ON(err != len);
2460 		err = 0;
2461 	}
2462 out:
2463 	return err;
2464 }
2465 
2466 /*
2467  * For moronic filesystems that do not allow holes in file.
2468  * We may have to extend the file.
2469  */
2470 int cont_write_begin(struct file *file, struct address_space *mapping,
2471 			loff_t pos, unsigned len, unsigned flags,
2472 			struct page **pagep, void **fsdata,
2473 			get_block_t *get_block, loff_t *bytes)
2474 {
2475 	struct inode *inode = mapping->host;
2476 	unsigned int blocksize = i_blocksize(inode);
2477 	unsigned int zerofrom;
2478 	int err;
2479 
2480 	err = cont_expand_zero(file, mapping, pos, bytes);
2481 	if (err)
2482 		return err;
2483 
2484 	zerofrom = *bytes & ~PAGE_MASK;
2485 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2486 		*bytes |= (blocksize-1);
2487 		(*bytes)++;
2488 	}
2489 
2490 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2491 }
2492 EXPORT_SYMBOL(cont_write_begin);
2493 
2494 int block_commit_write(struct page *page, unsigned from, unsigned to)
2495 {
2496 	struct inode *inode = page->mapping->host;
2497 	__block_commit_write(inode,page,from,to);
2498 	return 0;
2499 }
2500 EXPORT_SYMBOL(block_commit_write);
2501 
2502 /*
2503  * block_page_mkwrite() is not allowed to change the file size as it gets
2504  * called from a page fault handler when a page is first dirtied. Hence we must
2505  * be careful to check for EOF conditions here. We set the page up correctly
2506  * for a written page which means we get ENOSPC checking when writing into
2507  * holes and correct delalloc and unwritten extent mapping on filesystems that
2508  * support these features.
2509  *
2510  * We are not allowed to take the i_mutex here so we have to play games to
2511  * protect against truncate races as the page could now be beyond EOF.  Because
2512  * truncate writes the inode size before removing pages, once we have the
2513  * page lock we can determine safely if the page is beyond EOF. If it is not
2514  * beyond EOF, then the page is guaranteed safe against truncation until we
2515  * unlock the page.
2516  *
2517  * Direct callers of this function should protect against filesystem freezing
2518  * using sb_start_pagefault() - sb_end_pagefault() functions.
2519  */
2520 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2521 			 get_block_t get_block)
2522 {
2523 	struct page *page = vmf->page;
2524 	struct inode *inode = file_inode(vma->vm_file);
2525 	unsigned long end;
2526 	loff_t size;
2527 	int ret;
2528 
2529 	lock_page(page);
2530 	size = i_size_read(inode);
2531 	if ((page->mapping != inode->i_mapping) ||
2532 	    (page_offset(page) > size)) {
2533 		/* We overload EFAULT to mean page got truncated */
2534 		ret = -EFAULT;
2535 		goto out_unlock;
2536 	}
2537 
2538 	/* page is wholly or partially inside EOF */
2539 	if (((page->index + 1) << PAGE_SHIFT) > size)
2540 		end = size & ~PAGE_MASK;
2541 	else
2542 		end = PAGE_SIZE;
2543 
2544 	ret = __block_write_begin(page, 0, end, get_block);
2545 	if (!ret)
2546 		ret = block_commit_write(page, 0, end);
2547 
2548 	if (unlikely(ret < 0))
2549 		goto out_unlock;
2550 	set_page_dirty(page);
2551 	wait_for_stable_page(page);
2552 	return 0;
2553 out_unlock:
2554 	unlock_page(page);
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL(block_page_mkwrite);
2558 
2559 /*
2560  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2561  * immediately, while under the page lock.  So it needs a special end_io
2562  * handler which does not touch the bh after unlocking it.
2563  */
2564 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2565 {
2566 	__end_buffer_read_notouch(bh, uptodate);
2567 }
2568 
2569 /*
2570  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2571  * the page (converting it to circular linked list and taking care of page
2572  * dirty races).
