xref: /openbmc/linux/fs/buffer.c (revision 18da174d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 
53 #include "internal.h"
54 
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 			  struct writeback_control *wbc);
58 
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 	trace_block_touch_buffer(bh);
64 	folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67 
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73 
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 	clear_bit_unlock(BH_Lock, &bh->b_state);
77 	smp_mb__after_atomic();
78 	wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81 
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88 				     bool *dirty, bool *writeback)
89 {
90 	struct buffer_head *head, *bh;
91 	*dirty = false;
92 	*writeback = false;
93 
94 	BUG_ON(!folio_test_locked(folio));
95 
96 	head = folio_buffers(folio);
97 	if (!head)
98 		return;
99 
100 	if (folio_test_writeback(folio))
101 		*writeback = true;
102 
103 	bh = head;
104 	do {
105 		if (buffer_locked(bh))
106 			*writeback = true;
107 
108 		if (buffer_dirty(bh))
109 			*dirty = true;
110 
111 		bh = bh->b_this_page;
112 	} while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * private_lock.
184  *
185  * Hack idea: for the blockdev mapping, private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 	struct inode *bd_inode = bdev->bd_inode;
193 	struct address_space *bd_mapping = bd_inode->i_mapping;
194 	struct buffer_head *ret = NULL;
195 	pgoff_t index;
196 	struct buffer_head *bh;
197 	struct buffer_head *head;
198 	struct page *page;
199 	int all_mapped = 1;
200 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
204 	if (!page)
205 		goto out;
206 
207 	spin_lock(&bd_mapping->private_lock);
208 	if (!page_has_buffers(page))
209 		goto out_unlock;
210 	head = page_buffers(page);
211 	bh = head;
212 	do {
213 		if (!buffer_mapped(bh))
214 			all_mapped = 0;
215 		else if (bh->b_blocknr == block) {
216 			ret = bh;
217 			get_bh(bh);
218 			goto out_unlock;
219 		}
220 		bh = bh->b_this_page;
221 	} while (bh != head);
222 
223 	/* we might be here because some of the buffers on this page are
224 	 * not mapped.  This is due to various races between
225 	 * file io on the block device and getblk.  It gets dealt with
226 	 * elsewhere, don't buffer_error if we had some unmapped buffers
227 	 */
228 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 	if (all_mapped && __ratelimit(&last_warned)) {
230 		printk("__find_get_block_slow() failed. block=%llu, "
231 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 		       "device %pg blocksize: %d\n",
233 		       (unsigned long long)block,
234 		       (unsigned long long)bh->b_blocknr,
235 		       bh->b_state, bh->b_size, bdev,
236 		       1 << bd_inode->i_blkbits);
237 	}
238 out_unlock:
239 	spin_unlock(&bd_mapping->private_lock);
240 	put_page(page);
241 out:
242 	return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 	unsigned long flags;
248 	struct buffer_head *first;
249 	struct buffer_head *tmp;
250 	struct folio *folio;
251 	int folio_uptodate = 1;
252 
253 	BUG_ON(!buffer_async_read(bh));
254 
255 	folio = bh->b_folio;
256 	if (uptodate) {
257 		set_buffer_uptodate(bh);
258 	} else {
259 		clear_buffer_uptodate(bh);
260 		buffer_io_error(bh, ", async page read");
261 		folio_set_error(folio);
262 	}
263 
264 	/*
265 	 * Be _very_ careful from here on. Bad things can happen if
266 	 * two buffer heads end IO at almost the same time and both
267 	 * decide that the page is now completely done.
268 	 */
269 	first = folio_buffers(folio);
270 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 	clear_buffer_async_read(bh);
272 	unlock_buffer(bh);
273 	tmp = bh;
274 	do {
275 		if (!buffer_uptodate(tmp))
276 			folio_uptodate = 0;
277 		if (buffer_async_read(tmp)) {
278 			BUG_ON(!buffer_locked(tmp));
279 			goto still_busy;
280 		}
281 		tmp = tmp->b_this_page;
282 	} while (tmp != bh);
283 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284 
285 	/*
286 	 * If all of the buffers are uptodate then we can set the page
287 	 * uptodate.
288 	 */
289 	if (folio_uptodate)
290 		folio_mark_uptodate(folio);
291 	folio_unlock(folio);
292 	return;
293 
294 still_busy:
295 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296 	return;
297 }
298 
299 struct postprocess_bh_ctx {
300 	struct work_struct work;
301 	struct buffer_head *bh;
302 };
303 
304 static void verify_bh(struct work_struct *work)
305 {
306 	struct postprocess_bh_ctx *ctx =
307 		container_of(work, struct postprocess_bh_ctx, work);
308 	struct buffer_head *bh = ctx->bh;
309 	bool valid;
310 
311 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
312 	end_buffer_async_read(bh, valid);
313 	kfree(ctx);
314 }
315 
316 static bool need_fsverity(struct buffer_head *bh)
317 {
318 	struct folio *folio = bh->b_folio;
319 	struct inode *inode = folio->mapping->host;
320 
321 	return fsverity_active(inode) &&
322 		/* needed by ext4 */
323 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
324 }
325 
326 static void decrypt_bh(struct work_struct *work)
327 {
328 	struct postprocess_bh_ctx *ctx =
329 		container_of(work, struct postprocess_bh_ctx, work);
330 	struct buffer_head *bh = ctx->bh;
331 	int err;
332 
333 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
334 					       bh_offset(bh));
335 	if (err == 0 && need_fsverity(bh)) {
336 		/*
337 		 * We use different work queues for decryption and for verity
338 		 * because verity may require reading metadata pages that need
339 		 * decryption, and we shouldn't recurse to the same workqueue.
340 		 */
341 		INIT_WORK(&ctx->work, verify_bh);
342 		fsverity_enqueue_verify_work(&ctx->work);
343 		return;
344 	}
345 	end_buffer_async_read(bh, err == 0);
346 	kfree(ctx);
347 }
348 
349 /*
350  * I/O completion handler for block_read_full_folio() - pages
351  * which come unlocked at the end of I/O.
352  */
353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
354 {
355 	struct inode *inode = bh->b_folio->mapping->host;
356 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
357 	bool verify = need_fsverity(bh);
358 
359 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
360 	if (uptodate && (decrypt || verify)) {
361 		struct postprocess_bh_ctx *ctx =
362 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
363 
364 		if (ctx) {
365 			ctx->bh = bh;
366 			if (decrypt) {
367 				INIT_WORK(&ctx->work, decrypt_bh);
368 				fscrypt_enqueue_decrypt_work(&ctx->work);
369 			} else {
370 				INIT_WORK(&ctx->work, verify_bh);
371 				fsverity_enqueue_verify_work(&ctx->work);
372 			}
373 			return;
374 		}
375 		uptodate = 0;
376 	}
377 	end_buffer_async_read(bh, uptodate);
378 }
379 
380 /*
381  * Completion handler for block_write_full_page() - pages which are unlocked
382  * during I/O, and which have PageWriteback cleared upon I/O completion.
383  */
384 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
385 {
386 	unsigned long flags;
387 	struct buffer_head *first;
388 	struct buffer_head *tmp;
389 	struct folio *folio;
390 
391 	BUG_ON(!buffer_async_write(bh));
392 
393 	folio = bh->b_folio;
394 	if (uptodate) {
395 		set_buffer_uptodate(bh);
396 	} else {
397 		buffer_io_error(bh, ", lost async page write");
398 		mark_buffer_write_io_error(bh);
399 		clear_buffer_uptodate(bh);
400 		folio_set_error(folio);
401 	}
402 
403 	first = folio_buffers(folio);
404 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
405 
406 	clear_buffer_async_write(bh);
407 	unlock_buffer(bh);
408 	tmp = bh->b_this_page;
409 	while (tmp != bh) {
410 		if (buffer_async_write(tmp)) {
411 			BUG_ON(!buffer_locked(tmp));
412 			goto still_busy;
413 		}
414 		tmp = tmp->b_this_page;
415 	}
416 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
417 	folio_end_writeback(folio);
418 	return;
419 
420 still_busy:
421 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
422 	return;
423 }
424 EXPORT_SYMBOL(end_buffer_async_write);
425 
426 /*
427  * If a page's buffers are under async readin (end_buffer_async_read
428  * completion) then there is a possibility that another thread of
429  * control could lock one of the buffers after it has completed
430  * but while some of the other buffers have not completed.  This
431  * locked buffer would confuse end_buffer_async_read() into not unlocking
432  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
433  * that this buffer is not under async I/O.
434  *
435  * The page comes unlocked when it has no locked buffer_async buffers
436  * left.
437  *
438  * PageLocked prevents anyone starting new async I/O reads any of
439  * the buffers.
440  *
441  * PageWriteback is used to prevent simultaneous writeout of the same
442  * page.
443  *
444  * PageLocked prevents anyone from starting writeback of a page which is
445  * under read I/O (PageWriteback is only ever set against a locked page).
446  */
447 static void mark_buffer_async_read(struct buffer_head *bh)
448 {
449 	bh->b_end_io = end_buffer_async_read_io;
450 	set_buffer_async_read(bh);
451 }
452 
453 static void mark_buffer_async_write_endio(struct buffer_head *bh,
454 					  bh_end_io_t *handler)
455 {
456 	bh->b_end_io = handler;
457 	set_buffer_async_write(bh);
458 }
459 
460 void mark_buffer_async_write(struct buffer_head *bh)
461 {
462 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
463 }
464 EXPORT_SYMBOL(mark_buffer_async_write);
465 
466 
467 /*
468  * fs/buffer.c contains helper functions for buffer-backed address space's
469  * fsync functions.  A common requirement for buffer-based filesystems is
470  * that certain data from the backing blockdev needs to be written out for
471  * a successful fsync().  For example, ext2 indirect blocks need to be
472  * written back and waited upon before fsync() returns.
473  *
474  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
475  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
476  * management of a list of dependent buffers at ->i_mapping->private_list.
477  *
478  * Locking is a little subtle: try_to_free_buffers() will remove buffers
479  * from their controlling inode's queue when they are being freed.  But
480  * try_to_free_buffers() will be operating against the *blockdev* mapping
481  * at the time, not against the S_ISREG file which depends on those buffers.
482  * So the locking for private_list is via the private_lock in the address_space
483  * which backs the buffers.  Which is different from the address_space
484  * against which the buffers are listed.  So for a particular address_space,
485  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
486  * mapping->private_list will always be protected by the backing blockdev's
487  * ->private_lock.
488  *
489  * Which introduces a requirement: all buffers on an address_space's
490  * ->private_list must be from the same address_space: the blockdev's.
491  *
492  * address_spaces which do not place buffers at ->private_list via these
493  * utility functions are free to use private_lock and private_list for
494  * whatever they want.  The only requirement is that list_empty(private_list)
495  * be true at clear_inode() time.
496  *
497  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
498  * filesystems should do that.  invalidate_inode_buffers() should just go
499  * BUG_ON(!list_empty).
500  *
501  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
502  * take an address_space, not an inode.  And it should be called
503  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
504  * queued up.
505  *
506  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507  * list if it is already on a list.  Because if the buffer is on a list,
508  * it *must* already be on the right one.  If not, the filesystem is being
509  * silly.  This will save a ton of locking.  But first we have to ensure
510  * that buffers are taken *off* the old inode's list when they are freed
511  * (presumably in truncate).  That requires careful auditing of all
512  * filesystems (do it inside bforget()).  It could also be done by bringing
513  * b_inode back.
514  */
515 
516 /*
517  * The buffer's backing address_space's private_lock must be held
518  */
519 static void __remove_assoc_queue(struct buffer_head *bh)
520 {
521 	list_del_init(&bh->b_assoc_buffers);
522 	WARN_ON(!bh->b_assoc_map);
523 	bh->b_assoc_map = NULL;
524 }
525 
526 int inode_has_buffers(struct inode *inode)
527 {
528 	return !list_empty(&inode->i_data.private_list);
529 }
530 
531 /*
532  * osync is designed to support O_SYNC io.  It waits synchronously for
533  * all already-submitted IO to complete, but does not queue any new
534  * writes to the disk.
