1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 53 #include "internal.h" 54 55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 57 struct writeback_control *wbc); 58 59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 60 61 inline void touch_buffer(struct buffer_head *bh) 62 { 63 trace_block_touch_buffer(bh); 64 folio_mark_accessed(bh->b_folio); 65 } 66 EXPORT_SYMBOL(touch_buffer); 67 68 void __lock_buffer(struct buffer_head *bh) 69 { 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 71 } 72 EXPORT_SYMBOL(__lock_buffer); 73 74 void unlock_buffer(struct buffer_head *bh) 75 { 76 clear_bit_unlock(BH_Lock, &bh->b_state); 77 smp_mb__after_atomic(); 78 wake_up_bit(&bh->b_state, BH_Lock); 79 } 80 EXPORT_SYMBOL(unlock_buffer); 81 82 /* 83 * Returns if the folio has dirty or writeback buffers. If all the buffers 84 * are unlocked and clean then the folio_test_dirty information is stale. If 85 * any of the buffers are locked, it is assumed they are locked for IO. 86 */ 87 void buffer_check_dirty_writeback(struct folio *folio, 88 bool *dirty, bool *writeback) 89 { 90 struct buffer_head *head, *bh; 91 *dirty = false; 92 *writeback = false; 93 94 BUG_ON(!folio_test_locked(folio)); 95 96 head = folio_buffers(folio); 97 if (!head) 98 return; 99 100 if (folio_test_writeback(folio)) 101 *writeback = true; 102 103 bh = head; 104 do { 105 if (buffer_locked(bh)) 106 *writeback = true; 107 108 if (buffer_dirty(bh)) 109 *dirty = true; 110 111 bh = bh->b_this_page; 112 } while (bh != head); 113 } 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct folio *folio; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 203 if (IS_ERR(folio)) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 head = folio_buffers(folio); 208 if (!head) 209 goto out_unlock; 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 folio_put(folio); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct folio *folio; 250 int folio_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 folio = bh->b_folio; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 folio_set_error(folio); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = folio_buffers(folio); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 folio_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If all of the buffers are uptodate then we can set the page 286 * uptodate. 287 */ 288 if (folio_uptodate) 289 folio_mark_uptodate(folio); 290 folio_unlock(folio); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct postprocess_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void verify_bh(struct work_struct *work) 304 { 305 struct postprocess_bh_ctx *ctx = 306 container_of(work, struct postprocess_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 bool valid; 309 310 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 311 end_buffer_async_read(bh, valid); 312 kfree(ctx); 313 } 314 315 static bool need_fsverity(struct buffer_head *bh) 316 { 317 struct folio *folio = bh->b_folio; 318 struct inode *inode = folio->mapping->host; 319 320 return fsverity_active(inode) && 321 /* needed by ext4 */ 322 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 323 } 324 325 static void decrypt_bh(struct work_struct *work) 326 { 327 struct postprocess_bh_ctx *ctx = 328 container_of(work, struct postprocess_bh_ctx, work); 329 struct buffer_head *bh = ctx->bh; 330 int err; 331 332 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 333 bh_offset(bh)); 334 if (err == 0 && need_fsverity(bh)) { 335 /* 336 * We use different work queues for decryption and for verity 337 * because verity may require reading metadata pages that need 338 * decryption, and we shouldn't recurse to the same workqueue. 339 */ 340 INIT_WORK(&ctx->work, verify_bh); 341 fsverity_enqueue_verify_work(&ctx->work); 342 return; 343 } 344 end_buffer_async_read(bh, err == 0); 345 kfree(ctx); 346 } 347 348 /* 349 * I/O completion handler for block_read_full_folio() - pages 350 * which come unlocked at the end of I/O. 351 */ 352 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 353 { 354 struct inode *inode = bh->b_folio->mapping->host; 355 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 356 bool verify = need_fsverity(bh); 357 358 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 359 if (uptodate && (decrypt || verify)) { 360 struct postprocess_bh_ctx *ctx = 361 kmalloc(sizeof(*ctx), GFP_ATOMIC); 362 363 if (ctx) { 364 ctx->bh = bh; 365 if (decrypt) { 366 INIT_WORK(&ctx->work, decrypt_bh); 367 fscrypt_enqueue_decrypt_work(&ctx->work); 368 } else { 369 INIT_WORK(&ctx->work, verify_bh); 370 fsverity_enqueue_verify_work(&ctx->work); 371 } 372 return; 373 } 374 uptodate = 0; 375 } 376 end_buffer_async_read(bh, uptodate); 377 } 378 379 /* 380 * Completion handler for block_write_full_page() - pages which are unlocked 381 * during I/O, and which have PageWriteback cleared upon I/O completion. 382 */ 383 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 384 { 385 unsigned long flags; 386 struct buffer_head *first; 387 struct buffer_head *tmp; 388 struct folio *folio; 389 390 BUG_ON(!buffer_async_write(bh)); 391 392 folio = bh->b_folio; 393 if (uptodate) { 394 set_buffer_uptodate(bh); 395 } else { 396 buffer_io_error(bh, ", lost async page write"); 397 mark_buffer_write_io_error(bh); 398 clear_buffer_uptodate(bh); 399 folio_set_error(folio); 400 } 401 402 first = folio_buffers(folio); 403 spin_lock_irqsave(&first->b_uptodate_lock, flags); 404 405 clear_buffer_async_write(bh); 406 unlock_buffer(bh); 407 tmp = bh->b_this_page; 408 while (tmp != bh) { 409 if (buffer_async_write(tmp)) { 410 BUG_ON(!buffer_locked(tmp)); 411 goto still_busy; 412 } 413 tmp = tmp->b_this_page; 414 } 415 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 416 folio_end_writeback(folio); 417 return; 418 419 still_busy: 420 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 421 return; 422 } 423 EXPORT_SYMBOL(end_buffer_async_write); 424 425 /* 426 * If a page's buffers are under async readin (end_buffer_async_read 427 * completion) then there is a possibility that another thread of 428 * control could lock one of the buffers after it has completed 429 * but while some of the other buffers have not completed. This 430 * locked buffer would confuse end_buffer_async_read() into not unlocking 431 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 432 * that this buffer is not under async I/O. 433 * 434 * The page comes unlocked when it has no locked buffer_async buffers 435 * left. 436 * 437 * PageLocked prevents anyone starting new async I/O reads any of 438 * the buffers. 439 * 440 * PageWriteback is used to prevent simultaneous writeout of the same 441 * page. 442 * 443 * PageLocked prevents anyone from starting writeback of a page which is 444 * under read I/O (PageWriteback is only ever set against a locked page). 445 */ 446 static void mark_buffer_async_read(struct buffer_head *bh) 447 { 448 bh->b_end_io = end_buffer_async_read_io; 449 set_buffer_async_read(bh); 450 } 451 452 static void mark_buffer_async_write_endio(struct buffer_head *bh, 453 bh_end_io_t *handler) 454 { 455 bh->b_end_io = handler; 456 set_buffer_async_write(bh); 457 } 458 459 void mark_buffer_async_write(struct buffer_head *bh) 460 { 461 mark_buffer_async_write_endio(bh, end_buffer_async_write); 462 } 463 EXPORT_SYMBOL(mark_buffer_async_write); 464 465 466 /* 467 * fs/buffer.c contains helper functions for buffer-backed address space's 468 * fsync functions. A common requirement for buffer-based filesystems is 469 * that certain data from the backing blockdev needs to be written out for 470 * a successful fsync(). For example, ext2 indirect blocks need to be 471 * written back and waited upon before fsync() returns. 472 * 473 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 474 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 475 * management of a list of dependent buffers at ->i_mapping->private_list. 476 * 477 * Locking is a little subtle: try_to_free_buffers() will remove buffers 478 * from their controlling inode's queue when they are being freed. But 479 * try_to_free_buffers() will be operating against the *blockdev* mapping 480 * at the time, not against the S_ISREG file which depends on those buffers. 481 * So the locking for private_list is via the private_lock in the address_space 482 * which backs the buffers. Which is different from the address_space 483 * against which the buffers are listed. So for a particular address_space, 484 * mapping->private_lock does *not* protect mapping->private_list! In fact, 485 * mapping->private_list will always be protected by the backing blockdev's 486 * ->private_lock. 487 * 488 * Which introduces a requirement: all buffers on an address_space's 489 * ->private_list must be from the same address_space: the blockdev's. 490 * 491 * address_spaces which do not place buffers at ->private_list via these 492 * utility functions are free to use private_lock and private_list for 493 * whatever they want. The only requirement is that list_empty(private_list) 494 * be true at clear_inode() time. 495 * 496 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 497 * filesystems should do that. invalidate_inode_buffers() should just go 498 * BUG_ON(!list_empty). 499 * 500 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 501 * take an address_space, not an inode. And it should be called 502 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 503 * queued up. 504 * 505 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 506 * list if it is already on a list. Because if the buffer is on a list, 507 * it *must* already be on the right one. If not, the filesystem is being 508 * silly. This will save a ton of locking. But first we have to ensure 509 * that buffers are taken *off* the old inode's list when they are freed 510 * (presumably in truncate). That requires careful auditing of all 511 * filesystems (do it inside bforget()). It could also be done by bringing 512 * b_inode back. 513 */ 514 515 /* 516 * The buffer's backing address_space's private_lock must be held 517 */ 518 static void __remove_assoc_queue(struct buffer_head *bh) 519 { 520 list_del_init(&bh->b_assoc_buffers); 521 WARN_ON(!bh->b_assoc_map); 522 bh->b_assoc_map = NULL; 523 } 524 525 int inode_has_buffers(struct inode *inode) 526 { 527 return !list_empty(&inode->i_data.private_list); 528 } 529 530 /* 531 * osync is designed to support O_SYNC io. It waits synchronously for 532 * all already-submitted IO to complete, but does not queue any new 533 * writes to the disk. 534 * 535 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 536 * as you dirty the buffers, and then use osync_inode_buffers to wait for 537 * completion. Any other dirty buffers which are not yet queued for 538 * write will not be flushed to disk by the osync. 