2573  */
2574 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2575 {
2576 	struct buffer_head *bh;
2577 
2578 	BUG_ON(!PageLocked(page));
2579 
2580 	spin_lock(&page->mapping->private_lock);
2581 	bh = head;
2582 	do {
2583 		if (PageDirty(page))
2584 			set_buffer_dirty(bh);
2585 		if (!bh->b_this_page)
2586 			bh->b_this_page = head;
2587 		bh = bh->b_this_page;
2588 	} while (bh != head);
2589 	attach_page_private(page, head);
2590 	spin_unlock(&page->mapping->private_lock);
2591 }
2592 
2593 /*
2594  * On entry, the page is fully not uptodate.
2595  * On exit the page is fully uptodate in the areas outside (from,to)
2596  * The filesystem needs to handle block truncation upon failure.
2597  */
2598 int nobh_write_begin(struct address_space *mapping,
2599 			loff_t pos, unsigned len, unsigned flags,
2600 			struct page **pagep, void **fsdata,
2601 			get_block_t *get_block)
2602 {
2603 	struct inode *inode = mapping->host;
2604 	const unsigned blkbits = inode->i_blkbits;
2605 	const unsigned blocksize = 1 << blkbits;
2606 	struct buffer_head *head, *bh;
2607 	struct page *page;
2608 	pgoff_t index;
2609 	unsigned from, to;
2610 	unsigned block_in_page;
2611 	unsigned block_start, block_end;
2612 	sector_t block_in_file;
2613 	int nr_reads = 0;
2614 	int ret = 0;
2615 	int is_mapped_to_disk = 1;
2616 
2617 	index = pos >> PAGE_SHIFT;
2618 	from = pos & (PAGE_SIZE - 1);
2619 	to = from + len;
2620 
2621 	page = grab_cache_page_write_begin(mapping, index, flags);
2622 	if (!page)
2623 		return -ENOMEM;
2624 	*pagep = page;
2625 	*fsdata = NULL;
2626 
2627 	if (page_has_buffers(page)) {
2628 		ret = __block_write_begin(page, pos, len, get_block);
2629 		if (unlikely(ret))
2630 			goto out_release;
2631 		return ret;
2632 	}
2633 
2634 	if (PageMappedToDisk(page))
2635 		return 0;
2636 
2637 	/*
2638 	 * Allocate buffers so that we can keep track of state, and potentially
2639 	 * attach them to the page if an error occurs. In the common case of
2640 	 * no error, they will just be freed again without ever being attached
2641 	 * to the page (which is all OK, because we're under the page lock).
2642 	 *
2643 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2644 	 * than the circular one we're used to.
2645 	 */
2646 	head = alloc_page_buffers(page, blocksize, false);
2647 	if (!head) {
2648 		ret = -ENOMEM;
2649 		goto out_release;
2650 	}
2651 
2652 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2653 
2654 	/*
2655 	 * We loop across all blocks in the page, whether or not they are
2656 	 * part of the affected region.  This is so we can discover if the
2657 	 * page is fully mapped-to-disk.
2658 	 */
2659 	for (block_start = 0, block_in_page = 0, bh = head;
2660 		  block_start < PAGE_SIZE;
2661 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2662 		int create;
2663 
2664 		block_end = block_start + blocksize;
2665 		bh->b_state = 0;
2666 		create = 1;
2667 		if (block_start >= to)
2668 			create = 0;
2669 		ret = get_block(inode, block_in_file + block_in_page,
2670 					bh, create);
2671 		if (ret)
2672 			goto failed;
2673 		if (!buffer_mapped(bh))
2674 			is_mapped_to_disk = 0;
2675 		if (buffer_new(bh))
2676 			clean_bdev_bh_alias(bh);
2677 		if (PageUptodate(page)) {
2678 			set_buffer_uptodate(bh);
2679 			continue;
2680 		}
2681 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2682 			zero_user_segments(page, block_start, from,
2683 							to, block_end);
2684 			continue;
2685 		}
2686 		if (buffer_uptodate(bh))
2687 			continue;	/* reiserfs does this */
2688 		if (block_start < from || block_end > to) {
2689 			lock_buffer(bh);
2690 			bh->b_end_io = end_buffer_read_nobh;
2691 			submit_bh(REQ_OP_READ, 0, bh);
2692 			nr_reads++;
2693 		}
2694 	}
2695 
2696 	if (nr_reads) {
2697 		/*
2698 		 * The page is locked, so these buffers are protected from
2699 		 * any VM or truncate activity.  Hence we don't need to care
2700 		 * for the buffer_head refcounts.
