1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/sched/signal.h> 23 #include <linux/syscalls.h> 24 #include <linux/fs.h> 25 #include <linux/iomap.h> 26 #include <linux/mm.h> 27 #include <linux/percpu.h> 28 #include <linux/slab.h> 29 #include <linux/capability.h> 30 #include <linux/blkdev.h> 31 #include <linux/file.h> 32 #include <linux/quotaops.h> 33 #include <linux/highmem.h> 34 #include <linux/export.h> 35 #include <linux/backing-dev.h> 36 #include <linux/writeback.h> 37 #include <linux/hash.h> 38 #include <linux/suspend.h> 39 #include <linux/buffer_head.h> 40 #include <linux/task_io_accounting_ops.h> 41 #include <linux/bio.h> 42 #include <linux/notifier.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <trace/events/block.h> 49 50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 52 unsigned long bio_flags, 53 struct writeback_control *wbc); 54 55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 56 57 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 58 { 59 bh->b_end_io = handler; 60 bh->b_private = private; 61 } 62 EXPORT_SYMBOL(init_buffer); 63 64 inline void touch_buffer(struct buffer_head *bh) 65 { 66 trace_block_touch_buffer(bh); 67 mark_page_accessed(bh->b_page); 68 } 69 EXPORT_SYMBOL(touch_buffer); 70 71 void __lock_buffer(struct buffer_head *bh) 72 { 73 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 74 } 75 EXPORT_SYMBOL(__lock_buffer); 76 77 void unlock_buffer(struct buffer_head *bh) 78 { 79 clear_bit_unlock(BH_Lock, &bh->b_state); 80 smp_mb__after_atomic(); 81 wake_up_bit(&bh->b_state, BH_Lock); 82 } 83 EXPORT_SYMBOL(unlock_buffer); 84 85 /* 86 * Returns if the page has dirty or writeback buffers. If all the buffers 87 * are unlocked and clean then the PageDirty information is stale. If 88 * any of the pages are locked, it is assumed they are locked for IO. 89 */ 90 void buffer_check_dirty_writeback(struct page *page, 91 bool *dirty, bool *writeback) 92 { 93 struct buffer_head *head, *bh; 94 *dirty = false; 95 *writeback = false; 96 97 BUG_ON(!PageLocked(page)); 98 99 if (!page_has_buffers(page)) 100 return; 101 102 if (PageWriteback(page)) 103 *writeback = true; 104 105 head = page_buffers(page); 106 bh = head; 107 do { 108 if (buffer_locked(bh)) 109 *writeback = true; 110 111 if (buffer_dirty(bh)) 112 *dirty = true; 113 114 bh = bh->b_this_page; 115 } while (bh != head); 116 } 117 EXPORT_SYMBOL(buffer_check_dirty_writeback); 118 119 /* 120 * Block until a buffer comes unlocked. This doesn't stop it 121 * from becoming locked again - you have to lock it yourself 122 * if you want to preserve its state. 123 */ 124 void __wait_on_buffer(struct buffer_head * bh) 125 { 126 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 127 } 128 EXPORT_SYMBOL(__wait_on_buffer); 129 130 static void 131 __clear_page_buffers(struct page *page) 132 { 133 ClearPagePrivate(page); 134 set_page_private(page, 0); 135 put_page(page); 136 } 137 138 static void buffer_io_error(struct buffer_head *bh, char *msg) 139 { 140 if (!test_bit(BH_Quiet, &bh->b_state)) 141 printk_ratelimited(KERN_ERR 142 "Buffer I/O error on dev %pg, logical block %llu%s\n", 143 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 144 } 145 146 /* 147 * End-of-IO handler helper function which does not touch the bh after 148 * unlocking it. 149 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 150 * a race there is benign: unlock_buffer() only use the bh's address for 151 * hashing after unlocking the buffer, so it doesn't actually touch the bh 152 * itself. 153 */ 154 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 155 { 156 if (uptodate) { 157 set_buffer_uptodate(bh); 158 } else { 159 /* This happens, due to failed read-ahead attempts. */ 160 clear_buffer_uptodate(bh); 161 } 162 unlock_buffer(bh); 163 } 164 165 /* 166 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 167 * unlock the buffer. This is what ll_rw_block uses too. 168 */ 169 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 170 { 171 __end_buffer_read_notouch(bh, uptodate); 172 put_bh(bh); 173 } 174 EXPORT_SYMBOL(end_buffer_read_sync); 175 176 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 177 { 178 if (uptodate) { 179 set_buffer_uptodate(bh); 180 } else { 181 buffer_io_error(bh, ", lost sync page write"); 182 set_buffer_write_io_error(bh); 183 clear_buffer_uptodate(bh); 184 } 185 unlock_buffer(bh); 186 put_bh(bh); 187 } 188 EXPORT_SYMBOL(end_buffer_write_sync); 189 190 /* 191 * Various filesystems appear to want __find_get_block to be non-blocking. 192 * But it's the page lock which protects the buffers. To get around this, 193 * we get exclusion from try_to_free_buffers with the blockdev mapping's 194 * private_lock. 195 * 196 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 197 * may be quite high. This code could TryLock the page, and if that 198 * succeeds, there is no need to take private_lock. (But if 199 * private_lock is contended then so is mapping->tree_lock). 200 */ 201 static struct buffer_head * 202 __find_get_block_slow(struct block_device *bdev, sector_t block) 203 { 204 struct inode *bd_inode = bdev->bd_inode; 205 struct address_space *bd_mapping = bd_inode->i_mapping; 206 struct buffer_head *ret = NULL; 207 pgoff_t index; 208 struct buffer_head *bh; 209 struct buffer_head *head; 210 struct page *page; 211 int all_mapped = 1; 212 213 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 214 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 215 if (!page) 216 goto out; 217 218 spin_lock(&bd_mapping->private_lock); 219 if (!page_has_buffers(page)) 220 goto out_unlock; 221 head = page_buffers(page); 222 bh = head; 223 do { 224 if (!buffer_mapped(bh)) 225 all_mapped = 0; 226 else if (bh->b_blocknr == block) { 227 ret = bh; 228 get_bh(bh); 229 goto out_unlock; 230 } 231 bh = bh->b_this_page; 232 } while (bh != head); 233 234 /* we might be here because some of the buffers on this page are 235 * not mapped. This is due to various races between 236 * file io on the block device and getblk. It gets dealt with 237 * elsewhere, don't buffer_error if we had some unmapped buffers 238 */ 239 if (all_mapped) { 240 printk("__find_get_block_slow() failed. " 241 "block=%llu, b_blocknr=%llu\n", 242 (unsigned long long)block, 243 (unsigned long long)bh->b_blocknr); 244 printk("b_state=0x%08lx, b_size=%zu\n", 245 bh->b_state, bh->b_size); 246 printk("device %pg blocksize: %d\n", bdev, 247 1 << bd_inode->i_blkbits); 248 } 249 out_unlock: 250 spin_unlock(&bd_mapping->private_lock); 251 put_page(page); 252 out: 253 return ret; 254 } 255 256 /* 257 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 258 */ 259 static void free_more_memory(void) 260 { 261 struct zoneref *z; 262 int nid; 263 264 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 265 yield(); 266 267 for_each_online_node(nid) { 268 269 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 270 gfp_zone(GFP_NOFS), NULL); 271 if (z->zone) 272 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 273 GFP_NOFS, NULL); 274 } 275 } 276 277 /* 278 * I/O completion handler for block_read_full_page() - pages 279 * which come unlocked at the end of I/O. 280 */ 281 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 282 { 283 unsigned long flags; 284 struct buffer_head *first; 285 struct buffer_head *tmp; 286 struct page *page; 287 int page_uptodate = 1; 288 289 BUG_ON(!buffer_async_read(bh)); 290 291 page = bh->b_page; 292 if (uptodate) { 293 set_buffer_uptodate(bh); 294 } else { 295 clear_buffer_uptodate(bh); 296 buffer_io_error(bh, ", async page read"); 297 SetPageError(page); 298 } 299 300 /* 301 * Be _very_ careful from here on. Bad things can happen if 302 * two buffer heads end IO at almost the same time and both 303 * decide that the page is now completely done. 304 */ 305 first = page_buffers(page); 306 local_irq_save(flags); 307 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 308 clear_buffer_async_read(bh); 309 unlock_buffer(bh); 310 tmp = bh; 311 do { 312 if (!buffer_uptodate(tmp)) 313 page_uptodate = 0; 314 if (buffer_async_read(tmp)) { 315 BUG_ON(!buffer_locked(tmp)); 316 goto still_busy; 317 } 318 tmp = tmp->b_this_page; 319 } while (tmp != bh); 320 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 321 local_irq_restore(flags); 322 323 /* 324 * If none of the buffers had errors and they are all 325 * uptodate then we can set the page uptodate. 326 */ 327 if (page_uptodate && !PageError(page)) 328 SetPageUptodate(page); 329 unlock_page(page); 330 return; 331 332 still_busy: 333 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 334 local_irq_restore(flags); 335 return; 336 } 337 338 /* 339 * Completion handler for block_write_full_page() - pages which are unlocked 340 * during I/O, and which have PageWriteback cleared upon I/O completion. 341 */ 342 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 343 { 344 unsigned long flags; 345 struct buffer_head *first; 346 struct buffer_head *tmp; 347 struct page *page; 348 349 BUG_ON(!buffer_async_write(bh)); 350 351 page = bh->b_page; 352 if (uptodate) { 353 set_buffer_uptodate(bh); 354 } else { 355 buffer_io_error(bh, ", lost async page write"); 356 mapping_set_error(page->mapping, -EIO); 357 set_buffer_write_io_error(bh); 358 clear_buffer_uptodate(bh); 359 SetPageError(page); 360 } 361 362 first = page_buffers(page); 363 local_irq_save(flags); 364 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 365 366 clear_buffer_async_write(bh); 367 unlock_buffer(bh); 368 tmp = bh->b_this_page; 369 while (tmp != bh) { 370 if (buffer_async_write(tmp)) { 371 BUG_ON(!buffer_locked(tmp)); 372 goto still_busy; 373 } 374 tmp = tmp->b_this_page; 375 } 376 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 377 local_irq_restore(flags); 378 end_page_writeback(page); 379 return; 380 381 still_busy: 382 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 383 local_irq_restore(flags); 384 return; 385 } 386 EXPORT_SYMBOL(end_buffer_async_write); 387 388 /* 389 * If a page's buffers are under async readin (end_buffer_async_read 390 * completion) then there is a possibility that another thread of 391 * control could lock one of the buffers after it has completed 392 * but while some of the other buffers have not completed. This 393 * locked buffer would confuse end_buffer_async_read() into not unlocking 394 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 395 * that this buffer is not under async I/O. 396 * 397 * The page comes unlocked when it has no locked buffer_async buffers 398 * left. 399 * 400 * PageLocked prevents anyone starting new async I/O reads any of 401 * the buffers. 402 * 403 * PageWriteback is used to prevent simultaneous writeout of the same 404 * page. 405 * 406 * PageLocked prevents anyone from starting writeback of a page which is 407 * under read I/O (PageWriteback is only ever set against a locked page). 408 */ 409 static void mark_buffer_async_read(struct buffer_head *bh) 410 { 411 bh->b_end_io = end_buffer_async_read; 412 set_buffer_async_read(bh); 413 } 414 415 static void mark_buffer_async_write_endio(struct buffer_head *bh, 416 bh_end_io_t *handler) 417 { 418 bh->b_end_io = handler; 419 set_buffer_async_write(bh); 420 } 421 422 void mark_buffer_async_write(struct buffer_head *bh) 423 { 424 mark_buffer_async_write_endio(bh, end_buffer_async_write); 425 } 426 EXPORT_SYMBOL(mark_buffer_async_write); 427 428 429 /* 430 * fs/buffer.c contains helper functions for buffer-backed address space's 431 * fsync functions. A common requirement for buffer-based filesystems is 432 * that certain data from the backing blockdev needs to be written out for 433 * a successful fsync(). For example, ext2 indirect blocks need to be 434 * written back and waited upon before fsync() returns. 435 * 436 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 437 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 438 * management of a list of dependent buffers at ->i_mapping->private_list. 439 * 440 * Locking is a little subtle: try_to_free_buffers() will remove buffers 441 * from their controlling inode's queue when they are being freed. But 442 * try_to_free_buffers() will be operating against the *blockdev* mapping 443 * at the time, not against the S_ISREG file which depends on those buffers. 444 * So the locking for private_list is via the private_lock in the address_space 445 * which backs the buffers. Which is different from the address_space 446 * against which the buffers are listed. So for a particular address_space, 447 * mapping->private_lock does *not* protect mapping->private_list! In fact, 448 * mapping->private_list will always be protected by the backing blockdev's 449 * ->private_lock. 450 * 451 * Which introduces a requirement: all buffers on an address_space's 452 * ->private_list must be from the same address_space: the blockdev's. 453 * 454 * address_spaces which do not place buffers at ->private_list via these 455 * utility functions are free to use private_lock and private_list for 456 * whatever they want. The only requirement is that list_empty(private_list) 457 * be true at clear_inode() time. 458 * 459 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 460 * filesystems should do that. invalidate_inode_buffers() should just go 461 * BUG_ON(!list_empty). 