1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 #include <trace/events/block.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 inline void touch_buffer(struct buffer_head *bh) 58 { 59 trace_block_touch_buffer(bh); 60 mark_page_accessed(bh->b_page); 61 } 62 EXPORT_SYMBOL(touch_buffer); 63 64 static int sleep_on_buffer(void *word) 65 { 66 io_schedule(); 67 return 0; 68 } 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 73 TASK_UNINTERRUPTIBLE); 74 } 75 EXPORT_SYMBOL(__lock_buffer); 76 77 void unlock_buffer(struct buffer_head *bh) 78 { 79 clear_bit_unlock(BH_Lock, &bh->b_state); 80 smp_mb__after_clear_bit(); 81 wake_up_bit(&bh->b_state, BH_Lock); 82 } 83 EXPORT_SYMBOL(unlock_buffer); 84 85 /* 86 * Block until a buffer comes unlocked. This doesn't stop it 87 * from becoming locked again - you have to lock it yourself 88 * if you want to preserve its state. 89 */ 90 void __wait_on_buffer(struct buffer_head * bh) 91 { 92 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 93 } 94 EXPORT_SYMBOL(__wait_on_buffer); 95 96 static void 97 __clear_page_buffers(struct page *page) 98 { 99 ClearPagePrivate(page); 100 set_page_private(page, 0); 101 page_cache_release(page); 102 } 103 104 105 static int quiet_error(struct buffer_head *bh) 106 { 107 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 108 return 0; 109 return 1; 110 } 111 112 113 static void buffer_io_error(struct buffer_head *bh) 114 { 115 char b[BDEVNAME_SIZE]; 116 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 117 bdevname(bh->b_bdev, b), 118 (unsigned long long)bh->b_blocknr); 119 } 120 121 /* 122 * End-of-IO handler helper function which does not touch the bh after 123 * unlocking it. 124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 125 * a race there is benign: unlock_buffer() only use the bh's address for 126 * hashing after unlocking the buffer, so it doesn't actually touch the bh 127 * itself. 128 */ 129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 130 { 131 if (uptodate) { 132 set_buffer_uptodate(bh); 133 } else { 134 /* This happens, due to failed READA attempts. */ 135 clear_buffer_uptodate(bh); 136 } 137 unlock_buffer(bh); 138 } 139 140 /* 141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 142 * unlock the buffer. This is what ll_rw_block uses too. 143 */ 144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 145 { 146 __end_buffer_read_notouch(bh, uptodate); 147 put_bh(bh); 148 } 149 EXPORT_SYMBOL(end_buffer_read_sync); 150 151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 152 { 153 char b[BDEVNAME_SIZE]; 154 155 if (uptodate) { 156 set_buffer_uptodate(bh); 157 } else { 158 if (!quiet_error(bh)) { 159 buffer_io_error(bh); 160 printk(KERN_WARNING "lost page write due to " 161 "I/O error on %s\n", 162 bdevname(bh->b_bdev, b)); 163 } 164 set_buffer_write_io_error(bh); 165 clear_buffer_uptodate(bh); 166 } 167 unlock_buffer(bh); 168 put_bh(bh); 169 } 170 EXPORT_SYMBOL(end_buffer_write_sync); 171 172 /* 173 * Various filesystems appear to want __find_get_block to be non-blocking. 174 * But it's the page lock which protects the buffers. To get around this, 175 * we get exclusion from try_to_free_buffers with the blockdev mapping's 176 * private_lock. 177 * 178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 179 * may be quite high. This code could TryLock the page, and if that 180 * succeeds, there is no need to take private_lock. (But if 181 * private_lock is contended then so is mapping->tree_lock). 182 */ 183 static struct buffer_head * 184 __find_get_block_slow(struct block_device *bdev, sector_t block) 185 { 186 struct inode *bd_inode = bdev->bd_inode; 187 struct address_space *bd_mapping = bd_inode->i_mapping; 188 struct buffer_head *ret = NULL; 189 pgoff_t index; 190 struct buffer_head *bh; 191 struct buffer_head *head; 192 struct page *page; 193 int all_mapped = 1; 194 195 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 196 page = find_get_page(bd_mapping, index); 197 if (!page) 198 goto out; 199 200 spin_lock(&bd_mapping->private_lock); 201 if (!page_has_buffers(page)) 202 goto out_unlock; 203 head = page_buffers(page); 204 bh = head; 205 do { 206 if (!buffer_mapped(bh)) 207 all_mapped = 0; 208 else if (bh->b_blocknr == block) { 209 ret = bh; 210 get_bh(bh); 211 goto out_unlock; 212 } 213 bh = bh->b_this_page; 214 } while (bh != head); 215 216 /* we might be here because some of the buffers on this page are 217 * not mapped. This is due to various races between 218 * file io on the block device and getblk. It gets dealt with 219 * elsewhere, don't buffer_error if we had some unmapped buffers 220 */ 221 if (all_mapped) { 222 char b[BDEVNAME_SIZE]; 223 224 printk("__find_get_block_slow() failed. " 225 "block=%llu, b_blocknr=%llu\n", 226 (unsigned long long)block, 227 (unsigned long long)bh->b_blocknr); 228 printk("b_state=0x%08lx, b_size=%zu\n", 229 bh->b_state, bh->b_size); 230 printk("device %s blocksize: %d\n", bdevname(bdev, b), 231 1 << bd_inode->i_blkbits); 232 } 233 out_unlock: 234 spin_unlock(&bd_mapping->private_lock); 235 page_cache_release(page); 236 out: 237 return ret; 238 } 239 240 /* 241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 242 */ 243 static void free_more_memory(void) 244 { 245 struct zone *zone; 246 int nid; 247 248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 249 yield(); 250 251 for_each_online_node(nid) { 252 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 253 gfp_zone(GFP_NOFS), NULL, 254 &zone); 255 if (zone) 256 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 257 GFP_NOFS, NULL); 258 } 259 } 260 261 /* 262 * I/O completion handler for block_read_full_page() - pages 263 * which come unlocked at the end of I/O. 264 */ 265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 266 { 267 unsigned long flags; 268 struct buffer_head *first; 269 struct buffer_head *tmp; 270 struct page *page; 271 int page_uptodate = 1; 272 273 BUG_ON(!buffer_async_read(bh)); 274 275 page = bh->b_page; 276 if (uptodate) { 277 set_buffer_uptodate(bh); 278 } else { 279 clear_buffer_uptodate(bh); 280 if (!quiet_error(bh)) 281 buffer_io_error(bh); 282 SetPageError(page); 283 } 284 285 /* 286 * Be _very_ careful from here on. Bad things can happen if 287 * two buffer heads end IO at almost the same time and both 288 * decide that the page is now completely done. 289 */ 290 first = page_buffers(page); 291 local_irq_save(flags); 292 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 293 clear_buffer_async_read(bh); 294 unlock_buffer(bh); 295 tmp = bh; 296 do { 297 if (!buffer_uptodate(tmp)) 298 page_uptodate = 0; 299 if (buffer_async_read(tmp)) { 300 BUG_ON(!buffer_locked(tmp)); 301 goto still_busy; 302 } 303 tmp = tmp->b_this_page; 304 } while (tmp != bh); 305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 306 local_irq_restore(flags); 307 308 /* 309 * If none of the buffers had errors and they are all 310 * uptodate then we can set the page uptodate. 311 */ 312 if (page_uptodate && !PageError(page)) 313 SetPageUptodate(page); 314 unlock_page(page); 315 return; 316 317 still_busy: 318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 319 local_irq_restore(flags); 320 return; 321 } 322 323 /* 324 * Completion handler for block_write_full_page() - pages which are unlocked 325 * during I/O, and which have PageWriteback cleared upon I/O completion. 326 */ 327 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 328 { 329 char b[BDEVNAME_SIZE]; 330 unsigned long flags; 331 struct buffer_head *first; 332 struct buffer_head *tmp; 333 struct page *page; 334 335 BUG_ON(!buffer_async_write(bh)); 336 337 page = bh->b_page; 338 if (uptodate) { 339 set_buffer_uptodate(bh); 340 } else { 341 if (!quiet_error(bh)) { 342 buffer_io_error(bh); 343 printk(KERN_WARNING "lost page write due to " 344 "I/O error on %s\n", 345 bdevname(bh->b_bdev, b)); 346 } 347 set_bit(AS_EIO, &page->mapping->flags); 348 set_buffer_write_io_error(bh); 349 clear_buffer_uptodate(bh); 350 SetPageError(page); 351 } 352 353 first = page_buffers(page); 354 local_irq_save(flags); 355 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 356 357 clear_buffer_async_write(bh); 358 unlock_buffer(bh); 359 tmp = bh->b_this_page; 360 while (tmp != bh) { 361 if (buffer_async_write(tmp)) { 362 BUG_ON(!buffer_locked(tmp)); 363 goto still_busy; 364 } 365 tmp = tmp->b_this_page; 366 } 367 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 368 local_irq_restore(flags); 369 end_page_writeback(page); 370 return; 371 372 still_busy: 373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 374 local_irq_restore(flags); 375 return; 376 } 377 EXPORT_SYMBOL(end_buffer_async_write); 378 379 /* 380 * If a page's buffers are under async readin (end_buffer_async_read 381 * completion) then there is a possibility that another thread of 382 * control could lock one of the buffers after it has completed 383 * but while some of the other buffers have not completed. This 384 * locked buffer would confuse end_buffer_async_read() into not unlocking 385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 386 * that this buffer is not under async I/O. 387 * 388 * The page comes unlocked when it has no locked buffer_async buffers 389 * left. 390 * 391 * PageLocked prevents anyone starting new async I/O reads any of 392 * the buffers. 393 * 394 * PageWriteback is used to prevent simultaneous writeout of the same 395 * page. 396 * 397 * PageLocked prevents anyone from starting writeback of a page which is 398 * under read I/O (PageWriteback is only ever set against a locked page). 399 */ 400 static void mark_buffer_async_read(struct buffer_head *bh) 401 { 402 bh->b_end_io = end_buffer_async_read; 403 set_buffer_async_read(bh); 404 } 405 406 static void mark_buffer_async_write_endio(struct buffer_head *bh, 407 bh_end_io_t *handler) 408 { 409 bh->b_end_io = handler; 410 set_buffer_async_write(bh); 411 } 412 413 void mark_buffer_async_write(struct buffer_head *bh) 414 { 415 mark_buffer_async_write_endio(bh, end_buffer_async_write); 416 } 417 EXPORT_SYMBOL(mark_buffer_async_write); 418 419 420 /* 421 * fs/buffer.c contains helper functions for buffer-backed address space's 422 * fsync functions. A common requirement for buffer-based filesystems is 423 * that certain data from the backing blockdev needs to be written out for 424 * a successful fsync(). For example, ext2 indirect blocks need to be 425 * written back and waited upon before fsync() returns. 426 * 427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 429 * management of a list of dependent buffers at ->i_mapping->private_list. 430 * 431 * Locking is a little subtle: try_to_free_buffers() will remove buffers 432 * from their controlling inode's queue when they are being freed. But 433 * try_to_free_buffers() will be operating against the *blockdev* mapping 434 * at the time, not against the S_ISREG file which depends on those buffers. 435 * So the locking for private_list is via the private_lock in the address_space 436 * which backs the buffers. Which is different from the address_space 437 * against which the buffers are listed. So for a particular address_space, 438 * mapping->private_lock does *not* protect mapping->private_list! In fact, 439 * mapping->private_list will always be protected by the backing blockdev's 440 * ->private_lock. 441 * 442 * Which introduces a requirement: all buffers on an address_space's 443 * ->private_list must be from the same address_space: the blockdev's. 444 * 445 * address_spaces which do not place buffers at ->private_list via these 446 * utility functions are free to use private_lock and private_list for 447 * whatever they want. The only requirement is that list_empty(private_list) 448 * be true at clear_inode() time. 449 * 450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 451 * filesystems should do that. invalidate_inode_buffers() should just go 452 * BUG_ON(!list_empty). 