xref: /openbmc/linux/fs/buffer.c (revision 1dd24dae)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 static int sleep_on_buffer(void *word)
65 {
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84 
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 EXPORT_SYMBOL(__wait_on_buffer);
95 
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99 	ClearPagePrivate(page);
100 	set_page_private(page, 0);
101 	page_cache_release(page);
102 }
103 
104 
105 static int quiet_error(struct buffer_head *bh)
106 {
107 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
108 		return 0;
109 	return 1;
110 }
111 
112 
113 static void buffer_io_error(struct buffer_head *bh)
114 {
115 	char b[BDEVNAME_SIZE];
116 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
117 			bdevname(bh->b_bdev, b),
118 			(unsigned long long)bh->b_blocknr);
119 }
120 
121 /*
122  * End-of-IO handler helper function which does not touch the bh after
123  * unlocking it.
124  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
125  * a race there is benign: unlock_buffer() only use the bh's address for
126  * hashing after unlocking the buffer, so it doesn't actually touch the bh
127  * itself.
128  */
129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
130 {
131 	if (uptodate) {
132 		set_buffer_uptodate(bh);
133 	} else {
134 		/* This happens, due to failed READA attempts. */
135 		clear_buffer_uptodate(bh);
136 	}
137 	unlock_buffer(bh);
138 }
139 
140 /*
141  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
142  * unlock the buffer. This is what ll_rw_block uses too.
143  */
144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
145 {
146 	__end_buffer_read_notouch(bh, uptodate);
147 	put_bh(bh);
148 }
149 EXPORT_SYMBOL(end_buffer_read_sync);
150 
151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
152 {
153 	char b[BDEVNAME_SIZE];
154 
155 	if (uptodate) {
156 		set_buffer_uptodate(bh);
157 	} else {
158 		if (!quiet_error(bh)) {
159 			buffer_io_error(bh);
160 			printk(KERN_WARNING "lost page write due to "
161 					"I/O error on %s\n",
162 				       bdevname(bh->b_bdev, b));
163 		}
164 		set_buffer_write_io_error(bh);
165 		clear_buffer_uptodate(bh);
166 	}
167 	unlock_buffer(bh);
168 	put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_write_sync);
171 
172 /*
173  * Various filesystems appear to want __find_get_block to be non-blocking.
174  * But it's the page lock which protects the buffers.  To get around this,
175  * we get exclusion from try_to_free_buffers with the blockdev mapping's
176  * private_lock.
177  *
178  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
179  * may be quite high.  This code could TryLock the page, and if that
180  * succeeds, there is no need to take private_lock. (But if
181  * private_lock is contended then so is mapping->tree_lock).
182  */
183 static struct buffer_head *
184 __find_get_block_slow(struct block_device *bdev, sector_t block)
185 {
186 	struct inode *bd_inode = bdev->bd_inode;
187 	struct address_space *bd_mapping = bd_inode->i_mapping;
188 	struct buffer_head *ret = NULL;
189 	pgoff_t index;
190 	struct buffer_head *bh;
191 	struct buffer_head *head;
192 	struct page *page;
193 	int all_mapped = 1;
194 
195 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
196 	page = find_get_page(bd_mapping, index);
197 	if (!page)
198 		goto out;
199 
200 	spin_lock(&bd_mapping->private_lock);
201 	if (!page_has_buffers(page))
202 		goto out_unlock;
203 	head = page_buffers(page);
204 	bh = head;
205 	do {
206 		if (!buffer_mapped(bh))
207 			all_mapped = 0;
208 		else if (bh->b_blocknr == block) {
209 			ret = bh;
210 			get_bh(bh);
211 			goto out_unlock;
212 		}
213 		bh = bh->b_this_page;
214 	} while (bh != head);
215 
216 	/* we might be here because some of the buffers on this page are
217 	 * not mapped.  This is due to various races between
218 	 * file io on the block device and getblk.  It gets dealt with
219 	 * elsewhere, don't buffer_error if we had some unmapped buffers
220 	 */
221 	if (all_mapped) {
222 		char b[BDEVNAME_SIZE];
223 
224 		printk("__find_get_block_slow() failed. "
225 			"block=%llu, b_blocknr=%llu\n",
226 			(unsigned long long)block,
227 			(unsigned long long)bh->b_blocknr);
228 		printk("b_state=0x%08lx, b_size=%zu\n",
229 			bh->b_state, bh->b_size);
230 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
231 			1 << bd_inode->i_blkbits);
232 	}
233 out_unlock:
234 	spin_unlock(&bd_mapping->private_lock);
235 	page_cache_release(page);
236 out:
237 	return ret;
238 }
239 
240 /*
241  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
242  */
243 static void free_more_memory(void)
244 {
245 	struct zone *zone;
246 	int nid;
247 
248 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
249 	yield();
250 
251 	for_each_online_node(nid) {
252 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
253 						gfp_zone(GFP_NOFS), NULL,
254 						&zone);
255 		if (zone)
256 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
257 						GFP_NOFS, NULL);
258 	}
259 }
260 
261 /*
262  * I/O completion handler for block_read_full_page() - pages
263  * which come unlocked at the end of I/O.
264  */
265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
266 {
267 	unsigned long flags;
268 	struct buffer_head *first;
269 	struct buffer_head *tmp;
270 	struct page *page;
271 	int page_uptodate = 1;
272 
273 	BUG_ON(!buffer_async_read(bh));
274 
275 	page = bh->b_page;
276 	if (uptodate) {
277 		set_buffer_uptodate(bh);
278 	} else {
279 		clear_buffer_uptodate(bh);
280 		if (!quiet_error(bh))
281 			buffer_io_error(bh);
282 		SetPageError(page);
283 	}
284 
285 	/*
286 	 * Be _very_ careful from here on. Bad things can happen if
287 	 * two buffer heads end IO at almost the same time and both
288 	 * decide that the page is now completely done.
289 	 */
290 	first = page_buffers(page);
291 	local_irq_save(flags);
292 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
293 	clear_buffer_async_read(bh);
294 	unlock_buffer(bh);
295 	tmp = bh;
296 	do {
297 		if (!buffer_uptodate(tmp))
298 			page_uptodate = 0;
299 		if (buffer_async_read(tmp)) {
300 			BUG_ON(!buffer_locked(tmp));
301 			goto still_busy;
302 		}
303 		tmp = tmp->b_this_page;
304 	} while (tmp != bh);
305 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 	local_irq_restore(flags);
307 
308 	/*
309 	 * If none of the buffers had errors and they are all
310 	 * uptodate then we can set the page uptodate.
311 	 */
312 	if (page_uptodate && !PageError(page))
313 		SetPageUptodate(page);
314 	unlock_page(page);
315 	return;
316 
317 still_busy:
318 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
319 	local_irq_restore(flags);
320 	return;
321 }
322 
323 /*
324  * Completion handler for block_write_full_page() - pages which are unlocked
325  * during I/O, and which have PageWriteback cleared upon I/O completion.
326  */
327 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
328 {
329 	char b[BDEVNAME_SIZE];
330 	unsigned long flags;
331 	struct buffer_head *first;
332 	struct buffer_head *tmp;
333 	struct page *page;
334 
335 	BUG_ON(!buffer_async_write(bh));
336 
337 	page = bh->b_page;
338 	if (uptodate) {
339 		set_buffer_uptodate(bh);
340 	} else {
341 		if (!quiet_error(bh)) {
342 			buffer_io_error(bh);
343 			printk(KERN_WARNING "lost page write due to "
344 					"I/O error on %s\n",
345 			       bdevname(bh->b_bdev, b));
346 		}
347 		set_bit(AS_EIO, &page->mapping->flags);
348 		set_buffer_write_io_error(bh);
349 		clear_buffer_uptodate(bh);
350 		SetPageError(page);
351 	}
352 
353 	first = page_buffers(page);
354 	local_irq_save(flags);
355 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
356 
357 	clear_buffer_async_write(bh);
358 	unlock_buffer(bh);
359 	tmp = bh->b_this_page;
360 	while (tmp != bh) {
361 		if (buffer_async_write(tmp)) {
362 			BUG_ON(!buffer_locked(tmp));
363 			goto still_busy;
364 		}
365 		tmp = tmp->b_this_page;
366 	}
367 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368 	local_irq_restore(flags);
369 	end_page_writeback(page);
370 	return;
371 
372 still_busy:
373 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374 	local_irq_restore(flags);
375 	return;
376 }
377 EXPORT_SYMBOL(end_buffer_async_write);
378 
379 /*
380  * If a page's buffers are under async readin (end_buffer_async_read
381  * completion) then there is a possibility that another thread of
382  * control could lock one of the buffers after it has completed
383  * but while some of the other buffers have not completed.  This
384  * locked buffer would confuse end_buffer_async_read() into not unlocking
385  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
386  * that this buffer is not under async I/O.
387  *
388  * The page comes unlocked when it has no locked buffer_async buffers
389  * left.
390  *
391  * PageLocked prevents anyone starting new async I/O reads any of
392  * the buffers.
393  *
394  * PageWriteback is used to prevent simultaneous writeout of the same
395  * page.
396  *
397  * PageLocked prevents anyone from starting writeback of a page which is
398  * under read I/O (PageWriteback is only ever set against a locked page).
399  */
400 static void mark_buffer_async_read(struct buffer_head *bh)
401 {
402 	bh->b_end_io = end_buffer_async_read;
403 	set_buffer_async_read(bh);
404 }
405 
406 static void mark_buffer_async_write_endio(struct buffer_head *bh,
407 					  bh_end_io_t *handler)
408 {
409 	bh->b_end_io = handler;
410 	set_buffer_async_write(bh);
411 }
412 
413 void mark_buffer_async_write(struct buffer_head *bh)
414 {
415 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
416 }
417 EXPORT_SYMBOL(mark_buffer_async_write);
418 
419 
420 /*
421  * fs/buffer.c contains helper functions for buffer-backed address space's
422  * fsync functions.  A common requirement for buffer-based filesystems is
423  * that certain data from the backing blockdev needs to be written out for
424  * a successful fsync().  For example, ext2 indirect blocks need to be
425  * written back and waited upon before fsync() returns.
426  *
427  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
428  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
429  * management of a list of dependent buffers at ->i_mapping->private_list.
430  *
431  * Locking is a little subtle: try_to_free_buffers() will remove buffers
432  * from their controlling inode's queue when they are being freed.  But
433  * try_to_free_buffers() will be operating against the *blockdev* mapping
434  * at the time, not against the S_ISREG file which depends on those buffers.
435  * So the locking for private_list is via the private_lock in the address_space
436  * which backs the buffers.  Which is different from the address_space
437  * against which the buffers are listed.  So for a particular address_space,
438  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
439  * mapping->private_list will always be protected by the backing blockdev's
440  * ->private_lock.
441  *
442  * Which introduces a requirement: all buffers on an address_space's
443  * ->private_list must be from the same address_space: the blockdev's.
444  *
445  * address_spaces which do not place buffers at ->private_list via these
446  * utility functions are free to use private_lock and private_list for
447  * whatever they want.  The only requirement is that list_empty(private_list)
448  * be true at clear_inode() time.
449  *
450  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
451  * filesystems should do that.  invalidate_inode_buffers() should just go
452  * BUG_ON(!list_empty).
453  *
454  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
455  * take an address_space, not an inode.  And it should be called
456  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
457  * queued up.
458  *
459  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
460  * list if it is already on a list.  Because if the buffer is on a list,
461  * it *must* already be on the right one.  If not, the filesystem is being
462  * silly.  This will save a ton of locking.  But first we have to ensure
463  * that buffers are taken *off* the old inode's list when they are freed
464  * (presumably in truncate).  That requires careful auditing of all
465  * filesystems (do it inside bforget()).  It could also be done by bringing
466  * b_inode back.
467  */
468 
469 /*
470  * The buffer's backing address_space's private_lock must be held
471  */
472 static void __remove_assoc_queue(struct buffer_head *bh)
473 {
474 	list_del_init(&bh->b_assoc_buffers);
475 	WARN_ON(!bh->b_assoc_map);
476 	if (buffer_write_io_error(bh))
477 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
478 	bh->b_assoc_map = NULL;
479 }
480 
481 int inode_has_buffers(struct inode *inode)
482 {
483 	return !list_empty(&inode->i_data.private_list);
484 }
485 
486 /*
487  * osync is designed to support O_SYNC io.  It waits synchronously for
488  * all already-submitted IO to complete, but does not queue any new
489  * writes to the disk.
490  *
491  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
492  * you dirty the buffers, and then use osync_inode_buffers to wait for
493  * completion.  Any other dirty buffers which are not yet queued for
494  * write will not be flushed to disk by the osync.