462 * 463 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 464 * take an address_space, not an inode. And it should be called 465 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 466 * queued up. 467 * 468 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 469 * list if it is already on a list. Because if the buffer is on a list, 470 * it *must* already be on the right one. If not, the filesystem is being 471 * silly. This will save a ton of locking. But first we have to ensure 472 * that buffers are taken *off* the old inode's list when they are freed 473 * (presumably in truncate). That requires careful auditing of all 474 * filesystems (do it inside bforget()). It could also be done by bringing 475 * b_inode back. 476 */ 477 478 /* 479 * The buffer's backing address_space's private_lock must be held 480 */ 481 static void __remove_assoc_queue(struct buffer_head *bh) 482 { 483 list_del_init(&bh->b_assoc_buffers); 484 WARN_ON(!bh->b_assoc_map); 485 if (buffer_write_io_error(bh)) 486 set_bit(AS_EIO, &bh->b_assoc_map->flags); 487 bh->b_assoc_map = NULL; 488 } 489 490 int inode_has_buffers(struct inode *inode) 491 { 492 return !list_empty(&inode->i_data.private_list); 493 } 494 495 /* 496 * osync is designed to support O_SYNC io. It waits synchronously for 497 * all already-submitted IO to complete, but does not queue any new 498 * writes to the disk. 499 * 500 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 501 * you dirty the buffers, and then use osync_inode_buffers to wait for 502 * completion. Any other dirty buffers which are not yet queued for 503 * write will not be flushed to disk by the osync. 504 */ 505 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 506 { 507 struct buffer_head *bh; 508 struct list_head *p; 509 int err = 0; 510 511 spin_lock(lock); 512 repeat: 513 list_for_each_prev(p, list) { 514 bh = BH_ENTRY(p); 515 if (buffer_locked(bh)) { 516 get_bh(bh); 517 spin_unlock(lock); 518 wait_on_buffer(bh); 519 if (!buffer_uptodate(bh)) 520 err = -EIO; 521 brelse(bh); 522 spin_lock(lock); 523 goto repeat; 524 } 525 } 526 spin_unlock(lock); 527 return err; 528 } 529 530 static void do_thaw_one(struct super_block *sb, void *unused) 531 { 532 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 533 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 534 } 535 536 static void do_thaw_all(struct work_struct *work) 537 { 538 iterate_supers(do_thaw_one, NULL); 539 kfree(work); 540 printk(KERN_WARNING "Emergency Thaw complete\n"); 541 } 542 543 /** 544 * emergency_thaw_all -- forcibly thaw every frozen filesystem 545 * 546 * Used for emergency unfreeze of all filesystems via SysRq 547 */ 548 void emergency_thaw_all(void) 549 { 550 struct work_struct *work; 551 552 work = kmalloc(sizeof(*work), GFP_ATOMIC); 553 if (work) { 554 INIT_WORK(work, do_thaw_all); 555 schedule_work(work); 556 } 557 } 558 559 /** 560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 561 * @mapping: the mapping which wants those buffers written 562 * 563 * Starts I/O against the buffers at mapping->private_list, and waits upon 564 * that I/O. 565 * 566 * Basically, this is a convenience function for fsync(). 567 * @mapping is a file or directory which needs those buffers to be written for 568 * a successful fsync(). 569 */ 570 int sync_mapping_buffers(struct address_space *mapping) 571 { 572 struct address_space *buffer_mapping = mapping->private_data; 573 574 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 575 return 0; 576 577 return fsync_buffers_list(&buffer_mapping->private_lock, 578 &mapping->private_list); 579 } 580 EXPORT_SYMBOL(sync_mapping_buffers); 581 582 /* 583 * Called when we've recently written block `bblock', and it is known that 584 * `bblock' was for a buffer_boundary() buffer. This means that the block at 585 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 586 * dirty, schedule it for IO. So that indirects merge nicely with their data. 587 */ 588 void write_boundary_block(struct block_device *bdev, 589 sector_t bblock, unsigned blocksize) 590 { 591 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 592 if (bh) { 593 if (buffer_dirty(bh)) 594 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 595 put_bh(bh); 596 } 597 } 598 599 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 600 { 601 struct address_space *mapping = inode->i_mapping; 602 struct address_space *buffer_mapping = bh->b_page->mapping; 603 604 mark_buffer_dirty(bh); 605 if (!mapping->private_data) { 606 mapping->private_data = buffer_mapping; 607 } else { 608 BUG_ON(mapping->private_data != buffer_mapping); 609 } 610 if (!bh->b_assoc_map) { 611 spin_lock(&buffer_mapping->private_lock); 612 list_move_tail(&bh->b_assoc_buffers, 613 &mapping->private_list); 614 bh->b_assoc_map = mapping; 615 spin_unlock(&buffer_mapping->private_lock); 616 } 617 } 618 EXPORT_SYMBOL(mark_buffer_dirty_inode); 619 620 /* 621 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 622 * dirty. 623 * 624 * If warn is true, then emit a warning if the page is not uptodate and has 625 * not been truncated. 626 * 627 * The caller must hold lock_page_memcg(). 628 */ 629 static void __set_page_dirty(struct page *page, struct address_space *mapping, 630 int warn) 631 { 632 unsigned long flags; 633 634 spin_lock_irqsave(&mapping->tree_lock, flags); 635 if (page->mapping) { /* Race with truncate? */ 636 WARN_ON_ONCE(warn && !PageUptodate(page)); 637 account_page_dirtied(page, mapping); 638 radix_tree_tag_set(&mapping->page_tree, 639 page_index(page), PAGECACHE_TAG_DIRTY); 640 } 641 spin_unlock_irqrestore(&mapping->tree_lock, flags); 642 } 643 644 /* 645 * Add a page to the dirty page list. 646 * 647 * It is a sad fact of life that this function is called from several places 648 * deeply under spinlocking. It may not sleep. 649 * 650 * If the page has buffers, the uptodate buffers are set dirty, to preserve 651 * dirty-state coherency between the page and the buffers. It the page does 652 * not have buffers then when they are later attached they will all be set 653 * dirty. 654 * 655 * The buffers are dirtied before the page is dirtied. There's a small race 656 * window in which a writepage caller may see the page cleanness but not the 657 * buffer dirtiness. That's fine. If this code were to set the page dirty 658 * before the buffers, a concurrent writepage caller could clear the page dirty 659 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 660 * page on the dirty page list. 661 * 662 * We use private_lock to lock against try_to_free_buffers while using the 663 * page's buffer list. Also use this to protect against clean buffers being 664 * added to the page after it was set dirty. 665 * 666 * FIXME: may need to call ->reservepage here as well. That's rather up to the 667 * address_space though. 668 */ 669 int __set_page_dirty_buffers(struct page *page) 670 { 671 int newly_dirty; 672 struct address_space *mapping = page_mapping(page); 673 674 if (unlikely(!mapping)) 675 return !TestSetPageDirty(page); 676 677 spin_lock(&mapping->private_lock); 678 if (page_has_buffers(page)) { 679 struct buffer_head *head = page_buffers(page); 680 struct buffer_head *bh = head; 681 682 do { 683 set_buffer_dirty(bh); 684 bh = bh->b_this_page; 685 } while (bh != head); 686 } 687 /* 688 * Lock out page->mem_cgroup migration to keep PageDirty 689 * synchronized with per-memcg dirty page counters. 690 */ 691 lock_page_memcg(page); 692 newly_dirty = !TestSetPageDirty(page); 693 spin_unlock(&mapping->private_lock); 694 695 if (newly_dirty) 696 __set_page_dirty(page, mapping, 1); 697 698 unlock_page_memcg(page); 699 700 if (newly_dirty) 701 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 702 703 return newly_dirty; 704 } 705 EXPORT_SYMBOL(__set_page_dirty_buffers); 706 707 /* 708 * Write out and wait upon a list of buffers. 709 * 710 * We have conflicting pressures: we want to make sure that all 711 * initially dirty buffers get waited on, but that any subsequently 712 * dirtied buffers don't. After all, we don't want fsync to last 713 * forever if somebody is actively writing to the file. 714 * 715 * Do this in two main stages: first we copy dirty buffers to a 716 * temporary inode list, queueing the writes as we go. Then we clean 717 * up, waiting for those writes to complete. 718 * 719 * During this second stage, any subsequent updates to the file may end 720 * up refiling the buffer on the original inode's dirty list again, so 721 * there is a chance we will end up with a buffer queued for write but 722 * not yet completed on that list. So, as a final cleanup we go through 723 * the osync code to catch these locked, dirty buffers without requeuing 724 * any newly dirty buffers for write. 725 */ 726 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 727 { 728 struct buffer_head *bh; 729 struct list_head tmp; 730 struct address_space *mapping; 731 int err = 0, err2; 732 struct blk_plug plug; 733 734 INIT_LIST_HEAD(&tmp); 735 blk_start_plug(&plug); 736 737 spin_lock(lock); 738 while (!list_empty(list)) { 739 bh = BH_ENTRY(list->next); 740 mapping = bh->b_assoc_map; 741 __remove_assoc_queue(bh); 742 /* Avoid race with mark_buffer_dirty_inode() which does 743 * a lockless check and we rely on seeing the dirty bit */ 744 smp_mb(); 745 if (buffer_dirty(bh) || buffer_locked(bh)) { 746 list_add(&bh->b_assoc_buffers, &tmp); 747 bh->b_assoc_map = mapping; 748 if (buffer_dirty(bh)) { 749 get_bh(bh); 750 spin_unlock(lock); 751 /* 752 * Ensure any pending I/O completes so that 753 * write_dirty_buffer() actually writes the 754 * current contents - it is a noop if I/O is 755 * still in flight on potentially older 756 * contents. 757 */ 758 write_dirty_buffer(bh, REQ_SYNC); 759 760 /* 761 * Kick off IO for the previous mapping. Note 762 * that we will not run the very last mapping, 763 * wait_on_buffer() will do that for us 764 * through sync_buffer(). 765 */ 766 brelse(bh); 767 spin_lock(lock); 768 } 769 } 770 } 771 772 spin_unlock(lock); 773 blk_finish_plug(&plug); 774 spin_lock(lock); 775 776 while (!list_empty(&tmp)) { 777 bh = BH_ENTRY(tmp.prev); 778 get_bh(bh); 779 mapping = bh->b_assoc_map; 780 __remove_assoc_queue(bh); 781 /* Avoid race with mark_buffer_dirty_inode() which does 782 * a lockless check and we rely on seeing the dirty bit */ 783 smp_mb(); 784 if (buffer_dirty(bh)) { 785 list_add(&bh->b_assoc_buffers, 786 &mapping->private_list); 787 bh->b_assoc_map = mapping; 788 } 789 spin_unlock(lock); 790 wait_on_buffer(bh); 791 if (!buffer_uptodate(bh)) 792 err = -EIO; 793 brelse(bh); 794 spin_lock(lock); 795 } 796 797 spin_unlock(lock); 798 err2 = osync_buffers_list(lock, list); 799 if (err) 800 return err; 801 else 802 return err2; 803 } 804 805 /* 806 * Invalidate any and all dirty buffers on a given inode. We are 807 * probably unmounting the fs, but that doesn't mean we have already 808 * done a sync(). Just drop the buffers from the inode list. 809 * 810 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 811 * assumes that all the buffers are against the blockdev. Not true 812 * for reiserfs. 813 */ 814 void invalidate_inode_buffers(struct inode *inode) 815 { 816 if (inode_has_buffers(inode)) { 817 struct address_space *mapping = &inode->i_data; 818 struct list_head *list = &mapping->private_list; 819 struct address_space *buffer_mapping = mapping->private_data; 820 821 spin_lock(&buffer_mapping->private_lock); 822 while (!list_empty(list)) 823 __remove_assoc_queue(BH_ENTRY(list->next)); 824 spin_unlock(&buffer_mapping->private_lock); 825 } 826 } 827 EXPORT_SYMBOL(invalidate_inode_buffers); 828 829 /* 830 * Remove any clean buffers from the inode's buffer list. This is called 831 * when we're trying to free the inode itself. Those buffers can pin it. 832 * 833 * Returns true if all buffers were removed. 834 */ 835 int remove_inode_buffers(struct inode *inode) 836 { 837 int ret = 1; 838 839 if (inode_has_buffers(inode)) { 840 struct address_space *mapping = &inode->i_data; 841 struct list_head *list = &mapping->private_list; 842 struct address_space *buffer_mapping = mapping->private_data; 843 844 spin_lock(&buffer_mapping->private_lock); 845 while (!list_empty(list)) { 846 struct buffer_head *bh = BH_ENTRY(list->next); 847 if (buffer_dirty(bh)) { 848 ret = 0; 849 break; 850 } 851 __remove_assoc_queue(bh); 852 } 853 spin_unlock(&buffer_mapping->private_lock); 854 } 855 return ret; 856 } 857 858 /* 859 * Create the appropriate buffers when given a page for data area and 860 * the size of each buffer.. Use the bh->b_this_page linked list to 861 * follow the buffers created. Return NULL if unable to create more 862 * buffers. 