453 * 454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 455 * take an address_space, not an inode. And it should be called 456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 457 * queued up. 458 * 459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 460 * list if it is already on a list. Because if the buffer is on a list, 461 * it *must* already be on the right one. If not, the filesystem is being 462 * silly. This will save a ton of locking. But first we have to ensure 463 * that buffers are taken *off* the old inode's list when they are freed 464 * (presumably in truncate). That requires careful auditing of all 465 * filesystems (do it inside bforget()). It could also be done by bringing 466 * b_inode back. 467 */ 468 469 /* 470 * The buffer's backing address_space's private_lock must be held 471 */ 472 static void __remove_assoc_queue(struct buffer_head *bh) 473 { 474 list_del_init(&bh->b_assoc_buffers); 475 WARN_ON(!bh->b_assoc_map); 476 if (buffer_write_io_error(bh)) 477 set_bit(AS_EIO, &bh->b_assoc_map->flags); 478 bh->b_assoc_map = NULL; 479 } 480 481 int inode_has_buffers(struct inode *inode) 482 { 483 return !list_empty(&inode->i_data.private_list); 484 } 485 486 /* 487 * osync is designed to support O_SYNC io. It waits synchronously for 488 * all already-submitted IO to complete, but does not queue any new 489 * writes to the disk. 490 * 491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 492 * you dirty the buffers, and then use osync_inode_buffers to wait for 493 * completion. Any other dirty buffers which are not yet queued for 494 * write will not be flushed to disk by the osync. 495 */ 496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 497 { 498 struct buffer_head *bh; 499 struct list_head *p; 500 int err = 0; 501 502 spin_lock(lock); 503 repeat: 504 list_for_each_prev(p, list) { 505 bh = BH_ENTRY(p); 506 if (buffer_locked(bh)) { 507 get_bh(bh); 508 spin_unlock(lock); 509 wait_on_buffer(bh); 510 if (!buffer_uptodate(bh)) 511 err = -EIO; 512 brelse(bh); 513 spin_lock(lock); 514 goto repeat; 515 } 516 } 517 spin_unlock(lock); 518 return err; 519 } 520 521 static void do_thaw_one(struct super_block *sb, void *unused) 522 { 523 char b[BDEVNAME_SIZE]; 524 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 525 printk(KERN_WARNING "Emergency Thaw on %s\n", 526 bdevname(sb->s_bdev, b)); 527 } 528 529 static void do_thaw_all(struct work_struct *work) 530 { 531 iterate_supers(do_thaw_one, NULL); 532 kfree(work); 533 printk(KERN_WARNING "Emergency Thaw complete\n"); 534 } 535 536 /** 537 * emergency_thaw_all -- forcibly thaw every frozen filesystem 538 * 539 * Used for emergency unfreeze of all filesystems via SysRq 540 */ 541 void emergency_thaw_all(void) 542 { 543 struct work_struct *work; 544 545 work = kmalloc(sizeof(*work), GFP_ATOMIC); 546 if (work) { 547 INIT_WORK(work, do_thaw_all); 548 schedule_work(work); 549 } 550 } 551 552 /** 553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 554 * @mapping: the mapping which wants those buffers written 555 * 556 * Starts I/O against the buffers at mapping->private_list, and waits upon 557 * that I/O. 558 * 559 * Basically, this is a convenience function for fsync(). 560 * @mapping is a file or directory which needs those buffers to be written for 561 * a successful fsync(). 562 */ 563 int sync_mapping_buffers(struct address_space *mapping) 564 { 565 struct address_space *buffer_mapping = mapping->private_data; 566 567 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 568 return 0; 569 570 return fsync_buffers_list(&buffer_mapping->private_lock, 571 &mapping->private_list); 572 } 573 EXPORT_SYMBOL(sync_mapping_buffers); 574 575 /* 576 * Called when we've recently written block `bblock', and it is known that 577 * `bblock' was for a buffer_boundary() buffer. This means that the block at 578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 579 * dirty, schedule it for IO. So that indirects merge nicely with their data. 580 */ 581 void write_boundary_block(struct block_device *bdev, 582 sector_t bblock, unsigned blocksize) 583 { 584 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 585 if (bh) { 586 if (buffer_dirty(bh)) 587 ll_rw_block(WRITE, 1, &bh); 588 put_bh(bh); 589 } 590 } 591 592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 593 { 594 struct address_space *mapping = inode->i_mapping; 595 struct address_space *buffer_mapping = bh->b_page->mapping; 596 597 mark_buffer_dirty(bh); 598 if (!mapping->private_data) { 599 mapping->private_data = buffer_mapping; 600 } else { 601 BUG_ON(mapping->private_data != buffer_mapping); 602 } 603 if (!bh->b_assoc_map) { 604 spin_lock(&buffer_mapping->private_lock); 605 list_move_tail(&bh->b_assoc_buffers, 606 &mapping->private_list); 607 bh->b_assoc_map = mapping; 608 spin_unlock(&buffer_mapping->private_lock); 609 } 610 } 611 EXPORT_SYMBOL(mark_buffer_dirty_inode); 612 613 /* 614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 615 * dirty. 616 * 617 * If warn is true, then emit a warning if the page is not uptodate and has 618 * not been truncated. 619 */ 620 static void __set_page_dirty(struct page *page, 621 struct address_space *mapping, int warn) 622 { 623 spin_lock_irq(&mapping->tree_lock); 624 if (page->mapping) { /* Race with truncate? */ 625 WARN_ON_ONCE(warn && !PageUptodate(page)); 626 account_page_dirtied(page, mapping); 627 radix_tree_tag_set(&mapping->page_tree, 628 page_index(page), PAGECACHE_TAG_DIRTY); 629 } 630 spin_unlock_irq(&mapping->tree_lock); 631 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 632 } 633 634 /* 635 * Add a page to the dirty page list. 636 * 637 * It is a sad fact of life that this function is called from several places 638 * deeply under spinlocking. It may not sleep. 639 * 640 * If the page has buffers, the uptodate buffers are set dirty, to preserve 641 * dirty-state coherency between the page and the buffers. It the page does 642 * not have buffers then when they are later attached they will all be set 643 * dirty. 644 * 645 * The buffers are dirtied before the page is dirtied. There's a small race 646 * window in which a writepage caller may see the page cleanness but not the 647 * buffer dirtiness. That's fine. If this code were to set the page dirty 648 * before the buffers, a concurrent writepage caller could clear the page dirty 649 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 650 * page on the dirty page list. 651 * 652 * We use private_lock to lock against try_to_free_buffers while using the 653 * page's buffer list. Also use this to protect against clean buffers being 654 * added to the page after it was set dirty. 655 * 656 * FIXME: may need to call ->reservepage here as well. That's rather up to the 657 * address_space though. 658 */ 659 int __set_page_dirty_buffers(struct page *page) 660 { 661 int newly_dirty; 662 struct address_space *mapping = page_mapping(page); 663 664 if (unlikely(!mapping)) 665 return !TestSetPageDirty(page); 666 667 spin_lock(&mapping->private_lock); 668 if (page_has_buffers(page)) { 669 struct buffer_head *head = page_buffers(page); 670 struct buffer_head *bh = head; 671 672 do { 673 set_buffer_dirty(bh); 674 bh = bh->b_this_page; 675 } while (bh != head); 676 } 677 newly_dirty = !TestSetPageDirty(page); 678 spin_unlock(&mapping->private_lock); 679 680 if (newly_dirty) 681 __set_page_dirty(page, mapping, 1); 682 return newly_dirty; 683 } 684 EXPORT_SYMBOL(__set_page_dirty_buffers); 685 686 /* 687 * Write out and wait upon a list of buffers. 688 * 689 * We have conflicting pressures: we want to make sure that all 690 * initially dirty buffers get waited on, but that any subsequently 691 * dirtied buffers don't. After all, we don't want fsync to last 692 * forever if somebody is actively writing to the file. 693 * 694 * Do this in two main stages: first we copy dirty buffers to a 695 * temporary inode list, queueing the writes as we go. Then we clean 696 * up, waiting for those writes to complete. 697 * 698 * During this second stage, any subsequent updates to the file may end 699 * up refiling the buffer on the original inode's dirty list again, so 700 * there is a chance we will end up with a buffer queued for write but 701 * not yet completed on that list. So, as a final cleanup we go through 702 * the osync code to catch these locked, dirty buffers without requeuing 703 * any newly dirty buffers for write. 704 */ 705 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 706 { 707 struct buffer_head *bh; 708 struct list_head tmp; 709 struct address_space *mapping; 710 int err = 0, err2; 711 struct blk_plug plug; 712 713 INIT_LIST_HEAD(&tmp); 714 blk_start_plug(&plug); 715 716 spin_lock(lock); 717 while (!list_empty(list)) { 718 bh = BH_ENTRY(list->next); 719 mapping = bh->b_assoc_map; 720 __remove_assoc_queue(bh); 721 /* Avoid race with mark_buffer_dirty_inode() which does 722 * a lockless check and we rely on seeing the dirty bit */ 723 smp_mb(); 724 if (buffer_dirty(bh) || buffer_locked(bh)) { 725 list_add(&bh->b_assoc_buffers, &tmp); 726 bh->b_assoc_map = mapping; 727 if (buffer_dirty(bh)) { 728 get_bh(bh); 729 spin_unlock(lock); 730 /* 731 * Ensure any pending I/O completes so that 732 * write_dirty_buffer() actually writes the 733 * current contents - it is a noop if I/O is 734 * still in flight on potentially older 735 * contents. 736 */ 737 write_dirty_buffer(bh, WRITE_SYNC); 738 739 /* 740 * Kick off IO for the previous mapping. Note 741 * that we will not run the very last mapping, 742 * wait_on_buffer() will do that for us 743 * through sync_buffer(). 744 */ 745 brelse(bh); 746 spin_lock(lock); 747 } 748 } 749 } 750 751 spin_unlock(lock); 752 blk_finish_plug(&plug); 753 spin_lock(lock); 754 755 while (!list_empty(&tmp)) { 756 bh = BH_ENTRY(tmp.prev); 757 get_bh(bh); 758 mapping = bh->b_assoc_map; 759 __remove_assoc_queue(bh); 760 /* Avoid race with mark_buffer_dirty_inode() which does 761 * a lockless check and we rely on seeing the dirty bit */ 762 smp_mb(); 763 if (buffer_dirty(bh)) { 764 list_add(&bh->b_assoc_buffers, 765 &mapping->private_list); 766 bh->b_assoc_map = mapping; 767 } 768 spin_unlock(lock); 769 wait_on_buffer(bh); 770 if (!buffer_uptodate(bh)) 771 err = -EIO; 772 brelse(bh); 773 spin_lock(lock); 774 } 775 776 spin_unlock(lock); 777 err2 = osync_buffers_list(lock, list); 778 if (err) 779 return err; 780 else 781 return err2; 782 } 783 784 /* 785 * Invalidate any and all dirty buffers on a given inode. We are 786 * probably unmounting the fs, but that doesn't mean we have already 787 * done a sync(). Just drop the buffers from the inode list. 788 * 789 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 790 * assumes that all the buffers are against the blockdev. Not true 791 * for reiserfs. 792 */ 793 void invalidate_inode_buffers(struct inode *inode) 794 { 795 if (inode_has_buffers(inode)) { 796 struct address_space *mapping = &inode->i_data; 797 struct list_head *list = &mapping->private_list; 798 struct address_space *buffer_mapping = mapping->private_data; 799 800 spin_lock(&buffer_mapping->private_lock); 801 while (!list_empty(list)) 802 __remove_assoc_queue(BH_ENTRY(list->next)); 803 spin_unlock(&buffer_mapping->private_lock); 804 } 805 } 806 EXPORT_SYMBOL(invalidate_inode_buffers); 807 808 /* 809 * Remove any clean buffers from the inode's buffer list. This is called 810 * when we're trying to free the inode itself. Those buffers can pin it. 811 * 812 * Returns true if all buffers were removed. 813 */ 814 int remove_inode_buffers(struct inode *inode) 815 { 816 int ret = 1; 817 818 if (inode_has_buffers(inode)) { 819 struct address_space *mapping = &inode->i_data; 820 struct list_head *list = &mapping->private_list; 821 struct address_space *buffer_mapping = mapping->private_data; 822 823 spin_lock(&buffer_mapping->private_lock); 824 while (!list_empty(list)) { 825 struct buffer_head *bh = BH_ENTRY(list->next); 826 if (buffer_dirty(bh)) { 827 ret = 0; 828 break; 829 } 830 __remove_assoc_queue(bh); 831 } 832 spin_unlock(&buffer_mapping->private_lock); 833 } 834 return ret; 835 } 836 837 /* 838 * Create the appropriate buffers when given a page for data area and 839 * the size of each buffer.. Use the bh->b_this_page linked list to 840 * follow the buffers created. Return NULL if unable to create more 841 * buffers. 