1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 #include <trace/events/block.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 inline void touch_buffer(struct buffer_head *bh) 58 { 59 trace_block_touch_buffer(bh); 60 mark_page_accessed(bh->b_page); 61 } 62 EXPORT_SYMBOL(touch_buffer); 63 64 static int sleep_on_buffer(void *word) 65 { 66 io_schedule(); 67 return 0; 68 } 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 73 TASK_UNINTERRUPTIBLE); 74 } 75 EXPORT_SYMBOL(__lock_buffer); 76 77 void unlock_buffer(struct buffer_head *bh) 78 { 79 clear_bit_unlock(BH_Lock, &bh->b_state); 80 smp_mb__after_clear_bit(); 81 wake_up_bit(&bh->b_state, BH_Lock); 82 } 83 EXPORT_SYMBOL(unlock_buffer); 84 85 /* 86 * Returns if the page has dirty or writeback buffers. If all the buffers 87 * are unlocked and clean then the PageDirty information is stale. If 88 * any of the pages are locked, it is assumed they are locked for IO. 89 */ 90 void buffer_check_dirty_writeback(struct page *page, 91 bool *dirty, bool *writeback) 92 { 93 struct buffer_head *head, *bh; 94 *dirty = false; 95 *writeback = false; 96 97 BUG_ON(!PageLocked(page)); 98 99 if (!page_has_buffers(page)) 100 return; 101 102 if (PageWriteback(page)) 103 *writeback = true; 104 105 head = page_buffers(page); 106 bh = head; 107 do { 108 if (buffer_locked(bh)) 109 *writeback = true; 110 111 if (buffer_dirty(bh)) 112 *dirty = true; 113 114 bh = bh->b_this_page; 115 } while (bh != head); 116 } 117 EXPORT_SYMBOL(buffer_check_dirty_writeback); 118 119 /* 120 * Block until a buffer comes unlocked. This doesn't stop it 121 * from becoming locked again - you have to lock it yourself 122 * if you want to preserve its state. 123 */ 124 void __wait_on_buffer(struct buffer_head * bh) 125 { 126 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 127 } 128 EXPORT_SYMBOL(__wait_on_buffer); 129 130 static void 131 __clear_page_buffers(struct page *page) 132 { 133 ClearPagePrivate(page); 134 set_page_private(page, 0); 135 page_cache_release(page); 136 } 137 138 139 static int quiet_error(struct buffer_head *bh) 140 { 141 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 142 return 0; 143 return 1; 144 } 145 146 147 static void buffer_io_error(struct buffer_head *bh) 148 { 149 char b[BDEVNAME_SIZE]; 150 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 151 bdevname(bh->b_bdev, b), 152 (unsigned long long)bh->b_blocknr); 153 } 154 155 /* 156 * End-of-IO handler helper function which does not touch the bh after 157 * unlocking it. 158 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 159 * a race there is benign: unlock_buffer() only use the bh's address for 160 * hashing after unlocking the buffer, so it doesn't actually touch the bh 161 * itself. 162 */ 163 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 164 { 165 if (uptodate) { 166 set_buffer_uptodate(bh); 167 } else { 168 /* This happens, due to failed READA attempts. */ 169 clear_buffer_uptodate(bh); 170 } 171 unlock_buffer(bh); 172 } 173 174 /* 175 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 176 * unlock the buffer. This is what ll_rw_block uses too. 177 */ 178 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 179 { 180 __end_buffer_read_notouch(bh, uptodate); 181 put_bh(bh); 182 } 183 EXPORT_SYMBOL(end_buffer_read_sync); 184 185 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 186 { 187 char b[BDEVNAME_SIZE]; 188 189 if (uptodate) { 190 set_buffer_uptodate(bh); 191 } else { 192 if (!quiet_error(bh)) { 193 buffer_io_error(bh); 194 printk(KERN_WARNING "lost page write due to " 195 "I/O error on %s\n", 196 bdevname(bh->b_bdev, b)); 197 } 198 set_buffer_write_io_error(bh); 199 clear_buffer_uptodate(bh); 200 } 201 unlock_buffer(bh); 202 put_bh(bh); 203 } 204 EXPORT_SYMBOL(end_buffer_write_sync); 205 206 /* 207 * Various filesystems appear to want __find_get_block to be non-blocking. 208 * But it's the page lock which protects the buffers. To get around this, 209 * we get exclusion from try_to_free_buffers with the blockdev mapping's 210 * private_lock. 211 * 212 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 213 * may be quite high. This code could TryLock the page, and if that 214 * succeeds, there is no need to take private_lock. (But if 215 * private_lock is contended then so is mapping->tree_lock). 216 */ 217 static struct buffer_head * 218 __find_get_block_slow(struct block_device *bdev, sector_t block) 219 { 220 struct inode *bd_inode = bdev->bd_inode; 221 struct address_space *bd_mapping = bd_inode->i_mapping; 222 struct buffer_head *ret = NULL; 223 pgoff_t index; 224 struct buffer_head *bh; 225 struct buffer_head *head; 226 struct page *page; 227 int all_mapped = 1; 228 229 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 230 page = find_get_page(bd_mapping, index); 231 if (!page) 232 goto out; 233 234 spin_lock(&bd_mapping->private_lock); 235 if (!page_has_buffers(page)) 236 goto out_unlock; 237 head = page_buffers(page); 238 bh = head; 239 do { 240 if (!buffer_mapped(bh)) 241 all_mapped = 0; 242 else if (bh->b_blocknr == block) { 243 ret = bh; 244 get_bh(bh); 245 goto out_unlock; 246 } 247 bh = bh->b_this_page; 248 } while (bh != head); 249 250 /* we might be here because some of the buffers on this page are 251 * not mapped. This is due to various races between 252 * file io on the block device and getblk. It gets dealt with 253 * elsewhere, don't buffer_error if we had some unmapped buffers 254 */ 255 if (all_mapped) { 256 char b[BDEVNAME_SIZE]; 257 258 printk("__find_get_block_slow() failed. " 259 "block=%llu, b_blocknr=%llu\n", 260 (unsigned long long)block, 261 (unsigned long long)bh->b_blocknr); 262 printk("b_state=0x%08lx, b_size=%zu\n", 263 bh->b_state, bh->b_size); 264 printk("device %s blocksize: %d\n", bdevname(bdev, b), 265 1 << bd_inode->i_blkbits); 266 } 267 out_unlock: 268 spin_unlock(&bd_mapping->private_lock); 269 page_cache_release(page); 270 out: 271 return ret; 272 } 273 274 /* 275 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 276 */ 277 static void free_more_memory(void) 278 { 279 struct zone *zone; 280 int nid; 281 282 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 283 yield(); 284 285 for_each_online_node(nid) { 286 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 287 gfp_zone(GFP_NOFS), NULL, 288 &zone); 289 if (zone) 290 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 291 GFP_NOFS, NULL); 292 } 293 } 294 295 /* 296 * I/O completion handler for block_read_full_page() - pages 297 * which come unlocked at the end of I/O. 298 */ 299 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 300 { 301 unsigned long flags; 302 struct buffer_head *first; 303 struct buffer_head *tmp; 304 struct page *page; 305 int page_uptodate = 1; 306 307 BUG_ON(!buffer_async_read(bh)); 308 309 page = bh->b_page; 310 if (uptodate) { 311 set_buffer_uptodate(bh); 312 } else { 313 clear_buffer_uptodate(bh); 314 if (!quiet_error(bh)) 315 buffer_io_error(bh); 316 SetPageError(page); 317 } 318 319 /* 320 * Be _very_ careful from here on. Bad things can happen if 321 * two buffer heads end IO at almost the same time and both 322 * decide that the page is now completely done. 323 */ 324 first = page_buffers(page); 325 local_irq_save(flags); 326 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 327 clear_buffer_async_read(bh); 328 unlock_buffer(bh); 329 tmp = bh; 330 do { 331 if (!buffer_uptodate(tmp)) 332 page_uptodate = 0; 333 if (buffer_async_read(tmp)) { 334 BUG_ON(!buffer_locked(tmp)); 335 goto still_busy; 336 } 337 tmp = tmp->b_this_page; 338 } while (tmp != bh); 339 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 340 local_irq_restore(flags); 341 342 /* 343 * If none of the buffers had errors and they are all 344 * uptodate then we can set the page uptodate. 345 */ 346 if (page_uptodate && !PageError(page)) 347 SetPageUptodate(page); 348 unlock_page(page); 349 return; 350 351 still_busy: 352 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 353 local_irq_restore(flags); 354 return; 355 } 356 357 /* 358 * Completion handler for block_write_full_page() - pages which are unlocked 359 * during I/O, and which have PageWriteback cleared upon I/O completion. 360 */ 361 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 362 { 363 char b[BDEVNAME_SIZE]; 364 unsigned long flags; 365 struct buffer_head *first; 366 struct buffer_head *tmp; 367 struct page *page; 368 369 BUG_ON(!buffer_async_write(bh)); 370 371 page = bh->b_page; 372 if (uptodate) { 373 set_buffer_uptodate(bh); 374 } else { 375 if (!quiet_error(bh)) { 376 buffer_io_error(bh); 377 printk(KERN_WARNING "lost page write due to " 378 "I/O error on %s\n", 379 bdevname(bh->b_bdev, b)); 380 } 381 set_bit(AS_EIO, &page->mapping->flags); 382 set_buffer_write_io_error(bh); 383 clear_buffer_uptodate(bh); 384 SetPageError(page); 385 } 386 387 first = page_buffers(page); 388 local_irq_save(flags); 389 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 390 391 clear_buffer_async_write(bh); 392 unlock_buffer(bh); 393 tmp = bh->b_this_page; 394 while (tmp != bh) { 395 if (buffer_async_write(tmp)) { 396 BUG_ON(!buffer_locked(tmp)); 397 goto still_busy; 398 } 399 tmp = tmp->b_this_page; 400 } 401 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 402 local_irq_restore(flags); 403 end_page_writeback(page); 404 return; 405 406 still_busy: 407 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 408 local_irq_restore(flags); 409 return; 410 } 411 EXPORT_SYMBOL(end_buffer_async_write); 412 413 /* 414 * If a page's buffers are under async readin (end_buffer_async_read 415 * completion) then there is a possibility that another thread of 416 * control could lock one of the buffers after it has completed 417 * but while some of the other buffers have not completed. This 418 * locked buffer would confuse end_buffer_async_read() into not unlocking 419 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 420 * that this buffer is not under async I/O. 421 * 422 * The page comes unlocked when it has no locked buffer_async buffers 423 * left. 424 * 425 * PageLocked prevents anyone starting new async I/O reads any of 426 * the buffers. 427 * 428 * PageWriteback is used to prevent simultaneous writeout of the same 429 * page. 430 * 431 * PageLocked prevents anyone from starting writeback of a page which is 432 * under read I/O (PageWriteback is only ever set against a locked page). 433 */ 434 static void mark_buffer_async_read(struct buffer_head *bh) 435 { 436 bh->b_end_io = end_buffer_async_read; 437 set_buffer_async_read(bh); 438 } 439 440 static void mark_buffer_async_write_endio(struct buffer_head *bh, 441 bh_end_io_t *handler) 442 { 443 bh->b_end_io = handler; 444 set_buffer_async_write(bh); 445 } 446 447 void mark_buffer_async_write(struct buffer_head *bh) 448 { 449 mark_buffer_async_write_endio(bh, end_buffer_async_write); 450 } 451 EXPORT_SYMBOL(mark_buffer_async_write); 452 453 454 /* 455 * fs/buffer.c contains helper functions for buffer-backed address space's 456 * fsync functions. A common requirement for buffer-based filesystems is 457 * that certain data from the backing blockdev needs to be written out for 458 * a successful fsync(). For example, ext2 indirect blocks need to be 459 * written back and waited upon before fsync() returns. 460 * 461 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 462 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 463 * management of a list of dependent buffers at ->i_mapping->private_list. 464 * 465 * Locking is a little subtle: try_to_free_buffers() will remove buffers 466 * from their controlling inode's queue when they are being freed. But 467 * try_to_free_buffers() will be operating against the *blockdev* mapping 468 * at the time, not against the S_ISREG file which depends on those buffers. 469 * So the locking for private_list is via the private_lock in the address_space 470 * which backs the buffers. Which is different from the address_space 471 * against which the buffers are listed. So for a particular address_space, 472 * mapping->private_lock does *not* protect mapping->private_list! In fact, 473 * mapping->private_list will always be protected by the backing blockdev's 474 * ->private_lock. 475 * 476 * Which introduces a requirement: all buffers on an address_space's 477 * ->private_list must be from the same address_space: the blockdev's. 478 * 479 * address_spaces which do not place buffers at ->private_list via these 480 * utility functions are free to use private_lock and private_list for 481 * whatever they want. The only requirement is that list_empty(private_list) 482 * be true at clear_inode() time. 483 * 484 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 485 * filesystems should do that. invalidate_inode_buffers() should just go 486 * BUG_ON(!list_empty). 