2701 		 */
2702 		for (bh = head; bh; bh = bh->b_this_page) {
2703 			wait_on_buffer(bh);
2704 			if (!buffer_uptodate(bh))
2705 				ret = -EIO;
2706 		}
2707 		if (ret)
2708 			goto failed;
2709 	}
2710 
2711 	if (is_mapped_to_disk)
2712 		SetPageMappedToDisk(page);
2713 
2714 	*fsdata = head; /* to be released by nobh_write_end */
2715 
2716 	return 0;
2717 
2718 failed:
2719 	BUG_ON(!ret);
2720 	/*
2721 	 * Error recovery is a bit difficult. We need to zero out blocks that
2722 	 * were newly allocated, and dirty them to ensure they get written out.
2723 	 * Buffers need to be attached to the page at this point, otherwise
2724 	 * the handling of potential IO errors during writeout would be hard
2725 	 * (could try doing synchronous writeout, but what if that fails too?)
2726 	 */
2727 	attach_nobh_buffers(page, head);
2728 	page_zero_new_buffers(page, from, to);
2729 
2730 out_release:
2731 	unlock_page(page);
2732 	put_page(page);
2733 	*pagep = NULL;
2734 
2735 	return ret;
2736 }
2737 EXPORT_SYMBOL(nobh_write_begin);
2738 
2739 int nobh_write_end(struct file *file, struct address_space *mapping,
2740 			loff_t pos, unsigned len, unsigned copied,
2741 			struct page *page, void *fsdata)
2742 {
2743 	struct inode *inode = page->mapping->host;
2744 	struct buffer_head *head = fsdata;
2745 	struct buffer_head *bh;
2746 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2747 
2748 	if (unlikely(copied < len) && head)
2749 		attach_nobh_buffers(page, head);
2750 	if (page_has_buffers(page))
2751 		return generic_write_end(file, mapping, pos, len,
2752 					copied, page, fsdata);
2753 
2754 	SetPageUptodate(page);
2755 	set_page_dirty(page);
2756 	if (pos+copied > inode->i_size) {
2757 		i_size_write(inode, pos+copied);
2758 		mark_inode_dirty(inode);
2759 	}
2760 
2761 	unlock_page(page);
2762 	put_page(page);
2763 
2764 	while (head) {
2765 		bh = head;
2766 		head = head->b_this_page;
2767 		free_buffer_head(bh);
2768 	}
2769 
2770 	return copied;
2771 }
2772 EXPORT_SYMBOL(nobh_write_end);
2773 
2774 /*
2775  * nobh_writepage() - based on block_full_write_page() except
2776  * that it tries to operate without attaching bufferheads to
2777  * the page.
2778  */
2779 int nobh_writepage(struct page *page, get_block_t *get_block,
2780 			struct writeback_control *wbc)
2781 {
2782 	struct inode * const inode = page->mapping->host;
2783 	loff_t i_size = i_size_read(inode);
2784 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2785 	unsigned offset;
2786 	int ret;
2787 
2788 	/* Is the page fully inside i_size? */
2789 	if (page->index < end_index)
2790 		goto out;
2791 
2792 	/* Is the page fully outside i_size? (truncate in progress) */
2793 	offset = i_size & (PAGE_SIZE-1);
2794 	if (page->index >= end_index+1 || !offset) {
2795 		unlock_page(page);
2796 		return 0; /* don't care */
2797 	}
2798 
2799 	/*
2800 	 * The page straddles i_size.  It must be zeroed out on each and every
2801 	 * writepage invocation because it may be mmapped.  "A file is mapped
2802 	 * in multiples of the page size.  For a file that is not a multiple of
2803 	 * the  page size, the remaining memory is zeroed when mapped, and
2804 	 * writes to that region are not written out to the file."