539 */ 540 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 541 { 542 struct buffer_head *bh; 543 struct list_head *p; 544 int err = 0; 545 546 spin_lock(lock); 547 repeat: 548 list_for_each_prev(p, list) { 549 bh = BH_ENTRY(p); 550 if (buffer_locked(bh)) { 551 get_bh(bh); 552 spin_unlock(lock); 553 wait_on_buffer(bh); 554 if (!buffer_uptodate(bh)) 555 err = -EIO; 556 brelse(bh); 557 spin_lock(lock); 558 goto repeat; 559 } 560 } 561 spin_unlock(lock); 562 return err; 563 } 564 565 void emergency_thaw_bdev(struct super_block *sb) 566 { 567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 568 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 569 } 570 571 /** 572 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 573 * @mapping: the mapping which wants those buffers written 574 * 575 * Starts I/O against the buffers at mapping->private_list, and waits upon 576 * that I/O. 577 * 578 * Basically, this is a convenience function for fsync(). 579 * @mapping is a file or directory which needs those buffers to be written for 580 * a successful fsync(). 581 */ 582 int sync_mapping_buffers(struct address_space *mapping) 583 { 584 struct address_space *buffer_mapping = mapping->private_data; 585 586 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 587 return 0; 588 589 return fsync_buffers_list(&buffer_mapping->private_lock, 590 &mapping->private_list); 591 } 592 EXPORT_SYMBOL(sync_mapping_buffers); 593 594 /* 595 * Called when we've recently written block `bblock', and it is known that 596 * `bblock' was for a buffer_boundary() buffer. This means that the block at 597 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 598 * dirty, schedule it for IO. So that indirects merge nicely with their data. 599 */ 600 void write_boundary_block(struct block_device *bdev, 601 sector_t bblock, unsigned blocksize) 602 { 603 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 604 if (bh) { 605 if (buffer_dirty(bh)) 606 write_dirty_buffer(bh, 0); 607 put_bh(bh); 608 } 609 } 610 611 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 612 { 613 struct address_space *mapping = inode->i_mapping; 614 struct address_space *buffer_mapping = bh->b_folio->mapping; 615 616 mark_buffer_dirty(bh); 617 if (!mapping->private_data) { 618 mapping->private_data = buffer_mapping; 619 } else { 620 BUG_ON(mapping->private_data != buffer_mapping); 621 } 622 if (!bh->b_assoc_map) { 623 spin_lock(&buffer_mapping->private_lock); 624 list_move_tail(&bh->b_assoc_buffers, 625 &mapping->private_list); 626 bh->b_assoc_map = mapping; 627 spin_unlock(&buffer_mapping->private_lock); 628 } 629 } 630 EXPORT_SYMBOL(mark_buffer_dirty_inode); 631 632 /* 633 * Add a page to the dirty page list. 634 * 635 * It is a sad fact of life that this function is called from several places 636 * deeply under spinlocking. It may not sleep. 637 * 638 * If the page has buffers, the uptodate buffers are set dirty, to preserve 639 * dirty-state coherency between the page and the buffers. It the page does 640 * not have buffers then when they are later attached they will all be set 641 * dirty. 642 * 643 * The buffers are dirtied before the page is dirtied. There's a small race 644 * window in which a writepage caller may see the page cleanness but not the 645 * buffer dirtiness. That's fine. If this code were to set the page dirty 646 * before the buffers, a concurrent writepage caller could clear the page dirty 647 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 648 * page on the dirty page list. 649 * 650 * We use private_lock to lock against try_to_free_buffers while using the 651 * page's buffer list. Also use this to protect against clean buffers being 652 * added to the page after it was set dirty. 653 * 654 * FIXME: may need to call ->reservepage here as well. That's rather up to the 655 * address_space though. 656 */ 657 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 658 { 659 struct buffer_head *head; 660 bool newly_dirty; 661 662 spin_lock(&mapping->private_lock); 663 head = folio_buffers(folio); 664 if (head) { 665 struct buffer_head *bh = head; 666 667 do { 668 set_buffer_dirty(bh); 669 bh = bh->b_this_page; 670 } while (bh != head); 671 } 672 /* 673 * Lock out page's memcg migration to keep PageDirty 674 * synchronized with per-memcg dirty page counters. 675 */ 676 folio_memcg_lock(folio); 677 newly_dirty = !folio_test_set_dirty(folio); 678 spin_unlock(&mapping->private_lock); 679 680 if (newly_dirty) 681 __folio_mark_dirty(folio, mapping, 1); 682 683 folio_memcg_unlock(folio); 684 685 if (newly_dirty) 686 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 687 688 return newly_dirty; 689 } 690 EXPORT_SYMBOL(block_dirty_folio); 691 692 /* 693 * Write out and wait upon a list of buffers. 694 * 695 * We have conflicting pressures: we want to make sure that all 696 * initially dirty buffers get waited on, but that any subsequently 697 * dirtied buffers don't. After all, we don't want fsync to last 698 * forever if somebody is actively writing to the file. 699 * 700 * Do this in two main stages: first we copy dirty buffers to a 701 * temporary inode list, queueing the writes as we go. Then we clean 702 * up, waiting for those writes to complete. 703 * 704 * During this second stage, any subsequent updates to the file may end 705 * up refiling the buffer on the original inode's dirty list again, so 706 * there is a chance we will end up with a buffer queued for write but 707 * not yet completed on that list. So, as a final cleanup we go through 708 * the osync code to catch these locked, dirty buffers without requeuing 709 * any newly dirty buffers for write. 710 */ 711 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 712 { 713 struct buffer_head *bh; 714 struct list_head tmp; 715 struct address_space *mapping; 716 int err = 0, err2; 717 struct blk_plug plug; 718 719 INIT_LIST_HEAD(&tmp); 720 blk_start_plug(&plug); 721 722 spin_lock(lock); 723 while (!list_empty(list)) { 724 bh = BH_ENTRY(list->next); 725 mapping = bh->b_assoc_map; 726 __remove_assoc_queue(bh); 727 /* Avoid race with mark_buffer_dirty_inode() which does 728 * a lockless check and we rely on seeing the dirty bit */ 729 smp_mb(); 730 if (buffer_dirty(bh) || buffer_locked(bh)) { 731 list_add(&bh->b_assoc_buffers, &tmp); 732 bh->b_assoc_map = mapping; 733 if (buffer_dirty(bh)) { 734 get_bh(bh); 735 spin_unlock(lock); 736 /* 737 * Ensure any pending I/O completes so that 738 * write_dirty_buffer() actually writes the 739 * current contents - it is a noop if I/O is 740 * still in flight on potentially older 741 * contents. 742 */ 743 write_dirty_buffer(bh, REQ_SYNC); 744 745 /* 746 * Kick off IO for the previous mapping. Note 747 * that we will not run the very last mapping, 748 * wait_on_buffer() will do that for us 749 * through sync_buffer(). 750 */ 751 brelse(bh); 752 spin_lock(lock); 753 } 754 } 755 } 756 757 spin_unlock(lock); 758 blk_finish_plug(&plug); 759 spin_lock(lock); 760 761 while (!list_empty(&tmp)) { 762 bh = BH_ENTRY(tmp.prev); 763 get_bh(bh); 764 mapping = bh->b_assoc_map; 765 __remove_assoc_queue(bh); 766 /* Avoid race with mark_buffer_dirty_inode() which does 767 * a lockless check and we rely on seeing the dirty bit */ 768 smp_mb(); 769 if (buffer_dirty(bh)) { 770 list_add(&bh->b_assoc_buffers, 771 &mapping->private_list); 772 bh->b_assoc_map = mapping; 773 } 774 spin_unlock(lock); 775 wait_on_buffer(bh); 776 if (!buffer_uptodate(bh)) 777 err = -EIO; 778 brelse(bh); 779 spin_lock(lock); 780 } 781 782 spin_unlock(lock); 783 err2 = osync_buffers_list(lock, list); 784 if (err) 785 return err; 786 else 787 return err2; 788 } 789 790 /* 791 * Invalidate any and all dirty buffers on a given inode. We are 792 * probably unmounting the fs, but that doesn't mean we have already 793 * done a sync(). Just drop the buffers from the inode list. 794 * 795 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 796 * assumes that all the buffers are against the blockdev. Not true 797 * for reiserfs. 798 */ 799 void invalidate_inode_buffers(struct inode *inode) 800 { 801 if (inode_has_buffers(inode)) { 802 struct address_space *mapping = &inode->i_data; 803 struct list_head *list = &mapping->private_list; 804 struct address_space *buffer_mapping = mapping->private_data; 805 806 spin_lock(&buffer_mapping->private_lock); 807 while (!list_empty(list)) 808 __remove_assoc_queue(BH_ENTRY(list->next)); 809 spin_unlock(&buffer_mapping->private_lock); 810 } 811 } 812 EXPORT_SYMBOL(invalidate_inode_buffers); 813 814 /* 815 * Remove any clean buffers from the inode's buffer list. This is called 816 * when we're trying to free the inode itself. Those buffers can pin it. 817 * 818 * Returns true if all buffers were removed. 819 */ 820 int remove_inode_buffers(struct inode *inode) 821 { 822 int ret = 1; 823 824 if (inode_has_buffers(inode)) { 825 struct address_space *mapping = &inode->i_data; 826 struct list_head *list = &mapping->private_list; 827 struct address_space *buffer_mapping = mapping->private_data; 828 829 spin_lock(&buffer_mapping->private_lock); 830 while (!list_empty(list)) { 831 struct buffer_head *bh = BH_ENTRY(list->next); 832 if (buffer_dirty(bh)) { 833 ret = 0; 834 break; 835 } 836 __remove_assoc_queue(bh); 837 } 838 spin_unlock(&buffer_mapping->private_lock); 839 } 840 return ret; 841 } 842 843 /* 844 * Create the appropriate buffers when given a folio for data area and 845 * the size of each buffer.. Use the bh->b_this_page linked list to 846 * follow the buffers created. Return NULL if unable to create more 847 * buffers. 848 * 849 * The retry flag is used to differentiate async IO (paging, swapping) 850 * which may not fail from ordinary buffer allocations. 