xref: /openbmc/linux/fs/buffer.c (revision 22246614)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	smp_mb__before_clear_bit();
80 	clear_buffer_locked(bh);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 	ClearPagePrivate(page);
99 	set_page_private(page, 0);
100 	page_cache_release(page);
101 }
102 
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 	char b[BDEVNAME_SIZE];
106 
107 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 			bdevname(bh->b_bdev, b),
109 			(unsigned long long)bh->b_blocknr);
110 }
111 
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122 	if (uptodate) {
123 		set_buffer_uptodate(bh);
124 	} else {
125 		/* This happens, due to failed READA attempts. */
126 		clear_buffer_uptodate(bh);
127 	}
128 	unlock_buffer(bh);
129 }
130 
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137 	__end_buffer_read_notouch(bh, uptodate);
138 	put_bh(bh);
139 }
140 
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143 	char b[BDEVNAME_SIZE];
144 
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149 			buffer_io_error(bh);
150 			printk(KERN_WARNING "lost page write due to "
151 					"I/O error on %s\n",
152 				       bdevname(bh->b_bdev, b));
153 		}
154 		set_buffer_write_io_error(bh);
155 		clear_buffer_uptodate(bh);
156 	}
157 	unlock_buffer(bh);
158 	put_bh(bh);
159 }
160 
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167 	int ret = 0;
168 
169 	if (bdev)
170 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171 	return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174 
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182 	struct super_block *sb = get_super(bdev);
183 	if (sb) {
184 		int res = fsync_super(sb);
185 		drop_super(sb);
186 		return res;
187 	}
188 	return sync_blockdev(bdev);
189 }
190 
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:	blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202 	struct super_block *sb;
203 
204 	down(&bdev->bd_mount_sem);
205 	sb = get_super(bdev);
206 	if (sb && !(sb->s_flags & MS_RDONLY)) {
207 		sb->s_frozen = SB_FREEZE_WRITE;
208 		smp_wmb();
209 
210 		__fsync_super(sb);
211 
212 		sb->s_frozen = SB_FREEZE_TRANS;
213 		smp_wmb();
214 
215 		sync_blockdev(sb->s_bdev);
216 
217 		if (sb->s_op->write_super_lockfs)
218 			sb->s_op->write_super_lockfs(sb);
219 	}
220 
221 	sync_blockdev(bdev);
222 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225 
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:	blockdevice to unlock
229  * @sb:		associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235 	if (sb) {
236 		BUG_ON(sb->s_bdev != bdev);
237 
238 		if (sb->s_op->unlockfs)
239 			sb->s_op->unlockfs(sb);
240 		sb->s_frozen = SB_UNFROZEN;
241 		smp_wmb();
242 		wake_up(&sb->s_wait_unfrozen);
243 		drop_super(sb);
244 	}
245 
246 	up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249 
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264 	struct inode *bd_inode = bdev->bd_inode;
265 	struct address_space *bd_mapping = bd_inode->i_mapping;
266 	struct buffer_head *ret = NULL;
267 	pgoff_t index;
268 	struct buffer_head *bh;
269 	struct buffer_head *head;
270 	struct page *page;
271 	int all_mapped = 1;
272 
273 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274 	page = find_get_page(bd_mapping, index);
275 	if (!page)
276 		goto out;
277 
278 	spin_lock(&bd_mapping->private_lock);
279 	if (!page_has_buffers(page))
280 		goto out_unlock;
281 	head = page_buffers(page);
282 	bh = head;
283 	do {
284 		if (bh->b_blocknr == block) {
285 			ret = bh;
286 			get_bh(bh);
287 			goto out_unlock;
288 		}
289 		if (!buffer_mapped(bh))
290 			all_mapped = 0;
291 		bh = bh->b_this_page;
292 	} while (bh != head);
293 
294 	/* we might be here because some of the buffers on this page are
295 	 * not mapped.  This is due to various races between
296 	 * file io on the block device and getblk.  It gets dealt with
297 	 * elsewhere, don't buffer_error if we had some unmapped buffers
298 	 */
299 	if (all_mapped) {
300 		printk("__find_get_block_slow() failed. "
301 			"block=%llu, b_blocknr=%llu\n",
302 			(unsigned long long)block,
303 			(unsigned long long)bh->b_blocknr);
304 		printk("b_state=0x%08lx, b_size=%zu\n",
305 			bh->b_state, bh->b_size);
306 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307 	}
308 out_unlock:
309 	spin_unlock(&bd_mapping->private_lock);
310 	page_cache_release(page);
311 out:
312 	return ret;
313 }
314 
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319 
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323 
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326 
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335 
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339 
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349 	struct address_space *mapping = bdev->bd_inode->i_mapping;
350 
351 	if (mapping->nrpages == 0)
352 		return;
353 
354 	invalidate_bh_lrus();
355 	invalidate_mapping_pages(mapping, 0, -1);
356 }
357 
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363 	struct zone *zone;
364 	int nid;
365 
366 	wakeup_pdflush(1024);
367 	yield();
368 
369 	for_each_online_node(nid) {
370 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
371 						gfp_zone(GFP_NOFS), NULL,
372 						&zone);
373 		if (zone)
374 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
375 						GFP_NOFS);
376 	}
377 }
378 
379 /*
380  * I/O completion handler for block_read_full_page() - pages
381  * which come unlocked at the end of I/O.
382  */
383 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
384 {
385 	unsigned long flags;
386 	struct buffer_head *first;
387 	struct buffer_head *tmp;
388 	struct page *page;
389 	int page_uptodate = 1;
390 
391 	BUG_ON(!buffer_async_read(bh));
392 
393 	page = bh->b_page;
394 	if (uptodate) {
395 		set_buffer_uptodate(bh);
396 	} else {
397 		clear_buffer_uptodate(bh);
398 		if (printk_ratelimit())
399 			buffer_io_error(bh);
400 		SetPageError(page);
401 	}
402 
403 	/*
404 	 * Be _very_ careful from here on. Bad things can happen if
405 	 * two buffer heads end IO at almost the same time and both
406 	 * decide that the page is now completely done.
407 	 */
408 	first = page_buffers(page);
409 	local_irq_save(flags);
410 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
411 	clear_buffer_async_read(bh);
412 	unlock_buffer(bh);
413 	tmp = bh;
414 	do {
415 		if (!buffer_uptodate(tmp))
416 			page_uptodate = 0;
417 		if (buffer_async_read(tmp)) {
418 			BUG_ON(!buffer_locked(tmp));
419 			goto still_busy;
420 		}
421 		tmp = tmp->b_this_page;
422 	} while (tmp != bh);
423 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
424 	local_irq_restore(flags);
425 
426 	/*
427 	 * If none of the buffers had errors and they are all
428 	 * uptodate then we can set the page uptodate.
429 	 */
430 	if (page_uptodate && !PageError(page))
431 		SetPageUptodate(page);
432 	unlock_page(page);
433 	return;
434 
435 still_busy:
436 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
437 	local_irq_restore(flags);
438 	return;
439 }
440 
441 /*
442  * Completion handler for block_write_full_page() - pages which are unlocked
443  * during I/O, and which have PageWriteback cleared upon I/O completion.
444  */
445 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
446 {
447 	char b[BDEVNAME_SIZE];
448 	unsigned long flags;
449 	struct buffer_head *first;
450 	struct buffer_head *tmp;
451 	struct page *page;
452 
453 	BUG_ON(!buffer_async_write(bh));
454 
455 	page = bh->b_page;
456 	if (uptodate) {
457 		set_buffer_uptodate(bh);
458 	} else {
459 		if (printk_ratelimit()) {
460 			buffer_io_error(bh);
461 			printk(KERN_WARNING "lost page write due to "
462 					"I/O error on %s\n",
463 			       bdevname(bh->b_bdev, b));
464 		}
465 		set_bit(AS_EIO, &page->mapping->flags);
466 		set_buffer_write_io_error(bh);
467 		clear_buffer_uptodate(bh);
468 		SetPageError(page);
469 	}
470 
471 	first = page_buffers(page);
472 	local_irq_save(flags);
473 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
474 
475 	clear_buffer_async_write(bh);
476 	unlock_buffer(bh);
477 	tmp = bh->b_this_page;
478 	while (tmp != bh) {
479 		if (buffer_async_write(tmp)) {
480 			BUG_ON(!buffer_locked(tmp));
481 			goto still_busy;
482 		}
483 		tmp = tmp->b_this_page;
484 	}
485 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
486 	local_irq_restore(flags);
487 	end_page_writeback(page);
488 	return;
489 
490 still_busy:
491 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
492 	local_irq_restore(flags);
493 	return;
494 }
495 
496 /*
497  * If a page's buffers are under async readin (end_buffer_async_read
498  * completion) then there is a possibility that another thread of
499  * control could lock one of the buffers after it has completed
500  * but while some of the other buffers have not completed.  This
501  * locked buffer would confuse end_buffer_async_read() into not unlocking
502  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
503  * that this buffer is not under async I/O.
504  *
505  * The page comes unlocked when it has no locked buffer_async buffers
506  * left.
507  *
508  * PageLocked prevents anyone starting new async I/O reads any of
509  * the buffers.
510  *
511  * PageWriteback is used to prevent simultaneous writeout of the same
512  * page.
513  *
514  * PageLocked prevents anyone from starting writeback of a page which is
515  * under read I/O (PageWriteback is only ever set against a locked page).
516  */
517 static void mark_buffer_async_read(struct buffer_head *bh)
518 {
519 	bh->b_end_io = end_buffer_async_read;
520 	set_buffer_async_read(bh);
521 }
522 
523 void mark_buffer_async_write(struct buffer_head *bh)
524 {
525 	bh->b_end_io = end_buffer_async_write;
526 	set_buffer_async_write(bh);
527 }
528 EXPORT_SYMBOL(mark_buffer_async_write);
529 
530 
531 /*
532  * fs/buffer.c contains helper functions for buffer-backed address space's
533  * fsync functions.  A common requirement for buffer-based filesystems is
534  * that certain data from the backing blockdev needs to be written out for
535  * a successful fsync().  For example, ext2 indirect blocks need to be
536  * written back and waited upon before fsync() returns.
537  *
538  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
539  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
540  * management of a list of dependent buffers at ->i_mapping->private_list.
541  *
542  * Locking is a little subtle: try_to_free_buffers() will remove buffers
543  * from their controlling inode's queue when they are being freed.  But
544  * try_to_free_buffers() will be operating against the *blockdev* mapping
545  * at the time, not against the S_ISREG file which depends on those buffers.
546  * So the locking for private_list is via the private_lock in the address_space
547  * which backs the buffers.  Which is different from the address_space
548  * against which the buffers are listed.  So for a particular address_space,
549  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
550  * mapping->private_list will always be protected by the backing blockdev's
551  * ->private_lock.
552  *
553  * Which introduces a requirement: all buffers on an address_space's
554  * ->private_list must be from the same address_space: the blockdev's.
555  *
556  * address_spaces which do not place buffers at ->private_list via these
557  * utility functions are free to use private_lock and private_list for
558  * whatever they want.  The only requirement is that list_empty(private_list)
559  * be true at clear_inode() time.
560  *
561  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
562  * filesystems should do that.  invalidate_inode_buffers() should just go
563  * BUG_ON(!list_empty).
564  *
565  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
566  * take an address_space, not an inode.  And it should be called
567  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
568  * queued up.
569  *
570  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
571  * list if it is already on a list.  Because if the buffer is on a list,
572  * it *must* already be on the right one.  If not, the filesystem is being
573  * silly.  This will save a ton of locking.  But first we have to ensure
574  * that buffers are taken *off* the old inode's list when they are freed
575  * (presumably in truncate).  That requires careful auditing of all
576  * filesystems (do it inside bforget()).  It could also be done by bringing
577  * b_inode back.
578  */
579 
580 /*
581  * The buffer's backing address_space's private_lock must be held
582  */
583 static inline void __remove_assoc_queue(struct buffer_head *bh)
584 {
585 	list_del_init(&bh->b_assoc_buffers);
586 	WARN_ON(!bh->b_assoc_map);
587 	if (buffer_write_io_error(bh))
588 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
589 	bh->b_assoc_map = NULL;
590 }
591 
592 int inode_has_buffers(struct inode *inode)
593 {
594 	return !list_empty(&inode->i_data.private_list);
595 }
596 
597 /*
598  * osync is designed to support O_SYNC io.  It waits synchronously for
599  * all already-submitted IO to complete, but does not queue any new
600  * writes to the disk.
601  *
602  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
603  * you dirty the buffers, and then use osync_inode_buffers to wait for
604  * completion.  Any other dirty buffers which are not yet queued for
605  * write will not be flushed to disk by the osync.