495  */
496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
497 {
498 	struct buffer_head *bh;
499 	struct list_head *p;
500 	int err = 0;
501 
502 	spin_lock(lock);
503 repeat:
504 	list_for_each_prev(p, list) {
505 		bh = BH_ENTRY(p);
506 		if (buffer_locked(bh)) {
507 			get_bh(bh);
508 			spin_unlock(lock);
509 			wait_on_buffer(bh);
510 			if (!buffer_uptodate(bh))
511 				err = -EIO;
512 			brelse(bh);
513 			spin_lock(lock);
514 			goto repeat;
515 		}
516 	}
517 	spin_unlock(lock);
518 	return err;
519 }
520 
521 static void do_thaw_one(struct super_block *sb, void *unused)
522 {
523 	char b[BDEVNAME_SIZE];
524 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
525 		printk(KERN_WARNING "Emergency Thaw on %s\n",
526 		       bdevname(sb->s_bdev, b));
527 }
528 
529 static void do_thaw_all(struct work_struct *work)
530 {
531 	iterate_supers(do_thaw_one, NULL);
532 	kfree(work);
533 	printk(KERN_WARNING "Emergency Thaw complete\n");
534 }
535 
536 /**
537  * emergency_thaw_all -- forcibly thaw every frozen filesystem
538  *
539  * Used for emergency unfreeze of all filesystems via SysRq
540  */
541 void emergency_thaw_all(void)
542 {
543 	struct work_struct *work;
544 
545 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
546 	if (work) {
547 		INIT_WORK(work, do_thaw_all);
548 		schedule_work(work);
549 	}
550 }
551 
552 /**
553  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
554  * @mapping: the mapping which wants those buffers written
555  *
556  * Starts I/O against the buffers at mapping->private_list, and waits upon
557  * that I/O.
558  *
559  * Basically, this is a convenience function for fsync().
560  * @mapping is a file or directory which needs those buffers to be written for
561  * a successful fsync().
562  */
563 int sync_mapping_buffers(struct address_space *mapping)
564 {
565 	struct address_space *buffer_mapping = mapping->private_data;
566 
567 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
568 		return 0;
569 
570 	return fsync_buffers_list(&buffer_mapping->private_lock,
571 					&mapping->private_list);
572 }
573 EXPORT_SYMBOL(sync_mapping_buffers);
574 
575 /*
576  * Called when we've recently written block `bblock', and it is known that
577  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
578  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
579  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
580  */
581 void write_boundary_block(struct block_device *bdev,
582 			sector_t bblock, unsigned blocksize)
583 {
584 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
585 	if (bh) {
586 		if (buffer_dirty(bh))
587 			ll_rw_block(WRITE, 1, &bh);
588 		put_bh(bh);
589 	}
590 }
591 
592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
593 {
594 	struct address_space *mapping = inode->i_mapping;
595 	struct address_space *buffer_mapping = bh->b_page->mapping;
596 
597 	mark_buffer_dirty(bh);
598 	if (!mapping->private_data) {
599 		mapping->private_data = buffer_mapping;
600 	} else {
601 		BUG_ON(mapping->private_data != buffer_mapping);
602 	}
603 	if (!bh->b_assoc_map) {
604 		spin_lock(&buffer_mapping->private_lock);
605 		list_move_tail(&bh->b_assoc_buffers,
606 				&mapping->private_list);
607 		bh->b_assoc_map = mapping;
608 		spin_unlock(&buffer_mapping->private_lock);
609 	}
610 }
611 EXPORT_SYMBOL(mark_buffer_dirty_inode);
612 
613 /*
614  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
615  * dirty.
616  *
617  * If warn is true, then emit a warning if the page is not uptodate and has
618  * not been truncated.
619  */
620 static void __set_page_dirty(struct page *page,
621 		struct address_space *mapping, int warn)
622 {
623 	spin_lock_irq(&mapping->tree_lock);
624 	if (page->mapping) {	/* Race with truncate? */
625 		WARN_ON_ONCE(warn && !PageUptodate(page));
626 		account_page_dirtied(page, mapping);
627 		radix_tree_tag_set(&mapping->page_tree,
628 				page_index(page), PAGECACHE_TAG_DIRTY);
629 	}
630 	spin_unlock_irq(&mapping->tree_lock);
631 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
632 }
633 
634 /*
635  * Add a page to the dirty page list.
636  *
637  * It is a sad fact of life that this function is called from several places
638  * deeply under spinlocking.  It may not sleep.
639  *
640  * If the page has buffers, the uptodate buffers are set dirty, to preserve
641  * dirty-state coherency between the page and the buffers.  It the page does
642  * not have buffers then when they are later attached they will all be set
643  * dirty.
644  *
645  * The buffers are dirtied before the page is dirtied.  There's a small race
646  * window in which a writepage caller may see the page cleanness but not the
647  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
648  * before the buffers, a concurrent writepage caller could clear the page dirty
649  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650  * page on the dirty page list.
651  *
652  * We use private_lock to lock against try_to_free_buffers while using the
653  * page's buffer list.  Also use this to protect against clean buffers being
654  * added to the page after it was set dirty.
655  *
656  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
657  * address_space though.
658  */
659 int __set_page_dirty_buffers(struct page *page)
660 {
661 	int newly_dirty;
662 	struct address_space *mapping = page_mapping(page);
663 
664 	if (unlikely(!mapping))
665 		return !TestSetPageDirty(page);
666 
667 	spin_lock(&mapping->private_lock);
668 	if (page_has_buffers(page)) {
669 		struct buffer_head *head = page_buffers(page);
670 		struct buffer_head *bh = head;
671 
672 		do {
673 			set_buffer_dirty(bh);
674 			bh = bh->b_this_page;
675 		} while (bh != head);
676 	}
677 	newly_dirty = !TestSetPageDirty(page);
678 	spin_unlock(&mapping->private_lock);
679 
680 	if (newly_dirty)
681 		__set_page_dirty(page, mapping, 1);
682 	return newly_dirty;
683 }
684 EXPORT_SYMBOL(__set_page_dirty_buffers);
685 
686 /*
687  * Write out and wait upon a list of buffers.
688  *
689  * We have conflicting pressures: we want to make sure that all
690  * initially dirty buffers get waited on, but that any subsequently
691  * dirtied buffers don't.  After all, we don't want fsync to last
692  * forever if somebody is actively writing to the file.
693  *
694  * Do this in two main stages: first we copy dirty buffers to a
695  * temporary inode list, queueing the writes as we go.  Then we clean
696  * up, waiting for those writes to complete.
697  *
698  * During this second stage, any subsequent updates to the file may end
699  * up refiling the buffer on the original inode's dirty list again, so
700  * there is a chance we will end up with a buffer queued for write but
701  * not yet completed on that list.  So, as a final cleanup we go through
702  * the osync code to catch these locked, dirty buffers without requeuing
703  * any newly dirty buffers for write.
704  */
705 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
706 {
707 	struct buffer_head *bh;
708 	struct list_head tmp;
709 	struct address_space *mapping;
710 	int err = 0, err2;
711 	struct blk_plug plug;
712 
713 	INIT_LIST_HEAD(&tmp);
714 	blk_start_plug(&plug);
715 
716 	spin_lock(lock);
717 	while (!list_empty(list)) {
718 		bh = BH_ENTRY(list->next);
719 		mapping = bh->b_assoc_map;
720 		__remove_assoc_queue(bh);
721 		/* Avoid race with mark_buffer_dirty_inode() which does
722 		 * a lockless check and we rely on seeing the dirty bit */
723 		smp_mb();
724 		if (buffer_dirty(bh) || buffer_locked(bh)) {
725 			list_add(&bh->b_assoc_buffers, &tmp);
726 			bh->b_assoc_map = mapping;
727 			if (buffer_dirty(bh)) {
728 				get_bh(bh);
729 				spin_unlock(lock);
730 				/*
731 				 * Ensure any pending I/O completes so that
732 				 * write_dirty_buffer() actually writes the
733 				 * current contents - it is a noop if I/O is
734 				 * still in flight on potentially older
735 				 * contents.
736 				 */
737 				write_dirty_buffer(bh, WRITE_SYNC);
738 
739 				/*
740 				 * Kick off IO for the previous mapping. Note
741 				 * that we will not run the very last mapping,
742 				 * wait_on_buffer() will do that for us
743 				 * through sync_buffer().
744 				 */
745 				brelse(bh);
746 				spin_lock(lock);
747 			}
748 		}
749 	}
750 
751 	spin_unlock(lock);
752 	blk_finish_plug(&plug);
753 	spin_lock(lock);
754 
755 	while (!list_empty(&tmp)) {
756 		bh = BH_ENTRY(tmp.prev);
757 		get_bh(bh);
758 		mapping = bh->b_assoc_map;
759 		__remove_assoc_queue(bh);
760 		/* Avoid race with mark_buffer_dirty_inode() which does
761 		 * a lockless check and we rely on seeing the dirty bit */
762 		smp_mb();
763 		if (buffer_dirty(bh)) {
764 			list_add(&bh->b_assoc_buffers,
765 				 &mapping->private_list);
766 			bh->b_assoc_map = mapping;
767 		}
768 		spin_unlock(lock);
769 		wait_on_buffer(bh);
770 		if (!buffer_uptodate(bh))
771 			err = -EIO;
772 		brelse(bh);
773 		spin_lock(lock);
774 	}
775 
776 	spin_unlock(lock);
777 	err2 = osync_buffers_list(lock, list);
778 	if (err)
779 		return err;
780 	else
781 		return err2;
782 }
783 
784 /*
785  * Invalidate any and all dirty buffers on a given inode.  We are
786  * probably unmounting the fs, but that doesn't mean we have already
787  * done a sync().  Just drop the buffers from the inode list.
788  *
789  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
790  * assumes that all the buffers are against the blockdev.  Not true
791  * for reiserfs.
792  */
793 void invalidate_inode_buffers(struct inode *inode)
794 {
795 	if (inode_has_buffers(inode)) {
796 		struct address_space *mapping = &inode->i_data;
797 		struct list_head *list = &mapping->private_list;
798 		struct address_space *buffer_mapping = mapping->private_data;
799 
800 		spin_lock(&buffer_mapping->private_lock);
801 		while (!list_empty(list))
802 			__remove_assoc_queue(BH_ENTRY(list->next));
803 		spin_unlock(&buffer_mapping->private_lock);
804 	}
805 }
806 EXPORT_SYMBOL(invalidate_inode_buffers);
807 
808 /*
809  * Remove any clean buffers from the inode's buffer list.  This is called
810  * when we're trying to free the inode itself.  Those buffers can pin it.
811  *
812  * Returns true if all buffers were removed.
813  */
814 int remove_inode_buffers(struct inode *inode)
815 {
816 	int ret = 1;
817 
818 	if (inode_has_buffers(inode)) {
819 		struct address_space *mapping = &inode->i_data;
820 		struct list_head *list = &mapping->private_list;
821 		struct address_space *buffer_mapping = mapping->private_data;
822 
823 		spin_lock(&buffer_mapping->private_lock);
824 		while (!list_empty(list)) {
825 			struct buffer_head *bh = BH_ENTRY(list->next);
826 			if (buffer_dirty(bh)) {
827 				ret = 0;
828 				break;
829 			}
830 			__remove_assoc_queue(bh);
831 		}
832 		spin_unlock(&buffer_mapping->private_lock);
833 	}
834 	return ret;
835 }
836 
837 /*
838  * Create the appropriate buffers when given a page for data area and
839  * the size of each buffer.. Use the bh->b_this_page linked list to
840  * follow the buffers created.  Return NULL if unable to create more
841  * buffers.
842  *
843  * The retry flag is used to differentiate async IO (paging, swapping)
844  * which may not fail from ordinary buffer allocations.
845  */
846 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
847 		int retry)
848 {
849 	struct buffer_head *bh, *head;
850 	long offset;
851 
852 try_again:
853 	head = NULL;
854 	offset = PAGE_SIZE;
855 	while ((offset -= size) >= 0) {
856 		bh = alloc_buffer_head(GFP_NOFS);
857 		if (!bh)
858 			goto no_grow;
859 
860 		bh->b_this_page = head;
861 		bh->b_blocknr = -1;
862 		head = bh;
863 
864 		bh->b_size = size;
865 
866 		/* Link the buffer to its page */
867 		set_bh_page(bh, page, offset);
868 	}
869 	return head;
870 /*
871  * In case anything failed, we just free everything we got.
872  */
873 no_grow:
874 	if (head) {
875 		do {
876 			bh = head;
877 			head = head->b_this_page;
878 			free_buffer_head(bh);
879 		} while (head);
880 	}
881 
882 	/*
883 	 * Return failure for non-async IO requests.  Async IO requests
884 	 * are not allowed to fail, so we have to wait until buffer heads
885 	 * become available.  But we don't want tasks sleeping with
886 	 * partially complete buffers, so all were released above.
887 	 */
888 	if (!retry)
889 		return NULL;
890 
891 	/* We're _really_ low on memory. Now we just
892 	 * wait for old buffer heads to become free due to
893 	 * finishing IO.  Since this is an async request and
894 	 * the reserve list is empty, we're sure there are
895 	 * async buffer heads in use.
896 	 */
897 	free_more_memory();
898 	goto try_again;
899 }
900 EXPORT_SYMBOL_GPL(alloc_page_buffers);
901 
902 static inline void
903 link_dev_buffers(struct page *page, struct buffer_head *head)
904 {
905 	struct buffer_head *bh, *tail;
906 
907 	bh = head;
908 	do {
909 		tail = bh;
910 		bh = bh->b_this_page;
911 	} while (bh);
912 	tail->b_this_page = head;
913 	attach_page_buffers(page, head);
914 }
915 
916 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
917 {
918 	sector_t retval = ~((sector_t)0);
919 	loff_t sz = i_size_read(bdev->bd_inode);
920 
921 	if (sz) {
922 		unsigned int sizebits = blksize_bits(size);
923 		retval = (sz >> sizebits);
924 	}
925 	return retval;
926 }
927 
928 /*
929  * Initialise the state of a blockdev page's buffers.