851 */ 852 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 853 bool retry) 854 { 855 struct buffer_head *bh, *head; 856 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 857 long offset; 858 struct mem_cgroup *memcg, *old_memcg; 859 860 if (retry) 861 gfp |= __GFP_NOFAIL; 862 863 /* The folio lock pins the memcg */ 864 memcg = folio_memcg(folio); 865 old_memcg = set_active_memcg(memcg); 866 867 head = NULL; 868 offset = folio_size(folio); 869 while ((offset -= size) >= 0) { 870 bh = alloc_buffer_head(gfp); 871 if (!bh) 872 goto no_grow; 873 874 bh->b_this_page = head; 875 bh->b_blocknr = -1; 876 head = bh; 877 878 bh->b_size = size; 879 880 /* Link the buffer to its folio */ 881 folio_set_bh(bh, folio, offset); 882 } 883 out: 884 set_active_memcg(old_memcg); 885 return head; 886 /* 887 * In case anything failed, we just free everything we got. 888 */ 889 no_grow: 890 if (head) { 891 do { 892 bh = head; 893 head = head->b_this_page; 894 free_buffer_head(bh); 895 } while (head); 896 } 897 898 goto out; 899 } 900 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 901 902 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 903 bool retry) 904 { 905 return folio_alloc_buffers(page_folio(page), size, retry); 906 } 907 EXPORT_SYMBOL_GPL(alloc_page_buffers); 908 909 static inline void link_dev_buffers(struct folio *folio, 910 struct buffer_head *head) 911 { 912 struct buffer_head *bh, *tail; 913 914 bh = head; 915 do { 916 tail = bh; 917 bh = bh->b_this_page; 918 } while (bh); 919 tail->b_this_page = head; 920 folio_attach_private(folio, head); 921 } 922 923 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 924 { 925 sector_t retval = ~((sector_t)0); 926 loff_t sz = bdev_nr_bytes(bdev); 927 928 if (sz) { 929 unsigned int sizebits = blksize_bits(size); 930 retval = (sz >> sizebits); 931 } 932 return retval; 933 } 934 935 /* 936 * Initialise the state of a blockdev folio's buffers. 937 */ 938 static sector_t folio_init_buffers(struct folio *folio, 939 struct block_device *bdev, sector_t block, int size) 940 { 941 struct buffer_head *head = folio_buffers(folio); 942 struct buffer_head *bh = head; 943 bool uptodate = folio_test_uptodate(folio); 944 sector_t end_block = blkdev_max_block(bdev, size); 945 946 do { 947 if (!buffer_mapped(bh)) { 948 bh->b_end_io = NULL; 949 bh->b_private = NULL; 950 bh->b_bdev = bdev; 951 bh->b_blocknr = block; 952 if (uptodate) 953 set_buffer_uptodate(bh); 954 if (block < end_block) 955 set_buffer_mapped(bh); 956 } 957 block++; 958 bh = bh->b_this_page; 959 } while (bh != head); 960 961 /* 962 * Caller needs to validate requested block against end of device. 963 */ 964 return end_block; 965 } 966 967 /* 968 * Create the page-cache page that contains the requested block. 969 * 970 * This is used purely for blockdev mappings. 971 */ 972 static int 973 grow_dev_page(struct block_device *bdev, sector_t block, 974 pgoff_t index, int size, int sizebits, gfp_t gfp) 975 { 976 struct inode *inode = bdev->bd_inode; 977 struct folio *folio; 978 struct buffer_head *bh; 979 sector_t end_block; 980 int ret = 0; 981 gfp_t gfp_mask; 982 983 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 984 985 /* 986 * XXX: __getblk_slow() can not really deal with failure and 987 * will endlessly loop on improvised global reclaim. Prefer 988 * looping in the allocator rather than here, at least that 989 * code knows what it's doing. 990 */ 991 gfp_mask |= __GFP_NOFAIL; 992 993 folio = __filemap_get_folio(inode->i_mapping, index, 994 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask); 995 996 bh = folio_buffers(folio); 997 if (bh) { 998 if (bh->b_size == size) { 999 end_block = folio_init_buffers(folio, bdev, 1000 (sector_t)index << sizebits, size); 1001 goto done; 1002 } 1003 if (!try_to_free_buffers(folio)) 1004 goto failed; 1005 } 1006 1007 bh = folio_alloc_buffers(folio, size, true); 1008 1009 /* 1010 * Link the folio to the buffers and initialise them. Take the 1011 * lock to be atomic wrt __find_get_block(), which does not 1012 * run under the folio lock. 1013 */ 1014 spin_lock(&inode->i_mapping->private_lock); 1015 link_dev_buffers(folio, bh); 1016 end_block = folio_init_buffers(folio, bdev, 1017 (sector_t)index << sizebits, size); 1018 spin_unlock(&inode->i_mapping->private_lock); 1019 done: 1020 ret = (block < end_block) ? 1 : -ENXIO; 1021 failed: 1022 folio_unlock(folio); 1023 folio_put(folio); 1024 return ret; 1025 } 1026 1027 /* 1028 * Create buffers for the specified block device block's page. If 1029 * that page was dirty, the buffers are set dirty also. 1030 */ 1031 static int 1032 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1033 { 1034 pgoff_t index; 1035 int sizebits; 1036 1037 sizebits = PAGE_SHIFT - __ffs(size); 1038 index = block >> sizebits; 1039 1040 /* 1041 * Check for a block which wants to lie outside our maximum possible 1042 * pagecache index. (this comparison is done using sector_t types). 1043 */ 1044 if (unlikely(index != block >> sizebits)) { 1045 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1046 "device %pg\n", 1047 __func__, (unsigned long long)block, 1048 bdev); 1049 return -EIO; 1050 } 1051 1052 /* Create a page with the proper size buffers.. */ 1053 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1054 } 1055 1056 static struct buffer_head * 1057 __getblk_slow(struct block_device *bdev, sector_t block, 1058 unsigned size, gfp_t gfp) 1059 { 1060 /* Size must be multiple of hard sectorsize */ 1061 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1062 (size < 512 || size > PAGE_SIZE))) { 1063 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1064 size); 1065 printk(KERN_ERR "logical block size: %d\n", 1066 bdev_logical_block_size(bdev)); 1067 1068 dump_stack(); 1069 return NULL; 1070 } 1071 1072 for (;;) { 1073 struct buffer_head *bh; 1074 int ret; 1075 1076 bh = __find_get_block(bdev, block, size); 1077 if (bh) 1078 return bh; 1079 1080 ret = grow_buffers(bdev, block, size, gfp); 1081 if (ret < 0) 1082 return NULL; 1083 } 1084 } 1085 1086 /* 1087 * The relationship between dirty buffers and dirty pages: 1088 * 1089 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1090 * the page is tagged dirty in the page cache. 1091 * 1092 * At all times, the dirtiness of the buffers represents the dirtiness of 1093 * subsections of the page. If the page has buffers, the page dirty bit is 1094 * merely a hint about the true dirty state. 1095 * 1096 * When a page is set dirty in its entirety, all its buffers are marked dirty 1097 * (if the page has buffers). 1098 * 1099 * When a buffer is marked dirty, its page is dirtied, but the page's other 1100 * buffers are not. 1101 * 1102 * Also. When blockdev buffers are explicitly read with bread(), they 1103 * individually become uptodate. But their backing page remains not 1104 * uptodate - even if all of its buffers are uptodate. A subsequent 1105 * block_read_full_folio() against that folio will discover all the uptodate 1106 * buffers, will set the folio uptodate and will perform no I/O. 1107 */ 1108 1109 /** 1110 * mark_buffer_dirty - mark a buffer_head as needing writeout 1111 * @bh: the buffer_head to mark dirty 1112 * 1113 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1114 * its backing page dirty, then tag the page as dirty in the page cache 1115 * and then attach the address_space's inode to its superblock's dirty 1116 * inode list. 1117 * 1118 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock, 1119 * i_pages lock and mapping->host->i_lock. 1120 */ 1121 void mark_buffer_dirty(struct buffer_head *bh) 1122 { 1123 WARN_ON_ONCE(!buffer_uptodate(bh)); 1124 1125 trace_block_dirty_buffer(bh); 1126 1127 /* 1128 * Very *carefully* optimize the it-is-already-dirty case. 1129 * 1130 * Don't let the final "is it dirty" escape to before we 1131 * perhaps modified the buffer. 1132 */ 1133 if (buffer_dirty(bh)) { 1134 smp_mb(); 1135 if (buffer_dirty(bh)) 1136 return; 1137 } 1138 1139 if (!test_set_buffer_dirty(bh)) { 1140 struct folio *folio = bh->b_folio; 1141 struct address_space *mapping = NULL; 1142 1143 folio_memcg_lock(folio); 1144 if (!folio_test_set_dirty(folio)) { 1145 mapping = folio->mapping; 1146 if (mapping) 1147 __folio_mark_dirty(folio, mapping, 0); 1148 } 1149 folio_memcg_unlock(folio); 1150 if (mapping) 1151 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1152 } 1153 } 1154 EXPORT_SYMBOL(mark_buffer_dirty); 1155 1156 void mark_buffer_write_io_error(struct buffer_head *bh) 1157 { 1158 struct super_block *sb; 1159 1160 set_buffer_write_io_error(bh); 1161 /* FIXME: do we need to set this in both places? */ 1162 if (bh->b_folio && bh->b_folio->mapping) 1163 mapping_set_error(bh->b_folio->mapping, -EIO); 1164 if (bh->b_assoc_map) 1165 mapping_set_error(bh->b_assoc_map, -EIO); 1166 rcu_read_lock(); 1167 sb = READ_ONCE(bh->b_bdev->bd_super); 1168 if (sb) 1169 errseq_set(&sb->s_wb_err, -EIO); 1170 rcu_read_unlock(); 1171 } 1172 EXPORT_SYMBOL(mark_buffer_write_io_error); 1173 1174 /* 1175 * Decrement a buffer_head's reference count. If all buffers against a page 1176 * have zero reference count, are clean and unlocked, and if the page is clean 1177 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1178 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1179 * a page but it ends up not being freed, and buffers may later be reattached). 1180 */ 1181 void __brelse(struct buffer_head * buf) 1182 { 1183 if (atomic_read(&buf->b_count)) { 1184 put_bh(buf); 1185 return; 1186 } 1187 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1188 } 1189 EXPORT_SYMBOL(__brelse); 1190 1191 /* 1192 * bforget() is like brelse(), except it discards any 1193 * potentially dirty data. 1194 */ 1195 void __bforget(struct buffer_head *bh) 1196 { 1197 clear_buffer_dirty(bh); 1198 if (bh->b_assoc_map) { 1199 struct address_space *buffer_mapping = bh->b_folio->mapping; 1200 1201 spin_lock(&buffer_mapping->private_lock); 1202 list_del_init(&bh->b_assoc_buffers); 1203 bh->b_assoc_map = NULL; 1204 spin_unlock(&buffer_mapping->private_lock); 1205 } 1206 __brelse(bh); 1207 } 1208 EXPORT_SYMBOL(__bforget); 1209 1210 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1211 { 1212 lock_buffer(bh); 1213 if (buffer_uptodate(bh)) { 1214 unlock_buffer(bh); 1215 return bh; 1216 } else { 1217 get_bh(bh); 1218 bh->b_end_io = end_buffer_read_sync; 1219 submit_bh(REQ_OP_READ, bh); 1220 wait_on_buffer(bh); 1221 if (buffer_uptodate(bh)) 1222 return bh; 1223 } 1224 brelse(bh); 1225 return NULL; 1226 } 1227 1228 /* 1229 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1230 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1231 * refcount elevated by one when they're in an LRU. A buffer can only appear 1232 * once in a particular CPU's LRU. A single buffer can be present in multiple 1233 * CPU's LRUs at the same time. 1234 * 1235 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1236 * sb_find_get_block(). 1237 * 1238 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1239 * a local interrupt disable for that. 1240 */ 1241 1242 #define BH_LRU_SIZE 16 1243 1244 struct bh_lru { 1245 struct buffer_head *bhs[BH_LRU_SIZE]; 1246 }; 1247 1248 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1249 1250 #ifdef CONFIG_SMP 1251 #define bh_lru_lock() local_irq_disable() 1252 #define bh_lru_unlock() local_irq_enable() 1253 #else 1254 #define bh_lru_lock() preempt_disable() 1255 #define bh_lru_unlock() preempt_enable() 1256 #endif 1257 1258 static inline void check_irqs_on(void) 1259 { 1260 #ifdef irqs_disabled 1261 BUG_ON(irqs_disabled()); 1262 #endif 1263 } 1264 1265 /* 1266 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1267 * inserted at the front, and the buffer_head at the back if any is evicted. 