606  */
607 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
608 {
609 	struct buffer_head *bh;
610 	struct list_head *p;
611 	int err = 0;
612 
613 	spin_lock(lock);
614 repeat:
615 	list_for_each_prev(p, list) {
616 		bh = BH_ENTRY(p);
617 		if (buffer_locked(bh)) {
618 			get_bh(bh);
619 			spin_unlock(lock);
620 			wait_on_buffer(bh);
621 			if (!buffer_uptodate(bh))
622 				err = -EIO;
623 			brelse(bh);
624 			spin_lock(lock);
625 			goto repeat;
626 		}
627 	}
628 	spin_unlock(lock);
629 	return err;
630 }
631 
632 /**
633  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
634  * @mapping: the mapping which wants those buffers written
635  *
636  * Starts I/O against the buffers at mapping->private_list, and waits upon
637  * that I/O.
638  *
639  * Basically, this is a convenience function for fsync().
640  * @mapping is a file or directory which needs those buffers to be written for
641  * a successful fsync().
642  */
643 int sync_mapping_buffers(struct address_space *mapping)
644 {
645 	struct address_space *buffer_mapping = mapping->assoc_mapping;
646 
647 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
648 		return 0;
649 
650 	return fsync_buffers_list(&buffer_mapping->private_lock,
651 					&mapping->private_list);
652 }
653 EXPORT_SYMBOL(sync_mapping_buffers);
654 
655 /*
656  * Called when we've recently written block `bblock', and it is known that
657  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
658  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
659  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
660  */
661 void write_boundary_block(struct block_device *bdev,
662 			sector_t bblock, unsigned blocksize)
663 {
664 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
665 	if (bh) {
666 		if (buffer_dirty(bh))
667 			ll_rw_block(WRITE, 1, &bh);
668 		put_bh(bh);
669 	}
670 }
671 
672 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
673 {
674 	struct address_space *mapping = inode->i_mapping;
675 	struct address_space *buffer_mapping = bh->b_page->mapping;
676 
677 	mark_buffer_dirty(bh);
678 	if (!mapping->assoc_mapping) {
679 		mapping->assoc_mapping = buffer_mapping;
680 	} else {
681 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
682 	}
683 	if (!bh->b_assoc_map) {
684 		spin_lock(&buffer_mapping->private_lock);
685 		list_move_tail(&bh->b_assoc_buffers,
686 				&mapping->private_list);
687 		bh->b_assoc_map = mapping;
688 		spin_unlock(&buffer_mapping->private_lock);
689 	}
690 }
691 EXPORT_SYMBOL(mark_buffer_dirty_inode);
692 
693 /*
694  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
695  * dirty.
696  *
697  * If warn is true, then emit a warning if the page is not uptodate and has
698  * not been truncated.
699  */
700 static int __set_page_dirty(struct page *page,
701 		struct address_space *mapping, int warn)
702 {
703 	if (unlikely(!mapping))
704 		return !TestSetPageDirty(page);
705 
706 	if (TestSetPageDirty(page))
707 		return 0;
708 
709 	write_lock_irq(&mapping->tree_lock);
710 	if (page->mapping) {	/* Race with truncate? */
711 		WARN_ON_ONCE(warn && !PageUptodate(page));
712 
713 		if (mapping_cap_account_dirty(mapping)) {
714 			__inc_zone_page_state(page, NR_FILE_DIRTY);
715 			__inc_bdi_stat(mapping->backing_dev_info,
716 					BDI_RECLAIMABLE);
717 			task_io_account_write(PAGE_CACHE_SIZE);
718 		}
719 		radix_tree_tag_set(&mapping->page_tree,
720 				page_index(page), PAGECACHE_TAG_DIRTY);
721 	}
722 	write_unlock_irq(&mapping->tree_lock);
723 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
724 
725 	return 1;
726 }
727 
728 /*
729  * Add a page to the dirty page list.
730  *
731  * It is a sad fact of life that this function is called from several places
732  * deeply under spinlocking.  It may not sleep.
733  *
734  * If the page has buffers, the uptodate buffers are set dirty, to preserve
735  * dirty-state coherency between the page and the buffers.  It the page does
736  * not have buffers then when they are later attached they will all be set
737  * dirty.
738  *
739  * The buffers are dirtied before the page is dirtied.  There's a small race
740  * window in which a writepage caller may see the page cleanness but not the
741  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
742  * before the buffers, a concurrent writepage caller could clear the page dirty
743  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
744  * page on the dirty page list.
745  *
746  * We use private_lock to lock against try_to_free_buffers while using the
747  * page's buffer list.  Also use this to protect against clean buffers being
748  * added to the page after it was set dirty.
749  *
750  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
751  * address_space though.
752  */
753 int __set_page_dirty_buffers(struct page *page)
754 {
755 	struct address_space *mapping = page_mapping(page);
756 
757 	if (unlikely(!mapping))
758 		return !TestSetPageDirty(page);
759 
760 	spin_lock(&mapping->private_lock);
761 	if (page_has_buffers(page)) {
762 		struct buffer_head *head = page_buffers(page);
763 		struct buffer_head *bh = head;
764 
765 		do {
766 			set_buffer_dirty(bh);
767 			bh = bh->b_this_page;
768 		} while (bh != head);
769 	}
770 	spin_unlock(&mapping->private_lock);
771 
772 	return __set_page_dirty(page, mapping, 1);
773 }
774 EXPORT_SYMBOL(__set_page_dirty_buffers);
775 
776 /*
777  * Write out and wait upon a list of buffers.
778  *
779  * We have conflicting pressures: we want to make sure that all
780  * initially dirty buffers get waited on, but that any subsequently
781  * dirtied buffers don't.  After all, we don't want fsync to last
782  * forever if somebody is actively writing to the file.
783  *
784  * Do this in two main stages: first we copy dirty buffers to a
785  * temporary inode list, queueing the writes as we go.  Then we clean
786  * up, waiting for those writes to complete.
787  *
788  * During this second stage, any subsequent updates to the file may end
789  * up refiling the buffer on the original inode's dirty list again, so
790  * there is a chance we will end up with a buffer queued for write but
791  * not yet completed on that list.  So, as a final cleanup we go through
792  * the osync code to catch these locked, dirty buffers without requeuing
793  * any newly dirty buffers for write.
794  */
795 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
796 {
797 	struct buffer_head *bh;
798 	struct list_head tmp;
799 	struct address_space *mapping;
800 	int err = 0, err2;
801 
802 	INIT_LIST_HEAD(&tmp);
803 
804 	spin_lock(lock);
805 	while (!list_empty(list)) {
806 		bh = BH_ENTRY(list->next);
807 		mapping = bh->b_assoc_map;
808 		__remove_assoc_queue(bh);
809 		/* Avoid race with mark_buffer_dirty_inode() which does
810 		 * a lockless check and we rely on seeing the dirty bit */
811 		smp_mb();
812 		if (buffer_dirty(bh) || buffer_locked(bh)) {
813 			list_add(&bh->b_assoc_buffers, &tmp);
814 			bh->b_assoc_map = mapping;
815 			if (buffer_dirty(bh)) {
816 				get_bh(bh);
817 				spin_unlock(lock);
818 				/*
819 				 * Ensure any pending I/O completes so that
820 				 * ll_rw_block() actually writes the current
821 				 * contents - it is a noop if I/O is still in
822 				 * flight on potentially older contents.
823 				 */
824 				ll_rw_block(SWRITE, 1, &bh);
825 				brelse(bh);
826 				spin_lock(lock);
827 			}
828 		}
829 	}
830 
831 	while (!list_empty(&tmp)) {
832 		bh = BH_ENTRY(tmp.prev);
833 		get_bh(bh);
834 		mapping = bh->b_assoc_map;
835 		__remove_assoc_queue(bh);
836 		/* Avoid race with mark_buffer_dirty_inode() which does
837 		 * a lockless check and we rely on seeing the dirty bit */
838 		smp_mb();
839 		if (buffer_dirty(bh)) {
840 			list_add(&bh->b_assoc_buffers,
841 				 &mapping->private_list);
842 			bh->b_assoc_map = mapping;
843 		}
844 		spin_unlock(lock);
845 		wait_on_buffer(bh);
846 		if (!buffer_uptodate(bh))
847 			err = -EIO;
848 		brelse(bh);
849 		spin_lock(lock);
850 	}
851 
852 	spin_unlock(lock);
853 	err2 = osync_buffers_list(lock, list);
854 	if (err)
855 		return err;
856 	else
857 		return err2;
858 }
859 
860 /*
861  * Invalidate any and all dirty buffers on a given inode.  We are
862  * probably unmounting the fs, but that doesn't mean we have already
863  * done a sync().  Just drop the buffers from the inode list.
864  *
865  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
866  * assumes that all the buffers are against the blockdev.  Not true
867  * for reiserfs.
868  */
869 void invalidate_inode_buffers(struct inode *inode)
870 {
871 	if (inode_has_buffers(inode)) {
872 		struct address_space *mapping = &inode->i_data;
873 		struct list_head *list = &mapping->private_list;
874 		struct address_space *buffer_mapping = mapping->assoc_mapping;
875 
876 		spin_lock(&buffer_mapping->private_lock);
877 		while (!list_empty(list))
878 			__remove_assoc_queue(BH_ENTRY(list->next));
879 		spin_unlock(&buffer_mapping->private_lock);
880 	}
881 }
882 
883 /*
884  * Remove any clean buffers from the inode's buffer list.  This is called
885  * when we're trying to free the inode itself.  Those buffers can pin it.
886  *
887  * Returns true if all buffers were removed.
888  */
889 int remove_inode_buffers(struct inode *inode)
890 {
891 	int ret = 1;
892 
893 	if (inode_has_buffers(inode)) {
894 		struct address_space *mapping = &inode->i_data;
895 		struct list_head *list = &mapping->private_list;
896 		struct address_space *buffer_mapping = mapping->assoc_mapping;
897 
898 		spin_lock(&buffer_mapping->private_lock);
899 		while (!list_empty(list)) {
900 			struct buffer_head *bh = BH_ENTRY(list->next);
901 			if (buffer_dirty(bh)) {
902 				ret = 0;
903 				break;
904 			}
905 			__remove_assoc_queue(bh);
906 		}
907 		spin_unlock(&buffer_mapping->private_lock);
908 	}
909 	return ret;
910 }
911 
912 /*
913  * Create the appropriate buffers when given a page for data area and
914  * the size of each buffer.. Use the bh->b_this_page linked list to
915  * follow the buffers created.  Return NULL if unable to create more
916  * buffers.
917  *
918  * The retry flag is used to differentiate async IO (paging, swapping)
919  * which may not fail from ordinary buffer allocations.
920  */
921 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
922 		int retry)
923 {
924 	struct buffer_head *bh, *head;
925 	long offset;
926 
927 try_again:
928 	head = NULL;
929 	offset = PAGE_SIZE;
930 	while ((offset -= size) >= 0) {
931 		bh = alloc_buffer_head(GFP_NOFS);
932 		if (!bh)
933 			goto no_grow;
934 
935 		bh->b_bdev = NULL;
936 		bh->b_this_page = head;
937 		bh->b_blocknr = -1;
938 		head = bh;
939 
940 		bh->b_state = 0;
941 		atomic_set(&bh->b_count, 0);
942 		bh->b_private = NULL;
943 		bh->b_size = size;
944 
945 		/* Link the buffer to its page */
946 		set_bh_page(bh, page, offset);
947 
948 		init_buffer(bh, NULL, NULL);
949 	}
950 	return head;
951 /*
952  * In case anything failed, we just free everything we got.
953  */
954 no_grow:
955 	if (head) {
956 		do {
957 			bh = head;
958 			head = head->b_this_page;
959 			free_buffer_head(bh);
960 		} while (head);
961 	}
962 
963 	/*
964 	 * Return failure for non-async IO requests.  Async IO requests
965 	 * are not allowed to fail, so we have to wait until buffer heads
966 	 * become available.  But we don't want tasks sleeping with
967 	 * partially complete buffers, so all were released above.
968 	 */
969 	if (!retry)
970 		return NULL;
971 
972 	/* We're _really_ low on memory. Now we just
973 	 * wait for old buffer heads to become free due to
974 	 * finishing IO.  Since this is an async request and
975 	 * the reserve list is empty, we're sure there are
976 	 * async buffer heads in use.
977 	 */
978 	free_more_memory();
979 	goto try_again;
980 }
981 EXPORT_SYMBOL_GPL(alloc_page_buffers);
982 
983 static inline void
984 link_dev_buffers(struct page *page, struct buffer_head *head)
985 {
986 	struct buffer_head *bh, *tail;
987 
988 	bh = head;
989 	do {
990 		tail = bh;
991 		bh = bh->b_this_page;
992 	} while (bh);
993 	tail->b_this_page = head;
994 	attach_page_buffers(page, head);
995 }
996 
997 /*
998  * Initialise the state of a blockdev page's buffers.