842 * 843 * The retry flag is used to differentiate async IO (paging, swapping) 844 * which may not fail from ordinary buffer allocations. 845 */ 846 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 847 int retry) 848 { 849 struct buffer_head *bh, *head; 850 long offset; 851 852 try_again: 853 head = NULL; 854 offset = PAGE_SIZE; 855 while ((offset -= size) >= 0) { 856 bh = alloc_buffer_head(GFP_NOFS); 857 if (!bh) 858 goto no_grow; 859 860 bh->b_this_page = head; 861 bh->b_blocknr = -1; 862 head = bh; 863 864 bh->b_size = size; 865 866 /* Link the buffer to its page */ 867 set_bh_page(bh, page, offset); 868 } 869 return head; 870 /* 871 * In case anything failed, we just free everything we got. 872 */ 873 no_grow: 874 if (head) { 875 do { 876 bh = head; 877 head = head->b_this_page; 878 free_buffer_head(bh); 879 } while (head); 880 } 881 882 /* 883 * Return failure for non-async IO requests. Async IO requests 884 * are not allowed to fail, so we have to wait until buffer heads 885 * become available. But we don't want tasks sleeping with 886 * partially complete buffers, so all were released above. 887 */ 888 if (!retry) 889 return NULL; 890 891 /* We're _really_ low on memory. Now we just 892 * wait for old buffer heads to become free due to 893 * finishing IO. Since this is an async request and 894 * the reserve list is empty, we're sure there are 895 * async buffer heads in use. 896 */ 897 free_more_memory(); 898 goto try_again; 899 } 900 EXPORT_SYMBOL_GPL(alloc_page_buffers); 901 902 static inline void 903 link_dev_buffers(struct page *page, struct buffer_head *head) 904 { 905 struct buffer_head *bh, *tail; 906 907 bh = head; 908 do { 909 tail = bh; 910 bh = bh->b_this_page; 911 } while (bh); 912 tail->b_this_page = head; 913 attach_page_buffers(page, head); 914 } 915 916 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 917 { 918 sector_t retval = ~((sector_t)0); 919 loff_t sz = i_size_read(bdev->bd_inode); 920 921 if (sz) { 922 unsigned int sizebits = blksize_bits(size); 923 retval = (sz >> sizebits); 924 } 925 return retval; 926 } 927 928 /* 929 * Initialise the state of a blockdev page's buffers. 930 */ 931 static sector_t 932 init_page_buffers(struct page *page, struct block_device *bdev, 933 sector_t block, int size) 934 { 935 struct buffer_head *head = page_buffers(page); 936 struct buffer_head *bh = head; 937 int uptodate = PageUptodate(page); 938 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 939 940 do { 941 if (!buffer_mapped(bh)) { 942 init_buffer(bh, NULL, NULL); 943 bh->b_bdev = bdev; 944 bh->b_blocknr = block; 945 if (uptodate) 946 set_buffer_uptodate(bh); 947 if (block < end_block) 948 set_buffer_mapped(bh); 949 } 950 block++; 951 bh = bh->b_this_page; 952 } while (bh != head); 953 954 /* 955 * Caller needs to validate requested block against end of device. 956 */ 957 return end_block; 958 } 959 960 /* 961 * Create the page-cache page that contains the requested block. 962 * 963 * This is used purely for blockdev mappings. 964 */ 965 static int 966 grow_dev_page(struct block_device *bdev, sector_t block, 967 pgoff_t index, int size, int sizebits) 968 { 969 struct inode *inode = bdev->bd_inode; 970 struct page *page; 971 struct buffer_head *bh; 972 sector_t end_block; 973 int ret = 0; /* Will call free_more_memory() */ 974 975 page = find_or_create_page(inode->i_mapping, index, 976 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 977 if (!page) 978 return ret; 979 980 BUG_ON(!PageLocked(page)); 981 982 if (page_has_buffers(page)) { 983 bh = page_buffers(page); 984 if (bh->b_size == size) { 985 end_block = init_page_buffers(page, bdev, 986 index << sizebits, size); 987 goto done; 988 } 989 if (!try_to_free_buffers(page)) 990 goto failed; 991 } 992 993 /* 994 * Allocate some buffers for this page 995 */ 996 bh = alloc_page_buffers(page, size, 0); 997 if (!bh) 998 goto failed; 999 1000 /* 1001 * Link the page to the buffers and initialise them. Take the 1002 * lock to be atomic wrt __find_get_block(), which does not 1003 * run under the page lock. 1004 */ 1005 spin_lock(&inode->i_mapping->private_lock); 1006 link_dev_buffers(page, bh); 1007 end_block = init_page_buffers(page, bdev, index << sizebits, size); 1008 spin_unlock(&inode->i_mapping->private_lock); 1009 done: 1010 ret = (block < end_block) ? 1 : -ENXIO; 1011 failed: 1012 unlock_page(page); 1013 page_cache_release(page); 1014 return ret; 1015 } 1016 1017 /* 1018 * Create buffers for the specified block device block's page. If 1019 * that page was dirty, the buffers are set dirty also. 1020 */ 1021 static int 1022 grow_buffers(struct block_device *bdev, sector_t block, int size) 1023 { 1024 pgoff_t index; 1025 int sizebits; 1026 1027 sizebits = -1; 1028 do { 1029 sizebits++; 1030 } while ((size << sizebits) < PAGE_SIZE); 1031 1032 index = block >> sizebits; 1033 1034 /* 1035 * Check for a block which wants to lie outside our maximum possible 1036 * pagecache index. (this comparison is done using sector_t types). 1037 */ 1038 if (unlikely(index != block >> sizebits)) { 1039 char b[BDEVNAME_SIZE]; 1040 1041 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1042 "device %s\n", 1043 __func__, (unsigned long long)block, 1044 bdevname(bdev, b)); 1045 return -EIO; 1046 } 1047 1048 /* Create a page with the proper size buffers.. */ 1049 return grow_dev_page(bdev, block, index, size, sizebits); 1050 } 1051 1052 static struct buffer_head * 1053 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1054 { 1055 /* Size must be multiple of hard sectorsize */ 1056 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1057 (size < 512 || size > PAGE_SIZE))) { 1058 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1059 size); 1060 printk(KERN_ERR "logical block size: %d\n", 1061 bdev_logical_block_size(bdev)); 1062 1063 dump_stack(); 1064 return NULL; 1065 } 1066 1067 for (;;) { 1068 struct buffer_head *bh; 1069 int ret; 1070 1071 bh = __find_get_block(bdev, block, size); 1072 if (bh) 1073 return bh; 1074 1075 ret = grow_buffers(bdev, block, size); 1076 if (ret < 0) 1077 return NULL; 1078 if (ret == 0) 1079 free_more_memory(); 1080 } 1081 } 1082 1083 /* 1084 * The relationship between dirty buffers and dirty pages: 1085 * 1086 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1087 * the page is tagged dirty in its radix tree. 1088 * 1089 * At all times, the dirtiness of the buffers represents the dirtiness of 1090 * subsections of the page. If the page has buffers, the page dirty bit is 1091 * merely a hint about the true dirty state. 1092 * 1093 * When a page is set dirty in its entirety, all its buffers are marked dirty 1094 * (if the page has buffers). 1095 * 1096 * When a buffer is marked dirty, its page is dirtied, but the page's other 1097 * buffers are not. 1098 * 1099 * Also. When blockdev buffers are explicitly read with bread(), they 1100 * individually become uptodate. But their backing page remains not 1101 * uptodate - even if all of its buffers are uptodate. A subsequent 1102 * block_read_full_page() against that page will discover all the uptodate 1103 * buffers, will set the page uptodate and will perform no I/O. 1104 */ 1105 1106 /** 1107 * mark_buffer_dirty - mark a buffer_head as needing writeout 1108 * @bh: the buffer_head to mark dirty 1109 * 1110 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1111 * backing page dirty, then tag the page as dirty in its address_space's radix 1112 * tree and then attach the address_space's inode to its superblock's dirty 1113 * inode list. 1114 * 1115 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1116 * mapping->tree_lock and mapping->host->i_lock. 1117 */ 1118 void mark_buffer_dirty(struct buffer_head *bh) 1119 { 1120 WARN_ON_ONCE(!buffer_uptodate(bh)); 1121 1122 trace_block_dirty_buffer(bh); 1123 1124 /* 1125 * Very *carefully* optimize the it-is-already-dirty case. 1126 * 1127 * Don't let the final "is it dirty" escape to before we 1128 * perhaps modified the buffer. 1129 */ 1130 if (buffer_dirty(bh)) { 1131 smp_mb(); 1132 if (buffer_dirty(bh)) 1133 return; 1134 } 1135 1136 if (!test_set_buffer_dirty(bh)) { 1137 struct page *page = bh->b_page; 1138 if (!TestSetPageDirty(page)) { 1139 struct address_space *mapping = page_mapping(page); 1140 if (mapping) 1141 __set_page_dirty(page, mapping, 0); 1142 } 1143 } 1144 } 1145 EXPORT_SYMBOL(mark_buffer_dirty); 1146 1147 /* 1148 * Decrement a buffer_head's reference count. If all buffers against a page 1149 * have zero reference count, are clean and unlocked, and if the page is clean 1150 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1151 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1152 * a page but it ends up not being freed, and buffers may later be reattached). 1153 */ 1154 void __brelse(struct buffer_head * buf) 1155 { 1156 if (atomic_read(&buf->b_count)) { 1157 put_bh(buf); 1158 return; 1159 } 1160 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1161 } 1162 EXPORT_SYMBOL(__brelse); 1163 1164 /* 1165 * bforget() is like brelse(), except it discards any 1166 * potentially dirty data. 1167 */ 1168 void __bforget(struct buffer_head *bh) 1169 { 1170 clear_buffer_dirty(bh); 1171 if (bh->b_assoc_map) { 1172 struct address_space *buffer_mapping = bh->b_page->mapping; 1173 1174 spin_lock(&buffer_mapping->private_lock); 1175 list_del_init(&bh->b_assoc_buffers); 1176 bh->b_assoc_map = NULL; 1177 spin_unlock(&buffer_mapping->private_lock); 1178 } 1179 __brelse(bh); 1180 } 1181 EXPORT_SYMBOL(__bforget); 1182 1183 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1184 { 1185 lock_buffer(bh); 1186 if (buffer_uptodate(bh)) { 1187 unlock_buffer(bh); 1188 return bh; 1189 } else { 1190 get_bh(bh); 1191 bh->b_end_io = end_buffer_read_sync; 1192 submit_bh(READ, bh); 1193 wait_on_buffer(bh); 1194 if (buffer_uptodate(bh)) 1195 return bh; 1196 } 1197 brelse(bh); 1198 return NULL; 1199 } 1200 1201 /* 1202 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1203 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1204 * refcount elevated by one when they're in an LRU. A buffer can only appear 1205 * once in a particular CPU's LRU. A single buffer can be present in multiple 1206 * CPU's LRUs at the same time. 1207 * 1208 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1209 * sb_find_get_block(). 1210 * 1211 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1212 * a local interrupt disable for that. 1213 */ 1214 1215 #define BH_LRU_SIZE 8 1216 1217 struct bh_lru { 1218 struct buffer_head *bhs[BH_LRU_SIZE]; 1219 }; 1220 1221 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1222 1223 #ifdef CONFIG_SMP 1224 #define bh_lru_lock() local_irq_disable() 1225 #define bh_lru_unlock() local_irq_enable() 1226 #else 1227 #define bh_lru_lock() preempt_disable() 1228 #define bh_lru_unlock() preempt_enable() 1229 #endif 1230 1231 static inline void check_irqs_on(void) 1232 { 1233 #ifdef irqs_disabled 1234 BUG_ON(irqs_disabled()); 1235 #endif 1236 } 1237 1238 /* 1239 * The LRU management algorithm is dopey-but-simple. Sorry. 