1268 * Or, if already in the LRU it is moved to the front. 1269 */ 1270 static void bh_lru_install(struct buffer_head *bh) 1271 { 1272 struct buffer_head *evictee = bh; 1273 struct bh_lru *b; 1274 int i; 1275 1276 check_irqs_on(); 1277 bh_lru_lock(); 1278 1279 /* 1280 * the refcount of buffer_head in bh_lru prevents dropping the 1281 * attached page(i.e., try_to_free_buffers) so it could cause 1282 * failing page migration. 1283 * Skip putting upcoming bh into bh_lru until migration is done. 1284 */ 1285 if (lru_cache_disabled()) { 1286 bh_lru_unlock(); 1287 return; 1288 } 1289 1290 b = this_cpu_ptr(&bh_lrus); 1291 for (i = 0; i < BH_LRU_SIZE; i++) { 1292 swap(evictee, b->bhs[i]); 1293 if (evictee == bh) { 1294 bh_lru_unlock(); 1295 return; 1296 } 1297 } 1298 1299 get_bh(bh); 1300 bh_lru_unlock(); 1301 brelse(evictee); 1302 } 1303 1304 /* 1305 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1306 */ 1307 static struct buffer_head * 1308 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1309 { 1310 struct buffer_head *ret = NULL; 1311 unsigned int i; 1312 1313 check_irqs_on(); 1314 bh_lru_lock(); 1315 for (i = 0; i < BH_LRU_SIZE; i++) { 1316 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1317 1318 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1319 bh->b_size == size) { 1320 if (i) { 1321 while (i) { 1322 __this_cpu_write(bh_lrus.bhs[i], 1323 __this_cpu_read(bh_lrus.bhs[i - 1])); 1324 i--; 1325 } 1326 __this_cpu_write(bh_lrus.bhs[0], bh); 1327 } 1328 get_bh(bh); 1329 ret = bh; 1330 break; 1331 } 1332 } 1333 bh_lru_unlock(); 1334 return ret; 1335 } 1336 1337 /* 1338 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1339 * it in the LRU and mark it as accessed. If it is not present then return 1340 * NULL 1341 */ 1342 struct buffer_head * 1343 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1344 { 1345 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1346 1347 if (bh == NULL) { 1348 /* __find_get_block_slow will mark the page accessed */ 1349 bh = __find_get_block_slow(bdev, block); 1350 if (bh) 1351 bh_lru_install(bh); 1352 } else 1353 touch_buffer(bh); 1354 1355 return bh; 1356 } 1357 EXPORT_SYMBOL(__find_get_block); 1358 1359 /* 1360 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1361 * which corresponds to the passed block_device, block and size. The 1362 * returned buffer has its reference count incremented. 1363 * 1364 * __getblk_gfp() will lock up the machine if grow_dev_page's 1365 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1366 */ 1367 struct buffer_head * 1368 __getblk_gfp(struct block_device *bdev, sector_t block, 1369 unsigned size, gfp_t gfp) 1370 { 1371 struct buffer_head *bh = __find_get_block(bdev, block, size); 1372 1373 might_sleep(); 1374 if (bh == NULL) 1375 bh = __getblk_slow(bdev, block, size, gfp); 1376 return bh; 1377 } 1378 EXPORT_SYMBOL(__getblk_gfp); 1379 1380 /* 1381 * Do async read-ahead on a buffer.. 1382 */ 1383 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1384 { 1385 struct buffer_head *bh = __getblk(bdev, block, size); 1386 if (likely(bh)) { 1387 bh_readahead(bh, REQ_RAHEAD); 1388 brelse(bh); 1389 } 1390 } 1391 EXPORT_SYMBOL(__breadahead); 1392 1393 /** 1394 * __bread_gfp() - reads a specified block and returns the bh 1395 * @bdev: the block_device to read from 1396 * @block: number of block 1397 * @size: size (in bytes) to read 1398 * @gfp: page allocation flag 1399 * 1400 * Reads a specified block, and returns buffer head that contains it. 1401 * The page cache can be allocated from non-movable area 1402 * not to prevent page migration if you set gfp to zero. 1403 * It returns NULL if the block was unreadable. 1404 */ 1405 struct buffer_head * 1406 __bread_gfp(struct block_device *bdev, sector_t block, 1407 unsigned size, gfp_t gfp) 1408 { 1409 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1410 1411 if (likely(bh) && !buffer_uptodate(bh)) 1412 bh = __bread_slow(bh); 1413 return bh; 1414 } 1415 EXPORT_SYMBOL(__bread_gfp); 1416 1417 static void __invalidate_bh_lrus(struct bh_lru *b) 1418 { 1419 int i; 1420 1421 for (i = 0; i < BH_LRU_SIZE; i++) { 1422 brelse(b->bhs[i]); 1423 b->bhs[i] = NULL; 1424 } 1425 } 1426 /* 1427 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1428 * This doesn't race because it runs in each cpu either in irq 1429 * or with preempt disabled. 1430 */ 1431 static void invalidate_bh_lru(void *arg) 1432 { 1433 struct bh_lru *b = &get_cpu_var(bh_lrus); 1434 1435 __invalidate_bh_lrus(b); 1436 put_cpu_var(bh_lrus); 1437 } 1438 1439 bool has_bh_in_lru(int cpu, void *dummy) 1440 { 1441 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1442 int i; 1443 1444 for (i = 0; i < BH_LRU_SIZE; i++) { 1445 if (b->bhs[i]) 1446 return true; 1447 } 1448 1449 return false; 1450 } 1451 1452 void invalidate_bh_lrus(void) 1453 { 1454 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1455 } 1456 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1457 1458 /* 1459 * It's called from workqueue context so we need a bh_lru_lock to close 1460 * the race with preemption/irq. 1461 */ 1462 void invalidate_bh_lrus_cpu(void) 1463 { 1464 struct bh_lru *b; 1465 1466 bh_lru_lock(); 1467 b = this_cpu_ptr(&bh_lrus); 1468 __invalidate_bh_lrus(b); 1469 bh_lru_unlock(); 1470 } 1471 1472 void set_bh_page(struct buffer_head *bh, 1473 struct page *page, unsigned long offset) 1474 { 1475 bh->b_page = page; 1476 BUG_ON(offset >= PAGE_SIZE); 1477 if (PageHighMem(page)) 1478 /* 1479 * This catches illegal uses and preserves the offset: 1480 */ 1481 bh->b_data = (char *)(0 + offset); 1482 else 1483 bh->b_data = page_address(page) + offset; 1484 } 1485 EXPORT_SYMBOL(set_bh_page); 1486 1487 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1488 unsigned long offset) 1489 { 1490 bh->b_folio = folio; 1491 BUG_ON(offset >= folio_size(folio)); 1492 if (folio_test_highmem(folio)) 1493 /* 1494 * This catches illegal uses and preserves the offset: 1495 */ 1496 bh->b_data = (char *)(0 + offset); 1497 else 1498 bh->b_data = folio_address(folio) + offset; 1499 } 1500 EXPORT_SYMBOL(folio_set_bh); 1501 1502 /* 1503 * Called when truncating a buffer on a page completely. 1504 */ 1505 1506 /* Bits that are cleared during an invalidate */ 1507 #define BUFFER_FLAGS_DISCARD \ 1508 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1509 1 << BH_Delay | 1 << BH_Unwritten) 1510 1511 static void discard_buffer(struct buffer_head * bh) 1512 { 1513 unsigned long b_state; 1514 1515 lock_buffer(bh); 1516 clear_buffer_dirty(bh); 1517 bh->b_bdev = NULL; 1518 b_state = READ_ONCE(bh->b_state); 1519 do { 1520 } while (!try_cmpxchg(&bh->b_state, &b_state, 1521 b_state & ~BUFFER_FLAGS_DISCARD)); 1522 unlock_buffer(bh); 1523 } 1524 1525 /** 1526 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1527 * @folio: The folio which is affected. 1528 * @offset: start of the range to invalidate 1529 * @length: length of the range to invalidate 1530 * 1531 * block_invalidate_folio() is called when all or part of the folio has been 1532 * invalidated by a truncate operation. 1533 * 1534 * block_invalidate_folio() does not have to release all buffers, but it must 1535 * ensure that no dirty buffer is left outside @offset and that no I/O 1536 * is underway against any of the blocks which are outside the truncation 1537 * point. Because the caller is about to free (and possibly reuse) those 1538 * blocks on-disk. 1539 */ 1540 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1541 { 1542 struct buffer_head *head, *bh, *next; 1543 size_t curr_off = 0; 1544 size_t stop = length + offset; 1545 1546 BUG_ON(!folio_test_locked(folio)); 1547 1548 /* 1549 * Check for overflow 1550 */ 1551 BUG_ON(stop > folio_size(folio) || stop < length); 1552 1553 head = folio_buffers(folio); 1554 if (!head) 1555 return; 1556 1557 bh = head; 1558 do { 1559 size_t next_off = curr_off + bh->b_size; 1560 next = bh->b_this_page; 1561 1562 /* 1563 * Are we still fully in range ? 1564 */ 1565 if (next_off > stop) 1566 goto out; 1567 1568 /* 1569 * is this block fully invalidated? 1570 */ 1571 if (offset <= curr_off) 1572 discard_buffer(bh); 1573 curr_off = next_off; 1574 bh = next; 1575 } while (bh != head); 1576 1577 /* 1578 * We release buffers only if the entire folio is being invalidated. 1579 * The get_block cached value has been unconditionally invalidated, 1580 * so real IO is not possible anymore. 1581 */ 1582 if (length == folio_size(folio)) 1583 filemap_release_folio(folio, 0); 1584 out: 1585 return; 1586 } 1587 EXPORT_SYMBOL(block_invalidate_folio); 1588 1589 /* 1590 * We attach and possibly dirty the buffers atomically wrt 1591 * block_dirty_folio() via private_lock. try_to_free_buffers 1592 * is already excluded via the folio lock. 1593 */ 1594 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize, 1595 unsigned long b_state) 1596 { 1597 struct buffer_head *bh, *head, *tail; 1598 1599 head = folio_alloc_buffers(folio, blocksize, true); 1600 bh = head; 1601 do { 1602 bh->b_state |= b_state; 1603 tail = bh; 1604 bh = bh->b_this_page; 1605 } while (bh); 1606 tail->b_this_page = head; 1607 1608 spin_lock(&folio->mapping->private_lock); 1609 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1610 bh = head; 1611 do { 1612 if (folio_test_dirty(folio)) 1613 set_buffer_dirty(bh); 1614 if (folio_test_uptodate(folio)) 1615 set_buffer_uptodate(bh); 1616 bh = bh->b_this_page; 1617 } while (bh != head); 1618 } 1619 folio_attach_private(folio, head); 1620 spin_unlock(&folio->mapping->private_lock); 1621 } 1622 EXPORT_SYMBOL(folio_create_empty_buffers); 1623 1624 void create_empty_buffers(struct page *page, 1625 unsigned long blocksize, unsigned long b_state) 1626 { 1627 folio_create_empty_buffers(page_folio(page), blocksize, b_state); 1628 } 1629 EXPORT_SYMBOL(create_empty_buffers); 1630 1631 /** 1632 * clean_bdev_aliases: clean a range of buffers in block device 1633 * @bdev: Block device to clean buffers in 1634 * @block: Start of a range of blocks to clean 1635 * @len: Number of blocks to clean 1636 * 1637 * We are taking a range of blocks for data and we don't want writeback of any 1638 * buffer-cache aliases starting from return from this function and until the 1639 * moment when something will explicitly mark the buffer dirty (hopefully that 1640 * will not happen until we will free that block ;-) We don't even need to mark 1641 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1642 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1643 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1644 * would confuse anyone who might pick it with bread() afterwards... 