999  */
1000 static void
1001 init_page_buffers(struct page *page, struct block_device *bdev,
1002 			sector_t block, int size)
1003 {
1004 	struct buffer_head *head = page_buffers(page);
1005 	struct buffer_head *bh = head;
1006 	int uptodate = PageUptodate(page);
1007 
1008 	do {
1009 		if (!buffer_mapped(bh)) {
1010 			init_buffer(bh, NULL, NULL);
1011 			bh->b_bdev = bdev;
1012 			bh->b_blocknr = block;
1013 			if (uptodate)
1014 				set_buffer_uptodate(bh);
1015 			set_buffer_mapped(bh);
1016 		}
1017 		block++;
1018 		bh = bh->b_this_page;
1019 	} while (bh != head);
1020 }
1021 
1022 /*
1023  * Create the page-cache page that contains the requested block.
1024  *
1025  * This is user purely for blockdev mappings.
1026  */
1027 static struct page *
1028 grow_dev_page(struct block_device *bdev, sector_t block,
1029 		pgoff_t index, int size)
1030 {
1031 	struct inode *inode = bdev->bd_inode;
1032 	struct page *page;
1033 	struct buffer_head *bh;
1034 
1035 	page = find_or_create_page(inode->i_mapping, index,
1036 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1037 	if (!page)
1038 		return NULL;
1039 
1040 	BUG_ON(!PageLocked(page));
1041 
1042 	if (page_has_buffers(page)) {
1043 		bh = page_buffers(page);
1044 		if (bh->b_size == size) {
1045 			init_page_buffers(page, bdev, block, size);
1046 			return page;
1047 		}
1048 		if (!try_to_free_buffers(page))
1049 			goto failed;
1050 	}
1051 
1052 	/*
1053 	 * Allocate some buffers for this page
1054 	 */
1055 	bh = alloc_page_buffers(page, size, 0);
1056 	if (!bh)
1057 		goto failed;
1058 
1059 	/*
1060 	 * Link the page to the buffers and initialise them.  Take the
1061 	 * lock to be atomic wrt __find_get_block(), which does not
1062 	 * run under the page lock.
1063 	 */
1064 	spin_lock(&inode->i_mapping->private_lock);
1065 	link_dev_buffers(page, bh);
1066 	init_page_buffers(page, bdev, block, size);
1067 	spin_unlock(&inode->i_mapping->private_lock);
1068 	return page;
1069 
1070 failed:
1071 	BUG();
1072 	unlock_page(page);
1073 	page_cache_release(page);
1074 	return NULL;
1075 }
1076 
1077 /*
1078  * Create buffers for the specified block device block's page.  If
1079  * that page was dirty, the buffers are set dirty also.
1080  */
1081 static int
1082 grow_buffers(struct block_device *bdev, sector_t block, int size)
1083 {
1084 	struct page *page;
1085 	pgoff_t index;
1086 	int sizebits;
1087 
1088 	sizebits = -1;
1089 	do {
1090 		sizebits++;
1091 	} while ((size << sizebits) < PAGE_SIZE);
1092 
1093 	index = block >> sizebits;
1094 
1095 	/*
1096 	 * Check for a block which wants to lie outside our maximum possible
1097 	 * pagecache index.  (this comparison is done using sector_t types).
1098 	 */
1099 	if (unlikely(index != block >> sizebits)) {
1100 		char b[BDEVNAME_SIZE];
1101 
1102 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1103 			"device %s\n",
1104 			__func__, (unsigned long long)block,
1105 			bdevname(bdev, b));
1106 		return -EIO;
1107 	}
1108 	block = index << sizebits;
1109 	/* Create a page with the proper size buffers.. */
1110 	page = grow_dev_page(bdev, block, index, size);
1111 	if (!page)
1112 		return 0;
1113 	unlock_page(page);
1114 	page_cache_release(page);
1115 	return 1;
1116 }
1117 
1118 static struct buffer_head *
1119 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1120 {
1121 	/* Size must be multiple of hard sectorsize */
1122 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1123 			(size < 512 || size > PAGE_SIZE))) {
1124 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1125 					size);
1126 		printk(KERN_ERR "hardsect size: %d\n",
1127 					bdev_hardsect_size(bdev));
1128 
1129 		dump_stack();
1130 		return NULL;
1131 	}
1132 
1133 	for (;;) {
1134 		struct buffer_head * bh;
1135 		int ret;
1136 
1137 		bh = __find_get_block(bdev, block, size);
1138 		if (bh)
1139 			return bh;
1140 
1141 		ret = grow_buffers(bdev, block, size);
1142 		if (ret < 0)
1143 			return NULL;
1144 		if (ret == 0)
1145 			free_more_memory();
1146 	}
1147 }
1148 
1149 /*
1150  * The relationship between dirty buffers and dirty pages:
1151  *
1152  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1153  * the page is tagged dirty in its radix tree.
1154  *
1155  * At all times, the dirtiness of the buffers represents the dirtiness of
1156  * subsections of the page.  If the page has buffers, the page dirty bit is
1157  * merely a hint about the true dirty state.
1158  *
1159  * When a page is set dirty in its entirety, all its buffers are marked dirty
1160  * (if the page has buffers).
1161  *
1162  * When a buffer is marked dirty, its page is dirtied, but the page's other
1163  * buffers are not.
1164  *
1165  * Also.  When blockdev buffers are explicitly read with bread(), they
1166  * individually become uptodate.  But their backing page remains not
1167  * uptodate - even if all of its buffers are uptodate.  A subsequent
1168  * block_read_full_page() against that page will discover all the uptodate
1169  * buffers, will set the page uptodate and will perform no I/O.
1170  */
1171 
1172 /**
1173  * mark_buffer_dirty - mark a buffer_head as needing writeout
1174  * @bh: the buffer_head to mark dirty
1175  *
1176  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1177  * backing page dirty, then tag the page as dirty in its address_space's radix
1178  * tree and then attach the address_space's inode to its superblock's dirty
1179  * inode list.
1180  *
1181  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1182  * mapping->tree_lock and the global inode_lock.
1183  */
1184 void mark_buffer_dirty(struct buffer_head *bh)
1185 {
1186 	WARN_ON_ONCE(!buffer_uptodate(bh));
1187 
1188 	/*
1189 	 * Very *carefully* optimize the it-is-already-dirty case.
1190 	 *
1191 	 * Don't let the final "is it dirty" escape to before we
1192 	 * perhaps modified the buffer.
1193 	 */
1194 	if (buffer_dirty(bh)) {
1195 		smp_mb();
1196 		if (buffer_dirty(bh))
1197 			return;
1198 	}
1199 
1200 	if (!test_set_buffer_dirty(bh))
1201 		__set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1202 }
1203 
1204 /*
1205  * Decrement a buffer_head's reference count.  If all buffers against a page
1206  * have zero reference count, are clean and unlocked, and if the page is clean
1207  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1208  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1209  * a page but it ends up not being freed, and buffers may later be reattached).
1210  */
1211 void __brelse(struct buffer_head * buf)
1212 {
1213 	if (atomic_read(&buf->b_count)) {
1214 		put_bh(buf);
1215 		return;
1216 	}
1217 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1218 	WARN_ON(1);
1219 }
1220 
1221 /*
1222  * bforget() is like brelse(), except it discards any
1223  * potentially dirty data.
1224  */
1225 void __bforget(struct buffer_head *bh)
1226 {
1227 	clear_buffer_dirty(bh);
1228 	if (bh->b_assoc_map) {
1229 		struct address_space *buffer_mapping = bh->b_page->mapping;
1230 
1231 		spin_lock(&buffer_mapping->private_lock);
1232 		list_del_init(&bh->b_assoc_buffers);
1233 		bh->b_assoc_map = NULL;
1234 		spin_unlock(&buffer_mapping->private_lock);
1235 	}
1236 	__brelse(bh);
1237 }
1238 
1239 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1240 {
1241 	lock_buffer(bh);
1242 	if (buffer_uptodate(bh)) {
1243 		unlock_buffer(bh);
1244 		return bh;
1245 	} else {
1246 		get_bh(bh);
1247 		bh->b_end_io = end_buffer_read_sync;
1248 		submit_bh(READ, bh);
1249 		wait_on_buffer(bh);
1250 		if (buffer_uptodate(bh))
1251 			return bh;
1252 	}
1253 	brelse(bh);
1254 	return NULL;
1255 }
1256 
1257 /*
1258  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1259  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1260  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1261  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1262  * CPU's LRUs at the same time.
1263  *
1264  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1265  * sb_find_get_block().
1266  *
1267  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1268  * a local interrupt disable for that.
1269  */
1270 
1271 #define BH_LRU_SIZE	8
1272 
1273 struct bh_lru {
1274 	struct buffer_head *bhs[BH_LRU_SIZE];
1275 };
1276 
1277 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1278 
1279 #ifdef CONFIG_SMP
1280 #define bh_lru_lock()	local_irq_disable()
1281 #define bh_lru_unlock()	local_irq_enable()
1282 #else
1283 #define bh_lru_lock()	preempt_disable()
1284 #define bh_lru_unlock()	preempt_enable()
1285 #endif
1286 
1287 static inline void check_irqs_on(void)
1288 {
1289 #ifdef irqs_disabled
1290 	BUG_ON(irqs_disabled());
1291 #endif
1292 }
1293 
1294 /*
1295  * The LRU management algorithm is dopey-but-simple.  Sorry.
1296  */
1297 static void bh_lru_install(struct buffer_head *bh)
1298 {
1299 	struct buffer_head *evictee = NULL;
1300 	struct bh_lru *lru;
1301 
1302 	check_irqs_on();
1303 	bh_lru_lock();
1304 	lru = &__get_cpu_var(bh_lrus);
1305 	if (lru->bhs[0] != bh) {
1306 		struct buffer_head *bhs[BH_LRU_SIZE];
1307 		int in;
1308 		int out = 0;
1309 
1310 		get_bh(bh);
1311 		bhs[out++] = bh;
1312 		for (in = 0; in < BH_LRU_SIZE; in++) {
1313 			struct buffer_head *bh2 = lru->bhs[in];
1314 
1315 			if (bh2 == bh) {
1316 				__brelse(bh2);
1317 			} else {
1318 				if (out >= BH_LRU_SIZE) {
1319 					BUG_ON(evictee != NULL);
1320 					evictee = bh2;
1321 				} else {
1322 					bhs[out++] = bh2;
1323 				}
1324 			}
1325 		}
1326 		while (out < BH_LRU_SIZE)
1327 			bhs[out++] = NULL;
1328 		memcpy(lru->bhs, bhs, sizeof(bhs));
1329 	}
1330 	bh_lru_unlock();
1331 
1332 	if (evictee)
1333 		__brelse(evictee);
1334 }
1335 
1336 /*
1337  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1338  */
1339 static struct buffer_head *
1340 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1341 {
1342 	struct buffer_head *ret = NULL;
1343 	struct bh_lru *lru;
1344 	unsigned int i;
1345 
1346 	check_irqs_on();
1347 	bh_lru_lock();
1348 	lru = &__get_cpu_var(bh_lrus);
1349 	for (i = 0; i < BH_LRU_SIZE; i++) {
1350 		struct buffer_head *bh = lru->bhs[i];
1351 
1352 		if (bh && bh->b_bdev == bdev &&
1353 				bh->b_blocknr == block && bh->b_size == size) {
1354 			if (i) {
1355 				while (i) {
1356 					lru->bhs[i] = lru->bhs[i - 1];
1357 					i--;
1358 				}
1359 				lru->bhs[0] = bh;
1360 			}
1361 			get_bh(bh);
1362 			ret = bh;
1363 			break;
1364 		}
1365 	}
1366 	bh_lru_unlock();
1367 	return ret;
1368 }
1369 
1370 /*
1371  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1372  * it in the LRU and mark it as accessed.  If it is not present then return
1373  * NULL
1374  */
1375 struct buffer_head *
1376 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1377 {
1378 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1379 
1380 	if (bh == NULL) {
1381 		bh = __find_get_block_slow(bdev, block);
1382 		if (bh)
1383 			bh_lru_install(bh);
1384 	}
1385 	if (bh)
1386 		touch_buffer(bh);
1387 	return bh;
1388 }
1389 EXPORT_SYMBOL(__find_get_block);
1390 
1391 /*
1392  * __getblk will locate (and, if necessary, create) the buffer_head
1393  * which corresponds to the passed block_device, block and size. The
1394  * returned buffer has its reference count incremented.
1395  *
1396  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1397  * illegal block number, __getblk() will happily return a buffer_head
1398  * which represents the non-existent block.  Very weird.
1399  *
1400  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1401  * attempt is failing.  FIXME, perhaps?
1402  */
1403 struct buffer_head *
1404 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1405 {
1406 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1407 
1408 	might_sleep();
1409 	if (bh == NULL)
1410 		bh = __getblk_slow(bdev, block, size);
1411 	return bh;
1412 }
1413 EXPORT_SYMBOL(__getblk);
1414 
1415 /*
1416  * Do async read-ahead on a buffer..