1240 */ 1241 static void bh_lru_install(struct buffer_head *bh) 1242 { 1243 struct buffer_head *evictee = NULL; 1244 1245 check_irqs_on(); 1246 bh_lru_lock(); 1247 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1248 struct buffer_head *bhs[BH_LRU_SIZE]; 1249 int in; 1250 int out = 0; 1251 1252 get_bh(bh); 1253 bhs[out++] = bh; 1254 for (in = 0; in < BH_LRU_SIZE; in++) { 1255 struct buffer_head *bh2 = 1256 __this_cpu_read(bh_lrus.bhs[in]); 1257 1258 if (bh2 == bh) { 1259 __brelse(bh2); 1260 } else { 1261 if (out >= BH_LRU_SIZE) { 1262 BUG_ON(evictee != NULL); 1263 evictee = bh2; 1264 } else { 1265 bhs[out++] = bh2; 1266 } 1267 } 1268 } 1269 while (out < BH_LRU_SIZE) 1270 bhs[out++] = NULL; 1271 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1272 } 1273 bh_lru_unlock(); 1274 1275 if (evictee) 1276 __brelse(evictee); 1277 } 1278 1279 /* 1280 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1281 */ 1282 static struct buffer_head * 1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1284 { 1285 struct buffer_head *ret = NULL; 1286 unsigned int i; 1287 1288 check_irqs_on(); 1289 bh_lru_lock(); 1290 for (i = 0; i < BH_LRU_SIZE; i++) { 1291 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1292 1293 if (bh && bh->b_bdev == bdev && 1294 bh->b_blocknr == block && bh->b_size == size) { 1295 if (i) { 1296 while (i) { 1297 __this_cpu_write(bh_lrus.bhs[i], 1298 __this_cpu_read(bh_lrus.bhs[i - 1])); 1299 i--; 1300 } 1301 __this_cpu_write(bh_lrus.bhs[0], bh); 1302 } 1303 get_bh(bh); 1304 ret = bh; 1305 break; 1306 } 1307 } 1308 bh_lru_unlock(); 1309 return ret; 1310 } 1311 1312 /* 1313 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1314 * it in the LRU and mark it as accessed. If it is not present then return 1315 * NULL 1316 */ 1317 struct buffer_head * 1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1319 { 1320 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1321 1322 if (bh == NULL) { 1323 bh = __find_get_block_slow(bdev, block); 1324 if (bh) 1325 bh_lru_install(bh); 1326 } 1327 if (bh) 1328 touch_buffer(bh); 1329 return bh; 1330 } 1331 EXPORT_SYMBOL(__find_get_block); 1332 1333 /* 1334 * __getblk will locate (and, if necessary, create) the buffer_head 1335 * which corresponds to the passed block_device, block and size. The 1336 * returned buffer has its reference count incremented. 1337 * 1338 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1339 * attempt is failing. FIXME, perhaps? 1340 */ 1341 struct buffer_head * 1342 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1343 { 1344 struct buffer_head *bh = __find_get_block(bdev, block, size); 1345 1346 might_sleep(); 1347 if (bh == NULL) 1348 bh = __getblk_slow(bdev, block, size); 1349 return bh; 1350 } 1351 EXPORT_SYMBOL(__getblk); 1352 1353 /* 1354 * Do async read-ahead on a buffer.. 1355 */ 1356 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1357 { 1358 struct buffer_head *bh = __getblk(bdev, block, size); 1359 if (likely(bh)) { 1360 ll_rw_block(READA, 1, &bh); 1361 brelse(bh); 1362 } 1363 } 1364 EXPORT_SYMBOL(__breadahead); 1365 1366 /** 1367 * __bread() - reads a specified block and returns the bh 1368 * @bdev: the block_device to read from 1369 * @block: number of block 1370 * @size: size (in bytes) to read 1371 * 1372 * Reads a specified block, and returns buffer head that contains it. 1373 * It returns NULL if the block was unreadable. 1374 */ 1375 struct buffer_head * 1376 __bread(struct block_device *bdev, sector_t block, unsigned size) 1377 { 1378 struct buffer_head *bh = __getblk(bdev, block, size); 1379 1380 if (likely(bh) && !buffer_uptodate(bh)) 1381 bh = __bread_slow(bh); 1382 return bh; 1383 } 1384 EXPORT_SYMBOL(__bread); 1385 1386 /* 1387 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1388 * This doesn't race because it runs in each cpu either in irq 1389 * or with preempt disabled. 1390 */ 1391 static void invalidate_bh_lru(void *arg) 1392 { 1393 struct bh_lru *b = &get_cpu_var(bh_lrus); 1394 int i; 1395 1396 for (i = 0; i < BH_LRU_SIZE; i++) { 1397 brelse(b->bhs[i]); 1398 b->bhs[i] = NULL; 1399 } 1400 put_cpu_var(bh_lrus); 1401 } 1402 1403 static bool has_bh_in_lru(int cpu, void *dummy) 1404 { 1405 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1406 int i; 1407 1408 for (i = 0; i < BH_LRU_SIZE; i++) { 1409 if (b->bhs[i]) 1410 return 1; 1411 } 1412 1413 return 0; 1414 } 1415 1416 void invalidate_bh_lrus(void) 1417 { 1418 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1419 } 1420 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1421 1422 void set_bh_page(struct buffer_head *bh, 1423 struct page *page, unsigned long offset) 1424 { 1425 bh->b_page = page; 1426 BUG_ON(offset >= PAGE_SIZE); 1427 if (PageHighMem(page)) 1428 /* 1429 * This catches illegal uses and preserves the offset: 1430 */ 1431 bh->b_data = (char *)(0 + offset); 1432 else 1433 bh->b_data = page_address(page) + offset; 1434 } 1435 EXPORT_SYMBOL(set_bh_page); 1436 1437 /* 1438 * Called when truncating a buffer on a page completely. 1439 */ 1440 static void discard_buffer(struct buffer_head * bh) 1441 { 1442 lock_buffer(bh); 1443 clear_buffer_dirty(bh); 1444 bh->b_bdev = NULL; 1445 clear_buffer_mapped(bh); 1446 clear_buffer_req(bh); 1447 clear_buffer_new(bh); 1448 clear_buffer_delay(bh); 1449 clear_buffer_unwritten(bh); 1450 unlock_buffer(bh); 1451 } 1452 1453 /** 1454 * block_invalidatepage - invalidate part or all of a buffer-backed page 1455 * 1456 * @page: the page which is affected 1457 * @offset: the index of the truncation point 1458 * 1459 * block_invalidatepage() is called when all or part of the page has become 1460 * invalidated by a truncate operation. 1461 * 1462 * block_invalidatepage() does not have to release all buffers, but it must 1463 * ensure that no dirty buffer is left outside @offset and that no I/O 1464 * is underway against any of the blocks which are outside the truncation 1465 * point. Because the caller is about to free (and possibly reuse) those 1466 * blocks on-disk. 1467 */ 1468 void block_invalidatepage(struct page *page, unsigned long offset) 1469 { 1470 struct buffer_head *head, *bh, *next; 1471 unsigned int curr_off = 0; 1472 1473 BUG_ON(!PageLocked(page)); 1474 if (!page_has_buffers(page)) 1475 goto out; 1476 1477 head = page_buffers(page); 1478 bh = head; 1479 do { 1480 unsigned int next_off = curr_off + bh->b_size; 1481 next = bh->b_this_page; 1482 1483 /* 1484 * is this block fully invalidated? 1485 */ 1486 if (offset <= curr_off) 1487 discard_buffer(bh); 1488 curr_off = next_off; 1489 bh = next; 1490 } while (bh != head); 1491 1492 /* 1493 * We release buffers only if the entire page is being invalidated. 1494 * The get_block cached value has been unconditionally invalidated, 1495 * so real IO is not possible anymore. 1496 */ 1497 if (offset == 0) 1498 try_to_release_page(page, 0); 1499 out: 1500 return; 1501 } 1502 EXPORT_SYMBOL(block_invalidatepage); 1503 1504 /* 1505 * We attach and possibly dirty the buffers atomically wrt 1506 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1507 * is already excluded via the page lock. 1508 */ 1509 void create_empty_buffers(struct page *page, 1510 unsigned long blocksize, unsigned long b_state) 1511 { 1512 struct buffer_head *bh, *head, *tail; 1513 1514 head = alloc_page_buffers(page, blocksize, 1); 1515 bh = head; 1516 do { 1517 bh->b_state |= b_state; 1518 tail = bh; 1519 bh = bh->b_this_page; 1520 } while (bh); 1521 tail->b_this_page = head; 1522 1523 spin_lock(&page->mapping->private_lock); 1524 if (PageUptodate(page) || PageDirty(page)) { 1525 bh = head; 1526 do { 1527 if (PageDirty(page)) 1528 set_buffer_dirty(bh); 1529 if (PageUptodate(page)) 1530 set_buffer_uptodate(bh); 1531 bh = bh->b_this_page; 1532 } while (bh != head); 1533 } 1534 attach_page_buffers(page, head); 1535 spin_unlock(&page->mapping->private_lock); 1536 } 1537 EXPORT_SYMBOL(create_empty_buffers); 1538 1539 /* 1540 * We are taking a block for data and we don't want any output from any 1541 * buffer-cache aliases starting from return from that function and 1542 * until the moment when something will explicitly mark the buffer 1543 * dirty (hopefully that will not happen until we will free that block ;-) 1544 * We don't even need to mark it not-uptodate - nobody can expect 1545 * anything from a newly allocated buffer anyway. We used to used 1546 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1547 * don't want to mark the alias unmapped, for example - it would confuse 1548 * anyone who might pick it with bread() afterwards... 1549 * 1550 * Also.. Note that bforget() doesn't lock the buffer. So there can 1551 * be writeout I/O going on against recently-freed buffers. We don't 1552 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1553 * only if we really need to. That happens here. 1554 */ 1555 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1556 { 1557 struct buffer_head *old_bh; 1558 1559 might_sleep(); 1560 1561 old_bh = __find_get_block_slow(bdev, block); 1562 if (old_bh) { 1563 clear_buffer_dirty(old_bh); 1564 wait_on_buffer(old_bh); 1565 clear_buffer_req(old_bh); 1566 __brelse(old_bh); 1567 } 1568 } 1569 EXPORT_SYMBOL(unmap_underlying_metadata); 1570 1571 /* 1572 * Size is a power-of-two in the range 512..PAGE_SIZE, 1573 * and the case we care about most is PAGE_SIZE. 1574 * 1575 * So this *could* possibly be written with those 1576 * constraints in mind (relevant mostly if some 1577 * architecture has a slow bit-scan instruction) 1578 */ 1579 static inline int block_size_bits(unsigned int blocksize) 1580 { 1581 return ilog2(blocksize); 1582 } 1583 1584 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1585 { 1586 BUG_ON(!PageLocked(page)); 1587 1588 if (!page_has_buffers(page)) 1589 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1590 return page_buffers(page); 1591 } 1592 1593 /* 1594 * NOTE! All mapped/uptodate combinations are valid: 1595 * 1596 * Mapped Uptodate Meaning 1597 * 1598 * No No "unknown" - must do get_block() 1599 * No Yes "hole" - zero-filled 1600 * Yes No "allocated" - allocated on disk, not read in 1601 * Yes Yes "valid" - allocated and up-to-date in memory. 1602 * 1603 * "Dirty" is valid only with the last case (mapped+uptodate). 1604 */ 1605 1606 /* 1607 * While block_write_full_page is writing back the dirty buffers under 1608 * the page lock, whoever dirtied the buffers may decide to clean them 1609 * again at any time. We handle that by only looking at the buffer 1610 * state inside lock_buffer(). 1611 * 1612 * If block_write_full_page() is called for regular writeback 1613 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1614 * locked buffer. This only can happen if someone has written the buffer 1615 * directly, with submit_bh(). At the address_space level PageWriteback 1616 * prevents this contention from occurring. 1617 * 1618 * If block_write_full_page() is called with wbc->sync_mode == 1619 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1620 * causes the writes to be flagged as synchronous writes. 1621 */ 1622 static int __block_write_full_page(struct inode *inode, struct page *page, 1623 get_block_t *get_block, struct writeback_control *wbc, 1624 bh_end_io_t *handler) 1625 { 1626 int err; 1627 sector_t block; 1628 sector_t last_block; 1629 struct buffer_head *bh, *head; 1630 unsigned int blocksize, bbits; 1631 int nr_underway = 0; 1632 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1633 WRITE_SYNC : WRITE); 1634 1635 head = create_page_buffers(page, inode, 1636 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1637 1638 /* 1639 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1640 * here, and the (potentially unmapped) buffers may become dirty at 1641 * any time. If a buffer becomes dirty here after we've inspected it 1642 * then we just miss that fact, and the page stays dirty. 1643 * 1644 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1645 * handle that here by just cleaning them. 1646 */ 1647 1648 bh = head; 1649 blocksize = bh->b_size; 1650 bbits = block_size_bits(blocksize); 1651 1652 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1653 last_block = (i_size_read(inode) - 1) >> bbits; 1654 1655 /* 1656 * Get all the dirty buffers mapped to disk addresses and 1657 * handle any aliases from the underlying blockdev's mapping. 1658 */ 1659 do { 1660 if (block > last_block) { 1661 /* 1662 * mapped buffers outside i_size will occur, because 1663 * this page can be outside i_size when there is a 1664 * truncate in progress. 1665 */ 1666 /* 1667 * The buffer was zeroed by block_write_full_page() 1668 */ 1669 clear_buffer_dirty(bh); 1670 set_buffer_uptodate(bh); 1671 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1672 buffer_dirty(bh)) { 1673 WARN_ON(bh->b_size != blocksize); 1674 err = get_block(inode, block, bh, 1); 1675 if (err) 1676 goto recover; 1677 clear_buffer_delay(bh); 1678 if (buffer_new(bh)) { 1679 /* blockdev mappings never come here */ 1680 clear_buffer_new(bh); 1681 unmap_underlying_metadata(bh->b_bdev, 1682 bh->b_blocknr); 1683 } 1684 } 1685 bh = bh->b_this_page; 1686 block++; 1687 } while (bh != head); 1688 1689 do { 1690 if (!buffer_mapped(bh)) 1691 continue; 1692 /* 1693 * If it's a fully non-blocking write attempt and we cannot 1694 * lock the buffer then redirty the page. Note that this can 1695 * potentially cause a busy-wait loop from writeback threads 1696 * and kswapd activity, but those code paths have their own 1697 * higher-level throttling. 