1645 * 1646 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1647 * writeout I/O going on against recently-freed buffers. We don't wait on that 1648 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1649 * need to. That happens here. 1650 */ 1651 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1652 { 1653 struct inode *bd_inode = bdev->bd_inode; 1654 struct address_space *bd_mapping = bd_inode->i_mapping; 1655 struct folio_batch fbatch; 1656 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1657 pgoff_t end; 1658 int i, count; 1659 struct buffer_head *bh; 1660 struct buffer_head *head; 1661 1662 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1663 folio_batch_init(&fbatch); 1664 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1665 count = folio_batch_count(&fbatch); 1666 for (i = 0; i < count; i++) { 1667 struct folio *folio = fbatch.folios[i]; 1668 1669 if (!folio_buffers(folio)) 1670 continue; 1671 /* 1672 * We use folio lock instead of bd_mapping->private_lock 1673 * to pin buffers here since we can afford to sleep and 1674 * it scales better than a global spinlock lock. 1675 */ 1676 folio_lock(folio); 1677 /* Recheck when the folio is locked which pins bhs */ 1678 head = folio_buffers(folio); 1679 if (!head) 1680 goto unlock_page; 1681 bh = head; 1682 do { 1683 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1684 goto next; 1685 if (bh->b_blocknr >= block + len) 1686 break; 1687 clear_buffer_dirty(bh); 1688 wait_on_buffer(bh); 1689 clear_buffer_req(bh); 1690 next: 1691 bh = bh->b_this_page; 1692 } while (bh != head); 1693 unlock_page: 1694 folio_unlock(folio); 1695 } 1696 folio_batch_release(&fbatch); 1697 cond_resched(); 1698 /* End of range already reached? */ 1699 if (index > end || !index) 1700 break; 1701 } 1702 } 1703 EXPORT_SYMBOL(clean_bdev_aliases); 1704 1705 /* 1706 * Size is a power-of-two in the range 512..PAGE_SIZE, 1707 * and the case we care about most is PAGE_SIZE. 1708 * 1709 * So this *could* possibly be written with those 1710 * constraints in mind (relevant mostly if some 1711 * architecture has a slow bit-scan instruction) 1712 */ 1713 static inline int block_size_bits(unsigned int blocksize) 1714 { 1715 return ilog2(blocksize); 1716 } 1717 1718 static struct buffer_head *folio_create_buffers(struct folio *folio, 1719 struct inode *inode, 1720 unsigned int b_state) 1721 { 1722 BUG_ON(!folio_test_locked(folio)); 1723 1724 if (!folio_buffers(folio)) 1725 folio_create_empty_buffers(folio, 1726 1 << READ_ONCE(inode->i_blkbits), 1727 b_state); 1728 return folio_buffers(folio); 1729 } 1730 1731 /* 1732 * NOTE! All mapped/uptodate combinations are valid: 1733 * 1734 * Mapped Uptodate Meaning 1735 * 1736 * No No "unknown" - must do get_block() 1737 * No Yes "hole" - zero-filled 1738 * Yes No "allocated" - allocated on disk, not read in 1739 * Yes Yes "valid" - allocated and up-to-date in memory. 1740 * 1741 * "Dirty" is valid only with the last case (mapped+uptodate). 1742 */ 1743 1744 /* 1745 * While block_write_full_page is writing back the dirty buffers under 1746 * the page lock, whoever dirtied the buffers may decide to clean them 1747 * again at any time. We handle that by only looking at the buffer 1748 * state inside lock_buffer(). 1749 * 1750 * If block_write_full_page() is called for regular writeback 1751 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1752 * locked buffer. This only can happen if someone has written the buffer 1753 * directly, with submit_bh(). At the address_space level PageWriteback 1754 * prevents this contention from occurring. 1755 * 1756 * If block_write_full_page() is called with wbc->sync_mode == 1757 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1758 * causes the writes to be flagged as synchronous writes. 1759 */ 1760 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1761 get_block_t *get_block, struct writeback_control *wbc, 1762 bh_end_io_t *handler) 1763 { 1764 int err; 1765 sector_t block; 1766 sector_t last_block; 1767 struct buffer_head *bh, *head; 1768 unsigned int blocksize, bbits; 1769 int nr_underway = 0; 1770 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1771 1772 head = folio_create_buffers(folio, inode, 1773 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1774 1775 /* 1776 * Be very careful. We have no exclusion from block_dirty_folio 1777 * here, and the (potentially unmapped) buffers may become dirty at 1778 * any time. If a buffer becomes dirty here after we've inspected it 1779 * then we just miss that fact, and the folio stays dirty. 1780 * 1781 * Buffers outside i_size may be dirtied by block_dirty_folio; 1782 * handle that here by just cleaning them. 1783 */ 1784 1785 bh = head; 1786 blocksize = bh->b_size; 1787 bbits = block_size_bits(blocksize); 1788 1789 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1790 last_block = (i_size_read(inode) - 1) >> bbits; 1791 1792 /* 1793 * Get all the dirty buffers mapped to disk addresses and 1794 * handle any aliases from the underlying blockdev's mapping. 1795 */ 1796 do { 1797 if (block > last_block) { 1798 /* 1799 * mapped buffers outside i_size will occur, because 1800 * this folio can be outside i_size when there is a 1801 * truncate in progress. 1802 */ 1803 /* 1804 * The buffer was zeroed by block_write_full_page() 1805 */ 1806 clear_buffer_dirty(bh); 1807 set_buffer_uptodate(bh); 1808 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1809 buffer_dirty(bh)) { 1810 WARN_ON(bh->b_size != blocksize); 1811 err = get_block(inode, block, bh, 1); 1812 if (err) 1813 goto recover; 1814 clear_buffer_delay(bh); 1815 if (buffer_new(bh)) { 1816 /* blockdev mappings never come here */ 1817 clear_buffer_new(bh); 1818 clean_bdev_bh_alias(bh); 1819 } 1820 } 1821 bh = bh->b_this_page; 1822 block++; 1823 } while (bh != head); 1824 1825 do { 1826 if (!buffer_mapped(bh)) 1827 continue; 1828 /* 1829 * If it's a fully non-blocking write attempt and we cannot 1830 * lock the buffer then redirty the folio. Note that this can 1831 * potentially cause a busy-wait loop from writeback threads 1832 * and kswapd activity, but those code paths have their own 1833 * higher-level throttling. 1834 */ 1835 if (wbc->sync_mode != WB_SYNC_NONE) { 1836 lock_buffer(bh); 1837 } else if (!trylock_buffer(bh)) { 1838 folio_redirty_for_writepage(wbc, folio); 1839 continue; 1840 } 1841 if (test_clear_buffer_dirty(bh)) { 1842 mark_buffer_async_write_endio(bh, handler); 1843 } else { 1844 unlock_buffer(bh); 1845 } 1846 } while ((bh = bh->b_this_page) != head); 1847 1848 /* 1849 * The folio and its buffers are protected by the writeback flag, 1850 * so we can drop the bh refcounts early. 1851 */ 1852 BUG_ON(folio_test_writeback(folio)); 1853 folio_start_writeback(folio); 1854 1855 do { 1856 struct buffer_head *next = bh->b_this_page; 1857 if (buffer_async_write(bh)) { 1858 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1859 nr_underway++; 1860 } 1861 bh = next; 1862 } while (bh != head); 1863 folio_unlock(folio); 1864 1865 err = 0; 1866 done: 1867 if (nr_underway == 0) { 1868 /* 1869 * The folio was marked dirty, but the buffers were 1870 * clean. Someone wrote them back by hand with 1871 * write_dirty_buffer/submit_bh. A rare case. 1872 */ 1873 folio_end_writeback(folio); 1874 1875 /* 1876 * The folio and buffer_heads can be released at any time from 1877 * here on. 1878 */ 1879 } 1880 return err; 1881 1882 recover: 1883 /* 1884 * ENOSPC, or some other error. We may already have added some 1885 * blocks to the file, so we need to write these out to avoid 1886 * exposing stale data. 1887 * The folio is currently locked and not marked for writeback 1888 */ 1889 bh = head; 1890 /* Recovery: lock and submit the mapped buffers */ 1891 do { 1892 if (buffer_mapped(bh) && buffer_dirty(bh) && 1893 !buffer_delay(bh)) { 1894 lock_buffer(bh); 1895 mark_buffer_async_write_endio(bh, handler); 1896 } else { 1897 /* 1898 * The buffer may have been set dirty during 1899 * attachment to a dirty folio. 1900 */ 1901 clear_buffer_dirty(bh); 1902 } 1903 } while ((bh = bh->b_this_page) != head); 1904 folio_set_error(folio); 1905 BUG_ON(folio_test_writeback(folio)); 1906 mapping_set_error(folio->mapping, err); 1907 folio_start_writeback(folio); 1908 do { 1909 struct buffer_head *next = bh->b_this_page; 1910 if (buffer_async_write(bh)) { 1911 clear_buffer_dirty(bh); 1912 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1913 nr_underway++; 1914 } 1915 bh = next; 1916 } while (bh != head); 1917 folio_unlock(folio); 1918 goto done; 1919 } 1920 EXPORT_SYMBOL(__block_write_full_folio); 1921 1922 /* 1923 * If a folio has any new buffers, zero them out here, and mark them uptodate 1924 * and dirty so they'll be written out (in order to prevent uninitialised 1925 * block data from leaking). And clear the new bit. 1926 */ 1927 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 1928 { 1929 size_t block_start, block_end; 1930 struct buffer_head *head, *bh; 1931 1932 BUG_ON(!folio_test_locked(folio)); 1933 head = folio_buffers(folio); 1934 if (!head) 1935 return; 1936 1937 bh = head; 1938 block_start = 0; 1939 do { 1940 block_end = block_start + bh->b_size; 1941 1942 if (buffer_new(bh)) { 1943 if (block_end > from && block_start < to) { 1944 if (!folio_test_uptodate(folio)) { 1945 size_t start, xend; 1946 1947 start = max(from, block_start); 1948 xend = min(to, block_end); 1949 1950 folio_zero_segment(folio, start, xend); 1951 set_buffer_uptodate(bh); 1952 } 1953 1954 clear_buffer_new(bh); 1955 mark_buffer_dirty(bh); 1956 } 1957 } 1958 1959 block_start = block_end; 1960 bh = bh->b_this_page; 1961 } while (bh != head); 1962 } 1963 EXPORT_SYMBOL(folio_zero_new_buffers); 1964 1965 static void 1966 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1967 const struct iomap *iomap) 1968 { 1969 loff_t offset = block << inode->i_blkbits; 1970 1971 bh->b_bdev = iomap->bdev; 1972 1973 /* 1974 * Block points to offset in file we need to map, iomap contains 1975 * the offset at which the map starts. If the map ends before the 1976 * current block, then do not map the buffer and let the caller 1977 * handle it. 1978 */ 1979 BUG_ON(offset >= iomap->offset + iomap->length); 1980 1981 switch (iomap->type) { 1982 case IOMAP_HOLE: 1983 /* 1984 * If the buffer is not up to date or beyond the current EOF, 1985 * we need to mark it as new to ensure sub-block zeroing is 1986 * executed if necessary. 