863 * 864 * The retry flag is used to differentiate async IO (paging, swapping) 865 * which may not fail from ordinary buffer allocations. 866 */ 867 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 868 int retry) 869 { 870 struct buffer_head *bh, *head; 871 long offset; 872 873 try_again: 874 head = NULL; 875 offset = PAGE_SIZE; 876 while ((offset -= size) >= 0) { 877 bh = alloc_buffer_head(GFP_NOFS); 878 if (!bh) 879 goto no_grow; 880 881 bh->b_this_page = head; 882 bh->b_blocknr = -1; 883 head = bh; 884 885 bh->b_size = size; 886 887 /* Link the buffer to its page */ 888 set_bh_page(bh, page, offset); 889 } 890 return head; 891 /* 892 * In case anything failed, we just free everything we got. 893 */ 894 no_grow: 895 if (head) { 896 do { 897 bh = head; 898 head = head->b_this_page; 899 free_buffer_head(bh); 900 } while (head); 901 } 902 903 /* 904 * Return failure for non-async IO requests. Async IO requests 905 * are not allowed to fail, so we have to wait until buffer heads 906 * become available. But we don't want tasks sleeping with 907 * partially complete buffers, so all were released above. 908 */ 909 if (!retry) 910 return NULL; 911 912 /* We're _really_ low on memory. Now we just 913 * wait for old buffer heads to become free due to 914 * finishing IO. Since this is an async request and 915 * the reserve list is empty, we're sure there are 916 * async buffer heads in use. 917 */ 918 free_more_memory(); 919 goto try_again; 920 } 921 EXPORT_SYMBOL_GPL(alloc_page_buffers); 922 923 static inline void 924 link_dev_buffers(struct page *page, struct buffer_head *head) 925 { 926 struct buffer_head *bh, *tail; 927 928 bh = head; 929 do { 930 tail = bh; 931 bh = bh->b_this_page; 932 } while (bh); 933 tail->b_this_page = head; 934 attach_page_buffers(page, head); 935 } 936 937 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 938 { 939 sector_t retval = ~((sector_t)0); 940 loff_t sz = i_size_read(bdev->bd_inode); 941 942 if (sz) { 943 unsigned int sizebits = blksize_bits(size); 944 retval = (sz >> sizebits); 945 } 946 return retval; 947 } 948 949 /* 950 * Initialise the state of a blockdev page's buffers. 951 */ 952 static sector_t 953 init_page_buffers(struct page *page, struct block_device *bdev, 954 sector_t block, int size) 955 { 956 struct buffer_head *head = page_buffers(page); 957 struct buffer_head *bh = head; 958 int uptodate = PageUptodate(page); 959 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 960 961 do { 962 if (!buffer_mapped(bh)) { 963 init_buffer(bh, NULL, NULL); 964 bh->b_bdev = bdev; 965 bh->b_blocknr = block; 966 if (uptodate) 967 set_buffer_uptodate(bh); 968 if (block < end_block) 969 set_buffer_mapped(bh); 970 } 971 block++; 972 bh = bh->b_this_page; 973 } while (bh != head); 974 975 /* 976 * Caller needs to validate requested block against end of device. 977 */ 978 return end_block; 979 } 980 981 /* 982 * Create the page-cache page that contains the requested block. 983 * 984 * This is used purely for blockdev mappings. 985 */ 986 static int 987 grow_dev_page(struct block_device *bdev, sector_t block, 988 pgoff_t index, int size, int sizebits, gfp_t gfp) 989 { 990 struct inode *inode = bdev->bd_inode; 991 struct page *page; 992 struct buffer_head *bh; 993 sector_t end_block; 994 int ret = 0; /* Will call free_more_memory() */ 995 gfp_t gfp_mask; 996 997 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 998 999 /* 1000 * XXX: __getblk_slow() can not really deal with failure and 1001 * will endlessly loop on improvised global reclaim. Prefer 1002 * looping in the allocator rather than here, at least that 1003 * code knows what it's doing. 1004 */ 1005 gfp_mask |= __GFP_NOFAIL; 1006 1007 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 1008 if (!page) 1009 return ret; 1010 1011 BUG_ON(!PageLocked(page)); 1012 1013 if (page_has_buffers(page)) { 1014 bh = page_buffers(page); 1015 if (bh->b_size == size) { 1016 end_block = init_page_buffers(page, bdev, 1017 (sector_t)index << sizebits, 1018 size); 1019 goto done; 1020 } 1021 if (!try_to_free_buffers(page)) 1022 goto failed; 1023 } 1024 1025 /* 1026 * Allocate some buffers for this page 1027 */ 1028 bh = alloc_page_buffers(page, size, 0); 1029 if (!bh) 1030 goto failed; 1031 1032 /* 1033 * Link the page to the buffers and initialise them. Take the 1034 * lock to be atomic wrt __find_get_block(), which does not 1035 * run under the page lock. 1036 */ 1037 spin_lock(&inode->i_mapping->private_lock); 1038 link_dev_buffers(page, bh); 1039 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1040 size); 1041 spin_unlock(&inode->i_mapping->private_lock); 1042 done: 1043 ret = (block < end_block) ? 1 : -ENXIO; 1044 failed: 1045 unlock_page(page); 1046 put_page(page); 1047 return ret; 1048 } 1049 1050 /* 1051 * Create buffers for the specified block device block's page. If 1052 * that page was dirty, the buffers are set dirty also. 1053 */ 1054 static int 1055 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1056 { 1057 pgoff_t index; 1058 int sizebits; 1059 1060 sizebits = -1; 1061 do { 1062 sizebits++; 1063 } while ((size << sizebits) < PAGE_SIZE); 1064 1065 index = block >> sizebits; 1066 1067 /* 1068 * Check for a block which wants to lie outside our maximum possible 1069 * pagecache index. (this comparison is done using sector_t types). 1070 */ 1071 if (unlikely(index != block >> sizebits)) { 1072 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1073 "device %pg\n", 1074 __func__, (unsigned long long)block, 1075 bdev); 1076 return -EIO; 1077 } 1078 1079 /* Create a page with the proper size buffers.. */ 1080 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1081 } 1082 1083 static struct buffer_head * 1084 __getblk_slow(struct block_device *bdev, sector_t block, 1085 unsigned size, gfp_t gfp) 1086 { 1087 /* Size must be multiple of hard sectorsize */ 1088 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1089 (size < 512 || size > PAGE_SIZE))) { 1090 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1091 size); 1092 printk(KERN_ERR "logical block size: %d\n", 1093 bdev_logical_block_size(bdev)); 1094 1095 dump_stack(); 1096 return NULL; 1097 } 1098 1099 for (;;) { 1100 struct buffer_head *bh; 1101 int ret; 1102 1103 bh = __find_get_block(bdev, block, size); 1104 if (bh) 1105 return bh; 1106 1107 ret = grow_buffers(bdev, block, size, gfp); 1108 if (ret < 0) 1109 return NULL; 1110 if (ret == 0) 1111 free_more_memory(); 1112 } 1113 } 1114 1115 /* 1116 * The relationship between dirty buffers and dirty pages: 1117 * 1118 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1119 * the page is tagged dirty in its radix tree. 1120 * 1121 * At all times, the dirtiness of the buffers represents the dirtiness of 1122 * subsections of the page. If the page has buffers, the page dirty bit is 1123 * merely a hint about the true dirty state. 1124 * 1125 * When a page is set dirty in its entirety, all its buffers are marked dirty 1126 * (if the page has buffers). 1127 * 1128 * When a buffer is marked dirty, its page is dirtied, but the page's other 1129 * buffers are not. 1130 * 1131 * Also. When blockdev buffers are explicitly read with bread(), they 1132 * individually become uptodate. But their backing page remains not 1133 * uptodate - even if all of its buffers are uptodate. A subsequent 1134 * block_read_full_page() against that page will discover all the uptodate 1135 * buffers, will set the page uptodate and will perform no I/O. 1136 */ 1137 1138 /** 1139 * mark_buffer_dirty - mark a buffer_head as needing writeout 1140 * @bh: the buffer_head to mark dirty 1141 * 1142 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1143 * backing page dirty, then tag the page as dirty in its address_space's radix 1144 * tree and then attach the address_space's inode to its superblock's dirty 1145 * inode list. 1146 * 1147 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1148 * mapping->tree_lock and mapping->host->i_lock. 1149 */ 1150 void mark_buffer_dirty(struct buffer_head *bh) 1151 { 1152 WARN_ON_ONCE(!buffer_uptodate(bh)); 1153 1154 trace_block_dirty_buffer(bh); 1155 1156 /* 1157 * Very *carefully* optimize the it-is-already-dirty case. 1158 * 1159 * Don't let the final "is it dirty" escape to before we 1160 * perhaps modified the buffer. 1161 */ 1162 if (buffer_dirty(bh)) { 1163 smp_mb(); 1164 if (buffer_dirty(bh)) 1165 return; 1166 } 1167 1168 if (!test_set_buffer_dirty(bh)) { 1169 struct page *page = bh->b_page; 1170 struct address_space *mapping = NULL; 1171 1172 lock_page_memcg(page); 1173 if (!TestSetPageDirty(page)) { 1174 mapping = page_mapping(page); 1175 if (mapping) 1176 __set_page_dirty(page, mapping, 0); 1177 } 1178 unlock_page_memcg(page); 1179 if (mapping) 1180 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1181 } 1182 } 1183 EXPORT_SYMBOL(mark_buffer_dirty); 1184 1185 /* 1186 * Decrement a buffer_head's reference count. If all buffers against a page 1187 * have zero reference count, are clean and unlocked, and if the page is clean 1188 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1189 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1190 * a page but it ends up not being freed, and buffers may later be reattached). 1191 */ 1192 void __brelse(struct buffer_head * buf) 1193 { 1194 if (atomic_read(&buf->b_count)) { 1195 put_bh(buf); 1196 return; 1197 } 1198 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1199 } 1200 EXPORT_SYMBOL(__brelse); 1201 1202 /* 1203 * bforget() is like brelse(), except it discards any 1204 * potentially dirty data. 1205 */ 1206 void __bforget(struct buffer_head *bh) 1207 { 1208 clear_buffer_dirty(bh); 1209 if (bh->b_assoc_map) { 1210 struct address_space *buffer_mapping = bh->b_page->mapping; 1211 1212 spin_lock(&buffer_mapping->private_lock); 1213 list_del_init(&bh->b_assoc_buffers); 1214 bh->b_assoc_map = NULL; 1215 spin_unlock(&buffer_mapping->private_lock); 1216 } 1217 __brelse(bh); 1218 } 1219 EXPORT_SYMBOL(__bforget); 1220 1221 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1222 { 1223 lock_buffer(bh); 1224 if (buffer_uptodate(bh)) { 1225 unlock_buffer(bh); 1226 return bh; 1227 } else { 1228 get_bh(bh); 1229 bh->b_end_io = end_buffer_read_sync; 1230 submit_bh(REQ_OP_READ, 0, bh); 1231 wait_on_buffer(bh); 1232 if (buffer_uptodate(bh)) 1233 return bh; 1234 } 1235 brelse(bh); 1236 return NULL; 1237 } 1238 1239 /* 1240 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1241 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1242 * refcount elevated by one when they're in an LRU. A buffer can only appear 1243 * once in a particular CPU's LRU. A single buffer can be present in multiple 1244 * CPU's LRUs at the same time. 1245 * 1246 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1247 * sb_find_get_block(). 1248 * 1249 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1250 * a local interrupt disable for that. 1251 */ 1252 1253 #define BH_LRU_SIZE 16 1254 1255 struct bh_lru { 1256 struct buffer_head *bhs[BH_LRU_SIZE]; 1257 }; 1258 1259 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1260 1261 #ifdef CONFIG_SMP 1262 #define bh_lru_lock() local_irq_disable() 1263 #define bh_lru_unlock() local_irq_enable() 1264 #else 1265 #define bh_lru_lock() preempt_disable() 1266 #define bh_lru_unlock() preempt_enable() 1267 #endif 1268 1269 static inline void check_irqs_on(void) 1270 { 1271 #ifdef irqs_disabled 1272 BUG_ON(irqs_disabled()); 1273 #endif 1274 } 1275 1276 /* 1277 * The LRU management algorithm is dopey-but-simple. Sorry. 