1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 static int sleep_on_buffer(void *word) 58 { 59 io_schedule(); 60 return 0; 61 } 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 66 TASK_UNINTERRUPTIBLE); 67 } 68 EXPORT_SYMBOL(__lock_buffer); 69 70 void unlock_buffer(struct buffer_head *bh) 71 { 72 clear_bit_unlock(BH_Lock, &bh->b_state); 73 smp_mb__after_clear_bit(); 74 wake_up_bit(&bh->b_state, BH_Lock); 75 } 76 EXPORT_SYMBOL(unlock_buffer); 77 78 /* 79 * Block until a buffer comes unlocked. This doesn't stop it 80 * from becoming locked again - you have to lock it yourself 81 * if you want to preserve its state. 82 */ 83 void __wait_on_buffer(struct buffer_head * bh) 84 { 85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 86 } 87 EXPORT_SYMBOL(__wait_on_buffer); 88 89 static void 90 __clear_page_buffers(struct page *page) 91 { 92 ClearPagePrivate(page); 93 set_page_private(page, 0); 94 page_cache_release(page); 95 } 96 97 98 static int quiet_error(struct buffer_head *bh) 99 { 100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 101 return 0; 102 return 1; 103 } 104 105 106 static void buffer_io_error(struct buffer_head *bh) 107 { 108 char b[BDEVNAME_SIZE]; 109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 110 bdevname(bh->b_bdev, b), 111 (unsigned long long)bh->b_blocknr); 112 } 113 114 /* 115 * End-of-IO handler helper function which does not touch the bh after 116 * unlocking it. 117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 118 * a race there is benign: unlock_buffer() only use the bh's address for 119 * hashing after unlocking the buffer, so it doesn't actually touch the bh 120 * itself. 121 */ 122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 123 { 124 if (uptodate) { 125 set_buffer_uptodate(bh); 126 } else { 127 /* This happens, due to failed READA attempts. */ 128 clear_buffer_uptodate(bh); 129 } 130 unlock_buffer(bh); 131 } 132 133 /* 134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 135 * unlock the buffer. This is what ll_rw_block uses too. 136 */ 137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 138 { 139 __end_buffer_read_notouch(bh, uptodate); 140 put_bh(bh); 141 } 142 EXPORT_SYMBOL(end_buffer_read_sync); 143 144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 145 { 146 char b[BDEVNAME_SIZE]; 147 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 if (!quiet_error(bh)) { 152 buffer_io_error(bh); 153 printk(KERN_WARNING "lost page write due to " 154 "I/O error on %s\n", 155 bdevname(bh->b_bdev, b)); 156 } 157 set_buffer_write_io_error(bh); 158 clear_buffer_uptodate(bh); 159 } 160 unlock_buffer(bh); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_write_sync); 164 165 /* 166 * Various filesystems appear to want __find_get_block to be non-blocking. 167 * But it's the page lock which protects the buffers. To get around this, 168 * we get exclusion from try_to_free_buffers with the blockdev mapping's 169 * private_lock. 170 * 171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 172 * may be quite high. This code could TryLock the page, and if that 173 * succeeds, there is no need to take private_lock. (But if 174 * private_lock is contended then so is mapping->tree_lock). 175 */ 176 static struct buffer_head * 177 __find_get_block_slow(struct block_device *bdev, sector_t block) 178 { 179 struct inode *bd_inode = bdev->bd_inode; 180 struct address_space *bd_mapping = bd_inode->i_mapping; 181 struct buffer_head *ret = NULL; 182 pgoff_t index; 183 struct buffer_head *bh; 184 struct buffer_head *head; 185 struct page *page; 186 int all_mapped = 1; 187 188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 189 page = find_get_page(bd_mapping, index); 190 if (!page) 191 goto out; 192 193 spin_lock(&bd_mapping->private_lock); 194 if (!page_has_buffers(page)) 195 goto out_unlock; 196 head = page_buffers(page); 197 bh = head; 198 do { 199 if (!buffer_mapped(bh)) 200 all_mapped = 0; 201 else if (bh->b_blocknr == block) { 202 ret = bh; 203 get_bh(bh); 204 goto out_unlock; 205 } 206 bh = bh->b_this_page; 207 } while (bh != head); 208 209 /* we might be here because some of the buffers on this page are 210 * not mapped. This is due to various races between 211 * file io on the block device and getblk. It gets dealt with 212 * elsewhere, don't buffer_error if we had some unmapped buffers 213 */ 214 if (all_mapped) { 215 char b[BDEVNAME_SIZE]; 216 217 printk("__find_get_block_slow() failed. " 218 "block=%llu, b_blocknr=%llu\n", 219 (unsigned long long)block, 220 (unsigned