1987 */ 1988 if (!buffer_uptodate(bh) || 1989 (offset >= i_size_read(inode))) 1990 set_buffer_new(bh); 1991 break; 1992 case IOMAP_DELALLOC: 1993 if (!buffer_uptodate(bh) || 1994 (offset >= i_size_read(inode))) 1995 set_buffer_new(bh); 1996 set_buffer_uptodate(bh); 1997 set_buffer_mapped(bh); 1998 set_buffer_delay(bh); 1999 break; 2000 case IOMAP_UNWRITTEN: 2001 /* 2002 * For unwritten regions, we always need to ensure that regions 2003 * in the block we are not writing to are zeroed. Mark the 2004 * buffer as new to ensure this. 2005 */ 2006 set_buffer_new(bh); 2007 set_buffer_unwritten(bh); 2008 fallthrough; 2009 case IOMAP_MAPPED: 2010 if ((iomap->flags & IOMAP_F_NEW) || 2011 offset >= i_size_read(inode)) 2012 set_buffer_new(bh); 2013 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2014 inode->i_blkbits; 2015 set_buffer_mapped(bh); 2016 break; 2017 } 2018 } 2019 2020 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2021 get_block_t *get_block, const struct iomap *iomap) 2022 { 2023 unsigned from = pos & (PAGE_SIZE - 1); 2024 unsigned to = from + len; 2025 struct inode *inode = folio->mapping->host; 2026 unsigned block_start, block_end; 2027 sector_t block; 2028 int err = 0; 2029 unsigned blocksize, bbits; 2030 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2031 2032 BUG_ON(!folio_test_locked(folio)); 2033 BUG_ON(from > PAGE_SIZE); 2034 BUG_ON(to > PAGE_SIZE); 2035 BUG_ON(from > to); 2036 2037 head = folio_create_buffers(folio, inode, 0); 2038 blocksize = head->b_size; 2039 bbits = block_size_bits(blocksize); 2040 2041 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2042 2043 for(bh = head, block_start = 0; bh != head || !block_start; 2044 block++, block_start=block_end, bh = bh->b_this_page) { 2045 block_end = block_start + blocksize; 2046 if (block_end <= from || block_start >= to) { 2047 if (folio_test_uptodate(folio)) { 2048 if (!buffer_uptodate(bh)) 2049 set_buffer_uptodate(bh); 2050 } 2051 continue; 2052 } 2053 if (buffer_new(bh)) 2054 clear_buffer_new(bh); 2055 if (!buffer_mapped(bh)) { 2056 WARN_ON(bh->b_size != blocksize); 2057 if (get_block) { 2058 err = get_block(inode, block, bh, 1); 2059 if (err) 2060 break; 2061 } else { 2062 iomap_to_bh(inode, block, bh, iomap); 2063 } 2064 2065 if (buffer_new(bh)) { 2066 clean_bdev_bh_alias(bh); 2067 if (folio_test_uptodate(folio)) { 2068 clear_buffer_new(bh); 2069 set_buffer_uptodate(bh); 2070 mark_buffer_dirty(bh); 2071 continue; 2072 } 2073 if (block_end > to || block_start < from) 2074 folio_zero_segments(folio, 2075 to, block_end, 2076 block_start, from); 2077 continue; 2078 } 2079 } 2080 if (folio_test_uptodate(folio)) { 2081 if (!buffer_uptodate(bh)) 2082 set_buffer_uptodate(bh); 2083 continue; 2084 } 2085 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2086 !buffer_unwritten(bh) && 2087 (block_start < from || block_end > to)) { 2088 bh_read_nowait(bh, 0); 2089 *wait_bh++=bh; 2090 } 2091 } 2092 /* 2093 * If we issued read requests - let them complete. 2094 */ 2095 while(wait_bh > wait) { 2096 wait_on_buffer(*--wait_bh); 2097 if (!buffer_uptodate(*wait_bh)) 2098 err = -EIO; 2099 } 2100 if (unlikely(err)) 2101 folio_zero_new_buffers(folio, from, to); 2102 return err; 2103 } 2104 2105 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2106 get_block_t *get_block) 2107 { 2108 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2109 NULL); 2110 } 2111 EXPORT_SYMBOL(__block_write_begin); 2112 2113 static int __block_commit_write(struct inode *inode, struct folio *folio, 2114 size_t from, size_t to) 2115 { 2116 size_t block_start, block_end; 2117 bool partial = false; 2118 unsigned blocksize; 2119 struct buffer_head *bh, *head; 2120 2121 bh = head = folio_buffers(folio); 2122 blocksize = bh->b_size; 2123 2124 block_start = 0; 2125 do { 2126 block_end = block_start + blocksize; 2127 if (block_end <= from || block_start >= to) { 2128 if (!buffer_uptodate(bh)) 2129 partial = true; 2130 } else { 2131 set_buffer_uptodate(bh); 2132 mark_buffer_dirty(bh); 2133 } 2134 if (buffer_new(bh)) 2135 clear_buffer_new(bh); 2136 2137 block_start = block_end; 2138 bh = bh->b_this_page; 2139 } while (bh != head); 2140 2141 /* 2142 * If this is a partial write which happened to make all buffers 2143 * uptodate then we can optimize away a bogus read_folio() for 2144 * the next read(). Here we 'discover' whether the folio went 2145 * uptodate as a result of this (potentially partial) write. 2146 */ 2147 if (!partial) 2148 folio_mark_uptodate(folio); 2149 return 0; 2150 } 2151 2152 /* 2153 * block_write_begin takes care of the basic task of block allocation and 2154 * bringing partial write blocks uptodate first. 2155 * 2156 * The filesystem needs to handle block truncation upon failure. 2157 */ 2158 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2159 struct page **pagep, get_block_t *get_block) 2160 { 2161 pgoff_t index = pos >> PAGE_SHIFT; 2162 struct page *page; 2163 int status; 2164 2165 page = grab_cache_page_write_begin(mapping, index); 2166 if (!page) 2167 return -ENOMEM; 2168 2169 status = __block_write_begin(page, pos, len, get_block); 2170 if (unlikely(status)) { 2171 unlock_page(page); 2172 put_page(page); 2173 page = NULL; 2174 } 2175 2176 *pagep = page; 2177 return status; 2178 } 2179 EXPORT_SYMBOL(block_write_begin); 2180 2181 int block_write_end(struct file *file, struct address_space *mapping, 2182 loff_t pos, unsigned len, unsigned copied, 2183 struct page *page, void *fsdata) 2184 { 2185 struct folio *folio = page_folio(page); 2186 struct inode *inode = mapping->host; 2187 size_t start = pos - folio_pos(folio); 2188 2189 if (unlikely(copied < len)) { 2190 /* 2191 * The buffers that were written will now be uptodate, so 2192 * we don't have to worry about a read_folio reading them 2193 * and overwriting a partial write. However if we have 2194 * encountered a short write and only partially written 2195 * into a buffer, it will not be marked uptodate, so a 2196 * read_folio might come in and destroy our partial write. 2197 * 2198 * Do the simplest thing, and just treat any short write to a 2199 * non uptodate folio as a zero-length write, and force the 2200 * caller to redo the whole thing. 2201 */ 2202 if (!folio_test_uptodate(folio)) 2203 copied = 0; 2204 2205 folio_zero_new_buffers(folio, start+copied, start+len); 2206 } 2207 flush_dcache_folio(folio); 2208 2209 /* This could be a short (even 0-length) commit */ 2210 __block_commit_write(inode, folio, start, start + copied); 2211 2212 return copied; 2213 } 2214 EXPORT_SYMBOL(block_write_end); 2215 2216 int generic_write_end(struct file *file, struct address_space *mapping, 2217 loff_t pos, unsigned len, unsigned copied, 2218 struct page *page, void *fsdata) 2219 { 2220 struct inode *inode = mapping->host; 2221 loff_t old_size = inode->i_size; 2222 bool i_size_changed = false; 2223 2224 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2225 2226 /* 2227 * No need to use i_size_read() here, the i_size cannot change under us 2228 * because we hold i_rwsem. 2229 * 2230 * But it's important to update i_size while still holding page lock: 2231 * page writeout could otherwise come in and zero beyond i_size. 2232 */ 2233 if (pos + copied > inode->i_size) { 2234 i_size_write(inode, pos + copied); 2235 i_size_changed = true; 2236 } 2237 2238 unlock_page(page); 2239 put_page(page); 2240 2241 if (old_size < pos) 2242 pagecache_isize_extended(inode, old_size, pos); 2243 /* 2244 * Don't mark the inode dirty under page lock. First, it unnecessarily 2245 * makes the holding time of page lock longer. Second, it forces lock 2246 * ordering of page lock and transaction start for journaling 2247 * filesystems. 2248 */ 2249 if (i_size_changed) 2250 mark_inode_dirty(inode); 2251 return copied; 2252 } 2253 EXPORT_SYMBOL(generic_write_end); 2254 2255 /* 2256 * block_is_partially_uptodate checks whether buffers within a folio are 2257 * uptodate or not. 2258 * 2259 * Returns true if all buffers which correspond to the specified part 2260 * of the folio are uptodate. 2261 */ 2262 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2263 { 2264 unsigned block_start, block_end, blocksize; 2265 unsigned to; 2266 struct buffer_head *bh, *head; 2267 bool ret = true; 2268 2269 head = folio_buffers(folio); 2270 if (!head) 2271 return false; 2272 blocksize = head->b_size; 2273 to = min_t(unsigned, folio_size(folio) - from, count); 2274 to = from + to; 2275 if (from < blocksize && to > folio_size(folio) - blocksize) 2276 return false; 2277 2278 bh = head; 2279 block_start = 0; 2280 do { 2281 block_end = block_start + blocksize; 2282 if (block_end > from && block_start < to) { 2283 if (!buffer_uptodate(bh)) { 2284 ret = false; 2285 break; 2286 } 2287 if (block_end >= to) 2288 break; 2289 } 2290 block_start = block_end; 2291 bh = bh->b_this_page; 2292 } while (bh != head); 2293 2294 return ret; 2295 } 2296 EXPORT_SYMBOL(block_is_partially_uptodate); 2297 2298 /* 2299 * Generic "read_folio" function for block devices that have the normal 2300 * get_block functionality. This is most of the block device filesystems. 2301 * Reads the folio asynchronously --- the unlock_buffer() and 2302 * set/clear_buffer_uptodate() functions propagate buffer state into the 2303 * folio once IO has completed. 2304 */ 2305 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2306 { 2307 struct inode *inode = folio->mapping->host; 2308 sector_t iblock, lblock; 2309 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2310 unsigned int blocksize, bbits; 2311 int nr, i; 2312 int fully_mapped = 1; 2313 bool page_error = false; 2314 loff_t limit = i_size_read(inode); 2315 2316 /* This is needed for ext4. */ 2317 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2318 limit = inode->i_sb->s_maxbytes; 2319 2320 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2321 2322 head = folio_create_buffers(folio, inode, 0); 2323 blocksize = head->b_size; 2324 bbits = block_size_bits(blocksize); 2325 2326 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2327 lblock = (limit+blocksize-1) >> bbits; 2328 bh = head; 2329 nr = 0; 2330 i = 0; 2331 2332 do { 2333 if (buffer_uptodate(bh)) 2334 continue; 2335 2336 if (!buffer_mapped(bh)) { 2337 int err = 0; 2338 2339 fully_mapped = 0; 2340 if (iblock < lblock) { 2341 WARN_ON(bh->b_size != blocksize); 2342 err = get_block(inode, iblock, bh, 0); 2343 if (err) { 2344 folio_set_error(folio); 2345 page_error = true; 2346 } 2347 } 2348 if (!buffer_mapped(bh)) { 2349 folio_zero_range(folio, i * blocksize, 2350 blocksize); 2351 if (!err) 2352 set_buffer_uptodate(bh); 2353 continue; 2354 } 2355 /* 2356 * get_block() might have updated the buffer 2357 * synchronously 2358 */ 2359 if (buffer_uptodate(bh)) 2360 continue; 2361 } 2362 arr[nr++] = bh; 2363 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2364 2365 if (fully_mapped) 2366 folio_set_mappedtodisk(folio); 2367 2368 if (!nr) { 2369 /* 2370 * All buffers are uptodate - we can set the folio uptodate 2371 * as well. But not if get_block() returned an error. 