535  *
536  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537  * as you dirty the buffers, and then use osync_inode_buffers to wait for
538  * completion.  Any other dirty buffers which are not yet queued for
539  * write will not be flushed to disk by the osync.
540  */
541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542 {
543 	struct buffer_head *bh;
544 	struct list_head *p;
545 	int err = 0;
546 
547 	spin_lock(lock);
548 repeat:
549 	list_for_each_prev(p, list) {
550 		bh = BH_ENTRY(p);
551 		if (buffer_locked(bh)) {
552 			get_bh(bh);
553 			spin_unlock(lock);
554 			wait_on_buffer(bh);
555 			if (!buffer_uptodate(bh))
556 				err = -EIO;
557 			brelse(bh);
558 			spin_lock(lock);
559 			goto repeat;
560 		}
561 	}
562 	spin_unlock(lock);
563 	return err;
564 }
565 
566 void emergency_thaw_bdev(struct super_block *sb)
567 {
568 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
569 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
570 }
571 
572 /**
573  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
574  * @mapping: the mapping which wants those buffers written
575  *
576  * Starts I/O against the buffers at mapping->private_list, and waits upon
577  * that I/O.
578  *
579  * Basically, this is a convenience function for fsync().
580  * @mapping is a file or directory which needs those buffers to be written for
581  * a successful fsync().
582  */
583 int sync_mapping_buffers(struct address_space *mapping)
584 {
585 	struct address_space *buffer_mapping = mapping->private_data;
586 
587 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
588 		return 0;
589 
590 	return fsync_buffers_list(&buffer_mapping->private_lock,
591 					&mapping->private_list);
592 }
593 EXPORT_SYMBOL(sync_mapping_buffers);
594 
595 /*
596  * Called when we've recently written block `bblock', and it is known that
597  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
598  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
599  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
600  */
601 void write_boundary_block(struct block_device *bdev,
602 			sector_t bblock, unsigned blocksize)
603 {
604 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
605 	if (bh) {
606 		if (buffer_dirty(bh))
607 			write_dirty_buffer(bh, 0);
608 		put_bh(bh);
609 	}
610 }
611 
612 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
613 {
614 	struct address_space *mapping = inode->i_mapping;
615 	struct address_space *buffer_mapping = bh->b_folio->mapping;
616 
617 	mark_buffer_dirty(bh);
618 	if (!mapping->private_data) {
619 		mapping->private_data = buffer_mapping;
620 	} else {
621 		BUG_ON(mapping->private_data != buffer_mapping);
622 	}
623 	if (!bh->b_assoc_map) {
624 		spin_lock(&buffer_mapping->private_lock);
625 		list_move_tail(&bh->b_assoc_buffers,
626 				&mapping->private_list);
627 		bh->b_assoc_map = mapping;
628 		spin_unlock(&buffer_mapping->private_lock);
629 	}
630 }
631 EXPORT_SYMBOL(mark_buffer_dirty_inode);
632 
633 /*
634  * Add a page to the dirty page list.
635  *
636  * It is a sad fact of life that this function is called from several places
637  * deeply under spinlocking.  It may not sleep.
638  *
639  * If the page has buffers, the uptodate buffers are set dirty, to preserve
640  * dirty-state coherency between the page and the buffers.  It the page does
641  * not have buffers then when they are later attached they will all be set
642  * dirty.
643  *
644  * The buffers are dirtied before the page is dirtied.  There's a small race
645  * window in which a writepage caller may see the page cleanness but not the
646  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
647  * before the buffers, a concurrent writepage caller could clear the page dirty
648  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
649  * page on the dirty page list.
650  *
651  * We use private_lock to lock against try_to_free_buffers while using the
652  * page's buffer list.  Also use this to protect against clean buffers being
653  * added to the page after it was set dirty.
654  *
655  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
656  * address_space though.
657  */
658 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
659 {
660 	struct buffer_head *head;
661 	bool newly_dirty;
662 
663 	spin_lock(&mapping->private_lock);
664 	head = folio_buffers(folio);
665 	if (head) {
666 		struct buffer_head *bh = head;
667 
668 		do {
669 			set_buffer_dirty(bh);
670 			bh = bh->b_this_page;
671 		} while (bh != head);
672 	}
673 	/*
674 	 * Lock out page's memcg migration to keep PageDirty
675 	 * synchronized with per-memcg dirty page counters.
676 	 */
677 	folio_memcg_lock(folio);
678 	newly_dirty = !folio_test_set_dirty(folio);
679 	spin_unlock(&mapping->private_lock);
680 
681 	if (newly_dirty)
682 		__folio_mark_dirty(folio, mapping, 1);
683 
684 	folio_memcg_unlock(folio);
685 
686 	if (newly_dirty)
687 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
688 
689 	return newly_dirty;
690 }
691 EXPORT_SYMBOL(block_dirty_folio);
692 
693 /*
694  * Write out and wait upon a list of buffers.
695  *
696  * We have conflicting pressures: we want to make sure that all
697  * initially dirty buffers get waited on, but that any subsequently
698  * dirtied buffers don't.  After all, we don't want fsync to last
699  * forever if somebody is actively writing to the file.
700  *
701  * Do this in two main stages: first we copy dirty buffers to a
702  * temporary inode list, queueing the writes as we go.  Then we clean
703  * up, waiting for those writes to complete.
704  *
705  * During this second stage, any subsequent updates to the file may end
706  * up refiling the buffer on the original inode's dirty list again, so
707  * there is a chance we will end up with a buffer queued for write but
708  * not yet completed on that list.  So, as a final cleanup we go through
709  * the osync code to catch these locked, dirty buffers without requeuing
710  * any newly dirty buffers for write.
711  */
712 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
713 {
714 	struct buffer_head *bh;
715 	struct list_head tmp;
716 	struct address_space *mapping;
717 	int err = 0, err2;
718 	struct blk_plug plug;
719 
720 	INIT_LIST_HEAD(&tmp);
721 	blk_start_plug(&plug);
722 
723 	spin_lock(lock);
724 	while (!list_empty(list)) {
725 		bh = BH_ENTRY(list->next);
726 		mapping = bh->b_assoc_map;
727 		__remove_assoc_queue(bh);
728 		/* Avoid race with mark_buffer_dirty_inode() which does
729 		 * a lockless check and we rely on seeing the dirty bit */
730 		smp_mb();
731 		if (buffer_dirty(bh) || buffer_locked(bh)) {
732 			list_add(&bh->b_assoc_buffers, &tmp);
733 			bh->b_assoc_map = mapping;
734 			if (buffer_dirty(bh)) {
735 				get_bh(bh);
736 				spin_unlock(lock);
737 				/*
738 				 * Ensure any pending I/O completes so that
739 				 * write_dirty_buffer() actually writes the
740 				 * current contents - it is a noop if I/O is
741 				 * still in flight on potentially older
742 				 * contents.
743 				 */
744 				write_dirty_buffer(bh, REQ_SYNC);
745 
746 				/*
747 				 * Kick off IO for the previous mapping. Note
748 				 * that we will not run the very last mapping,
749 				 * wait_on_buffer() will do that for us
750 				 * through sync_buffer().
751 				 */
752 				brelse(bh);
753 				spin_lock(lock);
754 			}
755 		}
756 	}
757 
758 	spin_unlock(lock);
759 	blk_finish_plug(&plug);
760 	spin_lock(lock);
761 
762 	while (!list_empty(&tmp)) {
763 		bh = BH_ENTRY(tmp.prev);
764 		get_bh(bh);
765 		mapping = bh->b_assoc_map;
766 		__remove_assoc_queue(bh);
767 		/* Avoid race with mark_buffer_dirty_inode() which does
768 		 * a lockless check and we rely on seeing the dirty bit */
769 		smp_mb();
770 		if (buffer_dirty(bh)) {
771 			list_add(&bh->b_assoc_buffers,
772 				 &mapping->private_list);
773 			bh->b_assoc_map = mapping;
774 		}
775 		spin_unlock(lock);
776 		wait_on_buffer(bh);
777 		if (!buffer_uptodate(bh))
778 			err = -EIO;
779 		brelse(bh);
780 		spin_lock(lock);
781 	}
782 
783 	spin_unlock(lock);
784 	err2 = osync_buffers_list(lock, list);
785 	if (err)
786 		return err;
787 	else
788 		return err2;
789 }
790 
791 /*
792  * Invalidate any and all dirty buffers on a given inode.  We are
793  * probably unmounting the fs, but that doesn't mean we have already
794  * done a sync().  Just drop the buffers from the inode list.
795  *
796  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
797  * assumes that all the buffers are against the blockdev.  Not true
798  * for reiserfs.
799  */
800 void invalidate_inode_buffers(struct inode *inode)
801 {
802 	if (inode_has_buffers(inode)) {
803 		struct address_space *mapping = &inode->i_data;
804 		struct list_head *list = &mapping->private_list;
805 		struct address_space *buffer_mapping = mapping->private_data;
806 
807 		spin_lock(&buffer_mapping->private_lock);
808 		while (!list_empty(list))
809 			__remove_assoc_queue(BH_ENTRY(list->next));
810 		spin_unlock(&buffer_mapping->private_lock);
811 	}
812 }
813 EXPORT_SYMBOL(invalidate_inode_buffers);
814 
815 /*
816  * Remove any clean buffers from the inode's buffer list.  This is called
817  * when we're trying to free the inode itself.  Those buffers can pin it.
818  *
819  * Returns true if all buffers were removed.
820  */
821 int remove_inode_buffers(struct inode *inode)
822 {
823 	int ret = 1;
824 
825 	if (inode_has_buffers(inode)) {
826 		struct address_space *mapping = &inode->i_data;
827 		struct list_head *list = &mapping->private_list;
828 		struct address_space *buffer_mapping = mapping->private_data;
829 
830 		spin_lock(&buffer_mapping->private_lock);
831 		while (!list_empty(list)) {
832 			struct buffer_head *bh = BH_ENTRY(list->next);
833 			if (buffer_dirty(bh)) {
834 				ret = 0;
835 				break;
836 			}
837 			__remove_assoc_queue(bh);
838 		}
839 		spin_unlock(&buffer_mapping->private_lock);
840 	}
841 	return ret;
842 }
843 
844 /*
845  * Create the appropriate buffers when given a folio for data area and
846  * the size of each buffer.. Use the bh->b_this_page linked list to
847  * follow the buffers created.  Return NULL if unable to create more
848  * buffers.
849  *
850  * The retry flag is used to differentiate async IO (paging, swapping)
851  * which may not fail from ordinary buffer allocations.
852  */
853 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
854 					bool retry)
855 {
856 	struct buffer_head *bh, *head;
857 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
858 	long offset;
859 	struct mem_cgroup *memcg, *old_memcg;
860 
861 	if (retry)
862 		gfp |= __GFP_NOFAIL;
863 
864 	/* The folio lock pins the memcg */
865 	memcg = folio_memcg(folio);
866 	old_memcg = set_active_memcg(memcg);
867 
868 	head = NULL;
869 	offset = folio_size(folio);
870 	while ((offset -= size) >= 0) {
871 		bh = alloc_buffer_head(gfp);
872 		if (!bh)
873 			goto no_grow;
874 
875 		bh->b_this_page = head;
876 		bh->b_blocknr = -1;
877 		head = bh;
878 
879 		bh->b_size = size;
880 
881 		/* Link the buffer to its folio */
882 		folio_set_bh(bh, folio, offset);
883 	}
884 out:
885 	set_active_memcg(old_memcg);
886 	return head;
887 /*
888  * In case anything failed, we just free everything we got.