487 * 488 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 489 * take an address_space, not an inode. And it should be called 490 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 491 * queued up. 492 * 493 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 494 * list if it is already on a list. Because if the buffer is on a list, 495 * it *must* already be on the right one. If not, the filesystem is being 496 * silly. This will save a ton of locking. But first we have to ensure 497 * that buffers are taken *off* the old inode's list when they are freed 498 * (presumably in truncate). That requires careful auditing of all 499 * filesystems (do it inside bforget()). It could also be done by bringing 500 * b_inode back. 501 */ 502 503 /* 504 * The buffer's backing address_space's private_lock must be held 505 */ 506 static void __remove_assoc_queue(struct buffer_head *bh) 507 { 508 list_del_init(&bh->b_assoc_buffers); 509 WARN_ON(!bh->b_assoc_map); 510 if (buffer_write_io_error(bh)) 511 set_bit(AS_EIO, &bh->b_assoc_map->flags); 512 bh->b_assoc_map = NULL; 513 } 514 515 int inode_has_buffers(struct inode *inode) 516 { 517 return !list_empty(&inode->i_data.private_list); 518 } 519 520 /* 521 * osync is designed to support O_SYNC io. It waits synchronously for 522 * all already-submitted IO to complete, but does not queue any new 523 * writes to the disk. 524 * 525 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 526 * you dirty the buffers, and then use osync_inode_buffers to wait for 527 * completion. Any other dirty buffers which are not yet queued for 528 * write will not be flushed to disk by the osync. 529 */ 530 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 531 { 532 struct buffer_head *bh; 533 struct list_head *p; 534 int err = 0; 535 536 spin_lock(lock); 537 repeat: 538 list_for_each_prev(p, list) { 539 bh = BH_ENTRY(p); 540 if (buffer_locked(bh)) { 541 get_bh(bh); 542 spin_unlock(lock); 543 wait_on_buffer(bh); 544 if (!buffer_uptodate(bh)) 545 err = -EIO; 546 brelse(bh); 547 spin_lock(lock); 548 goto repeat; 549 } 550 } 551 spin_unlock(lock); 552 return err; 553 } 554 555 static void do_thaw_one(struct super_block *sb, void *unused) 556 { 557 char b[BDEVNAME_SIZE]; 558 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 559 printk(KERN_WARNING "Emergency Thaw on %s\n", 560 bdevname(sb->s_bdev, b)); 561 } 562 563 static void do_thaw_all(struct work_struct *work) 564 { 565 iterate_supers(do_thaw_one, NULL); 566 kfree(work); 567 printk(KERN_WARNING "Emergency Thaw complete\n"); 568 } 569 570 /** 571 * emergency_thaw_all -- forcibly thaw every frozen filesystem 572 * 573 * Used for emergency unfreeze of all filesystems via SysRq 574 */ 575 void emergency_thaw_all(void) 576 { 577 struct work_struct *work; 578 579 work = kmalloc(sizeof(*work), GFP_ATOMIC); 580 if (work) { 581 INIT_WORK(work, do_thaw_all); 582 schedule_work(work); 583 } 584 } 585 586 /** 587 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 588 * @mapping: the mapping which wants those buffers written 589 * 590 * Starts I/O against the buffers at mapping->private_list, and waits upon 591 * that I/O. 592 * 593 * Basically, this is a convenience function for fsync(). 594 * @mapping is a file or directory which needs those buffers to be written for 595 * a successful fsync(). 596 */ 597 int sync_mapping_buffers(struct address_space *mapping) 598 { 599 struct address_space *buffer_mapping = mapping->private_data; 600 601 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 602 return 0; 603 604 return fsync_buffers_list(&buffer_mapping->private_lock, 605 &mapping->private_list); 606 } 607 EXPORT_SYMBOL(sync_mapping_buffers); 608 609 /* 610 * Called when we've recently written block `bblock', and it is known that 611 * `bblock' was for a buffer_boundary() buffer. This means that the block at 612 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 613 * dirty, schedule it for IO. So that indirects merge nicely with their data. 614 */ 615 void write_boundary_block(struct block_device *bdev, 616 sector_t bblock, unsigned blocksize) 617 { 618 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 619 if (bh) { 620 if (buffer_dirty(bh)) 621 ll_rw_block(WRITE, 1, &bh); 622 put_bh(bh); 623 } 624 } 625 626 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 627 { 628 struct address_space *mapping = inode->i_mapping; 629 struct address_space *buffer_mapping = bh->b_page->mapping; 630 631 mark_buffer_dirty(bh); 632 if (!mapping->private_data) { 633 mapping->private_data = buffer_mapping; 634 } else { 635 BUG_ON(mapping->private_data != buffer_mapping); 636 } 637 if (!bh->b_assoc_map) { 638 spin_lock(&buffer_mapping->private_lock); 639 list_move_tail(&bh->b_assoc_buffers, 640 &mapping->private_list); 641 bh->b_assoc_map = mapping; 642 spin_unlock(&buffer_mapping->private_lock); 643 } 644 } 645 EXPORT_SYMBOL(mark_buffer_dirty_inode); 646 647 /* 648 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 649 * dirty. 650 * 651 * If warn is true, then emit a warning if the page is not uptodate and has 652 * not been truncated. 653 */ 654 static void __set_page_dirty(struct page *page, 655 struct address_space *mapping, int warn) 656 { 657 spin_lock_irq(&mapping->tree_lock); 658 if (page->mapping) { /* Race with truncate? */ 659 WARN_ON_ONCE(warn && !PageUptodate(page)); 660 account_page_dirtied(page, mapping); 661 radix_tree_tag_set(&mapping->page_tree, 662 page_index(page), PAGECACHE_TAG_DIRTY); 663 } 664 spin_unlock_irq(&mapping->tree_lock); 665 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 666 } 667 668 /* 669 * Add a page to the dirty page list. 670 * 671 * It is a sad fact of life that this function is called from several places 672 * deeply under spinlocking. It may not sleep. 673 * 674 * If the page has buffers, the uptodate buffers are set dirty, to preserve 675 * dirty-state coherency between the page and the buffers. It the page does 676 * not have buffers then when they are later attached they will all be set 677 * dirty. 678 * 679 * The buffers are dirtied before the page is dirtied. There's a small race 680 * window in which a writepage caller may see the page cleanness but not the 681 * buffer dirtiness. That's fine. If this code were to set the page dirty 682 * before the buffers, a concurrent writepage caller could clear the page dirty 683 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 684 * page on the dirty page list. 685 * 686 * We use private_lock to lock against try_to_free_buffers while using the 687 * page's buffer list. Also use this to protect against clean buffers being 688 * added to the page after it was set dirty. 689 * 690 * FIXME: may need to call ->reservepage here as well. That's rather up to the 691 * address_space though. 692 */ 693 int __set_page_dirty_buffers(struct page *page) 694 { 695 int newly_dirty; 696 struct address_space *mapping = page_mapping(page); 697 698 if (unlikely(!mapping)) 699 return !TestSetPageDirty(page); 700 701 spin_lock(&mapping->private_lock); 702 if (page_has_buffers(page)) { 703 struct buffer_head *head = page_buffers(page); 704 struct buffer_head *bh = head; 705 706 do { 707 set_buffer_dirty(bh); 708 bh = bh->b_this_page; 709 } while (bh != head); 710 } 711 newly_dirty = !TestSetPageDirty(page); 712 spin_unlock(&mapping->private_lock); 713 714 if (newly_dirty) 715 __set_page_dirty(page, mapping, 1); 716 return newly_dirty; 717 } 718 EXPORT_SYMBOL(__set_page_dirty_buffers); 719 720 /* 721 * Write out and wait upon a list of buffers. 722 * 723 * We have conflicting pressures: we want to make sure that all 724 * initially dirty buffers get waited on, but that any subsequently 725 * dirtied buffers don't. After all, we don't want fsync to last 726 * forever if somebody is actively writing to the file. 727 * 728 * Do this in two main stages: first we copy dirty buffers to a 729 * temporary inode list, queueing the writes as we go. Then we clean 730 * up, waiting for those writes to complete. 731 * 732 * During this second stage, any subsequent updates to the file may end 733 * up refiling the buffer on the original inode's dirty list again, so 734 * there is a chance we will end up with a buffer queued for write but 735 * not yet completed on that list. So, as a final cleanup we go through 736 * the osync code to catch these locked, dirty buffers without requeuing 737 * any newly dirty buffers for write. 738 */ 739 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 740 { 741 struct buffer_head *bh; 742 struct list_head tmp; 743 struct address_space *mapping; 744 int err = 0, err2; 745 struct blk_plug plug; 746 747 INIT_LIST_HEAD(&tmp); 748 blk_start_plug(&plug); 749 750 spin_lock(lock); 751 while (!list_empty(list)) { 752 bh = BH_ENTRY(list->next); 753 mapping = bh->b_assoc_map; 754 __remove_assoc_queue(bh); 755 /* Avoid race with mark_buffer_dirty_inode() which does 756 * a lockless check and we rely on seeing the dirty bit */ 757 smp_mb(); 758 if (buffer_dirty(bh) || buffer_locked(bh)) { 759 list_add(&bh->b_assoc_buffers, &tmp); 760 bh->b_assoc_map = mapping; 761 if (buffer_dirty(bh)) { 762 get_bh(bh); 763 spin_unlock(lock); 764 /* 765 * Ensure any pending I/O completes so that 766 * write_dirty_buffer() actually writes the 767 * current contents - it is a noop if I/O is 768 * still in flight on potentially older 769 * contents. 770 */ 771 write_dirty_buffer(bh, WRITE_SYNC); 772 773 /* 774 * Kick off IO for the previous mapping. Note 775 * that we will not run the very last mapping, 776 * wait_on_buffer() will do that for us 777 * through sync_buffer(). 778 */ 779 brelse(bh); 780 spin_lock(lock); 781 } 782 } 783 } 784 785 spin_unlock(lock); 786 blk_finish_plug(&plug); 787 spin_lock(lock); 788 789 while (!list_empty(&tmp)) { 790 bh = BH_ENTRY(tmp.prev); 791 get_bh(bh); 792 mapping = bh->b_assoc_map; 793 __remove_assoc_queue(bh); 794 /* Avoid race with mark_buffer_dirty_inode() which does 795 * a lockless check and we rely on seeing the dirty bit */ 796 smp_mb(); 797 if (buffer_dirty(bh)) { 798 list_add(&bh->b_assoc_buffers, 799 &mapping->private_list); 800 bh->b_assoc_map = mapping; 801 } 802 spin_unlock(lock); 803 wait_on_buffer(bh); 804 if (!buffer_uptodate(bh)) 805 err = -EIO; 806 brelse(bh); 807 spin_lock(lock); 808 } 809 810 spin_unlock(lock); 811 err2 = osync_buffers_list(lock, list); 812 if (err) 813 return err; 814 else 815 return err2; 816 } 817 818 /* 819 * Invalidate any and all dirty buffers on a given inode. We are 820 * probably unmounting the fs, but that doesn't mean we have already 821 * done a sync(). Just drop the buffers from the inode list. 822 * 823 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 824 * assumes that all the buffers are against the blockdev. Not true 825 * for reiserfs. 826 */ 827 void invalidate_inode_buffers(struct inode *inode) 828 { 829 if (inode_has_buffers(inode)) { 830 struct address_space *mapping = &inode->i_data; 831 struct list_head *list = &mapping->private_list; 832 struct address_space *buffer_mapping = mapping->private_data; 833 834 spin_lock(&buffer_mapping->private_lock); 835 while (!list_empty(list)) 836 __remove_assoc_queue(BH_ENTRY(list->next)); 837 spin_unlock(&buffer_mapping->private_lock); 838 } 839 } 840 EXPORT_SYMBOL(invalidate_inode_buffers); 841 842 /* 843 * Remove any clean buffers from the inode's buffer list. This is called 844 * when we're trying to free the inode itself. Those buffers can pin it. 845 * 846 * Returns true if all buffers were removed. 