1698 */ 1699 if (wbc->sync_mode != WB_SYNC_NONE) { 1700 lock_buffer(bh); 1701 } else if (!trylock_buffer(bh)) { 1702 redirty_page_for_writepage(wbc, page); 1703 continue; 1704 } 1705 if (test_clear_buffer_dirty(bh)) { 1706 mark_buffer_async_write_endio(bh, handler); 1707 } else { 1708 unlock_buffer(bh); 1709 } 1710 } while ((bh = bh->b_this_page) != head); 1711 1712 /* 1713 * The page and its buffers are protected by PageWriteback(), so we can 1714 * drop the bh refcounts early. 1715 */ 1716 BUG_ON(PageWriteback(page)); 1717 set_page_writeback(page); 1718 1719 do { 1720 struct buffer_head *next = bh->b_this_page; 1721 if (buffer_async_write(bh)) { 1722 submit_bh(write_op, bh); 1723 nr_underway++; 1724 } 1725 bh = next; 1726 } while (bh != head); 1727 unlock_page(page); 1728 1729 err = 0; 1730 done: 1731 if (nr_underway == 0) { 1732 /* 1733 * The page was marked dirty, but the buffers were 1734 * clean. Someone wrote them back by hand with 1735 * ll_rw_block/submit_bh. A rare case. 1736 */ 1737 end_page_writeback(page); 1738 1739 /* 1740 * The page and buffer_heads can be released at any time from 1741 * here on. 1742 */ 1743 } 1744 return err; 1745 1746 recover: 1747 /* 1748 * ENOSPC, or some other error. We may already have added some 1749 * blocks to the file, so we need to write these out to avoid 1750 * exposing stale data. 1751 * The page is currently locked and not marked for writeback 1752 */ 1753 bh = head; 1754 /* Recovery: lock and submit the mapped buffers */ 1755 do { 1756 if (buffer_mapped(bh) && buffer_dirty(bh) && 1757 !buffer_delay(bh)) { 1758 lock_buffer(bh); 1759 mark_buffer_async_write_endio(bh, handler); 1760 } else { 1761 /* 1762 * The buffer may have been set dirty during 1763 * attachment to a dirty page. 1764 */ 1765 clear_buffer_dirty(bh); 1766 } 1767 } while ((bh = bh->b_this_page) != head); 1768 SetPageError(page); 1769 BUG_ON(PageWriteback(page)); 1770 mapping_set_error(page->mapping, err); 1771 set_page_writeback(page); 1772 do { 1773 struct buffer_head *next = bh->b_this_page; 1774 if (buffer_async_write(bh)) { 1775 clear_buffer_dirty(bh); 1776 submit_bh(write_op, bh); 1777 nr_underway++; 1778 } 1779 bh = next; 1780 } while (bh != head); 1781 unlock_page(page); 1782 goto done; 1783 } 1784 1785 /* 1786 * If a page has any new buffers, zero them out here, and mark them uptodate 1787 * and dirty so they'll be written out (in order to prevent uninitialised 1788 * block data from leaking). And clear the new bit. 1789 */ 1790 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1791 { 1792 unsigned int block_start, block_end; 1793 struct buffer_head *head, *bh; 1794 1795 BUG_ON(!PageLocked(page)); 1796 if (!page_has_buffers(page)) 1797 return; 1798 1799 bh = head = page_buffers(page); 1800 block_start = 0; 1801 do { 1802 block_end = block_start + bh->b_size; 1803 1804 if (buffer_new(bh)) { 1805 if (block_end > from && block_start < to) { 1806 if (!PageUptodate(page)) { 1807 unsigned start, size; 1808 1809 start = max(from, block_start); 1810 size = min(to, block_end) - start; 1811 1812 zero_user(page, start, size); 1813 set_buffer_uptodate(bh); 1814 } 1815 1816 clear_buffer_new(bh); 1817 mark_buffer_dirty(bh); 1818 } 1819 } 1820 1821 block_start = block_end; 1822 bh = bh->b_this_page; 1823 } while (bh != head); 1824 } 1825 EXPORT_SYMBOL(page_zero_new_buffers); 1826 1827 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1828 get_block_t *get_block) 1829 { 1830 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1831 unsigned to = from + len; 1832 struct inode *inode = page->mapping->host; 1833 unsigned block_start, block_end; 1834 sector_t block; 1835 int err = 0; 1836 unsigned blocksize, bbits; 1837 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1838 1839 BUG_ON(!PageLocked(page)); 1840 BUG_ON(from > PAGE_CACHE_SIZE); 1841 BUG_ON(to > PAGE_CACHE_SIZE); 1842 BUG_ON(from > to); 1843 1844 head = create_page_buffers(page, inode, 0); 1845 blocksize = head->b_size; 1846 bbits = block_size_bits(blocksize); 1847 1848 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1849 1850 for(bh = head, block_start = 0; bh != head || !block_start; 1851 block++, block_start=block_end, bh = bh->b_this_page) { 1852 block_end = block_start + blocksize; 1853 if (block_end <= from || block_start >= to) { 1854 if (PageUptodate(page)) { 1855 if (!buffer_uptodate(bh)) 1856 set_buffer_uptodate(bh); 1857 } 1858 continue; 1859 } 1860 if (buffer_new(bh)) 1861 clear_buffer_new(bh); 1862 if (!buffer_mapped(bh)) { 1863 WARN_ON(bh->b_size != blocksize); 1864 err = get_block(inode, block, bh, 1); 1865 if (err) 1866 break; 1867 if (buffer_new(bh)) { 1868 unmap_underlying_metadata(bh->b_bdev, 1869 bh->b_blocknr); 1870 if (PageUptodate(page)) { 1871 clear_buffer_new(bh); 1872 set_buffer_uptodate(bh); 1873 mark_buffer_dirty(bh); 1874 continue; 1875 } 1876 if (block_end > to || block_start < from) 1877 zero_user_segments(page, 1878 to, block_end, 1879 block_start, from); 1880 continue; 1881 } 1882 } 1883 if (PageUptodate(page)) { 1884 if (!buffer_uptodate(bh)) 1885 set_buffer_uptodate(bh); 1886 continue; 1887 } 1888 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1889 !buffer_unwritten(bh) && 1890 (block_start < from || block_end > to)) { 1891 ll_rw_block(READ, 1, &bh); 1892 *wait_bh++=bh; 1893 } 1894 } 1895 /* 1896 * If we issued read requests - let them complete. 1897 */ 1898 while(wait_bh > wait) { 1899 wait_on_buffer(*--wait_bh); 1900 if (!buffer_uptodate(*wait_bh)) 1901 err = -EIO; 1902 } 1903 if (unlikely(err)) 1904 page_zero_new_buffers(page, from, to); 1905 return err; 1906 } 1907 EXPORT_SYMBOL(__block_write_begin); 1908 1909 static int __block_commit_write(struct inode *inode, struct page *page, 1910 unsigned from, unsigned to) 1911 { 1912 unsigned block_start, block_end; 1913 int partial = 0; 1914 unsigned blocksize; 1915 struct buffer_head *bh, *head; 1916 1917 bh = head = page_buffers(page); 1918 blocksize = bh->b_size; 1919 1920 block_start = 0; 1921 do { 1922 block_end = block_start + blocksize; 1923 if (block_end <= from || block_start >= to) { 1924 if (!buffer_uptodate(bh)) 1925 partial = 1; 1926 } else { 1927 set_buffer_uptodate(bh); 1928 mark_buffer_dirty(bh); 1929 } 1930 clear_buffer_new(bh); 1931 1932 block_start = block_end; 1933 bh = bh->b_this_page; 1934 } while (bh != head); 1935 1936 /* 1937 * If this is a partial write which happened to make all buffers 1938 * uptodate then we can optimize away a bogus readpage() for 1939 * the next read(). Here we 'discover' whether the page went 1940 * uptodate as a result of this (potentially partial) write. 1941 */ 1942 if (!partial) 1943 SetPageUptodate(page); 1944 return 0; 1945 } 1946 1947 /* 1948 * block_write_begin takes care of the basic task of block allocation and 1949 * bringing partial write blocks uptodate first. 1950 * 1951 * The filesystem needs to handle block truncation upon failure. 1952 */ 1953 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1954 unsigned flags, struct page **pagep, get_block_t *get_block) 1955 { 1956 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1957 struct page *page; 1958 int status; 1959 1960 page = grab_cache_page_write_begin(mapping, index, flags); 1961 if (!page) 1962 return -ENOMEM; 1963 1964 status = __block_write_begin(page, pos, len, get_block); 1965 if (unlikely(status)) { 1966 unlock_page(page); 1967 page_cache_release(page); 1968 page = NULL; 1969 } 1970 1971 *pagep = page; 1972 return status; 1973 } 1974 EXPORT_SYMBOL(block_write_begin); 1975 1976 int block_write_end(struct file *file, struct address_space *mapping, 1977 loff_t pos, unsigned len, unsigned copied, 1978 struct page *page, void *fsdata) 1979 { 1980 struct inode *inode = mapping->host; 1981 unsigned start; 1982 1983 start = pos & (PAGE_CACHE_SIZE - 1); 1984 1985 if (unlikely(copied < len)) { 1986 /* 1987 * The buffers that were written will now be uptodate, so we 1988 * don't have to worry about a readpage reading them and 1989 * overwriting a partial write. However if we have encountered 1990 * a short write and only partially written into a buffer, it 1991 * will not be marked uptodate, so a readpage might come in and 1992 * destroy our partial write. 1993 * 1994 * Do the simplest thing, and just treat any short write to a 1995 * non uptodate page as a zero-length write, and force the 1996 * caller to redo the whole thing. 1997 */ 1998 if (!PageUptodate(page)) 1999 copied = 0; 2000 2001 page_zero_new_buffers(page, start+copied, start+len); 2002 } 2003 flush_dcache_page(page); 2004 2005 /* This could be a short (even 0-length) commit */ 2006 __block_commit_write(inode, page, start, start+copied); 2007 2008 return copied; 2009 } 2010 EXPORT_SYMBOL(block_write_end); 2011 2012 int generic_write_end(struct file *file, struct address_space *mapping, 2013 loff_t pos, unsigned len, unsigned copied, 2014 struct page *page, void *fsdata) 2015 { 2016 struct inode *inode = mapping->host; 2017 int i_size_changed = 0; 2018 2019 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2020 2021 /* 2022 * No need to use i_size_read() here, the i_size 2023 * cannot change under us because we hold i_mutex. 2024 * 2025 * But it's important to update i_size while still holding page lock: 2026 * page writeout could otherwise come in and zero beyond i_size. 2027 */ 2028 if (pos+copied > inode->i_size) { 2029 i_size_write(inode, pos+copied); 2030 i_size_changed = 1; 2031 } 2032 2033 unlock_page(page); 2034 page_cache_release(page); 2035 2036 /* 2037 * Don't mark the inode dirty under page lock. First, it unnecessarily 2038 * makes the holding time of page lock longer. Second, it forces lock 2039 * ordering of page lock and transaction start for journaling 2040 * filesystems. 2041 */ 2042 if (i_size_changed) 2043 mark_inode_dirty(inode); 2044 2045 return copied; 2046 } 2047 EXPORT_SYMBOL(generic_write_end); 2048 2049 /* 2050 * block_is_partially_uptodate checks whether buffers within a page are 2051 * uptodate or not. 2052 * 2053 * Returns true if all buffers which correspond to a file portion 2054 * we want to read are uptodate. 2055 */ 2056 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2057 unsigned long from) 2058 { 2059 unsigned block_start, block_end, blocksize; 2060 unsigned to; 2061 struct buffer_head *bh, *head; 2062 int ret = 1; 2063 2064 if (!page_has_buffers(page)) 2065 return 0; 2066 2067 head = page_buffers(page); 2068 blocksize = head->b_size; 2069 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2070 to = from + to; 2071 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2072 return 0; 2073 2074 bh = head; 2075 block_start = 0; 2076 do { 2077 block_end = block_start + blocksize; 2078 if (block_end > from && block_start < to) { 2079 if (!buffer_uptodate(bh)) { 2080 ret = 0; 2081 break; 2082 } 2083 if (block_end >= to) 2084 break; 2085 } 2086 block_start = block_end; 2087 bh = bh->b_this_page; 2088 } while (bh != head); 2089 2090 return ret; 2091 } 2092 EXPORT_SYMBOL(block_is_partially_uptodate); 2093 2094 /* 2095 * Generic "read page" function for block devices that have the normal 2096 * get_block functionality. This is most of the block device filesystems. 2097 * Reads the page asynchronously --- the unlock_buffer() and 2098 * set/clear_buffer_uptodate() functions propagate buffer state into the 2099 * page struct once IO has completed. 