1417  */
1418 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1419 {
1420 	struct buffer_head *bh = __getblk(bdev, block, size);
1421 	if (likely(bh)) {
1422 		ll_rw_block(READA, 1, &bh);
1423 		brelse(bh);
1424 	}
1425 }
1426 EXPORT_SYMBOL(__breadahead);
1427 
1428 /**
1429  *  __bread() - reads a specified block and returns the bh
1430  *  @bdev: the block_device to read from
1431  *  @block: number of block
1432  *  @size: size (in bytes) to read
1433  *
1434  *  Reads a specified block, and returns buffer head that contains it.
1435  *  It returns NULL if the block was unreadable.
1436  */
1437 struct buffer_head *
1438 __bread(struct block_device *bdev, sector_t block, unsigned size)
1439 {
1440 	struct buffer_head *bh = __getblk(bdev, block, size);
1441 
1442 	if (likely(bh) && !buffer_uptodate(bh))
1443 		bh = __bread_slow(bh);
1444 	return bh;
1445 }
1446 EXPORT_SYMBOL(__bread);
1447 
1448 /*
1449  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1450  * This doesn't race because it runs in each cpu either in irq
1451  * or with preempt disabled.
1452  */
1453 static void invalidate_bh_lru(void *arg)
1454 {
1455 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1456 	int i;
1457 
1458 	for (i = 0; i < BH_LRU_SIZE; i++) {
1459 		brelse(b->bhs[i]);
1460 		b->bhs[i] = NULL;
1461 	}
1462 	put_cpu_var(bh_lrus);
1463 }
1464 
1465 void invalidate_bh_lrus(void)
1466 {
1467 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1468 }
1469 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1470 
1471 void set_bh_page(struct buffer_head *bh,
1472 		struct page *page, unsigned long offset)
1473 {
1474 	bh->b_page = page;
1475 	BUG_ON(offset >= PAGE_SIZE);
1476 	if (PageHighMem(page))
1477 		/*
1478 		 * This catches illegal uses and preserves the offset:
1479 		 */
1480 		bh->b_data = (char *)(0 + offset);
1481 	else
1482 		bh->b_data = page_address(page) + offset;
1483 }
1484 EXPORT_SYMBOL(set_bh_page);
1485 
1486 /*
1487  * Called when truncating a buffer on a page completely.
1488  */
1489 static void discard_buffer(struct buffer_head * bh)
1490 {
1491 	lock_buffer(bh);
1492 	clear_buffer_dirty(bh);
1493 	bh->b_bdev = NULL;
1494 	clear_buffer_mapped(bh);
1495 	clear_buffer_req(bh);
1496 	clear_buffer_new(bh);
1497 	clear_buffer_delay(bh);
1498 	clear_buffer_unwritten(bh);
1499 	unlock_buffer(bh);
1500 }
1501 
1502 /**
1503  * block_invalidatepage - invalidate part of all of a buffer-backed page
1504  *
1505  * @page: the page which is affected
1506  * @offset: the index of the truncation point
1507  *
1508  * block_invalidatepage() is called when all or part of the page has become
1509  * invalidatedby a truncate operation.
1510  *
1511  * block_invalidatepage() does not have to release all buffers, but it must
1512  * ensure that no dirty buffer is left outside @offset and that no I/O
1513  * is underway against any of the blocks which are outside the truncation
1514  * point.  Because the caller is about to free (and possibly reuse) those
1515  * blocks on-disk.
1516  */
1517 void block_invalidatepage(struct page *page, unsigned long offset)
1518 {
1519 	struct buffer_head *head, *bh, *next;
1520 	unsigned int curr_off = 0;
1521 
1522 	BUG_ON(!PageLocked(page));
1523 	if (!page_has_buffers(page))
1524 		goto out;
1525 
1526 	head = page_buffers(page);
1527 	bh = head;
1528 	do {
1529 		unsigned int next_off = curr_off + bh->b_size;
1530 		next = bh->b_this_page;
1531 
1532 		/*
1533 		 * is this block fully invalidated?
1534 		 */
1535 		if (offset <= curr_off)
1536 			discard_buffer(bh);
1537 		curr_off = next_off;
1538 		bh = next;
1539 	} while (bh != head);
1540 
1541 	/*
1542 	 * We release buffers only if the entire page is being invalidated.
1543 	 * The get_block cached value has been unconditionally invalidated,
1544 	 * so real IO is not possible anymore.
1545 	 */
1546 	if (offset == 0)
1547 		try_to_release_page(page, 0);
1548 out:
1549 	return;
1550 }
1551 EXPORT_SYMBOL(block_invalidatepage);
1552 
1553 /*
1554  * We attach and possibly dirty the buffers atomically wrt
1555  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1556  * is already excluded via the page lock.
1557  */
1558 void create_empty_buffers(struct page *page,
1559 			unsigned long blocksize, unsigned long b_state)
1560 {
1561 	struct buffer_head *bh, *head, *tail;
1562 
1563 	head = alloc_page_buffers(page, blocksize, 1);
1564 	bh = head;
1565 	do {
1566 		bh->b_state |= b_state;
1567 		tail = bh;
1568 		bh = bh->b_this_page;
1569 	} while (bh);
1570 	tail->b_this_page = head;
1571 
1572 	spin_lock(&page->mapping->private_lock);
1573 	if (PageUptodate(page) || PageDirty(page)) {
1574 		bh = head;
1575 		do {
1576 			if (PageDirty(page))
1577 				set_buffer_dirty(bh);
1578 			if (PageUptodate(page))
1579 				set_buffer_uptodate(bh);
1580 			bh = bh->b_this_page;
1581 		} while (bh != head);
1582 	}
1583 	attach_page_buffers(page, head);
1584 	spin_unlock(&page->mapping->private_lock);
1585 }
1586 EXPORT_SYMBOL(create_empty_buffers);
1587 
1588 /*
1589  * We are taking a block for data and we don't want any output from any
1590  * buffer-cache aliases starting from return from that function and
1591  * until the moment when something will explicitly mark the buffer
1592  * dirty (hopefully that will not happen until we will free that block ;-)
1593  * We don't even need to mark it not-uptodate - nobody can expect
1594  * anything from a newly allocated buffer anyway. We used to used
1595  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1596  * don't want to mark the alias unmapped, for example - it would confuse
1597  * anyone who might pick it with bread() afterwards...
1598  *
1599  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1600  * be writeout I/O going on against recently-freed buffers.  We don't
1601  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1602  * only if we really need to.  That happens here.
1603  */
1604 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1605 {
1606 	struct buffer_head *old_bh;
1607 
1608 	might_sleep();
1609 
1610 	old_bh = __find_get_block_slow(bdev, block);
1611 	if (old_bh) {
1612 		clear_buffer_dirty(old_bh);
1613 		wait_on_buffer(old_bh);
1614 		clear_buffer_req(old_bh);
1615 		__brelse(old_bh);
1616 	}
1617 }
1618 EXPORT_SYMBOL(unmap_underlying_metadata);
1619 
1620 /*
1621  * NOTE! All mapped/uptodate combinations are valid:
1622  *
1623  *	Mapped	Uptodate	Meaning
1624  *
1625  *	No	No		"unknown" - must do get_block()
1626  *	No	Yes		"hole" - zero-filled
1627  *	Yes	No		"allocated" - allocated on disk, not read in
1628  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1629  *
1630  * "Dirty" is valid only with the last case (mapped+uptodate).
1631  */
1632 
1633 /*
1634  * While block_write_full_page is writing back the dirty buffers under
1635  * the page lock, whoever dirtied the buffers may decide to clean them
1636  * again at any time.  We handle that by only looking at the buffer
1637  * state inside lock_buffer().
1638  *
1639  * If block_write_full_page() is called for regular writeback
1640  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1641  * locked buffer.   This only can happen if someone has written the buffer
1642  * directly, with submit_bh().  At the address_space level PageWriteback
1643  * prevents this contention from occurring.
1644  */
1645 static int __block_write_full_page(struct inode *inode, struct page *page,
1646 			get_block_t *get_block, struct writeback_control *wbc)
1647 {
1648 	int err;
1649 	sector_t block;
1650 	sector_t last_block;
1651 	struct buffer_head *bh, *head;
1652 	const unsigned blocksize = 1 << inode->i_blkbits;
1653 	int nr_underway = 0;
1654 
1655 	BUG_ON(!PageLocked(page));
1656 
1657 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1658 
1659 	if (!page_has_buffers(page)) {
1660 		create_empty_buffers(page, blocksize,
1661 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1662 	}
1663 
1664 	/*
1665 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1666 	 * here, and the (potentially unmapped) buffers may become dirty at
1667 	 * any time.  If a buffer becomes dirty here after we've inspected it
1668 	 * then we just miss that fact, and the page stays dirty.
1669 	 *
1670 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1671 	 * handle that here by just cleaning them.
1672 	 */
1673 
1674 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1675 	head = page_buffers(page);
1676 	bh = head;
1677 
1678 	/*
1679 	 * Get all the dirty buffers mapped to disk addresses and
1680 	 * handle any aliases from the underlying blockdev's mapping.
1681 	 */
1682 	do {
1683 		if (block > last_block) {
1684 			/*
1685 			 * mapped buffers outside i_size will occur, because
1686 			 * this page can be outside i_size when there is a
1687 			 * truncate in progress.
1688 			 */
1689 			/*
1690 			 * The buffer was zeroed by block_write_full_page()
1691 			 */
1692 			clear_buffer_dirty(bh);
1693 			set_buffer_uptodate(bh);
1694 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1695 			WARN_ON(bh->b_size != blocksize);
1696 			err = get_block(inode, block, bh, 1);
1697 			if (err)
1698 				goto recover;
1699 			if (buffer_new(bh)) {
1700 				/* blockdev mappings never come here */
1701 				clear_buffer_new(bh);
1702 				unmap_underlying_metadata(bh->b_bdev,
1703 							bh->b_blocknr);
1704 			}
1705 		}
1706 		bh = bh->b_this_page;
1707 		block++;
1708 	} while (bh != head);
1709 
1710 	do {
1711 		if (!buffer_mapped(bh))
1712 			continue;
1713 		/*
1714 		 * If it's a fully non-blocking write attempt and we cannot
1715 		 * lock the buffer then redirty the page.  Note that this can
1716 		 * potentially cause a busy-wait loop from pdflush and kswapd
1717 		 * activity, but those code paths have their own higher-level
1718 		 * throttling.
1719 		 */
1720 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1721 			lock_buffer(bh);
1722 		} else if (test_set_buffer_locked(bh)) {
1723 			redirty_page_for_writepage(wbc, page);
1724 			continue;
1725 		}
1726 		if (test_clear_buffer_dirty(bh)) {
1727 			mark_buffer_async_write(bh);
1728 		} else {
1729 			unlock_buffer(bh);
1730 		}
1731 	} while ((bh = bh->b_this_page) != head);
1732 
1733 	/*
1734 	 * The page and its buffers are protected by PageWriteback(), so we can
1735 	 * drop the bh refcounts early.
1736 	 */
1737 	BUG_ON(PageWriteback(page));
1738 	set_page_writeback(page);
1739 
1740 	do {
1741 		struct buffer_head *next = bh->b_this_page;
1742 		if (buffer_async_write(bh)) {
1743 			submit_bh(WRITE, bh);
1744 			nr_underway++;
1745 		}
1746 		bh = next;
1747 	} while (bh != head);
1748 	unlock_page(page);
1749 
1750 	err = 0;
1751 done:
1752 	if (nr_underway == 0) {
1753 		/*
1754 		 * The page was marked dirty, but the buffers were
1755 		 * clean.  Someone wrote them back by hand with
1756 		 * ll_rw_block/submit_bh.  A rare case.
1757 		 */
1758 		end_page_writeback(page);
1759 
1760 		/*
1761 		 * The page and buffer_heads can be released at any time from
1762 		 * here on.
1763 		 */
1764 	}
1765 	return err;
1766 
1767 recover:
1768 	/*
1769 	 * ENOSPC, or some other error.  We may already have added some
1770 	 * blocks to the file, so we need to write these out to avoid
1771 	 * exposing stale data.
1772 	 * The page is currently locked and not marked for writeback
1773 	 */
1774 	bh = head;
1775 	/* Recovery: lock and submit the mapped buffers */
1776 	do {
1777 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1778 			lock_buffer(bh);
1779 			mark_buffer_async_write(bh);
1780 		} else {
1781 			/*
1782 			 * The buffer may have been set dirty during
1783 			 * attachment to a dirty page.