847 */ 848 int remove_inode_buffers(struct inode *inode) 849 { 850 int ret = 1; 851 852 if (inode_has_buffers(inode)) { 853 struct address_space *mapping = &inode->i_data; 854 struct list_head *list = &mapping->private_list; 855 struct address_space *buffer_mapping = mapping->private_data; 856 857 spin_lock(&buffer_mapping->private_lock); 858 while (!list_empty(list)) { 859 struct buffer_head *bh = BH_ENTRY(list->next); 860 if (buffer_dirty(bh)) { 861 ret = 0; 862 break; 863 } 864 __remove_assoc_queue(bh); 865 } 866 spin_unlock(&buffer_mapping->private_lock); 867 } 868 return ret; 869 } 870 871 /* 872 * Create the appropriate buffers when given a page for data area and 873 * the size of each buffer.. Use the bh->b_this_page linked list to 874 * follow the buffers created. Return NULL if unable to create more 875 * buffers. 876 * 877 * The retry flag is used to differentiate async IO (paging, swapping) 878 * which may not fail from ordinary buffer allocations. 879 */ 880 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 881 int retry) 882 { 883 struct buffer_head *bh, *head; 884 long offset; 885 886 try_again: 887 head = NULL; 888 offset = PAGE_SIZE; 889 while ((offset -= size) >= 0) { 890 bh = alloc_buffer_head(GFP_NOFS); 891 if (!bh) 892 goto no_grow; 893 894 bh->b_this_page = head; 895 bh->b_blocknr = -1; 896 head = bh; 897 898 bh->b_size = size; 899 900 /* Link the buffer to its page */ 901 set_bh_page(bh, page, offset); 902 } 903 return head; 904 /* 905 * In case anything failed, we just free everything we got. 906 */ 907 no_grow: 908 if (head) { 909 do { 910 bh = head; 911 head = head->b_this_page; 912 free_buffer_head(bh); 913 } while (head); 914 } 915 916 /* 917 * Return failure for non-async IO requests. Async IO requests 918 * are not allowed to fail, so we have to wait until buffer heads 919 * become available. But we don't want tasks sleeping with 920 * partially complete buffers, so all were released above. 921 */ 922 if (!retry) 923 return NULL; 924 925 /* We're _really_ low on memory. Now we just 926 * wait for old buffer heads to become free due to 927 * finishing IO. Since this is an async request and 928 * the reserve list is empty, we're sure there are 929 * async buffer heads in use. 930 */ 931 free_more_memory(); 932 goto try_again; 933 } 934 EXPORT_SYMBOL_GPL(alloc_page_buffers); 935 936 static inline void 937 link_dev_buffers(struct page *page, struct buffer_head *head) 938 { 939 struct buffer_head *bh, *tail; 940 941 bh = head; 942 do { 943 tail = bh; 944 bh = bh->b_this_page; 945 } while (bh); 946 tail->b_this_page = head; 947 attach_page_buffers(page, head); 948 } 949 950 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 951 { 952 sector_t retval = ~((sector_t)0); 953 loff_t sz = i_size_read(bdev->bd_inode); 954 955 if (sz) { 956 unsigned int sizebits = blksize_bits(size); 957 retval = (sz >> sizebits); 958 } 959 return retval; 960 } 961 962 /* 963 * Initialise the state of a blockdev page's buffers. 964 */ 965 static sector_t 966 init_page_buffers(struct page *page, struct block_device *bdev, 967 sector_t block, int size) 968 { 969 struct buffer_head *head = page_buffers(page); 970 struct buffer_head *bh = head; 971 int uptodate = PageUptodate(page); 972 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 973 974 do { 975 if (!buffer_mapped(bh)) { 976 init_buffer(bh, NULL, NULL); 977 bh->b_bdev = bdev; 978 bh->b_blocknr = block; 979 if (uptodate) 980 set_buffer_uptodate(bh); 981 if (block < end_block) 982 set_buffer_mapped(bh); 983 } 984 block++; 985 bh = bh->b_this_page; 986 } while (bh != head); 987 988 /* 989 * Caller needs to validate requested block against end of device. 990 */ 991 return end_block; 992 } 993 994 /* 995 * Create the page-cache page that contains the requested block. 996 * 997 * This is used purely for blockdev mappings. 998 */ 999 static int 1000 grow_dev_page(struct block_device *bdev, sector_t block, 1001 pgoff_t index, int size, int sizebits) 1002 { 1003 struct inode *inode = bdev->bd_inode; 1004 struct page *page; 1005 struct buffer_head *bh; 1006 sector_t end_block; 1007 int ret = 0; /* Will call free_more_memory() */ 1008 gfp_t gfp_mask; 1009 1010 gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS; 1011 gfp_mask |= __GFP_MOVABLE; 1012 /* 1013 * XXX: __getblk_slow() can not really deal with failure and 1014 * will endlessly loop on improvised global reclaim. Prefer 1015 * looping in the allocator rather than here, at least that 1016 * code knows what it's doing. 1017 */ 1018 gfp_mask |= __GFP_NOFAIL; 1019 1020 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 1021 if (!page) 1022 return ret; 1023 1024 BUG_ON(!PageLocked(page)); 1025 1026 if (page_has_buffers(page)) { 1027 bh = page_buffers(page); 1028 if (bh->b_size == size) { 1029 end_block = init_page_buffers(page, bdev, 1030 index << sizebits, size); 1031 goto done; 1032 } 1033 if (!try_to_free_buffers(page)) 1034 goto failed; 1035 } 1036 1037 /* 1038 * Allocate some buffers for this page 1039 */ 1040 bh = alloc_page_buffers(page, size, 0); 1041 if (!bh) 1042 goto failed; 1043 1044 /* 1045 * Link the page to the buffers and initialise them. Take the 1046 * lock to be atomic wrt __find_get_block(), which does not 1047 * run under the page lock. 1048 */ 1049 spin_lock(&inode->i_mapping->private_lock); 1050 link_dev_buffers(page, bh); 1051 end_block = init_page_buffers(page, bdev, index << sizebits, size); 1052 spin_unlock(&inode->i_mapping->private_lock); 1053 done: 1054 ret = (block < end_block) ? 1 : -ENXIO; 1055 failed: 1056 unlock_page(page); 1057 page_cache_release(page); 1058 return ret; 1059 } 1060 1061 /* 1062 * Create buffers for the specified block device block's page. If 1063 * that page was dirty, the buffers are set dirty also. 1064 */ 1065 static int 1066 grow_buffers(struct block_device *bdev, sector_t block, int size) 1067 { 1068 pgoff_t index; 1069 int sizebits; 1070 1071 sizebits = -1; 1072 do { 1073 sizebits++; 1074 } while ((size << sizebits) < PAGE_SIZE); 1075 1076 index = block >> sizebits; 1077 1078 /* 1079 * Check for a block which wants to lie outside our maximum possible 1080 * pagecache index. (this comparison is done using sector_t types). 1081 */ 1082 if (unlikely(index != block >> sizebits)) { 1083 char b[BDEVNAME_SIZE]; 1084 1085 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1086 "device %s\n", 1087 __func__, (unsigned long long)block, 1088 bdevname(bdev, b)); 1089 return -EIO; 1090 } 1091 1092 /* Create a page with the proper size buffers.. */ 1093 return grow_dev_page(bdev, block, index, size, sizebits); 1094 } 1095 1096 static struct buffer_head * 1097 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1098 { 1099 /* Size must be multiple of hard sectorsize */ 1100 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1101 (size < 512 || size > PAGE_SIZE))) { 1102 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1103 size); 1104 printk(KERN_ERR "logical block size: %d\n", 1105 bdev_logical_block_size(bdev)); 1106 1107 dump_stack(); 1108 return NULL; 1109 } 1110 1111 for (;;) { 1112 struct buffer_head *bh; 1113 int ret; 1114 1115 bh = __find_get_block(bdev, block, size); 1116 if (bh) 1117 return bh; 1118 1119 ret = grow_buffers(bdev, block, size); 1120 if (ret < 0) 1121 return NULL; 1122 if (ret == 0) 1123 free_more_memory(); 1124 } 1125 } 1126 1127 /* 1128 * The relationship between dirty buffers and dirty pages: 1129 * 1130 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1131 * the page is tagged dirty in its radix tree. 1132 * 1133 * At all times, the dirtiness of the buffers represents the dirtiness of 1134 * subsections of the page. If the page has buffers, the page dirty bit is 1135 * merely a hint about the true dirty state. 1136 * 1137 * When a page is set dirty in its entirety, all its buffers are marked dirty 1138 * (if the page has buffers). 1139 * 1140 * When a buffer is marked dirty, its page is dirtied, but the page's other 1141 * buffers are not. 1142 * 1143 * Also. When blockdev buffers are explicitly read with bread(), they 1144 * individually become uptodate. But their backing page remains not 1145 * uptodate - even if all of its buffers are uptodate. A subsequent 1146 * block_read_full_page() against that page will discover all the uptodate 1147 * buffers, will set the page uptodate and will perform no I/O. 1148 */ 1149 1150 /** 1151 * mark_buffer_dirty - mark a buffer_head as needing writeout 1152 * @bh: the buffer_head to mark dirty 1153 * 1154 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1155 * backing page dirty, then tag the page as dirty in its address_space's radix 1156 * tree and then attach the address_space's inode to its superblock's dirty 1157 * inode list. 1158 * 1159 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1160 * mapping->tree_lock and mapping->host->i_lock. 1161 */ 1162 void mark_buffer_dirty(struct buffer_head *bh) 1163 { 1164 WARN_ON_ONCE(!buffer_uptodate(bh)); 1165 1166 trace_block_dirty_buffer(bh); 1167 1168 /* 1169 * Very *carefully* optimize the it-is-already-dirty case. 1170 * 1171 * Don't let the final "is it dirty" escape to before we 1172 * perhaps modified the buffer. 1173 */ 1174 if (buffer_dirty(bh)) { 1175 smp_mb(); 1176 if (buffer_dirty(bh)) 1177 return; 1178 } 1179 1180 if (!test_set_buffer_dirty(bh)) { 1181 struct page *page = bh->b_page; 1182 if (!TestSetPageDirty(page)) { 1183 struct address_space *mapping = page_mapping(page); 1184 if (mapping) 1185 __set_page_dirty(page, mapping, 0); 1186 } 1187 } 1188 } 1189 EXPORT_SYMBOL(mark_buffer_dirty); 1190 1191 /* 1192 * Decrement a buffer_head's reference count. If all buffers against a page 1193 * have zero reference count, are clean and unlocked, and if the page is clean 1194 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1195 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1196 * a page but it ends up not being freed, and buffers may later be reattached). 1197 */ 1198 void __brelse(struct buffer_head * buf) 1199 { 1200 if (atomic_read(&buf->b_count)) { 1201 put_bh(buf); 1202 return; 1203 } 1204 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1205 } 1206 EXPORT_SYMBOL(__brelse); 1207 1208 /* 1209 * bforget() is like brelse(), except it discards any 1210 * potentially dirty data. 1211 */ 1212 void __bforget(struct buffer_head *bh) 1213 { 1214 clear_buffer_dirty(bh); 1215 if (bh->b_assoc_map) { 1216 struct address_space *buffer_mapping = bh->b_page->mapping; 1217 1218 spin_lock(&buffer_mapping->private_lock); 1219 list_del_init(&bh->b_assoc_buffers); 1220 bh->b_assoc_map = NULL; 1221 spin_unlock(&buffer_mapping->private_lock); 1222 } 1223 __brelse(bh); 1224 } 1225 EXPORT_SYMBOL(__bforget); 1226 1227 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1228 { 1229 lock_buffer(bh); 1230 if (buffer_uptodate(bh)) { 1231 unlock_buffer(bh); 1232 return bh; 1233 } else { 1234 get_bh(bh); 1235 bh->b_end_io = end_buffer_read_sync; 1236 submit_bh(READ, bh); 1237 wait_on_buffer(bh); 1238 if (buffer_uptodate(bh)) 1239 return bh; 1240 } 1241 brelse(bh); 1242 return NULL; 1243 } 1244 1245 /* 1246 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1247 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1248 * refcount elevated by one when they're in an LRU. A buffer can only appear 1249 * once in a particular CPU's LRU. A single buffer can be present in multiple 1250 * CPU's LRUs at the same time. 1251 * 1252 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1253 * sb_find_get_block(). 1254 * 1255 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1256 * a local interrupt disable for that. 1257 */ 1258 1259 #define BH_LRU_SIZE 8 1260 1261 struct bh_lru { 1262 struct buffer_head *bhs[BH_LRU_SIZE]; 1263 }; 1264 1265 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1266 1267 #ifdef CONFIG_SMP 1268 #define bh_lru_lock() local_irq_disable() 1269 #define bh_lru_unlock() local_irq_enable() 1270 #else 1271 #define bh_lru_lock() preempt_disable() 1272 #define bh_lru_unlock() preempt_enable() 1273 #endif 1274 1275 static inline void check_irqs_on(void) 1276 { 1277 #ifdef irqs_disabled 1278 BUG_ON(irqs_disabled()); 1279 #endif 1280 } 1281 1282 /* 1283 * The LRU management algorithm is dopey-but-simple. Sorry. 