1278 */ 1279 static void bh_lru_install(struct buffer_head *bh) 1280 { 1281 struct buffer_head *evictee = NULL; 1282 1283 check_irqs_on(); 1284 bh_lru_lock(); 1285 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1286 struct buffer_head *bhs[BH_LRU_SIZE]; 1287 int in; 1288 int out = 0; 1289 1290 get_bh(bh); 1291 bhs[out++] = bh; 1292 for (in = 0; in < BH_LRU_SIZE; in++) { 1293 struct buffer_head *bh2 = 1294 __this_cpu_read(bh_lrus.bhs[in]); 1295 1296 if (bh2 == bh) { 1297 __brelse(bh2); 1298 } else { 1299 if (out >= BH_LRU_SIZE) { 1300 BUG_ON(evictee != NULL); 1301 evictee = bh2; 1302 } else { 1303 bhs[out++] = bh2; 1304 } 1305 } 1306 } 1307 while (out < BH_LRU_SIZE) 1308 bhs[out++] = NULL; 1309 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1310 } 1311 bh_lru_unlock(); 1312 1313 if (evictee) 1314 __brelse(evictee); 1315 } 1316 1317 /* 1318 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1319 */ 1320 static struct buffer_head * 1321 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1322 { 1323 struct buffer_head *ret = NULL; 1324 unsigned int i; 1325 1326 check_irqs_on(); 1327 bh_lru_lock(); 1328 for (i = 0; i < BH_LRU_SIZE; i++) { 1329 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1330 1331 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1332 bh->b_size == size) { 1333 if (i) { 1334 while (i) { 1335 __this_cpu_write(bh_lrus.bhs[i], 1336 __this_cpu_read(bh_lrus.bhs[i - 1])); 1337 i--; 1338 } 1339 __this_cpu_write(bh_lrus.bhs[0], bh); 1340 } 1341 get_bh(bh); 1342 ret = bh; 1343 break; 1344 } 1345 } 1346 bh_lru_unlock(); 1347 return ret; 1348 } 1349 1350 /* 1351 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1352 * it in the LRU and mark it as accessed. If it is not present then return 1353 * NULL 1354 */ 1355 struct buffer_head * 1356 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1357 { 1358 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1359 1360 if (bh == NULL) { 1361 /* __find_get_block_slow will mark the page accessed */ 1362 bh = __find_get_block_slow(bdev, block); 1363 if (bh) 1364 bh_lru_install(bh); 1365 } else 1366 touch_buffer(bh); 1367 1368 return bh; 1369 } 1370 EXPORT_SYMBOL(__find_get_block); 1371 1372 /* 1373 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1374 * which corresponds to the passed block_device, block and size. The 1375 * returned buffer has its reference count incremented. 1376 * 1377 * __getblk_gfp() will lock up the machine if grow_dev_page's 1378 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1379 */ 1380 struct buffer_head * 1381 __getblk_gfp(struct block_device *bdev, sector_t block, 1382 unsigned size, gfp_t gfp) 1383 { 1384 struct buffer_head *bh = __find_get_block(bdev, block, size); 1385 1386 might_sleep(); 1387 if (bh == NULL) 1388 bh = __getblk_slow(bdev, block, size, gfp); 1389 return bh; 1390 } 1391 EXPORT_SYMBOL(__getblk_gfp); 1392 1393 /* 1394 * Do async read-ahead on a buffer.. 1395 */ 1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1397 { 1398 struct buffer_head *bh = __getblk(bdev, block, size); 1399 if (likely(bh)) { 1400 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1401 brelse(bh); 1402 } 1403 } 1404 EXPORT_SYMBOL(__breadahead); 1405 1406 /** 1407 * __bread_gfp() - reads a specified block and returns the bh 1408 * @bdev: the block_device to read from 1409 * @block: number of block 1410 * @size: size (in bytes) to read 1411 * @gfp: page allocation flag 1412 * 1413 * Reads a specified block, and returns buffer head that contains it. 1414 * The page cache can be allocated from non-movable area 1415 * not to prevent page migration if you set gfp to zero. 1416 * It returns NULL if the block was unreadable. 1417 */ 1418 struct buffer_head * 1419 __bread_gfp(struct block_device *bdev, sector_t block, 1420 unsigned size, gfp_t gfp) 1421 { 1422 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1423 1424 if (likely(bh) && !buffer_uptodate(bh)) 1425 bh = __bread_slow(bh); 1426 return bh; 1427 } 1428 EXPORT_SYMBOL(__bread_gfp); 1429 1430 /* 1431 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1432 * This doesn't race because it runs in each cpu either in irq 1433 * or with preempt disabled. 1434 */ 1435 static void invalidate_bh_lru(void *arg) 1436 { 1437 struct bh_lru *b = &get_cpu_var(bh_lrus); 1438 int i; 1439 1440 for (i = 0; i < BH_LRU_SIZE; i++) { 1441 brelse(b->bhs[i]); 1442 b->bhs[i] = NULL; 1443 } 1444 put_cpu_var(bh_lrus); 1445 } 1446 1447 static bool has_bh_in_lru(int cpu, void *dummy) 1448 { 1449 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1450 int i; 1451 1452 for (i = 0; i < BH_LRU_SIZE; i++) { 1453 if (b->bhs[i]) 1454 return 1; 1455 } 1456 1457 return 0; 1458 } 1459 1460 void invalidate_bh_lrus(void) 1461 { 1462 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1463 } 1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1465 1466 void set_bh_page(struct buffer_head *bh, 1467 struct page *page, unsigned long offset) 1468 { 1469 bh->b_page = page; 1470 BUG_ON(offset >= PAGE_SIZE); 1471 if (PageHighMem(page)) 1472 /* 1473 * This catches illegal uses and preserves the offset: 1474 */ 1475 bh->b_data = (char *)(0 + offset); 1476 else 1477 bh->b_data = page_address(page) + offset; 1478 } 1479 EXPORT_SYMBOL(set_bh_page); 1480 1481 /* 1482 * Called when truncating a buffer on a page completely. 1483 */ 1484 1485 /* Bits that are cleared during an invalidate */ 1486 #define BUFFER_FLAGS_DISCARD \ 1487 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1488 1 << BH_Delay | 1 << BH_Unwritten) 1489 1490 static void discard_buffer(struct buffer_head * bh) 1491 { 1492 unsigned long b_state, b_state_old; 1493 1494 lock_buffer(bh); 1495 clear_buffer_dirty(bh); 1496 bh->b_bdev = NULL; 1497 b_state = bh->b_state; 1498 for (;;) { 1499 b_state_old = cmpxchg(&bh->b_state, b_state, 1500 (b_state & ~BUFFER_FLAGS_DISCARD)); 1501 if (b_state_old == b_state) 1502 break; 1503 b_state = b_state_old; 1504 } 1505 unlock_buffer(bh); 1506 } 1507 1508 /** 1509 * block_invalidatepage - invalidate part or all of a buffer-backed page 1510 * 1511 * @page: the page which is affected 1512 * @offset: start of the range to invalidate 1513 * @length: length of the range to invalidate 1514 * 1515 * block_invalidatepage() is called when all or part of the page has become 1516 * invalidated by a truncate operation. 1517 * 1518 * block_invalidatepage() does not have to release all buffers, but it must 1519 * ensure that no dirty buffer is left outside @offset and that no I/O 1520 * is underway against any of the blocks which are outside the truncation 1521 * point. Because the caller is about to free (and possibly reuse) those 1522 * blocks on-disk. 1523 */ 1524 void block_invalidatepage(struct page *page, unsigned int offset, 1525 unsigned int length) 1526 { 1527 struct buffer_head *head, *bh, *next; 1528 unsigned int curr_off = 0; 1529 unsigned int stop = length + offset; 1530 1531 BUG_ON(!PageLocked(page)); 1532 if (!page_has_buffers(page)) 1533 goto out; 1534 1535 /* 1536 * Check for overflow 1537 */ 1538 BUG_ON(stop > PAGE_SIZE || stop < length); 1539 1540 head = page_buffers(page); 1541 bh = head; 1542 do { 1543 unsigned int next_off = curr_off + bh->b_size; 1544 next = bh->b_this_page; 1545 1546 /* 1547 * Are we still fully in range ? 1548 */ 1549 if (next_off > stop) 1550 goto out; 1551 1552 /* 1553 * is this block fully invalidated? 1554 */ 1555 if (offset <= curr_off) 1556 discard_buffer(bh); 1557 curr_off = next_off; 1558 bh = next; 1559 } while (bh != head); 1560 1561 /* 1562 * We release buffers only if the entire page is being invalidated. 1563 * The get_block cached value has been unconditionally invalidated, 1564 * so real IO is not possible anymore. 1565 */ 1566 if (offset == 0) 1567 try_to_release_page(page, 0); 1568 out: 1569 return; 1570 } 1571 EXPORT_SYMBOL(block_invalidatepage); 1572 1573 1574 /* 1575 * We attach and possibly dirty the buffers atomically wrt 1576 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1577 * is already excluded via the page lock. 1578 */ 1579 void create_empty_buffers(struct page *page, 1580 unsigned long blocksize, unsigned long b_state) 1581 { 1582 struct buffer_head *bh, *head, *tail; 1583 1584 head = alloc_page_buffers(page, blocksize, 1); 1585 bh = head; 1586 do { 1587 bh->b_state |= b_state; 1588 tail = bh; 1589 bh = bh->b_this_page; 1590 } while (bh); 1591 tail->b_this_page = head; 1592 1593 spin_lock(&page->mapping->private_lock); 1594 if (PageUptodate(page) || PageDirty(page)) { 1595 bh = head; 1596 do { 1597 if (PageDirty(page)) 1598 set_buffer_dirty(bh); 1599 if (PageUptodate(page)) 1600 set_buffer_uptodate(bh); 1601 bh = bh->b_this_page; 1602 } while (bh != head); 1603 } 1604 attach_page_buffers(page, head); 1605 spin_unlock(&page->mapping->private_lock); 1606 } 1607 EXPORT_SYMBOL(create_empty_buffers); 1608 1609 /** 1610 * clean_bdev_aliases: clean a range of buffers in block device 1611 * @bdev: Block device to clean buffers in 1612 * @block: Start of a range of blocks to clean 1613 * @len: Number of blocks to clean 1614 * 1615 * We are taking a range of blocks for data and we don't want writeback of any 1616 * buffer-cache aliases starting from return from this function and until the 1617 * moment when something will explicitly mark the buffer dirty (hopefully that 1618 * will not happen until we will free that block ;-) We don't even need to mark 1619 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1620 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1621 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1622 * would confuse anyone who might pick it with bread() afterwards... 1623 * 1624 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1625 * writeout I/O going on against recently-freed buffers. We don't wait on that 1626 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1627 * need to. That happens here. 1628 */ 1629 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1630 { 1631 struct inode *bd_inode = bdev->bd_inode; 1632 struct address_space *bd_mapping = bd_inode->i_mapping; 1633 struct pagevec pvec; 1634 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1635 pgoff_t end; 1636 int i; 1637 struct buffer_head *bh; 1638 struct buffer_head *head; 1639 1640 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1641 pagevec_init(&pvec, 0); 1642 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index, 1643 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 1644 for (i = 0; i < pagevec_count(&pvec); i++) { 1645 struct page *page = pvec.pages[i]; 1646 1647 index = page->index; 1648 if (index > end) 1649 break; 1650 if (!page_has_buffers(page)) 1651 continue; 1652 /* 1653 * We use page lock instead of bd_mapping->private_lock 1654 * to pin buffers here since we can afford to sleep and 1655 * it scales better than a global spinlock lock. 1656 */ 1657 lock_page(page); 1658 /* Recheck when the page is locked which pins bhs */ 1659 if (!page_has_buffers(page)) 1660 goto unlock_page; 1661 head = page_buffers(page); 1662 bh = head; 1663 do { 1664 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1665 goto next; 1666 if (bh->b_blocknr >= block + len) 1667 break; 1668 clear_buffer_dirty(bh); 1669 wait_on_buffer(bh); 1670 clear_buffer_req(bh); 1671 next: 1672 bh = bh->b_this_page; 1673 } while (bh != head); 1674 unlock_page: 1675 unlock_page(page); 1676 } 1677 pagevec_release(&pvec); 1678 cond_resched(); 1679 index++; 1680 } 1681 } 1682 EXPORT_SYMBOL(clean_bdev_aliases); 1683 1684 /* 1685 * Size is a power-of-two in the range 512..PAGE_SIZE, 1686 * and the case we care about most is PAGE_SIZE. 1687 * 1688 * So this *could* possibly be written with those 1689 * constraints in mind (relevant mostly if some 1690 * architecture has a slow bit-scan instruction) 1691 */ 1692 static inline int block_size_bits(unsigned int blocksize) 1693 { 1694 return ilog2(blocksize); 1695 } 1696 1697 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1698 { 1699 BUG_ON(!PageLocked(page)); 1700 1701 if (!page_has_buffers(page)) 1702 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1703 return page_buffers(page); 1704 } 1705 1706 /* 1707 * NOTE! All mapped/uptodate combinations are valid: 1708 * 1709 * Mapped Uptodate Meaning 1710 * 1711 * No No "unknown" - must do get_block() 1712 * No Yes "hole" - zero-filled 1713 * Yes No "allocated" - allocated on disk, not read in 1714 * Yes Yes "valid" - allocated and up-to-date in memory. 1715 * 1716 * "Dirty" is valid only with the last case (mapped+uptodate). 1717 */ 1718 1719 /* 1720 * While block_write_full_page is writing back the dirty buffers under 1721 * the page lock, whoever dirtied the buffers may decide to clean them 1722 * again at any time. We handle that by only looking at the buffer 1723 * state inside lock_buffer(). 1724 * 1725 * If block_write_full_page() is called for regular writeback 1726 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1727 * locked buffer. This only can happen if someone has written the buffer 1728 * directly, with submit_bh(). At the address_space level PageWriteback 1729 * prevents this contention from occurring. 1730 * 1731 * If block_write_full_page() is called with wbc->sync_mode == 1732 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1733 * causes the writes to be flagged as synchronous writes. 1734 */ 1735 int __block_write_full_page(struct inode *inode, struct page *page, 1736 get_block_t *get_block, struct writeback_control *wbc, 1737 bh_end_io_t *handler) 1738 { 1739 int err; 1740 sector_t block; 1741 sector_t last_block; 1742 struct buffer_head *bh, *head; 1743 unsigned int blocksize, bbits; 1744 int nr_underway = 0; 1745 int write_flags = wbc_to_write_flags(wbc); 1746 1747 head = create_page_buffers(page, inode, 1748 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1749 1750 /* 1751 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1752 * here, and the (potentially unmapped) buffers may become dirty at 1753 * any time. If a buffer becomes dirty here after we've inspected it 1754 * then we just miss that fact, and the page stays dirty. 