2805 	 */
2806 	zero_user_segment(page, offset, PAGE_SIZE);
2807 out:
2808 	ret = mpage_writepage(page, get_block, wbc);
2809 	if (ret == -EAGAIN)
2810 		ret = __block_write_full_page(inode, page, get_block, wbc,
2811 					      end_buffer_async_write);
2812 	return ret;
2813 }
2814 EXPORT_SYMBOL(nobh_writepage);
2815 
2816 int nobh_truncate_page(struct address_space *mapping,
2817 			loff_t from, get_block_t *get_block)
2818 {
2819 	pgoff_t index = from >> PAGE_SHIFT;
2820 	unsigned offset = from & (PAGE_SIZE-1);
2821 	unsigned blocksize;
2822 	sector_t iblock;
2823 	unsigned length, pos;
2824 	struct inode *inode = mapping->host;
2825 	struct page *page;
2826 	struct buffer_head map_bh;
2827 	int err;
2828 
2829 	blocksize = i_blocksize(inode);
2830 	length = offset & (blocksize - 1);
2831 
2832 	/* Block boundary? Nothing to do */
2833 	if (!length)
2834 		return 0;
2835 
2836 	length = blocksize - length;
2837 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2838 
2839 	page = grab_cache_page(mapping, index);
2840 	err = -ENOMEM;
2841 	if (!page)
2842 		goto out;
2843 
2844 	if (page_has_buffers(page)) {
2845 has_buffers:
2846 		unlock_page(page);
2847 		put_page(page);
2848 		return block_truncate_page(mapping, from, get_block);
2849 	}
2850 
2851 	/* Find the buffer that contains "offset" */
2852 	pos = blocksize;
2853 	while (offset >= pos) {
2854 		iblock++;
2855 		pos += blocksize;
2856 	}
2857 
2858 	map_bh.b_size = blocksize;
2859 	map_bh.b_state = 0;
2860 	err = get_block(inode, iblock, &map_bh, 0);
2861 	if (err)
2862 		goto unlock;
2863 	/* unmapped? It's a hole - nothing to do */
2864 	if (!buffer_mapped(&map_bh))
2865 		goto unlock;
2866 
2867 	/* Ok, it's mapped. Make sure it's up-to-date */
2868 	if (!PageUptodate(page)) {
2869 		err = mapping->a_ops->readpage(NULL, page);
2870 		if (err) {
2871 			put_page(page);
2872 			goto out;
2873 		}
2874 		lock_page(page);
2875 		if (!PageUptodate(page)) {
2876 			err = -EIO;
2877 			goto unlock;
2878 		}
2879 		if (page_has_buffers(page))
2880 			goto has_buffers;
2881 	}
2882 	zero_user(page, offset, length);
2883 	set_page_dirty(page);
2884 	err = 0;
2885 
2886 unlock:
2887 	unlock_page(page);
2888 	put_page(page);
2889 out:
2890 	return err;
2891 }
2892 EXPORT_SYMBOL(nobh_truncate_page);
2893 
2894 int block_truncate_page(struct address_space *mapping,
2895 			loff_t from, get_block_t *get_block)
2896 {
2897 	pgoff_t index = from >> PAGE_SHIFT;
2898 	unsigned offset = from & (PAGE_SIZE-1);
2899 	unsigned blocksize;
2900 	sector_t iblock;
2901 	unsigned length, pos;
2902 	struct inode *inode = mapping->host;
2903 	struct page *page;
2904 	struct buffer_head *bh;
2905 	int err;
2906 
2907 	blocksize = i_blocksize(inode);
2908 	length = offset & (blocksize - 1);
2909 
2910 	/* Block boundary? Nothing to do */
2911 	if (!length)
2912 		return 0;
2913 
2914 	length = blocksize - length;
2915 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2916 
2917 	page = grab_cache_page(mapping, index);
2918 	err = -ENOMEM;
2919 	if (!page)
2920 		goto out;
2921 
2922 	if (!page_has_buffers(page))
2923 		create_empty_buffers(page, blocksize, 0);
2924 
2925 	/* Find the buffer that contains "offset" */
2926 	bh = page_buffers(page);
2927 	pos = blocksize;
2928 	while (offset >= pos) {
2929 		bh = bh->b_this_page;
2930 		iblock++;
2931 		pos += blocksize;
2932 	}
2933 
2934 	err = 0;
2935 	if (!buffer_mapped(bh)) {
2936 		WARN_ON(bh->b_size != blocksize);
2937 		err = get_block(inode, iblock, bh, 0);
2938 		if (err)
2939 			goto unlock;
2940 		/* unmapped? It's a hole - nothing to do */
2941 		if (!buffer_mapped(bh))
2942 			goto unlock;
2943 	}
2944 
2945 	/* Ok, it's mapped. Make sure it's up-to-date */
2946 	if (PageUptodate(page))
2947 		set_buffer_uptodate(bh);
2948 
2949 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2950 		err = -EIO;
2951 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2952 		wait_on_buffer(bh);
2953 		/* Uhhuh. Read error. Complain and punt. */
2954 		if (!buffer_uptodate(bh))
2955 			goto unlock;
2956 	}
2957 
2958 	zero_user(page, offset, length);
2959 	mark_buffer_dirty(bh);
2960 	err = 0;
2961 
2962 unlock:
2963 	unlock_page(page);