2372 */ 2373 if (!page_error) 2374 folio_mark_uptodate(folio); 2375 folio_unlock(folio); 2376 return 0; 2377 } 2378 2379 /* Stage two: lock the buffers */ 2380 for (i = 0; i < nr; i++) { 2381 bh = arr[i]; 2382 lock_buffer(bh); 2383 mark_buffer_async_read(bh); 2384 } 2385 2386 /* 2387 * Stage 3: start the IO. Check for uptodateness 2388 * inside the buffer lock in case another process reading 2389 * the underlying blockdev brought it uptodate (the sct fix). 2390 */ 2391 for (i = 0; i < nr; i++) { 2392 bh = arr[i]; 2393 if (buffer_uptodate(bh)) 2394 end_buffer_async_read(bh, 1); 2395 else 2396 submit_bh(REQ_OP_READ, bh); 2397 } 2398 return 0; 2399 } 2400 EXPORT_SYMBOL(block_read_full_folio); 2401 2402 /* utility function for filesystems that need to do work on expanding 2403 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2404 * deal with the hole. 2405 */ 2406 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2407 { 2408 struct address_space *mapping = inode->i_mapping; 2409 const struct address_space_operations *aops = mapping->a_ops; 2410 struct page *page; 2411 void *fsdata = NULL; 2412 int err; 2413 2414 err = inode_newsize_ok(inode, size); 2415 if (err) 2416 goto out; 2417 2418 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2419 if (err) 2420 goto out; 2421 2422 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2423 BUG_ON(err > 0); 2424 2425 out: 2426 return err; 2427 } 2428 EXPORT_SYMBOL(generic_cont_expand_simple); 2429 2430 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2431 loff_t pos, loff_t *bytes) 2432 { 2433 struct inode *inode = mapping->host; 2434 const struct address_space_operations *aops = mapping->a_ops; 2435 unsigned int blocksize = i_blocksize(inode); 2436 struct page *page; 2437 void *fsdata = NULL; 2438 pgoff_t index, curidx; 2439 loff_t curpos; 2440 unsigned zerofrom, offset, len; 2441 int err = 0; 2442 2443 index = pos >> PAGE_SHIFT; 2444 offset = pos & ~PAGE_MASK; 2445 2446 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2447 zerofrom = curpos & ~PAGE_MASK; 2448 if (zerofrom & (blocksize-1)) { 2449 *bytes |= (blocksize-1); 2450 (*bytes)++; 2451 } 2452 len = PAGE_SIZE - zerofrom; 2453 2454 err = aops->write_begin(file, mapping, curpos, len, 2455 &page, &fsdata); 2456 if (err) 2457 goto out; 2458 zero_user(page, zerofrom, len); 2459 err = aops->write_end(file, mapping, curpos, len, len, 2460 page, fsdata); 2461 if (err < 0) 2462 goto out; 2463 BUG_ON(err != len); 2464 err = 0; 2465 2466 balance_dirty_pages_ratelimited(mapping); 2467 2468 if (fatal_signal_pending(current)) { 2469 err = -EINTR; 2470 goto out; 2471 } 2472 } 2473 2474 /* page covers the boundary, find the boundary offset */ 2475 if (index == curidx) { 2476 zerofrom = curpos & ~PAGE_MASK; 2477 /* if we will expand the thing last block will be filled */ 2478 if (offset <= zerofrom) { 2479 goto out; 2480 } 2481 if (zerofrom & (blocksize-1)) { 2482 *bytes |= (blocksize-1); 2483 (*bytes)++; 2484 } 2485 len = offset - zerofrom; 2486 2487 err = aops->write_begin(file, mapping, curpos, len, 2488 &page, &fsdata); 2489 if (err) 2490 goto out; 2491 zero_user(page, zerofrom, len); 2492 err = aops->write_end(file, mapping, curpos, len, len, 2493 page, fsdata); 2494 if (err < 0) 2495 goto out; 2496 BUG_ON(err != len); 2497 err = 0; 2498 } 2499 out: 2500 return err; 2501 } 2502 2503 /* 2504 * For moronic filesystems that do not allow holes in file. 2505 * We may have to extend the file. 2506 */ 2507 int cont_write_begin(struct file *file, struct address_space *mapping, 2508 loff_t pos, unsigned len, 2509 struct page **pagep, void **fsdata, 2510 get_block_t *get_block, loff_t *bytes) 2511 { 2512 struct inode *inode = mapping->host; 2513 unsigned int blocksize = i_blocksize(inode); 2514 unsigned int zerofrom; 2515 int err; 2516 2517 err = cont_expand_zero(file, mapping, pos, bytes); 2518 if (err) 2519 return err; 2520 2521 zerofrom = *bytes & ~PAGE_MASK; 2522 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2523 *bytes |= (blocksize-1); 2524 (*bytes)++; 2525 } 2526 2527 return block_write_begin(mapping, pos, len, pagep, get_block); 2528 } 2529 EXPORT_SYMBOL(cont_write_begin); 2530 2531 int block_commit_write(struct page *page, unsigned from, unsigned to) 2532 { 2533 struct folio *folio = page_folio(page); 2534 struct inode *inode = folio->mapping->host; 2535 __block_commit_write(inode, folio, from, to); 2536 return 0; 2537 } 2538 EXPORT_SYMBOL(block_commit_write); 2539 2540 /* 2541 * block_page_mkwrite() is not allowed to change the file size as it gets 2542 * called from a page fault handler when a page is first dirtied. Hence we must 2543 * be careful to check for EOF conditions here. We set the page up correctly 2544 * for a written page which means we get ENOSPC checking when writing into 2545 * holes and correct delalloc and unwritten extent mapping on filesystems that 2546 * support these features. 2547 * 2548 * We are not allowed to take the i_mutex here so we have to play games to 2549 * protect against truncate races as the page could now be beyond EOF. Because 2550 * truncate writes the inode size before removing pages, once we have the 2551 * page lock we can determine safely if the page is beyond EOF. If it is not 2552 * beyond EOF, then the page is guaranteed safe against truncation until we 2553 * unlock the page. 2554 * 2555 * Direct callers of this function should protect against filesystem freezing 2556 * using sb_start_pagefault() - sb_end_pagefault() functions. 2557 */ 2558 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2559 get_block_t get_block) 2560 { 2561 struct folio *folio = page_folio(vmf->page); 2562 struct inode *inode = file_inode(vma->vm_file); 2563 unsigned long end; 2564 loff_t size; 2565 int ret; 2566 2567 folio_lock(folio); 2568 size = i_size_read(inode); 2569 if ((folio->mapping != inode->i_mapping) || 2570 (folio_pos(folio) >= size)) { 2571 /* We overload EFAULT to mean page got truncated */ 2572 ret = -EFAULT; 2573 goto out_unlock; 2574 } 2575 2576 end = folio_size(folio); 2577 /* folio is wholly or partially inside EOF */ 2578 if (folio_pos(folio) + end > size) 2579 end = size - folio_pos(folio); 2580 2581 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2582 if (!ret) 2583 ret = __block_commit_write(inode, folio, 0, end); 2584 2585 if (unlikely(ret < 0)) 2586 goto out_unlock; 2587 folio_mark_dirty(folio); 2588 folio_wait_stable(folio); 2589 return 0; 2590 out_unlock: 2591 folio_unlock(folio); 2592 return ret; 2593 } 2594 EXPORT_SYMBOL(block_page_mkwrite); 2595 2596 int block_truncate_page(struct address_space *mapping, 2597 loff_t from, get_block_t *get_block) 2598 { 2599 pgoff_t index = from >> PAGE_SHIFT; 2600 unsigned blocksize; 2601 sector_t iblock; 2602 size_t offset, length, pos; 2603 struct inode *inode = mapping->host; 2604 struct folio *folio; 2605 struct buffer_head *bh; 2606 int err = 0; 2607 2608 blocksize = i_blocksize(inode); 2609 length = from & (blocksize - 1); 2610 2611 /* Block boundary? Nothing to do */ 2612 if (!length) 2613 return 0; 2614 2615 length = blocksize - length; 2616 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2617 2618 folio = filemap_grab_folio(mapping, index); 2619 if (IS_ERR(folio)) 2620 return PTR_ERR(folio); 2621 2622 bh = folio_buffers(folio); 2623 if (!bh) { 2624 folio_create_empty_buffers(folio, blocksize, 0); 2625 bh = folio_buffers(folio); 2626 } 2627 2628 /* Find the buffer that contains "offset" */ 2629 offset = offset_in_folio(folio, from); 2630 pos = blocksize; 2631 while (offset >= pos) { 2632 bh = bh->b_this_page; 2633 iblock++; 2634 pos += blocksize; 2635 } 2636 2637 if (!buffer_mapped(bh)) { 2638 WARN_ON(bh->b_size != blocksize); 2639 err = get_block(inode, iblock, bh, 0); 2640 if (err) 2641 goto unlock; 2642 /* unmapped? It's a hole - nothing to do */ 2643 if (!buffer_mapped(bh)) 2644 goto unlock; 2645 } 2646 2647 /* Ok, it's mapped. Make sure it's up-to-date */ 2648 if (folio_test_uptodate(folio)) 2649 set_buffer_uptodate(bh); 2650 2651 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2652 err = bh_read(bh, 0); 2653 /* Uhhuh. Read error. Complain and punt. */ 2654 if (err < 0) 2655 goto unlock; 2656 } 2657 2658 folio_zero_range(folio, offset, length); 2659 mark_buffer_dirty(bh); 2660 2661 unlock: 2662 folio_unlock(folio); 2663 folio_put(folio); 2664 2665 return err; 2666 } 2667 EXPORT_SYMBOL(block_truncate_page); 2668 2669 /* 2670 * The generic ->writepage function for buffer-backed address_spaces 2671 */ 2672 int block_write_full_page(struct page *page, get_block_t *get_block, 2673 struct writeback_control *wbc) 2674 { 2675 struct folio *folio = page_folio(page); 2676 struct inode * const inode = folio->mapping->host; 2677 loff_t i_size = i_size_read(inode); 2678 2679 /* Is the folio fully inside i_size? */ 2680 if (folio_pos(folio) + folio_size(folio) <= i_size) 2681 return __block_write_full_folio(inode, folio, get_block, wbc, 2682 end_buffer_async_write); 2683 2684 /* Is the folio fully outside i_size? (truncate in progress) */ 2685 if (folio_pos(folio) >= i_size) { 2686 folio_unlock(folio); 2687 return 0; /* don't care */ 2688 } 2689 2690 /* 2691 * The folio straddles i_size. It must be zeroed out on each and every 2692 * writepage invocation because it may be mmapped. "A file is mapped 2693 * in multiples of the page size. For a file that is not a multiple of 2694 * the page size, the remaining memory is zeroed when mapped, and 2695 * writes to that region are not written out to the file." 2696 */ 2697 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2698 folio_size(folio)); 2699 return __block_write_full_folio(inode, folio, get_block, wbc, 2700 end_buffer_async_write); 2701 } 2702 EXPORT_SYMBOL(block_write_full_page); 2703 2704 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2705 get_block_t *get_block) 2706 { 2707 struct inode *inode = mapping->host; 2708 struct buffer_head tmp = { 2709 .b_size = i_blocksize(inode), 2710 }; 2711 2712 get_block(inode, block, &tmp, 0); 2713 return tmp.b_blocknr; 2714 } 2715 EXPORT_SYMBOL(generic_block_bmap); 2716 2717 static void end_bio_bh_io_sync(struct bio *bio) 2718 { 2719 struct buffer_head *bh = bio->bi_private; 2720 2721 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2722 