1755 * 1756 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1757 * handle that here by just cleaning them. 1758 */ 1759 1760 bh = head; 1761 blocksize = bh->b_size; 1762 bbits = block_size_bits(blocksize); 1763 1764 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1765 last_block = (i_size_read(inode) - 1) >> bbits; 1766 1767 /* 1768 * Get all the dirty buffers mapped to disk addresses and 1769 * handle any aliases from the underlying blockdev's mapping. 1770 */ 1771 do { 1772 if (block > last_block) { 1773 /* 1774 * mapped buffers outside i_size will occur, because 1775 * this page can be outside i_size when there is a 1776 * truncate in progress. 1777 */ 1778 /* 1779 * The buffer was zeroed by block_write_full_page() 1780 */ 1781 clear_buffer_dirty(bh); 1782 set_buffer_uptodate(bh); 1783 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1784 buffer_dirty(bh)) { 1785 WARN_ON(bh->b_size != blocksize); 1786 err = get_block(inode, block, bh, 1); 1787 if (err) 1788 goto recover; 1789 clear_buffer_delay(bh); 1790 if (buffer_new(bh)) { 1791 /* blockdev mappings never come here */ 1792 clear_buffer_new(bh); 1793 clean_bdev_bh_alias(bh); 1794 } 1795 } 1796 bh = bh->b_this_page; 1797 block++; 1798 } while (bh != head); 1799 1800 do { 1801 if (!buffer_mapped(bh)) 1802 continue; 1803 /* 1804 * If it's a fully non-blocking write attempt and we cannot 1805 * lock the buffer then redirty the page. Note that this can 1806 * potentially cause a busy-wait loop from writeback threads 1807 * and kswapd activity, but those code paths have their own 1808 * higher-level throttling. 1809 */ 1810 if (wbc->sync_mode != WB_SYNC_NONE) { 1811 lock_buffer(bh); 1812 } else if (!trylock_buffer(bh)) { 1813 redirty_page_for_writepage(wbc, page); 1814 continue; 1815 } 1816 if (test_clear_buffer_dirty(bh)) { 1817 mark_buffer_async_write_endio(bh, handler); 1818 } else { 1819 unlock_buffer(bh); 1820 } 1821 } while ((bh = bh->b_this_page) != head); 1822 1823 /* 1824 * The page and its buffers are protected by PageWriteback(), so we can 1825 * drop the bh refcounts early. 1826 */ 1827 BUG_ON(PageWriteback(page)); 1828 set_page_writeback(page); 1829 1830 do { 1831 struct buffer_head *next = bh->b_this_page; 1832 if (buffer_async_write(bh)) { 1833 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc); 1834 nr_underway++; 1835 } 1836 bh = next; 1837 } while (bh != head); 1838 unlock_page(page); 1839 1840 err = 0; 1841 done: 1842 if (nr_underway == 0) { 1843 /* 1844 * The page was marked dirty, but the buffers were 1845 * clean. Someone wrote them back by hand with 1846 * ll_rw_block/submit_bh. A rare case. 1847 */ 1848 end_page_writeback(page); 1849 1850 /* 1851 * The page and buffer_heads can be released at any time from 1852 * here on. 1853 */ 1854 } 1855 return err; 1856 1857 recover: 1858 /* 1859 * ENOSPC, or some other error. We may already have added some 1860 * blocks to the file, so we need to write these out to avoid 1861 * exposing stale data. 1862 * The page is currently locked and not marked for writeback 1863 */ 1864 bh = head; 1865 /* Recovery: lock and submit the mapped buffers */ 1866 do { 1867 if (buffer_mapped(bh) && buffer_dirty(bh) && 1868 !buffer_delay(bh)) { 1869 lock_buffer(bh); 1870 mark_buffer_async_write_endio(bh, handler); 1871 } else { 1872 /* 1873 * The buffer may have been set dirty during 1874 * attachment to a dirty page. 1875 */ 1876 clear_buffer_dirty(bh); 1877 } 1878 } while ((bh = bh->b_this_page) != head); 1879 SetPageError(page); 1880 BUG_ON(PageWriteback(page)); 1881 mapping_set_error(page->mapping, err); 1882 set_page_writeback(page); 1883 do { 1884 struct buffer_head *next = bh->b_this_page; 1885 if (buffer_async_write(bh)) { 1886 clear_buffer_dirty(bh); 1887 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc); 1888 nr_underway++; 1889 } 1890 bh = next; 1891 } while (bh != head); 1892 unlock_page(page); 1893 goto done; 1894 } 1895 EXPORT_SYMBOL(__block_write_full_page); 1896 1897 /* 1898 * If a page has any new buffers, zero them out here, and mark them uptodate 1899 * and dirty so they'll be written out (in order to prevent uninitialised 1900 * block data from leaking). And clear the new bit. 1901 */ 1902 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1903 { 1904 unsigned int block_start, block_end; 1905 struct buffer_head *head, *bh; 1906 1907 BUG_ON(!PageLocked(page)); 1908 if (!page_has_buffers(page)) 1909 return; 1910 1911 bh = head = page_buffers(page); 1912 block_start = 0; 1913 do { 1914 block_end = block_start + bh->b_size; 1915 1916 if (buffer_new(bh)) { 1917 if (block_end > from && block_start < to) { 1918 if (!PageUptodate(page)) { 1919 unsigned start, size; 1920 1921 start = max(from, block_start); 1922 size = min(to, block_end) - start; 1923 1924 zero_user(page, start, size); 1925 set_buffer_uptodate(bh); 1926 } 1927 1928 clear_buffer_new(bh); 1929 mark_buffer_dirty(bh); 1930 } 1931 } 1932 1933 block_start = block_end; 1934 bh = bh->b_this_page; 1935 } while (bh != head); 1936 } 1937 EXPORT_SYMBOL(page_zero_new_buffers); 1938 1939 static void 1940 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1941 struct iomap *iomap) 1942 { 1943 loff_t offset = block << inode->i_blkbits; 1944 1945 bh->b_bdev = iomap->bdev; 1946 1947 /* 1948 * Block points to offset in file we need to map, iomap contains 1949 * the offset at which the map starts. If the map ends before the 1950 * current block, then do not map the buffer and let the caller 1951 * handle it. 1952 */ 1953 BUG_ON(offset >= iomap->offset + iomap->length); 1954 1955 switch (iomap->type) { 1956 case IOMAP_HOLE: 1957 /* 1958 * If the buffer is not up to date or beyond the current EOF, 1959 * we need to mark it as new to ensure sub-block zeroing is 1960 * executed if necessary. 1961 */ 1962 if (!buffer_uptodate(bh) || 1963 (offset >= i_size_read(inode))) 1964 set_buffer_new(bh); 1965 break; 1966 case IOMAP_DELALLOC: 1967 if (!buffer_uptodate(bh) || 1968 (offset >= i_size_read(inode))) 1969 set_buffer_new(bh); 1970 set_buffer_uptodate(bh); 1971 set_buffer_mapped(bh); 1972 set_buffer_delay(bh); 1973 break; 1974 case IOMAP_UNWRITTEN: 1975 /* 1976 * For unwritten regions, we always need to ensure that 1977 * sub-block writes cause the regions in the block we are not 1978 * writing to are zeroed. Set the buffer as new to ensure this. 1979 */ 1980 set_buffer_new(bh); 1981 set_buffer_unwritten(bh); 1982 /* FALLTHRU */ 1983 case IOMAP_MAPPED: 1984 if (offset >= i_size_read(inode)) 1985 set_buffer_new(bh); 1986 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) + 1987 ((offset - iomap->offset) >> inode->i_blkbits); 1988 set_buffer_mapped(bh); 1989 break; 1990 } 1991 } 1992 1993 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1994 get_block_t *get_block, struct iomap *iomap) 1995 { 1996 unsigned from = pos & (PAGE_SIZE - 1); 1997 unsigned to = from + len; 1998 struct inode *inode = page->mapping->host; 1999 unsigned block_start, block_end; 2000 sector_t block; 2001 int err = 0; 2002 unsigned blocksize, bbits; 2003 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2004 2005 BUG_ON(!PageLocked(page)); 2006 BUG_ON(from > PAGE_SIZE); 2007 BUG_ON(to > PAGE_SIZE); 2008 BUG_ON(from > to); 2009 2010 head = create_page_buffers(page, inode, 0); 2011 blocksize = head->b_size; 2012 bbits = block_size_bits(blocksize); 2013 2014 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 2015 2016 for(bh = head, block_start = 0; bh != head || !block_start; 2017 block++, block_start=block_end, bh = bh->b_this_page) { 2018 block_end = block_start + blocksize; 2019 if (block_end <= from || block_start >= to) { 2020 if (PageUptodate(page)) { 2021 if (!buffer_uptodate(bh)) 2022 set_buffer_uptodate(bh); 2023 } 2024 continue; 2025 } 2026 if (buffer_new(bh)) 2027 clear_buffer_new(bh); 2028 if (!buffer_mapped(bh)) { 2029 WARN_ON(bh->b_size != blocksize); 2030 if (get_block) { 2031 err = get_block(inode, block, bh, 1); 2032 if (err) 2033 break; 2034 } else { 2035 iomap_to_bh(inode, block, bh, iomap); 2036 } 2037 2038 if (buffer_new(bh)) { 2039 clean_bdev_bh_alias(bh); 2040 if (PageUptodate(page)) { 2041 clear_buffer_new(bh); 2042 set_buffer_uptodate(bh); 2043 mark_buffer_dirty(bh); 2044 continue; 2045 } 2046 if (block_end > to || block_start < from) 2047 zero_user_segments(page, 2048 to, block_end, 2049 block_start, from); 2050 continue; 2051 } 2052 } 2053 if (PageUptodate(page)) { 2054 if (!buffer_uptodate(bh)) 2055 set_buffer_uptodate(bh); 2056 continue; 2057 } 2058 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2059 !buffer_unwritten(bh) && 2060 (block_start < from || block_end > to)) { 2061 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2062 *wait_bh++=bh; 2063 } 2064 } 2065 /* 2066 * If we issued read requests - let them complete. 2067 */ 2068 while(wait_bh > wait) { 2069 wait_on_buffer(*--wait_bh); 2070 if (!buffer_uptodate(*wait_bh)) 2071 err = -EIO; 2072 } 2073 if (unlikely(err)) 2074 page_zero_new_buffers(page, from, to); 2075 return err; 2076 } 2077 2078 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2079 get_block_t *get_block) 2080 { 2081 return __block_write_begin_int(page, pos, len, get_block, NULL); 2082 } 2083 EXPORT_SYMBOL(__block_write_begin); 2084 2085 static int __block_commit_write(struct inode *inode, struct page *page, 2086 unsigned from, unsigned to) 2087 { 2088 unsigned block_start, block_end; 2089 int partial = 0; 2090 unsigned blocksize; 2091 struct buffer_head *bh, *head; 2092 2093 bh = head = page_buffers(page); 2094 blocksize = bh->b_size; 2095 2096 block_start = 0; 2097 do { 2098 block_end = block_start + blocksize; 2099 if (block_end <= from || block_start >= to) { 2100 if (!buffer_uptodate(bh)) 2101 partial = 1; 2102 } else { 2103 set_buffer_uptodate(bh); 2104 mark_buffer_dirty(bh); 2105 } 2106 clear_buffer_new(bh); 2107 2108 block_start = block_end; 2109 bh = bh->b_this_page; 2110 } while (bh != head); 2111 2112 /* 2113 * If this is a partial write which happened to make all buffers 2114 * uptodate then we can optimize away a bogus readpage() for 2115 * the next read(). Here we 'discover' whether the page went 2116 * uptodate as a result of this (potentially partial) write. 2117 */ 2118 if (!partial) 2119 SetPageUptodate(page); 2120 return 0; 2121 } 2122 2123 /* 2124 * block_write_begin takes care of the basic task of block allocation and 2125 * bringing partial write blocks uptodate first. 2126 * 2127 * The filesystem needs to handle block truncation upon failure. 2128 */ 2129 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2130 unsigned flags, struct page **pagep, get_block_t *get_block) 2131 { 2132 pgoff_t index = pos >> PAGE_SHIFT; 2133 struct page *page; 2134 int status; 2135 2136 page = grab_cache_page_write_begin(mapping, index, flags); 2137 if (!page) 2138 return -ENOMEM; 2139 2140 status = __block_write_begin(page, pos, len, get_block); 2141 if (unlikely(status)) { 2142 unlock_page(page); 2143 put_page(page); 2144 page = NULL; 2145 } 2146 2147 *pagep = page; 2148 return status; 2149 } 2150 EXPORT_SYMBOL(block_write_begin); 2151 2152 int block_write_end(struct file *file, struct address_space *mapping, 2153 loff_t pos, unsigned len, unsigned copied, 2154 struct page *page, void *fsdata) 2155 { 2156 struct inode *inode = mapping->host; 2157 unsigned start; 2158 2159 start = pos & (PAGE_SIZE - 1); 2160 2161 if (unlikely(copied < len)) { 2162 /* 2163 * The buffers that were written will now be uptodate, so we 2164 * don't have to worry about a readpage reading them and 2165 * overwriting a partial write. However if we have encountered 2166 * a short write and only partially written into a buffer, it 2167 * will not be marked uptodate, so a readpage might come in and 2168 * destroy our partial write. 2169 * 2170 * Do the simplest thing, and just treat any short write to a 2171 * non uptodate page as a zero-length write, and force the 2172 * caller to redo the whole thing. 2173 */ 2174 if (!PageUptodate(page)) 2175 copied = 0; 2176 2177 page_zero_new_buffers(page, start+copied, start+len); 2178 } 2179 flush_dcache_page(page); 2180 2181 /* This could be a short (even 0-length) commit */ 2182 __block_commit_write(inode, page, start, start+copied); 2183 2184 return copied; 2185 } 2186 EXPORT_SYMBOL(block_write_end); 2187 2188 int generic_write_end(struct file *file, struct address_space *mapping, 2189 loff_t pos, unsigned len, unsigned copied, 2190 struct page *page, void *fsdata) 2191 { 2192 struct inode *inode = mapping->host; 2193 loff_t old_size = inode->i_size; 2194 int i_size_changed = 0; 2195 2196 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2197 2198 /* 2199 * No need to use i_size_read() here, the i_size 2200 * cannot change under us because we hold i_mutex. 