930  */
931 static sector_t
932 init_page_buffers(struct page *page, struct block_device *bdev,
933 			sector_t block, int size)
934 {
935 	struct buffer_head *head = page_buffers(page);
936 	struct buffer_head *bh = head;
937 	int uptodate = PageUptodate(page);
938 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
939 
940 	do {
941 		if (!buffer_mapped(bh)) {
942 			init_buffer(bh, NULL, NULL);
943 			bh->b_bdev = bdev;
944 			bh->b_blocknr = block;
945 			if (uptodate)
946 				set_buffer_uptodate(bh);
947 			if (block < end_block)
948 				set_buffer_mapped(bh);
949 		}
950 		block++;
951 		bh = bh->b_this_page;
952 	} while (bh != head);
953 
954 	/*
955 	 * Caller needs to validate requested block against end of device.
956 	 */
957 	return end_block;
958 }
959 
960 /*
961  * Create the page-cache page that contains the requested block.
962  *
963  * This is used purely for blockdev mappings.
964  */
965 static int
966 grow_dev_page(struct block_device *bdev, sector_t block,
967 		pgoff_t index, int size, int sizebits)
968 {
969 	struct inode *inode = bdev->bd_inode;
970 	struct page *page;
971 	struct buffer_head *bh;
972 	sector_t end_block;
973 	int ret = 0;		/* Will call free_more_memory() */
974 
975 	page = find_or_create_page(inode->i_mapping, index,
976 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
977 	if (!page)
978 		return ret;
979 
980 	BUG_ON(!PageLocked(page));
981 
982 	if (page_has_buffers(page)) {
983 		bh = page_buffers(page);
984 		if (bh->b_size == size) {
985 			end_block = init_page_buffers(page, bdev,
986 						index << sizebits, size);
987 			goto done;
988 		}
989 		if (!try_to_free_buffers(page))
990 			goto failed;
991 	}
992 
993 	/*
994 	 * Allocate some buffers for this page
995 	 */
996 	bh = alloc_page_buffers(page, size, 0);
997 	if (!bh)
998 		goto failed;
999 
1000 	/*
1001 	 * Link the page to the buffers and initialise them.  Take the
1002 	 * lock to be atomic wrt __find_get_block(), which does not
1003 	 * run under the page lock.
1004 	 */
1005 	spin_lock(&inode->i_mapping->private_lock);
1006 	link_dev_buffers(page, bh);
1007 	end_block = init_page_buffers(page, bdev, index << sizebits, size);
1008 	spin_unlock(&inode->i_mapping->private_lock);
1009 done:
1010 	ret = (block < end_block) ? 1 : -ENXIO;
1011 failed:
1012 	unlock_page(page);
1013 	page_cache_release(page);
1014 	return ret;
1015 }
1016 
1017 /*
1018  * Create buffers for the specified block device block's page.  If
1019  * that page was dirty, the buffers are set dirty also.
1020  */
1021 static int
1022 grow_buffers(struct block_device *bdev, sector_t block, int size)
1023 {
1024 	pgoff_t index;
1025 	int sizebits;
1026 
1027 	sizebits = -1;
1028 	do {
1029 		sizebits++;
1030 	} while ((size << sizebits) < PAGE_SIZE);
1031 
1032 	index = block >> sizebits;
1033 
1034 	/*
1035 	 * Check for a block which wants to lie outside our maximum possible
1036 	 * pagecache index.  (this comparison is done using sector_t types).
1037 	 */
1038 	if (unlikely(index != block >> sizebits)) {
1039 		char b[BDEVNAME_SIZE];
1040 
1041 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1042 			"device %s\n",
1043 			__func__, (unsigned long long)block,
1044 			bdevname(bdev, b));
1045 		return -EIO;
1046 	}
1047 
1048 	/* Create a page with the proper size buffers.. */
1049 	return grow_dev_page(bdev, block, index, size, sizebits);
1050 }
1051 
1052 static struct buffer_head *
1053 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1054 {
1055 	/* Size must be multiple of hard sectorsize */
1056 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1057 			(size < 512 || size > PAGE_SIZE))) {
1058 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1059 					size);
1060 		printk(KERN_ERR "logical block size: %d\n",
1061 					bdev_logical_block_size(bdev));
1062 
1063 		dump_stack();
1064 		return NULL;
1065 	}
1066 
1067 	for (;;) {
1068 		struct buffer_head *bh;
1069 		int ret;
1070 
1071 		bh = __find_get_block(bdev, block, size);
1072 		if (bh)
1073 			return bh;
1074 
1075 		ret = grow_buffers(bdev, block, size);
1076 		if (ret < 0)
1077 			return NULL;
1078 		if (ret == 0)
1079 			free_more_memory();
1080 	}
1081 }
1082 
1083 /*
1084  * The relationship between dirty buffers and dirty pages:
1085  *
1086  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1087  * the page is tagged dirty in its radix tree.
1088  *
1089  * At all times, the dirtiness of the buffers represents the dirtiness of
1090  * subsections of the page.  If the page has buffers, the page dirty bit is
1091  * merely a hint about the true dirty state.
1092  *
1093  * When a page is set dirty in its entirety, all its buffers are marked dirty
1094  * (if the page has buffers).
1095  *
1096  * When a buffer is marked dirty, its page is dirtied, but the page's other
1097  * buffers are not.
1098  *
1099  * Also.  When blockdev buffers are explicitly read with bread(), they
1100  * individually become uptodate.  But their backing page remains not
1101  * uptodate - even if all of its buffers are uptodate.  A subsequent
1102  * block_read_full_page() against that page will discover all the uptodate
1103  * buffers, will set the page uptodate and will perform no I/O.
1104  */
1105 
1106 /**
1107  * mark_buffer_dirty - mark a buffer_head as needing writeout
1108  * @bh: the buffer_head to mark dirty
1109  *
1110  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1111  * backing page dirty, then tag the page as dirty in its address_space's radix
1112  * tree and then attach the address_space's inode to its superblock's dirty
1113  * inode list.
1114  *
1115  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1116  * mapping->tree_lock and mapping->host->i_lock.
1117  */
1118 void mark_buffer_dirty(struct buffer_head *bh)
1119 {
1120 	WARN_ON_ONCE(!buffer_uptodate(bh));
1121 
1122 	trace_block_dirty_buffer(bh);
1123 
1124 	/*
1125 	 * Very *carefully* optimize the it-is-already-dirty case.
1126 	 *
1127 	 * Don't let the final "is it dirty" escape to before we
1128 	 * perhaps modified the buffer.
1129 	 */
1130 	if (buffer_dirty(bh)) {
1131 		smp_mb();
1132 		if (buffer_dirty(bh))
1133 			return;
1134 	}
1135 
1136 	if (!test_set_buffer_dirty(bh)) {
1137 		struct page *page = bh->b_page;
1138 		if (!TestSetPageDirty(page)) {
1139 			struct address_space *mapping = page_mapping(page);
1140 			if (mapping)
1141 				__set_page_dirty(page, mapping, 0);
1142 		}
1143 	}
1144 }
1145 EXPORT_SYMBOL(mark_buffer_dirty);
1146 
1147 /*
1148  * Decrement a buffer_head's reference count.  If all buffers against a page
1149  * have zero reference count, are clean and unlocked, and if the page is clean
1150  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1151  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1152  * a page but it ends up not being freed, and buffers may later be reattached).
1153  */
1154 void __brelse(struct buffer_head * buf)
1155 {
1156 	if (atomic_read(&buf->b_count)) {
1157 		put_bh(buf);
1158 		return;
1159 	}
1160 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1161 }
1162 EXPORT_SYMBOL(__brelse);
1163 
1164 /*
1165  * bforget() is like brelse(), except it discards any
1166  * potentially dirty data.
1167  */
1168 void __bforget(struct buffer_head *bh)
1169 {
1170 	clear_buffer_dirty(bh);
1171 	if (bh->b_assoc_map) {
1172 		struct address_space *buffer_mapping = bh->b_page->mapping;
1173 
1174 		spin_lock(&buffer_mapping->private_lock);
1175 		list_del_init(&bh->b_assoc_buffers);
1176 		bh->b_assoc_map = NULL;
1177 		spin_unlock(&buffer_mapping->private_lock);
1178 	}
1179 	__brelse(bh);
1180 }
1181 EXPORT_SYMBOL(__bforget);
1182 
1183 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1184 {
1185 	lock_buffer(bh);
1186 	if (buffer_uptodate(bh)) {
1187 		unlock_buffer(bh);
1188 		return bh;
1189 	} else {
1190 		get_bh(bh);
1191 		bh->b_end_io = end_buffer_read_sync;
1192 		submit_bh(READ, bh);
1193 		wait_on_buffer(bh);
1194 		if (buffer_uptodate(bh))
1195 			return bh;
1196 	}
1197 	brelse(bh);
1198 	return NULL;
1199 }
1200 
1201 /*
1202  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1203  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1204  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1205  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1206  * CPU's LRUs at the same time.
1207  *
1208  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1209  * sb_find_get_block().
1210  *
1211  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1212  * a local interrupt disable for that.
1213  */
1214 
1215 #define BH_LRU_SIZE	8
1216 
1217 struct bh_lru {
1218 	struct buffer_head *bhs[BH_LRU_SIZE];
1219 };
1220 
1221 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1222 
1223 #ifdef CONFIG_SMP
1224 #define bh_lru_lock()	local_irq_disable()
1225 #define bh_lru_unlock()	local_irq_enable()
1226 #else
1227 #define bh_lru_lock()	preempt_disable()
1228 #define bh_lru_unlock()	preempt_enable()
1229 #endif
1230 
1231 static inline void check_irqs_on(void)
1232 {
1233 #ifdef irqs_disabled
1234 	BUG_ON(irqs_disabled());
1235 #endif
1236 }
1237 
1238 /*
1239  * The LRU management algorithm is dopey-but-simple.  Sorry.
1240  */
1241 static void bh_lru_install(struct buffer_head *bh)
1242 {
1243 	struct buffer_head *evictee = NULL;
1244 
1245 	check_irqs_on();
1246 	bh_lru_lock();
1247 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1248 		struct buffer_head *bhs[BH_LRU_SIZE];
1249 		int in;
1250 		int out = 0;
1251 
1252 		get_bh(bh);
1253 		bhs[out++] = bh;
1254 		for (in = 0; in < BH_LRU_SIZE; in++) {
1255 			struct buffer_head *bh2 =
1256 				__this_cpu_read(bh_lrus.bhs[in]);
1257 
1258 			if (bh2 == bh) {
1259 				__brelse(bh2);
1260 			} else {
1261 				if (out >= BH_LRU_SIZE) {
1262 					BUG_ON(evictee != NULL);
1263 					evictee = bh2;
1264 				} else {
1265 					bhs[out++] = bh2;
1266 				}
1267 			}
1268 		}
1269 		while (out < BH_LRU_SIZE)
1270 			bhs[out++] = NULL;
1271 		memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1272 	}
1273 	bh_lru_unlock();
1274 
1275 	if (evictee)
1276 		__brelse(evictee);
1277 }
1278 
1279 /*
1280  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1281  */
1282 static struct buffer_head *
1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1284 {
1285 	struct buffer_head *ret = NULL;
1286 	unsigned int i;
1287 
1288 	check_irqs_on();
1289 	bh_lru_lock();
1290 	for (i = 0; i < BH_LRU_SIZE; i++) {
1291 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1292 
1293 		if (bh && bh->b_bdev == bdev &&
1294 				bh->b_blocknr == block && bh->b_size == size) {
1295 			if (i) {
1296 				while (i) {
1297 					__this_cpu_write(bh_lrus.bhs[i],
1298 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1299 					i--;
1300 				}
1301 				__this_cpu_write(bh_lrus.bhs[0], bh);
1302 			}
1303 			get_bh(bh);
1304 			ret = bh;
1305 			break;
1306 		}
1307 	}
1308 	bh_lru_unlock();
1309 	return ret;
1310 }
1311 
1312 /*
1313  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1314  * it in the LRU and mark it as accessed.  If it is not present then return
1315  * NULL
1316  */
1317 struct buffer_head *
1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1319 {
1320 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1321 
1322 	if (bh == NULL) {
1323 		bh = __find_get_block_slow(bdev, block);
1324 		if (bh)
1325 			bh_lru_install(bh);
1326 	}
1327 	if (bh)
1328 		touch_buffer(bh);
1329 	return bh;
1330 }
1331 EXPORT_SYMBOL(__find_get_block);
1332 
1333 /*
1334  * __getblk will locate (and, if necessary, create) the buffer_head
1335  * which corresponds to the passed block_device, block and size. The
1336  * returned buffer has its reference count incremented.
1337  *
1338  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1339  * attempt is failing.  FIXME, perhaps?
1340  */
1341 struct buffer_head *
1342 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1343 {
1344 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1345 
1346 	might_sleep();
1347 	if (bh == NULL)
1348 		bh = __getblk_slow(bdev, block, size);
1349 	return bh;
1350 }
1351 EXPORT_SYMBOL(__getblk);
1352 
1353 /*
1354  * Do async read-ahead on a buffer..
1355  */
1356 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358 	struct buffer_head *bh = __getblk(bdev, block, size);
1359 	if (likely(bh)) {
1360 		ll_rw_block(READA, 1, &bh);
1361 		brelse(bh);
1362 	}
1363 }
1364 EXPORT_SYMBOL(__breadahead);
1365 
1366 /**
1367  *  __bread() - reads a specified block and returns the bh
1368  *  @bdev: the block_device to read from
1369  *  @block: number of block
1370  *  @size: size (in bytes) to read
1371  *
1372  *  Reads a specified block, and returns buffer head that contains it.