2964 	put_page(page);
2965 out:
2966 	return err;
2967 }
2968 EXPORT_SYMBOL(block_truncate_page);
2969 
2970 /*
2971  * The generic ->writepage function for buffer-backed address_spaces
2972  */
2973 int block_write_full_page(struct page *page, get_block_t *get_block,
2974 			struct writeback_control *wbc)
2975 {
2976 	struct inode * const inode = page->mapping->host;
2977 	loff_t i_size = i_size_read(inode);
2978 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2979 	unsigned offset;
2980 
2981 	/* Is the page fully inside i_size? */
2982 	if (page->index < end_index)
2983 		return __block_write_full_page(inode, page, get_block, wbc,
2984 					       end_buffer_async_write);
2985 
2986 	/* Is the page fully outside i_size? (truncate in progress) */
2987 	offset = i_size & (PAGE_SIZE-1);
2988 	if (page->index >= end_index+1 || !offset) {
2989 		unlock_page(page);
2990 		return 0; /* don't care */
2991 	}
2992 
2993 	/*
2994 	 * The page straddles i_size.  It must be zeroed out on each and every
2995 	 * writepage invocation because it may be mmapped.  "A file is mapped
2996 	 * in multiples of the page size.  For a file that is not a multiple of
2997 	 * the  page size, the remaining memory is zeroed when mapped, and
2998 	 * writes to that region are not written out to the file."
2999 	 */
3000 	zero_user_segment(page, offset, PAGE_SIZE);
3001 	return __block_write_full_page(inode, page, get_block, wbc,
3002 							end_buffer_async_write);
3003 }
3004 EXPORT_SYMBOL(block_write_full_page);
3005 
3006 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3007 			    get_block_t *get_block)
3008 {
3009 	struct inode *inode = mapping->host;
3010 	struct buffer_head tmp = {
3011 		.b_size = i_blocksize(inode),
3012 	};
3013 
3014 	get_block(inode, block, &tmp, 0);
3015 	return tmp.b_blocknr;
3016 }
3017 EXPORT_SYMBOL(generic_block_bmap);
3018 
3019 static void end_bio_bh_io_sync(struct bio *bio)
3020 {
3021 	struct buffer_head *bh = bio->bi_private;
3022 
3023 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3024 		set_bit(BH_Quiet, &bh->b_state);
3025 
3026 	bh->b_end_io(bh, !bio->bi_status);
3027 	bio_put(bio);
3028 }
3029 
3030 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3031 			 enum rw_hint write_hint, struct writeback_control *wbc)
3032 {
3033 	struct bio *bio;
3034 
3035 	BUG_ON(!buffer_locked(bh));
3036 	BUG_ON(!buffer_mapped(bh));
3037 	BUG_ON(!bh->b_end_io);
3038 	BUG_ON(buffer_delay(bh));
3039 	BUG_ON(buffer_unwritten(bh));
3040 
3041 	/*
3042 	 * Only clear out a write error when rewriting
3043 	 */
3044 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3045 		clear_buffer_write_io_error(bh);
3046 
3047 	bio = bio_alloc(GFP_NOIO, 1);
3048 
3049 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3050 
3051 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3052 	bio_set_dev(bio, bh->b_bdev);
3053 	bio->bi_write_hint = write_hint;
3054 
3055 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3056 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3057 
3058 	bio->bi_end_io = end_bio_bh_io_sync;
3059 	bio->bi_private = bh;
3060 
3061 	if (buffer_meta(bh))
3062 		op_flags |= REQ_META;
3063 	if (buffer_prio(bh))
3064 		op_flags |= REQ_PRIO;
3065 	bio_set_op_attrs(bio, op, op_flags);
3066 
3067 	/* Take care of bh's that straddle the end of the device */
3068 	guard_bio_eod(bio);
3069 
3070 	if (wbc) {
3071 		wbc_init_bio(wbc, bio);
3072 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3073 	}
3074 
3075 	submit_bio(bio);
3076 	return 0;
3077 }
3078 
3079 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3080 {
3081 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3082 }
3083 EXPORT_SYMBOL(submit_bh);
3084 
3085 /**
3086  * ll_rw_block: low-level access to block devices (DEPRECATED)
3087  * @op: whether to %READ or %WRITE
3088  * @op_flags: req_flag_bits
3089  * @nr: number of &struct buffer_heads in the array
3090  * @bhs: array of pointers to &struct buffer_head
3091  *
3092  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3093  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3094  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3095  * %REQ_RAHEAD.