2201 * 2202 * But it's important to update i_size while still holding page lock: 2203 * page writeout could otherwise come in and zero beyond i_size. 2204 */ 2205 if (pos+copied > inode->i_size) { 2206 i_size_write(inode, pos+copied); 2207 i_size_changed = 1; 2208 } 2209 2210 unlock_page(page); 2211 put_page(page); 2212 2213 if (old_size < pos) 2214 pagecache_isize_extended(inode, old_size, pos); 2215 /* 2216 * Don't mark the inode dirty under page lock. First, it unnecessarily 2217 * makes the holding time of page lock longer. Second, it forces lock 2218 * ordering of page lock and transaction start for journaling 2219 * filesystems. 2220 */ 2221 if (i_size_changed) 2222 mark_inode_dirty(inode); 2223 2224 return copied; 2225 } 2226 EXPORT_SYMBOL(generic_write_end); 2227 2228 /* 2229 * block_is_partially_uptodate checks whether buffers within a page are 2230 * uptodate or not. 2231 * 2232 * Returns true if all buffers which correspond to a file portion 2233 * we want to read are uptodate. 2234 */ 2235 int block_is_partially_uptodate(struct page *page, unsigned long from, 2236 unsigned long count) 2237 { 2238 unsigned block_start, block_end, blocksize; 2239 unsigned to; 2240 struct buffer_head *bh, *head; 2241 int ret = 1; 2242 2243 if (!page_has_buffers(page)) 2244 return 0; 2245 2246 head = page_buffers(page); 2247 blocksize = head->b_size; 2248 to = min_t(unsigned, PAGE_SIZE - from, count); 2249 to = from + to; 2250 if (from < blocksize && to > PAGE_SIZE - blocksize) 2251 return 0; 2252 2253 bh = head; 2254 block_start = 0; 2255 do { 2256 block_end = block_start + blocksize; 2257 if (block_end > from && block_start < to) { 2258 if (!buffer_uptodate(bh)) { 2259 ret = 0; 2260 break; 2261 } 2262 if (block_end >= to) 2263 break; 2264 } 2265 block_start = block_end; 2266 bh = bh->b_this_page; 2267 } while (bh != head); 2268 2269 return ret; 2270 } 2271 EXPORT_SYMBOL(block_is_partially_uptodate); 2272 2273 /* 2274 * Generic "read page" function for block devices that have the normal 2275 * get_block functionality. This is most of the block device filesystems. 2276 * Reads the page asynchronously --- the unlock_buffer() and 2277 * set/clear_buffer_uptodate() functions propagate buffer state into the 2278 * page struct once IO has completed. 2279 */ 2280 int block_read_full_page(struct page *page, get_block_t *get_block) 2281 { 2282 struct inode *inode = page->mapping->host; 2283 sector_t iblock, lblock; 2284 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2285 unsigned int blocksize, bbits; 2286 int nr, i; 2287 int fully_mapped = 1; 2288 2289 head = create_page_buffers(page, inode, 0); 2290 blocksize = head->b_size; 2291 bbits = block_size_bits(blocksize); 2292 2293 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2294 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2295 bh = head; 2296 nr = 0; 2297 i = 0; 2298 2299 do { 2300 if (buffer_uptodate(bh)) 2301 continue; 2302 2303 if (!buffer_mapped(bh)) { 2304 int err = 0; 2305 2306 fully_mapped = 0; 2307 if (iblock < lblock) { 2308 WARN_ON(bh->b_size != blocksize); 2309 err = get_block(inode, iblock, bh, 0); 2310 if (err) 2311 SetPageError(page); 2312 } 2313 if (!buffer_mapped(bh)) { 2314 zero_user(page, i * blocksize, blocksize); 2315 if (!err) 2316 set_buffer_uptodate(bh); 2317 continue; 2318 } 2319 /* 2320 * get_block() might have updated the buffer 2321 * synchronously 2322 */ 2323 if (buffer_uptodate(bh)) 2324 continue; 2325 } 2326 arr[nr++] = bh; 2327 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2328 2329 if (fully_mapped) 2330 SetPageMappedToDisk(page); 2331 2332 if (!nr) { 2333 /* 2334 * All buffers are uptodate - we can set the page uptodate 2335 * as well. But not if get_block() returned an error. 2336 */ 2337 if (!PageError(page)) 2338 SetPageUptodate(page); 2339 unlock_page(page); 2340 return 0; 2341 } 2342 2343 /* Stage two: lock the buffers */ 2344 for (i = 0; i < nr; i++) { 2345 bh = arr[i]; 2346 lock_buffer(bh); 2347 mark_buffer_async_read(bh); 2348 } 2349 2350 /* 2351 * Stage 3: start the IO. Check for uptodateness 2352 * inside the buffer lock in case another process reading 2353 * the underlying blockdev brought it uptodate (the sct fix). 2354 */ 2355 for (i = 0; i < nr; i++) { 2356 bh = arr[i]; 2357 if (buffer_uptodate(bh)) 2358 end_buffer_async_read(bh, 1); 2359 else 2360 submit_bh(REQ_OP_READ, 0, bh); 2361 } 2362 return 0; 2363 } 2364 EXPORT_SYMBOL(block_read_full_page); 2365 2366 /* utility function for filesystems that need to do work on expanding 2367 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2368 * deal with the hole. 2369 */ 2370 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2371 { 2372 struct address_space *mapping = inode->i_mapping; 2373 struct page *page; 2374 void *fsdata; 2375 int err; 2376 2377 err = inode_newsize_ok(inode, size); 2378 if (err) 2379 goto out; 2380 2381 err = pagecache_write_begin(NULL, mapping, size, 0, 2382 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2383 &page, &fsdata); 2384 if (err) 2385 goto out; 2386 2387 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2388 BUG_ON(err > 0); 2389 2390 out: 2391 return err; 2392 } 2393 EXPORT_SYMBOL(generic_cont_expand_simple); 2394 2395 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2396 loff_t pos, loff_t *bytes) 2397 { 2398 struct inode *inode = mapping->host; 2399 unsigned int blocksize = i_blocksize(inode); 2400 struct page *page; 2401 void *fsdata; 2402 pgoff_t index, curidx; 2403 loff_t curpos; 2404 unsigned zerofrom, offset, len; 2405 int err = 0; 2406 2407 index = pos >> PAGE_SHIFT; 2408 offset = pos & ~PAGE_MASK; 2409 2410 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2411 zerofrom = curpos & ~PAGE_MASK; 2412 if (zerofrom & (blocksize-1)) { 2413 *bytes |= (blocksize-1); 2414 (*bytes)++; 2415 } 2416 len = PAGE_SIZE - zerofrom; 2417 2418 err = pagecache_write_begin(file, mapping, curpos, len, 2419 AOP_FLAG_UNINTERRUPTIBLE, 2420 &page, &fsdata); 2421 if (err) 2422 goto out; 2423 zero_user(page, zerofrom, len); 2424 err = pagecache_write_end(file, mapping, curpos, len, len, 2425 page, fsdata); 2426 if (err < 0) 2427 goto out; 2428 BUG_ON(err != len); 2429 err = 0; 2430 2431 balance_dirty_pages_ratelimited(mapping); 2432 2433 if (unlikely(fatal_signal_pending(current))) { 2434 err = -EINTR; 2435 goto out; 2436 } 2437 } 2438 2439 /* page covers the boundary, find the boundary offset */ 2440 if (index == curidx) { 2441 zerofrom = curpos & ~PAGE_MASK; 2442 /* if we will expand the thing last block will be filled */ 2443 if (offset <= zerofrom) { 2444 goto out; 2445 } 2446 if (zerofrom & (blocksize-1)) { 2447 *bytes |= (blocksize-1); 2448 (*bytes)++; 2449 } 2450 len = offset - zerofrom; 2451 2452 err = pagecache_write_begin(file, mapping, curpos, len, 2453 AOP_FLAG_UNINTERRUPTIBLE, 2454 &page, &fsdata); 2455 if (err) 2456 goto out; 2457 zero_user(page, zerofrom, len); 2458 err = pagecache_write_end(file, mapping, curpos, len, len, 2459 page, fsdata); 2460 if (err < 0) 2461 goto out; 2462 BUG_ON(err != len); 2463 err = 0; 2464 } 2465 out: 2466 return err; 2467 } 2468 2469 /* 2470 * For moronic filesystems that do not allow holes in file. 2471 * We may have to extend the file. 2472 */ 2473 int cont_write_begin(struct file *file, struct address_space *mapping, 2474 loff_t pos, unsigned len, unsigned flags, 2475 struct page **pagep, void **fsdata, 2476 get_block_t *get_block, loff_t *bytes) 2477 { 2478 struct inode *inode = mapping->host; 2479 unsigned int blocksize = i_blocksize(inode); 2480 unsigned int zerofrom; 2481 int err; 2482 2483 err = cont_expand_zero(file, mapping, pos, bytes); 2484 if (err) 2485 return err; 2486 2487 zerofrom = *bytes & ~PAGE_MASK; 2488 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2489 *bytes |= (blocksize-1); 2490 (*bytes)++; 2491 } 2492 2493 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2494 } 2495 EXPORT_SYMBOL(cont_write_begin); 2496 2497 int block_commit_write(struct page *page, unsigned from, unsigned to) 2498 { 2499 struct inode *inode = page->mapping->host; 2500 __block_commit_write(inode,page,from,to); 2501 return 0; 2502 } 2503 EXPORT_SYMBOL(block_commit_write); 2504 2505 /* 2506 * block_page_mkwrite() is not allowed to change the file size as it gets 2507 * called from a page fault handler when a page is first dirtied. Hence we must 2508 * be careful to check for EOF conditions here. We set the page up correctly 2509 * for a written page which means we get ENOSPC checking when writing into 2510 * holes and correct delalloc and unwritten extent mapping on filesystems that 2511 * support these features. 2512 * 2513 * We are not allowed to take the i_mutex here so we have to play games to 2514 * protect against truncate races as the page could now be beyond EOF. Because 2515 * truncate writes the inode size before removing pages, once we have the 2516 * page lock we can determine safely if the page is beyond EOF. If it is not 2517 * beyond EOF, then the page is guaranteed safe against truncation until we 2518 * unlock the page. 2519 * 2520 * Direct callers of this function should protect against filesystem freezing 2521 * using sb_start_pagefault() - sb_end_pagefault() functions. 2522 */ 2523 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2524 get_block_t get_block) 2525 { 2526 struct page *page = vmf->page; 2527 struct inode *inode = file_inode(vma->vm_file); 2528 unsigned long end; 2529 loff_t size; 2530 int ret; 2531 2532 lock_page(page); 2533 size = i_size_read(inode); 2534 if ((page->mapping != inode->i_mapping) || 2535 (page_offset(page) > size)) { 2536 /* We overload EFAULT to mean page got truncated */ 2537 ret = -EFAULT; 2538 goto out_unlock; 2539 } 2540 2541 /* page is wholly or partially inside EOF */ 2542 if (((page->index + 1) << PAGE_SHIFT) > size) 2543 end = size & ~PAGE_MASK; 2544 else 2545 end = PAGE_SIZE; 2546 2547 ret = __block_write_begin(page, 0, end, get_block); 2548 if (!ret) 2549 ret = block_commit_write(page, 0, end); 2550 2551 if (unlikely(ret < 0)) 2552 goto out_unlock; 2553 set_page_dirty(page); 2554 wait_for_stable_page(page); 2555 return 0; 2556 out_unlock: 2557 unlock_page(page); 2558 return ret; 2559 } 2560 EXPORT_SYMBOL(block_page_mkwrite); 2561 2562 /* 2563 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2564 * immediately, while under the page lock. So it needs a special end_io 2565 * handler which does not touch the bh after unlocking it. 2566 */ 2567 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2568 { 2569 __end_buffer_read_notouch(bh, uptodate); 2570 } 2571 2572 /* 2573 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2574 * the page (converting it to circular linked list and taking care of page 2575 * dirty races). 2576 */ 2577 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2578 { 2579 struct buffer_head *bh; 2580 2581 BUG_ON(!PageLocked(page)); 2582 2583 spin_lock(&page->mapping->private_lock); 2584 bh = head; 2585 do { 2586 if (PageDirty(page)) 2587 set_buffer_dirty(bh); 2588 if (!bh->b_this_page) 2589 bh->b_this_page = head; 2590 bh = bh->b_this_page; 2591 } while (bh != head); 2592 attach_page_buffers(page, head); 2593 spin_unlock(&page->mapping->private_lock); 2594 } 2595 2596 /* 2597 * On entry, the page is fully not uptodate. 2598 * On exit the page is fully uptodate in the areas outside (from,to) 2599 * The filesystem needs to handle block truncation upon failure. 2600 */ 2601 int nobh_write_begin(struct address_space *mapping, 2602 loff_t pos, unsigned len, unsigned flags, 2603 struct page **pagep, void **fsdata, 2604 get_block_t *get_block) 2605 { 2606 struct inode *inode = mapping->host; 2607 const unsigned blkbits = inode->i_blkbits; 2608 const unsigned blocksize = 1 << blkbits; 2609 struct buffer_head *head, *bh; 2610 struct page *page; 2611 pgoff_t index; 2612 unsigned from, to; 2613 unsigned block_in_page; 2614 unsigned block_start, block_end; 2615 sector_t block_in_file; 2616 int nr_reads = 0; 2617 int ret = 0; 2618 int is_mapped_to_disk = 1; 2619 2620 index = pos >> PAGE_SHIFT; 2621 from = pos & (PAGE_SIZE - 1); 2622 to = from + len; 2623 2624 page = grab_cache_page_write_begin(mapping, index, flags); 2625 if (!page) 2626 return -ENOMEM; 2627 *pagep = page; 2628 *fsdata = NULL; 2629 2630 if (page_has_buffers(page)) { 2631 ret = __block_write_begin(page, pos, len, get_block); 2632 if (unlikely(ret)) 2633 goto out_release; 2634 return ret; 2635 } 2636 2637 if (PageMappedToDisk(page)) 2638 return 0; 2639 2640 /* 2641 * Allocate buffers so that we can keep track of state, and potentially 2642 * attach them to the page if an error occurs. In the common case of 2643 * no error, they will just be freed again without ever being attached 2644 * to the page (which is all OK, because we're under the page lock). 