1373  *  It returns NULL if the block was unreadable.
1374  */
1375 struct buffer_head *
1376 __bread(struct block_device *bdev, sector_t block, unsigned size)
1377 {
1378 	struct buffer_head *bh = __getblk(bdev, block, size);
1379 
1380 	if (likely(bh) && !buffer_uptodate(bh))
1381 		bh = __bread_slow(bh);
1382 	return bh;
1383 }
1384 EXPORT_SYMBOL(__bread);
1385 
1386 /*
1387  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1388  * This doesn't race because it runs in each cpu either in irq
1389  * or with preempt disabled.
1390  */
1391 static void invalidate_bh_lru(void *arg)
1392 {
1393 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1394 	int i;
1395 
1396 	for (i = 0; i < BH_LRU_SIZE; i++) {
1397 		brelse(b->bhs[i]);
1398 		b->bhs[i] = NULL;
1399 	}
1400 	put_cpu_var(bh_lrus);
1401 }
1402 
1403 static bool has_bh_in_lru(int cpu, void *dummy)
1404 {
1405 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1406 	int i;
1407 
1408 	for (i = 0; i < BH_LRU_SIZE; i++) {
1409 		if (b->bhs[i])
1410 			return 1;
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 void invalidate_bh_lrus(void)
1417 {
1418 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1419 }
1420 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1421 
1422 void set_bh_page(struct buffer_head *bh,
1423 		struct page *page, unsigned long offset)
1424 {
1425 	bh->b_page = page;
1426 	BUG_ON(offset >= PAGE_SIZE);
1427 	if (PageHighMem(page))
1428 		/*
1429 		 * This catches illegal uses and preserves the offset:
1430 		 */
1431 		bh->b_data = (char *)(0 + offset);
1432 	else
1433 		bh->b_data = page_address(page) + offset;
1434 }
1435 EXPORT_SYMBOL(set_bh_page);
1436 
1437 /*
1438  * Called when truncating a buffer on a page completely.
1439  */
1440 static void discard_buffer(struct buffer_head * bh)
1441 {
1442 	lock_buffer(bh);
1443 	clear_buffer_dirty(bh);
1444 	bh->b_bdev = NULL;
1445 	clear_buffer_mapped(bh);
1446 	clear_buffer_req(bh);
1447 	clear_buffer_new(bh);
1448 	clear_buffer_delay(bh);
1449 	clear_buffer_unwritten(bh);
1450 	unlock_buffer(bh);
1451 }
1452 
1453 /**
1454  * block_invalidatepage - invalidate part or all of a buffer-backed page
1455  *
1456  * @page: the page which is affected
1457  * @offset: the index of the truncation point
1458  *
1459  * block_invalidatepage() is called when all or part of the page has become
1460  * invalidated by a truncate operation.
1461  *
1462  * block_invalidatepage() does not have to release all buffers, but it must
1463  * ensure that no dirty buffer is left outside @offset and that no I/O
1464  * is underway against any of the blocks which are outside the truncation
1465  * point.  Because the caller is about to free (and possibly reuse) those
1466  * blocks on-disk.
1467  */
1468 void block_invalidatepage(struct page *page, unsigned long offset)
1469 {
1470 	struct buffer_head *head, *bh, *next;
1471 	unsigned int curr_off = 0;
1472 
1473 	BUG_ON(!PageLocked(page));
1474 	if (!page_has_buffers(page))
1475 		goto out;
1476 
1477 	head = page_buffers(page);
1478 	bh = head;
1479 	do {
1480 		unsigned int next_off = curr_off + bh->b_size;
1481 		next = bh->b_this_page;
1482 
1483 		/*
1484 		 * is this block fully invalidated?
1485 		 */
1486 		if (offset <= curr_off)
1487 			discard_buffer(bh);
1488 		curr_off = next_off;
1489 		bh = next;
1490 	} while (bh != head);
1491 
1492 	/*
1493 	 * We release buffers only if the entire page is being invalidated.
1494 	 * The get_block cached value has been unconditionally invalidated,
1495 	 * so real IO is not possible anymore.
1496 	 */
1497 	if (offset == 0)
1498 		try_to_release_page(page, 0);
1499 out:
1500 	return;
1501 }
1502 EXPORT_SYMBOL(block_invalidatepage);
1503 
1504 /*
1505  * We attach and possibly dirty the buffers atomically wrt
1506  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1507  * is already excluded via the page lock.
1508  */
1509 void create_empty_buffers(struct page *page,
1510 			unsigned long blocksize, unsigned long b_state)
1511 {
1512 	struct buffer_head *bh, *head, *tail;
1513 
1514 	head = alloc_page_buffers(page, blocksize, 1);
1515 	bh = head;
1516 	do {
1517 		bh->b_state |= b_state;
1518 		tail = bh;
1519 		bh = bh->b_this_page;
1520 	} while (bh);
1521 	tail->b_this_page = head;
1522 
1523 	spin_lock(&page->mapping->private_lock);
1524 	if (PageUptodate(page) || PageDirty(page)) {
1525 		bh = head;
1526 		do {
1527 			if (PageDirty(page))
1528 				set_buffer_dirty(bh);
1529 			if (PageUptodate(page))
1530 				set_buffer_uptodate(bh);
1531 			bh = bh->b_this_page;
1532 		} while (bh != head);
1533 	}
1534 	attach_page_buffers(page, head);
1535 	spin_unlock(&page->mapping->private_lock);
1536 }
1537 EXPORT_SYMBOL(create_empty_buffers);
1538 
1539 /*
1540  * We are taking a block for data and we don't want any output from any
1541  * buffer-cache aliases starting from return from that function and
1542  * until the moment when something will explicitly mark the buffer
1543  * dirty (hopefully that will not happen until we will free that block ;-)
1544  * We don't even need to mark it not-uptodate - nobody can expect
1545  * anything from a newly allocated buffer anyway. We used to used
1546  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1547  * don't want to mark the alias unmapped, for example - it would confuse
1548  * anyone who might pick it with bread() afterwards...
1549  *
1550  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1551  * be writeout I/O going on against recently-freed buffers.  We don't
1552  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1553  * only if we really need to.  That happens here.
1554  */
1555 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1556 {
1557 	struct buffer_head *old_bh;
1558 
1559 	might_sleep();
1560 
1561 	old_bh = __find_get_block_slow(bdev, block);
1562 	if (old_bh) {
1563 		clear_buffer_dirty(old_bh);
1564 		wait_on_buffer(old_bh);
1565 		clear_buffer_req(old_bh);
1566 		__brelse(old_bh);
1567 	}
1568 }
1569 EXPORT_SYMBOL(unmap_underlying_metadata);
1570 
1571 /*
1572  * Size is a power-of-two in the range 512..PAGE_SIZE,
1573  * and the case we care about most is PAGE_SIZE.
1574  *
1575  * So this *could* possibly be written with those
1576  * constraints in mind (relevant mostly if some
1577  * architecture has a slow bit-scan instruction)
1578  */
1579 static inline int block_size_bits(unsigned int blocksize)
1580 {
1581 	return ilog2(blocksize);
1582 }
1583 
1584 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1585 {
1586 	BUG_ON(!PageLocked(page));
1587 
1588 	if (!page_has_buffers(page))
1589 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1590 	return page_buffers(page);
1591 }
1592 
1593 /*
1594  * NOTE! All mapped/uptodate combinations are valid:
1595  *
1596  *	Mapped	Uptodate	Meaning
1597  *
1598  *	No	No		"unknown" - must do get_block()
1599  *	No	Yes		"hole" - zero-filled
1600  *	Yes	No		"allocated" - allocated on disk, not read in
1601  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1602  *
1603  * "Dirty" is valid only with the last case (mapped+uptodate).
1604  */
1605 
1606 /*
1607  * While block_write_full_page is writing back the dirty buffers under
1608  * the page lock, whoever dirtied the buffers may decide to clean them
1609  * again at any time.  We handle that by only looking at the buffer
1610  * state inside lock_buffer().
1611  *
1612  * If block_write_full_page() is called for regular writeback
1613  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614  * locked buffer.   This only can happen if someone has written the buffer
1615  * directly, with submit_bh().  At the address_space level PageWriteback
1616  * prevents this contention from occurring.
1617  *
1618  * If block_write_full_page() is called with wbc->sync_mode ==
1619  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1620  * causes the writes to be flagged as synchronous writes.
1621  */
1622 static int __block_write_full_page(struct inode *inode, struct page *page,
1623 			get_block_t *get_block, struct writeback_control *wbc,
1624 			bh_end_io_t *handler)
1625 {
1626 	int err;
1627 	sector_t block;
1628 	sector_t last_block;
1629 	struct buffer_head *bh, *head;
1630 	unsigned int blocksize, bbits;
1631 	int nr_underway = 0;
1632 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1633 			WRITE_SYNC : WRITE);
1634 
1635 	head = create_page_buffers(page, inode,
1636 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1637 
1638 	/*
1639 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1640 	 * here, and the (potentially unmapped) buffers may become dirty at
1641 	 * any time.  If a buffer becomes dirty here after we've inspected it
1642 	 * then we just miss that fact, and the page stays dirty.
1643 	 *
1644 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1645 	 * handle that here by just cleaning them.
1646 	 */
1647 
1648 	bh = head;
1649 	blocksize = bh->b_size;
1650 	bbits = block_size_bits(blocksize);
1651 
1652 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1653 	last_block = (i_size_read(inode) - 1) >> bbits;
1654 
1655 	/*
1656 	 * Get all the dirty buffers mapped to disk addresses and
1657 	 * handle any aliases from the underlying blockdev's mapping.
1658 	 */
1659 	do {
1660 		if (block > last_block) {
1661 			/*
1662 			 * mapped buffers outside i_size will occur, because
1663 			 * this page can be outside i_size when there is a
1664 			 * truncate in progress.
1665 			 */
1666 			/*
1667 			 * The buffer was zeroed by block_write_full_page()
1668 			 */
1669 			clear_buffer_dirty(bh);
1670 			set_buffer_uptodate(bh);
1671 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1672 			   buffer_dirty(bh)) {
1673 			WARN_ON(bh->b_size != blocksize);
1674 			err = get_block(inode, block, bh, 1);
1675 			if (err)
1676 				goto recover;
1677 			clear_buffer_delay(bh);
1678 			if (buffer_new(bh)) {
1679 				/* blockdev mappings never come here */
1680 				clear_buffer_new(bh);
1681 				unmap_underlying_metadata(bh->b_bdev,
1682 							bh->b_blocknr);
1683 			}
1684 		}
1685 		bh = bh->b_this_page;
1686 		block++;
1687 	} while (bh != head);
1688 
1689 	do {
1690 		if (!buffer_mapped(bh))
1691 			continue;
1692 		/*
1693 		 * If it's a fully non-blocking write attempt and we cannot
1694 		 * lock the buffer then redirty the page.  Note that this can
1695 		 * potentially cause a busy-wait loop from writeback threads
1696 		 * and kswapd activity, but those code paths have their own
1697 		 * higher-level throttling.
1698 		 */
1699 		if (wbc->sync_mode != WB_SYNC_NONE) {
1700 			lock_buffer(bh);
1701 		} else if (!trylock_buffer(bh)) {
1702 			redirty_page_for_writepage(wbc, page);
1703 			continue;
1704 		}
1705 		if (test_clear_buffer_dirty(bh)) {
1706 			mark_buffer_async_write_endio(bh, handler);
1707 		} else {
1708 			unlock_buffer(bh);
1709 		}
1710 	} while ((bh = bh->b_this_page) != head);
1711 
1712 	/*
1713 	 * The page and its buffers are protected by PageWriteback(), so we can
1714 	 * drop the bh refcounts early.
1715 	 */
1716 	BUG_ON(PageWriteback(page));
1717 	set_page_writeback(page);
1718 
1719 	do {
1720 		struct buffer_head *next = bh->b_this_page;
1721 		if (buffer_async_write(bh)) {
1722 			submit_bh(write_op, bh);
1723 			nr_underway++;
1724 		}
1725 		bh = next;
1726 	} while (bh != head);
1727 	unlock_page(page);
1728 
1729 	err = 0;
1730 done:
1731 	if (nr_underway == 0) {
1732 		/*
1733 		 * The page was marked dirty, but the buffers were
1734 		 * clean.  Someone wrote them back by hand with
1735 		 * ll_rw_block/submit_bh.  A rare case.
1736 		 */
1737 		end_page_writeback(page);
1738 
1739 		/*
1740 		 * The page and buffer_heads can be released at any time from
1741 		 * here on.
1742 		 */
1743 	}
1744 	return err;
1745 
1746 recover:
1747 	/*
1748 	 * ENOSPC, or some other error.  We may already have added some
1749 	 * blocks to the file, so we need to write these out to avoid
1750 	 * exposing stale data.
1751 	 * The page is currently locked and not marked for writeback
1752 	 */
1753 	bh = head;
1754 	/* Recovery: lock and submit the mapped buffers */
1755 	do {
1756 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1757 		    !buffer_delay(bh)) {
1758 			lock_buffer(bh);
1759 			mark_buffer_async_write_endio(bh, handler);
1760 		} else {
1761 			/*
1762 			 * The buffer may have been set dirty during
1763 			 * attachment to a dirty page.