889  */
890 no_grow:
891 	if (head) {
892 		do {
893 			bh = head;
894 			head = head->b_this_page;
895 			free_buffer_head(bh);
896 		} while (head);
897 	}
898 
899 	goto out;
900 }
901 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
902 
903 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
904 				       bool retry)
905 {
906 	return folio_alloc_buffers(page_folio(page), size, retry);
907 }
908 EXPORT_SYMBOL_GPL(alloc_page_buffers);
909 
910 static inline void
911 link_dev_buffers(struct page *page, struct buffer_head *head)
912 {
913 	struct buffer_head *bh, *tail;
914 
915 	bh = head;
916 	do {
917 		tail = bh;
918 		bh = bh->b_this_page;
919 	} while (bh);
920 	tail->b_this_page = head;
921 	attach_page_private(page, head);
922 }
923 
924 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
925 {
926 	sector_t retval = ~((sector_t)0);
927 	loff_t sz = bdev_nr_bytes(bdev);
928 
929 	if (sz) {
930 		unsigned int sizebits = blksize_bits(size);
931 		retval = (sz >> sizebits);
932 	}
933 	return retval;
934 }
935 
936 /*
937  * Initialise the state of a blockdev page's buffers.
938  */
939 static sector_t
940 init_page_buffers(struct page *page, struct block_device *bdev,
941 			sector_t block, int size)
942 {
943 	struct buffer_head *head = page_buffers(page);
944 	struct buffer_head *bh = head;
945 	int uptodate = PageUptodate(page);
946 	sector_t end_block = blkdev_max_block(bdev, size);
947 
948 	do {
949 		if (!buffer_mapped(bh)) {
950 			bh->b_end_io = NULL;
951 			bh->b_private = NULL;
952 			bh->b_bdev = bdev;
953 			bh->b_blocknr = block;
954 			if (uptodate)
955 				set_buffer_uptodate(bh);
956 			if (block < end_block)
957 				set_buffer_mapped(bh);
958 		}
959 		block++;
960 		bh = bh->b_this_page;
961 	} while (bh != head);
962 
963 	/*
964 	 * Caller needs to validate requested block against end of device.
965 	 */
966 	return end_block;
967 }
968 
969 /*
970  * Create the page-cache page that contains the requested block.
971  *
972  * This is used purely for blockdev mappings.
973  */
974 static int
975 grow_dev_page(struct block_device *bdev, sector_t block,
976 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
977 {
978 	struct inode *inode = bdev->bd_inode;
979 	struct page *page;
980 	struct buffer_head *bh;
981 	sector_t end_block;
982 	int ret = 0;
983 	gfp_t gfp_mask;
984 
985 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
986 
987 	/*
988 	 * XXX: __getblk_slow() can not really deal with failure and
989 	 * will endlessly loop on improvised global reclaim.  Prefer
990 	 * looping in the allocator rather than here, at least that
991 	 * code knows what it's doing.
992 	 */
993 	gfp_mask |= __GFP_NOFAIL;
994 
995 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
996 
997 	BUG_ON(!PageLocked(page));
998 
999 	if (page_has_buffers(page)) {
1000 		bh = page_buffers(page);
1001 		if (bh->b_size == size) {
1002 			end_block = init_page_buffers(page, bdev,
1003 						(sector_t)index << sizebits,
1004 						size);
1005 			goto done;
1006 		}
1007 		if (!try_to_free_buffers(page_folio(page)))
1008 			goto failed;
1009 	}
1010 
1011 	/*
1012 	 * Allocate some buffers for this page
1013 	 */
1014 	bh = alloc_page_buffers(page, size, true);
1015 
1016 	/*
1017 	 * Link the page to the buffers and initialise them.  Take the
1018 	 * lock to be atomic wrt __find_get_block(), which does not
1019 	 * run under the page lock.
1020 	 */
1021 	spin_lock(&inode->i_mapping->private_lock);
1022 	link_dev_buffers(page, bh);
1023 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1024 			size);
1025 	spin_unlock(&inode->i_mapping->private_lock);
1026 done:
1027 	ret = (block < end_block) ? 1 : -ENXIO;
1028 failed:
1029 	unlock_page(page);
1030 	put_page(page);
1031 	return ret;
1032 }
1033 
1034 /*
1035  * Create buffers for the specified block device block's page.  If
1036  * that page was dirty, the buffers are set dirty also.
1037  */
1038 static int
1039 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1040 {
1041 	pgoff_t index;
1042 	int sizebits;
1043 
1044 	sizebits = PAGE_SHIFT - __ffs(size);
1045 	index = block >> sizebits;
1046 
1047 	/*
1048 	 * Check for a block which wants to lie outside our maximum possible
1049 	 * pagecache index.  (this comparison is done using sector_t types).
1050 	 */
1051 	if (unlikely(index != block >> sizebits)) {
1052 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1053 			"device %pg\n",
1054 			__func__, (unsigned long long)block,
1055 			bdev);
1056 		return -EIO;
1057 	}
1058 
1059 	/* Create a page with the proper size buffers.. */
1060 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1061 }
1062 
1063 static struct buffer_head *
1064 __getblk_slow(struct block_device *bdev, sector_t block,
1065 	     unsigned size, gfp_t gfp)
1066 {
1067 	/* Size must be multiple of hard sectorsize */
1068 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1069 			(size < 512 || size > PAGE_SIZE))) {
1070 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1071 					size);
1072 		printk(KERN_ERR "logical block size: %d\n",
1073 					bdev_logical_block_size(bdev));
1074 
1075 		dump_stack();
1076 		return NULL;
1077 	}
1078 
1079 	for (;;) {
1080 		struct buffer_head *bh;
1081 		int ret;
1082 
1083 		bh = __find_get_block(bdev, block, size);
1084 		if (bh)
1085 			return bh;
1086 
1087 		ret = grow_buffers(bdev, block, size, gfp);
1088 		if (ret < 0)
1089 			return NULL;
1090 	}
1091 }
1092 
1093 /*
1094  * The relationship between dirty buffers and dirty pages:
1095  *
1096  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1097  * the page is tagged dirty in the page cache.
1098  *
1099  * At all times, the dirtiness of the buffers represents the dirtiness of
1100  * subsections of the page.  If the page has buffers, the page dirty bit is
1101  * merely a hint about the true dirty state.
1102  *
1103  * When a page is set dirty in its entirety, all its buffers are marked dirty
1104  * (if the page has buffers).
1105  *
1106  * When a buffer is marked dirty, its page is dirtied, but the page's other
1107  * buffers are not.
1108  *
1109  * Also.  When blockdev buffers are explicitly read with bread(), they
1110  * individually become uptodate.  But their backing page remains not
1111  * uptodate - even if all of its buffers are uptodate.  A subsequent
1112  * block_read_full_folio() against that folio will discover all the uptodate
1113  * buffers, will set the folio uptodate and will perform no I/O.
1114  */
1115 
1116 /**
1117  * mark_buffer_dirty - mark a buffer_head as needing writeout
1118  * @bh: the buffer_head to mark dirty
1119  *
1120  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1121  * its backing page dirty, then tag the page as dirty in the page cache
1122  * and then attach the address_space's inode to its superblock's dirty
1123  * inode list.
1124  *
1125  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1126  * i_pages lock and mapping->host->i_lock.
1127  */
1128 void mark_buffer_dirty(struct buffer_head *bh)
1129 {
1130 	WARN_ON_ONCE(!buffer_uptodate(bh));
1131 
1132 	trace_block_dirty_buffer(bh);
1133 
1134 	/*
1135 	 * Very *carefully* optimize the it-is-already-dirty case.
1136 	 *
1137 	 * Don't let the final "is it dirty" escape to before we
1138 	 * perhaps modified the buffer.
1139 	 */
1140 	if (buffer_dirty(bh)) {
1141 		smp_mb();
1142 		if (buffer_dirty(bh))
1143 			return;
1144 	}
1145 
1146 	if (!test_set_buffer_dirty(bh)) {
1147 		struct folio *folio = bh->b_folio;
1148 		struct address_space *mapping = NULL;
1149 
1150 		folio_memcg_lock(folio);
1151 		if (!folio_test_set_dirty(folio)) {
1152 			mapping = folio->mapping;
1153 			if (mapping)
1154 				__folio_mark_dirty(folio, mapping, 0);
1155 		}
1156 		folio_memcg_unlock(folio);
1157 		if (mapping)
1158 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1159 	}
1160 }
1161 EXPORT_SYMBOL(mark_buffer_dirty);
1162 
1163 void mark_buffer_write_io_error(struct buffer_head *bh)
1164 {
1165 	struct super_block *sb;
1166 
1167 	set_buffer_write_io_error(bh);
1168 	/* FIXME: do we need to set this in both places? */
1169 	if (bh->b_folio && bh->b_folio->mapping)
1170 		mapping_set_error(bh->b_folio->mapping, -EIO);
1171 	if (bh->b_assoc_map)
1172 		mapping_set_error(bh->b_assoc_map, -EIO);
1173 	rcu_read_lock();
1174 	sb = READ_ONCE(bh->b_bdev->bd_super);
1175 	if (sb)
1176 		errseq_set(&sb->s_wb_err, -EIO);
1177 	rcu_read_unlock();
1178 }
1179 EXPORT_SYMBOL(mark_buffer_write_io_error);
1180 
1181 /*
1182  * Decrement a buffer_head's reference count.  If all buffers against a page
1183  * have zero reference count, are clean and unlocked, and if the page is clean
1184  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1185  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1186  * a page but it ends up not being freed, and buffers may later be reattached).
1187  */
1188 void __brelse(struct buffer_head * buf)
1189 {
1190 	if (atomic_read(&buf->b_count)) {
1191 		put_bh(buf);
1192 		return;
1193 	}
1194 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1195 }
1196 EXPORT_SYMBOL(__brelse);
1197 
1198 /*
1199  * bforget() is like brelse(), except it discards any
1200  * potentially dirty data.
1201  */
1202 void __bforget(struct buffer_head *bh)
1203 {
1204 	clear_buffer_dirty(bh);
1205 	if (bh->b_assoc_map) {
1206 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1207 
1208 		spin_lock(&buffer_mapping->private_lock);
1209 		list_del_init(&bh->b_assoc_buffers);
1210 		bh->b_assoc_map = NULL;
1211 		spin_unlock(&buffer_mapping->private_lock);
1212 	}
1213 	__brelse(bh);
1214 }
1215 EXPORT_SYMBOL(__bforget);
1216 
1217 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1218 {
1219 	lock_buffer(bh);
1220 	if (buffer_uptodate(bh)) {
1221 		unlock_buffer(bh);
1222 		return bh;
1223 	} else {
1224 		get_bh(bh);
1225 		bh->b_end_io = end_buffer_read_sync;
1226 		submit_bh(REQ_OP_READ, bh);
1227 		wait_on_buffer(bh);
1228 		if (buffer_uptodate(bh))
1229 			return bh;
1230 	}
1231 	brelse(bh);
1232 	return NULL;
1233 }
1234 
1235 /*
1236  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1237  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1238  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1239  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1240  * CPU's LRUs at the same time.
1241  *
1242  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1243  * sb_find_get_block().
1244  *
1245  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1246  * a local interrupt disable for that.
1247  */
1248 
1249 #define BH_LRU_SIZE	16
1250 
1251 struct bh_lru {
1252 	struct buffer_head *bhs[BH_LRU_SIZE];
1253 };
1254 
1255 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1256 
1257 #ifdef CONFIG_SMP
1258 #define bh_lru_lock()	local_irq_disable()
1259 #define bh_lru_unlock()	local_irq_enable()
1260 #else
1261 #define bh_lru_lock()	preempt_disable()
1262 #define bh_lru_unlock()	preempt_enable()
1263 #endif
1264 
1265 static inline void check_irqs_on(void)
1266 {
1267 #ifdef irqs_disabled
1268 	BUG_ON(irqs_disabled());
1269 #endif
1270 }
1271 
1272 /*
1273  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1274  * inserted at the front, and the buffer_head at the back if any is evicted.
1275  * Or, if already in the LRU it is moved to the front.
1276  */
1277 static void bh_lru_install(struct buffer_head *bh)
1278 {
1279 	struct buffer_head *evictee = bh;
1280 	struct bh_lru *b;
1281 	int i;
1282 
1283 	check_irqs_on();
1284 	bh_lru_lock();
1285 
1286 	/*
1287 	 * the refcount of buffer_head in bh_lru prevents dropping the
1288 	 * attached page(i.e., try_to_free_buffers) so it could cause
1289 	 * failing page migration.