3096  *
3097  * This function drops any buffer that it cannot get a lock on (with the
3098  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3099  * request, and any buffer that appears to be up-to-date when doing read
3100  * request.  Further it marks as clean buffers that are processed for
3101  * writing (the buffer cache won't assume that they are actually clean
3102  * until the buffer gets unlocked).
3103  *
3104  * ll_rw_block sets b_end_io to simple completion handler that marks
3105  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3106  * any waiters.
3107  *
3108  * All of the buffers must be for the same device, and must also be a
3109  * multiple of the current approved size for the device.
3110  */
3111 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3112 {
3113 	int i;
3114 
3115 	for (i = 0; i < nr; i++) {
3116 		struct buffer_head *bh = bhs[i];
3117 
3118 		if (!trylock_buffer(bh))
3119 			continue;
3120 		if (op == WRITE) {
3121 			if (test_clear_buffer_dirty(bh)) {
3122 				bh->b_end_io = end_buffer_write_sync;
3123 				get_bh(bh);
3124 				submit_bh(op, op_flags, bh);
3125 				continue;
3126 			}
3127 		} else {
3128 			if (!buffer_uptodate(bh)) {
3129 				bh->b_end_io = end_buffer_read_sync;
3130 				get_bh(bh);
3131 				submit_bh(op, op_flags, bh);
3132 				continue;
3133 			}
3134 		}
3135 		unlock_buffer(bh);
3136 	}
3137 }
3138 EXPORT_SYMBOL(ll_rw_block);
3139 
3140 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3141 {
3142 	lock_buffer(bh);
3143 	if (!test_clear_buffer_dirty(bh)) {
3144 		unlock_buffer(bh);
3145 		return;
3146 	}
3147 	bh->b_end_io = end_buffer_write_sync;
3148 	get_bh(bh);
3149 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3150 }
3151 EXPORT_SYMBOL(write_dirty_buffer);
3152 
3153 /*
3154  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3155  * and then start new I/O and then wait upon it.  The caller must have a ref on
3156  * the buffer_head.
3157  */
3158 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3159 {
3160 	int ret = 0;
3161 
3162 	WARN_ON(atomic_read(&bh->b_count) < 1);
3163 	lock_buffer(bh);
3164 	if (test_clear_buffer_dirty(bh)) {
3165 		/*
3166 		 * The bh should be mapped, but it might not be if the
3167 		 * device was hot-removed. Not much we can do but fail the I/O.
3168 		 */
3169 		if (!buffer_mapped(bh)) {
3170 			unlock_buffer(bh);
3171 			return -EIO;
3172 		}
3173 
3174 		get_bh(bh);
3175 		bh->b_end_io = end_buffer_write_sync;
3176 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3177 		wait_on_buffer(bh);
3178 		if (!ret && !buffer_uptodate(bh))
3179 			ret = -EIO;
3180 	} else {
3181 		unlock_buffer(bh);
3182 	}
3183 	return ret;
3184 }
3185 EXPORT_SYMBOL(__sync_dirty_buffer);
3186 
3187 int sync_dirty_buffer(struct buffer_head *bh)
3188 {
3189 	return __sync_dirty_buffer(bh, REQ_SYNC);
3190 }
3191 EXPORT_SYMBOL(sync_dirty_buffer);
3192 
3193 /*
3194  * try_to_free_buffers() checks if all the buffers on this particular page
3195  * are unused, and releases them if so.