1764 			 */
1765 			clear_buffer_dirty(bh);
1766 		}
1767 	} while ((bh = bh->b_this_page) != head);
1768 	SetPageError(page);
1769 	BUG_ON(PageWriteback(page));
1770 	mapping_set_error(page->mapping, err);
1771 	set_page_writeback(page);
1772 	do {
1773 		struct buffer_head *next = bh->b_this_page;
1774 		if (buffer_async_write(bh)) {
1775 			clear_buffer_dirty(bh);
1776 			submit_bh(write_op, bh);
1777 			nr_underway++;
1778 		}
1779 		bh = next;
1780 	} while (bh != head);
1781 	unlock_page(page);
1782 	goto done;
1783 }
1784 
1785 /*
1786  * If a page has any new buffers, zero them out here, and mark them uptodate
1787  * and dirty so they'll be written out (in order to prevent uninitialised
1788  * block data from leaking). And clear the new bit.
1789  */
1790 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1791 {
1792 	unsigned int block_start, block_end;
1793 	struct buffer_head *head, *bh;
1794 
1795 	BUG_ON(!PageLocked(page));
1796 	if (!page_has_buffers(page))
1797 		return;
1798 
1799 	bh = head = page_buffers(page);
1800 	block_start = 0;
1801 	do {
1802 		block_end = block_start + bh->b_size;
1803 
1804 		if (buffer_new(bh)) {
1805 			if (block_end > from && block_start < to) {
1806 				if (!PageUptodate(page)) {
1807 					unsigned start, size;
1808 
1809 					start = max(from, block_start);
1810 					size = min(to, block_end) - start;
1811 
1812 					zero_user(page, start, size);
1813 					set_buffer_uptodate(bh);
1814 				}
1815 
1816 				clear_buffer_new(bh);
1817 				mark_buffer_dirty(bh);
1818 			}
1819 		}
1820 
1821 		block_start = block_end;
1822 		bh = bh->b_this_page;
1823 	} while (bh != head);
1824 }
1825 EXPORT_SYMBOL(page_zero_new_buffers);
1826 
1827 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1828 		get_block_t *get_block)
1829 {
1830 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1831 	unsigned to = from + len;
1832 	struct inode *inode = page->mapping->host;
1833 	unsigned block_start, block_end;
1834 	sector_t block;
1835 	int err = 0;
1836 	unsigned blocksize, bbits;
1837 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1838 
1839 	BUG_ON(!PageLocked(page));
1840 	BUG_ON(from > PAGE_CACHE_SIZE);
1841 	BUG_ON(to > PAGE_CACHE_SIZE);
1842 	BUG_ON(from > to);
1843 
1844 	head = create_page_buffers(page, inode, 0);
1845 	blocksize = head->b_size;
1846 	bbits = block_size_bits(blocksize);
1847 
1848 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1849 
1850 	for(bh = head, block_start = 0; bh != head || !block_start;
1851 	    block++, block_start=block_end, bh = bh->b_this_page) {
1852 		block_end = block_start + blocksize;
1853 		if (block_end <= from || block_start >= to) {
1854 			if (PageUptodate(page)) {
1855 				if (!buffer_uptodate(bh))
1856 					set_buffer_uptodate(bh);
1857 			}
1858 			continue;
1859 		}
1860 		if (buffer_new(bh))
1861 			clear_buffer_new(bh);
1862 		if (!buffer_mapped(bh)) {
1863 			WARN_ON(bh->b_size != blocksize);
1864 			err = get_block(inode, block, bh, 1);
1865 			if (err)
1866 				break;
1867 			if (buffer_new(bh)) {
1868 				unmap_underlying_metadata(bh->b_bdev,
1869 							bh->b_blocknr);
1870 				if (PageUptodate(page)) {
1871 					clear_buffer_new(bh);
1872 					set_buffer_uptodate(bh);
1873 					mark_buffer_dirty(bh);
1874 					continue;
1875 				}
1876 				if (block_end > to || block_start < from)
1877 					zero_user_segments(page,
1878 						to, block_end,
1879 						block_start, from);
1880 				continue;
1881 			}
1882 		}
1883 		if (PageUptodate(page)) {
1884 			if (!buffer_uptodate(bh))
1885 				set_buffer_uptodate(bh);
1886 			continue;
1887 		}
1888 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1889 		    !buffer_unwritten(bh) &&
1890 		     (block_start < from || block_end > to)) {
1891 			ll_rw_block(READ, 1, &bh);
1892 			*wait_bh++=bh;
1893 		}
1894 	}
1895 	/*
1896 	 * If we issued read requests - let them complete.
1897 	 */
1898 	while(wait_bh > wait) {
1899 		wait_on_buffer(*--wait_bh);
1900 		if (!buffer_uptodate(*wait_bh))
1901 			err = -EIO;
1902 	}
1903 	if (unlikely(err))
1904 		page_zero_new_buffers(page, from, to);
1905 	return err;
1906 }
1907 EXPORT_SYMBOL(__block_write_begin);
1908 
1909 static int __block_commit_write(struct inode *inode, struct page *page,
1910 		unsigned from, unsigned to)
1911 {
1912 	unsigned block_start, block_end;
1913 	int partial = 0;
1914 	unsigned blocksize;
1915 	struct buffer_head *bh, *head;
1916 
1917 	bh = head = page_buffers(page);
1918 	blocksize = bh->b_size;
1919 
1920 	block_start = 0;
1921 	do {
1922 		block_end = block_start + blocksize;
1923 		if (block_end <= from || block_start >= to) {
1924 			if (!buffer_uptodate(bh))
1925 				partial = 1;
1926 		} else {
1927 			set_buffer_uptodate(bh);
1928 			mark_buffer_dirty(bh);
1929 		}
1930 		clear_buffer_new(bh);
1931 
1932 		block_start = block_end;
1933 		bh = bh->b_this_page;
1934 	} while (bh != head);
1935 
1936 	/*
1937 	 * If this is a partial write which happened to make all buffers
1938 	 * uptodate then we can optimize away a bogus readpage() for
1939 	 * the next read(). Here we 'discover' whether the page went
1940 	 * uptodate as a result of this (potentially partial) write.
1941 	 */
1942 	if (!partial)
1943 		SetPageUptodate(page);
1944 	return 0;
1945 }
1946 
1947 /*
1948  * block_write_begin takes care of the basic task of block allocation and
1949  * bringing partial write blocks uptodate first.
1950  *
1951  * The filesystem needs to handle block truncation upon failure.
1952  */
1953 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1954 		unsigned flags, struct page **pagep, get_block_t *get_block)
1955 {
1956 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1957 	struct page *page;
1958 	int status;
1959 
1960 	page = grab_cache_page_write_begin(mapping, index, flags);
1961 	if (!page)
1962 		return -ENOMEM;
1963 
1964 	status = __block_write_begin(page, pos, len, get_block);
1965 	if (unlikely(status)) {
1966 		unlock_page(page);
1967 		page_cache_release(page);
1968 		page = NULL;
1969 	}
1970 
1971 	*pagep = page;
1972 	return status;
1973 }
1974 EXPORT_SYMBOL(block_write_begin);
1975 
1976 int block_write_end(struct file *file, struct address_space *mapping,
1977 			loff_t pos, unsigned len, unsigned copied,
1978 			struct page *page, void *fsdata)
1979 {
1980 	struct inode *inode = mapping->host;
1981 	unsigned start;
1982 
1983 	start = pos & (PAGE_CACHE_SIZE - 1);
1984 
1985 	if (unlikely(copied < len)) {
1986 		/*
1987 		 * The buffers that were written will now be uptodate, so we
1988 		 * don't have to worry about a readpage reading them and
1989 		 * overwriting a partial write. However if we have encountered
1990 		 * a short write and only partially written into a buffer, it
1991 		 * will not be marked uptodate, so a readpage might come in and
1992 		 * destroy our partial write.
1993 		 *
1994 		 * Do the simplest thing, and just treat any short write to a
1995 		 * non uptodate page as a zero-length write, and force the
1996 		 * caller to redo the whole thing.
1997 		 */
1998 		if (!PageUptodate(page))
1999 			copied = 0;
2000 
2001 		page_zero_new_buffers(page, start+copied, start+len);
2002 	}
2003 	flush_dcache_page(page);
2004 
2005 	/* This could be a short (even 0-length) commit */
2006 	__block_commit_write(inode, page, start, start+copied);
2007 
2008 	return copied;
2009 }
2010 EXPORT_SYMBOL(block_write_end);
2011 
2012 int generic_write_end(struct file *file, struct address_space *mapping,
2013 			loff_t pos, unsigned len, unsigned copied,
2014 			struct page *page, void *fsdata)
2015 {
2016 	struct inode *inode = mapping->host;
2017 	int i_size_changed = 0;
2018 
2019 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2020 
2021 	/*
2022 	 * No need to use i_size_read() here, the i_size
2023 	 * cannot change under us because we hold i_mutex.
2024 	 *
2025 	 * But it's important to update i_size while still holding page lock:
2026 	 * page writeout could otherwise come in and zero beyond i_size.
2027 	 */
2028 	if (pos+copied > inode->i_size) {
2029 		i_size_write(inode, pos+copied);
2030 		i_size_changed = 1;
2031 	}
2032 
2033 	unlock_page(page);
2034 	page_cache_release(page);
2035 
2036 	/*
2037 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2038 	 * makes the holding time of page lock longer. Second, it forces lock
2039 	 * ordering of page lock and transaction start for journaling
2040 	 * filesystems.
2041 	 */
2042 	if (i_size_changed)
2043 		mark_inode_dirty(inode);
2044 
2045 	return copied;
2046 }
2047 EXPORT_SYMBOL(generic_write_end);
2048 
2049 /*
2050  * block_is_partially_uptodate checks whether buffers within a page are
2051  * uptodate or not.
2052  *
2053  * Returns true if all buffers which correspond to a file portion
2054  * we want to read are uptodate.
2055  */
2056 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2057 					unsigned long from)
2058 {
2059 	unsigned block_start, block_end, blocksize;
2060 	unsigned to;
2061 	struct buffer_head *bh, *head;
2062 	int ret = 1;
2063 
2064 	if (!page_has_buffers(page))
2065 		return 0;
2066 
2067 	head = page_buffers(page);
2068 	blocksize = head->b_size;
2069 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2070 	to = from + to;
2071 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2072 		return 0;
2073 
2074 	bh = head;
2075 	block_start = 0;
2076 	do {
2077 		block_end = block_start + blocksize;
2078 		if (block_end > from && block_start < to) {
2079 			if (!buffer_uptodate(bh)) {
2080 				ret = 0;
2081 				break;
2082 			}
2083 			if (block_end >= to)
2084 				break;
2085 		}
2086 		block_start = block_end;
2087 		bh = bh->b_this_page;
2088 	} while (bh != head);
2089 
2090 	return ret;
2091 }
2092 EXPORT_SYMBOL(block_is_partially_uptodate);
2093 
2094 /*
2095  * Generic "read page" function for block devices that have the normal
2096  * get_block functionality. This is most of the block device filesystems.
2097  * Reads the page asynchronously --- the unlock_buffer() and
2098  * set/clear_buffer_uptodate() functions propagate buffer state into the
2099  * page struct once IO has completed.
2100  */
2101 int block_read_full_page(struct page *page, get_block_t *get_block)
2102 {
2103 	struct inode *inode = page->mapping->host;
2104 	sector_t iblock, lblock;
2105 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2106 	unsigned int blocksize, bbits;
2107 	int nr, i;
2108 	int fully_mapped = 1;
2109 
2110 	head = create_page_buffers(page, inode, 0);
2111 	blocksize = head->b_size;
2112 	bbits = block_size_bits(blocksize);
2113 
2114 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2115 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2116 	bh = head;
2117 	nr = 0;
2118 	i = 0;
2119 
2120 	do {
2121 		if (buffer_uptodate(bh))
2122 			continue;
2123 
2124 		if (!buffer_mapped(bh)) {
2125 			int err = 0;
2126 
2127 			fully_mapped = 0;
2128 			if (iblock < lblock) {
2129 				WARN_ON(bh->b_size != blocksize);
2130 				err = get_block(inode, iblock, bh, 0);
2131 				if (err)
2132 					SetPageError(page);
2133 			}
2134 			if (!buffer_mapped(bh)) {
2135 				zero_user(page, i * blocksize, blocksize);
2136 				if (!err)
2137 					set_buffer_uptodate(bh);
2138 				continue;
2139 			}
2140 			/*
2141 			 * get_block() might have updated the buffer
2142 			 * synchronously
2143 			 */
2144 			if (buffer_uptodate(bh))
2145 				continue;
2146 		}
2147 		arr[nr++] = bh;
2148 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2149 
2150 	if (fully_mapped)
2151 		SetPageMappedToDisk(page);
2152 
2153 	if (!nr) {
2154 		/*
2155 		 * All buffers are uptodate - we can set the page uptodate
2156 		 * as well. But not if get_block() returned an error.
2157 		 */
2158 		if (!PageError(page))
2159 			SetPageUptodate(page);
2160 		unlock_page(page);
2161 		return 0;
2162 	}
2163 
2164 	/* Stage two: lock the buffers */
2165 	for (i = 0; i < nr; i++) {
2166 		bh = arr[i];
2167 		lock_buffer(bh);
2168 		mark_buffer_async_read(bh);
2169 	}
2170 
2171 	/*
2172 	 * Stage 3: start the IO.  Check for uptodateness
2173 	 * inside the buffer lock in case another process reading
2174 	 * the underlying blockdev brought it uptodate (the sct fix).