2100 */ 2101 int block_read_full_page(struct page *page, get_block_t *get_block) 2102 { 2103 struct inode *inode = page->mapping->host; 2104 sector_t iblock, lblock; 2105 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2106 unsigned int blocksize, bbits; 2107 int nr, i; 2108 int fully_mapped = 1; 2109 2110 head = create_page_buffers(page, inode, 0); 2111 blocksize = head->b_size; 2112 bbits = block_size_bits(blocksize); 2113 2114 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 2115 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2116 bh = head; 2117 nr = 0; 2118 i = 0; 2119 2120 do { 2121 if (buffer_uptodate(bh)) 2122 continue; 2123 2124 if (!buffer_mapped(bh)) { 2125 int err = 0; 2126 2127 fully_mapped = 0; 2128 if (iblock < lblock) { 2129 WARN_ON(bh->b_size != blocksize); 2130 err = get_block(inode, iblock, bh, 0); 2131 if (err) 2132 SetPageError(page); 2133 } 2134 if (!buffer_mapped(bh)) { 2135 zero_user(page, i * blocksize, blocksize); 2136 if (!err) 2137 set_buffer_uptodate(bh); 2138 continue; 2139 } 2140 /* 2141 * get_block() might have updated the buffer 2142 * synchronously 2143 */ 2144 if (buffer_uptodate(bh)) 2145 continue; 2146 } 2147 arr[nr++] = bh; 2148 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2149 2150 if (fully_mapped) 2151 SetPageMappedToDisk(page); 2152 2153 if (!nr) { 2154 /* 2155 * All buffers are uptodate - we can set the page uptodate 2156 * as well. But not if get_block() returned an error. 2157 */ 2158 if (!PageError(page)) 2159 SetPageUptodate(page); 2160 unlock_page(page); 2161 return 0; 2162 } 2163 2164 /* Stage two: lock the buffers */ 2165 for (i = 0; i < nr; i++) { 2166 bh = arr[i]; 2167 lock_buffer(bh); 2168 mark_buffer_async_read(bh); 2169 } 2170 2171 /* 2172 * Stage 3: start the IO. Check for uptodateness 2173 * inside the buffer lock in case another process reading 2174 * the underlying blockdev brought it uptodate (the sct fix). 2175 */ 2176 for (i = 0; i < nr; i++) { 2177 bh = arr[i]; 2178 if (buffer_uptodate(bh)) 2179 end_buffer_async_read(bh, 1); 2180 else 2181 submit_bh(READ, bh); 2182 } 2183 return 0; 2184 } 2185 EXPORT_SYMBOL(block_read_full_page); 2186 2187 /* utility function for filesystems that need to do work on expanding 2188 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2189 * deal with the hole. 2190 */ 2191 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2192 { 2193 struct address_space *mapping = inode->i_mapping; 2194 struct page *page; 2195 void *fsdata; 2196 int err; 2197 2198 err = inode_newsize_ok(inode, size); 2199 if (err) 2200 goto out; 2201 2202 err = pagecache_write_begin(NULL, mapping, size, 0, 2203 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2204 &page, &fsdata); 2205 if (err) 2206 goto out; 2207 2208 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2209 BUG_ON(err > 0); 2210 2211 out: 2212 return err; 2213 } 2214 EXPORT_SYMBOL(generic_cont_expand_simple); 2215 2216 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2217 loff_t pos, loff_t *bytes) 2218 { 2219 struct inode *inode = mapping->host; 2220 unsigned blocksize = 1 << inode->i_blkbits; 2221 struct page *page; 2222 void *fsdata; 2223 pgoff_t index, curidx; 2224 loff_t curpos; 2225 unsigned zerofrom, offset, len; 2226 int err = 0; 2227 2228 index = pos >> PAGE_CACHE_SHIFT; 2229 offset = pos & ~PAGE_CACHE_MASK; 2230 2231 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2232 zerofrom = curpos & ~PAGE_CACHE_MASK; 2233 if (zerofrom & (blocksize-1)) { 2234 *bytes |= (blocksize-1); 2235 (*bytes)++; 2236 } 2237 len = PAGE_CACHE_SIZE - zerofrom; 2238 2239 err = pagecache_write_begin(file, mapping, curpos, len, 2240 AOP_FLAG_UNINTERRUPTIBLE, 2241 &page, &fsdata); 2242 if (err) 2243 goto out; 2244 zero_user(page, zerofrom, len); 2245 err = pagecache_write_end(file, mapping, curpos, len, len, 2246 page, fsdata); 2247 if (err < 0) 2248 goto out; 2249 BUG_ON(err != len); 2250 err = 0; 2251 2252 balance_dirty_pages_ratelimited(mapping); 2253 } 2254 2255 /* page covers the boundary, find the boundary offset */ 2256 if (index == curidx) { 2257 zerofrom = curpos & ~PAGE_CACHE_MASK; 2258 /* if we will expand the thing last block will be filled */ 2259 if (offset <= zerofrom) { 2260 goto out; 2261 } 2262 if (zerofrom & (blocksize-1)) { 2263 *bytes |= (blocksize-1); 2264 (*bytes)++; 2265 } 2266 len = offset - zerofrom; 2267 2268 err = pagecache_write_begin(file, mapping, curpos, len, 2269 AOP_FLAG_UNINTERRUPTIBLE, 2270 &page, &fsdata); 2271 if (err) 2272 goto out; 2273 zero_user(page, zerofrom, len); 2274 err = pagecache_write_end(file, mapping, curpos, len, len, 2275 page, fsdata); 2276 if (err < 0) 2277 goto out; 2278 BUG_ON(err != len); 2279 err = 0; 2280 } 2281 out: 2282 return err; 2283 } 2284 2285 /* 2286 * For moronic filesystems that do not allow holes in file. 2287 * We may have to extend the file. 2288 */ 2289 int cont_write_begin(struct file *file, struct address_space *mapping, 2290 loff_t pos, unsigned len, unsigned flags, 2291 struct page **pagep, void **fsdata, 2292 get_block_t *get_block, loff_t *bytes) 2293 { 2294 struct inode *inode = mapping->host; 2295 unsigned blocksize = 1 << inode->i_blkbits; 2296 unsigned zerofrom; 2297 int err; 2298 2299 err = cont_expand_zero(file, mapping, pos, bytes); 2300 if (err) 2301 return err; 2302 2303 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2304 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2305 *bytes |= (blocksize-1); 2306 (*bytes)++; 2307 } 2308 2309 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2310 } 2311 EXPORT_SYMBOL(cont_write_begin); 2312 2313 int block_commit_write(struct page *page, unsigned from, unsigned to) 2314 { 2315 struct inode *inode = page->mapping->host; 2316 __block_commit_write(inode,page,from,to); 2317 return 0; 2318 } 2319 EXPORT_SYMBOL(block_commit_write); 2320 2321 /* 2322 * block_page_mkwrite() is not allowed to change the file size as it gets 2323 * called from a page fault handler when a page is first dirtied. Hence we must 2324 * be careful to check for EOF conditions here. We set the page up correctly 2325 * for a written page which means we get ENOSPC checking when writing into 2326 * holes and correct delalloc and unwritten extent mapping on filesystems that 2327 * support these features. 2328 * 2329 * We are not allowed to take the i_mutex here so we have to play games to 2330 * protect against truncate races as the page could now be beyond EOF. Because 2331 * truncate writes the inode size before removing pages, once we have the 2332 * page lock we can determine safely if the page is beyond EOF. If it is not 2333 * beyond EOF, then the page is guaranteed safe against truncation until we 2334 * unlock the page. 2335 * 2336 * Direct callers of this function should protect against filesystem freezing 2337 * using sb_start_write() - sb_end_write() functions. 2338 */ 2339 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2340 get_block_t get_block) 2341 { 2342 struct page *page = vmf->page; 2343 struct inode *inode = file_inode(vma->vm_file); 2344 unsigned long end; 2345 loff_t size; 2346 int ret; 2347 2348 lock_page(page); 2349 size = i_size_read(inode); 2350 if ((page->mapping != inode->i_mapping) || 2351 (page_offset(page) > size)) { 2352 /* We overload EFAULT to mean page got truncated */ 2353 ret = -EFAULT; 2354 goto out_unlock; 2355 } 2356 2357 /* page is wholly or partially inside EOF */ 2358 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2359 end = size & ~PAGE_CACHE_MASK; 2360 else 2361 end = PAGE_CACHE_SIZE; 2362 2363 ret = __block_write_begin(page, 0, end, get_block); 2364 if (!ret) 2365 ret = block_commit_write(page, 0, end); 2366 2367 if (unlikely(ret < 0)) 2368 goto out_unlock; 2369 set_page_dirty(page); 2370 wait_for_stable_page(page); 2371 return 0; 2372 out_unlock: 2373 unlock_page(page); 2374 return ret; 2375 } 2376 EXPORT_SYMBOL(__block_page_mkwrite); 2377 2378 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2379 get_block_t get_block) 2380 { 2381 int ret; 2382 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 2383 2384 sb_start_pagefault(sb); 2385 2386 /* 2387 * Update file times before taking page lock. We may end up failing the 2388 * fault so this update may be superfluous but who really cares... 2389 */ 2390 file_update_time(vma->vm_file); 2391 2392 ret = __block_page_mkwrite(vma, vmf, get_block); 2393 sb_end_pagefault(sb); 2394 return block_page_mkwrite_return(ret); 2395 } 2396 EXPORT_SYMBOL(block_page_mkwrite); 2397 2398 /* 2399 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2400 * immediately, while under the page lock. So it needs a special end_io 2401 * handler which does not touch the bh after unlocking it. 2402 */ 2403 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2404 { 2405 __end_buffer_read_notouch(bh, uptodate); 2406 } 2407 2408 /* 2409 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2410 * the page (converting it to circular linked list and taking care of page 2411 * dirty races). 2412 */ 2413 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2414 { 2415 struct buffer_head *bh; 2416 2417 BUG_ON(!PageLocked(page)); 2418 2419 spin_lock(&page->mapping->private_lock); 2420 bh = head; 2421 do { 2422 if (PageDirty(page)) 2423 set_buffer_dirty(bh); 2424 if (!bh->b_this_page) 2425 bh->b_this_page = head; 2426 bh = bh->b_this_page; 2427 } while (bh != head); 2428 attach_page_buffers(page, head); 2429 spin_unlock(&page->mapping->private_lock); 2430 } 2431 2432 /* 2433 * On entry, the page is fully not uptodate. 2434 * On exit the page is fully uptodate in the areas outside (from,to) 2435 * The filesystem needs to handle block truncation upon failure. 2436 */ 2437 int nobh_write_begin(struct address_space *mapping, 2438 loff_t pos, unsigned len, unsigned flags, 2439 struct page **pagep, void **fsdata, 2440 get_block_t *get_block) 2441 { 2442 struct inode *inode = mapping->host; 2443 const unsigned blkbits = inode->i_blkbits; 2444 const unsigned blocksize = 1 << blkbits; 2445 struct buffer_head *head, *bh; 2446 struct page *page; 2447 pgoff_t index; 2448 unsigned from, to; 2449 unsigned block_in_page; 2450 unsigned block_start, block_end; 2451 sector_t block_in_file; 2452 int nr_reads = 0; 2453 int ret = 0; 2454 int is_mapped_to_disk = 1; 2455 2456 index = pos >> PAGE_CACHE_SHIFT; 2457 from = pos & (PAGE_CACHE_SIZE - 1); 2458 to = from + len; 2459 2460 page = grab_cache_page_write_begin(mapping, index, flags); 2461 if (!page) 2462 return -ENOMEM; 2463 *pagep = page; 2464 *fsdata = NULL; 2465 2466 if (page_has_buffers(page)) { 2467 ret = __block_write_begin(page, pos, len, get_block); 2468 if (unlikely(ret)) 2469 goto out_release; 2470 return ret; 2471 } 2472 2473 if (PageMappedToDisk(page)) 2474 return 0; 2475 2476 /* 2477 * Allocate buffers so that we can keep track of state, and potentially 2478 * attach them to the page if an error occurs. In the common case of 2479 * no error, they will just be freed again without ever being attached 2480 * to the page (which is all OK, because we're under the page lock). 2481 * 2482 * Be careful: the buffer linked list is a NULL terminated one, rather 2483 * than the circular one we're used to. 2484 */ 2485 head = alloc_page_buffers(page, blocksize, 0); 2486 if (!head) { 2487 ret = -ENOMEM; 2488 goto out_release; 2489 } 2490 2491 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2492 2493 /* 2494 * We loop across all blocks in the page, whether or not they are 2495 * part of the affected region. This is so we can discover if the 2496 * page is fully mapped-to-disk. 2497 */ 2498 for (block_start = 0, block_in_page = 0, bh = head; 2499 block_start < PAGE_CACHE_SIZE; 2500 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2501 int create; 2502 2503 block_end = block_start + blocksize; 2504 bh->b_state = 0; 2505 create = 1; 2506 if (block_start >= to) 2507 create = 0; 2508 ret = get_block(inode, block_in_file + block_in_page, 2509 bh, create); 2510 if (ret) 2511 goto failed; 2512 if (!buffer_mapped(bh)) 2513 is_mapped_to_disk = 0; 2514 if (buffer_new(bh)) 2515 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2516 if (PageUptodate(page)) { 2517 set_buffer_uptodate(bh); 2518 continue; 2519 } 2520 if (buffer_new(bh) || !buffer_mapped(bh)) { 2521 zero_user_segments(page, block_start, from, 2522 to, block_end); 2523 continue; 2524 } 2525 if (buffer_uptodate(bh)) 2526 continue; /* reiserfs does this */ 2527 if (block_start < from || block_end > to) { 2528 lock_buffer(bh); 2529 bh->b_end_io = end_buffer_read_nobh; 2530 submit_bh(READ, bh); 2531 nr_reads++; 2532 } 2533 } 2534 2535 if (nr_reads) { 2536 /* 2537 * The page is locked, so these buffers are protected from 2538 * any VM or truncate activity. Hence we don't need to care 2539 * for the buffer_head refcounts. 