1290 	 * Skip putting upcoming bh into bh_lru until migration is done.
1291 	 */
1292 	if (lru_cache_disabled()) {
1293 		bh_lru_unlock();
1294 		return;
1295 	}
1296 
1297 	b = this_cpu_ptr(&bh_lrus);
1298 	for (i = 0; i < BH_LRU_SIZE; i++) {
1299 		swap(evictee, b->bhs[i]);
1300 		if (evictee == bh) {
1301 			bh_lru_unlock();
1302 			return;
1303 		}
1304 	}
1305 
1306 	get_bh(bh);
1307 	bh_lru_unlock();
1308 	brelse(evictee);
1309 }
1310 
1311 /*
1312  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1313  */
1314 static struct buffer_head *
1315 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1316 {
1317 	struct buffer_head *ret = NULL;
1318 	unsigned int i;
1319 
1320 	check_irqs_on();
1321 	bh_lru_lock();
1322 	for (i = 0; i < BH_LRU_SIZE; i++) {
1323 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1324 
1325 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1326 		    bh->b_size == size) {
1327 			if (i) {
1328 				while (i) {
1329 					__this_cpu_write(bh_lrus.bhs[i],
1330 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1331 					i--;
1332 				}
1333 				__this_cpu_write(bh_lrus.bhs[0], bh);
1334 			}
1335 			get_bh(bh);
1336 			ret = bh;
1337 			break;
1338 		}
1339 	}
1340 	bh_lru_unlock();
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1346  * it in the LRU and mark it as accessed.  If it is not present then return
1347  * NULL
1348  */
1349 struct buffer_head *
1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1351 {
1352 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1353 
1354 	if (bh == NULL) {
1355 		/* __find_get_block_slow will mark the page accessed */
1356 		bh = __find_get_block_slow(bdev, block);
1357 		if (bh)
1358 			bh_lru_install(bh);
1359 	} else
1360 		touch_buffer(bh);
1361 
1362 	return bh;
1363 }
1364 EXPORT_SYMBOL(__find_get_block);
1365 
1366 /*
1367  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1368  * which corresponds to the passed block_device, block and size. The
1369  * returned buffer has its reference count incremented.
1370  *
1371  * __getblk_gfp() will lock up the machine if grow_dev_page's
1372  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1373  */
1374 struct buffer_head *
1375 __getblk_gfp(struct block_device *bdev, sector_t block,
1376 	     unsigned size, gfp_t gfp)
1377 {
1378 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1379 
1380 	might_sleep();
1381 	if (bh == NULL)
1382 		bh = __getblk_slow(bdev, block, size, gfp);
1383 	return bh;
1384 }
1385 EXPORT_SYMBOL(__getblk_gfp);
1386 
1387 /*
1388  * Do async read-ahead on a buffer..
1389  */
1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1391 {
1392 	struct buffer_head *bh = __getblk(bdev, block, size);
1393 	if (likely(bh)) {
1394 		bh_readahead(bh, REQ_RAHEAD);
1395 		brelse(bh);
1396 	}
1397 }
1398 EXPORT_SYMBOL(__breadahead);
1399 
1400 /**
1401  *  __bread_gfp() - reads a specified block and returns the bh
1402  *  @bdev: the block_device to read from
1403  *  @block: number of block
1404  *  @size: size (in bytes) to read
1405  *  @gfp: page allocation flag
1406  *
1407  *  Reads a specified block, and returns buffer head that contains it.
1408  *  The page cache can be allocated from non-movable area
1409  *  not to prevent page migration if you set gfp to zero.
1410  *  It returns NULL if the block was unreadable.
1411  */
1412 struct buffer_head *
1413 __bread_gfp(struct block_device *bdev, sector_t block,
1414 		   unsigned size, gfp_t gfp)
1415 {
1416 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1417 
1418 	if (likely(bh) && !buffer_uptodate(bh))
1419 		bh = __bread_slow(bh);
1420 	return bh;
1421 }
1422 EXPORT_SYMBOL(__bread_gfp);
1423 
1424 static void __invalidate_bh_lrus(struct bh_lru *b)
1425 {
1426 	int i;
1427 
1428 	for (i = 0; i < BH_LRU_SIZE; i++) {
1429 		brelse(b->bhs[i]);
1430 		b->bhs[i] = NULL;
1431 	}
1432 }
1433 /*
1434  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1435  * This doesn't race because it runs in each cpu either in irq
1436  * or with preempt disabled.
1437  */
1438 static void invalidate_bh_lru(void *arg)
1439 {
1440 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1441 
1442 	__invalidate_bh_lrus(b);
1443 	put_cpu_var(bh_lrus);
1444 }
1445 
1446 bool has_bh_in_lru(int cpu, void *dummy)
1447 {
1448 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449 	int i;
1450 
1451 	for (i = 0; i < BH_LRU_SIZE; i++) {
1452 		if (b->bhs[i])
1453 			return true;
1454 	}
1455 
1456 	return false;
1457 }
1458 
1459 void invalidate_bh_lrus(void)
1460 {
1461 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1462 }
1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464 
1465 /*
1466  * It's called from workqueue context so we need a bh_lru_lock to close
1467  * the race with preemption/irq.
1468  */
1469 void invalidate_bh_lrus_cpu(void)
1470 {
1471 	struct bh_lru *b;
1472 
1473 	bh_lru_lock();
1474 	b = this_cpu_ptr(&bh_lrus);
1475 	__invalidate_bh_lrus(b);
1476 	bh_lru_unlock();
1477 }
1478 
1479 void set_bh_page(struct buffer_head *bh,
1480 		struct page *page, unsigned long offset)
1481 {
1482 	bh->b_page = page;
1483 	BUG_ON(offset >= PAGE_SIZE);
1484 	if (PageHighMem(page))
1485 		/*
1486 		 * This catches illegal uses and preserves the offset:
1487 		 */
1488 		bh->b_data = (char *)(0 + offset);
1489 	else
1490 		bh->b_data = page_address(page) + offset;
1491 }
1492 EXPORT_SYMBOL(set_bh_page);
1493 
1494 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1495 		  unsigned long offset)
1496 {
1497 	bh->b_folio = folio;
1498 	BUG_ON(offset >= folio_size(folio));
1499 	if (folio_test_highmem(folio))
1500 		/*
1501 		 * This catches illegal uses and preserves the offset:
1502 		 */
1503 		bh->b_data = (char *)(0 + offset);
1504 	else
1505 		bh->b_data = folio_address(folio) + offset;
1506 }
1507 EXPORT_SYMBOL(folio_set_bh);
1508 
1509 /*
1510  * Called when truncating a buffer on a page completely.
1511  */
1512 
1513 /* Bits that are cleared during an invalidate */
1514 #define BUFFER_FLAGS_DISCARD \
1515 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1516 	 1 << BH_Delay | 1 << BH_Unwritten)
1517 
1518 static void discard_buffer(struct buffer_head * bh)
1519 {
1520 	unsigned long b_state;
1521 
1522 	lock_buffer(bh);
1523 	clear_buffer_dirty(bh);
1524 	bh->b_bdev = NULL;
1525 	b_state = READ_ONCE(bh->b_state);
1526 	do {
1527 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1528 			      b_state & ~BUFFER_FLAGS_DISCARD));
1529 	unlock_buffer(bh);
1530 }
1531 
1532 /**
1533  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1534  * @folio: The folio which is affected.
1535  * @offset: start of the range to invalidate
1536  * @length: length of the range to invalidate
1537  *
1538  * block_invalidate_folio() is called when all or part of the folio has been
1539  * invalidated by a truncate operation.
1540  *
1541  * block_invalidate_folio() does not have to release all buffers, but it must
1542  * ensure that no dirty buffer is left outside @offset and that no I/O
1543  * is underway against any of the blocks which are outside the truncation
1544  * point.  Because the caller is about to free (and possibly reuse) those
1545  * blocks on-disk.
1546  */
1547 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1548 {
1549 	struct buffer_head *head, *bh, *next;
1550 	size_t curr_off = 0;
1551 	size_t stop = length + offset;
1552 
1553 	BUG_ON(!folio_test_locked(folio));
1554 
1555 	/*
1556 	 * Check for overflow
1557 	 */
1558 	BUG_ON(stop > folio_size(folio) || stop < length);
1559 
1560 	head = folio_buffers(folio);
1561 	if (!head)
1562 		return;
1563 
1564 	bh = head;
1565 	do {
1566 		size_t next_off = curr_off + bh->b_size;
1567 		next = bh->b_this_page;
1568 
1569 		/*
1570 		 * Are we still fully in range ?
1571 		 */
1572 		if (next_off > stop)
1573 			goto out;
1574 
1575 		/*
1576 		 * is this block fully invalidated?
1577 		 */
1578 		if (offset <= curr_off)
1579 			discard_buffer(bh);
1580 		curr_off = next_off;
1581 		bh = next;
1582 	} while (bh != head);
1583 
1584 	/*
1585 	 * We release buffers only if the entire folio is being invalidated.
1586 	 * The get_block cached value has been unconditionally invalidated,
1587 	 * so real IO is not possible anymore.
1588 	 */
1589 	if (length == folio_size(folio))
1590 		filemap_release_folio(folio, 0);
1591 out:
1592 	return;
1593 }
1594 EXPORT_SYMBOL(block_invalidate_folio);
1595 
1596 /*
1597  * We attach and possibly dirty the buffers atomically wrt
1598  * block_dirty_folio() via private_lock.  try_to_free_buffers
1599  * is already excluded via the folio lock.
1600  */
1601 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1602 				unsigned long b_state)
1603 {
1604 	struct buffer_head *bh, *head, *tail;
1605 
1606 	head = folio_alloc_buffers(folio, blocksize, true);
1607 	bh = head;
1608 	do {
1609 		bh->b_state |= b_state;
1610 		tail = bh;
1611 		bh = bh->b_this_page;
1612 	} while (bh);
1613 	tail->b_this_page = head;
1614 
1615 	spin_lock(&folio->mapping->private_lock);
1616 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1617 		bh = head;
1618 		do {
1619 			if (folio_test_dirty(folio))
1620 				set_buffer_dirty(bh);
1621 			if (folio_test_uptodate(folio))
1622 				set_buffer_uptodate(bh);
1623 			bh = bh->b_this_page;
1624 		} while (bh != head);
1625 	}
1626 	folio_attach_private(folio, head);
1627 	spin_unlock(&folio->mapping->private_lock);
1628 }
1629 EXPORT_SYMBOL(folio_create_empty_buffers);
1630 
1631 void create_empty_buffers(struct page *page,
1632 			unsigned long blocksize, unsigned long b_state)
1633 {
1634 	folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1635 }
1636 EXPORT_SYMBOL(create_empty_buffers);
1637 
1638 /**
1639  * clean_bdev_aliases: clean a range of buffers in block device
1640  * @bdev: Block device to clean buffers in
1641  * @block: Start of a range of blocks to clean
1642  * @len: Number of blocks to clean
1643  *
1644  * We are taking a range of blocks for data and we don't want writeback of any
1645  * buffer-cache aliases starting from return from this function and until the
1646  * moment when something will explicitly mark the buffer dirty (hopefully that
1647  * will not happen until we will free that block ;-) We don't even need to mark
1648  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1649  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1650  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1651  * would confuse anyone who might pick it with bread() afterwards...
1652  *
1653  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1654  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1655  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1656  * need to.  That happens here.
1657  */
1658 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1659 {
1660 	struct inode *bd_inode = bdev->bd_inode;
1661 	struct address_space *bd_mapping = bd_inode->i_mapping;
1662 	struct folio_batch fbatch;
1663 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1664 	pgoff_t end;
1665 	int i, count;
1666 	struct buffer_head *bh;
1667 	struct buffer_head *head;
1668 
1669 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1670 	folio_batch_init(&fbatch);
1671 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1672 		count = folio_batch_count(&fbatch);
1673 		for (i = 0; i < count; i++) {
1674 			struct folio *folio = fbatch.folios[i];
1675 
1676 			if (!folio_buffers(folio))
1677 				continue;
1678 			/*
1679 			 * We use folio lock instead of bd_mapping->private_lock
1680 			 * to pin buffers here since we can afford to sleep and
1681 			 * it scales better than a global spinlock lock.