2645 * 2646 * Be careful: the buffer linked list is a NULL terminated one, rather 2647 * than the circular one we're used to. 2648 */ 2649 head = alloc_page_buffers(page, blocksize, 0); 2650 if (!head) { 2651 ret = -ENOMEM; 2652 goto out_release; 2653 } 2654 2655 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2656 2657 /* 2658 * We loop across all blocks in the page, whether or not they are 2659 * part of the affected region. This is so we can discover if the 2660 * page is fully mapped-to-disk. 2661 */ 2662 for (block_start = 0, block_in_page = 0, bh = head; 2663 block_start < PAGE_SIZE; 2664 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2665 int create; 2666 2667 block_end = block_start + blocksize; 2668 bh->b_state = 0; 2669 create = 1; 2670 if (block_start >= to) 2671 create = 0; 2672 ret = get_block(inode, block_in_file + block_in_page, 2673 bh, create); 2674 if (ret) 2675 goto failed; 2676 if (!buffer_mapped(bh)) 2677 is_mapped_to_disk = 0; 2678 if (buffer_new(bh)) 2679 clean_bdev_bh_alias(bh); 2680 if (PageUptodate(page)) { 2681 set_buffer_uptodate(bh); 2682 continue; 2683 } 2684 if (buffer_new(bh) || !buffer_mapped(bh)) { 2685 zero_user_segments(page, block_start, from, 2686 to, block_end); 2687 continue; 2688 } 2689 if (buffer_uptodate(bh)) 2690 continue; /* reiserfs does this */ 2691 if (block_start < from || block_end > to) { 2692 lock_buffer(bh); 2693 bh->b_end_io = end_buffer_read_nobh; 2694 submit_bh(REQ_OP_READ, 0, bh); 2695 nr_reads++; 2696 } 2697 } 2698 2699 if (nr_reads) { 2700 /* 2701 * The page is locked, so these buffers are protected from 2702 * any VM or truncate activity. Hence we don't need to care 2703 * for the buffer_head refcounts. 2704 */ 2705 for (bh = head; bh; bh = bh->b_this_page) { 2706 wait_on_buffer(bh); 2707 if (!buffer_uptodate(bh)) 2708 ret = -EIO; 2709 } 2710 if (ret) 2711 goto failed; 2712 } 2713 2714 if (is_mapped_to_disk) 2715 SetPageMappedToDisk(page); 2716 2717 *fsdata = head; /* to be released by nobh_write_end */ 2718 2719 return 0; 2720 2721 failed: 2722 BUG_ON(!ret); 2723 /* 2724 * Error recovery is a bit difficult. We need to zero out blocks that 2725 * were newly allocated, and dirty them to ensure they get written out. 2726 * Buffers need to be attached to the page at this point, otherwise 2727 * the handling of potential IO errors during writeout would be hard 2728 * (could try doing synchronous writeout, but what if that fails too?) 2729 */ 2730 attach_nobh_buffers(page, head); 2731 page_zero_new_buffers(page, from, to); 2732 2733 out_release: 2734 unlock_page(page); 2735 put_page(page); 2736 *pagep = NULL; 2737 2738 return ret; 2739 } 2740 EXPORT_SYMBOL(nobh_write_begin); 2741 2742 int nobh_write_end(struct file *file, struct address_space *mapping, 2743 loff_t pos, unsigned len, unsigned copied, 2744 struct page *page, void *fsdata) 2745 { 2746 struct inode *inode = page->mapping->host; 2747 struct buffer_head *head = fsdata; 2748 struct buffer_head *bh; 2749 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2750 2751 if (unlikely(copied < len) && head) 2752 attach_nobh_buffers(page, head); 2753 if (page_has_buffers(page)) 2754 return generic_write_end(file, mapping, pos, len, 2755 copied, page, fsdata); 2756 2757 SetPageUptodate(page); 2758 set_page_dirty(page); 2759 if (pos+copied > inode->i_size) { 2760 i_size_write(inode, pos+copied); 2761 mark_inode_dirty(inode); 2762 } 2763 2764 unlock_page(page); 2765 put_page(page); 2766 2767 while (head) { 2768 bh = head; 2769 head = head->b_this_page; 2770 free_buffer_head(bh); 2771 } 2772 2773 return copied; 2774 } 2775 EXPORT_SYMBOL(nobh_write_end); 2776 2777 /* 2778 * nobh_writepage() - based on block_full_write_page() except 2779 * that it tries to operate without attaching bufferheads to 2780 * the page. 2781 */ 2782 int nobh_writepage(struct page *page, get_block_t *get_block, 2783 struct writeback_control *wbc) 2784 { 2785 struct inode * const inode = page->mapping->host; 2786 loff_t i_size = i_size_read(inode); 2787 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2788 unsigned offset; 2789 int ret; 2790 2791 /* Is the page fully inside i_size? */ 2792 if (page->index < end_index) 2793 goto out; 2794 2795 /* Is the page fully outside i_size? (truncate in progress) */ 2796 offset = i_size & (PAGE_SIZE-1); 2797 if (page->index >= end_index+1 || !offset) { 2798 /* 2799 * The page may have dirty, unmapped buffers. For example, 2800 * they may have been added in ext3_writepage(). Make them 2801 * freeable here, so the page does not leak. 2802 */ 2803 #if 0 2804 /* Not really sure about this - do we need this ? */ 2805 if (page->mapping->a_ops->invalidatepage) 2806 page->mapping->a_ops->invalidatepage(page, offset); 2807 #endif 2808 unlock_page(page); 2809 return 0; /* don't care */ 2810 } 2811 2812 /* 2813 * The page straddles i_size. It must be zeroed out on each and every 2814 * writepage invocation because it may be mmapped. "A file is mapped 2815 * in multiples of the page size. For a file that is not a multiple of 2816 * the page size, the remaining memory is zeroed when mapped, and 2817 * writes to that region are not written out to the file." 2818 */ 2819 zero_user_segment(page, offset, PAGE_SIZE); 2820 out: 2821 ret = mpage_writepage(page, get_block, wbc); 2822 if (ret == -EAGAIN) 2823 ret = __block_write_full_page(inode, page, get_block, wbc, 2824 end_buffer_async_write); 2825 return ret; 2826 } 2827 EXPORT_SYMBOL(nobh_writepage); 2828 2829 int nobh_truncate_page(struct address_space *mapping, 2830 loff_t from, get_block_t *get_block) 2831 { 2832 pgoff_t index = from >> PAGE_SHIFT; 2833 unsigned offset = from & (PAGE_SIZE-1); 2834 unsigned blocksize; 2835 sector_t iblock; 2836 unsigned length, pos; 2837 struct inode *inode = mapping->host; 2838 struct page *page; 2839 struct buffer_head map_bh; 2840 int err; 2841 2842 blocksize = i_blocksize(inode); 2843 length = offset & (blocksize - 1); 2844 2845 /* Block boundary? Nothing to do */ 2846 if (!length) 2847 return 0; 2848 2849 length = blocksize - length; 2850 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2851 2852 page = grab_cache_page(mapping, index); 2853 err = -ENOMEM; 2854 if (!page) 2855 goto out; 2856 2857 if (page_has_buffers(page)) { 2858 has_buffers: 2859 unlock_page(page); 2860 put_page(page); 2861 return block_truncate_page(mapping, from, get_block); 2862 } 2863 2864 /* Find the buffer that contains "offset" */ 2865 pos = blocksize; 2866 while (offset >= pos) { 2867 iblock++; 2868 pos += blocksize; 2869 } 2870 2871 map_bh.b_size = blocksize; 2872 map_bh.b_state = 0; 2873 err = get_block(inode, iblock, &map_bh, 0); 2874 if (err) 2875 goto unlock; 2876 /* unmapped? It's a hole - nothing to do */ 2877 if (!buffer_mapped(&map_bh)) 2878 goto unlock; 2879 2880 /* Ok, it's mapped. Make sure it's up-to-date */ 2881 if (!PageUptodate(page)) { 2882 err = mapping->a_ops->readpage(NULL, page); 2883 if (err) { 2884 put_page(page); 2885 goto out; 2886 } 2887 lock_page(page); 2888 if (!PageUptodate(page)) { 2889 err = -EIO; 2890 goto unlock; 2891 } 2892 if (page_has_buffers(page)) 2893 goto has_buffers; 2894 } 2895 zero_user(page, offset, length); 2896 set_page_dirty(page); 2897 err = 0; 2898 2899 unlock: 2900 unlock_page(page); 2901 put_page(page); 2902 out: 2903 return err; 2904 } 2905 EXPORT_SYMBOL(nobh_truncate_page); 2906 2907 int block_truncate_page(struct address_space *mapping, 2908 loff_t from, get_block_t *get_block) 2909 { 2910 pgoff_t index = from >> PAGE_SHIFT; 2911 unsigned offset = from & (PAGE_SIZE-1); 2912 unsigned blocksize; 2913 sector_t iblock; 2914 unsigned length, pos; 2915 struct inode *inode = mapping->host; 2916 struct page *page; 2917 struct buffer_head *bh; 2918 int err; 2919 2920 blocksize = i_blocksize(inode); 2921 length = offset & (blocksize - 1); 2922 2923 /* Block boundary? Nothing to do */ 2924 if (!length) 2925 return 0; 2926 2927 length = blocksize - length; 2928 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2929 2930 page = grab_cache_page(mapping, index); 2931 err = -ENOMEM; 2932 if (!page) 2933 goto out; 2934 2935 if (!page_has_buffers(page)) 2936 create_empty_buffers(page, blocksize, 0); 2937 2938 /* Find the buffer that contains "offset" */ 2939 bh = page_buffers(page); 2940 pos = blocksize; 2941 while (offset >= pos) { 2942 bh = bh->b_this_page; 2943 iblock++; 2944 pos += blocksize; 2945 } 2946 2947 err = 0; 2948 if (!buffer_mapped(bh)) { 2949 WARN_ON(bh->b_size != blocksize); 2950 err = get_block(inode, iblock, bh, 0); 2951 if (err) 2952 goto unlock; 2953 /* unmapped? It's a hole - nothing to do */ 2954 if (!buffer_mapped(bh)) 2955 goto unlock; 2956 } 2957 2958 /* Ok, it's mapped. Make sure it's up-to-date */ 2959 if (PageUptodate(page)) 2960 set_buffer_uptodate(bh); 2961 2962 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2963 err = -EIO; 2964 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2965 wait_on_buffer(bh); 2966 /* Uhhuh. Read error. Complain and punt. */ 2967 if (!buffer_uptodate(bh)) 2968 goto unlock; 2969 } 2970 2971 zero_user(page, offset, length); 2972 mark_buffer_dirty(bh); 2973 err = 0; 2974 2975 unlock: 2976 unlock_page(page); 2977 put_page(page); 2978 out: 2979 return err; 2980 } 2981 EXPORT_SYMBOL(block_truncate_page); 2982 2983 /* 2984 * The generic ->writepage function for buffer-backed address_spaces 2985 */ 2986 int block_write_full_page(struct page *page, get_block_t *get_block, 2987 struct writeback_control *wbc) 2988 { 2989 struct inode * const inode = page->mapping->host; 2990 loff_t i_size = i_size_read(inode); 2991 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2992 unsigned offset; 2993 2994 /* Is the page fully inside i_size? */ 2995 if (page->index < end_index) 2996 return __block_write_full_page(inode, page, get_block, wbc, 2997 end_buffer_async_write); 2998 2999 /* Is the page fully outside i_size? (truncate in progress) */ 3000 offset = i_size & (PAGE_SIZE-1); 3001 if (page->index >= end_index+1 || !offset) { 3002 /* 3003 * The page may have dirty, unmapped buffers. For example, 3004 * they may have been added in ext3_writepage(). Make them 3005 * freeable here, so the page does not leak. 3006 */ 3007 do_invalidatepage(page, 0, PAGE_SIZE); 3008 unlock_page(page); 3009 return 0; /* don't care */ 3010 } 3011 3012 /* 3013 * The page straddles i_size. It must be zeroed out on each and every 3014 * writepage invocation because it may be mmapped. "A file is mapped 3015 * in multiples of the page size. For a file that is not a multiple of 3016 * the page size, the remaining memory is zeroed when mapped, and 3017 * writes to that region are not written out to the file." 3018 */ 3019 zero_user_segment(page, offset, PAGE_SIZE); 3020 return __block_write_full_page(inode, page, get_block, wbc, 3021 end_buffer_async_write); 3022 } 3023 EXPORT_SYMBOL(block_write_full_page); 3024 3025 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 3026 get_block_t *get_block) 3027 { 3028 struct buffer_head tmp; 3029 struct inode *inode = mapping->host; 3030 tmp.b_state = 0; 3031 tmp.b_blocknr = 0; 3032 tmp.b_size = i_blocksize(inode); 3033 get_block(inode, block, &tmp, 0); 3034 return tmp.b_blocknr; 3035 } 3036 EXPORT_SYMBOL(generic_block_bmap); 3037 3038 static void end_bio_bh_io_sync(struct bio *bio) 3039 { 3040 struct buffer_head *bh = bio->bi_private; 3041 3042 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3043 set_bit(BH_Quiet, &bh->b_state); 3044 3045 bh->b_end_io(bh, !bio->bi_error); 3046 bio_put(bio); 3047 } 3048 3049 /* 3050 * This allows us to do IO even on the odd last sectors 3051 * of a device, even if the block size is some multiple 3052 * of the physical sector size. 3053 * 3054 * We'll just truncate the bio to the size of the device, 3055 * and clear the end of the buffer head manually. 