2175 	 */
2176 	for (i = 0; i < nr; i++) {
2177 		bh = arr[i];
2178 		if (buffer_uptodate(bh))
2179 			end_buffer_async_read(bh, 1);
2180 		else
2181 			submit_bh(READ, bh);
2182 	}
2183 	return 0;
2184 }
2185 EXPORT_SYMBOL(block_read_full_page);
2186 
2187 /* utility function for filesystems that need to do work on expanding
2188  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2189  * deal with the hole.
2190  */
2191 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2192 {
2193 	struct address_space *mapping = inode->i_mapping;
2194 	struct page *page;
2195 	void *fsdata;
2196 	int err;
2197 
2198 	err = inode_newsize_ok(inode, size);
2199 	if (err)
2200 		goto out;
2201 
2202 	err = pagecache_write_begin(NULL, mapping, size, 0,
2203 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2204 				&page, &fsdata);
2205 	if (err)
2206 		goto out;
2207 
2208 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2209 	BUG_ON(err > 0);
2210 
2211 out:
2212 	return err;
2213 }
2214 EXPORT_SYMBOL(generic_cont_expand_simple);
2215 
2216 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2217 			    loff_t pos, loff_t *bytes)
2218 {
2219 	struct inode *inode = mapping->host;
2220 	unsigned blocksize = 1 << inode->i_blkbits;
2221 	struct page *page;
2222 	void *fsdata;
2223 	pgoff_t index, curidx;
2224 	loff_t curpos;
2225 	unsigned zerofrom, offset, len;
2226 	int err = 0;
2227 
2228 	index = pos >> PAGE_CACHE_SHIFT;
2229 	offset = pos & ~PAGE_CACHE_MASK;
2230 
2231 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2232 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2233 		if (zerofrom & (blocksize-1)) {
2234 			*bytes |= (blocksize-1);
2235 			(*bytes)++;
2236 		}
2237 		len = PAGE_CACHE_SIZE - zerofrom;
2238 
2239 		err = pagecache_write_begin(file, mapping, curpos, len,
2240 						AOP_FLAG_UNINTERRUPTIBLE,
2241 						&page, &fsdata);
2242 		if (err)
2243 			goto out;
2244 		zero_user(page, zerofrom, len);
2245 		err = pagecache_write_end(file, mapping, curpos, len, len,
2246 						page, fsdata);
2247 		if (err < 0)
2248 			goto out;
2249 		BUG_ON(err != len);
2250 		err = 0;
2251 
2252 		balance_dirty_pages_ratelimited(mapping);
2253 	}
2254 
2255 	/* page covers the boundary, find the boundary offset */
2256 	if (index == curidx) {
2257 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2258 		/* if we will expand the thing last block will be filled */
2259 		if (offset <= zerofrom) {
2260 			goto out;
2261 		}
2262 		if (zerofrom & (blocksize-1)) {
2263 			*bytes |= (blocksize-1);
2264 			(*bytes)++;
2265 		}
2266 		len = offset - zerofrom;
2267 
2268 		err = pagecache_write_begin(file, mapping, curpos, len,
2269 						AOP_FLAG_UNINTERRUPTIBLE,
2270 						&page, &fsdata);
2271 		if (err)
2272 			goto out;
2273 		zero_user(page, zerofrom, len);
2274 		err = pagecache_write_end(file, mapping, curpos, len, len,
2275 						page, fsdata);
2276 		if (err < 0)
2277 			goto out;
2278 		BUG_ON(err != len);
2279 		err = 0;
2280 	}
2281 out:
2282 	return err;
2283 }
2284 
2285 /*
2286  * For moronic filesystems that do not allow holes in file.
2287  * We may have to extend the file.
2288  */
2289 int cont_write_begin(struct file *file, struct address_space *mapping,
2290 			loff_t pos, unsigned len, unsigned flags,
2291 			struct page **pagep, void **fsdata,
2292 			get_block_t *get_block, loff_t *bytes)
2293 {
2294 	struct inode *inode = mapping->host;
2295 	unsigned blocksize = 1 << inode->i_blkbits;
2296 	unsigned zerofrom;
2297 	int err;
2298 
2299 	err = cont_expand_zero(file, mapping, pos, bytes);
2300 	if (err)
2301 		return err;
2302 
2303 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2304 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2305 		*bytes |= (blocksize-1);
2306 		(*bytes)++;
2307 	}
2308 
2309 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2310 }
2311 EXPORT_SYMBOL(cont_write_begin);
2312 
2313 int block_commit_write(struct page *page, unsigned from, unsigned to)
2314 {
2315 	struct inode *inode = page->mapping->host;
2316 	__block_commit_write(inode,page,from,to);
2317 	return 0;
2318 }
2319 EXPORT_SYMBOL(block_commit_write);
2320 
2321 /*
2322  * block_page_mkwrite() is not allowed to change the file size as it gets
2323  * called from a page fault handler when a page is first dirtied. Hence we must
2324  * be careful to check for EOF conditions here. We set the page up correctly
2325  * for a written page which means we get ENOSPC checking when writing into
2326  * holes and correct delalloc and unwritten extent mapping on filesystems that
2327  * support these features.
2328  *
2329  * We are not allowed to take the i_mutex here so we have to play games to
2330  * protect against truncate races as the page could now be beyond EOF.  Because
2331  * truncate writes the inode size before removing pages, once we have the
2332  * page lock we can determine safely if the page is beyond EOF. If it is not
2333  * beyond EOF, then the page is guaranteed safe against truncation until we
2334  * unlock the page.
2335  *
2336  * Direct callers of this function should protect against filesystem freezing
2337  * using sb_start_write() - sb_end_write() functions.
2338  */
2339 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2340 			 get_block_t get_block)
2341 {
2342 	struct page *page = vmf->page;
2343 	struct inode *inode = file_inode(vma->vm_file);
2344 	unsigned long end;
2345 	loff_t size;
2346 	int ret;
2347 
2348 	lock_page(page);
2349 	size = i_size_read(inode);
2350 	if ((page->mapping != inode->i_mapping) ||
2351 	    (page_offset(page) > size)) {
2352 		/* We overload EFAULT to mean page got truncated */
2353 		ret = -EFAULT;
2354 		goto out_unlock;
2355 	}
2356 
2357 	/* page is wholly or partially inside EOF */
2358 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2359 		end = size & ~PAGE_CACHE_MASK;
2360 	else
2361 		end = PAGE_CACHE_SIZE;
2362 
2363 	ret = __block_write_begin(page, 0, end, get_block);
2364 	if (!ret)
2365 		ret = block_commit_write(page, 0, end);
2366 
2367 	if (unlikely(ret < 0))
2368 		goto out_unlock;
2369 	set_page_dirty(page);
2370 	wait_for_stable_page(page);
2371 	return 0;
2372 out_unlock:
2373 	unlock_page(page);
2374 	return ret;
2375 }
2376 EXPORT_SYMBOL(__block_page_mkwrite);
2377 
2378 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2379 		   get_block_t get_block)
2380 {
2381 	int ret;
2382 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2383 
2384 	sb_start_pagefault(sb);
2385 
2386 	/*
2387 	 * Update file times before taking page lock. We may end up failing the
2388 	 * fault so this update may be superfluous but who really cares...
2389 	 */
2390 	file_update_time(vma->vm_file);
2391 
2392 	ret = __block_page_mkwrite(vma, vmf, get_block);
2393 	sb_end_pagefault(sb);
2394 	return block_page_mkwrite_return(ret);
2395 }
2396 EXPORT_SYMBOL(block_page_mkwrite);
2397 
2398 /*
2399  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2400  * immediately, while under the page lock.  So it needs a special end_io
2401  * handler which does not touch the bh after unlocking it.
2402  */
2403 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2404 {
2405 	__end_buffer_read_notouch(bh, uptodate);
2406 }
2407 
2408 /*
2409  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2410  * the page (converting it to circular linked list and taking care of page
2411  * dirty races).
2412  */
2413 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2414 {
2415 	struct buffer_head *bh;
2416 
2417 	BUG_ON(!PageLocked(page));
2418 
2419 	spin_lock(&page->mapping->private_lock);
2420 	bh = head;
2421 	do {
2422 		if (PageDirty(page))
2423 			set_buffer_dirty(bh);
2424 		if (!bh->b_this_page)
2425 			bh->b_this_page = head;
2426 		bh = bh->b_this_page;
2427 	} while (bh != head);
2428 	attach_page_buffers(page, head);
2429 	spin_unlock(&page->mapping->private_lock);
2430 }
2431 
2432 /*
2433  * On entry, the page is fully not uptodate.
2434  * On exit the page is fully uptodate in the areas outside (from,to)
2435  * The filesystem needs to handle block truncation upon failure.
2436  */
2437 int nobh_write_begin(struct address_space *mapping,
2438 			loff_t pos, unsigned len, unsigned flags,
2439 			struct page **pagep, void **fsdata,
2440 			get_block_t *get_block)
2441 {
2442 	struct inode *inode = mapping->host;
2443 	const unsigned blkbits = inode->i_blkbits;
2444 	const unsigned blocksize = 1 << blkbits;
2445 	struct buffer_head *head, *bh;
2446 	struct page *page;
2447 	pgoff_t index;
2448 	unsigned from, to;
2449 	unsigned block_in_page;
2450 	unsigned block_start, block_end;
2451 	sector_t block_in_file;
2452 	int nr_reads = 0;
2453 	int ret = 0;
2454 	int is_mapped_to_disk = 1;
2455 
2456 	index = pos >> PAGE_CACHE_SHIFT;
2457 	from = pos & (PAGE_CACHE_SIZE - 1);
2458 	to = from + len;
2459 
2460 	page = grab_cache_page_write_begin(mapping, index, flags);
2461 	if (!page)
2462 		return -ENOMEM;
2463 	*pagep = page;
2464 	*fsdata = NULL;
2465 
2466 	if (page_has_buffers(page)) {
2467 		ret = __block_write_begin(page, pos, len, get_block);
2468 		if (unlikely(ret))
2469 			goto out_release;
2470 		return ret;
2471 	}
2472 
2473 	if (PageMappedToDisk(page))
2474 		return 0;
2475 
2476 	/*
2477 	 * Allocate buffers so that we can keep track of state, and potentially
2478 	 * attach them to the page if an error occurs. In the common case of
2479 	 * no error, they will just be freed again without ever being attached
2480 	 * to the page (which is all OK, because we're under the page lock).
2481 	 *
2482 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2483 	 * than the circular one we're used to.
2484 	 */
2485 	head = alloc_page_buffers(page, blocksize, 0);
2486 	if (!head) {
2487 		ret = -ENOMEM;
2488 		goto out_release;
2489 	}
2490 
2491 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2492 
2493 	/*
2494 	 * We loop across all blocks in the page, whether or not they are
2495 	 * part of the affected region.  This is so we can discover if the
2496 	 * page is fully mapped-to-disk.
2497 	 */
2498 	for (block_start = 0, block_in_page = 0, bh = head;
2499 		  block_start < PAGE_CACHE_SIZE;
2500 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2501 		int create;
2502 
2503 		block_end = block_start + blocksize;
2504 		bh->b_state = 0;
2505 		create = 1;
2506 		if (block_start >= to)
2507 			create = 0;
2508 		ret = get_block(inode, block_in_file + block_in_page,
2509 					bh, create);
2510 		if (ret)
2511 			goto failed;
2512 		if (!buffer_mapped(bh))
2513 			is_mapped_to_disk = 0;
2514 		if (buffer_new(bh))
2515 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2516 		if (PageUptodate(page)) {
2517 			set_buffer_uptodate(bh);
2518 			continue;
2519 		}
2520 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2521 			zero_user_segments(page, block_start, from,
2522 							to, block_end);
2523 			continue;
2524 		}
2525 		if (buffer_uptodate(bh))
2526 			continue;	/* reiserfs does this */
2527 		if (block_start < from || block_end > to) {
2528 			lock_buffer(bh);
2529 			bh->b_end_io = end_buffer_read_nobh;
2530 			submit_bh(READ, bh);
2531 			nr_reads++;
2532 		}
2533 	}
2534 
2535 	if (nr_reads) {
2536 		/*
2537 		 * The page is locked, so these buffers are protected from
2538 		 * any VM or truncate activity.  Hence we don't need to care
2539 		 * for the buffer_head refcounts.
2540 		 */
2541 		for (bh = head; bh; bh = bh->b_this_page) {
2542 			wait_on_buffer(bh);
2543 			if (!buffer_uptodate(bh))
2544 				ret = -EIO;
2545 		}
2546 		if (ret)
2547 			goto failed;
2548 	}
2549 
2550 	if (is_mapped_to_disk)
2551 		SetPageMappedToDisk(page);
2552 
2553 	*fsdata = head; /* to be released by nobh_write_end */
2554 
2555 	return 0;
2556 
2557 failed:
2558 	BUG_ON(!ret);
2559 	/*
2560 	 * Error recovery is a bit difficult. We need to zero out blocks that
2561 	 * were newly allocated, and dirty them to ensure they get written out.
2562 	 * Buffers need to be attached to the page at this point, otherwise
2563 	 * the handling of potential IO errors during writeout would be hard
2564 	 * (could try doing synchronous writeout, but what if that fails too?)