long long)bh->b_blocknr); 221 printk("b_state=0x%08lx, b_size=%zu\n", 222 bh->b_state, bh->b_size); 223 printk("device %s blocksize: %d\n", bdevname(bdev, b), 224 1 << bd_inode->i_blkbits); 225 } 226 out_unlock: 227 spin_unlock(&bd_mapping->private_lock); 228 page_cache_release(page); 229 out: 230 return ret; 231 } 232 233 /* 234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 235 */ 236 static void free_more_memory(void) 237 { 238 struct zone *zone; 239 int nid; 240 241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 242 yield(); 243 244 for_each_online_node(nid) { 245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 246 gfp_zone(GFP_NOFS), NULL, 247 &zone); 248 if (zone) 249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 250 GFP_NOFS, NULL); 251 } 252 } 253 254 /* 255 * I/O completion handler for block_read_full_page() - pages 256 * which come unlocked at the end of I/O. 257 */ 258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 259 { 260 unsigned long flags; 261 struct buffer_head *first; 262 struct buffer_head *tmp; 263 struct page *page; 264 int page_uptodate = 1; 265 266 BUG_ON(!buffer_async_read(bh)); 267 268 page = bh->b_page; 269 if (uptodate) { 270 set_buffer_uptodate(bh); 271 } else { 272 clear_buffer_uptodate(bh); 273 if (!quiet_error(bh)) 274 buffer_io_error(bh); 275 SetPageError(page); 276 } 277 278 /* 279 * Be _very_ careful from here on. Bad things can happen if 280 * two buffer heads end IO at almost the same time and both 281 * decide that the page is now completely done. 282 */ 283 first = page_buffers(page); 284 local_irq_save(flags); 285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 286 clear_buffer_async_read(bh); 287 unlock_buffer(bh); 288 tmp = bh; 289 do { 290 if (!buffer_uptodate(tmp)) 291 page_uptodate = 0; 292 if (buffer_async_read(tmp)) { 293 BUG_ON(!buffer_locked(tmp)); 294 goto still_busy; 295 } 296 tmp = tmp->b_this_page; 297 } while (tmp != bh); 298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 299 local_irq_restore(flags); 300 301 /* 302 * If none of the buffers had errors and they are all 303 * uptodate then we can set the page uptodate. 304 */ 305 if (page_uptodate && !PageError(page)) 306 SetPageUptodate(page); 307 unlock_page(page); 308 return; 309 310 still_busy: 311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 312 local_irq_restore(flags); 313 return; 314 } 315 316 /* 317 * Completion handler for block_write_full_page() - pages which are unlocked 318 * during I/O, and which have PageWriteback cleared upon I/O completion. 319 */ 320 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 321 { 322 char b[BDEVNAME_SIZE]; 323 unsigned long flags; 324 struct buffer_head *first; 325 struct buffer_head *tmp; 326 struct page *page; 327 328 BUG_ON(!buffer_async_write(bh)); 329 330 page = bh->b_page; 331 if (uptodate) { 332 set_buffer_uptodate(bh); 333 } else { 334 if (!quiet_error(bh)) { 335 buffer_io_error(bh); 336 printk(KERN_WARNING "lost page write due to " 337 "I/O error on %s\n", 338 bdevname(bh->b_bdev, b)); 339 } 340 set_bit(AS_EIO, &page->mapping->flags); 341 set_buffer_write_io_error(bh); 342 clear_buffer_uptodate(bh); 343 SetPageError(page); 344 } 345 346 first = page_buffers(page); 347 local_irq_save(flags); 348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 349 350 clear_buffer_async_write(bh); 351 unlock_buffer(bh); 352 tmp = bh->b_this_page; 353 while (tmp != bh) { 354 if (buffer_async_write(tmp)) { 355 BUG_ON(!buffer_locked(tmp)); 356 goto still_busy; 357 } 358 tmp = tmp->b_this_page; 359 } 360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 361 local_irq_restore(flags); 362 end_page_writeback(page); 363 return; 364 365 still_busy: 366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 367 local_irq_restore(flags); 368 return; 369 } 370 EXPORT_SYMBOL(end_buffer_async_write); 371 372 /* 373 * If a page's buffers are under async readin (end_buffer_async_read 374 * completion) then there is a possibility that another thread of 375 * control could lock one of the buffers after it has completed 376 * but while some of the other buffers have not completed. This 377 * locked buffer would confuse end_buffer_async_read() into not unlocking 378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 379 * that this buffer is not under async I/O. 380 * 381 * The page comes unlocked when it has no locked buffer_async buffers 382 * left. 383 * 384 * PageLocked prevents anyone starting new async I/O reads any of 385 * the buffers. 