3056 * 3057 * Truly out-of-range accesses will turn into actual IO 3058 * errors, this only handles the "we need to be able to 3059 * do IO at the final sector" case. 3060 */ 3061 void guard_bio_eod(int op, struct bio *bio) 3062 { 3063 sector_t maxsector; 3064 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 3065 unsigned truncated_bytes; 3066 3067 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 3068 if (!maxsector) 3069 return; 3070 3071 /* 3072 * If the *whole* IO is past the end of the device, 3073 * let it through, and the IO layer will turn it into 3074 * an EIO. 3075 */ 3076 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3077 return; 3078 3079 maxsector -= bio->bi_iter.bi_sector; 3080 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3081 return; 3082 3083 /* Uhhuh. We've got a bio that straddles the device size! */ 3084 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3085 3086 /* Truncate the bio.. */ 3087 bio->bi_iter.bi_size -= truncated_bytes; 3088 bvec->bv_len -= truncated_bytes; 3089 3090 /* ..and clear the end of the buffer for reads */ 3091 if (op == REQ_OP_READ) { 3092 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3093 truncated_bytes); 3094 } 3095 } 3096 3097 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3098 unsigned long bio_flags, struct writeback_control *wbc) 3099 { 3100 struct bio *bio; 3101 3102 BUG_ON(!buffer_locked(bh)); 3103 BUG_ON(!buffer_mapped(bh)); 3104 BUG_ON(!bh->b_end_io); 3105 BUG_ON(buffer_delay(bh)); 3106 BUG_ON(buffer_unwritten(bh)); 3107 3108 /* 3109 * Only clear out a write error when rewriting 3110 */ 3111 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3112 clear_buffer_write_io_error(bh); 3113 3114 /* 3115 * from here on down, it's all bio -- do the initial mapping, 3116 * submit_bio -> generic_make_request may further map this bio around 3117 */ 3118 bio = bio_alloc(GFP_NOIO, 1); 3119 3120 if (wbc) { 3121 wbc_init_bio(wbc, bio); 3122 wbc_account_io(wbc, bh->b_page, bh->b_size); 3123 } 3124 3125 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3126 bio->bi_bdev = bh->b_bdev; 3127 3128 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3129 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3130 3131 bio->bi_end_io = end_bio_bh_io_sync; 3132 bio->bi_private = bh; 3133 bio->bi_flags |= bio_flags; 3134 3135 /* Take care of bh's that straddle the end of the device */ 3136 guard_bio_eod(op, bio); 3137 3138 if (buffer_meta(bh)) 3139 op_flags |= REQ_META; 3140 if (buffer_prio(bh)) 3141 op_flags |= REQ_PRIO; 3142 bio_set_op_attrs(bio, op, op_flags); 3143 3144 submit_bio(bio); 3145 return 0; 3146 } 3147 3148 int _submit_bh(int op, int op_flags, struct buffer_head *bh, 3149 unsigned long bio_flags) 3150 { 3151 return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL); 3152 } 3153 EXPORT_SYMBOL_GPL(_submit_bh); 3154 3155 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3156 { 3157 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3158 } 3159 EXPORT_SYMBOL(submit_bh); 3160 3161 /** 3162 * ll_rw_block: low-level access to block devices (DEPRECATED) 3163 * @op: whether to %READ or %WRITE 3164 * @op_flags: req_flag_bits 3165 * @nr: number of &struct buffer_heads in the array 3166 * @bhs: array of pointers to &struct buffer_head 3167 * 3168 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3169 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3170 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3171 * %REQ_RAHEAD. 3172 * 3173 * This function drops any buffer that it cannot get a lock on (with the 3174 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3175 * request, and any buffer that appears to be up-to-date when doing read 3176 * request. Further it marks as clean buffers that are processed for 3177 * writing (the buffer cache won't assume that they are actually clean 3178 * until the buffer gets unlocked). 3179 * 3180 * ll_rw_block sets b_end_io to simple completion handler that marks 3181 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3182 * any waiters. 3183 * 3184 * All of the buffers must be for the same device, and must also be a 3185 * multiple of the current approved size for the device. 3186 */ 3187 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3188 { 3189 int i; 3190 3191 for (i = 0; i < nr; i++) { 3192 struct buffer_head *bh = bhs[i]; 3193 3194 if (!trylock_buffer(bh)) 3195 continue; 3196 if (op == WRITE) { 3197 if (test_clear_buffer_dirty(bh)) { 3198 bh->b_end_io = end_buffer_write_sync; 3199 get_bh(bh); 3200 submit_bh(op, op_flags, bh); 3201 continue; 3202 } 3203 } else { 3204 if (!buffer_uptodate(bh)) { 3205 bh->b_end_io = end_buffer_read_sync; 3206 get_bh(bh); 3207 submit_bh(op, op_flags, bh); 3208 continue; 3209 } 3210 } 3211 unlock_buffer(bh); 3212 } 3213 } 3214 EXPORT_SYMBOL(ll_rw_block); 3215 3216 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3217 { 3218 lock_buffer(bh); 3219 if (!test_clear_buffer_dirty(bh)) { 3220 unlock_buffer(bh); 3221 return; 3222 } 3223 bh->b_end_io = end_buffer_write_sync; 3224 get_bh(bh); 3225 submit_bh(REQ_OP_WRITE, op_flags, bh); 3226 } 3227 EXPORT_SYMBOL(write_dirty_buffer); 3228 3229 /* 3230 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3231 * and then start new I/O and then wait upon it. The caller must have a ref on 3232 * the buffer_head. 3233 */ 3234 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3235 { 3236 int ret = 0; 3237 3238 WARN_ON(atomic_read(&bh->b_count) < 1); 3239 lock_buffer(bh); 3240 if (test_clear_buffer_dirty(bh)) { 3241 get_bh(bh); 3242 bh->b_end_io = end_buffer_write_sync; 3243 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3244 wait_on_buffer(bh); 3245 if (!ret && !buffer_uptodate(bh)) 3246 ret = -EIO; 3247 } else { 3248 unlock_buffer(bh); 3249 } 3250 return ret; 3251 } 3252 EXPORT_SYMBOL(__sync_dirty_buffer); 3253 3254 int sync_dirty_buffer(struct buffer_head *bh) 3255 { 3256 return __sync_dirty_buffer(bh, REQ_SYNC); 3257 } 3258 EXPORT_SYMBOL(sync_dirty_buffer); 3259 3260 /* 3261 * try_to_free_buffers() checks if all the buffers on this particular page 3262 * are unused, and releases them if so. 3263 * 3264 * Exclusion against try_to_free_buffers may be obtained by either 3265 * locking the page or by holding its mapping's private_lock. 3266 * 3267 * If the page is dirty but all the buffers are clean then we need to 3268 * be sure to mark the page clean as well. This is because the page 3269 * may be against a block device, and a later reattachment of buffers 3270 * to a dirty page will set *all* buffers dirty. Which would corrupt 3271 * filesystem data on the same device. 3272 * 3273 * The same applies to regular filesystem pages: if all the buffers are 3274 * clean then we set the page clean and proceed. To do that, we require 3275 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3276 * private_lock. 3277 * 3278 * try_to_free_buffers() is non-blocking. 3279 */ 3280 static inline int buffer_busy(struct buffer_head *bh) 3281 { 3282 return atomic_read(&bh->b_count) | 3283 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3284 } 3285 3286 static int 3287 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3288 { 3289 struct buffer_head *head = page_buffers(page); 3290 struct buffer_head *bh; 3291 3292 bh = head; 3293 do { 3294 if (buffer_write_io_error(bh) && page->mapping) 3295 mapping_set_error(page->mapping, -EIO); 3296 if (buffer_busy(bh)) 3297 goto failed; 3298 bh = bh->b_this_page; 3299 } while (bh != head); 3300 3301 do { 3302 struct buffer_head *next = bh->b_this_page; 3303 3304 if (bh->b_assoc_map) 3305 __remove_assoc_queue(bh); 3306 bh = next; 3307 } while (bh != head); 3308 *buffers_to_free = head; 3309 __clear_page_buffers(page); 3310 return 1; 3311 failed: 3312 return 0; 3313 } 3314 3315 int try_to_free_buffers(struct page *page) 3316 { 3317 struct address_space * const mapping = page->mapping; 3318 struct buffer_head *buffers_to_free = NULL; 3319 int ret = 0; 3320 3321 BUG_ON(!PageLocked(page)); 3322 if (PageWriteback(page)) 3323 return 0; 3324 3325 if (mapping == NULL) { /* can this still happen? */ 3326 ret = drop_buffers(page, &buffers_to_free); 3327 goto out; 3328 } 3329 3330 spin_lock(&mapping->private_lock); 3331 ret = drop_buffers(page, &buffers_to_free); 3332 3333 /* 3334 * If the filesystem writes its buffers by hand (eg ext3) 3335 * then we can have clean buffers against a dirty page. We 3336 * clean the page here; otherwise the VM will never notice 3337 * that the filesystem did any IO at all. 3338 * 3339 * Also, during truncate, discard_buffer will have marked all 3340 * the page's buffers clean. We discover that here and clean 3341 * the page also. 3342 * 3343 * private_lock must be held over this entire operation in order 3344 * to synchronise against __set_page_dirty_buffers and prevent the 3345 * dirty bit from being lost. 3346 */ 3347 if (ret) 3348 cancel_dirty_page(page); 3349 spin_unlock(&mapping->private_lock); 3350 out: 3351 if (buffers_to_free) { 3352 struct buffer_head *bh = buffers_to_free; 3353 3354 do { 3355 struct buffer_head *next = bh->b_this_page; 3356 free_buffer_head(bh); 3357 bh = next; 3358 } while (bh != buffers_to_free); 3359 } 3360 return ret; 3361 } 3362 EXPORT_SYMBOL(try_to_free_buffers); 3363 3364 /* 3365 * There are no bdflush tunables left. But distributions are 3366 * still running obsolete flush daemons, so we terminate them here. 3367 * 3368 * Use of bdflush() is deprecated and will be removed in a future kernel. 3369 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3370 */ 3371 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3372 { 3373 static int msg_count; 3374 3375 if (!capable(CAP_SYS_ADMIN)) 3376 return -EPERM; 3377 3378 if (msg_count < 5) { 3379 msg_count++; 3380 printk(KERN_INFO 3381 "warning: process `%s' used the obsolete bdflush" 3382 " system call\n", current->comm); 3383 printk(KERN_INFO "Fix your initscripts?\n"); 3384 } 3385 3386 if (func == 1) 3387 do_exit(0); 3388 return 0; 3389 } 3390 3391 /* 3392 * Buffer-head allocation 3393 */ 3394 static struct kmem_cache *bh_cachep __read_mostly; 3395 3396 /* 3397 * Once the number of bh's in the machine exceeds this level, we start 3398 * stripping them in writeback. 3399 */ 3400 static unsigned long max_buffer_heads; 3401 3402 int buffer_heads_over_limit; 3403 3404 struct bh_accounting { 3405 int nr; /* Number of live bh's */ 3406 int ratelimit; /* Limit cacheline bouncing */ 3407 }; 3408 3409 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3410 3411 static void recalc_bh_state(void) 3412 { 3413 int i; 3414 int tot = 0; 3415 3416 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3417 return; 3418 __this_cpu_write(bh_accounting.ratelimit, 0); 3419 for_each_online_cpu(i) 3420 tot += per_cpu(bh_accounting, i).nr; 3421 buffer_heads_over_limit = (tot > max_buffer_heads); 3422 } 3423 3424 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3425 { 3426 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3427 if (ret) { 3428 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3429 preempt_disable(); 3430 __this_cpu_inc(bh_accounting.nr); 3431 recalc_bh_state(); 3432 preempt_enable(); 3433 } 3434 return ret; 3435 } 3436 EXPORT_SYMBOL(alloc_buffer_head); 3437 3438 void free_buffer_head(struct buffer_head *bh) 3439 { 3440 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3441 kmem_cache_free(bh_cachep, bh); 3442 preempt_disable(); 3443 __this_cpu_dec(bh_accounting.nr); 3444 recalc_bh_state(); 3445 preempt_enable(); 3446 } 3447 EXPORT_SYMBOL(free_buffer_head); 3448 3449 static int buffer_exit_cpu_dead(unsigned int cpu) 3450 { 3451 int i; 3452 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3453 3454 for (i = 0; i < BH_LRU_SIZE; i++) { 3455 brelse(b->bhs[i]); 3456 b->bhs[i] = NULL; 3457 } 3458 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3459 per_cpu(bh_accounting, cpu).nr = 0; 3460 return 0; 3461 } 3462 3463 /** 3464 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3465 * @bh: struct buffer_head 3466 * 3467 * Return true if the buffer is up-to-date and false, 3468 * with the buffer locked, if not. 3469 */ 3470 int bh_uptodate_or_lock(struct buffer_head *bh) 3471 { 3472 if (!buffer_uptodate(bh)) { 3473 lock_buffer(bh); 3474 if (!buffer_uptodate(bh)) 3475 return 0; 3476 unlock_buffer(bh); 3477 } 3478 return 1; 3479 } 3480 EXPORT_SYMBOL(bh_uptodate_or_lock); 3481 3482 /** 3483 * bh_submit_read - Submit a locked buffer for reading 3484 * @bh: struct buffer_head 3485 * 3486 * Returns zero on success and -EIO on error. 3487 */ 3488 int bh_submit_read(struct buffer_head *bh) 3489 { 3490 BUG_ON(!buffer_locked(bh)); 3491 3492 if (buffer_uptodate(bh)) { 3493 unlock_buffer(bh); 3494 return 0; 3495 } 3496 3497 get_bh(bh); 3498 bh->b_end_io = end_buffer_read_sync; 3499 submit_bh(REQ_OP_READ, 0, bh); 3500 wait_on_buffer(bh); 3501 if (buffer_uptodate(bh)) 3502 return 0; 3503 return -EIO; 3504 } 3505 EXPORT_SYMBOL(bh_submit_read); 3506 3507 void __init buffer_init(void) 3508 { 3509 unsigned long nrpages; 3510 int ret; 3511 3512 bh_cachep = kmem_cache_create("buffer_head", 3513 sizeof(struct buffer_head), 0, 3514 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3515 SLAB_MEM_SPREAD), 3516 NULL); 3517 3518 /* 3519 * Limit the bh occupancy to 10% of ZONE_NORMAL 3520 */ 3521 nrpages = (nr_free_buffer_pages() * 10) / 100; 3522 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3523 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3524 NULL, buffer_exit_cpu_dead); 3525 WARN_ON(ret < 0); 3526 } 3527