1784 			 */
1785 			clear_buffer_dirty(bh);
1786 		}
1787 	} while ((bh = bh->b_this_page) != head);
1788 	SetPageError(page);
1789 	BUG_ON(PageWriteback(page));
1790 	mapping_set_error(page->mapping, err);
1791 	set_page_writeback(page);
1792 	do {
1793 		struct buffer_head *next = bh->b_this_page;
1794 		if (buffer_async_write(bh)) {
1795 			clear_buffer_dirty(bh);
1796 			submit_bh(WRITE, bh);
1797 			nr_underway++;
1798 		}
1799 		bh = next;
1800 	} while (bh != head);
1801 	unlock_page(page);
1802 	goto done;
1803 }
1804 
1805 /*
1806  * If a page has any new buffers, zero them out here, and mark them uptodate
1807  * and dirty so they'll be written out (in order to prevent uninitialised
1808  * block data from leaking). And clear the new bit.
1809  */
1810 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1811 {
1812 	unsigned int block_start, block_end;
1813 	struct buffer_head *head, *bh;
1814 
1815 	BUG_ON(!PageLocked(page));
1816 	if (!page_has_buffers(page))
1817 		return;
1818 
1819 	bh = head = page_buffers(page);
1820 	block_start = 0;
1821 	do {
1822 		block_end = block_start + bh->b_size;
1823 
1824 		if (buffer_new(bh)) {
1825 			if (block_end > from && block_start < to) {
1826 				if (!PageUptodate(page)) {
1827 					unsigned start, size;
1828 
1829 					start = max(from, block_start);
1830 					size = min(to, block_end) - start;
1831 
1832 					zero_user(page, start, size);
1833 					set_buffer_uptodate(bh);
1834 				}
1835 
1836 				clear_buffer_new(bh);
1837 				mark_buffer_dirty(bh);
1838 			}
1839 		}
1840 
1841 		block_start = block_end;
1842 		bh = bh->b_this_page;
1843 	} while (bh != head);
1844 }
1845 EXPORT_SYMBOL(page_zero_new_buffers);
1846 
1847 static int __block_prepare_write(struct inode *inode, struct page *page,
1848 		unsigned from, unsigned to, get_block_t *get_block)
1849 {
1850 	unsigned block_start, block_end;
1851 	sector_t block;
1852 	int err = 0;
1853 	unsigned blocksize, bbits;
1854 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1855 
1856 	BUG_ON(!PageLocked(page));
1857 	BUG_ON(from > PAGE_CACHE_SIZE);
1858 	BUG_ON(to > PAGE_CACHE_SIZE);
1859 	BUG_ON(from > to);
1860 
1861 	blocksize = 1 << inode->i_blkbits;
1862 	if (!page_has_buffers(page))
1863 		create_empty_buffers(page, blocksize, 0);
1864 	head = page_buffers(page);
1865 
1866 	bbits = inode->i_blkbits;
1867 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1868 
1869 	for(bh = head, block_start = 0; bh != head || !block_start;
1870 	    block++, block_start=block_end, bh = bh->b_this_page) {
1871 		block_end = block_start + blocksize;
1872 		if (block_end <= from || block_start >= to) {
1873 			if (PageUptodate(page)) {
1874 				if (!buffer_uptodate(bh))
1875 					set_buffer_uptodate(bh);
1876 			}
1877 			continue;
1878 		}
1879 		if (buffer_new(bh))
1880 			clear_buffer_new(bh);
1881 		if (!buffer_mapped(bh)) {
1882 			WARN_ON(bh->b_size != blocksize);
1883 			err = get_block(inode, block, bh, 1);
1884 			if (err)
1885 				break;
1886 			if (buffer_new(bh)) {
1887 				unmap_underlying_metadata(bh->b_bdev,
1888 							bh->b_blocknr);
1889 				if (PageUptodate(page)) {
1890 					clear_buffer_new(bh);
1891 					set_buffer_uptodate(bh);
1892 					mark_buffer_dirty(bh);
1893 					continue;
1894 				}
1895 				if (block_end > to || block_start < from)
1896 					zero_user_segments(page,
1897 						to, block_end,
1898 						block_start, from);
1899 				continue;
1900 			}
1901 		}
1902 		if (PageUptodate(page)) {
1903 			if (!buffer_uptodate(bh))
1904 				set_buffer_uptodate(bh);
1905 			continue;
1906 		}
1907 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1908 		    !buffer_unwritten(bh) &&
1909 		     (block_start < from || block_end > to)) {
1910 			ll_rw_block(READ, 1, &bh);
1911 			*wait_bh++=bh;
1912 		}
1913 	}
1914 	/*
1915 	 * If we issued read requests - let them complete.
1916 	 */
1917 	while(wait_bh > wait) {
1918 		wait_on_buffer(*--wait_bh);
1919 		if (!buffer_uptodate(*wait_bh))
1920 			err = -EIO;
1921 	}
1922 	if (unlikely(err))
1923 		page_zero_new_buffers(page, from, to);
1924 	return err;
1925 }
1926 
1927 static int __block_commit_write(struct inode *inode, struct page *page,
1928 		unsigned from, unsigned to)
1929 {
1930 	unsigned block_start, block_end;
1931 	int partial = 0;
1932 	unsigned blocksize;
1933 	struct buffer_head *bh, *head;
1934 
1935 	blocksize = 1 << inode->i_blkbits;
1936 
1937 	for(bh = head = page_buffers(page), block_start = 0;
1938 	    bh != head || !block_start;
1939 	    block_start=block_end, bh = bh->b_this_page) {
1940 		block_end = block_start + blocksize;
1941 		if (block_end <= from || block_start >= to) {
1942 			if (!buffer_uptodate(bh))
1943 				partial = 1;
1944 		} else {
1945 			set_buffer_uptodate(bh);
1946 			mark_buffer_dirty(bh);
1947 		}
1948 		clear_buffer_new(bh);
1949 	}
1950 
1951 	/*
1952 	 * If this is a partial write which happened to make all buffers
1953 	 * uptodate then we can optimize away a bogus readpage() for
1954 	 * the next read(). Here we 'discover' whether the page went
1955 	 * uptodate as a result of this (potentially partial) write.
1956 	 */
1957 	if (!partial)
1958 		SetPageUptodate(page);
1959 	return 0;
1960 }
1961 
1962 /*
1963  * block_write_begin takes care of the basic task of block allocation and
1964  * bringing partial write blocks uptodate first.
1965  *
1966  * If *pagep is not NULL, then block_write_begin uses the locked page
1967  * at *pagep rather than allocating its own. In this case, the page will
1968  * not be unlocked or deallocated on failure.
1969  */
1970 int block_write_begin(struct file *file, struct address_space *mapping,
1971 			loff_t pos, unsigned len, unsigned flags,
1972 			struct page **pagep, void **fsdata,
1973 			get_block_t *get_block)
1974 {
1975 	struct inode *inode = mapping->host;
1976 	int status = 0;
1977 	struct page *page;
1978 	pgoff_t index;
1979 	unsigned start, end;
1980 	int ownpage = 0;
1981 
1982 	index = pos >> PAGE_CACHE_SHIFT;
1983 	start = pos & (PAGE_CACHE_SIZE - 1);
1984 	end = start + len;
1985 
1986 	page = *pagep;
1987 	if (page == NULL) {
1988 		ownpage = 1;
1989 		page = __grab_cache_page(mapping, index);
1990 		if (!page) {
1991 			status = -ENOMEM;
1992 			goto out;
1993 		}
1994 		*pagep = page;
1995 	} else
1996 		BUG_ON(!PageLocked(page));
1997 
1998 	status = __block_prepare_write(inode, page, start, end, get_block);
1999 	if (unlikely(status)) {
2000 		ClearPageUptodate(page);
2001 
2002 		if (ownpage) {
2003 			unlock_page(page);
2004 			page_cache_release(page);
2005 			*pagep = NULL;
2006 
2007 			/*
2008 			 * prepare_write() may have instantiated a few blocks
2009 			 * outside i_size.  Trim these off again. Don't need
2010 			 * i_size_read because we hold i_mutex.
2011 			 */
2012 			if (pos + len > inode->i_size)
2013 				vmtruncate(inode, inode->i_size);
2014 		}
2015 		goto out;
2016 	}
2017 
2018 out:
2019 	return status;
2020 }
2021 EXPORT_SYMBOL(block_write_begin);
2022 
2023 int block_write_end(struct file *file, struct address_space *mapping,
2024 			loff_t pos, unsigned len, unsigned copied,
2025 			struct page *page, void *fsdata)
2026 {
2027 	struct inode *inode = mapping->host;
2028 	unsigned start;
2029 
2030 	start = pos & (PAGE_CACHE_SIZE - 1);
2031 
2032 	if (unlikely(copied < len)) {
2033 		/*
2034 		 * The buffers that were written will now be uptodate, so we
2035 		 * don't have to worry about a readpage reading them and
2036 		 * overwriting a partial write. However if we have encountered
2037 		 * a short write and only partially written into a buffer, it
2038 		 * will not be marked uptodate, so a readpage might come in and
2039 		 * destroy our partial write.
2040 		 *
2041 		 * Do the simplest thing, and just treat any short write to a
2042 		 * non uptodate page as a zero-length write, and force the
2043 		 * caller to redo the whole thing.
2044 		 */
2045 		if (!PageUptodate(page))
2046 			copied = 0;
2047 
2048 		page_zero_new_buffers(page, start+copied, start+len);
2049 	}
2050 	flush_dcache_page(page);
2051 
2052 	/* This could be a short (even 0-length) commit */
2053 	__block_commit_write(inode, page, start, start+copied);
2054 
2055 	return copied;
2056 }
2057 EXPORT_SYMBOL(block_write_end);
2058 
2059 int generic_write_end(struct file *file, struct address_space *mapping,
2060 			loff_t pos, unsigned len, unsigned copied,
2061 			struct page *page, void *fsdata)
2062 {
2063 	struct inode *inode = mapping->host;
2064 
2065 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2066 
2067 	/*
2068 	 * No need to use i_size_read() here, the i_size
2069 	 * cannot change under us because we hold i_mutex.
2070 	 *
2071 	 * But it's important to update i_size while still holding page lock:
2072 	 * page writeout could otherwise come in and zero beyond i_size.
2073 	 */
2074 	if (pos+copied > inode->i_size) {
2075 		i_size_write(inode, pos+copied);
2076 		mark_inode_dirty(inode);
2077 	}
2078 
2079 	unlock_page(page);
2080 	page_cache_release(page);
2081 
2082 	return copied;
2083 }
2084 EXPORT_SYMBOL(generic_write_end);
2085 
2086 /*
2087  * Generic "read page" function for block devices that have the normal
2088  * get_block functionality. This is most of the block device filesystems.
2089  * Reads the page asynchronously --- the unlock_buffer() and
2090  * set/clear_buffer_uptodate() functions propagate buffer state into the
2091  * page struct once IO has completed.
2092  */
2093 int block_read_full_page(struct page *page, get_block_t *get_block)
2094 {
2095 	struct inode *inode = page->mapping->host;
2096 	sector_t iblock, lblock;
2097 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2098 	unsigned int blocksize;
2099 	int nr, i;
2100 	int fully_mapped = 1;
2101 
2102 	BUG_ON(!PageLocked(page));
2103 	blocksize = 1 << inode->i_blkbits;
2104 	if (!page_has_buffers(page))
2105 		create_empty_buffers(page, blocksize, 0);
2106 	head = page_buffers(page);
2107 
2108 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2109 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2110 	bh = head;
2111 	nr = 0;
2112 	i = 0;
2113 
2114 	do {
2115 		if (buffer_uptodate(bh))
2116 			continue;
2117 
2118 		if (!buffer_mapped(bh)) {
2119 			int err = 0;
2120 
2121 			fully_mapped = 0;
2122 			if (iblock < lblock) {
2123 				WARN_ON(bh->b_size != blocksize);
2124 				err = get_block(inode, iblock, bh, 0);
2125 				if (err)
2126 					SetPageError(page);
2127 			}
2128 			if (!buffer_mapped(bh)) {
2129 				zero_user(page, i * blocksize, blocksize);
2130 				if (!err)
2131 					set_buffer_uptodate(bh);
2132 				continue;
2133 			}
2134 			/*
2135 			 * get_block() might have updated the buffer
2136 			 * synchronously
2137 			 */
2138 			if (buffer_uptodate(bh))
2139 				continue;
2140 		}
2141 		arr[nr++] = bh;
2142 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2143 
2144 	if (fully_mapped)
2145 		SetPageMappedToDisk(page);
2146 
2147 	if (!nr) {
2148 		/*
2149 		 * All buffers are uptodate - we can set the page uptodate
2150 		 * as well. But not if get_block() returned an error.
2151 		 */
2152 		if (!PageError(page))
2153 			SetPageUptodate(page);
2154 		unlock_page(page);
2155 		return 0;
2156 	}
2157 
2158 	/* Stage two: lock the buffers */
2159 	for (i = 0; i < nr; i++) {
2160 		bh = arr[i];
2161 		lock_buffer(bh);
2162 		mark_buffer_async_read(bh);
2163 	}
2164 
2165 	/*
2166 	 * Stage 3: start the IO.  Check for uptodateness
2167 	 * inside the buffer lock in case another process reading
2168 	 * the underlying blockdev brought it uptodate (the sct fix).