1682 			 */
1683 			folio_lock(folio);
1684 			/* Recheck when the folio is locked which pins bhs */
1685 			head = folio_buffers(folio);
1686 			if (!head)
1687 				goto unlock_page;
1688 			bh = head;
1689 			do {
1690 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1691 					goto next;
1692 				if (bh->b_blocknr >= block + len)
1693 					break;
1694 				clear_buffer_dirty(bh);
1695 				wait_on_buffer(bh);
1696 				clear_buffer_req(bh);
1697 next:
1698 				bh = bh->b_this_page;
1699 			} while (bh != head);
1700 unlock_page:
1701 			folio_unlock(folio);
1702 		}
1703 		folio_batch_release(&fbatch);
1704 		cond_resched();
1705 		/* End of range already reached? */
1706 		if (index > end || !index)
1707 			break;
1708 	}
1709 }
1710 EXPORT_SYMBOL(clean_bdev_aliases);
1711 
1712 /*
1713  * Size is a power-of-two in the range 512..PAGE_SIZE,
1714  * and the case we care about most is PAGE_SIZE.
1715  *
1716  * So this *could* possibly be written with those
1717  * constraints in mind (relevant mostly if some
1718  * architecture has a slow bit-scan instruction)
1719  */
1720 static inline int block_size_bits(unsigned int blocksize)
1721 {
1722 	return ilog2(blocksize);
1723 }
1724 
1725 static struct buffer_head *folio_create_buffers(struct folio *folio,
1726 						struct inode *inode,
1727 						unsigned int b_state)
1728 {
1729 	BUG_ON(!folio_test_locked(folio));
1730 
1731 	if (!folio_buffers(folio))
1732 		folio_create_empty_buffers(folio,
1733 					   1 << READ_ONCE(inode->i_blkbits),
1734 					   b_state);
1735 	return folio_buffers(folio);
1736 }
1737 
1738 /*
1739  * NOTE! All mapped/uptodate combinations are valid:
1740  *
1741  *	Mapped	Uptodate	Meaning
1742  *
1743  *	No	No		"unknown" - must do get_block()
1744  *	No	Yes		"hole" - zero-filled
1745  *	Yes	No		"allocated" - allocated on disk, not read in
1746  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1747  *
1748  * "Dirty" is valid only with the last case (mapped+uptodate).
1749  */
1750 
1751 /*
1752  * While block_write_full_page is writing back the dirty buffers under
1753  * the page lock, whoever dirtied the buffers may decide to clean them
1754  * again at any time.  We handle that by only looking at the buffer
1755  * state inside lock_buffer().
1756  *
1757  * If block_write_full_page() is called for regular writeback
1758  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1759  * locked buffer.   This only can happen if someone has written the buffer
1760  * directly, with submit_bh().  At the address_space level PageWriteback
1761  * prevents this contention from occurring.
1762  *
1763  * If block_write_full_page() is called with wbc->sync_mode ==
1764  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1765  * causes the writes to be flagged as synchronous writes.
1766  */
1767 int __block_write_full_page(struct inode *inode, struct page *page,
1768 			get_block_t *get_block, struct writeback_control *wbc,
1769 			bh_end_io_t *handler)
1770 {
1771 	int err;
1772 	sector_t block;
1773 	sector_t last_block;
1774 	struct buffer_head *bh, *head;
1775 	unsigned int blocksize, bbits;
1776 	int nr_underway = 0;
1777 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1778 
1779 	head = folio_create_buffers(page_folio(page), inode,
1780 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1781 
1782 	/*
1783 	 * Be very careful.  We have no exclusion from block_dirty_folio
1784 	 * here, and the (potentially unmapped) buffers may become dirty at
1785 	 * any time.  If a buffer becomes dirty here after we've inspected it
1786 	 * then we just miss that fact, and the page stays dirty.
1787 	 *
1788 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1789 	 * handle that here by just cleaning them.
1790 	 */
1791 
1792 	bh = head;
1793 	blocksize = bh->b_size;
1794 	bbits = block_size_bits(blocksize);
1795 
1796 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1797 	last_block = (i_size_read(inode) - 1) >> bbits;
1798 
1799 	/*
1800 	 * Get all the dirty buffers mapped to disk addresses and
1801 	 * handle any aliases from the underlying blockdev's mapping.
1802 	 */
1803 	do {
1804 		if (block > last_block) {
1805 			/*
1806 			 * mapped buffers outside i_size will occur, because
1807 			 * this page can be outside i_size when there is a
1808 			 * truncate in progress.
1809 			 */
1810 			/*
1811 			 * The buffer was zeroed by block_write_full_page()
1812 			 */
1813 			clear_buffer_dirty(bh);
1814 			set_buffer_uptodate(bh);
1815 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1816 			   buffer_dirty(bh)) {
1817 			WARN_ON(bh->b_size != blocksize);
1818 			err = get_block(inode, block, bh, 1);
1819 			if (err)
1820 				goto recover;
1821 			clear_buffer_delay(bh);
1822 			if (buffer_new(bh)) {
1823 				/* blockdev mappings never come here */
1824 				clear_buffer_new(bh);
1825 				clean_bdev_bh_alias(bh);
1826 			}
1827 		}
1828 		bh = bh->b_this_page;
1829 		block++;
1830 	} while (bh != head);
1831 
1832 	do {
1833 		if (!buffer_mapped(bh))
1834 			continue;
1835 		/*
1836 		 * If it's a fully non-blocking write attempt and we cannot
1837 		 * lock the buffer then redirty the page.  Note that this can
1838 		 * potentially cause a busy-wait loop from writeback threads
1839 		 * and kswapd activity, but those code paths have their own
1840 		 * higher-level throttling.
1841 		 */
1842 		if (wbc->sync_mode != WB_SYNC_NONE) {
1843 			lock_buffer(bh);
1844 		} else if (!trylock_buffer(bh)) {
1845 			redirty_page_for_writepage(wbc, page);
1846 			continue;
1847 		}
1848 		if (test_clear_buffer_dirty(bh)) {
1849 			mark_buffer_async_write_endio(bh, handler);
1850 		} else {
1851 			unlock_buffer(bh);
1852 		}
1853 	} while ((bh = bh->b_this_page) != head);
1854 
1855 	/*
1856 	 * The page and its buffers are protected by PageWriteback(), so we can
1857 	 * drop the bh refcounts early.
1858 	 */
1859 	BUG_ON(PageWriteback(page));
1860 	set_page_writeback(page);
1861 
1862 	do {
1863 		struct buffer_head *next = bh->b_this_page;
1864 		if (buffer_async_write(bh)) {
1865 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1866 			nr_underway++;
1867 		}
1868 		bh = next;
1869 	} while (bh != head);
1870 	unlock_page(page);
1871 
1872 	err = 0;
1873 done:
1874 	if (nr_underway == 0) {
1875 		/*
1876 		 * The page was marked dirty, but the buffers were
1877 		 * clean.  Someone wrote them back by hand with
1878 		 * write_dirty_buffer/submit_bh.  A rare case.
1879 		 */
1880 		end_page_writeback(page);
1881 
1882 		/*
1883 		 * The page and buffer_heads can be released at any time from
1884 		 * here on.
1885 		 */
1886 	}
1887 	return err;
1888 
1889 recover:
1890 	/*
1891 	 * ENOSPC, or some other error.  We may already have added some
1892 	 * blocks to the file, so we need to write these out to avoid
1893 	 * exposing stale data.
1894 	 * The page is currently locked and not marked for writeback
1895 	 */
1896 	bh = head;
1897 	/* Recovery: lock and submit the mapped buffers */
1898 	do {
1899 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1900 		    !buffer_delay(bh)) {
1901 			lock_buffer(bh);
1902 			mark_buffer_async_write_endio(bh, handler);
1903 		} else {
1904 			/*
1905 			 * The buffer may have been set dirty during
1906 			 * attachment to a dirty page.
1907 			 */
1908 			clear_buffer_dirty(bh);
1909 		}
1910 	} while ((bh = bh->b_this_page) != head);
1911 	SetPageError(page);
1912 	BUG_ON(PageWriteback(page));
1913 	mapping_set_error(page->mapping, err);
1914 	set_page_writeback(page);
1915 	do {
1916 		struct buffer_head *next = bh->b_this_page;
1917 		if (buffer_async_write(bh)) {
1918 			clear_buffer_dirty(bh);
1919 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1920 			nr_underway++;
1921 		}
1922 		bh = next;
1923 	} while (bh != head);
1924 	unlock_page(page);
1925 	goto done;
1926 }
1927 EXPORT_SYMBOL(__block_write_full_page);
1928 
1929 /*
1930  * If a page has any new buffers, zero them out here, and mark them uptodate
1931  * and dirty so they'll be written out (in order to prevent uninitialised
1932  * block data from leaking). And clear the new bit.
1933  */
1934 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1935 {
1936 	unsigned int block_start, block_end;
1937 	struct buffer_head *head, *bh;
1938 
1939 	BUG_ON(!PageLocked(page));
1940 	if (!page_has_buffers(page))
1941 		return;
1942 
1943 	bh = head = page_buffers(page);
1944 	block_start = 0;
1945 	do {
1946 		block_end = block_start + bh->b_size;
1947 
1948 		if (buffer_new(bh)) {
1949 			if (block_end > from && block_start < to) {
1950 				if (!PageUptodate(page)) {
1951 					unsigned start, size;
1952 
1953 					start = max(from, block_start);
1954 					size = min(to, block_end) - start;
1955 
1956 					zero_user(page, start, size);
1957 					set_buffer_uptodate(bh);
1958 				}
1959 
1960 				clear_buffer_new(bh);
1961 				mark_buffer_dirty(bh);
1962 			}
1963 		}
1964 
1965 		block_start = block_end;
1966 		bh = bh->b_this_page;
1967 	} while (bh != head);
1968 }
1969 EXPORT_SYMBOL(page_zero_new_buffers);
1970 
1971 static void
1972 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1973 		const struct iomap *iomap)
1974 {
1975 	loff_t offset = block << inode->i_blkbits;
1976 
1977 	bh->b_bdev = iomap->bdev;
1978 
1979 	/*
1980 	 * Block points to offset in file we need to map, iomap contains
1981 	 * the offset at which the map starts. If the map ends before the
1982 	 * current block, then do not map the buffer and let the caller
1983 	 * handle it.
1984 	 */
1985 	BUG_ON(offset >= iomap->offset + iomap->length);
1986 
1987 	switch (iomap->type) {
1988 	case IOMAP_HOLE:
1989 		/*
1990 		 * If the buffer is not up to date or beyond the current EOF,
1991 		 * we need to mark it as new to ensure sub-block zeroing is
1992 		 * executed if necessary.
1993 		 */
1994 		if (!buffer_uptodate(bh) ||
1995 		    (offset >= i_size_read(inode)))
1996 			set_buffer_new(bh);
1997 		break;
1998 	case IOMAP_DELALLOC:
1999 		if (!buffer_uptodate(bh) ||
2000 		    (offset >= i_size_read(inode)))
2001 			set_buffer_new(bh);
2002 		set_buffer_uptodate(bh);
2003 		set_buffer_mapped(bh);
2004 		set_buffer_delay(bh);
2005 		break;
2006 	case IOMAP_UNWRITTEN:
2007 		/*
2008 		 * For unwritten regions, we always need to ensure that regions
2009 		 * in the block we are not writing to are zeroed. Mark the
2010 		 * buffer as new to ensure this.