386 * 387 * PageWriteback is used to prevent simultaneous writeout of the same 388 * page. 389 * 390 * PageLocked prevents anyone from starting writeback of a page which is 391 * under read I/O (PageWriteback is only ever set against a locked page). 392 */ 393 static void mark_buffer_async_read(struct buffer_head *bh) 394 { 395 bh->b_end_io = end_buffer_async_read; 396 set_buffer_async_read(bh); 397 } 398 399 static void mark_buffer_async_write_endio(struct buffer_head *bh, 400 bh_end_io_t *handler) 401 { 402 bh->b_end_io = handler; 403 set_buffer_async_write(bh); 404 } 405 406 void mark_buffer_async_write(struct buffer_head *bh) 407 { 408 mark_buffer_async_write_endio(bh, end_buffer_async_write); 409 } 410 EXPORT_SYMBOL(mark_buffer_async_write); 411 412 413 /* 414 * fs/buffer.c contains helper functions for buffer-backed address space's 415 * fsync functions. A common requirement for buffer-based filesystems is 416 * that certain data from the backing blockdev needs to be written out for 417 * a successful fsync(). For example, ext2 indirect blocks need to be 418 * written back and waited upon before fsync() returns. 419 * 420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 422 * management of a list of dependent buffers at ->i_mapping->private_list. 423 * 424 * Locking is a little subtle: try_to_free_buffers() will remove buffers 425 * from their controlling inode's queue when they are being freed. But 426 * try_to_free_buffers() will be operating against the *blockdev* mapping 427 * at the time, not against the S_ISREG file which depends on those buffers. 428 * So the locking for private_list is via the private_lock in the address_space 429 * which backs the buffers. Which is different from the address_space 430 * against which the buffers are listed. So for a particular address_space, 431 * mapping->private_lock does *not* protect mapping->private_list! In fact, 432 * mapping->private_list will always be protected by the backing blockdev's 433 * ->private_lock. 434 * 435 * Which introduces a requirement: all buffers on an address_space's 436 * ->private_list must be from the same address_space: the blockdev's. 437 * 438 * address_spaces which do not place buffers at ->private_list via these 439 * utility functions are free to use private_lock and private_list for 440 * whatever they want. The only requirement is that list_empty(private_list) 441 * be true at clear_inode() time. 442 * 443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 444 * filesystems should do that. invalidate_inode_buffers() should just go 445 * BUG_ON(!list_empty). 446 * 447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 448 * take an address_space, not an inode. And it should be called 449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 450 * queued up. 451 * 452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 453 * list if it is already on a list. Because if the buffer is on a list, 454 * it *must* already be on the right one. If not, the filesystem is being 455 * silly. This will save a ton of locking. But first we have to ensure 456 * that buffers are taken *off* the old inode's list when they are freed 457 * (presumably in truncate). That requires careful auditing of all 458 * filesystems (do it inside bforget()). It could also be done by bringing 459 * b_inode back. 460 */ 461 462 /* 463 * The buffer's backing address_space's private_lock must be held 464 */ 465 static void __remove_assoc_queue(struct buffer_head *bh) 466 { 467 list_del_init(&bh->b_assoc_buffers); 468 WARN_ON(!bh->b_assoc_map); 469 if (buffer_write_io_error(bh)) 470 set_bit(AS_EIO, &bh->b_assoc_map->flags); 471 bh->b_assoc_map = NULL; 472 } 473 474 int inode_has_buffers(struct inode *inode) 475 { 476 return !list_empty(&inode->i_data.private_list); 477 } 478 479 /* 480 * osync is designed to support O_SYNC io. It waits synchronously for 481 * all already-submitted IO to complete, but does not queue any new 482 * writes to the disk. 483 * 484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 485 * you dirty the buffers, and then use osync_inode_buffers to wait for 486 * completion. Any other dirty buffers which are not yet queued for 487 * write will not be flushed to disk by the osync. 