2169 	 */
2170 	for (i = 0; i < nr; i++) {
2171 		bh = arr[i];
2172 		if (buffer_uptodate(bh))
2173 			end_buffer_async_read(bh, 1);
2174 		else
2175 			submit_bh(READ, bh);
2176 	}
2177 	return 0;
2178 }
2179 
2180 /* utility function for filesystems that need to do work on expanding
2181  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2182  * deal with the hole.
2183  */
2184 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2185 {
2186 	struct address_space *mapping = inode->i_mapping;
2187 	struct page *page;
2188 	void *fsdata;
2189 	unsigned long limit;
2190 	int err;
2191 
2192 	err = -EFBIG;
2193         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2194 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2195 		send_sig(SIGXFSZ, current, 0);
2196 		goto out;
2197 	}
2198 	if (size > inode->i_sb->s_maxbytes)
2199 		goto out;
2200 
2201 	err = pagecache_write_begin(NULL, mapping, size, 0,
2202 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2203 				&page, &fsdata);
2204 	if (err)
2205 		goto out;
2206 
2207 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2208 	BUG_ON(err > 0);
2209 
2210 out:
2211 	return err;
2212 }
2213 
2214 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2215 			    loff_t pos, loff_t *bytes)
2216 {
2217 	struct inode *inode = mapping->host;
2218 	unsigned blocksize = 1 << inode->i_blkbits;
2219 	struct page *page;
2220 	void *fsdata;
2221 	pgoff_t index, curidx;
2222 	loff_t curpos;
2223 	unsigned zerofrom, offset, len;
2224 	int err = 0;
2225 
2226 	index = pos >> PAGE_CACHE_SHIFT;
2227 	offset = pos & ~PAGE_CACHE_MASK;
2228 
2229 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2230 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2231 		if (zerofrom & (blocksize-1)) {
2232 			*bytes |= (blocksize-1);
2233 			(*bytes)++;
2234 		}
2235 		len = PAGE_CACHE_SIZE - zerofrom;
2236 
2237 		err = pagecache_write_begin(file, mapping, curpos, len,
2238 						AOP_FLAG_UNINTERRUPTIBLE,
2239 						&page, &fsdata);
2240 		if (err)
2241 			goto out;
2242 		zero_user(page, zerofrom, len);
2243 		err = pagecache_write_end(file, mapping, curpos, len, len,
2244 						page, fsdata);
2245 		if (err < 0)
2246 			goto out;
2247 		BUG_ON(err != len);
2248 		err = 0;
2249 
2250 		balance_dirty_pages_ratelimited(mapping);
2251 	}
2252 
2253 	/* page covers the boundary, find the boundary offset */
2254 	if (index == curidx) {
2255 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2256 		/* if we will expand the thing last block will be filled */
2257 		if (offset <= zerofrom) {
2258 			goto out;
2259 		}
2260 		if (zerofrom & (blocksize-1)) {
2261 			*bytes |= (blocksize-1);
2262 			(*bytes)++;
2263 		}
2264 		len = offset - zerofrom;
2265 
2266 		err = pagecache_write_begin(file, mapping, curpos, len,
2267 						AOP_FLAG_UNINTERRUPTIBLE,
2268 						&page, &fsdata);
2269 		if (err)
2270 			goto out;
2271 		zero_user(page, zerofrom, len);
2272 		err = pagecache_write_end(file, mapping, curpos, len, len,
2273 						page, fsdata);
2274 		if (err < 0)
2275 			goto out;
2276 		BUG_ON(err != len);
2277 		err = 0;
2278 	}
2279 out:
2280 	return err;
2281 }
2282 
2283 /*
2284  * For moronic filesystems that do not allow holes in file.
2285  * We may have to extend the file.
2286  */
2287 int cont_write_begin(struct file *file, struct address_space *mapping,
2288 			loff_t pos, unsigned len, unsigned flags,
2289 			struct page **pagep, void **fsdata,
2290 			get_block_t *get_block, loff_t *bytes)
2291 {
2292 	struct inode *inode = mapping->host;
2293 	unsigned blocksize = 1 << inode->i_blkbits;
2294 	unsigned zerofrom;
2295 	int err;
2296 
2297 	err = cont_expand_zero(file, mapping, pos, bytes);
2298 	if (err)
2299 		goto out;
2300 
2301 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2302 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2303 		*bytes |= (blocksize-1);
2304 		(*bytes)++;
2305 	}
2306 
2307 	*pagep = NULL;
2308 	err = block_write_begin(file, mapping, pos, len,
2309 				flags, pagep, fsdata, get_block);
2310 out:
2311 	return err;
2312 }
2313 
2314 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2315 			get_block_t *get_block)
2316 {
2317 	struct inode *inode = page->mapping->host;
2318 	int err = __block_prepare_write(inode, page, from, to, get_block);
2319 	if (err)
2320 		ClearPageUptodate(page);
2321 	return err;
2322 }
2323 
2324 int block_commit_write(struct page *page, unsigned from, unsigned to)
2325 {
2326 	struct inode *inode = page->mapping->host;
2327 	__block_commit_write(inode,page,from,to);
2328 	return 0;
2329 }
2330 
2331 /*
2332  * block_page_mkwrite() is not allowed to change the file size as it gets
2333  * called from a page fault handler when a page is first dirtied. Hence we must
2334  * be careful to check for EOF conditions here. We set the page up correctly
2335  * for a written page which means we get ENOSPC checking when writing into
2336  * holes and correct delalloc and unwritten extent mapping on filesystems that
2337  * support these features.
2338  *
2339  * We are not allowed to take the i_mutex here so we have to play games to
2340  * protect against truncate races as the page could now be beyond EOF.  Because
2341  * vmtruncate() writes the inode size before removing pages, once we have the
2342  * page lock we can determine safely if the page is beyond EOF. If it is not
2343  * beyond EOF, then the page is guaranteed safe against truncation until we
2344  * unlock the page.
2345  */
2346 int
2347 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2348 		   get_block_t get_block)
2349 {
2350 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2351 	unsigned long end;
2352 	loff_t size;
2353 	int ret = -EINVAL;
2354 
2355 	lock_page(page);
2356 	size = i_size_read(inode);
2357 	if ((page->mapping != inode->i_mapping) ||
2358 	    (page_offset(page) > size)) {
2359 		/* page got truncated out from underneath us */
2360 		goto out_unlock;
2361 	}
2362 
2363 	/* page is wholly or partially inside EOF */
2364 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2365 		end = size & ~PAGE_CACHE_MASK;
2366 	else
2367 		end = PAGE_CACHE_SIZE;
2368 
2369 	ret = block_prepare_write(page, 0, end, get_block);
2370 	if (!ret)
2371 		ret = block_commit_write(page, 0, end);
2372 
2373 out_unlock:
2374 	unlock_page(page);
2375 	return ret;
2376 }
2377 
2378 /*
2379  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2380  * immediately, while under the page lock.  So it needs a special end_io
2381  * handler which does not touch the bh after unlocking it.
2382  */
2383 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2384 {
2385 	__end_buffer_read_notouch(bh, uptodate);
2386 }
2387 
2388 /*
2389  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2390  * the page (converting it to circular linked list and taking care of page
2391  * dirty races).
2392  */
2393 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2394 {
2395 	struct buffer_head *bh;
2396 
2397 	BUG_ON(!PageLocked(page));
2398 
2399 	spin_lock(&page->mapping->private_lock);
2400 	bh = head;
2401 	do {
2402 		if (PageDirty(page))
2403 			set_buffer_dirty(bh);
2404 		if (!bh->b_this_page)
2405 			bh->b_this_page = head;
2406 		bh = bh->b_this_page;
2407 	} while (bh != head);
2408 	attach_page_buffers(page, head);
2409 	spin_unlock(&page->mapping->private_lock);
2410 }
2411 
2412 /*
2413  * On entry, the page is fully not uptodate.
2414  * On exit the page is fully uptodate in the areas outside (from,to)
2415  */
2416 int nobh_write_begin(struct file *file, struct address_space *mapping,
2417 			loff_t pos, unsigned len, unsigned flags,
2418 			struct page **pagep, void **fsdata,
2419 			get_block_t *get_block)
2420 {
2421 	struct inode *inode = mapping->host;
2422 	const unsigned blkbits = inode->i_blkbits;
2423 	const unsigned blocksize = 1 << blkbits;
2424 	struct buffer_head *head, *bh;
2425 	struct page *page;
2426 	pgoff_t index;
2427 	unsigned from, to;
2428 	unsigned block_in_page;
2429 	unsigned block_start, block_end;
2430 	sector_t block_in_file;
2431 	int nr_reads = 0;
2432 	int ret = 0;
2433 	int is_mapped_to_disk = 1;
2434 
2435 	index = pos >> PAGE_CACHE_SHIFT;
2436 	from = pos & (PAGE_CACHE_SIZE - 1);
2437 	to = from + len;
2438 
2439 	page = __grab_cache_page(mapping, index);
2440 	if (!page)
2441 		return -ENOMEM;
2442 	*pagep = page;
2443 	*fsdata = NULL;
2444 
2445 	if (page_has_buffers(page)) {
2446 		unlock_page(page);
2447 		page_cache_release(page);
2448 		*pagep = NULL;
2449 		return block_write_begin(file, mapping, pos, len, flags, pagep,
2450 					fsdata, get_block);
2451 	}
2452 
2453 	if (PageMappedToDisk(page))
2454 		return 0;
2455 
2456 	/*
2457 	 * Allocate buffers so that we can keep track of state, and potentially
2458 	 * attach them to the page if an error occurs. In the common case of
2459 	 * no error, they will just be freed again without ever being attached
2460 	 * to the page (which is all OK, because we're under the page lock).
2461 	 *
2462 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2463 	 * than the circular one we're used to.
2464 	 */
2465 	head = alloc_page_buffers(page, blocksize, 0);
2466 	if (!head) {
2467 		ret = -ENOMEM;
2468 		goto out_release;
2469 	}
2470 
2471 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2472 
2473 	/*
2474 	 * We loop across all blocks in the page, whether or not they are
2475 	 * part of the affected region.  This is so we can discover if the
2476 	 * page is fully mapped-to-disk.
2477 	 */
2478 	for (block_start = 0, block_in_page = 0, bh = head;
2479 		  block_start < PAGE_CACHE_SIZE;
2480 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2481 		int create;
2482 
2483 		block_end = block_start + blocksize;
2484 		bh->b_state = 0;
2485 		create = 1;
2486 		if (block_start >= to)
2487 			create = 0;
2488 		ret = get_block(inode, block_in_file + block_in_page,
2489 					bh, create);
2490 		if (ret)
2491 			goto failed;
2492 		if (!buffer_mapped(bh))
2493 			is_mapped_to_disk = 0;
2494 		if (buffer_new(bh))
2495 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2496 		if (PageUptodate(page)) {
2497 			set_buffer_uptodate(bh);
2498 			continue;
2499 		}
2500 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2501 			zero_user_segments(page, block_start, from,
2502 							to, block_end);
2503 			continue;
2504 		}
2505 		if (buffer_uptodate(bh))
2506 			continue;	/* reiserfs does this */
2507 		if (block_start < from || block_end > to) {
2508 			lock_buffer(bh);
2509 			bh->b_end_io = end_buffer_read_nobh;
2510 			submit_bh(READ, bh);
2511 			nr_reads++;
2512 		}
2513 	}
2514 
2515 	if (nr_reads) {
2516 		/*
2517 		 * The page is locked, so these buffers are protected from
2518 		 * any VM or truncate activity.  Hence we don't need to care
2519 		 * for the buffer_head refcounts.
2520 		 */
2521 		for (bh = head; bh; bh = bh->b_this_page) {
2522 			wait_on_buffer(bh);
2523 			if (!buffer_uptodate(bh))
2524 				ret = -EIO;
2525 		}
2526 		if (ret)
2527 			goto failed;
2528 	}
2529 
2530 	if (is_mapped_to_disk)
2531 		SetPageMappedToDisk(page);
2532 
2533 	*fsdata = head; /* to be released by nobh_write_end */
2534 
2535 	return 0;
2536 
2537 failed:
2538 	BUG_ON(!ret);
2539 	/*
2540 	 * Error recovery is a bit difficult. We need to zero out blocks that
2541 	 * were newly allocated, and dirty them to ensure they get written out.
2542 	 * Buffers need to be attached to the page at this point, otherwise
2543 	 * the handling of potential IO errors during writeout would be hard
2544 	 * (could try doing synchronous writeout, but what if that fails too?)