2565 	 */
2566 	attach_nobh_buffers(page, head);
2567 	page_zero_new_buffers(page, from, to);
2568 
2569 out_release:
2570 	unlock_page(page);
2571 	page_cache_release(page);
2572 	*pagep = NULL;
2573 
2574 	return ret;
2575 }
2576 EXPORT_SYMBOL(nobh_write_begin);
2577 
2578 int nobh_write_end(struct file *file, struct address_space *mapping,
2579 			loff_t pos, unsigned len, unsigned copied,
2580 			struct page *page, void *fsdata)
2581 {
2582 	struct inode *inode = page->mapping->host;
2583 	struct buffer_head *head = fsdata;
2584 	struct buffer_head *bh;
2585 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2586 
2587 	if (unlikely(copied < len) && head)
2588 		attach_nobh_buffers(page, head);
2589 	if (page_has_buffers(page))
2590 		return generic_write_end(file, mapping, pos, len,
2591 					copied, page, fsdata);
2592 
2593 	SetPageUptodate(page);
2594 	set_page_dirty(page);
2595 	if (pos+copied > inode->i_size) {
2596 		i_size_write(inode, pos+copied);
2597 		mark_inode_dirty(inode);
2598 	}
2599 
2600 	unlock_page(page);
2601 	page_cache_release(page);
2602 
2603 	while (head) {
2604 		bh = head;
2605 		head = head->b_this_page;
2606 		free_buffer_head(bh);
2607 	}
2608 
2609 	return copied;
2610 }
2611 EXPORT_SYMBOL(nobh_write_end);
2612 
2613 /*
2614  * nobh_writepage() - based on block_full_write_page() except
2615  * that it tries to operate without attaching bufferheads to
2616  * the page.
2617  */
2618 int nobh_writepage(struct page *page, get_block_t *get_block,
2619 			struct writeback_control *wbc)
2620 {
2621 	struct inode * const inode = page->mapping->host;
2622 	loff_t i_size = i_size_read(inode);
2623 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2624 	unsigned offset;
2625 	int ret;
2626 
2627 	/* Is the page fully inside i_size? */
2628 	if (page->index < end_index)
2629 		goto out;
2630 
2631 	/* Is the page fully outside i_size? (truncate in progress) */
2632 	offset = i_size & (PAGE_CACHE_SIZE-1);
2633 	if (page->index >= end_index+1 || !offset) {
2634 		/*
2635 		 * The page may have dirty, unmapped buffers.  For example,
2636 		 * they may have been added in ext3_writepage().  Make them
2637 		 * freeable here, so the page does not leak.
2638 		 */
2639 #if 0
2640 		/* Not really sure about this  - do we need this ? */
2641 		if (page->mapping->a_ops->invalidatepage)
2642 			page->mapping->a_ops->invalidatepage(page, offset);
2643 #endif
2644 		unlock_page(page);
2645 		return 0; /* don't care */
2646 	}
2647 
2648 	/*
2649 	 * The page straddles i_size.  It must be zeroed out on each and every
2650 	 * writepage invocation because it may be mmapped.  "A file is mapped
2651 	 * in multiples of the page size.  For a file that is not a multiple of
2652 	 * the  page size, the remaining memory is zeroed when mapped, and
2653 	 * writes to that region are not written out to the file."
2654 	 */
2655 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2656 out:
2657 	ret = mpage_writepage(page, get_block, wbc);
2658 	if (ret == -EAGAIN)
2659 		ret = __block_write_full_page(inode, page, get_block, wbc,
2660 					      end_buffer_async_write);
2661 	return ret;
2662 }
2663 EXPORT_SYMBOL(nobh_writepage);
2664 
2665 int nobh_truncate_page(struct address_space *mapping,
2666 			loff_t from, get_block_t *get_block)
2667 {
2668 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2669 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2670 	unsigned blocksize;
2671 	sector_t iblock;
2672 	unsigned length, pos;
2673 	struct inode *inode = mapping->host;
2674 	struct page *page;
2675 	struct buffer_head map_bh;
2676 	int err;
2677 
2678 	blocksize = 1 << inode->i_blkbits;
2679 	length = offset & (blocksize - 1);
2680 
2681 	/* Block boundary? Nothing to do */
2682 	if (!length)
2683 		return 0;
2684 
2685 	length = blocksize - length;
2686 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2687 
2688 	page = grab_cache_page(mapping, index);
2689 	err = -ENOMEM;
2690 	if (!page)
2691 		goto out;
2692 
2693 	if (page_has_buffers(page)) {
2694 has_buffers:
2695 		unlock_page(page);
2696 		page_cache_release(page);
2697 		return block_truncate_page(mapping, from, get_block);
2698 	}
2699 
2700 	/* Find the buffer that contains "offset" */
2701 	pos = blocksize;
2702 	while (offset >= pos) {
2703 		iblock++;
2704 		pos += blocksize;
2705 	}
2706 
2707 	map_bh.b_size = blocksize;
2708 	map_bh.b_state = 0;
2709 	err = get_block(inode, iblock, &map_bh, 0);
2710 	if (err)
2711 		goto unlock;
2712 	/* unmapped? It's a hole - nothing to do */
2713 	if (!buffer_mapped(&map_bh))
2714 		goto unlock;
2715 
2716 	/* Ok, it's mapped. Make sure it's up-to-date */
2717 	if (!PageUptodate(page)) {
2718 		err = mapping->a_ops->readpage(NULL, page);
2719 		if (err) {
2720 			page_cache_release(page);
2721 			goto out;
2722 		}
2723 		lock_page(page);
2724 		if (!PageUptodate(page)) {
2725 			err = -EIO;
2726 			goto unlock;
2727 		}
2728 		if (page_has_buffers(page))
2729 			goto has_buffers;
2730 	}
2731 	zero_user(page, offset, length);
2732 	set_page_dirty(page);
2733 	err = 0;
2734 
2735 unlock:
2736 	unlock_page(page);
2737 	page_cache_release(page);
2738 out:
2739 	return err;
2740 }
2741 EXPORT_SYMBOL(nobh_truncate_page);
2742 
2743 int block_truncate_page(struct address_space *mapping,
2744 			loff_t from, get_block_t *get_block)
2745 {
2746 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2747 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2748 	unsigned blocksize;
2749 	sector_t iblock;
2750 	unsigned length, pos;
2751 	struct inode *inode = mapping->host;
2752 	struct page *page;
2753 	struct buffer_head *bh;
2754 	int err;
2755 
2756 	blocksize = 1 << inode->i_blkbits;
2757 	length = offset & (blocksize - 1);
2758 
2759 	/* Block boundary? Nothing to do */
2760 	if (!length)
2761 		return 0;
2762 
2763 	length = blocksize - length;
2764 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2765 
2766 	page = grab_cache_page(mapping, index);
2767 	err = -ENOMEM;
2768 	if (!page)
2769 		goto out;
2770 
2771 	if (!page_has_buffers(page))
2772 		create_empty_buffers(page, blocksize, 0);
2773 
2774 	/* Find the buffer that contains "offset" */
2775 	bh = page_buffers(page);
2776 	pos = blocksize;
2777 	while (offset >= pos) {
2778 		bh = bh->b_this_page;
2779 		iblock++;
2780 		pos += blocksize;
2781 	}
2782 
2783 	err = 0;
2784 	if (!buffer_mapped(bh)) {
2785 		WARN_ON(bh->b_size != blocksize);
2786 		err = get_block(inode, iblock, bh, 0);
2787 		if (err)
2788 			goto unlock;
2789 		/* unmapped? It's a hole - nothing to do */
2790 		if (!buffer_mapped(bh))
2791 			goto unlock;
2792 	}
2793 
2794 	/* Ok, it's mapped. Make sure it's up-to-date */
2795 	if (PageUptodate(page))
2796 		set_buffer_uptodate(bh);
2797 
2798 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2799 		err = -EIO;
2800 		ll_rw_block(READ, 1, &bh);
2801 		wait_on_buffer(bh);
2802 		/* Uhhuh. Read error. Complain and punt. */
2803 		if (!buffer_uptodate(bh))
2804 			goto unlock;
2805 	}
2806 
2807 	zero_user(page, offset, length);
2808 	mark_buffer_dirty(bh);
2809 	err = 0;
2810 
2811 unlock:
2812 	unlock_page(page);
2813 	page_cache_release(page);
2814 out:
2815 	return err;
2816 }
2817 EXPORT_SYMBOL(block_truncate_page);
2818 
2819 /*
2820  * The generic ->writepage function for buffer-backed address_spaces
2821  * this form passes in the end_io handler used to finish the IO.
2822  */
2823 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2824 			struct writeback_control *wbc, bh_end_io_t *handler)
2825 {
2826 	struct inode * const inode = page->mapping->host;
2827 	loff_t i_size = i_size_read(inode);
2828 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2829 	unsigned offset;
2830 
2831 	/* Is the page fully inside i_size? */
2832 	if (page->index < end_index)
2833 		return __block_write_full_page(inode, page, get_block, wbc,
2834 					       handler);
2835 
2836 	/* Is the page fully outside i_size? (truncate in progress) */
2837 	offset = i_size & (PAGE_CACHE_SIZE-1);
2838 	if (page->index >= end_index+1 || !offset) {
2839 		/*
2840 		 * The page may have dirty, unmapped buffers.  For example,
2841 		 * they may have been added in ext3_writepage().  Make them
2842 		 * freeable here, so the page does not leak.
2843 		 */
2844 		do_invalidatepage(page, 0);
2845 		unlock_page(page);
2846 		return 0; /* don't care */
2847 	}
2848 
2849 	/*
2850 	 * The page straddles i_size.  It must be zeroed out on each and every
2851 	 * writepage invocation because it may be mmapped.  "A file is mapped
2852 	 * in multiples of the page size.  For a file that is not a multiple of
2853 	 * the  page size, the remaining memory is zeroed when mapped, and
2854 	 * writes to that region are not written out to the file."
2855 	 */
2856 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2857 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2858 }
2859 EXPORT_SYMBOL(block_write_full_page_endio);
2860 
2861 /*
2862  * The generic ->writepage function for buffer-backed address_spaces
2863  */
2864 int block_write_full_page(struct page *page, get_block_t *get_block,
2865 			struct writeback_control *wbc)
2866 {
2867 	return block_write_full_page_endio(page, get_block, wbc,
2868 					   end_buffer_async_write);
2869 }
2870 EXPORT_SYMBOL(block_write_full_page);
2871 
2872 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2873 			    get_block_t *get_block)
2874 {
2875 	struct buffer_head tmp;
2876 	struct inode *inode = mapping->host;
2877 	tmp.b_state = 0;
2878 	tmp.b_blocknr = 0;
2879 	tmp.b_size = 1 << inode->i_blkbits;
2880 	get_block(inode, block, &tmp, 0);
2881 	return tmp.b_blocknr;
2882 }
2883 EXPORT_SYMBOL(generic_block_bmap);
2884 
2885 static void end_bio_bh_io_sync(struct bio *bio, int err)
2886 {
2887 	struct buffer_head *bh = bio->bi_private;
2888 
2889 	if (err == -EOPNOTSUPP) {
2890 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2891 	}
2892 
2893 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2894 		set_bit(BH_Quiet, &bh->b_state);
2895 
2896 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2897 	bio_put(bio);
2898 }
2899 
2900 /*
2901  * This allows us to do IO even on the odd last sectors
2902  * of a device, even if the bh block size is some multiple
2903  * of the physical sector size.
2904  *
2905  * We'll just truncate the bio to the size of the device,
2906  * and clear the end of the buffer head manually.
2907  *
2908  * Truly out-of-range accesses will turn into actual IO
2909  * errors, this only handles the "we need to be able to
2910  * do IO at the final sector" case.
2911  */
2912 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2913 {
2914 	sector_t maxsector;
2915 	unsigned bytes;
2916 
2917 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2918 	if (!maxsector)
2919 		return;
2920 
2921 	/*
2922 	 * If the *whole* IO is past the end of the device,
2923 	 * let it through, and the IO layer will turn it into
2924 	 * an EIO.