2011 		 */
2012 		set_buffer_new(bh);
2013 		set_buffer_unwritten(bh);
2014 		fallthrough;
2015 	case IOMAP_MAPPED:
2016 		if ((iomap->flags & IOMAP_F_NEW) ||
2017 		    offset >= i_size_read(inode))
2018 			set_buffer_new(bh);
2019 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2020 				inode->i_blkbits;
2021 		set_buffer_mapped(bh);
2022 		break;
2023 	}
2024 }
2025 
2026 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2027 		get_block_t *get_block, const struct iomap *iomap)
2028 {
2029 	unsigned from = pos & (PAGE_SIZE - 1);
2030 	unsigned to = from + len;
2031 	struct inode *inode = folio->mapping->host;
2032 	unsigned block_start, block_end;
2033 	sector_t block;
2034 	int err = 0;
2035 	unsigned blocksize, bbits;
2036 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2037 
2038 	BUG_ON(!folio_test_locked(folio));
2039 	BUG_ON(from > PAGE_SIZE);
2040 	BUG_ON(to > PAGE_SIZE);
2041 	BUG_ON(from > to);
2042 
2043 	head = folio_create_buffers(folio, inode, 0);
2044 	blocksize = head->b_size;
2045 	bbits = block_size_bits(blocksize);
2046 
2047 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2048 
2049 	for(bh = head, block_start = 0; bh != head || !block_start;
2050 	    block++, block_start=block_end, bh = bh->b_this_page) {
2051 		block_end = block_start + blocksize;
2052 		if (block_end <= from || block_start >= to) {
2053 			if (folio_test_uptodate(folio)) {
2054 				if (!buffer_uptodate(bh))
2055 					set_buffer_uptodate(bh);
2056 			}
2057 			continue;
2058 		}
2059 		if (buffer_new(bh))
2060 			clear_buffer_new(bh);
2061 		if (!buffer_mapped(bh)) {
2062 			WARN_ON(bh->b_size != blocksize);
2063 			if (get_block) {
2064 				err = get_block(inode, block, bh, 1);
2065 				if (err)
2066 					break;
2067 			} else {
2068 				iomap_to_bh(inode, block, bh, iomap);
2069 			}
2070 
2071 			if (buffer_new(bh)) {
2072 				clean_bdev_bh_alias(bh);
2073 				if (folio_test_uptodate(folio)) {
2074 					clear_buffer_new(bh);
2075 					set_buffer_uptodate(bh);
2076 					mark_buffer_dirty(bh);
2077 					continue;
2078 				}
2079 				if (block_end > to || block_start < from)
2080 					folio_zero_segments(folio,
2081 						to, block_end,
2082 						block_start, from);
2083 				continue;
2084 			}
2085 		}
2086 		if (folio_test_uptodate(folio)) {
2087 			if (!buffer_uptodate(bh))
2088 				set_buffer_uptodate(bh);
2089 			continue;
2090 		}
2091 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2092 		    !buffer_unwritten(bh) &&
2093 		     (block_start < from || block_end > to)) {
2094 			bh_read_nowait(bh, 0);
2095 			*wait_bh++=bh;
2096 		}
2097 	}
2098 	/*
2099 	 * If we issued read requests - let them complete.
2100 	 */
2101 	while(wait_bh > wait) {
2102 		wait_on_buffer(*--wait_bh);
2103 		if (!buffer_uptodate(*wait_bh))
2104 			err = -EIO;
2105 	}
2106 	if (unlikely(err))
2107 		page_zero_new_buffers(&folio->page, from, to);
2108 	return err;
2109 }
2110 
2111 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2112 		get_block_t *get_block)
2113 {
2114 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2115 				       NULL);
2116 }
2117 EXPORT_SYMBOL(__block_write_begin);
2118 
2119 static int __block_commit_write(struct inode *inode, struct page *page,
2120 		unsigned from, unsigned to)
2121 {
2122 	unsigned block_start, block_end;
2123 	int partial = 0;
2124 	unsigned blocksize;
2125 	struct buffer_head *bh, *head;
2126 
2127 	bh = head = page_buffers(page);
2128 	blocksize = bh->b_size;
2129 
2130 	block_start = 0;
2131 	do {
2132 		block_end = block_start + blocksize;
2133 		if (block_end <= from || block_start >= to) {
2134 			if (!buffer_uptodate(bh))
2135 				partial = 1;
2136 		} else {
2137 			set_buffer_uptodate(bh);
2138 			mark_buffer_dirty(bh);
2139 		}
2140 		if (buffer_new(bh))
2141 			clear_buffer_new(bh);
2142 
2143 		block_start = block_end;
2144 		bh = bh->b_this_page;
2145 	} while (bh != head);
2146 
2147 	/*
2148 	 * If this is a partial write which happened to make all buffers
2149 	 * uptodate then we can optimize away a bogus read_folio() for
2150 	 * the next read(). Here we 'discover' whether the page went
2151 	 * uptodate as a result of this (potentially partial) write.
2152 	 */
2153 	if (!partial)
2154 		SetPageUptodate(page);
2155 	return 0;
2156 }
2157 
2158 /*
2159  * block_write_begin takes care of the basic task of block allocation and
2160  * bringing partial write blocks uptodate first.
2161  *
2162  * The filesystem needs to handle block truncation upon failure.
2163  */
2164 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2165 		struct page **pagep, get_block_t *get_block)
2166 {
2167 	pgoff_t index = pos >> PAGE_SHIFT;
2168 	struct page *page;
2169 	int status;
2170 
2171 	page = grab_cache_page_write_begin(mapping, index);
2172 	if (!page)
2173 		return -ENOMEM;
2174 
2175 	status = __block_write_begin(page, pos, len, get_block);
2176 	if (unlikely(status)) {
2177 		unlock_page(page);
2178 		put_page(page);
2179 		page = NULL;
2180 	}
2181 
2182 	*pagep = page;
2183 	return status;
2184 }
2185 EXPORT_SYMBOL(block_write_begin);
2186 
2187 int block_write_end(struct file *file, struct address_space *mapping,
2188 			loff_t pos, unsigned len, unsigned copied,
2189 			struct page *page, void *fsdata)
2190 {
2191 	struct inode *inode = mapping->host;
2192 	unsigned start;
2193 
2194 	start = pos & (PAGE_SIZE - 1);
2195 
2196 	if (unlikely(copied < len)) {
2197 		/*
2198 		 * The buffers that were written will now be uptodate, so
2199 		 * we don't have to worry about a read_folio reading them
2200 		 * and overwriting a partial write. However if we have
2201 		 * encountered a short write and only partially written
2202 		 * into a buffer, it will not be marked uptodate, so a
2203 		 * read_folio might come in and destroy our partial write.
2204 		 *
2205 		 * Do the simplest thing, and just treat any short write to a
2206 		 * non uptodate page as a zero-length write, and force the
2207 		 * caller to redo the whole thing.
2208 		 */
2209 		if (!PageUptodate(page))
2210 			copied = 0;
2211 
2212 		page_zero_new_buffers(page, start+copied, start+len);
2213 	}
2214 	flush_dcache_page(page);
2215 
2216 	/* This could be a short (even 0-length) commit */
2217 	__block_commit_write(inode, page, start, start+copied);
2218 
2219 	return copied;
2220 }
2221 EXPORT_SYMBOL(block_write_end);
2222 
2223 int generic_write_end(struct file *file, struct address_space *mapping,
2224 			loff_t pos, unsigned len, unsigned copied,
2225 			struct page *page, void *fsdata)
2226 {
2227 	struct inode *inode = mapping->host;
2228 	loff_t old_size = inode->i_size;
2229 	bool i_size_changed = false;
2230 
2231 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2232 
2233 	/*
2234 	 * No need to use i_size_read() here, the i_size cannot change under us
2235 	 * because we hold i_rwsem.
2236 	 *
2237 	 * But it's important to update i_size while still holding page lock:
2238 	 * page writeout could otherwise come in and zero beyond i_size.
2239 	 */
2240 	if (pos + copied > inode->i_size) {
2241 		i_size_write(inode, pos + copied);
2242 		i_size_changed = true;
2243 	}
2244 
2245 	unlock_page(page);
2246 	put_page(page);
2247 
2248 	if (old_size < pos)
2249 		pagecache_isize_extended(inode, old_size, pos);
2250 	/*
2251 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2252 	 * makes the holding time of page lock longer. Second, it forces lock
2253 	 * ordering of page lock and transaction start for journaling
2254 	 * filesystems.
2255 	 */
2256 	if (i_size_changed)
2257 		mark_inode_dirty(inode);
2258 	return copied;
2259 }
2260 EXPORT_SYMBOL(generic_write_end);
2261 
2262 /*
2263  * block_is_partially_uptodate checks whether buffers within a folio are
2264  * uptodate or not.
2265  *
2266  * Returns true if all buffers which correspond to the specified part
2267  * of the folio are uptodate.
2268  */
2269 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2270 {
2271 	unsigned block_start, block_end, blocksize;
2272 	unsigned to;
2273 	struct buffer_head *bh, *head;
2274 	bool ret = true;
2275 
2276 	head = folio_buffers(folio);
2277 	if (!head)
2278 		return false;
2279 	blocksize = head->b_size;
2280 	to = min_t(unsigned, folio_size(folio) - from, count);
2281 	to = from + to;
2282 	if (from < blocksize && to > folio_size(folio) - blocksize)
2283 		return false;
2284 
2285 	bh = head;
2286 	block_start = 0;
2287 	do {
2288 		block_end = block_start + blocksize;
2289 		if (block_end > from && block_start < to) {
2290 			if (!buffer_uptodate(bh)) {
2291 				ret = false;
2292 				break;
2293 			}
2294 			if (block_end >= to)
2295 				break;
2296 		}
2297 		block_start = block_end;
2298 		bh = bh->b_this_page;
2299 	} while (bh != head);
2300 
2301 	return ret;
2302 }
2303 EXPORT_SYMBOL(block_is_partially_uptodate);
2304 
2305 /*
2306  * Generic "read_folio" function for block devices that have the normal
2307  * get_block functionality. This is most of the block device filesystems.
2308  * Reads the folio asynchronously --- the unlock_buffer() and
2309  * set/clear_buffer_uptodate() functions propagate buffer state into the
2310  * folio once IO has completed.
2311  */
2312 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2313 {
2314 	struct inode *inode = folio->mapping->host;
2315 	sector_t iblock, lblock;
2316 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2317 	unsigned int blocksize, bbits;
2318 	int nr, i;
2319 	int fully_mapped = 1;
2320 	bool page_error = false;
2321 	loff_t limit = i_size_read(inode);
2322 
2323 	/* This is needed for ext4. */
2324 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2325 		limit = inode->i_sb->s_maxbytes;
2326 
2327 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2328 
2329 	head = folio_create_buffers(folio, inode, 0);
2330 	blocksize = head->b_size;
2331 	bbits = block_size_bits(blocksize);
2332 
2333 	iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2334 	lblock = (limit+blocksize-1) >> bbits;
2335 	bh = head;
2336 	nr = 0;
2337 	i = 0;
2338 
2339 	do {
2340 		if (buffer_uptodate(bh))
2341 			continue;
2342 
2343 		if (!buffer_mapped(bh)) {
2344 			int err = 0;
2345 
2346 			fully_mapped = 0;
2347 			if (iblock < lblock) {
2348 				WARN_ON(bh->b_size != blocksize);
2349 				err = get_block(inode, iblock, bh, 0);
2350 				if (err) {
2351 					folio_set_error(folio);
2352 					page_error = true;
2353 				}
2354 			}
2355 			if (!buffer_mapped(bh)) {
2356 				folio_zero_range(folio, i * blocksize,
2357 						blocksize);
2358 				if (!err)
2359 					set_buffer_uptodate(bh);
2360 				continue;
2361 			}
2362 			/*
2363 			 * get_block() might have updated the buffer
2364 			 * synchronously
2365 			 */
2366 			if (buffer_uptodate(bh))
2367 				continue;
2368 		}
2369 		arr[nr++] = bh;
2370 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2371 
2372 	if (fully_mapped)
2373 		folio_set_mappedtodisk(folio);
2374 
2375 	if (!nr) {
2376 		/*
2377 		 * All buffers are uptodate - we can set the folio uptodate
2378 		 * as well. But not if get_block() returned an error.