488 */ 489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 490 { 491 struct buffer_head *bh; 492 struct list_head *p; 493 int err = 0; 494 495 spin_lock(lock); 496 repeat: 497 list_for_each_prev(p, list) { 498 bh = BH_ENTRY(p); 499 if (buffer_locked(bh)) { 500 get_bh(bh); 501 spin_unlock(lock); 502 wait_on_buffer(bh); 503 if (!buffer_uptodate(bh)) 504 err = -EIO; 505 brelse(bh); 506 spin_lock(lock); 507 goto repeat; 508 } 509 } 510 spin_unlock(lock); 511 return err; 512 } 513 514 static void do_thaw_one(struct super_block *sb, void *unused) 515 { 516 char b[BDEVNAME_SIZE]; 517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 518 printk(KERN_WARNING "Emergency Thaw on %s\n", 519 bdevname(sb->s_bdev, b)); 520 } 521 522 static void do_thaw_all(struct work_struct *work) 523 { 524 iterate_supers(do_thaw_one, NULL); 525 kfree(work); 526 printk(KERN_WARNING "Emergency Thaw complete\n"); 527 } 528 529 /** 530 * emergency_thaw_all -- forcibly thaw every frozen filesystem 531 * 532 * Used for emergency unfreeze of all filesystems via SysRq 533 */ 534 void emergency_thaw_all(void) 535 { 536 struct work_struct *work; 537 538 work = kmalloc(sizeof(*work), GFP_ATOMIC); 539 if (work) { 540 INIT_WORK(work, do_thaw_all); 541 schedule_work(work); 542 } 543 } 544 545 /** 546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 547 * @mapping: the mapping which wants those buffers written 548 * 549 * Starts I/O against the buffers at mapping->private_list, and waits upon 550 * that I/O. 551 * 552 * Basically, this is a convenience function for fsync(). 553 * @mapping is a file or directory which needs those buffers to be written for 554 * a successful fsync(). 555 */ 556 int sync_mapping_buffers(struct address_space *mapping) 557 { 558 struct address_space *buffer_mapping = mapping->assoc_mapping; 559 560 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 561 return 0; 562 563 return fsync_buffers_list(&buffer_mapping->private_lock, 564 &mapping->private_list); 565 } 566 EXPORT_SYMBOL(sync_mapping_buffers); 567 568 /* 569 * Called when we've recently written block `bblock', and it is known that 570 * `bblock' was for a buffer_boundary() buffer. This means that the block at 571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 572 * dirty, schedule it for IO. So that indirects merge nicely with their data. 573 */ 574 void write_boundary_block(struct block_device *bdev, 575 sector_t bblock, unsigned blocksize) 576 { 577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 578 if (bh) { 579 if (buffer_dirty(bh)) 580 ll_rw_block(WRITE, 1, &bh); 581 put_bh(bh); 582 } 583 } 584 585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 586 { 587 struct address_space *mapping = inode->i_mapping; 588 struct address_space *buffer_mapping = bh->b_page->mapping; 589 590 mark_buffer_dirty(bh); 591 if (!mapping->assoc_mapping) { 592 mapping->assoc_mapping = buffer_mapping; 593 } else { 594 BUG_ON(mapping->assoc_mapping != buffer_mapping); 595 } 596 if (!bh->b_assoc_map) { 597 spin_lock(&buffer_mapping->private_lock); 598 list_move_tail(&bh->b_assoc_buffers, 599 &mapping->private_list); 600 bh->b_assoc_map = mapping; 601 spin_unlock(&buffer_mapping->private_lock); 602 } 603 } 604 EXPORT_SYMBOL(mark_buffer_dirty_inode); 605 606 /* 607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 608 * dirty. 609 * 610 * If warn is true, then emit a warning if the page is not uptodate and has 611 * not been truncated. 612 */ 613 static void __set_page_dirty(struct page *page, 614 struct address_space *mapping, int warn) 615 { 616 spin_lock_irq(&mapping->tree_lock); 617 if (page->mapping) { /* Race with truncate? */ 618 WARN_ON_ONCE(warn && !PageUptodate(page)); 619 account_page_dirtied(page, mapping); 620 radix_tree_tag_set(&mapping->page_tree, 621 page_index(page), PAGECACHE_TAG_DIRTY); 622 } 623 spin_unlock_irq(&mapping->tree_lock); 624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 625 } 626 627 /* 628 * Add a page to the dirty page list. 629 * 630 * It is a sad fact of life that this function is called from several places 631 * deeply under spinlocking. It may not sleep. 632 * 633 * If the page has buffers, the uptodate buffers are set dirty, to preserve 634 * dirty-state coherency between the page and the buffers. It the page does 635 * not have buffers then when they are later attached they will all be set 636 * dirty. 637 * 638 * The buffers are dirtied before the page is dirtied. There's a small race 639 * window in which a writepage caller may see the page cleanness but not the 640 * buffer dirtiness. That's fine. If this code were to set the page dirty 641 * before the buffers, a concurrent writepage caller could clear the page dirty 642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 643 * page on the dirty page list. 644 * 645 * We use private_lock to lock against try_to_free_buffers while using the 646 * page's buffer list. Also use this to protect against clean buffers being 647 * added to the page after it was set dirty. 