2925 	 */
2926 	if (unlikely(bio->bi_sector >= maxsector))
2927 		return;
2928 
2929 	maxsector -= bio->bi_sector;
2930 	bytes = bio->bi_size;
2931 	if (likely((bytes >> 9) <= maxsector))
2932 		return;
2933 
2934 	/* Uhhuh. We've got a bh that straddles the device size! */
2935 	bytes = maxsector << 9;
2936 
2937 	/* Truncate the bio.. */
2938 	bio->bi_size = bytes;
2939 	bio->bi_io_vec[0].bv_len = bytes;
2940 
2941 	/* ..and clear the end of the buffer for reads */
2942 	if ((rw & RW_MASK) == READ) {
2943 		void *kaddr = kmap_atomic(bh->b_page);
2944 		memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
2945 		kunmap_atomic(kaddr);
2946 		flush_dcache_page(bh->b_page);
2947 	}
2948 }
2949 
2950 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
2951 {
2952 	struct bio *bio;
2953 	int ret = 0;
2954 
2955 	BUG_ON(!buffer_locked(bh));
2956 	BUG_ON(!buffer_mapped(bh));
2957 	BUG_ON(!bh->b_end_io);
2958 	BUG_ON(buffer_delay(bh));
2959 	BUG_ON(buffer_unwritten(bh));
2960 
2961 	/*
2962 	 * Only clear out a write error when rewriting
2963 	 */
2964 	if (test_set_buffer_req(bh) && (rw & WRITE))
2965 		clear_buffer_write_io_error(bh);
2966 
2967 	/*
2968 	 * from here on down, it's all bio -- do the initial mapping,
2969 	 * submit_bio -> generic_make_request may further map this bio around
2970 	 */
2971 	bio = bio_alloc(GFP_NOIO, 1);
2972 
2973 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2974 	bio->bi_bdev = bh->b_bdev;
2975 	bio->bi_io_vec[0].bv_page = bh->b_page;
2976 	bio->bi_io_vec[0].bv_len = bh->b_size;
2977 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2978 
2979 	bio->bi_vcnt = 1;
2980 	bio->bi_size = bh->b_size;
2981 
2982 	bio->bi_end_io = end_bio_bh_io_sync;
2983 	bio->bi_private = bh;
2984 	bio->bi_flags |= bio_flags;
2985 
2986 	/* Take care of bh's that straddle the end of the device */
2987 	guard_bh_eod(rw, bio, bh);
2988 
2989 	if (buffer_meta(bh))
2990 		rw |= REQ_META;
2991 	if (buffer_prio(bh))
2992 		rw |= REQ_PRIO;
2993 
2994 	bio_get(bio);
2995 	submit_bio(rw, bio);
2996 
2997 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2998 		ret = -EOPNOTSUPP;
2999 
3000 	bio_put(bio);
3001 	return ret;
3002 }
3003 EXPORT_SYMBOL_GPL(_submit_bh);
3004 
3005 int submit_bh(int rw, struct buffer_head *bh)
3006 {
3007 	return _submit_bh(rw, bh, 0);
3008 }
3009 EXPORT_SYMBOL(submit_bh);
3010 
3011 /**
3012  * ll_rw_block: low-level access to block devices (DEPRECATED)
3013  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3014  * @nr: number of &struct buffer_heads in the array
3015  * @bhs: array of pointers to &struct buffer_head
3016  *
3017  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3018  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3019  * %READA option is described in the documentation for generic_make_request()
3020  * which ll_rw_block() calls.
3021  *
3022  * This function drops any buffer that it cannot get a lock on (with the
3023  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3024  * request, and any buffer that appears to be up-to-date when doing read
3025  * request.  Further it marks as clean buffers that are processed for
3026  * writing (the buffer cache won't assume that they are actually clean
3027  * until the buffer gets unlocked).
3028  *
3029  * ll_rw_block sets b_end_io to simple completion handler that marks
3030  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3031  * any waiters.
3032  *
3033  * All of the buffers must be for the same device, and must also be a
3034  * multiple of the current approved size for the device.
3035  */
3036 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3037 {
3038 	int i;
3039 
3040 	for (i = 0; i < nr; i++) {
3041 		struct buffer_head *bh = bhs[i];
3042 
3043 		if (!trylock_buffer(bh))
3044 			continue;
3045 		if (rw == WRITE) {
3046 			if (test_clear_buffer_dirty(bh)) {
3047 				bh->b_end_io = end_buffer_write_sync;
3048 				get_bh(bh);
3049 				submit_bh(WRITE, bh);
3050 				continue;
3051 			}
3052 		} else {
3053 			if (!buffer_uptodate(bh)) {
3054 				bh->b_end_io = end_buffer_read_sync;
3055 				get_bh(bh);
3056 				submit_bh(rw, bh);
3057 				continue;
3058 			}
3059 		}
3060 		unlock_buffer(bh);
3061 	}
3062 }
3063 EXPORT_SYMBOL(ll_rw_block);
3064 
3065 void write_dirty_buffer(struct buffer_head *bh, int rw)
3066 {
3067 	lock_buffer(bh);
3068 	if (!test_clear_buffer_dirty(bh)) {
3069 		unlock_buffer(bh);
3070 		return;
3071 	}
3072 	bh->b_end_io = end_buffer_write_sync;
3073 	get_bh(bh);
3074 	submit_bh(rw, bh);
3075 }
3076 EXPORT_SYMBOL(write_dirty_buffer);
3077 
3078 /*
3079  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3080  * and then start new I/O and then wait upon it.  The caller must have a ref on
3081  * the buffer_head.
3082  */
3083 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3084 {
3085 	int ret = 0;
3086 
3087 	WARN_ON(atomic_read(&bh->b_count) < 1);
3088 	lock_buffer(bh);
3089 	if (test_clear_buffer_dirty(bh)) {
3090 		get_bh(bh);
3091 		bh->b_end_io = end_buffer_write_sync;
3092 		ret = submit_bh(rw, bh);
3093 		wait_on_buffer(bh);
3094 		if (!ret && !buffer_uptodate(bh))
3095 			ret = -EIO;
3096 	} else {
3097 		unlock_buffer(bh);
3098 	}
3099 	return ret;
3100 }
3101 EXPORT_SYMBOL(__sync_dirty_buffer);
3102 
3103 int sync_dirty_buffer(struct buffer_head *bh)
3104 {
3105 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3106 }
3107 EXPORT_SYMBOL(sync_dirty_buffer);
3108 
3109 /*
3110  * try_to_free_buffers() checks if all the buffers on this particular page
3111  * are unused, and releases them if so.
3112  *
3113  * Exclusion against try_to_free_buffers may be obtained by either
3114  * locking the page or by holding its mapping's private_lock.
3115  *
3116  * If the page is dirty but all the buffers are clean then we need to
3117  * be sure to mark the page clean as well.  This is because the page
3118  * may be against a block device, and a later reattachment of buffers
3119  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3120  * filesystem data on the same device.
3121  *
3122  * The same applies to regular filesystem pages: if all the buffers are
3123  * clean then we set the page clean and proceed.  To do that, we require
3124  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3125  * private_lock.
3126  *
3127  * try_to_free_buffers() is non-blocking.
3128  */
3129 static inline int buffer_busy(struct buffer_head *bh)
3130 {
3131 	return atomic_read(&bh->b_count) |
3132 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3133 }
3134 
3135 static int
3136 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3137 {
3138 	struct buffer_head *head = page_buffers(page);
3139 	struct buffer_head *bh;
3140 
3141 	bh = head;
3142 	do {
3143 		if (buffer_write_io_error(bh) && page->mapping)
3144 			set_bit(AS_EIO, &page->mapping->flags);
3145 		if (buffer_busy(bh))
3146 			goto failed;
3147 		bh = bh->b_this_page;
3148 	} while (bh != head);
3149 
3150 	do {
3151 		struct buffer_head *next = bh->b_this_page;
3152 
3153 		if (bh->b_assoc_map)
3154 			__remove_assoc_queue(bh);
3155 		bh = next;
3156 	} while (bh != head);
3157 	*buffers_to_free = head;
3158 	__clear_page_buffers(page);
3159 	return 1;
3160 failed:
3161 	return 0;
3162 }
3163 
3164 int try_to_free_buffers(struct page *page)
3165 {
3166 	struct address_space * const mapping = page->mapping;
3167 	struct buffer_head *buffers_to_free = NULL;
3168 	int ret = 0;
3169 
3170 	BUG_ON(!PageLocked(page));
3171 	if (PageWriteback(page))
3172 		return 0;
3173 
3174 	if (mapping == NULL) {		/* can this still happen? */
3175 		ret = drop_buffers(page, &buffers_to_free);
3176 		goto out;
3177 	}
3178 
3179 	spin_lock(&mapping->private_lock);
3180 	ret = drop_buffers(page, &buffers_to_free);
3181 
3182 	/*
3183 	 * If the filesystem writes its buffers by hand (eg ext3)
3184 	 * then we can have clean buffers against a dirty page.  We
3185 	 * clean the page here; otherwise the VM will never notice
3186 	 * that the filesystem did any IO at all.
3187 	 *
3188 	 * Also, during truncate, discard_buffer will have marked all
3189 	 * the page's buffers clean.  We discover that here and clean
3190 	 * the page also.
3191 	 *
3192 	 * private_lock must be held over this entire operation in order
3193 	 * to synchronise against __set_page_dirty_buffers and prevent the
3194 	 * dirty bit from being lost.
3195 	 */
3196 	if (ret)
3197 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3198 	spin_unlock(&mapping->private_lock);
3199 out:
3200 	if (buffers_to_free) {
3201 		struct buffer_head *bh = buffers_to_free;
3202 
3203 		do {
3204 			struct buffer_head *next = bh->b_this_page;
3205 			free_buffer_head(bh);
3206 			bh = next;
3207 		} while (bh != buffers_to_free);
3208 	}
3209 	return ret;
3210 }
3211 EXPORT_SYMBOL(try_to_free_buffers);
3212 
3213 /*
3214  * There are no bdflush tunables left.  But distributions are
3215  * still running obsolete flush daemons, so we terminate them here.
3216  *
3217  * Use of bdflush() is deprecated and will be removed in a future kernel.
3218  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3219  */
3220 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3221 {
3222 	static int msg_count;
3223 
3224 	if (!capable(CAP_SYS_ADMIN))
3225 		return -EPERM;
3226 
3227 	if (msg_count < 5) {
3228 		msg_count++;
3229 		printk(KERN_INFO
3230 			"warning: process `%s' used the obsolete bdflush"
3231 			" system call\n", current->comm);
3232 		printk(KERN_INFO "Fix your initscripts?\n");
3233 	}
3234 
3235 	if (func == 1)
3236 		do_exit(0);
3237 	return 0;
3238 }
3239 
3240 /*
3241  * Buffer-head allocation
3242  */
3243 static struct kmem_cache *bh_cachep __read_mostly;
3244 
3245 /*
3246  * Once the number of bh's in the machine exceeds this level, we start
3247  * stripping them in writeback.
3248  */
3249 static unsigned long max_buffer_heads;
3250 
3251 int buffer_heads_over_limit;
3252 
3253 struct bh_accounting {
3254 	int nr;			/* Number of live bh's */
3255 	int ratelimit;		/* Limit cacheline bouncing */
3256 };
3257 
3258 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3259 
3260 static void recalc_bh_state(void)
3261 {
3262 	int i;
3263 	int tot = 0;
3264 
3265 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3266 		return;
3267 	__this_cpu_write(bh_accounting.ratelimit, 0);
3268 	for_each_online_cpu(i)
3269 		tot += per_cpu(bh_accounting, i).nr;
3270 	buffer_heads_over_limit = (tot > max_buffer_heads);
3271 }
3272 
3273 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3274 {
3275 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3276 	if (ret) {
3277 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3278 		preempt_disable();
3279 		__this_cpu_inc(bh_accounting.nr);
3280 		recalc_bh_state();
3281 		preempt_enable();
3282 	}
3283 	return ret;
3284 }
3285 EXPORT_SYMBOL(alloc_buffer_head);
3286 
3287 void free_buffer_head(struct buffer_head *bh)
3288 {
3289 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3290 	kmem_cache_free(bh_cachep, bh);
3291 	preempt_disable();
3292 	__this_cpu_dec(bh_accounting.nr);
3293 	recalc_bh_state();
3294 	preempt_enable();
3295 }
3296 EXPORT_SYMBOL(free_buffer_head);
3297 
3298 static void buffer_exit_cpu(int cpu)
3299 {
3300 	int i;
3301 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3302 
3303 	for (i = 0; i < BH_LRU_SIZE; i++) {
3304 		brelse(b->bhs[i]);
3305 		b->bhs[i] = NULL;
3306 	}
3307 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3308 	per_cpu(bh_accounting, cpu).nr = 0;
3309 }
3310 
3311 static int buffer_cpu_notify(struct notifier_block *self,
3312 			      unsigned long action, void *hcpu)
3313 {
3314 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3315 		buffer_exit_cpu((unsigned long)hcpu);
3316 	return NOTIFY_OK;
3317 }
3318 
3319 /**
3320  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3321  * @bh: struct buffer_head
3322  *
3323  * Return true if the buffer is up-to-date and false,
3324  * with the buffer locked, if not.
3325  */
3326 int bh_uptodate_or_lock(struct buffer_head *bh)
3327 {
3328 	if (!buffer_uptodate(bh)) {
3329 		lock_buffer(bh);
3330 		if (!buffer_uptodate(bh))
3331 			return 0;
3332 		unlock_buffer(bh);
3333 	}
3334 	return 1;
3335 }
3336 EXPORT_SYMBOL(bh_uptodate_or_lock);
3337 
3338 /**
3339  * bh_submit_read - Submit a locked buffer for reading
3340  * @bh: struct buffer_head
3341  *
3342  * Returns zero on success and -EIO on error.
3343  */
3344 int bh_submit_read(struct buffer_head *bh)
3345 {
3346 	BUG_ON(!buffer_locked(bh));
3347 
3348 	if (buffer_uptodate(bh)) {
3349 		unlock_buffer(bh);
3350 		return 0;
3351 	}
3352 
3353 	get_bh(bh);
3354 	bh->b_end_io = end_buffer_read_sync;
3355 	submit_bh(READ, bh);
3356 	wait_on_buffer(bh);
3357 	if (buffer_uptodate(bh))
3358 		return 0;
3359 	return -EIO;
3360 }
3361 EXPORT_SYMBOL(bh_submit_read);
3362 
3363 void __init buffer_init(void)
3364 {
3365 	unsigned long nrpages;
3366 
3367 	bh_cachep = kmem_cache_create("buffer_head",
3368 			sizeof(struct buffer_head), 0,
3369 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3370 				SLAB_MEM_SPREAD),
3371 				NULL);
3372 
3373 	/*
3374 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3375 	 */
3376 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3377 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3378 	hotcpu_notifier(buffer_cpu_notify, 0);
3379 }
3380