2545 	 */
2546 	attach_nobh_buffers(page, head);
2547 	page_zero_new_buffers(page, from, to);
2548 
2549 out_release:
2550 	unlock_page(page);
2551 	page_cache_release(page);
2552 	*pagep = NULL;
2553 
2554 	if (pos + len > inode->i_size)
2555 		vmtruncate(inode, inode->i_size);
2556 
2557 	return ret;
2558 }
2559 EXPORT_SYMBOL(nobh_write_begin);
2560 
2561 int nobh_write_end(struct file *file, struct address_space *mapping,
2562 			loff_t pos, unsigned len, unsigned copied,
2563 			struct page *page, void *fsdata)
2564 {
2565 	struct inode *inode = page->mapping->host;
2566 	struct buffer_head *head = fsdata;
2567 	struct buffer_head *bh;
2568 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2569 
2570 	if (unlikely(copied < len) && !page_has_buffers(page))
2571 		attach_nobh_buffers(page, head);
2572 	if (page_has_buffers(page))
2573 		return generic_write_end(file, mapping, pos, len,
2574 					copied, page, fsdata);
2575 
2576 	SetPageUptodate(page);
2577 	set_page_dirty(page);
2578 	if (pos+copied > inode->i_size) {
2579 		i_size_write(inode, pos+copied);
2580 		mark_inode_dirty(inode);
2581 	}
2582 
2583 	unlock_page(page);
2584 	page_cache_release(page);
2585 
2586 	while (head) {
2587 		bh = head;
2588 		head = head->b_this_page;
2589 		free_buffer_head(bh);
2590 	}
2591 
2592 	return copied;
2593 }
2594 EXPORT_SYMBOL(nobh_write_end);
2595 
2596 /*
2597  * nobh_writepage() - based on block_full_write_page() except
2598  * that it tries to operate without attaching bufferheads to
2599  * the page.
2600  */
2601 int nobh_writepage(struct page *page, get_block_t *get_block,
2602 			struct writeback_control *wbc)
2603 {
2604 	struct inode * const inode = page->mapping->host;
2605 	loff_t i_size = i_size_read(inode);
2606 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2607 	unsigned offset;
2608 	int ret;
2609 
2610 	/* Is the page fully inside i_size? */
2611 	if (page->index < end_index)
2612 		goto out;
2613 
2614 	/* Is the page fully outside i_size? (truncate in progress) */
2615 	offset = i_size & (PAGE_CACHE_SIZE-1);
2616 	if (page->index >= end_index+1 || !offset) {
2617 		/*
2618 		 * The page may have dirty, unmapped buffers.  For example,
2619 		 * they may have been added in ext3_writepage().  Make them
2620 		 * freeable here, so the page does not leak.
2621 		 */
2622 #if 0
2623 		/* Not really sure about this  - do we need this ? */
2624 		if (page->mapping->a_ops->invalidatepage)
2625 			page->mapping->a_ops->invalidatepage(page, offset);
2626 #endif
2627 		unlock_page(page);
2628 		return 0; /* don't care */
2629 	}
2630 
2631 	/*
2632 	 * The page straddles i_size.  It must be zeroed out on each and every
2633 	 * writepage invocation because it may be mmapped.  "A file is mapped
2634 	 * in multiples of the page size.  For a file that is not a multiple of
2635 	 * the  page size, the remaining memory is zeroed when mapped, and
2636 	 * writes to that region are not written out to the file."
2637 	 */
2638 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2639 out:
2640 	ret = mpage_writepage(page, get_block, wbc);
2641 	if (ret == -EAGAIN)
2642 		ret = __block_write_full_page(inode, page, get_block, wbc);
2643 	return ret;
2644 }
2645 EXPORT_SYMBOL(nobh_writepage);
2646 
2647 int nobh_truncate_page(struct address_space *mapping,
2648 			loff_t from, get_block_t *get_block)
2649 {
2650 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2651 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2652 	unsigned blocksize;
2653 	sector_t iblock;
2654 	unsigned length, pos;
2655 	struct inode *inode = mapping->host;
2656 	struct page *page;
2657 	struct buffer_head map_bh;
2658 	int err;
2659 
2660 	blocksize = 1 << inode->i_blkbits;
2661 	length = offset & (blocksize - 1);
2662 
2663 	/* Block boundary? Nothing to do */
2664 	if (!length)
2665 		return 0;
2666 
2667 	length = blocksize - length;
2668 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2669 
2670 	page = grab_cache_page(mapping, index);
2671 	err = -ENOMEM;
2672 	if (!page)
2673 		goto out;
2674 
2675 	if (page_has_buffers(page)) {
2676 has_buffers:
2677 		unlock_page(page);
2678 		page_cache_release(page);
2679 		return block_truncate_page(mapping, from, get_block);
2680 	}
2681 
2682 	/* Find the buffer that contains "offset" */
2683 	pos = blocksize;
2684 	while (offset >= pos) {
2685 		iblock++;
2686 		pos += blocksize;
2687 	}
2688 
2689 	err = get_block(inode, iblock, &map_bh, 0);
2690 	if (err)
2691 		goto unlock;
2692 	/* unmapped? It's a hole - nothing to do */
2693 	if (!buffer_mapped(&map_bh))
2694 		goto unlock;
2695 
2696 	/* Ok, it's mapped. Make sure it's up-to-date */
2697 	if (!PageUptodate(page)) {
2698 		err = mapping->a_ops->readpage(NULL, page);
2699 		if (err) {
2700 			page_cache_release(page);
2701 			goto out;
2702 		}
2703 		lock_page(page);
2704 		if (!PageUptodate(page)) {
2705 			err = -EIO;
2706 			goto unlock;
2707 		}
2708 		if (page_has_buffers(page))
2709 			goto has_buffers;
2710 	}
2711 	zero_user(page, offset, length);
2712 	set_page_dirty(page);
2713 	err = 0;
2714 
2715 unlock:
2716 	unlock_page(page);
2717 	page_cache_release(page);
2718 out:
2719 	return err;
2720 }
2721 EXPORT_SYMBOL(nobh_truncate_page);
2722 
2723 int block_truncate_page(struct address_space *mapping,
2724 			loff_t from, get_block_t *get_block)
2725 {
2726 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2727 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2728 	unsigned blocksize;
2729 	sector_t iblock;
2730 	unsigned length, pos;
2731 	struct inode *inode = mapping->host;
2732 	struct page *page;
2733 	struct buffer_head *bh;
2734 	int err;
2735 
2736 	blocksize = 1 << inode->i_blkbits;
2737 	length = offset & (blocksize - 1);
2738 
2739 	/* Block boundary? Nothing to do */
2740 	if (!length)
2741 		return 0;
2742 
2743 	length = blocksize - length;
2744 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2745 
2746 	page = grab_cache_page(mapping, index);
2747 	err = -ENOMEM;
2748 	if (!page)
2749 		goto out;
2750 
2751 	if (!page_has_buffers(page))
2752 		create_empty_buffers(page, blocksize, 0);
2753 
2754 	/* Find the buffer that contains "offset" */
2755 	bh = page_buffers(page);
2756 	pos = blocksize;
2757 	while (offset >= pos) {
2758 		bh = bh->b_this_page;
2759 		iblock++;
2760 		pos += blocksize;
2761 	}
2762 
2763 	err = 0;
2764 	if (!buffer_mapped(bh)) {
2765 		WARN_ON(bh->b_size != blocksize);
2766 		err = get_block(inode, iblock, bh, 0);
2767 		if (err)
2768 			goto unlock;
2769 		/* unmapped? It's a hole - nothing to do */
2770 		if (!buffer_mapped(bh))
2771 			goto unlock;
2772 	}
2773 
2774 	/* Ok, it's mapped. Make sure it's up-to-date */
2775 	if (PageUptodate(page))
2776 		set_buffer_uptodate(bh);
2777 
2778 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2779 		err = -EIO;
2780 		ll_rw_block(READ, 1, &bh);
2781 		wait_on_buffer(bh);
2782 		/* Uhhuh. Read error. Complain and punt. */
2783 		if (!buffer_uptodate(bh))
2784 			goto unlock;
2785 	}
2786 
2787 	zero_user(page, offset, length);
2788 	mark_buffer_dirty(bh);
2789 	err = 0;
2790 
2791 unlock:
2792 	unlock_page(page);
2793 	page_cache_release(page);
2794 out:
2795 	return err;
2796 }
2797 
2798 /*
2799  * The generic ->writepage function for buffer-backed address_spaces
2800  */
2801 int block_write_full_page(struct page *page, get_block_t *get_block,
2802 			struct writeback_control *wbc)
2803 {
2804 	struct inode * const inode = page->mapping->host;
2805 	loff_t i_size = i_size_read(inode);
2806 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2807 	unsigned offset;
2808 
2809 	/* Is the page fully inside i_size? */
2810 	if (page->index < end_index)
2811 		return __block_write_full_page(inode, page, get_block, wbc);
2812 
2813 	/* Is the page fully outside i_size? (truncate in progress) */
2814 	offset = i_size & (PAGE_CACHE_SIZE-1);
2815 	if (page->index >= end_index+1 || !offset) {
2816 		/*
2817 		 * The page may have dirty, unmapped buffers.  For example,
2818 		 * they may have been added in ext3_writepage().  Make them
2819 		 * freeable here, so the page does not leak.
2820 		 */
2821 		do_invalidatepage(page, 0);
2822 		unlock_page(page);
2823 		return 0; /* don't care */
2824 	}
2825 
2826 	/*
2827 	 * The page straddles i_size.  It must be zeroed out on each and every
2828 	 * writepage invokation because it may be mmapped.  "A file is mapped
2829 	 * in multiples of the page size.  For a file that is not a multiple of
2830 	 * the  page size, the remaining memory is zeroed when mapped, and
2831 	 * writes to that region are not written out to the file."
2832 	 */
2833 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2834 	return __block_write_full_page(inode, page, get_block, wbc);
2835 }
2836 
2837 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2838 			    get_block_t *get_block)
2839 {
2840 	struct buffer_head tmp;
2841 	struct inode *inode = mapping->host;
2842 	tmp.b_state = 0;
2843 	tmp.b_blocknr = 0;
2844 	tmp.b_size = 1 << inode->i_blkbits;
2845 	get_block(inode, block, &tmp, 0);
2846 	return tmp.b_blocknr;
2847 }
2848 
2849 static void end_bio_bh_io_sync(struct bio *bio, int err)
2850 {
2851 	struct buffer_head *bh = bio->bi_private;
2852 
2853 	if (err == -EOPNOTSUPP) {
2854 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2855 		set_bit(BH_Eopnotsupp, &bh->b_state);
2856 	}
2857 
2858 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2859 	bio_put(bio);
2860 }
2861 
2862 int submit_bh(int rw, struct buffer_head * bh)
2863 {
2864 	struct bio *bio;
2865 	int ret = 0;
2866 
2867 	BUG_ON(!buffer_locked(bh));
2868 	BUG_ON(!buffer_mapped(bh));
2869 	BUG_ON(!bh->b_end_io);
2870 
2871 	if (buffer_ordered(bh) && (rw == WRITE))
2872 		rw = WRITE_BARRIER;
2873 
2874 	/*
2875 	 * Only clear out a write error when rewriting, should this
2876 	 * include WRITE_SYNC as well?
2877 	 */
2878 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2879 		clear_buffer_write_io_error(bh);
2880 
2881 	/*
2882 	 * from here on down, it's all bio -- do the initial mapping,
2883 	 * submit_bio -> generic_make_request may further map this bio around
2884 	 */
2885 	bio = bio_alloc(GFP_NOIO, 1);
2886 
2887 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2888 	bio->bi_bdev = bh->b_bdev;
2889 	bio->bi_io_vec[0].bv_page = bh->b_page;
2890 	bio->bi_io_vec[0].bv_len = bh->b_size;
2891 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2892 
2893 	bio->bi_vcnt = 1;
2894 	bio->bi_idx = 0;
2895 	bio->bi_size = bh->b_size;
2896 
2897 	bio->bi_end_io = end_bio_bh_io_sync;
2898 	bio->bi_private = bh;
2899 
2900 	bio_get(bio);
2901 	submit_bio(rw, bio);
2902 
2903 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2904 		ret = -EOPNOTSUPP;
2905 
2906 	bio_put(bio);
2907 	return ret;
2908 }
2909 
2910 /**
2911  * ll_rw_block: low-level access to block devices (DEPRECATED)
2912  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2913  * @nr: number of &struct buffer_heads in the array
2914  * @bhs: array of pointers to &struct buffer_head
2915  *
2916  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2917  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2918  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2919  * are sent to disk. The fourth %READA option is described in the documentation
2920  * for generic_make_request() which ll_rw_block() calls.
2921  *
2922  * This function drops any buffer that it cannot get a lock on (with the
2923  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2924  * clean when doing a write request, and any buffer that appears to be
2925  * up-to-date when doing read request.  Further it marks as clean buffers that
2926  * are processed for writing (the buffer cache won't assume that they are
2927  * actually clean until the buffer gets unlocked).
2928  *
2929  * ll_rw_block sets b_end_io to simple completion handler that marks
2930  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2931  * any waiters.