3196  *
3197  * Exclusion against try_to_free_buffers may be obtained by either
3198  * locking the page or by holding its mapping's private_lock.
3199  *
3200  * If the page is dirty but all the buffers are clean then we need to
3201  * be sure to mark the page clean as well.  This is because the page
3202  * may be against a block device, and a later reattachment of buffers
3203  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3204  * filesystem data on the same device.
3205  *
3206  * The same applies to regular filesystem pages: if all the buffers are
3207  * clean then we set the page clean and proceed.  To do that, we require
3208  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3209  * private_lock.
3210  *
3211  * try_to_free_buffers() is non-blocking.
3212  */
3213 static inline int buffer_busy(struct buffer_head *bh)
3214 {
3215 	return atomic_read(&bh->b_count) |
3216 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3217 }
3218 
3219 static int
3220 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3221 {
3222 	struct buffer_head *head = page_buffers(page);
3223 	struct buffer_head *bh;
3224 
3225 	bh = head;
3226 	do {
3227 		if (buffer_busy(bh))
3228 			goto failed;
3229 		bh = bh->b_this_page;
3230 	} while (bh != head);
3231 
3232 	do {
3233 		struct buffer_head *next = bh->b_this_page;
3234 
3235 		if (bh->b_assoc_map)
3236 			__remove_assoc_queue(bh);
3237 		bh = next;
3238 	} while (bh != head);
3239 	*buffers_to_free = head;
3240 	detach_page_private(page);
3241 	return 1;
3242 failed:
3243 	return 0;
3244 }
3245 
3246 int try_to_free_buffers(struct page *page)
3247 {
3248 	struct address_space * const mapping = page->mapping;
3249 	struct buffer_head *buffers_to_free = NULL;
3250 	int ret = 0;
3251 
3252 	BUG_ON(!PageLocked(page));
3253 	if (PageWriteback(page))
3254 		return 0;
3255 
3256 	if (mapping == NULL) {		/* can this still happen? */
3257 		ret = drop_buffers(page, &buffers_to_free);
3258 		goto out;
3259 	}
3260 
3261 	spin_lock(&mapping->private_lock);
3262 	ret = drop_buffers(page, &buffers_to_free);
3263 
3264 	/*
3265 	 * If the filesystem writes its buffers by hand (eg ext3)
3266 	 * then we can have clean buffers against a dirty page.  We
3267 	 * clean the page here; otherwise the VM will never notice
3268 	 * that the filesystem did any IO at all.
3269 	 *
3270 	 * Also, during truncate, discard_buffer will have marked all
3271 	 * the page's buffers clean.  We discover that here and clean
3272 	 * the page also.
3273 	 *
3274 	 * private_lock must be held over this entire operation in order
3275 	 * to synchronise against __set_page_dirty_buffers and prevent the
3276 	 * dirty bit from being lost.
3277 	 */
3278 	if (ret)
3279 		cancel_dirty_page(page);
3280 	spin_unlock(&mapping->private_lock);
3281 out:
3282 	if (buffers_to_free) {
3283 		struct buffer_head *bh = buffers_to_free;
3284 
3285 		do {
3286 			struct buffer_head *next = bh->b_this_page;
3287 			free_buffer_head(bh);
3288 			bh = next;
3289 		} while (bh != buffers_to_free);
3290 	}
3291 	return ret;
3292 }
3293 EXPORT_SYMBOL(try_to_free_buffers);
3294 
3295 /*
3296  * There are no bdflush tunables left.  But distributions are
3297  * still running obsolete flush daemons, so we terminate them here.
3298  *
3299  * Use of bdflush() is deprecated and will be removed in a future kernel.
3300  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3301  */
3302 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3303 {
3304 	static int msg_count;
3305 
3306 	if (!capable(CAP_SYS_ADMIN))
3307 		return -EPERM;
3308 
3309 	if (msg_count < 5) {
3310 		msg_count++;
3311 		printk(KERN_INFO
3312 			"warning: process `%s' used the obsolete bdflush"
3313 			" system call\n", current->comm);
3314 		printk(KERN_INFO "Fix your initscripts?\n");
3315 	}
3316 
3317 	if (func == 1)
3318 		do_exit(0);
3319 	return 0;
3320 }
3321 
3322 /*
3323  * Buffer-head allocation
3324  */
3325 static struct kmem_cache *bh_cachep __read_mostly;
3326 
3327 /*
3328  * Once the number of bh's in the machine exceeds this level, we start
3329  * stripping them in writeback.