1284 */ 1285 static void bh_lru_install(struct buffer_head *bh) 1286 { 1287 struct buffer_head *evictee = NULL; 1288 1289 check_irqs_on(); 1290 bh_lru_lock(); 1291 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1292 struct buffer_head *bhs[BH_LRU_SIZE]; 1293 int in; 1294 int out = 0; 1295 1296 get_bh(bh); 1297 bhs[out++] = bh; 1298 for (in = 0; in < BH_LRU_SIZE; in++) { 1299 struct buffer_head *bh2 = 1300 __this_cpu_read(bh_lrus.bhs[in]); 1301 1302 if (bh2 == bh) { 1303 __brelse(bh2); 1304 } else { 1305 if (out >= BH_LRU_SIZE) { 1306 BUG_ON(evictee != NULL); 1307 evictee = bh2; 1308 } else { 1309 bhs[out++] = bh2; 1310 } 1311 } 1312 } 1313 while (out < BH_LRU_SIZE) 1314 bhs[out++] = NULL; 1315 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1316 } 1317 bh_lru_unlock(); 1318 1319 if (evictee) 1320 __brelse(evictee); 1321 } 1322 1323 /* 1324 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1325 */ 1326 static struct buffer_head * 1327 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1328 { 1329 struct buffer_head *ret = NULL; 1330 unsigned int i; 1331 1332 check_irqs_on(); 1333 bh_lru_lock(); 1334 for (i = 0; i < BH_LRU_SIZE; i++) { 1335 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1336 1337 if (bh && bh->b_bdev == bdev && 1338 bh->b_blocknr == block && bh->b_size == size) { 1339 if (i) { 1340 while (i) { 1341 __this_cpu_write(bh_lrus.bhs[i], 1342 __this_cpu_read(bh_lrus.bhs[i - 1])); 1343 i--; 1344 } 1345 __this_cpu_write(bh_lrus.bhs[0], bh); 1346 } 1347 get_bh(bh); 1348 ret = bh; 1349 break; 1350 } 1351 } 1352 bh_lru_unlock(); 1353 return ret; 1354 } 1355 1356 /* 1357 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1358 * it in the LRU and mark it as accessed. If it is not present then return 1359 * NULL 1360 */ 1361 struct buffer_head * 1362 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1363 { 1364 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1365 1366 if (bh == NULL) { 1367 bh = __find_get_block_slow(bdev, block); 1368 if (bh) 1369 bh_lru_install(bh); 1370 } 1371 if (bh) 1372 touch_buffer(bh); 1373 return bh; 1374 } 1375 EXPORT_SYMBOL(__find_get_block); 1376 1377 /* 1378 * __getblk will locate (and, if necessary, create) the buffer_head 1379 * which corresponds to the passed block_device, block and size. The 1380 * returned buffer has its reference count incremented. 1381 * 1382 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1383 * attempt is failing. FIXME, perhaps? 1384 */ 1385 struct buffer_head * 1386 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1387 { 1388 struct buffer_head *bh = __find_get_block(bdev, block, size); 1389 1390 might_sleep(); 1391 if (bh == NULL) 1392 bh = __getblk_slow(bdev, block, size); 1393 return bh; 1394 } 1395 EXPORT_SYMBOL(__getblk); 1396 1397 /* 1398 * Do async read-ahead on a buffer.. 1399 */ 1400 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1401 { 1402 struct buffer_head *bh = __getblk(bdev, block, size); 1403 if (likely(bh)) { 1404 ll_rw_block(READA, 1, &bh); 1405 brelse(bh); 1406 } 1407 } 1408 EXPORT_SYMBOL(__breadahead); 1409 1410 /** 1411 * __bread() - reads a specified block and returns the bh 1412 * @bdev: the block_device to read from 1413 * @block: number of block 1414 * @size: size (in bytes) to read 1415 * 1416 * Reads a specified block, and returns buffer head that contains it. 1417 * It returns NULL if the block was unreadable. 1418 */ 1419 struct buffer_head * 1420 __bread(struct block_device *bdev, sector_t block, unsigned size) 1421 { 1422 struct buffer_head *bh = __getblk(bdev, block, size); 1423 1424 if (likely(bh) && !buffer_uptodate(bh)) 1425 bh = __bread_slow(bh); 1426 return bh; 1427 } 1428 EXPORT_SYMBOL(__bread); 1429 1430 /* 1431 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1432 * This doesn't race because it runs in each cpu either in irq 1433 * or with preempt disabled. 1434 */ 1435 static void invalidate_bh_lru(void *arg) 1436 { 1437 struct bh_lru *b = &get_cpu_var(bh_lrus); 1438 int i; 1439 1440 for (i = 0; i < BH_LRU_SIZE; i++) { 1441 brelse(b->bhs[i]); 1442 b->bhs[i] = NULL; 1443 } 1444 put_cpu_var(bh_lrus); 1445 } 1446 1447 static bool has_bh_in_lru(int cpu, void *dummy) 1448 { 1449 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1450 int i; 1451 1452 for (i = 0; i < BH_LRU_SIZE; i++) { 1453 if (b->bhs[i]) 1454 return 1; 1455 } 1456 1457 return 0; 1458 } 1459 1460 void invalidate_bh_lrus(void) 1461 { 1462 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1463 } 1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1465 1466 void set_bh_page(struct buffer_head *bh, 1467 struct page *page, unsigned long offset) 1468 { 1469 bh->b_page = page; 1470 BUG_ON(offset >= PAGE_SIZE); 1471 if (PageHighMem(page)) 1472 /* 1473 * This catches illegal uses and preserves the offset: 1474 */ 1475 bh->b_data = (char *)(0 + offset); 1476 else 1477 bh->b_data = page_address(page) + offset; 1478 } 1479 EXPORT_SYMBOL(set_bh_page); 1480 1481 /* 1482 * Called when truncating a buffer on a page completely. 1483 */ 1484 static void discard_buffer(struct buffer_head * bh) 1485 { 1486 lock_buffer(bh); 1487 clear_buffer_dirty(bh); 1488 bh->b_bdev = NULL; 1489 clear_buffer_mapped(bh); 1490 clear_buffer_req(bh); 1491 clear_buffer_new(bh); 1492 clear_buffer_delay(bh); 1493 clear_buffer_unwritten(bh); 1494 unlock_buffer(bh); 1495 } 1496 1497 /** 1498 * block_invalidatepage - invalidate part or all of a buffer-backed page 1499 * 1500 * @page: the page which is affected 1501 * @offset: start of the range to invalidate 1502 * @length: length of the range to invalidate 1503 * 1504 * block_invalidatepage() is called when all or part of the page has become 1505 * invalidated by a truncate operation. 1506 * 1507 * block_invalidatepage() does not have to release all buffers, but it must 1508 * ensure that no dirty buffer is left outside @offset and that no I/O 1509 * is underway against any of the blocks which are outside the truncation 1510 * point. Because the caller is about to free (and possibly reuse) those 1511 * blocks on-disk. 1512 */ 1513 void block_invalidatepage(struct page *page, unsigned int offset, 1514 unsigned int length) 1515 { 1516 struct buffer_head *head, *bh, *next; 1517 unsigned int curr_off = 0; 1518 unsigned int stop = length + offset; 1519 1520 BUG_ON(!PageLocked(page)); 1521 if (!page_has_buffers(page)) 1522 goto out; 1523 1524 /* 1525 * Check for overflow 1526 */ 1527 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1528 1529 head = page_buffers(page); 1530 bh = head; 1531 do { 1532 unsigned int next_off = curr_off + bh->b_size; 1533 next = bh->b_this_page; 1534 1535 /* 1536 * Are we still fully in range ? 1537 */ 1538 if (next_off > stop) 1539 goto out; 1540 1541 /* 1542 * is this block fully invalidated? 1543 */ 1544 if (offset <= curr_off) 1545 discard_buffer(bh); 1546 curr_off = next_off; 1547 bh = next; 1548 } while (bh != head); 1549 1550 /* 1551 * We release buffers only if the entire page is being invalidated. 1552 * The get_block cached value has been unconditionally invalidated, 1553 * so real IO is not possible anymore. 1554 */ 1555 if (offset == 0) 1556 try_to_release_page(page, 0); 1557 out: 1558 return; 1559 } 1560 EXPORT_SYMBOL(block_invalidatepage); 1561 1562 1563 /* 1564 * We attach and possibly dirty the buffers atomically wrt 1565 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1566 * is already excluded via the page lock. 1567 */ 1568 void create_empty_buffers(struct page *page, 1569 unsigned long blocksize, unsigned long b_state) 1570 { 1571 struct buffer_head *bh, *head, *tail; 1572 1573 head = alloc_page_buffers(page, blocksize, 1); 1574 bh = head; 1575 do { 1576 bh->b_state |= b_state; 1577 tail = bh; 1578 bh = bh->b_this_page; 1579 } while (bh); 1580 tail->b_this_page = head; 1581 1582 spin_lock(&page->mapping->private_lock); 1583 if (PageUptodate(page) || PageDirty(page)) { 1584 bh = head; 1585 do { 1586 if (PageDirty(page)) 1587 set_buffer_dirty(bh); 1588 if (PageUptodate(page)) 1589 set_buffer_uptodate(bh); 1590 bh = bh->b_this_page; 1591 } while (bh != head); 1592 } 1593 attach_page_buffers(page, head); 1594 spin_unlock(&page->mapping->private_lock); 1595 } 1596 EXPORT_SYMBOL(create_empty_buffers); 1597 1598 /* 1599 * We are taking a block for data and we don't want any output from any 1600 * buffer-cache aliases starting from return from that function and 1601 * until the moment when something will explicitly mark the buffer 1602 * dirty (hopefully that will not happen until we will free that block ;-) 1603 * We don't even need to mark it not-uptodate - nobody can expect 1604 * anything from a newly allocated buffer anyway. We used to used 1605 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1606 * don't want to mark the alias unmapped, for example - it would confuse 1607 * anyone who might pick it with bread() afterwards... 1608 * 1609 * Also.. Note that bforget() doesn't lock the buffer. So there can 1610 * be writeout I/O going on against recently-freed buffers. We don't 1611 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1612 * only if we really need to. That happens here. 1613 */ 1614 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1615 { 1616 struct buffer_head *old_bh; 1617 1618 might_sleep(); 1619 1620 old_bh = __find_get_block_slow(bdev, block); 1621 if (old_bh) { 1622 clear_buffer_dirty(old_bh); 1623 wait_on_buffer(old_bh); 1624 clear_buffer_req(old_bh); 1625 __brelse(old_bh); 1626 } 1627 } 1628 EXPORT_SYMBOL(unmap_underlying_metadata); 1629 1630 /* 1631 * Size is a power-of-two in the range 512..PAGE_SIZE, 1632 * and the case we care about most is PAGE_SIZE. 1633 * 1634 * So this *could* possibly be written with those 1635 * constraints in mind (relevant mostly if some 1636 * architecture has a slow bit-scan instruction) 1637 */ 1638 static inline int block_size_bits(unsigned int blocksize) 1639 { 1640 return ilog2(blocksize); 1641 } 1642 1643 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1644 { 1645 BUG_ON(!PageLocked(page)); 1646 1647 if (!page_has_buffers(page)) 1648 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1649 return page_buffers(page); 1650 } 1651 1652 /* 1653 * NOTE! All mapped/uptodate combinations are valid: 1654 * 1655 * Mapped Uptodate Meaning 1656 * 1657 * No No "unknown" - must do get_block() 1658 * No Yes "hole" - zero-filled 1659 * Yes No "allocated" - allocated on disk, not read in 1660 * Yes Yes "valid" - allocated and up-to-date in memory. 1661 * 1662 * "Dirty" is valid only with the last case (mapped+uptodate). 1663 */ 1664 1665 /* 1666 * While block_write_full_page is writing back the dirty buffers under 1667 * the page lock, whoever dirtied the buffers may decide to clean them 1668 * again at any time. We handle that by only looking at the buffer 1669 * state inside lock_buffer(). 1670 * 1671 * If block_write_full_page() is called for regular writeback 1672 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1673 * locked buffer. This only can happen if someone has written the buffer 1674 * directly, with submit_bh(). At the address_space level PageWriteback 1675 * prevents this contention from occurring. 1676 * 1677 * If block_write_full_page() is called with wbc->sync_mode == 1678 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1679 * causes the writes to be flagged as synchronous writes. 1680 */ 1681 static int __block_write_full_page(struct inode *inode, struct page *page, 1682 get_block_t *get_block, struct writeback_control *wbc, 1683 bh_end_io_t *handler) 1684 { 1685 int err; 1686 sector_t block; 1687 sector_t last_block; 1688 struct buffer_head *bh, *head; 1689 unsigned int blocksize, bbits; 1690 int nr_underway = 0; 1691 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1692 WRITE_SYNC : WRITE); 1693 1694 head = create_page_buffers(page, inode, 1695 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1696 1697 /* 1698 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1699 * here, and the (potentially unmapped) buffers may become dirty at 1700 * any time. If a buffer becomes dirty here after we've inspected it 1701 * then we just miss that fact, and the page stays dirty. 1702 * 1703 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1704 * handle that here by just cleaning them. 1705 */ 1706 1707 bh = head; 1708 blocksize = bh->b_size; 1709 bbits = block_size_bits(blocksize); 1710 1711 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1712 last_block = (i_size_read(inode) - 1) >> bbits; 1713 1714 /* 1715 * Get all the dirty buffers mapped to disk addresses and 1716 * handle any aliases from the underlying blockdev's mapping. 1717 */ 1718 do { 1719 if (block > last_block) { 1720 /* 1721 * mapped buffers outside i_size will occur, because 1722 * this page can be outside i_size when there is a 1723 * truncate in progress. 