2540 */ 2541 for (bh = head; bh; bh = bh->b_this_page) { 2542 wait_on_buffer(bh); 2543 if (!buffer_uptodate(bh)) 2544 ret = -EIO; 2545 } 2546 if (ret) 2547 goto failed; 2548 } 2549 2550 if (is_mapped_to_disk) 2551 SetPageMappedToDisk(page); 2552 2553 *fsdata = head; /* to be released by nobh_write_end */ 2554 2555 return 0; 2556 2557 failed: 2558 BUG_ON(!ret); 2559 /* 2560 * Error recovery is a bit difficult. We need to zero out blocks that 2561 * were newly allocated, and dirty them to ensure they get written out. 2562 * Buffers need to be attached to the page at this point, otherwise 2563 * the handling of potential IO errors during writeout would be hard 2564 * (could try doing synchronous writeout, but what if that fails too?) 2565 */ 2566 attach_nobh_buffers(page, head); 2567 page_zero_new_buffers(page, from, to); 2568 2569 out_release: 2570 unlock_page(page); 2571 page_cache_release(page); 2572 *pagep = NULL; 2573 2574 return ret; 2575 } 2576 EXPORT_SYMBOL(nobh_write_begin); 2577 2578 int nobh_write_end(struct file *file, struct address_space *mapping, 2579 loff_t pos, unsigned len, unsigned copied, 2580 struct page *page, void *fsdata) 2581 { 2582 struct inode *inode = page->mapping->host; 2583 struct buffer_head *head = fsdata; 2584 struct buffer_head *bh; 2585 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2586 2587 if (unlikely(copied < len) && head) 2588 attach_nobh_buffers(page, head); 2589 if (page_has_buffers(page)) 2590 return generic_write_end(file, mapping, pos, len, 2591 copied, page, fsdata); 2592 2593 SetPageUptodate(page); 2594 set_page_dirty(page); 2595 if (pos+copied > inode->i_size) { 2596 i_size_write(inode, pos+copied); 2597 mark_inode_dirty(inode); 2598 } 2599 2600 unlock_page(page); 2601 page_cache_release(page); 2602 2603 while (head) { 2604 bh = head; 2605 head = head->b_this_page; 2606 free_buffer_head(bh); 2607 } 2608 2609 return copied; 2610 } 2611 EXPORT_SYMBOL(nobh_write_end); 2612 2613 /* 2614 * nobh_writepage() - based on block_full_write_page() except 2615 * that it tries to operate without attaching bufferheads to 2616 * the page. 2617 */ 2618 int nobh_writepage(struct page *page, get_block_t *get_block, 2619 struct writeback_control *wbc) 2620 { 2621 struct inode * const inode = page->mapping->host; 2622 loff_t i_size = i_size_read(inode); 2623 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2624 unsigned offset; 2625 int ret; 2626 2627 /* Is the page fully inside i_size? */ 2628 if (page->index < end_index) 2629 goto out; 2630 2631 /* Is the page fully outside i_size? (truncate in progress) */ 2632 offset = i_size & (PAGE_CACHE_SIZE-1); 2633 if (page->index >= end_index+1 || !offset) { 2634 /* 2635 * The page may have dirty, unmapped buffers. For example, 2636 * they may have been added in ext3_writepage(). Make them 2637 * freeable here, so the page does not leak. 2638 */ 2639 #if 0 2640 /* Not really sure about this - do we need this ? */ 2641 if (page->mapping->a_ops->invalidatepage) 2642 page->mapping->a_ops->invalidatepage(page, offset); 2643 #endif 2644 unlock_page(page); 2645 return 0; /* don't care */ 2646 } 2647 2648 /* 2649 * The page straddles i_size. It must be zeroed out on each and every 2650 * writepage invocation because it may be mmapped. "A file is mapped 2651 * in multiples of the page size. For a file that is not a multiple of 2652 * the page size, the remaining memory is zeroed when mapped, and 2653 * writes to that region are not written out to the file." 2654 */ 2655 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2656 out: 2657 ret = mpage_writepage(page, get_block, wbc); 2658 if (ret == -EAGAIN) 2659 ret = __block_write_full_page(inode, page, get_block, wbc, 2660 end_buffer_async_write); 2661 return ret; 2662 } 2663 EXPORT_SYMBOL(nobh_writepage); 2664 2665 int nobh_truncate_page(struct address_space *mapping, 2666 loff_t from, get_block_t *get_block) 2667 { 2668 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2669 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2670 unsigned blocksize; 2671 sector_t iblock; 2672 unsigned length, pos; 2673 struct inode *inode = mapping->host; 2674 struct page *page; 2675 struct buffer_head map_bh; 2676 int err; 2677 2678 blocksize = 1 << inode->i_blkbits; 2679 length = offset & (blocksize - 1); 2680 2681 /* Block boundary? Nothing to do */ 2682 if (!length) 2683 return 0; 2684 2685 length = blocksize - length; 2686 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2687 2688 page = grab_cache_page(mapping, index); 2689 err = -ENOMEM; 2690 if (!page) 2691 goto out; 2692 2693 if (page_has_buffers(page)) { 2694 has_buffers: 2695 unlock_page(page); 2696 page_cache_release(page); 2697 return block_truncate_page(mapping, from, get_block); 2698 } 2699 2700 /* Find the buffer that contains "offset" */ 2701 pos = blocksize; 2702 while (offset >= pos) { 2703 iblock++; 2704 pos += blocksize; 2705 } 2706 2707 map_bh.b_size = blocksize; 2708 map_bh.b_state = 0; 2709 err = get_block(inode, iblock, &map_bh, 0); 2710 if (err) 2711 goto unlock; 2712 /* unmapped? It's a hole - nothing to do */ 2713 if (!buffer_mapped(&map_bh)) 2714 goto unlock; 2715 2716 /* Ok, it's mapped. Make sure it's up-to-date */ 2717 if (!PageUptodate(page)) { 2718 err = mapping->a_ops->readpage(NULL, page); 2719 if (err) { 2720 page_cache_release(page); 2721 goto out; 2722 } 2723 lock_page(page); 2724 if (!PageUptodate(page)) { 2725 err = -EIO; 2726 goto unlock; 2727 } 2728 if (page_has_buffers(page)) 2729 goto has_buffers; 2730 } 2731 zero_user(page, offset, length); 2732 set_page_dirty(page); 2733 err = 0; 2734 2735 unlock: 2736 unlock_page(page); 2737 page_cache_release(page); 2738 out: 2739 return err; 2740 } 2741 EXPORT_SYMBOL(nobh_truncate_page); 2742 2743 int block_truncate_page(struct address_space *mapping, 2744 loff_t from, get_block_t *get_block) 2745 { 2746 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2747 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2748 unsigned blocksize; 2749 sector_t iblock; 2750 unsigned length, pos; 2751 struct inode *inode = mapping->host; 2752 struct page *page; 2753 struct buffer_head *bh; 2754 int err; 2755 2756 blocksize = 1 << inode->i_blkbits; 2757 length = offset & (blocksize - 1); 2758 2759 /* Block boundary? Nothing to do */ 2760 if (!length) 2761 return 0; 2762 2763 length = blocksize - length; 2764 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2765 2766 page = grab_cache_page(mapping, index); 2767 err = -ENOMEM; 2768 if (!page) 2769 goto out; 2770 2771 if (!page_has_buffers(page)) 2772 create_empty_buffers(page, blocksize, 0); 2773 2774 /* Find the buffer that contains "offset" */ 2775 bh = page_buffers(page); 2776 pos = blocksize; 2777 while (offset >= pos) { 2778 bh = bh->b_this_page; 2779 iblock++; 2780 pos += blocksize; 2781 } 2782 2783 err = 0; 2784 if (!buffer_mapped(bh)) { 2785 WARN_ON(bh->b_size != blocksize); 2786 err = get_block(inode, iblock, bh, 0); 2787 if (err) 2788 goto unlock; 2789 /* unmapped? It's a hole - nothing to do */ 2790 if (!buffer_mapped(bh)) 2791 goto unlock; 2792 } 2793 2794 /* Ok, it's mapped. Make sure it's up-to-date */ 2795 if (PageUptodate(page)) 2796 set_buffer_uptodate(bh); 2797 2798 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2799 err = -EIO; 2800 ll_rw_block(READ, 1, &bh); 2801 wait_on_buffer(bh); 2802 /* Uhhuh. Read error. Complain and punt. */ 2803 if (!buffer_uptodate(bh)) 2804 goto unlock; 2805 } 2806 2807 zero_user(page, offset, length); 2808 mark_buffer_dirty(bh); 2809 err = 0; 2810 2811 unlock: 2812 unlock_page(page); 2813 page_cache_release(page); 2814 out: 2815 return err; 2816 } 2817 EXPORT_SYMBOL(block_truncate_page); 2818 2819 /* 2820 * The generic ->writepage function for buffer-backed address_spaces 2821 * this form passes in the end_io handler used to finish the IO. 2822 */ 2823 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2824 struct writeback_control *wbc, bh_end_io_t *handler) 2825 { 2826 struct inode * const inode = page->mapping->host; 2827 loff_t i_size = i_size_read(inode); 2828 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2829 unsigned offset; 2830 2831 /* Is the page fully inside i_size? */ 2832 if (page->index < end_index) 2833 return __block_write_full_page(inode, page, get_block, wbc, 2834 handler); 2835 2836 /* Is the page fully outside i_size? (truncate in progress) */ 2837 offset = i_size & (PAGE_CACHE_SIZE-1); 2838 if (page->index >= end_index+1 || !offset) { 2839 /* 2840 * The page may have dirty, unmapped buffers. For example, 2841 * they may have been added in ext3_writepage(). Make them 2842 * freeable here, so the page does not leak. 2843 */ 2844 do_invalidatepage(page, 0); 2845 unlock_page(page); 2846 return 0; /* don't care */ 2847 } 2848 2849 /* 2850 * The page straddles i_size. It must be zeroed out on each and every 2851 * writepage invocation because it may be mmapped. "A file is mapped 2852 * in multiples of the page size. For a file that is not a multiple of 2853 * the page size, the remaining memory is zeroed when mapped, and 2854 * writes to that region are not written out to the file." 2855 */ 2856 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2857 return __block_write_full_page(inode, page, get_block, wbc, handler); 2858 } 2859 EXPORT_SYMBOL(block_write_full_page_endio); 2860 2861 /* 2862 * The generic ->writepage function for buffer-backed address_spaces 2863 */ 2864 int block_write_full_page(struct page *page, get_block_t *get_block, 2865 struct writeback_control *wbc) 2866 { 2867 return block_write_full_page_endio(page, get_block, wbc, 2868 end_buffer_async_write); 2869 } 2870 EXPORT_SYMBOL(block_write_full_page); 2871 2872 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2873 get_block_t *get_block) 2874 { 2875 struct buffer_head tmp; 2876 struct inode *inode = mapping->host; 2877 tmp.b_state = 0; 2878 tmp.b_blocknr = 0; 2879 tmp.b_size = 1 << inode->i_blkbits; 2880 get_block(inode, block, &tmp, 0); 2881 return tmp.b_blocknr; 2882 } 2883 EXPORT_SYMBOL(generic_block_bmap); 2884 2885 static void end_bio_bh_io_sync(struct bio *bio, int err) 2886 { 2887 struct buffer_head *bh = bio->bi_private; 2888 2889 if (err == -EOPNOTSUPP) { 2890 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2891 } 2892 2893 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2894 set_bit(BH_Quiet, &bh->b_state); 2895 2896 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2897 bio_put(bio); 2898 } 2899 2900 /* 2901 * This allows us to do IO even on the odd last sectors 2902 * of a device, even if the bh block size is some multiple 2903 * of the physical sector size. 2904 * 2905 * We'll just truncate the bio to the size of the device, 2906 * and clear the end of the buffer head manually. 