2379 		 */
2380 		if (!page_error)
2381 			folio_mark_uptodate(folio);
2382 		folio_unlock(folio);
2383 		return 0;
2384 	}
2385 
2386 	/* Stage two: lock the buffers */
2387 	for (i = 0; i < nr; i++) {
2388 		bh = arr[i];
2389 		lock_buffer(bh);
2390 		mark_buffer_async_read(bh);
2391 	}
2392 
2393 	/*
2394 	 * Stage 3: start the IO.  Check for uptodateness
2395 	 * inside the buffer lock in case another process reading
2396 	 * the underlying blockdev brought it uptodate (the sct fix).
2397 	 */
2398 	for (i = 0; i < nr; i++) {
2399 		bh = arr[i];
2400 		if (buffer_uptodate(bh))
2401 			end_buffer_async_read(bh, 1);
2402 		else
2403 			submit_bh(REQ_OP_READ, bh);
2404 	}
2405 	return 0;
2406 }
2407 EXPORT_SYMBOL(block_read_full_folio);
2408 
2409 /* utility function for filesystems that need to do work on expanding
2410  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2411  * deal with the hole.
2412  */
2413 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2414 {
2415 	struct address_space *mapping = inode->i_mapping;
2416 	const struct address_space_operations *aops = mapping->a_ops;
2417 	struct page *page;
2418 	void *fsdata = NULL;
2419 	int err;
2420 
2421 	err = inode_newsize_ok(inode, size);
2422 	if (err)
2423 		goto out;
2424 
2425 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2426 	if (err)
2427 		goto out;
2428 
2429 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2430 	BUG_ON(err > 0);
2431 
2432 out:
2433 	return err;
2434 }
2435 EXPORT_SYMBOL(generic_cont_expand_simple);
2436 
2437 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2438 			    loff_t pos, loff_t *bytes)
2439 {
2440 	struct inode *inode = mapping->host;
2441 	const struct address_space_operations *aops = mapping->a_ops;
2442 	unsigned int blocksize = i_blocksize(inode);
2443 	struct page *page;
2444 	void *fsdata = NULL;
2445 	pgoff_t index, curidx;
2446 	loff_t curpos;
2447 	unsigned zerofrom, offset, len;
2448 	int err = 0;
2449 
2450 	index = pos >> PAGE_SHIFT;
2451 	offset = pos & ~PAGE_MASK;
2452 
2453 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2454 		zerofrom = curpos & ~PAGE_MASK;
2455 		if (zerofrom & (blocksize-1)) {
2456 			*bytes |= (blocksize-1);
2457 			(*bytes)++;
2458 		}
2459 		len = PAGE_SIZE - zerofrom;
2460 
2461 		err = aops->write_begin(file, mapping, curpos, len,
2462 					    &page, &fsdata);
2463 		if (err)
2464 			goto out;
2465 		zero_user(page, zerofrom, len);
2466 		err = aops->write_end(file, mapping, curpos, len, len,
2467 						page, fsdata);
2468 		if (err < 0)
2469 			goto out;
2470 		BUG_ON(err != len);
2471 		err = 0;
2472 
2473 		balance_dirty_pages_ratelimited(mapping);
2474 
2475 		if (fatal_signal_pending(current)) {
2476 			err = -EINTR;
2477 			goto out;
2478 		}
2479 	}
2480 
2481 	/* page covers the boundary, find the boundary offset */
2482 	if (index == curidx) {
2483 		zerofrom = curpos & ~PAGE_MASK;
2484 		/* if we will expand the thing last block will be filled */
2485 		if (offset <= zerofrom) {
2486 			goto out;
2487 		}
2488 		if (zerofrom & (blocksize-1)) {
2489 			*bytes |= (blocksize-1);
2490 			(*bytes)++;
2491 		}
2492 		len = offset - zerofrom;
2493 
2494 		err = aops->write_begin(file, mapping, curpos, len,
2495 					    &page, &fsdata);
2496 		if (err)
2497 			goto out;
2498 		zero_user(page, zerofrom, len);
2499 		err = aops->write_end(file, mapping, curpos, len, len,
2500 						page, fsdata);
2501 		if (err < 0)
2502 			goto out;
2503 		BUG_ON(err != len);
2504 		err = 0;
2505 	}
2506 out:
2507 	return err;
2508 }
2509 
2510 /*
2511  * For moronic filesystems that do not allow holes in file.
2512  * We may have to extend the file.
2513  */
2514 int cont_write_begin(struct file *file, struct address_space *mapping,
2515 			loff_t pos, unsigned len,
2516 			struct page **pagep, void **fsdata,
2517 			get_block_t *get_block, loff_t *bytes)
2518 {
2519 	struct inode *inode = mapping->host;
2520 	unsigned int blocksize = i_blocksize(inode);
2521 	unsigned int zerofrom;
2522 	int err;
2523 
2524 	err = cont_expand_zero(file, mapping, pos, bytes);
2525 	if (err)
2526 		return err;
2527 
2528 	zerofrom = *bytes & ~PAGE_MASK;
2529 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2530 		*bytes |= (blocksize-1);
2531 		(*bytes)++;
2532 	}
2533 
2534 	return block_write_begin(mapping, pos, len, pagep, get_block);
2535 }
2536 EXPORT_SYMBOL(cont_write_begin);
2537 
2538 int block_commit_write(struct page *page, unsigned from, unsigned to)
2539 {
2540 	struct inode *inode = page->mapping->host;
2541 	__block_commit_write(inode,page,from,to);
2542 	return 0;
2543 }
2544 EXPORT_SYMBOL(block_commit_write);
2545 
2546 /*
2547  * block_page_mkwrite() is not allowed to change the file size as it gets
2548  * called from a page fault handler when a page is first dirtied. Hence we must
2549  * be careful to check for EOF conditions here. We set the page up correctly
2550  * for a written page which means we get ENOSPC checking when writing into
2551  * holes and correct delalloc and unwritten extent mapping on filesystems that
2552  * support these features.
2553  *
2554  * We are not allowed to take the i_mutex here so we have to play games to
2555  * protect against truncate races as the page could now be beyond EOF.  Because
2556  * truncate writes the inode size before removing pages, once we have the
2557  * page lock we can determine safely if the page is beyond EOF. If it is not
2558  * beyond EOF, then the page is guaranteed safe against truncation until we
2559  * unlock the page.
2560  *
2561  * Direct callers of this function should protect against filesystem freezing
2562  * using sb_start_pagefault() - sb_end_pagefault() functions.
2563  */
2564 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2565 			 get_block_t get_block)
2566 {
2567 	struct page *page = vmf->page;
2568 	struct inode *inode = file_inode(vma->vm_file);
2569 	unsigned long end;
2570 	loff_t size;
2571 	int ret;
2572 
2573 	lock_page(page);
2574 	size = i_size_read(inode);
2575 	if ((page->mapping != inode->i_mapping) ||
2576 	    (page_offset(page) > size)) {
2577 		/* We overload EFAULT to mean page got truncated */
2578 		ret = -EFAULT;
2579 		goto out_unlock;
2580 	}
2581 
2582 	/* page is wholly or partially inside EOF */
2583 	if (((page->index + 1) << PAGE_SHIFT) > size)
2584 		end = size & ~PAGE_MASK;
2585 	else
2586 		end = PAGE_SIZE;
2587 
2588 	ret = __block_write_begin(page, 0, end, get_block);
2589 	if (!ret)
2590 		ret = block_commit_write(page, 0, end);
2591 
2592 	if (unlikely(ret < 0))
2593 		goto out_unlock;
2594 	set_page_dirty(page);
2595 	wait_for_stable_page(page);
2596 	return 0;
2597 out_unlock:
2598 	unlock_page(page);
2599 	return ret;
2600 }
2601 EXPORT_SYMBOL(block_page_mkwrite);
2602 
2603 int block_truncate_page(struct address_space *mapping,
2604 			loff_t from, get_block_t *get_block)
2605 {
2606 	pgoff_t index = from >> PAGE_SHIFT;
2607 	unsigned offset = from & (PAGE_SIZE-1);
2608 	unsigned blocksize;
2609 	sector_t iblock;
2610 	unsigned length, pos;
2611 	struct inode *inode = mapping->host;
2612 	struct page *page;
2613 	struct buffer_head *bh;
2614 	int err = 0;
2615 
2616 	blocksize = i_blocksize(inode);
2617 	length = offset & (blocksize - 1);
2618 
2619 	/* Block boundary? Nothing to do */
2620 	if (!length)
2621 		return 0;
2622 
2623 	length = blocksize - length;
2624 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2625 
2626 	page = grab_cache_page(mapping, index);
2627 	if (!page)
2628 		return -ENOMEM;
2629 
2630 	if (!page_has_buffers(page))
2631 		create_empty_buffers(page, blocksize, 0);
2632 
2633 	/* Find the buffer that contains "offset" */
2634 	bh = page_buffers(page);
2635 	pos = blocksize;
2636 	while (offset >= pos) {
2637 		bh = bh->b_this_page;
2638 		iblock++;
2639 		pos += blocksize;
2640 	}
2641 
2642 	if (!buffer_mapped(bh)) {
2643 		WARN_ON(bh->b_size != blocksize);
2644 		err = get_block(inode, iblock, bh, 0);
2645 		if (err)
2646 			goto unlock;
2647 		/* unmapped? It's a hole - nothing to do */
2648 		if (!buffer_mapped(bh))
2649 			goto unlock;
2650 	}
2651 
2652 	/* Ok, it's mapped. Make sure it's up-to-date */
2653 	if (PageUptodate(page))
2654 		set_buffer_uptodate(bh);
2655 
2656 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2657 		err = bh_read(bh, 0);
2658 		/* Uhhuh. Read error. Complain and punt. */
2659 		if (err < 0)
2660 			goto unlock;
2661 	}
2662 
2663 	zero_user(page, offset, length);
2664 	mark_buffer_dirty(bh);
2665 
2666 unlock:
2667 	unlock_page(page);
2668 	put_page(page);
2669 
2670 	return err;
2671 }
2672 EXPORT_SYMBOL(block_truncate_page);
2673 
2674 /*
2675  * The generic ->writepage function for buffer-backed address_spaces
2676  */
2677 int block_write_full_page(struct page *page, get_block_t *get_block,
2678 			struct writeback_control *wbc)
2679 {
2680 	struct inode * const inode = page->mapping->host;
2681 	loff_t i_size = i_size_read(inode);
2682 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2683 	unsigned offset;
2684 
2685 	/* Is the page fully inside i_size? */
2686 	if (page->index < end_index)
2687 		return __block_write_full_page(inode, page, get_block, wbc,
2688 					       end_buffer_async_write);
2689 
2690 	/* Is the page fully outside i_size? (truncate in progress) */
2691 	offset = i_size & (PAGE_SIZE-1);
2692 	if (page->index >= end_index+1 || !offset) {
2693 		unlock_page(page);
2694 		return 0; /* don't care */
2695 	}
2696 
2697 	/*
2698 	 * The page straddles i_size.  It must be zeroed out on each and every
2699 	 * writepage invocation because it may be mmapped.  "A file is mapped
2700 	 * in multiples of the page size.  For a file that is not a multiple of
2701 	 * the  page size, the remaining memory is zeroed when mapped, and
2702 	 * writes to that region are not written out to the file."