1724 */ 1725 /* 1726 * The buffer was zeroed by block_write_full_page() 1727 */ 1728 clear_buffer_dirty(bh); 1729 set_buffer_uptodate(bh); 1730 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1731 buffer_dirty(bh)) { 1732 WARN_ON(bh->b_size != blocksize); 1733 err = get_block(inode, block, bh, 1); 1734 if (err) 1735 goto recover; 1736 clear_buffer_delay(bh); 1737 if (buffer_new(bh)) { 1738 /* blockdev mappings never come here */ 1739 clear_buffer_new(bh); 1740 unmap_underlying_metadata(bh->b_bdev, 1741 bh->b_blocknr); 1742 } 1743 } 1744 bh = bh->b_this_page; 1745 block++; 1746 } while (bh != head); 1747 1748 do { 1749 if (!buffer_mapped(bh)) 1750 continue; 1751 /* 1752 * If it's a fully non-blocking write attempt and we cannot 1753 * lock the buffer then redirty the page. Note that this can 1754 * potentially cause a busy-wait loop from writeback threads 1755 * and kswapd activity, but those code paths have their own 1756 * higher-level throttling. 1757 */ 1758 if (wbc->sync_mode != WB_SYNC_NONE) { 1759 lock_buffer(bh); 1760 } else if (!trylock_buffer(bh)) { 1761 redirty_page_for_writepage(wbc, page); 1762 continue; 1763 } 1764 if (test_clear_buffer_dirty(bh)) { 1765 mark_buffer_async_write_endio(bh, handler); 1766 } else { 1767 unlock_buffer(bh); 1768 } 1769 } while ((bh = bh->b_this_page) != head); 1770 1771 /* 1772 * The page and its buffers are protected by PageWriteback(), so we can 1773 * drop the bh refcounts early. 1774 */ 1775 BUG_ON(PageWriteback(page)); 1776 set_page_writeback(page); 1777 1778 do { 1779 struct buffer_head *next = bh->b_this_page; 1780 if (buffer_async_write(bh)) { 1781 submit_bh(write_op, bh); 1782 nr_underway++; 1783 } 1784 bh = next; 1785 } while (bh != head); 1786 unlock_page(page); 1787 1788 err = 0; 1789 done: 1790 if (nr_underway == 0) { 1791 /* 1792 * The page was marked dirty, but the buffers were 1793 * clean. Someone wrote them back by hand with 1794 * ll_rw_block/submit_bh. A rare case. 1795 */ 1796 end_page_writeback(page); 1797 1798 /* 1799 * The page and buffer_heads can be released at any time from 1800 * here on. 1801 */ 1802 } 1803 return err; 1804 1805 recover: 1806 /* 1807 * ENOSPC, or some other error. We may already have added some 1808 * blocks to the file, so we need to write these out to avoid 1809 * exposing stale data. 1810 * The page is currently locked and not marked for writeback 1811 */ 1812 bh = head; 1813 /* Recovery: lock and submit the mapped buffers */ 1814 do { 1815 if (buffer_mapped(bh) && buffer_dirty(bh) && 1816 !buffer_delay(bh)) { 1817 lock_buffer(bh); 1818 mark_buffer_async_write_endio(bh, handler); 1819 } else { 1820 /* 1821 * The buffer may have been set dirty during 1822 * attachment to a dirty page. 1823 */ 1824 clear_buffer_dirty(bh); 1825 } 1826 } while ((bh = bh->b_this_page) != head); 1827 SetPageError(page); 1828 BUG_ON(PageWriteback(page)); 1829 mapping_set_error(page->mapping, err); 1830 set_page_writeback(page); 1831 do { 1832 struct buffer_head *next = bh->b_this_page; 1833 if (buffer_async_write(bh)) { 1834 clear_buffer_dirty(bh); 1835 submit_bh(write_op, bh); 1836 nr_underway++; 1837 } 1838 bh = next; 1839 } while (bh != head); 1840 unlock_page(page); 1841 goto done; 1842 } 1843 1844 /* 1845 * If a page has any new buffers, zero them out here, and mark them uptodate 1846 * and dirty so they'll be written out (in order to prevent uninitialised 1847 * block data from leaking). And clear the new bit. 1848 */ 1849 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1850 { 1851 unsigned int block_start, block_end; 1852 struct buffer_head *head, *bh; 1853 1854 BUG_ON(!PageLocked(page)); 1855 if (!page_has_buffers(page)) 1856 return; 1857 1858 bh = head = page_buffers(page); 1859 block_start = 0; 1860 do { 1861 block_end = block_start + bh->b_size; 1862 1863 if (buffer_new(bh)) { 1864 if (block_end > from && block_start < to) { 1865 if (!PageUptodate(page)) { 1866 unsigned start, size; 1867 1868 start = max(from, block_start); 1869 size = min(to, block_end) - start; 1870 1871 zero_user(page, start, size); 1872 set_buffer_uptodate(bh); 1873 } 1874 1875 clear_buffer_new(bh); 1876 mark_buffer_dirty(bh); 1877 } 1878 } 1879 1880 block_start = block_end; 1881 bh = bh->b_this_page; 1882 } while (bh != head); 1883 } 1884 EXPORT_SYMBOL(page_zero_new_buffers); 1885 1886 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1887 get_block_t *get_block) 1888 { 1889 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1890 unsigned to = from + len; 1891 struct inode *inode = page->mapping->host; 1892 unsigned block_start, block_end; 1893 sector_t block; 1894 int err = 0; 1895 unsigned blocksize, bbits; 1896 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1897 1898 BUG_ON(!PageLocked(page)); 1899 BUG_ON(from > PAGE_CACHE_SIZE); 1900 BUG_ON(to > PAGE_CACHE_SIZE); 1901 BUG_ON(from > to); 1902 1903 head = create_page_buffers(page, inode, 0); 1904 blocksize = head->b_size; 1905 bbits = block_size_bits(blocksize); 1906 1907 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1908 1909 for(bh = head, block_start = 0; bh != head || !block_start; 1910 block++, block_start=block_end, bh = bh->b_this_page) { 1911 block_end = block_start + blocksize; 1912 if (block_end <= from || block_start >= to) { 1913 if (PageUptodate(page)) { 1914 if (!buffer_uptodate(bh)) 1915 set_buffer_uptodate(bh); 1916 } 1917 continue; 1918 } 1919 if (buffer_new(bh)) 1920 clear_buffer_new(bh); 1921 if (!buffer_mapped(bh)) { 1922 WARN_ON(bh->b_size != blocksize); 1923 err = get_block(inode, block, bh, 1); 1924 if (err) 1925 break; 1926 if (buffer_new(bh)) { 1927 unmap_underlying_metadata(bh->b_bdev, 1928 bh->b_blocknr); 1929 if (PageUptodate(page)) { 1930 clear_buffer_new(bh); 1931 set_buffer_uptodate(bh); 1932 mark_buffer_dirty(bh); 1933 continue; 1934 } 1935 if (block_end > to || block_start < from) 1936 zero_user_segments(page, 1937 to, block_end, 1938 block_start, from); 1939 continue; 1940 } 1941 } 1942 if (PageUptodate(page)) { 1943 if (!buffer_uptodate(bh)) 1944 set_buffer_uptodate(bh); 1945 continue; 1946 } 1947 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1948 !buffer_unwritten(bh) && 1949 (block_start < from || block_end > to)) { 1950 ll_rw_block(READ, 1, &bh); 1951 *wait_bh++=bh; 1952 } 1953 } 1954 /* 1955 * If we issued read requests - let them complete. 1956 */ 1957 while(wait_bh > wait) { 1958 wait_on_buffer(*--wait_bh); 1959 if (!buffer_uptodate(*wait_bh)) 1960 err = -EIO; 1961 } 1962 if (unlikely(err)) 1963 page_zero_new_buffers(page, from, to); 1964 return err; 1965 } 1966 EXPORT_SYMBOL(__block_write_begin); 1967 1968 static int __block_commit_write(struct inode *inode, struct page *page, 1969 unsigned from, unsigned to) 1970 { 1971 unsigned block_start, block_end; 1972 int partial = 0; 1973 unsigned blocksize; 1974 struct buffer_head *bh, *head; 1975 1976 bh = head = page_buffers(page); 1977 blocksize = bh->b_size; 1978 1979 block_start = 0; 1980 do { 1981 block_end = block_start + blocksize; 1982 if (block_end <= from || block_start >= to) { 1983 if (!buffer_uptodate(bh)) 1984 partial = 1; 1985 } else { 1986 set_buffer_uptodate(bh); 1987 mark_buffer_dirty(bh); 1988 } 1989 clear_buffer_new(bh); 1990 1991 block_start = block_end; 1992 bh = bh->b_this_page; 1993 } while (bh != head); 1994 1995 /* 1996 * If this is a partial write which happened to make all buffers 1997 * uptodate then we can optimize away a bogus readpage() for 1998 * the next read(). Here we 'discover' whether the page went 1999 * uptodate as a result of this (potentially partial) write. 2000 */ 2001 if (!partial) 2002 SetPageUptodate(page); 2003 return 0; 2004 } 2005 2006 /* 2007 * block_write_begin takes care of the basic task of block allocation and 2008 * bringing partial write blocks uptodate first. 2009 * 2010 * The filesystem needs to handle block truncation upon failure. 2011 */ 2012 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2013 unsigned flags, struct page **pagep, get_block_t *get_block) 2014 { 2015 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2016 struct page *page; 2017 int status; 2018 2019 page = grab_cache_page_write_begin(mapping, index, flags); 2020 if (!page) 2021 return -ENOMEM; 2022 2023 status = __block_write_begin(page, pos, len, get_block); 2024 if (unlikely(status)) { 2025 unlock_page(page); 2026 page_cache_release(page); 2027 page = NULL; 2028 } 2029 2030 *pagep = page; 2031 return status; 2032 } 2033 EXPORT_SYMBOL(block_write_begin); 2034 2035 int block_write_end(struct file *file, struct address_space *mapping, 2036 loff_t pos, unsigned len, unsigned copied, 2037 struct page *page, void *fsdata) 2038 { 2039 struct inode *inode = mapping->host; 2040 unsigned start; 2041 2042 start = pos & (PAGE_CACHE_SIZE - 1); 2043 2044 if (unlikely(copied < len)) { 2045 /* 2046 * The buffers that were written will now be uptodate, so we 2047 * don't have to worry about a readpage reading them and 2048 * overwriting a partial write. However if we have encountered 2049 * a short write and only partially written into a buffer, it 2050 * will not be marked uptodate, so a readpage might come in and 2051 * destroy our partial write. 2052 * 2053 * Do the simplest thing, and just treat any short write to a 2054 * non uptodate page as a zero-length write, and force the 2055 * caller to redo the whole thing. 2056 */ 2057 if (!PageUptodate(page)) 2058 copied = 0; 2059 2060 page_zero_new_buffers(page, start+copied, start+len); 2061 } 2062 flush_dcache_page(page); 2063 2064 /* This could be a short (even 0-length) commit */ 2065 __block_commit_write(inode, page, start, start+copied); 2066 2067 return copied; 2068 } 2069 EXPORT_SYMBOL(block_write_end); 2070 2071 int generic_write_end(struct file *file, struct address_space *mapping, 2072 loff_t pos, unsigned len, unsigned copied, 2073 struct page *page, void *fsdata) 2074 { 2075 struct inode *inode = mapping->host; 2076 int i_size_changed = 0; 2077 2078 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2079 2080 /* 2081 * No need to use i_size_read() here, the i_size 2082 * cannot change under us because we hold i_mutex. 2083 * 2084 * But it's important to update i_size while still holding page lock: 2085 * page writeout could otherwise come in and zero beyond i_size. 2086 */ 2087 if (pos+copied > inode->i_size) { 2088 i_size_write(inode, pos+copied); 2089 i_size_changed = 1; 2090 } 2091 2092 unlock_page(page); 2093 page_cache_release(page); 2094 2095 /* 2096 * Don't mark the inode dirty under page lock. First, it unnecessarily 2097 * makes the holding time of page lock longer. Second, it forces lock 2098 * ordering of page lock and transaction start for journaling 2099 * filesystems. 2100 */ 2101 if (i_size_changed) 2102 mark_inode_dirty(inode); 2103 2104 return copied; 2105 } 2106 EXPORT_SYMBOL(generic_write_end); 2107 2108 /* 2109 * block_is_partially_uptodate checks whether buffers within a page are 2110 * uptodate or not. 2111 * 2112 * Returns true if all buffers which correspond to a file portion 2113 * we want to read are uptodate. 2114 */ 2115 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2116 unsigned long from) 2117 { 2118 unsigned block_start, block_end, blocksize; 2119 unsigned to; 2120 struct buffer_head *bh, *head; 2121 int ret = 1; 2122 2123 if (!page_has_buffers(page)) 2124 return 0; 2125 2126 head = page_buffers(page); 2127 blocksize = head->b_size; 2128 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2129 to = from + to; 2130 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2131 return 0; 2132 2133 bh = head; 2134 block_start = 0; 2135 do { 2136 block_end = block_start + blocksize; 2137 if (block_end > from && block_start < to) { 2138 if (!buffer_uptodate(bh)) { 2139 ret = 0; 2140 break; 2141 } 2142 if (block_end >= to) 2143 break; 2144 } 2145 block_start = block_end; 2146 bh = bh->b_this_page; 2147 } while (bh != head); 2148 2149 return ret; 2150 } 2151 EXPORT_SYMBOL(block_is_partially_uptodate); 2152 2153 /* 2154 * Generic "read page" function for block devices that have the normal 2155 * get_block functionality. This is most of the block device filesystems. 2156 * Reads the page asynchronously --- the unlock_buffer() and 2157 * set/clear_buffer_uptodate() functions propagate buffer state into the 2158 * page struct once IO has completed. 