648 * 649 * FIXME: may need to call ->reservepage here as well. That's rather up to the 650 * address_space though. 651 */ 652 int __set_page_dirty_buffers(struct page *page) 653 { 654 int newly_dirty; 655 struct address_space *mapping = page_mapping(page); 656 657 if (unlikely(!mapping)) 658 return !TestSetPageDirty(page); 659 660 spin_lock(&mapping->private_lock); 661 if (page_has_buffers(page)) { 662 struct buffer_head *head = page_buffers(page); 663 struct buffer_head *bh = head; 664 665 do { 666 set_buffer_dirty(bh); 667 bh = bh->b_this_page; 668 } while (bh != head); 669 } 670 newly_dirty = !TestSetPageDirty(page); 671 spin_unlock(&mapping->private_lock); 672 673 if (newly_dirty) 674 __set_page_dirty(page, mapping, 1); 675 return newly_dirty; 676 } 677 EXPORT_SYMBOL(__set_page_dirty_buffers); 678 679 /* 680 * Write out and wait upon a list of buffers. 681 * 682 * We have conflicting pressures: we want to make sure that all 683 * initially dirty buffers get waited on, but that any subsequently 684 * dirtied buffers don't. After all, we don't want fsync to last 685 * forever if somebody is actively writing to the file. 686 * 687 * Do this in two main stages: first we copy dirty buffers to a 688 * temporary inode list, queueing the writes as we go. Then we clean 689 * up, waiting for those writes to complete. 690 * 691 * During this second stage, any subsequent updates to the file may end 692 * up refiling the buffer on the original inode's dirty list again, so 693 * there is a chance we will end up with a buffer queued for write but 694 * not yet completed on that list. So, as a final cleanup we go through 695 * the osync code to catch these locked, dirty buffers without requeuing 696 * any newly dirty buffers for write. 697 */ 698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 699 { 700 struct buffer_head *bh; 701 struct list_head tmp; 702 struct address_space *mapping; 703 int err = 0, err2; 704 struct blk_plug plug; 705 706 INIT_LIST_HEAD(&tmp); 707 blk_start_plug(&plug); 708 709 spin_lock(lock); 710 while (!list_empty(list)) { 711 bh = BH_ENTRY(list->next); 712 mapping = bh->b_assoc_map; 713 __remove_assoc_queue(bh); 714 /* Avoid race with mark_buffer_dirty_inode() which does 715 * a lockless check and we rely on seeing the dirty bit */ 716 smp_mb(); 717 if (buffer_dirty(bh) || buffer_locked(bh)) { 718 list_add(&bh->b_assoc_buffers, &tmp); 719 bh->b_assoc_map = mapping; 720 if (buffer_dirty(bh)) { 721 get_bh(bh); 722 spin_unlock(lock); 723 /* 724 * Ensure any pending I/O completes so that 725 * write_dirty_buffer() actually writes the 726 * current contents - it is a noop if I/O is 727 * still in flight on potentially older 728 * contents. 729 */ 730 write_dirty_buffer(bh, WRITE_SYNC); 731 732 /* 733 * Kick off IO for the previous mapping. Note 734 * that we will not run the very last mapping, 735 * wait_on_buffer() will do that for us 736 * through sync_buffer(). 737 */ 738 brelse(bh); 739 spin_lock(lock); 740 } 741 } 742 } 743 744 spin_unlock(lock); 745 blk_finish_plug(&plug); 746 spin_lock(lock); 747 748 while (!list_empty(&tmp)) { 749 bh = BH_ENTRY(tmp.prev); 750 get_bh(bh); 751 mapping = bh->b_assoc_map; 752 __remove_assoc_queue(bh); 753 /* Avoid race with mark_buffer_dirty_inode() which does 754 * a lockless check and we rely on seeing the dirty bit */ 755 smp_mb(); 756 if (buffer_dirty(bh)) { 757 list_add(&bh->b_assoc_buffers, 758 &mapping->private_list); 759 bh->b_assoc_map = mapping; 760 } 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 } 768 769 spin_unlock(lock); 770 err2 = osync_buffers_list(lock, list); 771 if (err) 772 return err; 773 else 774 return err2; 775 } 776 777 /* 778 * Invalidate any and all dirty buffers on a given inode. We are 779 * probably unmounting the fs, but that doesn't mean we have already 780 * done a sync(). Just drop the buffers from the inode list. 781 * 782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 783 * assumes that all the buffers are against the blockdev. Not true 784 * for reiserfs. 