3330  */
3331 static unsigned long max_buffer_heads;
3332 
3333 int buffer_heads_over_limit;
3334 
3335 struct bh_accounting {
3336 	int nr;			/* Number of live bh's */
3337 	int ratelimit;		/* Limit cacheline bouncing */
3338 };
3339 
3340 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3341 
3342 static void recalc_bh_state(void)
3343 {
3344 	int i;
3345 	int tot = 0;
3346 
3347 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3348 		return;
3349 	__this_cpu_write(bh_accounting.ratelimit, 0);
3350 	for_each_online_cpu(i)
3351 		tot += per_cpu(bh_accounting, i).nr;
3352 	buffer_heads_over_limit = (tot > max_buffer_heads);
3353 }
3354 
3355 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3356 {
3357 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3358 	if (ret) {
3359 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3360 		spin_lock_init(&ret->b_uptodate_lock);
3361 		preempt_disable();
3362 		__this_cpu_inc(bh_accounting.nr);
3363 		recalc_bh_state();
3364 		preempt_enable();
3365 	}
3366 	return ret;
3367 }
3368 EXPORT_SYMBOL(alloc_buffer_head);
3369 
3370 void free_buffer_head(struct buffer_head *bh)
3371 {
3372 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3373 	kmem_cache_free(bh_cachep, bh);
3374 	preempt_disable();
3375 	__this_cpu_dec(bh_accounting.nr);
3376 	recalc_bh_state();
3377 	preempt_enable();
3378 }
3379 EXPORT_SYMBOL(free_buffer_head);
3380 
3381 static int buffer_exit_cpu_dead(unsigned int cpu)
3382 {
3383 	int i;
3384 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3385 
3386 	for (i = 0; i < BH_LRU_SIZE; i++) {
3387 		brelse(b->bhs[i]);
3388 		b->bhs[i] = NULL;
3389 	}
3390 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3391 	per_cpu(bh_accounting, cpu).nr = 0;
3392 	return 0;
3393 }
3394 
3395 /**
3396  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3397  * @bh: struct buffer_head
3398  *
3399  * Return true if the buffer is up-to-date and false,
3400  * with the buffer locked, if not.
3401  */
3402 int bh_uptodate_or_lock(struct buffer_head *bh)
3403 {
3404 	if (!buffer_uptodate(bh)) {
3405 		lock_buffer(bh);
3406 		if (!buffer_uptodate(bh))
3407 			return 0;
3408 		unlock_buffer(bh);
3409 	}
3410 	return 1;
3411 }
3412 EXPORT_SYMBOL(bh_uptodate_or_lock);
3413 
3414 /**
3415  * bh_submit_read - Submit a locked buffer for reading
3416  * @bh: struct buffer_head
3417  *
3418  * Returns zero on success and -EIO on error.
3419  */
3420 int bh_submit_read(struct buffer_head *bh)
3421 {
3422 	BUG_ON(!buffer_locked(bh));
3423 
3424 	if (buffer_uptodate(bh)) {
3425 		unlock_buffer(bh);
3426 		return 0;
3427 	}
3428 
3429 	get_bh(bh);
3430 	bh->b_end_io = end_buffer_read_sync;
3431 	submit_bh(REQ_OP_READ, 0, bh);
3432 	wait_on_buffer(bh);
3433 	if (buffer_uptodate(bh))
3434 		return 0;
3435 	return -EIO;
3436 }
3437 EXPORT_SYMBOL(bh_submit_read);
3438 
3439 void __init buffer_init(void)
3440 {
3441 	unsigned long nrpages;
3442 	int ret;
3443 
3444 	bh_cachep = kmem_cache_create("buffer_head",
3445 			sizeof(struct buffer_head), 0,
3446 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3447 				SLAB_MEM_SPREAD),
3448 				NULL);
3449 
3450 	/*
3451 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3452 	 */
3453 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3454 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3455 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3456 					NULL, buffer_exit_cpu_dead);
3457 	WARN_ON(ret < 0);
3458 }
3459