2159 */ 2160 int block_read_full_page(struct page *page, get_block_t *get_block) 2161 { 2162 struct inode *inode = page->mapping->host; 2163 sector_t iblock, lblock; 2164 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2165 unsigned int blocksize, bbits; 2166 int nr, i; 2167 int fully_mapped = 1; 2168 2169 head = create_page_buffers(page, inode, 0); 2170 blocksize = head->b_size; 2171 bbits = block_size_bits(blocksize); 2172 2173 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 2174 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2175 bh = head; 2176 nr = 0; 2177 i = 0; 2178 2179 do { 2180 if (buffer_uptodate(bh)) 2181 continue; 2182 2183 if (!buffer_mapped(bh)) { 2184 int err = 0; 2185 2186 fully_mapped = 0; 2187 if (iblock < lblock) { 2188 WARN_ON(bh->b_size != blocksize); 2189 err = get_block(inode, iblock, bh, 0); 2190 if (err) 2191 SetPageError(page); 2192 } 2193 if (!buffer_mapped(bh)) { 2194 zero_user(page, i * blocksize, blocksize); 2195 if (!err) 2196 set_buffer_uptodate(bh); 2197 continue; 2198 } 2199 /* 2200 * get_block() might have updated the buffer 2201 * synchronously 2202 */ 2203 if (buffer_uptodate(bh)) 2204 continue; 2205 } 2206 arr[nr++] = bh; 2207 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2208 2209 if (fully_mapped) 2210 SetPageMappedToDisk(page); 2211 2212 if (!nr) { 2213 /* 2214 * All buffers are uptodate - we can set the page uptodate 2215 * as well. But not if get_block() returned an error. 2216 */ 2217 if (!PageError(page)) 2218 SetPageUptodate(page); 2219 unlock_page(page); 2220 return 0; 2221 } 2222 2223 /* Stage two: lock the buffers */ 2224 for (i = 0; i < nr; i++) { 2225 bh = arr[i]; 2226 lock_buffer(bh); 2227 mark_buffer_async_read(bh); 2228 } 2229 2230 /* 2231 * Stage 3: start the IO. Check for uptodateness 2232 * inside the buffer lock in case another process reading 2233 * the underlying blockdev brought it uptodate (the sct fix). 2234 */ 2235 for (i = 0; i < nr; i++) { 2236 bh = arr[i]; 2237 if (buffer_uptodate(bh)) 2238 end_buffer_async_read(bh, 1); 2239 else 2240 submit_bh(READ, bh); 2241 } 2242 return 0; 2243 } 2244 EXPORT_SYMBOL(block_read_full_page); 2245 2246 /* utility function for filesystems that need to do work on expanding 2247 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2248 * deal with the hole. 2249 */ 2250 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2251 { 2252 struct address_space *mapping = inode->i_mapping; 2253 struct page *page; 2254 void *fsdata; 2255 int err; 2256 2257 err = inode_newsize_ok(inode, size); 2258 if (err) 2259 goto out; 2260 2261 err = pagecache_write_begin(NULL, mapping, size, 0, 2262 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2263 &page, &fsdata); 2264 if (err) 2265 goto out; 2266 2267 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2268 BUG_ON(err > 0); 2269 2270 out: 2271 return err; 2272 } 2273 EXPORT_SYMBOL(generic_cont_expand_simple); 2274 2275 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2276 loff_t pos, loff_t *bytes) 2277 { 2278 struct inode *inode = mapping->host; 2279 unsigned blocksize = 1 << inode->i_blkbits; 2280 struct page *page; 2281 void *fsdata; 2282 pgoff_t index, curidx; 2283 loff_t curpos; 2284 unsigned zerofrom, offset, len; 2285 int err = 0; 2286 2287 index = pos >> PAGE_CACHE_SHIFT; 2288 offset = pos & ~PAGE_CACHE_MASK; 2289 2290 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2291 zerofrom = curpos & ~PAGE_CACHE_MASK; 2292 if (zerofrom & (blocksize-1)) { 2293 *bytes |= (blocksize-1); 2294 (*bytes)++; 2295 } 2296 len = PAGE_CACHE_SIZE - zerofrom; 2297 2298 err = pagecache_write_begin(file, mapping, curpos, len, 2299 AOP_FLAG_UNINTERRUPTIBLE, 2300 &page, &fsdata); 2301 if (err) 2302 goto out; 2303 zero_user(page, zerofrom, len); 2304 err = pagecache_write_end(file, mapping, curpos, len, len, 2305 page, fsdata); 2306 if (err < 0) 2307 goto out; 2308 BUG_ON(err != len); 2309 err = 0; 2310 2311 balance_dirty_pages_ratelimited(mapping); 2312 } 2313 2314 /* page covers the boundary, find the boundary offset */ 2315 if (index == curidx) { 2316 zerofrom = curpos & ~PAGE_CACHE_MASK; 2317 /* if we will expand the thing last block will be filled */ 2318 if (offset <= zerofrom) { 2319 goto out; 2320 } 2321 if (zerofrom & (blocksize-1)) { 2322 *bytes |= (blocksize-1); 2323 (*bytes)++; 2324 } 2325 len = offset - zerofrom; 2326 2327 err = pagecache_write_begin(file, mapping, curpos, len, 2328 AOP_FLAG_UNINTERRUPTIBLE, 2329 &page, &fsdata); 2330 if (err) 2331 goto out; 2332 zero_user(page, zerofrom, len); 2333 err = pagecache_write_end(file, mapping, curpos, len, len, 2334 page, fsdata); 2335 if (err < 0) 2336 goto out; 2337 BUG_ON(err != len); 2338 err = 0; 2339 } 2340 out: 2341 return err; 2342 } 2343 2344 /* 2345 * For moronic filesystems that do not allow holes in file. 2346 * We may have to extend the file. 2347 */ 2348 int cont_write_begin(struct file *file, struct address_space *mapping, 2349 loff_t pos, unsigned len, unsigned flags, 2350 struct page **pagep, void **fsdata, 2351 get_block_t *get_block, loff_t *bytes) 2352 { 2353 struct inode *inode = mapping->host; 2354 unsigned blocksize = 1 << inode->i_blkbits; 2355 unsigned zerofrom; 2356 int err; 2357 2358 err = cont_expand_zero(file, mapping, pos, bytes); 2359 if (err) 2360 return err; 2361 2362 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2363 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2364 *bytes |= (blocksize-1); 2365 (*bytes)++; 2366 } 2367 2368 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2369 } 2370 EXPORT_SYMBOL(cont_write_begin); 2371 2372 int block_commit_write(struct page *page, unsigned from, unsigned to) 2373 { 2374 struct inode *inode = page->mapping->host; 2375 __block_commit_write(inode,page,from,to); 2376 return 0; 2377 } 2378 EXPORT_SYMBOL(block_commit_write); 2379 2380 /* 2381 * block_page_mkwrite() is not allowed to change the file size as it gets 2382 * called from a page fault handler when a page is first dirtied. Hence we must 2383 * be careful to check for EOF conditions here. We set the page up correctly 2384 * for a written page which means we get ENOSPC checking when writing into 2385 * holes and correct delalloc and unwritten extent mapping on filesystems that 2386 * support these features. 2387 * 2388 * We are not allowed to take the i_mutex here so we have to play games to 2389 * protect against truncate races as the page could now be beyond EOF. Because 2390 * truncate writes the inode size before removing pages, once we have the 2391 * page lock we can determine safely if the page is beyond EOF. If it is not 2392 * beyond EOF, then the page is guaranteed safe against truncation until we 2393 * unlock the page. 2394 * 2395 * Direct callers of this function should protect against filesystem freezing 2396 * using sb_start_write() - sb_end_write() functions. 2397 */ 2398 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2399 get_block_t get_block) 2400 { 2401 struct page *page = vmf->page; 2402 struct inode *inode = file_inode(vma->vm_file); 2403 unsigned long end; 2404 loff_t size; 2405 int ret; 2406 2407 lock_page(page); 2408 size = i_size_read(inode); 2409 if ((page->mapping != inode->i_mapping) || 2410 (page_offset(page) > size)) { 2411 /* We overload EFAULT to mean page got truncated */ 2412 ret = -EFAULT; 2413 goto out_unlock; 2414 } 2415 2416 /* page is wholly or partially inside EOF */ 2417 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2418 end = size & ~PAGE_CACHE_MASK; 2419 else 2420 end = PAGE_CACHE_SIZE; 2421 2422 ret = __block_write_begin(page, 0, end, get_block); 2423 if (!ret) 2424 ret = block_commit_write(page, 0, end); 2425 2426 if (unlikely(ret < 0)) 2427 goto out_unlock; 2428 set_page_dirty(page); 2429 wait_for_stable_page(page); 2430 return 0; 2431 out_unlock: 2432 unlock_page(page); 2433 return ret; 2434 } 2435 EXPORT_SYMBOL(__block_page_mkwrite); 2436 2437 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2438 get_block_t get_block) 2439 { 2440 int ret; 2441 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 2442 2443 sb_start_pagefault(sb); 2444 2445 /* 2446 * Update file times before taking page lock. We may end up failing the 2447 * fault so this update may be superfluous but who really cares... 2448 */ 2449 file_update_time(vma->vm_file); 2450 2451 ret = __block_page_mkwrite(vma, vmf, get_block); 2452 sb_end_pagefault(sb); 2453 return block_page_mkwrite_return(ret); 2454 } 2455 EXPORT_SYMBOL(block_page_mkwrite); 2456 2457 /* 2458 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2459 * immediately, while under the page lock. So it needs a special end_io 2460 * handler which does not touch the bh after unlocking it. 2461 */ 2462 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2463 { 2464 __end_buffer_read_notouch(bh, uptodate); 2465 } 2466 2467 /* 2468 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2469 * the page (converting it to circular linked list and taking care of page 2470 * dirty races). 2471 */ 2472 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2473 { 2474 struct buffer_head *bh; 2475 2476 BUG_ON(!PageLocked(page)); 2477 2478 spin_lock(&page->mapping->private_lock); 2479 bh = head; 2480 do { 2481 if (PageDirty(page)) 2482 set_buffer_dirty(bh); 2483 if (!bh->b_this_page) 2484 bh->b_this_page = head; 2485 bh = bh->b_this_page; 2486 } while (bh != head); 2487 attach_page_buffers(page, head); 2488 spin_unlock(&page->mapping->private_lock); 2489 } 2490 2491 /* 2492 * On entry, the page is fully not uptodate. 2493 * On exit the page is fully uptodate in the areas outside (from,to) 2494 * The filesystem needs to handle block truncation upon failure. 2495 */ 2496 int nobh_write_begin(struct address_space *mapping, 2497 loff_t pos, unsigned len, unsigned flags, 2498 struct page **pagep, void **fsdata, 2499 get_block_t *get_block) 2500 { 2501 struct inode *inode = mapping->host; 2502 const unsigned blkbits = inode->i_blkbits; 2503 const unsigned blocksize = 1 << blkbits; 2504 struct buffer_head *head, *bh; 2505 struct page *page; 2506 pgoff_t index; 2507 unsigned from, to; 2508 unsigned block_in_page; 2509 unsigned block_start, block_end; 2510 sector_t block_in_file; 2511 int nr_reads = 0; 2512 int ret = 0; 2513 int is_mapped_to_disk = 1; 2514 2515 index = pos >> PAGE_CACHE_SHIFT; 2516 from = pos & (PAGE_CACHE_SIZE - 1); 2517 to = from + len; 2518 2519 page = grab_cache_page_write_begin(mapping, index, flags); 2520 if (!page) 2521 return -ENOMEM; 2522 *pagep = page; 2523 *fsdata = NULL; 2524 2525 if (page_has_buffers(page)) { 2526 ret = __block_write_begin(page, pos, len, get_block); 2527 if (unlikely(ret)) 2528 goto out_release; 2529 return ret; 2530 } 2531 2532 if (PageMappedToDisk(page)) 2533 return 0; 2534 2535 /* 2536 * Allocate buffers so that we can keep track of state, and potentially 2537 * attach them to the page if an error occurs. In the common case of 2538 * no error, they will just be freed again without ever being attached 2539 * to the page (which is all OK, because we're under the page lock). 2540 * 2541 * Be careful: the buffer linked list is a NULL terminated one, rather 2542 * than the circular one we're used to. 2543 */ 2544 head = alloc_page_buffers(page, blocksize, 0); 2545 if (!head) { 2546 ret = -ENOMEM; 2547 goto out_release; 2548 } 2549 2550 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2551 2552 /* 2553 * We loop across all blocks in the page, whether or not they are 2554 * part of the affected region. This is so we can discover if the 2555 * page is fully mapped-to-disk. 2556 */ 2557 for (block_start = 0, block_in_page = 0, bh = head; 2558 block_start < PAGE_CACHE_SIZE; 2559 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2560 int create; 2561 2562 block_end = block_start + blocksize; 2563 bh->b_state = 0; 2564 create = 1; 2565 if (block_start >= to) 2566 create = 0; 2567 ret = get_block(inode, block_in_file + block_in_page, 2568 bh, create); 2569 if (ret) 2570 goto failed; 2571 if (!buffer_mapped(bh)) 2572 is_mapped_to_disk = 0; 2573 if (buffer_new(bh)) 2574 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2575 if (PageUptodate(page)) { 2576 set_buffer_uptodate(bh); 2577 continue; 2578 } 2579 if (buffer_new(bh) || !buffer_mapped(bh)) { 2580 zero_user_segments(page, block_start, from, 2581 to, block_end); 2582 continue; 2583 } 2584 if (buffer_uptodate(bh)) 2585 continue; /* reiserfs does this */ 2586 if (block_start < from || block_end > to) { 2587 lock_buffer(bh); 2588 bh->b_end_io = end_buffer_read_nobh; 2589 submit_bh(READ, bh); 2590 nr_reads++; 2591 } 2592 } 2593 2594 if (nr_reads) { 2595 /* 2596 * The page is locked, so these buffers are protected from 2597 * any VM or truncate activity. Hence we don't need to care 2598 * for the buffer_head refcounts. 