785 */ 786 void invalidate_inode_buffers(struct inode *inode) 787 { 788 if (inode_has_buffers(inode)) { 789 struct address_space *mapping = &inode->i_data; 790 struct list_head *list = &mapping->private_list; 791 struct address_space *buffer_mapping = mapping->assoc_mapping; 792 793 spin_lock(&buffer_mapping->private_lock); 794 while (!list_empty(list)) 795 __remove_assoc_queue(BH_ENTRY(list->next)); 796 spin_unlock(&buffer_mapping->private_lock); 797 } 798 } 799 EXPORT_SYMBOL(invalidate_inode_buffers); 800 801 /* 802 * Remove any clean buffers from the inode's buffer list. This is called 803 * when we're trying to free the inode itself. Those buffers can pin it. 804 * 805 * Returns true if all buffers were removed. 806 */ 807 int remove_inode_buffers(struct inode *inode) 808 { 809 int ret = 1; 810 811 if (inode_has_buffers(inode)) { 812 struct address_space *mapping = &inode->i_data; 813 struct list_head *list = &mapping->private_list; 814 struct address_space *buffer_mapping = mapping->assoc_mapping; 815 816 spin_lock(&buffer_mapping->private_lock); 817 while (!list_empty(list)) { 818 struct buffer_head *bh = BH_ENTRY(list->next); 819 if (buffer_dirty(bh)) { 820 ret = 0; 821 break; 822 } 823 __remove_assoc_queue(bh); 824 } 825 spin_unlock(&buffer_mapping->private_lock); 826 } 827 return ret; 828 } 829 830 /* 831 * Create the appropriate buffers when given a page for data area and 832 * the size of each buffer.. Use the bh->b_this_page linked list to 833 * follow the buffers created. Return NULL if unable to create more 834 * buffers. 835 * 836 * The retry flag is used to differentiate async IO (paging, swapping) 837 * which may not fail from ordinary buffer allocations. 838 */ 839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 840 int retry) 841 { 842 struct buffer_head *bh, *head; 843 long offset; 844 845 try_again: 846 head = NULL; 847 offset = PAGE_SIZE; 848 while ((offset -= size) >= 0) { 849 bh = alloc_buffer_head(GFP_NOFS); 850 if (!bh) 851 goto no_grow; 852 853 bh->b_bdev = NULL; 854 bh->b_this_page = head; 855 bh->b_blocknr = -1; 856 head = bh; 857 858 bh->b_state = 0; 859 atomic_set(&bh->b_count, 0); 860 bh->b_size = size; 861 862 /* Link the buffer to its page */ 863 set_bh_page(bh, page, offset); 864 865 init_buffer(bh, NULL, NULL); 866 } 867 return head; 868 /* 869 * In case anything failed, we just free everything we got. 870 */ 871 no_grow: 872 if (head) { 873 do { 874 bh = head; 875 head = head->b_this_page; 876 free_buffer_head(bh); 877 } while (head); 878 } 879 880 /* 881 * Return failure for non-async IO requests. Async IO requests 882 * are not allowed to fail, so we have to wait until buffer heads 883 * become available. But we don't want tasks sleeping with 884 * partially complete buffers, so all were released above. 885 */ 886 if (!retry) 887 return NULL; 888 889 /* We're _really_ low on memory. Now we just 890 * wait for old buffer heads to become free due to 891 * finishing IO. Since this is an async request and 892 * the reserve list is empty, we're sure there are 893 * async buffer heads in use. 894 */ 895 free_more_memory(); 896 goto try_again; 897 } 898 EXPORT_SYMBOL_GPL(alloc_page_buffers); 899 900 static inline void 901 link_dev_buffers(struct page *page, struct buffer_head *head) 902 { 903 struct buffer_head *bh, *tail; 904 905 bh = head; 906 do { 907 tail = bh; 908 bh = bh->b_this_page; 909 } while (bh); 910 tail->b_this_page = head; 911 attach_page_buffers(page, head); 912 } 913 914 /* 915 * Initialise the state of a blockdev page's buffers. 916 */ 917 static void 918 init_page_buffers(struct page *page, struct block_device *bdev, 919 sector_t block, int size) 920 { 921 struct buffer_head *head = page_buffers(page); 922 struct buffer_head *bh = head; 923 int uptodate = PageUptodate(page); 924 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode)); 925 926 do { 927 if (!buffer_mapped(bh)) { 928 init_buffer(bh, NULL, NULL); 929 bh->b_bdev = bdev; 930 bh->b_blocknr = block; 931 if (uptodate) 932 set_buffer_uptodate(bh); 933 if (block < end_block) 934 set_buffer_mapped(bh); 935 } 936 block++; 937 bh = bh->b_this_page; 938 } while (bh != head); 939 } 940 941 /* 942 * Create the page-cache page that contains the requested block. 943 * 944 * This is user purely for blockdev mappings. 