2703 	 */
2704 	zero_user_segment(page, offset, PAGE_SIZE);
2705 	return __block_write_full_page(inode, page, get_block, wbc,
2706 							end_buffer_async_write);
2707 }
2708 EXPORT_SYMBOL(block_write_full_page);
2709 
2710 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2711 			    get_block_t *get_block)
2712 {
2713 	struct inode *inode = mapping->host;
2714 	struct buffer_head tmp = {
2715 		.b_size = i_blocksize(inode),
2716 	};
2717 
2718 	get_block(inode, block, &tmp, 0);
2719 	return tmp.b_blocknr;
2720 }
2721 EXPORT_SYMBOL(generic_block_bmap);
2722 
2723 static void end_bio_bh_io_sync(struct bio *bio)
2724 {
2725 	struct buffer_head *bh = bio->bi_private;
2726 
2727 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2728 		set_bit(BH_Quiet, &bh->b_state);
2729 
2730 	bh->b_end_io(bh, !bio->bi_status);
2731 	bio_put(bio);
2732 }
2733 
2734 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2735 			  struct writeback_control *wbc)
2736 {
2737 	const enum req_op op = opf & REQ_OP_MASK;
2738 	struct bio *bio;
2739 
2740 	BUG_ON(!buffer_locked(bh));
2741 	BUG_ON(!buffer_mapped(bh));
2742 	BUG_ON(!bh->b_end_io);
2743 	BUG_ON(buffer_delay(bh));
2744 	BUG_ON(buffer_unwritten(bh));
2745 
2746 	/*
2747 	 * Only clear out a write error when rewriting
2748 	 */
2749 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2750 		clear_buffer_write_io_error(bh);
2751 
2752 	if (buffer_meta(bh))
2753 		opf |= REQ_META;
2754 	if (buffer_prio(bh))
2755 		opf |= REQ_PRIO;
2756 
2757 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2758 
2759 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2760 
2761 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2762 
2763 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2764 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2765 
2766 	bio->bi_end_io = end_bio_bh_io_sync;
2767 	bio->bi_private = bh;
2768 
2769 	/* Take care of bh's that straddle the end of the device */
2770 	guard_bio_eod(bio);
2771 
2772 	if (wbc) {
2773 		wbc_init_bio(wbc, bio);
2774 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2775 	}
2776 
2777 	submit_bio(bio);
2778 }
2779 
2780 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2781 {
2782 	submit_bh_wbc(opf, bh, NULL);
2783 }
2784 EXPORT_SYMBOL(submit_bh);
2785 
2786 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2787 {
2788 	lock_buffer(bh);
2789 	if (!test_clear_buffer_dirty(bh)) {
2790 		unlock_buffer(bh);
2791 		return;
2792 	}
2793 	bh->b_end_io = end_buffer_write_sync;
2794 	get_bh(bh);
2795 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2796 }
2797 EXPORT_SYMBOL(write_dirty_buffer);
2798 
2799 /*
2800  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2801  * and then start new I/O and then wait upon it.  The caller must have a ref on
2802  * the buffer_head.
2803  */
2804 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2805 {
2806 	WARN_ON(atomic_read(&bh->b_count) < 1);
2807 	lock_buffer(bh);
2808 	if (test_clear_buffer_dirty(bh)) {
2809 		/*
2810 		 * The bh should be mapped, but it might not be if the
2811 		 * device was hot-removed. Not much we can do but fail the I/O.
2812 		 */
2813 		if (!buffer_mapped(bh)) {
2814 			unlock_buffer(bh);
2815 			return -EIO;
2816 		}
2817 
2818 		get_bh(bh);
2819 		bh->b_end_io = end_buffer_write_sync;
2820 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2821 		wait_on_buffer(bh);
2822 		if (!buffer_uptodate(bh))
2823 			return -EIO;
2824 	} else {
2825 		unlock_buffer(bh);
2826 	}
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(__sync_dirty_buffer);
2830 
2831 int sync_dirty_buffer(struct buffer_head *bh)
2832 {
2833 	return __sync_dirty_buffer(bh, REQ_SYNC);
2834 }
2835 EXPORT_SYMBOL(sync_dirty_buffer);
2836 
2837 /*
2838  * try_to_free_buffers() checks if all the buffers on this particular folio
2839  * are unused, and releases them if so.
2840  *
2841  * Exclusion against try_to_free_buffers may be obtained by either
2842  * locking the folio or by holding its mapping's private_lock.
2843  *
2844  * If the folio is dirty but all the buffers are clean then we need to
2845  * be sure to mark the folio clean as well.  This is because the folio
2846  * may be against a block device, and a later reattachment of buffers
2847  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2848  * filesystem data on the same device.
2849  *
2850  * The same applies to regular filesystem folios: if all the buffers are
2851  * clean then we set the folio clean and proceed.  To do that, we require
2852  * total exclusion from block_dirty_folio().  That is obtained with
2853  * private_lock.
2854  *
2855  * try_to_free_buffers() is non-blocking.
2856  */
2857 static inline int buffer_busy(struct buffer_head *bh)
2858 {
2859 	return atomic_read(&bh->b_count) |
2860 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2861 }
2862 
2863 static bool
2864 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2865 {
2866 	struct buffer_head *head = folio_buffers(folio);
2867 	struct buffer_head *bh;
2868 
2869 	bh = head;
2870 	do {
2871 		if (buffer_busy(bh))
2872 			goto failed;
2873 		bh = bh->b_this_page;
2874 	} while (bh != head);
2875 
2876 	do {
2877 		struct buffer_head *next = bh->b_this_page;
2878 
2879 		if (bh->b_assoc_map)
2880 			__remove_assoc_queue(bh);
2881 		bh = next;
2882 	} while (bh != head);
2883 	*buffers_to_free = head;
2884 	folio_detach_private(folio);
2885 	return true;
2886 failed:
2887 	return false;
2888 }
2889 
2890 bool try_to_free_buffers(struct folio *folio)
2891 {
2892 	struct address_space * const mapping = folio->mapping;
2893 	struct buffer_head *buffers_to_free = NULL;
2894 	bool ret = 0;
2895 
2896 	BUG_ON(!folio_test_locked(folio));
2897 	if (folio_test_writeback(folio))
2898 		return false;
2899 
2900 	if (mapping == NULL) {		/* can this still happen? */
2901 		ret = drop_buffers(folio, &buffers_to_free);
2902 		goto out;
2903 	}
2904 
2905 	spin_lock(&mapping->private_lock);
2906 	ret = drop_buffers(folio, &buffers_to_free);
2907 
2908 	/*
2909 	 * If the filesystem writes its buffers by hand (eg ext3)
2910 	 * then we can have clean buffers against a dirty folio.  We
2911 	 * clean the folio here; otherwise the VM will never notice
2912 	 * that the filesystem did any IO at all.
2913 	 *
2914 	 * Also, during truncate, discard_buffer will have marked all
2915 	 * the folio's buffers clean.  We discover that here and clean
2916 	 * the folio also.
2917 	 *
2918 	 * private_lock must be held over this entire operation in order
2919 	 * to synchronise against block_dirty_folio and prevent the
2920 	 * dirty bit from being lost.
2921 	 */
2922 	if (ret)
2923 		folio_cancel_dirty(folio);
2924 	spin_unlock(&mapping->private_lock);
2925 out:
2926 	if (buffers_to_free) {
2927 		struct buffer_head *bh = buffers_to_free;
2928 
2929 		do {
2930 			struct buffer_head *next = bh->b_this_page;
2931 			free_buffer_head(bh);
2932 			bh = next;
2933 		} while (bh != buffers_to_free);
2934 	}
2935 	return ret;
2936 }
2937 EXPORT_SYMBOL(try_to_free_buffers);
2938 
2939 /*
2940  * Buffer-head allocation
2941  */
2942 static struct kmem_cache *bh_cachep __read_mostly;
2943 
2944 /*
2945  * Once the number of bh's in the machine exceeds this level, we start
2946  * stripping them in writeback.
2947  */
2948 static unsigned long max_buffer_heads;
2949 
2950 int buffer_heads_over_limit;
2951 
2952 struct bh_accounting {
2953 	int nr;			/* Number of live bh's */
2954 	int ratelimit;		/* Limit cacheline bouncing */
2955 };
2956 
2957 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2958 
2959 static void recalc_bh_state(void)
2960 {
2961 	int i;
2962 	int tot = 0;
2963 
2964 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2965 		return;
2966 	__this_cpu_write(bh_accounting.ratelimit, 0);
2967 	for_each_online_cpu(i)
2968 		tot += per_cpu(bh_accounting, i).nr;
2969 	buffer_heads_over_limit = (tot > max_buffer_heads);
2970 }
2971 
2972 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2973 {
2974 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2975 	if (ret) {
2976 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
2977 		spin_lock_init(&ret->b_uptodate_lock);
2978 		preempt_disable();
2979 		__this_cpu_inc(bh_accounting.nr);
2980 		recalc_bh_state();
2981 		preempt_enable();
2982 	}
2983 	return ret;
2984 }
2985 EXPORT_SYMBOL(alloc_buffer_head);
2986 
2987 void free_buffer_head(struct buffer_head *bh)
2988 {
2989 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
2990 	kmem_cache_free(bh_cachep, bh);
2991 	preempt_disable();
2992 	__this_cpu_dec(bh_accounting.nr);
2993 	recalc_bh_state();
2994 	preempt_enable();
2995 }
2996 EXPORT_SYMBOL(free_buffer_head);
2997 
2998 static int buffer_exit_cpu_dead(unsigned int cpu)
2999 {
3000 	int i;
3001 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3002 
3003 	for (i = 0; i < BH_LRU_SIZE; i++) {
3004 		brelse(b->bhs[i]);
3005 		b->bhs[i] = NULL;
3006 	}
3007 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3008 	per_cpu(bh_accounting, cpu).nr = 0;
3009 	return 0;
3010 }
3011 
3012 /**
3013  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3014  * @bh: struct buffer_head
3015  *
3016  * Return true if the buffer is up-to-date and false,
3017  * with the buffer locked, if not.
3018  */
3019 int bh_uptodate_or_lock(struct buffer_head *bh)
3020 {
3021 	if (!buffer_uptodate(bh)) {
3022 		lock_buffer(bh);
3023 		if (!buffer_uptodate(bh))
3024 			return 0;
3025 		unlock_buffer(bh);
3026 	}
3027 	return 1;
3028 }
3029 EXPORT_SYMBOL(bh_uptodate_or_lock);
3030 
3031 /**
3032  * __bh_read - Submit read for a locked buffer
3033  * @bh: struct buffer_head
3034  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3035  * @wait: wait until reading finish
3036  *
3037  * Returns zero on success or don't wait, and -EIO on error.
3038  */
3039 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3040 {
3041 	int ret = 0;
3042 
3043 	BUG_ON(!buffer_locked(bh));
3044 
3045 	get_bh(bh);
3046 	bh->b_end_io = end_buffer_read_sync;
3047 	submit_bh(REQ_OP_READ | op_flags, bh);
3048 	if (wait) {
3049 		wait_on_buffer(bh);
3050 		if (!buffer_uptodate(bh))
3051 			ret = -EIO;
3052 	}
3053 	return ret;
3054 }
3055 EXPORT_SYMBOL(__bh_read);
3056 
3057 /**
3058  * __bh_read_batch - Submit read for a batch of unlocked buffers
3059  * @nr: entry number of the buffer batch
3060  * @bhs: a batch of struct buffer_head
3061  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3062  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3063  *              buffer that cannot lock.
3064  *
3065  * Returns zero on success or don't wait, and -EIO on error.
3066  */
3067 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3068 		     blk_opf_t op_flags, bool force_lock)
3069 {
3070 	int i;
3071 
3072 	for (i = 0; i < nr; i++) {
3073 		struct buffer_head *bh = bhs[i];
3074 
3075 		if (buffer_uptodate(bh))
3076 			continue;
3077 
3078 		if (force_lock)
3079 			lock_buffer(bh);
3080 		else
3081 			if (!trylock_buffer(bh))
3082 				continue;
3083 
3084 		if (buffer_uptodate(bh)) {
3085 			unlock_buffer(bh);
3086 			continue;
3087 		}
3088 
3089 		bh->b_end_io = end_buffer_read_sync;
3090 		get_bh(bh);
3091 		submit_bh(REQ_OP_READ | op_flags, bh);
3092 	}
3093 }
3094 EXPORT_SYMBOL(__bh_read_batch);
3095 
3096 void __init buffer_init(void)
3097 {
3098 	unsigned long nrpages;
3099 	int ret;
3100 
3101 	bh_cachep = kmem_cache_create("buffer_head",
3102 			sizeof(struct buffer_head), 0,
3103 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3104 				SLAB_MEM_SPREAD),
3105 				NULL);
3106 
3107 	/*
3108 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3109 	 */
3110 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3111 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3112 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3113 					NULL, buffer_exit_cpu_dead);
3114 	WARN_ON(ret < 0);
3115 }
3116