2599 */ 2600 for (bh = head; bh; bh = bh->b_this_page) { 2601 wait_on_buffer(bh); 2602 if (!buffer_uptodate(bh)) 2603 ret = -EIO; 2604 } 2605 if (ret) 2606 goto failed; 2607 } 2608 2609 if (is_mapped_to_disk) 2610 SetPageMappedToDisk(page); 2611 2612 *fsdata = head; /* to be released by nobh_write_end */ 2613 2614 return 0; 2615 2616 failed: 2617 BUG_ON(!ret); 2618 /* 2619 * Error recovery is a bit difficult. We need to zero out blocks that 2620 * were newly allocated, and dirty them to ensure they get written out. 2621 * Buffers need to be attached to the page at this point, otherwise 2622 * the handling of potential IO errors during writeout would be hard 2623 * (could try doing synchronous writeout, but what if that fails too?) 2624 */ 2625 attach_nobh_buffers(page, head); 2626 page_zero_new_buffers(page, from, to); 2627 2628 out_release: 2629 unlock_page(page); 2630 page_cache_release(page); 2631 *pagep = NULL; 2632 2633 return ret; 2634 } 2635 EXPORT_SYMBOL(nobh_write_begin); 2636 2637 int nobh_write_end(struct file *file, struct address_space *mapping, 2638 loff_t pos, unsigned len, unsigned copied, 2639 struct page *page, void *fsdata) 2640 { 2641 struct inode *inode = page->mapping->host; 2642 struct buffer_head *head = fsdata; 2643 struct buffer_head *bh; 2644 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2645 2646 if (unlikely(copied < len) && head) 2647 attach_nobh_buffers(page, head); 2648 if (page_has_buffers(page)) 2649 return generic_write_end(file, mapping, pos, len, 2650 copied, page, fsdata); 2651 2652 SetPageUptodate(page); 2653 set_page_dirty(page); 2654 if (pos+copied > inode->i_size) { 2655 i_size_write(inode, pos+copied); 2656 mark_inode_dirty(inode); 2657 } 2658 2659 unlock_page(page); 2660 page_cache_release(page); 2661 2662 while (head) { 2663 bh = head; 2664 head = head->b_this_page; 2665 free_buffer_head(bh); 2666 } 2667 2668 return copied; 2669 } 2670 EXPORT_SYMBOL(nobh_write_end); 2671 2672 /* 2673 * nobh_writepage() - based on block_full_write_page() except 2674 * that it tries to operate without attaching bufferheads to 2675 * the page. 2676 */ 2677 int nobh_writepage(struct page *page, get_block_t *get_block, 2678 struct writeback_control *wbc) 2679 { 2680 struct inode * const inode = page->mapping->host; 2681 loff_t i_size = i_size_read(inode); 2682 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2683 unsigned offset; 2684 int ret; 2685 2686 /* Is the page fully inside i_size? */ 2687 if (page->index < end_index) 2688 goto out; 2689 2690 /* Is the page fully outside i_size? (truncate in progress) */ 2691 offset = i_size & (PAGE_CACHE_SIZE-1); 2692 if (page->index >= end_index+1 || !offset) { 2693 /* 2694 * The page may have dirty, unmapped buffers. For example, 2695 * they may have been added in ext3_writepage(). Make them 2696 * freeable here, so the page does not leak. 2697 */ 2698 #if 0 2699 /* Not really sure about this - do we need this ? */ 2700 if (page->mapping->a_ops->invalidatepage) 2701 page->mapping->a_ops->invalidatepage(page, offset); 2702 #endif 2703 unlock_page(page); 2704 return 0; /* don't care */ 2705 } 2706 2707 /* 2708 * The page straddles i_size. It must be zeroed out on each and every 2709 * writepage invocation because it may be mmapped. "A file is mapped 2710 * in multiples of the page size. For a file that is not a multiple of 2711 * the page size, the remaining memory is zeroed when mapped, and 2712 * writes to that region are not written out to the file." 2713 */ 2714 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2715 out: 2716 ret = mpage_writepage(page, get_block, wbc); 2717 if (ret == -EAGAIN) 2718 ret = __block_write_full_page(inode, page, get_block, wbc, 2719 end_buffer_async_write); 2720 return ret; 2721 } 2722 EXPORT_SYMBOL(nobh_writepage); 2723 2724 int nobh_truncate_page(struct address_space *mapping, 2725 loff_t from, get_block_t *get_block) 2726 { 2727 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2728 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2729 unsigned blocksize; 2730 sector_t iblock; 2731 unsigned length, pos; 2732 struct inode *inode = mapping->host; 2733 struct page *page; 2734 struct buffer_head map_bh; 2735 int err; 2736 2737 blocksize = 1 << inode->i_blkbits; 2738 length = offset & (blocksize - 1); 2739 2740 /* Block boundary? Nothing to do */ 2741 if (!length) 2742 return 0; 2743 2744 length = blocksize - length; 2745 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2746 2747 page = grab_cache_page(mapping, index); 2748 err = -ENOMEM; 2749 if (!page) 2750 goto out; 2751 2752 if (page_has_buffers(page)) { 2753 has_buffers: 2754 unlock_page(page); 2755 page_cache_release(page); 2756 return block_truncate_page(mapping, from, get_block); 2757 } 2758 2759 /* Find the buffer that contains "offset" */ 2760 pos = blocksize; 2761 while (offset >= pos) { 2762 iblock++; 2763 pos += blocksize; 2764 } 2765 2766 map_bh.b_size = blocksize; 2767 map_bh.b_state = 0; 2768 err = get_block(inode, iblock, &map_bh, 0); 2769 if (err) 2770 goto unlock; 2771 /* unmapped? It's a hole - nothing to do */ 2772 if (!buffer_mapped(&map_bh)) 2773 goto unlock; 2774 2775 /* Ok, it's mapped. Make sure it's up-to-date */ 2776 if (!PageUptodate(page)) { 2777 err = mapping->a_ops->readpage(NULL, page); 2778 if (err) { 2779 page_cache_release(page); 2780 goto out; 2781 } 2782 lock_page(page); 2783 if (!PageUptodate(page)) { 2784 err = -EIO; 2785 goto unlock; 2786 } 2787 if (page_has_buffers(page)) 2788 goto has_buffers; 2789 } 2790 zero_user(page, offset, length); 2791 set_page_dirty(page); 2792 err = 0; 2793 2794 unlock: 2795 unlock_page(page); 2796 page_cache_release(page); 2797 out: 2798 return err; 2799 } 2800 EXPORT_SYMBOL(nobh_truncate_page); 2801 2802 int block_truncate_page(struct address_space *mapping, 2803 loff_t from, get_block_t *get_block) 2804 { 2805 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2806 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2807 unsigned blocksize; 2808 sector_t iblock; 2809 unsigned length, pos; 2810 struct inode *inode = mapping->host; 2811 struct page *page; 2812 struct buffer_head *bh; 2813 int err; 2814 2815 blocksize = 1 << inode->i_blkbits; 2816 length = offset & (blocksize - 1); 2817 2818 /* Block boundary? Nothing to do */ 2819 if (!length) 2820 return 0; 2821 2822 length = blocksize - length; 2823 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2824 2825 page = grab_cache_page(mapping, index); 2826 err = -ENOMEM; 2827 if (!page) 2828 goto out; 2829 2830 if (!page_has_buffers(page)) 2831 create_empty_buffers(page, blocksize, 0); 2832 2833 /* Find the buffer that contains "offset" */ 2834 bh = page_buffers(page); 2835 pos = blocksize; 2836 while (offset >= pos) { 2837 bh = bh->b_this_page; 2838 iblock++; 2839 pos += blocksize; 2840 } 2841 2842 err = 0; 2843 if (!buffer_mapped(bh)) { 2844 WARN_ON(bh->b_size != blocksize); 2845 err = get_block(inode, iblock, bh, 0); 2846 if (err) 2847 goto unlock; 2848 /* unmapped? It's a hole - nothing to do */ 2849 if (!buffer_mapped(bh)) 2850 goto unlock; 2851 } 2852 2853 /* Ok, it's mapped. Make sure it's up-to-date */ 2854 if (PageUptodate(page)) 2855 set_buffer_uptodate(bh); 2856 2857 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2858 err = -EIO; 2859 ll_rw_block(READ, 1, &bh); 2860 wait_on_buffer(bh); 2861 /* Uhhuh. Read error. Complain and punt. */ 2862 if (!buffer_uptodate(bh)) 2863 goto unlock; 2864 } 2865 2866 zero_user(page, offset, length); 2867 mark_buffer_dirty(bh); 2868 err = 0; 2869 2870 unlock: 2871 unlock_page(page); 2872 page_cache_release(page); 2873 out: 2874 return err; 2875 } 2876 EXPORT_SYMBOL(block_truncate_page); 2877 2878 /* 2879 * The generic ->writepage function for buffer-backed address_spaces 2880 * this form passes in the end_io handler used to finish the IO. 2881 */ 2882 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2883 struct writeback_control *wbc, bh_end_io_t *handler) 2884 { 2885 struct inode * const inode = page->mapping->host; 2886 loff_t i_size = i_size_read(inode); 2887 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2888 unsigned offset; 2889 2890 /* Is the page fully inside i_size? */ 2891 if (page->index < end_index) 2892 return __block_write_full_page(inode, page, get_block, wbc, 2893 handler); 2894 2895 /* Is the page fully outside i_size? (truncate in progress) */ 2896 offset = i_size & (PAGE_CACHE_SIZE-1); 2897 if (page->index >= end_index+1 || !offset) { 2898 /* 2899 * The page may have dirty, unmapped buffers. For example, 2900 * they may have been added in ext3_writepage(). Make them 2901 * freeable here, so the page does not leak. 2902 */ 2903 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 2904 unlock_page(page); 2905 return 0; /* don't care */ 2906 } 2907 2908 /* 2909 * The page straddles i_size. It must be zeroed out on each and every 2910 * writepage invocation because it may be mmapped. "A file is mapped 2911 * in multiples of the page size. For a file that is not a multiple of 2912 * the page size, the remaining memory is zeroed when mapped, and 2913 * writes to that region are not written out to the file." 2914 */ 2915 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2916 return __block_write_full_page(inode, page, get_block, wbc, handler); 2917 } 2918 EXPORT_SYMBOL(block_write_full_page_endio); 2919 2920 /* 2921 * The generic ->writepage function for buffer-backed address_spaces 2922 */ 2923 int block_write_full_page(struct page *page, get_block_t *get_block, 2924 struct writeback_control *wbc) 2925 { 2926 return block_write_full_page_endio(page, get_block, wbc, 2927 end_buffer_async_write); 2928 } 2929 EXPORT_SYMBOL(block_write_full_page); 2930 2931 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2932 get_block_t *get_block) 2933 { 2934 struct buffer_head tmp; 2935 struct inode *inode = mapping->host; 2936 tmp.b_state = 0; 2937 tmp.b_blocknr = 0; 2938 tmp.b_size = 1 << inode->i_blkbits; 2939 get_block(inode, block, &tmp, 0); 2940 return tmp.b_blocknr; 2941 } 2942 EXPORT_SYMBOL(generic_block_bmap); 2943 2944 static void end_bio_bh_io_sync(struct bio *bio, int err) 2945 { 2946 struct buffer_head *bh = bio->bi_private; 2947 2948 if (err == -EOPNOTSUPP) { 2949 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2950 } 2951 2952 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2953 set_bit(BH_Quiet, &bh->b_state); 2954 2955 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2956 bio_put(bio); 2957 } 2958 2959 /* 2960 * This allows us to do IO even on the odd last sectors 2961 * of a device, even if the bh block size is some multiple 2962 * of the physical sector size. 2963 * 2964 * We'll just truncate the bio to the size of the device, 2965 * and clear the end of the buffer head manually. 