945 */ 946 static struct page * 947 grow_dev_page(struct block_device *bdev, sector_t block, 948 pgoff_t index, int size) 949 { 950 struct inode *inode = bdev->bd_inode; 951 struct page *page; 952 struct buffer_head *bh; 953 954 page = find_or_create_page(inode->i_mapping, index, 955 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 956 if (!page) 957 return NULL; 958 959 BUG_ON(!PageLocked(page)); 960 961 if (page_has_buffers(page)) { 962 bh = page_buffers(page); 963 if (bh->b_size == size) { 964 init_page_buffers(page, bdev, block, size); 965 return page; 966 } 967 if (!try_to_free_buffers(page)) 968 goto failed; 969 } 970 971 /* 972 * Allocate some buffers for this page 973 */ 974 bh = alloc_page_buffers(page, size, 0); 975 if (!bh) 976 goto failed; 977 978 /* 979 * Link the page to the buffers and initialise them. Take the 980 * lock to be atomic wrt __find_get_block(), which does not 981 * run under the page lock. 982 */ 983 spin_lock(&inode->i_mapping->private_lock); 984 link_dev_buffers(page, bh); 985 init_page_buffers(page, bdev, block, size); 986 spin_unlock(&inode->i_mapping->private_lock); 987 return page; 988 989 failed: 990 unlock_page(page); 991 page_cache_release(page); 992 return NULL; 993 } 994 995 /* 996 * Create buffers for the specified block device block's page. If 997 * that page was dirty, the buffers are set dirty also. 998 */ 999 static int 1000 grow_buffers(struct block_device *bdev, sector_t block, int size) 1001 { 1002 struct page *page; 1003 pgoff_t index; 1004 int sizebits; 1005 1006 sizebits = -1; 1007 do { 1008 sizebits++; 1009 } while ((size << sizebits) < PAGE_SIZE); 1010 1011 index = block >> sizebits; 1012 1013 /* 1014 * Check for a block which wants to lie outside our maximum possible 1015 * pagecache index. (this comparison is done using sector_t types). 1016 */ 1017 if (unlikely(index != block >> sizebits)) { 1018 char b[BDEVNAME_SIZE]; 1019 1020 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1021 "device %s\n", 1022 __func__, (unsigned long long)block, 1023 bdevname(bdev, b)); 1024 return -EIO; 1025 } 1026 block = index << sizebits; 1027 /* Create a page with the proper size buffers.. */ 1028 page = grow_dev_page(bdev, block, index, size); 1029 if (!page) 1030 return 0; 1031 unlock_page(page); 1032 page_cache_release(page); 1033 return 1; 1034 } 1035 1036 static struct buffer_head * 1037 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1038 { 1039 int ret; 1040 struct buffer_head *bh; 1041 1042 /* Size must be multiple of hard sectorsize */ 1043 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1044 (size < 512 || size > PAGE_SIZE))) { 1045 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1046 size); 1047 printk(KERN_ERR "logical block size: %d\n", 1048 bdev_logical_block_size(bdev)); 1049 1050 dump_stack(); 1051 return NULL; 1052 } 1053 1054 retry: 1055 bh = __find_get_block(bdev, block, size); 1056 if (bh) 1057 return bh; 1058 1059 ret = grow_buffers(bdev, block, size); 1060 if (ret == 0) { 1061 free_more_memory(); 1062 goto retry; 1063 } else if (ret > 0) { 1064 bh = __find_get_block(bdev, block, size); 1065 if (bh) 1066 return bh; 1067 } 1068 return NULL; 1069 } 1070 1071 /* 1072 * The relationship between dirty buffers and dirty pages: 1073 * 1074 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1075 * the page is tagged dirty in its radix tree. 1076 * 1077 * At all times, the dirtiness of the buffers represents the dirtiness of 1078 * subsections of the page. If the page has buffers, the page dirty bit is 1079 * merely a hint about the true dirty state. 1080 * 1081 * When a page is set dirty in its entirety, all its buffers are marked dirty 1082 * (if the page has buffers). 1083 * 1084 * When a buffer is marked dirty, its page is dirtied, but the page's other 1085 * buffers are not. 1086 * 1087 * Also. When blockdev buffers are explicitly read with bread(), they 1088 * individually become uptodate. But their backing page remains not 1089 * uptodate - even if all of its buffers are uptodate. A subsequent 1090 * block_read_full_page() against that page will discover all the uptodate 1091 * buffers, will set the page uptodate and will perform no I/O. 1092 */ 1093 1094 /** 1095 * mark_buffer_dirty - mark a buffer_head as needing writeout 1096 * @bh: the buffer_head to mark dirty 1097 * 1098 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1099 * backing page dirty, then tag the page as dirty in its address_space's radix 1100 * tree and then attach the address_space's inode to its superblock's dirty 1101 * inode list. 1102 * 1103 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1104 * mapping->tree_lock and mapping->host->i_lock. 1105 */ 1106 void mark_buffer_dirty(struct buffer_head *bh) 1107 { 1108 WARN_ON_ONCE(!buffer_uptodate(bh)); 1109 1110 /* 1111 * Very *carefully* optimize the it-is-already-dirty case. 1112 * 1113 * Don't let the final "is it dirty" escape to before we 1114 * perhaps modified the buffer. 