2907 * 2908 * Truly out-of-range accesses will turn into actual IO 2909 * errors, this only handles the "we need to be able to 2910 * do IO at the final sector" case. 2911 */ 2912 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh) 2913 { 2914 sector_t maxsector; 2915 unsigned bytes; 2916 2917 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2918 if (!maxsector) 2919 return; 2920 2921 /* 2922 * If the *whole* IO is past the end of the device, 2923 * let it through, and the IO layer will turn it into 2924 * an EIO. 2925 */ 2926 if (unlikely(bio->bi_sector >= maxsector)) 2927 return; 2928 2929 maxsector -= bio->bi_sector; 2930 bytes = bio->bi_size; 2931 if (likely((bytes >> 9) <= maxsector)) 2932 return; 2933 2934 /* Uhhuh. We've got a bh that straddles the device size! */ 2935 bytes = maxsector << 9; 2936 2937 /* Truncate the bio.. */ 2938 bio->bi_size = bytes; 2939 bio->bi_io_vec[0].bv_len = bytes; 2940 2941 /* ..and clear the end of the buffer for reads */ 2942 if ((rw & RW_MASK) == READ) { 2943 void *kaddr = kmap_atomic(bh->b_page); 2944 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes); 2945 kunmap_atomic(kaddr); 2946 flush_dcache_page(bh->b_page); 2947 } 2948 } 2949 2950 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) 2951 { 2952 struct bio *bio; 2953 int ret = 0; 2954 2955 BUG_ON(!buffer_locked(bh)); 2956 BUG_ON(!buffer_mapped(bh)); 2957 BUG_ON(!bh->b_end_io); 2958 BUG_ON(buffer_delay(bh)); 2959 BUG_ON(buffer_unwritten(bh)); 2960 2961 /* 2962 * Only clear out a write error when rewriting 2963 */ 2964 if (test_set_buffer_req(bh) && (rw & WRITE)) 2965 clear_buffer_write_io_error(bh); 2966 2967 /* 2968 * from here on down, it's all bio -- do the initial mapping, 2969 * submit_bio -> generic_make_request may further map this bio around 2970 */ 2971 bio = bio_alloc(GFP_NOIO, 1); 2972 2973 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2974 bio->bi_bdev = bh->b_bdev; 2975 bio->bi_io_vec[0].bv_page = bh->b_page; 2976 bio->bi_io_vec[0].bv_len = bh->b_size; 2977 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2978 2979 bio->bi_vcnt = 1; 2980 bio->bi_size = bh->b_size; 2981 2982 bio->bi_end_io = end_bio_bh_io_sync; 2983 bio->bi_private = bh; 2984 bio->bi_flags |= bio_flags; 2985 2986 /* Take care of bh's that straddle the end of the device */ 2987 guard_bh_eod(rw, bio, bh); 2988 2989 if (buffer_meta(bh)) 2990 rw |= REQ_META; 2991 if (buffer_prio(bh)) 2992 rw |= REQ_PRIO; 2993 2994 bio_get(bio); 2995 submit_bio(rw, bio); 2996 2997 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2998 ret = -EOPNOTSUPP; 2999 3000 bio_put(bio); 3001 return ret; 3002 } 3003 EXPORT_SYMBOL_GPL(_submit_bh); 3004 3005 int submit_bh(int rw, struct buffer_head *bh) 3006 { 3007 return _submit_bh(rw, bh, 0); 3008 } 3009 EXPORT_SYMBOL(submit_bh); 3010 3011 /** 3012 * ll_rw_block: low-level access to block devices (DEPRECATED) 3013 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 3014 * @nr: number of &struct buffer_heads in the array 3015 * @bhs: array of pointers to &struct buffer_head 3016 * 3017 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3018 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3019 * %READA option is described in the documentation for generic_make_request() 3020 * which ll_rw_block() calls. 3021 * 3022 * This function drops any buffer that it cannot get a lock on (with the 3023 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3024 * request, and any buffer that appears to be up-to-date when doing read 3025 * request. Further it marks as clean buffers that are processed for 3026 * writing (the buffer cache won't assume that they are actually clean 3027 * until the buffer gets unlocked). 3028 * 3029 * ll_rw_block sets b_end_io to simple completion handler that marks 3030 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 3031 * any waiters. 3032 * 3033 * All of the buffers must be for the same device, and must also be a 3034 * multiple of the current approved size for the device. 3035 */ 3036 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3037 { 3038 int i; 3039 3040 for (i = 0; i < nr; i++) { 3041 struct buffer_head *bh = bhs[i]; 3042 3043 if (!trylock_buffer(bh)) 3044 continue; 3045 if (rw == WRITE) { 3046 if (test_clear_buffer_dirty(bh)) { 3047 bh->b_end_io = end_buffer_write_sync; 3048 get_bh(bh); 3049 submit_bh(WRITE, bh); 3050 continue; 3051 } 3052 } else { 3053 if (!buffer_uptodate(bh)) { 3054 bh->b_end_io = end_buffer_read_sync; 3055 get_bh(bh); 3056 submit_bh(rw, bh); 3057 continue; 3058 } 3059 } 3060 unlock_buffer(bh); 3061 } 3062 } 3063 EXPORT_SYMBOL(ll_rw_block); 3064 3065 void write_dirty_buffer(struct buffer_head *bh, int rw) 3066 { 3067 lock_buffer(bh); 3068 if (!test_clear_buffer_dirty(bh)) { 3069 unlock_buffer(bh); 3070 return; 3071 } 3072 bh->b_end_io = end_buffer_write_sync; 3073 get_bh(bh); 3074 submit_bh(rw, bh); 3075 } 3076 EXPORT_SYMBOL(write_dirty_buffer); 3077 3078 /* 3079 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3080 * and then start new I/O and then wait upon it. The caller must have a ref on 3081 * the buffer_head. 3082 */ 3083 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3084 { 3085 int ret = 0; 3086 3087 WARN_ON(atomic_read(&bh->b_count) < 1); 3088 lock_buffer(bh); 3089 if (test_clear_buffer_dirty(bh)) { 3090 get_bh(bh); 3091 bh->b_end_io = end_buffer_write_sync; 3092 ret = submit_bh(rw, bh); 3093 wait_on_buffer(bh); 3094 if (!ret && !buffer_uptodate(bh)) 3095 ret = -EIO; 3096 } else { 3097 unlock_buffer(bh); 3098 } 3099 return ret; 3100 } 3101 EXPORT_SYMBOL(__sync_dirty_buffer); 3102 3103 int sync_dirty_buffer(struct buffer_head *bh) 3104 { 3105 return __sync_dirty_buffer(bh, WRITE_SYNC); 3106 } 3107 EXPORT_SYMBOL(sync_dirty_buffer); 3108 3109 /* 3110 * try_to_free_buffers() checks if all the buffers on this particular page 3111 * are unused, and releases them if so. 3112 * 3113 * Exclusion against try_to_free_buffers may be obtained by either 3114 * locking the page or by holding its mapping's private_lock. 3115 * 3116 * If the page is dirty but all the buffers are clean then we need to 3117 * be sure to mark the page clean as well. This is because the page 3118 * may be against a block device, and a later reattachment of buffers 3119 * to a dirty page will set *all* buffers dirty. Which would corrupt 3120 * filesystem data on the same device. 3121 * 3122 * The same applies to regular filesystem pages: if all the buffers are 3123 * clean then we set the page clean and proceed. To do that, we require 3124 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3125 * private_lock. 3126 * 3127 * try_to_free_buffers() is non-blocking. 3128 */ 3129 static inline int buffer_busy(struct buffer_head *bh) 3130 { 3131 return atomic_read(&bh->b_count) | 3132 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3133 } 3134 3135 static int 3136 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3137 { 3138 struct buffer_head *head = page_buffers(page); 3139 struct buffer_head *bh; 3140 3141 bh = head; 3142 do { 3143 if (buffer_write_io_error(bh) && page->mapping) 3144 set_bit(AS_EIO, &page->mapping->flags); 3145 if (buffer_busy(bh)) 3146 goto failed; 3147 bh = bh->b_this_page; 3148 } while (bh != head); 3149 3150 do { 3151 struct buffer_head *next = bh->b_this_page; 3152 3153 if (bh->b_assoc_map) 3154 __remove_assoc_queue(bh); 3155 bh = next; 3156 } while (bh != head); 3157 *buffers_to_free = head; 3158 __clear_page_buffers(page); 3159 return 1; 3160 failed: 3161 return 0; 3162 } 3163 3164 int try_to_free_buffers(struct page *page) 3165 { 3166 struct address_space * const mapping = page->mapping; 3167 struct buffer_head *buffers_to_free = NULL; 3168 int ret = 0; 3169 3170 BUG_ON(!PageLocked(page)); 3171 if (PageWriteback(page)) 3172 return 0; 3173 3174 if (mapping == NULL) { /* can this still happen? */ 3175 ret = drop_buffers(page, &buffers_to_free); 3176 goto out; 3177 } 3178 3179 spin_lock(&mapping->private_lock); 3180 ret = drop_buffers(page, &buffers_to_free); 3181 3182 /* 3183 * If the filesystem writes its buffers by hand (eg ext3) 3184 * then we can have clean buffers against a dirty page. We 3185 * clean the page here; otherwise the VM will never notice 3186 * that the filesystem did any IO at all. 3187 * 3188 * Also, during truncate, discard_buffer will have marked all 3189 * the page's buffers clean. We discover that here and clean 3190 * the page also. 3191 * 3192 * private_lock must be held over this entire operation in order 3193 * to synchronise against __set_page_dirty_buffers and prevent the 3194 * dirty bit from being lost. 3195 */ 3196 if (ret) 3197 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3198 spin_unlock(&mapping->private_lock); 3199 out: 3200 if (buffers_to_free) { 3201 struct buffer_head *bh = buffers_to_free; 3202 3203 do { 3204 struct buffer_head *next = bh->b_this_page; 3205 free_buffer_head(bh); 3206 bh = next; 3207 } while (bh != buffers_to_free); 3208 } 3209 return ret; 3210 } 3211 EXPORT_SYMBOL(try_to_free_buffers); 3212 3213 /* 3214 * There are no bdflush tunables left. But distributions are 3215 * still running obsolete flush daemons, so we terminate them here. 3216 * 3217 * Use of bdflush() is deprecated and will be removed in a future kernel. 3218 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3219 */ 3220 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3221 { 3222 static int msg_count; 3223 3224 if (!capable(CAP_SYS_ADMIN)) 3225 return -EPERM; 3226 3227 if (msg_count < 5) { 3228 msg_count++; 3229 printk(KERN_INFO 3230 "warning: process `%s' used the obsolete bdflush" 3231 " system call\n", current->comm); 3232 printk(KERN_INFO "Fix your initscripts?\n"); 3233 } 3234 3235 if (func == 1) 3236 do_exit(0); 3237 return 0; 3238 } 3239 3240 /* 3241 * Buffer-head allocation 3242 */ 3243 static struct kmem_cache *bh_cachep __read_mostly; 3244 3245 /* 3246 * Once the number of bh's in the machine exceeds this level, we start 3247 * stripping them in writeback. 3248 */ 3249 static unsigned long max_buffer_heads; 3250 3251 int buffer_heads_over_limit; 3252 3253 struct bh_accounting { 3254 int nr; /* Number of live bh's */ 3255 int ratelimit; /* Limit cacheline bouncing */ 3256 }; 3257 3258 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3259 3260 static void recalc_bh_state(void) 3261 { 3262 int i; 3263 int tot = 0; 3264 3265 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3266 return; 3267 __this_cpu_write(bh_accounting.ratelimit, 0); 3268 for_each_online_cpu(i) 3269 tot += per_cpu(bh_accounting, i).nr; 3270 buffer_heads_over_limit = (tot > max_buffer_heads); 3271 } 3272 3273 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3274 { 3275 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3276 if (ret) { 3277 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3278 preempt_disable(); 3279 __this_cpu_inc(bh_accounting.nr); 3280 recalc_bh_state(); 3281 preempt_enable(); 3282 } 3283 return ret; 3284 } 3285 EXPORT_SYMBOL(alloc_buffer_head); 3286 3287 void free_buffer_head(struct buffer_head *bh) 3288 { 3289 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3290 kmem_cache_free(bh_cachep, bh); 3291 preempt_disable(); 3292 __this_cpu_dec(bh_accounting.nr); 3293 recalc_bh_state(); 3294 preempt_enable(); 3295 } 3296 EXPORT_SYMBOL(free_buffer_head); 3297 3298 static void buffer_exit_cpu(int cpu) 3299 { 3300 int i; 3301 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3302 3303 for (i = 0; i < BH_LRU_SIZE; i++) { 3304 brelse(b->bhs[i]); 3305 b->bhs[i] = NULL; 3306 } 3307 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3308 per_cpu(bh_accounting, cpu).nr = 0; 3309 } 3310 3311 static int buffer_cpu_notify(struct notifier_block *self, 3312 unsigned long action, void *hcpu) 3313 { 3314 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3315 buffer_exit_cpu((unsigned long)hcpu); 3316 return NOTIFY_OK; 3317 } 3318 3319 /** 3320 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3321 * @bh: struct buffer_head 3322 * 3323 * Return true if the buffer is up-to-date and false, 3324 * with the buffer locked, if not. 3325 */ 3326 int bh_uptodate_or_lock(struct buffer_head *bh) 3327 { 3328 if (!buffer_uptodate(bh)) { 3329 lock_buffer(bh); 3330 if (!buffer_uptodate(bh)) 3331 return 0; 3332 unlock_buffer(bh); 3333 } 3334 return 1; 3335 } 3336 EXPORT_SYMBOL(bh_uptodate_or_lock); 3337 3338 /** 3339 * bh_submit_read - Submit a locked buffer for reading 3340 * @bh: struct buffer_head 3341 * 3342 * Returns zero on success and -EIO on error. 3343 */ 3344 int bh_submit_read(struct buffer_head *bh) 3345 { 3346 BUG_ON(!buffer_locked(bh)); 3347 3348 if (buffer_uptodate(bh)) { 3349 unlock_buffer(bh); 3350 return 0; 3351 } 3352 3353 get_bh(bh); 3354 bh->b_end_io = end_buffer_read_sync; 3355 submit_bh(READ, bh); 3356 wait_on_buffer(bh); 3357 if (buffer_uptodate(bh)) 3358 return 0; 3359 return -EIO; 3360 } 3361 EXPORT_SYMBOL(bh_submit_read); 3362 3363 void __init buffer_init(void) 3364 { 3365 unsigned long nrpages; 3366 3367 bh_cachep = kmem_cache_create("buffer_head", 3368 sizeof(struct buffer_head), 0, 3369 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3370 SLAB_MEM_SPREAD), 3371 NULL); 3372 3373 /* 3374 * Limit the bh occupancy to 10% of ZONE_NORMAL 3375 */ 3376 nrpages = (nr_free_buffer_pages() * 10) / 100; 3377 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3378 hotcpu_notifier(buffer_cpu_notify, 0); 3379 } 3380