set_bit(BH_Quiet, &bh->b_state); 2723 2724 bh->b_end_io(bh, !bio->bi_status); 2725 bio_put(bio); 2726 } 2727 2728 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2729 struct writeback_control *wbc) 2730 { 2731 const enum req_op op = opf & REQ_OP_MASK; 2732 struct bio *bio; 2733 2734 BUG_ON(!buffer_locked(bh)); 2735 BUG_ON(!buffer_mapped(bh)); 2736 BUG_ON(!bh->b_end_io); 2737 BUG_ON(buffer_delay(bh)); 2738 BUG_ON(buffer_unwritten(bh)); 2739 2740 /* 2741 * Only clear out a write error when rewriting 2742 */ 2743 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2744 clear_buffer_write_io_error(bh); 2745 2746 if (buffer_meta(bh)) 2747 opf |= REQ_META; 2748 if (buffer_prio(bh)) 2749 opf |= REQ_PRIO; 2750 2751 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2752 2753 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2754 2755 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2756 2757 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2758 2759 bio->bi_end_io = end_bio_bh_io_sync; 2760 bio->bi_private = bh; 2761 2762 /* Take care of bh's that straddle the end of the device */ 2763 guard_bio_eod(bio); 2764 2765 if (wbc) { 2766 wbc_init_bio(wbc, bio); 2767 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2768 } 2769 2770 submit_bio(bio); 2771 } 2772 2773 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2774 { 2775 submit_bh_wbc(opf, bh, NULL); 2776 } 2777 EXPORT_SYMBOL(submit_bh); 2778 2779 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2780 { 2781 lock_buffer(bh); 2782 if (!test_clear_buffer_dirty(bh)) { 2783 unlock_buffer(bh); 2784 return; 2785 } 2786 bh->b_end_io = end_buffer_write_sync; 2787 get_bh(bh); 2788 submit_bh(REQ_OP_WRITE | op_flags, bh); 2789 } 2790 EXPORT_SYMBOL(write_dirty_buffer); 2791 2792 /* 2793 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2794 * and then start new I/O and then wait upon it. The caller must have a ref on 2795 * the buffer_head. 2796 */ 2797 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2798 { 2799 WARN_ON(atomic_read(&bh->b_count) < 1); 2800 lock_buffer(bh); 2801 if (test_clear_buffer_dirty(bh)) { 2802 /* 2803 * The bh should be mapped, but it might not be if the 2804 * device was hot-removed. Not much we can do but fail the I/O. 2805 */ 2806 if (!buffer_mapped(bh)) { 2807 unlock_buffer(bh); 2808 return -EIO; 2809 } 2810 2811 get_bh(bh); 2812 bh->b_end_io = end_buffer_write_sync; 2813 submit_bh(REQ_OP_WRITE | op_flags, bh); 2814 wait_on_buffer(bh); 2815 if (!buffer_uptodate(bh)) 2816 return -EIO; 2817 } else { 2818 unlock_buffer(bh); 2819 } 2820 return 0; 2821 } 2822 EXPORT_SYMBOL(__sync_dirty_buffer); 2823 2824 int sync_dirty_buffer(struct buffer_head *bh) 2825 { 2826 return __sync_dirty_buffer(bh, REQ_SYNC); 2827 } 2828 EXPORT_SYMBOL(sync_dirty_buffer); 2829 2830 /* 2831 * try_to_free_buffers() checks if all the buffers on this particular folio 2832 * are unused, and releases them if so. 2833 * 2834 * Exclusion against try_to_free_buffers may be obtained by either 2835 * locking the folio or by holding its mapping's private_lock. 2836 * 2837 * If the folio is dirty but all the buffers are clean then we need to 2838 * be sure to mark the folio clean as well. This is because the folio 2839 * may be against a block device, and a later reattachment of buffers 2840 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2841 * filesystem data on the same device. 2842 * 2843 * The same applies to regular filesystem folios: if all the buffers are 2844 * clean then we set the folio clean and proceed. To do that, we require 2845 * total exclusion from block_dirty_folio(). That is obtained with 2846 * private_lock. 2847 * 2848 * try_to_free_buffers() is non-blocking. 2849 */ 2850 static inline int buffer_busy(struct buffer_head *bh) 2851 { 2852 return atomic_read(&bh->b_count) | 2853 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2854 } 2855 2856 static bool 2857 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2858 { 2859 struct buffer_head *head = folio_buffers(folio); 2860 struct buffer_head *bh; 2861 2862 bh = head; 2863 do { 2864 if (buffer_busy(bh)) 2865 goto failed; 2866 bh = bh->b_this_page; 2867 } while (bh != head); 2868 2869 do { 2870 struct buffer_head *next = bh->b_this_page; 2871 2872 if (bh->b_assoc_map) 2873 __remove_assoc_queue(bh); 2874 bh = next; 2875 } while (bh != head); 2876 *buffers_to_free = head; 2877 folio_detach_private(folio); 2878 return true; 2879 failed: 2880 return false; 2881 } 2882 2883 bool try_to_free_buffers(struct folio *folio) 2884 { 2885 struct address_space * const mapping = folio->mapping; 2886 struct buffer_head *buffers_to_free = NULL; 2887 bool ret = 0; 2888 2889 BUG_ON(!folio_test_locked(folio)); 2890 if (folio_test_writeback(folio)) 2891 return false; 2892 2893 if (mapping == NULL) { /* can this still happen? */ 2894 ret = drop_buffers(folio, &buffers_to_free); 2895 goto out; 2896 } 2897 2898 spin_lock(&mapping->private_lock); 2899 ret = drop_buffers(folio, &buffers_to_free); 2900 2901 /* 2902 * If the filesystem writes its buffers by hand (eg ext3) 2903 * then we can have clean buffers against a dirty folio. We 2904 * clean the folio here; otherwise the VM will never notice 2905 * that the filesystem did any IO at all. 2906 * 2907 * Also, during truncate, discard_buffer will have marked all 2908 * the folio's buffers clean. We discover that here and clean 2909 * the folio also. 2910 * 2911 * private_lock must be held over this entire operation in order 2912 * to synchronise against block_dirty_folio and prevent the 2913 * dirty bit from being lost. 2914 */ 2915 if (ret) 2916 folio_cancel_dirty(folio); 2917 spin_unlock(&mapping->private_lock); 2918 out: 2919 if (buffers_to_free) { 2920 struct buffer_head *bh = buffers_to_free; 2921 2922 do { 2923 struct buffer_head *next = bh->b_this_page; 2924 free_buffer_head(bh); 2925 bh = next; 2926 } while (bh != buffers_to_free); 2927 } 2928 return ret; 2929 } 2930 EXPORT_SYMBOL(try_to_free_buffers); 2931 2932 /* 2933 * Buffer-head allocation 2934 */ 2935 static struct kmem_cache *bh_cachep __read_mostly; 2936 2937 /* 2938 * Once the number of bh's in the machine exceeds this level, we start 2939 * stripping them in writeback. 2940 */ 2941 static unsigned long max_buffer_heads; 2942 2943 int buffer_heads_over_limit; 2944 2945 struct bh_accounting { 2946 int nr; /* Number of live bh's */ 2947 int ratelimit; /* Limit cacheline bouncing */ 2948 }; 2949 2950 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2951 2952 static void recalc_bh_state(void) 2953 { 2954 int i; 2955 int tot = 0; 2956 2957 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 2958 return; 2959 __this_cpu_write(bh_accounting.ratelimit, 0); 2960 for_each_online_cpu(i) 2961 tot += per_cpu(bh_accounting, i).nr; 2962 buffer_heads_over_limit = (tot > max_buffer_heads); 2963 } 2964 2965 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2966 { 2967 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 2968 if (ret) { 2969 INIT_LIST_HEAD(&ret->b_assoc_buffers); 2970 spin_lock_init(&ret->b_uptodate_lock); 2971 preempt_disable(); 2972 __this_cpu_inc(bh_accounting.nr); 2973 recalc_bh_state(); 2974 preempt_enable(); 2975 } 2976 return ret; 2977 } 2978 EXPORT_SYMBOL(alloc_buffer_head); 2979 2980 void free_buffer_head(struct buffer_head *bh) 2981 { 2982 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2983 kmem_cache_free(bh_cachep, bh); 2984 preempt_disable(); 2985 __this_cpu_dec(bh_accounting.nr); 2986 recalc_bh_state(); 2987 preempt_enable(); 2988 } 2989 EXPORT_SYMBOL(free_buffer_head); 2990 2991 static int buffer_exit_cpu_dead(unsigned int cpu) 2992 { 2993 int i; 2994 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 2995 2996 for (i = 0; i < BH_LRU_SIZE; i++) { 2997 brelse(b->bhs[i]); 2998 b->bhs[i] = NULL; 2999 } 3000 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3001 per_cpu(bh_accounting, cpu).nr = 0; 3002 return 0; 3003 } 3004 3005 /** 3006 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3007 * @bh: struct buffer_head 3008 * 3009 * Return true if the buffer is up-to-date and false, 3010 * with the buffer locked, if not. 3011 */ 3012 int bh_uptodate_or_lock(struct buffer_head *bh) 3013 { 3014 if (!buffer_uptodate(bh)) { 3015 lock_buffer(bh); 3016 if (!buffer_uptodate(bh)) 3017 return 0; 3018 unlock_buffer(bh); 3019 } 3020 return 1; 3021 } 3022 EXPORT_SYMBOL(bh_uptodate_or_lock); 3023 3024 /** 3025 * __bh_read - Submit read for a locked buffer 3026 * @bh: struct buffer_head 3027 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3028 * @wait: wait until reading finish 3029 * 3030 * Returns zero on success or don't wait, and -EIO on error. 3031 */ 3032 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3033 { 3034 int ret = 0; 3035 3036 BUG_ON(!buffer_locked(bh)); 3037 3038 get_bh(bh); 3039 bh->b_end_io = end_buffer_read_sync; 3040 submit_bh(REQ_OP_READ | op_flags, bh); 3041 if (wait) { 3042 wait_on_buffer(bh); 3043 if (!buffer_uptodate(bh)) 3044 ret = -EIO; 3045 } 3046 return ret; 3047 } 3048 EXPORT_SYMBOL(__bh_read); 3049 3050 /** 3051 * __bh_read_batch - Submit read for a batch of unlocked buffers 3052 * @nr: entry number of the buffer batch 3053 * @bhs: a batch of struct buffer_head 3054 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3055 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3056 * buffer that cannot lock. 3057 * 3058 * Returns zero on success or don't wait, and -EIO on error. 3059 */ 3060 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3061 blk_opf_t op_flags, bool force_lock) 3062 { 3063 int i; 3064 3065 for (i = 0; i < nr; i++) { 3066 struct buffer_head *bh = bhs[i]; 3067 3068 if (buffer_uptodate(bh)) 3069 continue; 3070 3071 if (force_lock) 3072 lock_buffer(bh); 3073 else 3074 if (!trylock_buffer(bh)) 3075 continue; 3076 3077 if (buffer_uptodate(bh)) { 3078 unlock_buffer(bh); 3079 continue; 3080 } 3081 3082 bh->b_end_io = end_buffer_read_sync; 3083 get_bh(bh); 3084 submit_bh(REQ_OP_READ | op_flags, bh); 3085 } 3086 } 3087 EXPORT_SYMBOL(__bh_read_batch); 3088 3089 void __init buffer_init(void) 3090 { 3091 unsigned long nrpages; 3092 int ret; 3093 3094 bh_cachep = kmem_cache_create("buffer_head", 3095 sizeof(struct buffer_head), 0, 3096 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3097 SLAB_MEM_SPREAD), 3098 NULL); 3099 3100 /* 3101 * Limit the bh occupancy to 10% of ZONE_NORMAL 3102 */ 3103 nrpages = (nr_free_buffer_pages() * 10) / 100; 3104 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3105 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3106 NULL, buffer_exit_cpu_dead); 3107 WARN_ON(ret < 0); 3108 } 3109