2932  *
2933  * All of the buffers must be for the same device, and must also be a
2934  * multiple of the current approved size for the device.
2935  */
2936 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2937 {
2938 	int i;
2939 
2940 	for (i = 0; i < nr; i++) {
2941 		struct buffer_head *bh = bhs[i];
2942 
2943 		if (rw == SWRITE)
2944 			lock_buffer(bh);
2945 		else if (test_set_buffer_locked(bh))
2946 			continue;
2947 
2948 		if (rw == WRITE || rw == SWRITE) {
2949 			if (test_clear_buffer_dirty(bh)) {
2950 				bh->b_end_io = end_buffer_write_sync;
2951 				get_bh(bh);
2952 				submit_bh(WRITE, bh);
2953 				continue;
2954 			}
2955 		} else {
2956 			if (!buffer_uptodate(bh)) {
2957 				bh->b_end_io = end_buffer_read_sync;
2958 				get_bh(bh);
2959 				submit_bh(rw, bh);
2960 				continue;
2961 			}
2962 		}
2963 		unlock_buffer(bh);
2964 	}
2965 }
2966 
2967 /*
2968  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2969  * and then start new I/O and then wait upon it.  The caller must have a ref on
2970  * the buffer_head.
2971  */
2972 int sync_dirty_buffer(struct buffer_head *bh)
2973 {
2974 	int ret = 0;
2975 
2976 	WARN_ON(atomic_read(&bh->b_count) < 1);
2977 	lock_buffer(bh);
2978 	if (test_clear_buffer_dirty(bh)) {
2979 		get_bh(bh);
2980 		bh->b_end_io = end_buffer_write_sync;
2981 		ret = submit_bh(WRITE, bh);
2982 		wait_on_buffer(bh);
2983 		if (buffer_eopnotsupp(bh)) {
2984 			clear_buffer_eopnotsupp(bh);
2985 			ret = -EOPNOTSUPP;
2986 		}
2987 		if (!ret && !buffer_uptodate(bh))
2988 			ret = -EIO;
2989 	} else {
2990 		unlock_buffer(bh);
2991 	}
2992 	return ret;
2993 }
2994 
2995 /*
2996  * try_to_free_buffers() checks if all the buffers on this particular page
2997  * are unused, and releases them if so.
2998  *
2999  * Exclusion against try_to_free_buffers may be obtained by either
3000  * locking the page or by holding its mapping's private_lock.
3001  *
3002  * If the page is dirty but all the buffers are clean then we need to
3003  * be sure to mark the page clean as well.  This is because the page
3004  * may be against a block device, and a later reattachment of buffers
3005  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3006  * filesystem data on the same device.
3007  *
3008  * The same applies to regular filesystem pages: if all the buffers are
3009  * clean then we set the page clean and proceed.  To do that, we require
3010  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3011  * private_lock.
3012  *
3013  * try_to_free_buffers() is non-blocking.
3014  */
3015 static inline int buffer_busy(struct buffer_head *bh)
3016 {
3017 	return atomic_read(&bh->b_count) |
3018 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3019 }
3020 
3021 static int
3022 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3023 {
3024 	struct buffer_head *head = page_buffers(page);
3025 	struct buffer_head *bh;
3026 
3027 	bh = head;
3028 	do {
3029 		if (buffer_write_io_error(bh) && page->mapping)
3030 			set_bit(AS_EIO, &page->mapping->flags);
3031 		if (buffer_busy(bh))
3032 			goto failed;
3033 		bh = bh->b_this_page;
3034 	} while (bh != head);
3035 
3036 	do {
3037 		struct buffer_head *next = bh->b_this_page;
3038 
3039 		if (bh->b_assoc_map)
3040 			__remove_assoc_queue(bh);
3041 		bh = next;
3042 	} while (bh != head);
3043 	*buffers_to_free = head;
3044 	__clear_page_buffers(page);
3045 	return 1;
3046 failed:
3047 	return 0;
3048 }
3049 
3050 int try_to_free_buffers(struct page *page)
3051 {
3052 	struct address_space * const mapping = page->mapping;
3053 	struct buffer_head *buffers_to_free = NULL;
3054 	int ret = 0;
3055 
3056 	BUG_ON(!PageLocked(page));
3057 	if (PageWriteback(page))
3058 		return 0;
3059 
3060 	if (mapping == NULL) {		/* can this still happen? */
3061 		ret = drop_buffers(page, &buffers_to_free);
3062 		goto out;
3063 	}
3064 
3065 	spin_lock(&mapping->private_lock);
3066 	ret = drop_buffers(page, &buffers_to_free);
3067 
3068 	/*
3069 	 * If the filesystem writes its buffers by hand (eg ext3)
3070 	 * then we can have clean buffers against a dirty page.  We
3071 	 * clean the page here; otherwise the VM will never notice
3072 	 * that the filesystem did any IO at all.
3073 	 *
3074 	 * Also, during truncate, discard_buffer will have marked all
3075 	 * the page's buffers clean.  We discover that here and clean
3076 	 * the page also.
3077 	 *
3078 	 * private_lock must be held over this entire operation in order
3079 	 * to synchronise against __set_page_dirty_buffers and prevent the
3080 	 * dirty bit from being lost.
3081 	 */
3082 	if (ret)
3083 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3084 	spin_unlock(&mapping->private_lock);
3085 out:
3086 	if (buffers_to_free) {
3087 		struct buffer_head *bh = buffers_to_free;
3088 
3089 		do {
3090 			struct buffer_head *next = bh->b_this_page;
3091 			free_buffer_head(bh);
3092 			bh = next;
3093 		} while (bh != buffers_to_free);
3094 	}
3095 	return ret;
3096 }
3097 EXPORT_SYMBOL(try_to_free_buffers);
3098 
3099 void block_sync_page(struct page *page)
3100 {
3101 	struct address_space *mapping;
3102 
3103 	smp_mb();
3104 	mapping = page_mapping(page);
3105 	if (mapping)
3106 		blk_run_backing_dev(mapping->backing_dev_info, page);
3107 }
3108 
3109 /*
3110  * There are no bdflush tunables left.  But distributions are
3111  * still running obsolete flush daemons, so we terminate them here.
3112  *
3113  * Use of bdflush() is deprecated and will be removed in a future kernel.
3114  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3115  */
3116 asmlinkage long sys_bdflush(int func, long data)
3117 {
3118 	static int msg_count;
3119 
3120 	if (!capable(CAP_SYS_ADMIN))
3121 		return -EPERM;
3122 
3123 	if (msg_count < 5) {
3124 		msg_count++;
3125 		printk(KERN_INFO
3126 			"warning: process `%s' used the obsolete bdflush"
3127 			" system call\n", current->comm);
3128 		printk(KERN_INFO "Fix your initscripts?\n");
3129 	}
3130 
3131 	if (func == 1)
3132 		do_exit(0);
3133 	return 0;
3134 }
3135 
3136 /*
3137  * Buffer-head allocation
3138  */
3139 static struct kmem_cache *bh_cachep;
3140 
3141 /*
3142  * Once the number of bh's in the machine exceeds this level, we start
3143  * stripping them in writeback.
3144  */
3145 static int max_buffer_heads;
3146 
3147 int buffer_heads_over_limit;
3148 
3149 struct bh_accounting {
3150 	int nr;			/* Number of live bh's */
3151 	int ratelimit;		/* Limit cacheline bouncing */
3152 };
3153 
3154 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3155 
3156 static void recalc_bh_state(void)
3157 {
3158 	int i;
3159 	int tot = 0;
3160 
3161 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3162 		return;
3163 	__get_cpu_var(bh_accounting).ratelimit = 0;
3164 	for_each_online_cpu(i)
3165 		tot += per_cpu(bh_accounting, i).nr;
3166 	buffer_heads_over_limit = (tot > max_buffer_heads);
3167 }
3168 
3169 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3170 {
3171 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3172 	if (ret) {
3173 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3174 		get_cpu_var(bh_accounting).nr++;
3175 		recalc_bh_state();
3176 		put_cpu_var(bh_accounting);
3177 	}
3178 	return ret;
3179 }
3180 EXPORT_SYMBOL(alloc_buffer_head);
3181 
3182 void free_buffer_head(struct buffer_head *bh)
3183 {
3184 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3185 	kmem_cache_free(bh_cachep, bh);
3186 	get_cpu_var(bh_accounting).nr--;
3187 	recalc_bh_state();
3188 	put_cpu_var(bh_accounting);
3189 }
3190 EXPORT_SYMBOL(free_buffer_head);
3191 
3192 static void buffer_exit_cpu(int cpu)
3193 {
3194 	int i;
3195 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3196 
3197 	for (i = 0; i < BH_LRU_SIZE; i++) {
3198 		brelse(b->bhs[i]);
3199 		b->bhs[i] = NULL;
3200 	}
3201 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3202 	per_cpu(bh_accounting, cpu).nr = 0;
3203 	put_cpu_var(bh_accounting);
3204 }
3205 
3206 static int buffer_cpu_notify(struct notifier_block *self,
3207 			      unsigned long action, void *hcpu)
3208 {
3209 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3210 		buffer_exit_cpu((unsigned long)hcpu);
3211 	return NOTIFY_OK;
3212 }
3213 
3214 /**
3215  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3216  * @bh: struct buffer_head
3217  *
3218  * Return true if the buffer is up-to-date and false,
3219  * with the buffer locked, if not.
3220  */
3221 int bh_uptodate_or_lock(struct buffer_head *bh)
3222 {
3223 	if (!buffer_uptodate(bh)) {
3224 		lock_buffer(bh);
3225 		if (!buffer_uptodate(bh))
3226 			return 0;
3227 		unlock_buffer(bh);
3228 	}
3229 	return 1;
3230 }
3231 EXPORT_SYMBOL(bh_uptodate_or_lock);
3232 
3233 /**
3234  * bh_submit_read - Submit a locked buffer for reading
3235  * @bh: struct buffer_head
3236  *
3237  * Returns zero on success and -EIO on error.
3238  */
3239 int bh_submit_read(struct buffer_head *bh)
3240 {
3241 	BUG_ON(!buffer_locked(bh));
3242 
3243 	if (buffer_uptodate(bh)) {
3244 		unlock_buffer(bh);
3245 		return 0;
3246 	}
3247 
3248 	get_bh(bh);
3249 	bh->b_end_io = end_buffer_read_sync;
3250 	submit_bh(READ, bh);
3251 	wait_on_buffer(bh);
3252 	if (buffer_uptodate(bh))
3253 		return 0;
3254 	return -EIO;
3255 }
3256 EXPORT_SYMBOL(bh_submit_read);
3257 
3258 static void
3259 init_buffer_head(struct kmem_cache *cachep, void *data)
3260 {
3261 	struct buffer_head *bh = data;
3262 
3263 	memset(bh, 0, sizeof(*bh));
3264 	INIT_LIST_HEAD(&bh->b_assoc_buffers);
3265 }
3266 
3267 void __init buffer_init(void)
3268 {
3269 	int nrpages;
3270 
3271 	bh_cachep = kmem_cache_create("buffer_head",
3272 			sizeof(struct buffer_head), 0,
3273 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3274 				SLAB_MEM_SPREAD),
3275 				init_buffer_head);
3276 
3277 	/*
3278 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3279 	 */
3280 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3281 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3282 	hotcpu_notifier(buffer_cpu_notify, 0);
3283 }
3284 
3285 EXPORT_SYMBOL(__bforget);
3286 EXPORT_SYMBOL(__brelse);
3287 EXPORT_SYMBOL(__wait_on_buffer);
3288 EXPORT_SYMBOL(block_commit_write);
3289 EXPORT_SYMBOL(block_prepare_write);
3290 EXPORT_SYMBOL(block_page_mkwrite);
3291 EXPORT_SYMBOL(block_read_full_page);
3292 EXPORT_SYMBOL(block_sync_page);
3293 EXPORT_SYMBOL(block_truncate_page);
3294 EXPORT_SYMBOL(block_write_full_page);
3295 EXPORT_SYMBOL(cont_write_begin);
3296 EXPORT_SYMBOL(end_buffer_read_sync);
3297 EXPORT_SYMBOL(end_buffer_write_sync);
3298 EXPORT_SYMBOL(file_fsync);
3299 EXPORT_SYMBOL(fsync_bdev);
3300 EXPORT_SYMBOL(generic_block_bmap);
3301 EXPORT_SYMBOL(generic_cont_expand_simple);
3302 EXPORT_SYMBOL(init_buffer);
3303 EXPORT_SYMBOL(invalidate_bdev);
3304 EXPORT_SYMBOL(ll_rw_block);
3305 EXPORT_SYMBOL(mark_buffer_dirty);
3306 EXPORT_SYMBOL(submit_bh);
3307 EXPORT_SYMBOL(sync_dirty_buffer);
3308 EXPORT_SYMBOL(unlock_buffer);
3309