2966 * 2967 * Truly out-of-range accesses will turn into actual IO 2968 * errors, this only handles the "we need to be able to 2969 * do IO at the final sector" case. 2970 */ 2971 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh) 2972 { 2973 sector_t maxsector; 2974 unsigned bytes; 2975 2976 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2977 if (!maxsector) 2978 return; 2979 2980 /* 2981 * If the *whole* IO is past the end of the device, 2982 * let it through, and the IO layer will turn it into 2983 * an EIO. 2984 */ 2985 if (unlikely(bio->bi_sector >= maxsector)) 2986 return; 2987 2988 maxsector -= bio->bi_sector; 2989 bytes = bio->bi_size; 2990 if (likely((bytes >> 9) <= maxsector)) 2991 return; 2992 2993 /* Uhhuh. We've got a bh that straddles the device size! */ 2994 bytes = maxsector << 9; 2995 2996 /* Truncate the bio.. */ 2997 bio->bi_size = bytes; 2998 bio->bi_io_vec[0].bv_len = bytes; 2999 3000 /* ..and clear the end of the buffer for reads */ 3001 if ((rw & RW_MASK) == READ) { 3002 void *kaddr = kmap_atomic(bh->b_page); 3003 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes); 3004 kunmap_atomic(kaddr); 3005 flush_dcache_page(bh->b_page); 3006 } 3007 } 3008 3009 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) 3010 { 3011 struct bio *bio; 3012 int ret = 0; 3013 3014 BUG_ON(!buffer_locked(bh)); 3015 BUG_ON(!buffer_mapped(bh)); 3016 BUG_ON(!bh->b_end_io); 3017 BUG_ON(buffer_delay(bh)); 3018 BUG_ON(buffer_unwritten(bh)); 3019 3020 /* 3021 * Only clear out a write error when rewriting 3022 */ 3023 if (test_set_buffer_req(bh) && (rw & WRITE)) 3024 clear_buffer_write_io_error(bh); 3025 3026 /* 3027 * from here on down, it's all bio -- do the initial mapping, 3028 * submit_bio -> generic_make_request may further map this bio around 3029 */ 3030 bio = bio_alloc(GFP_NOIO, 1); 3031 3032 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3033 bio->bi_bdev = bh->b_bdev; 3034 bio->bi_io_vec[0].bv_page = bh->b_page; 3035 bio->bi_io_vec[0].bv_len = bh->b_size; 3036 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 3037 3038 bio->bi_vcnt = 1; 3039 bio->bi_size = bh->b_size; 3040 3041 bio->bi_end_io = end_bio_bh_io_sync; 3042 bio->bi_private = bh; 3043 bio->bi_flags |= bio_flags; 3044 3045 /* Take care of bh's that straddle the end of the device */ 3046 guard_bh_eod(rw, bio, bh); 3047 3048 if (buffer_meta(bh)) 3049 rw |= REQ_META; 3050 if (buffer_prio(bh)) 3051 rw |= REQ_PRIO; 3052 3053 bio_get(bio); 3054 submit_bio(rw, bio); 3055 3056 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 3057 ret = -EOPNOTSUPP; 3058 3059 bio_put(bio); 3060 return ret; 3061 } 3062 EXPORT_SYMBOL_GPL(_submit_bh); 3063 3064 int submit_bh(int rw, struct buffer_head *bh) 3065 { 3066 return _submit_bh(rw, bh, 0); 3067 } 3068 EXPORT_SYMBOL(submit_bh); 3069 3070 /** 3071 * ll_rw_block: low-level access to block devices (DEPRECATED) 3072 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 3073 * @nr: number of &struct buffer_heads in the array 3074 * @bhs: array of pointers to &struct buffer_head 3075 * 3076 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3077 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3078 * %READA option is described in the documentation for generic_make_request() 3079 * which ll_rw_block() calls. 3080 * 3081 * This function drops any buffer that it cannot get a lock on (with the 3082 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3083 * request, and any buffer that appears to be up-to-date when doing read 3084 * request. Further it marks as clean buffers that are processed for 3085 * writing (the buffer cache won't assume that they are actually clean 3086 * until the buffer gets unlocked). 3087 * 3088 * ll_rw_block sets b_end_io to simple completion handler that marks 3089 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 3090 * any waiters. 3091 * 3092 * All of the buffers must be for the same device, and must also be a 3093 * multiple of the current approved size for the device. 3094 */ 3095 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3096 { 3097 int i; 3098 3099 for (i = 0; i < nr; i++) { 3100 struct buffer_head *bh = bhs[i]; 3101 3102 if (!trylock_buffer(bh)) 3103 continue; 3104 if (rw == WRITE) { 3105 if (test_clear_buffer_dirty(bh)) { 3106 bh->b_end_io = end_buffer_write_sync; 3107 get_bh(bh); 3108 submit_bh(WRITE, bh); 3109 continue; 3110 } 3111 } else { 3112 if (!buffer_uptodate(bh)) { 3113 bh->b_end_io = end_buffer_read_sync; 3114 get_bh(bh); 3115 submit_bh(rw, bh); 3116 continue; 3117 } 3118 } 3119 unlock_buffer(bh); 3120 } 3121 } 3122 EXPORT_SYMBOL(ll_rw_block); 3123 3124 void write_dirty_buffer(struct buffer_head *bh, int rw) 3125 { 3126 lock_buffer(bh); 3127 if (!test_clear_buffer_dirty(bh)) { 3128 unlock_buffer(bh); 3129 return; 3130 } 3131 bh->b_end_io = end_buffer_write_sync; 3132 get_bh(bh); 3133 submit_bh(rw, bh); 3134 } 3135 EXPORT_SYMBOL(write_dirty_buffer); 3136 3137 /* 3138 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3139 * and then start new I/O and then wait upon it. The caller must have a ref on 3140 * the buffer_head. 3141 */ 3142 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3143 { 3144 int ret = 0; 3145 3146 WARN_ON(atomic_read(&bh->b_count) < 1); 3147 lock_buffer(bh); 3148 if (test_clear_buffer_dirty(bh)) { 3149 get_bh(bh); 3150 bh->b_end_io = end_buffer_write_sync; 3151 ret = submit_bh(rw, bh); 3152 wait_on_buffer(bh); 3153 if (!ret && !buffer_uptodate(bh)) 3154 ret = -EIO; 3155 } else { 3156 unlock_buffer(bh); 3157 } 3158 return ret; 3159 } 3160 EXPORT_SYMBOL(__sync_dirty_buffer); 3161 3162 int sync_dirty_buffer(struct buffer_head *bh) 3163 { 3164 return __sync_dirty_buffer(bh, WRITE_SYNC); 3165 } 3166 EXPORT_SYMBOL(sync_dirty_buffer); 3167 3168 /* 3169 * try_to_free_buffers() checks if all the buffers on this particular page 3170 * are unused, and releases them if so. 3171 * 3172 * Exclusion against try_to_free_buffers may be obtained by either 3173 * locking the page or by holding its mapping's private_lock. 3174 * 3175 * If the page is dirty but all the buffers are clean then we need to 3176 * be sure to mark the page clean as well. This is because the page 3177 * may be against a block device, and a later reattachment of buffers 3178 * to a dirty page will set *all* buffers dirty. Which would corrupt 3179 * filesystem data on the same device. 3180 * 3181 * The same applies to regular filesystem pages: if all the buffers are 3182 * clean then we set the page clean and proceed. To do that, we require 3183 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3184 * private_lock. 3185 * 3186 * try_to_free_buffers() is non-blocking. 3187 */ 3188 static inline int buffer_busy(struct buffer_head *bh) 3189 { 3190 return atomic_read(&bh->b_count) | 3191 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3192 } 3193 3194 static int 3195 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3196 { 3197 struct buffer_head *head = page_buffers(page); 3198 struct buffer_head *bh; 3199 3200 bh = head; 3201 do { 3202 if (buffer_write_io_error(bh) && page->mapping) 3203 set_bit(AS_EIO, &page->mapping->flags); 3204 if (buffer_busy(bh)) 3205 goto failed; 3206 bh = bh->b_this_page; 3207 } while (bh != head); 3208 3209 do { 3210 struct buffer_head *next = bh->b_this_page; 3211 3212 if (bh->b_assoc_map) 3213 __remove_assoc_queue(bh); 3214 bh = next; 3215 } while (bh != head); 3216 *buffers_to_free = head; 3217 __clear_page_buffers(page); 3218 return 1; 3219 failed: 3220 return 0; 3221 } 3222 3223 int try_to_free_buffers(struct page *page) 3224 { 3225 struct address_space * const mapping = page->mapping; 3226 struct buffer_head *buffers_to_free = NULL; 3227 int ret = 0; 3228 3229 BUG_ON(!PageLocked(page)); 3230 if (PageWriteback(page)) 3231 return 0; 3232 3233 if (mapping == NULL) { /* can this still happen? */ 3234 ret = drop_buffers(page, &buffers_to_free); 3235 goto out; 3236 } 3237 3238 spin_lock(&mapping->private_lock); 3239 ret = drop_buffers(page, &buffers_to_free); 3240 3241 /* 3242 * If the filesystem writes its buffers by hand (eg ext3) 3243 * then we can have clean buffers against a dirty page. We 3244 * clean the page here; otherwise the VM will never notice 3245 * that the filesystem did any IO at all. 3246 * 3247 * Also, during truncate, discard_buffer will have marked all 3248 * the page's buffers clean. We discover that here and clean 3249 * the page also. 3250 * 3251 * private_lock must be held over this entire operation in order 3252 * to synchronise against __set_page_dirty_buffers and prevent the 3253 * dirty bit from being lost. 3254 */ 3255 if (ret) 3256 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3257 spin_unlock(&mapping->private_lock); 3258 out: 3259 if (buffers_to_free) { 3260 struct buffer_head *bh = buffers_to_free; 3261 3262 do { 3263 struct buffer_head *next = bh->b_this_page; 3264 free_buffer_head(bh); 3265 bh = next; 3266 } while (bh != buffers_to_free); 3267 } 3268 return ret; 3269 } 3270 EXPORT_SYMBOL(try_to_free_buffers); 3271 3272 /* 3273 * There are no bdflush tunables left. But distributions are 3274 * still running obsolete flush daemons, so we terminate them here. 3275 * 3276 * Use of bdflush() is deprecated and will be removed in a future kernel. 3277 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3278 */ 3279 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3280 { 3281 static int msg_count; 3282 3283 if (!capable(CAP_SYS_ADMIN)) 3284 return -EPERM; 3285 3286 if (msg_count < 5) { 3287 msg_count++; 3288 printk(KERN_INFO 3289 "warning: process `%s' used the obsolete bdflush" 3290 " system call\n", current->comm); 3291 printk(KERN_INFO "Fix your initscripts?\n"); 3292 } 3293 3294 if (func == 1) 3295 do_exit(0); 3296 return 0; 3297 } 3298 3299 /* 3300 * Buffer-head allocation 3301 */ 3302 static struct kmem_cache *bh_cachep __read_mostly; 3303 3304 /* 3305 * Once the number of bh's in the machine exceeds this level, we start 3306 * stripping them in writeback. 3307 */ 3308 static unsigned long max_buffer_heads; 3309 3310 int buffer_heads_over_limit; 3311 3312 struct bh_accounting { 3313 int nr; /* Number of live bh's */ 3314 int ratelimit; /* Limit cacheline bouncing */ 3315 }; 3316 3317 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3318 3319 static void recalc_bh_state(void) 3320 { 3321 int i; 3322 int tot = 0; 3323 3324 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3325 return; 3326 __this_cpu_write(bh_accounting.ratelimit, 0); 3327 for_each_online_cpu(i) 3328 tot += per_cpu(bh_accounting, i).nr; 3329 buffer_heads_over_limit = (tot > max_buffer_heads); 3330 } 3331 3332 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3333 { 3334 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3335 if (ret) { 3336 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3337 preempt_disable(); 3338 __this_cpu_inc(bh_accounting.nr); 3339 recalc_bh_state(); 3340 preempt_enable(); 3341 } 3342 return ret; 3343 } 3344 EXPORT_SYMBOL(alloc_buffer_head); 3345 3346 void free_buffer_head(struct buffer_head *bh) 3347 { 3348 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3349 kmem_cache_free(bh_cachep, bh); 3350 preempt_disable(); 3351 __this_cpu_dec(bh_accounting.nr); 3352 recalc_bh_state(); 3353 preempt_enable(); 3354 } 3355 EXPORT_SYMBOL(free_buffer_head); 3356 3357 static void buffer_exit_cpu(int cpu) 3358 { 3359 int i; 3360 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3361 3362 for (i = 0; i < BH_LRU_SIZE; i++) { 3363 brelse(b->bhs[i]); 3364 b->bhs[i] = NULL; 3365 } 3366 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3367 per_cpu(bh_accounting, cpu).nr = 0; 3368 } 3369 3370 static int buffer_cpu_notify(struct notifier_block *self, 3371 unsigned long action, void *hcpu) 3372 { 3373 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3374 buffer_exit_cpu((unsigned long)hcpu); 3375 return NOTIFY_OK; 3376 } 3377 3378 /** 3379 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3380 * @bh: struct buffer_head 3381 * 3382 * Return true if the buffer is up-to-date and false, 3383 * with the buffer locked, if not. 3384 */ 3385 int bh_uptodate_or_lock(struct buffer_head *bh) 3386 { 3387 if (!buffer_uptodate(bh)) { 3388 lock_buffer(bh); 3389 if (!buffer_uptodate(bh)) 3390 return 0; 3391 unlock_buffer(bh); 3392 } 3393 return 1; 3394 } 3395 EXPORT_SYMBOL(bh_uptodate_or_lock); 3396 3397 /** 3398 * bh_submit_read - Submit a locked buffer for reading 3399 * @bh: struct buffer_head 3400 * 3401 * Returns zero on success and -EIO on error. 3402 */ 3403 int bh_submit_read(struct buffer_head *bh) 3404 { 3405 BUG_ON(!buffer_locked(bh)); 3406 3407 if (buffer_uptodate(bh)) { 3408 unlock_buffer(bh); 3409 return 0; 3410 } 3411 3412 get_bh(bh); 3413 bh->b_end_io = end_buffer_read_sync; 3414 submit_bh(READ, bh); 3415 wait_on_buffer(bh); 3416 if (buffer_uptodate(bh)) 3417 return 0; 3418 return -EIO; 3419 } 3420 EXPORT_SYMBOL(bh_submit_read); 3421 3422 void __init buffer_init(void) 3423 { 3424 unsigned long nrpages; 3425 3426 bh_cachep = kmem_cache_create("buffer_head", 3427 sizeof(struct buffer_head), 0, 3428 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3429 SLAB_MEM_SPREAD), 3430 NULL); 3431 3432 /* 3433 * Limit the bh occupancy to 10% of ZONE_NORMAL 3434 */ 3435 nrpages = (nr_free_buffer_pages() * 10) / 100; 3436 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3437 hotcpu_notifier(buffer_cpu_notify, 0); 3438 } 3439