1115 */ 1116 if (buffer_dirty(bh)) { 1117 smp_mb(); 1118 if (buffer_dirty(bh)) 1119 return; 1120 } 1121 1122 if (!test_set_buffer_dirty(bh)) { 1123 struct page *page = bh->b_page; 1124 if (!TestSetPageDirty(page)) { 1125 struct address_space *mapping = page_mapping(page); 1126 if (mapping) 1127 __set_page_dirty(page, mapping, 0); 1128 } 1129 } 1130 } 1131 EXPORT_SYMBOL(mark_buffer_dirty); 1132 1133 /* 1134 * Decrement a buffer_head's reference count. If all buffers against a page 1135 * have zero reference count, are clean and unlocked, and if the page is clean 1136 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1137 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1138 * a page but it ends up not being freed, and buffers may later be reattached). 1139 */ 1140 void __brelse(struct buffer_head * buf) 1141 { 1142 if (atomic_read(&buf->b_count)) { 1143 put_bh(buf); 1144 return; 1145 } 1146 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1147 } 1148 EXPORT_SYMBOL(__brelse); 1149 1150 /* 1151 * bforget() is like brelse(), except it discards any 1152 * potentially dirty data. 1153 */ 1154 void __bforget(struct buffer_head *bh) 1155 { 1156 clear_buffer_dirty(bh); 1157 if (bh->b_assoc_map) { 1158 struct address_space *buffer_mapping = bh->b_page->mapping; 1159 1160 spin_lock(&buffer_mapping->private_lock); 1161 list_del_init(&bh->b_assoc_buffers); 1162 bh->b_assoc_map = NULL; 1163 spin_unlock(&buffer_mapping->private_lock); 1164 } 1165 __brelse(bh); 1166 } 1167 EXPORT_SYMBOL(__bforget); 1168 1169 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1170 { 1171 lock_buffer(bh); 1172 if (buffer_uptodate(bh)) { 1173 unlock_buffer(bh); 1174 return bh; 1175 } else { 1176 get_bh(bh); 1177 bh->b_end_io = end_buffer_read_sync; 1178 submit_bh(READ, bh); 1179 wait_on_buffer(bh); 1180 if (buffer_uptodate(bh)) 1181 return bh; 1182 } 1183 brelse(bh); 1184 return NULL; 1185 } 1186 1187 /* 1188 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1189 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1190 * refcount elevated by one when they're in an LRU. A buffer can only appear 1191 * once in a particular CPU's LRU. A single buffer can be present in multiple 1192 * CPU's LRUs at the same time. 1193 * 1194 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1195 * sb_find_get_block(). 1196 * 1197 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1198 * a local interrupt disable for that. 1199 */ 1200 1201 #define BH_LRU_SIZE 8 1202 1203 struct bh_lru { 1204 struct buffer_head *bhs[BH_LRU_SIZE]; 1205 }; 1206 1207 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1208 1209 #ifdef CONFIG_SMP 1210 #define bh_lru_lock() local_irq_disable() 1211 #define bh_lru_unlock() local_irq_enable() 1212 #else 1213 #define bh_lru_lock() preempt_disable() 1214 #define bh_lru_unlock() preempt_enable() 1215 #endif 1216 1217 static inline void check_irqs_on(void) 1218 { 1219 #ifdef irqs_disabled 1220 BUG_ON(irqs_disabled()); 1221 #endif 1222 } 1223 1224 /* 1225 * The LRU management algorithm is dopey-but-simple. Sorry. 1226 */ 1227 static void bh_lru_install(struct buffer_head *bh) 1228 { 1229 struct buffer_head *evictee = NULL; 1230 1231 check_irqs_on(); 1232 bh_lru_lock(); 1233 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1234 struct buffer_head *bhs[BH_LRU_SIZE]; 1235 int in; 1236 int out = 0; 1237 1238 get_bh(bh); 1239 bhs[out++] = bh; 1240 for (in = 0; in < BH_LRU_SIZE; in++) { 1241 struct buffer_head *bh2 = 1242 __this_cpu_read(bh_lrus.bhs[in]); 1243 1244 if (bh2 == bh) { 1245 __brelse(bh2); 1246 } else { 1247 if (out >= BH_LRU_SIZE) { 1248 BUG_ON(evictee != NULL); 1249 evictee = bh2; 1250 } else { 1251 bhs[out++] = bh2; 1252 } 1253 } 1254 } 1255 while (out < BH_LRU_SIZE) 1256 bhs[out++] = NULL; 1257 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1258 } 1259 bh_lru_unlock(); 1260 1261 if (evictee) 1262 __brelse(evictee); 1263 } 1264 1265 /* 1266 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1267 */ 1268 static struct buffer_head * 1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1270 { 1271 struct buffer_head *ret = NULL; 1272 unsigned int i; 1273 1274 check_irqs_on(); 1275 bh_lru_lock(); 1276 for (i = 0; i < BH_LRU_SIZE; i++) { 1277 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1278 1279 if (bh && bh->b_bdev == bdev && 1280 bh->b_blocknr == block && bh->b_size == size) { 1281 if (i) { 1282 while (i) { 1283 __this_cpu_write(bh_lrus.bhs[i], 1284 __this_cpu_read(bh_lrus.bhs[i - 1])); 1285 i--; 1286 } 1287 __this_cpu_write(bh_lrus.bhs[0], bh); 1288 } 1289 get_bh(bh); 1290 ret = bh; 1291 break; 1292 } 1293 } 1294 bh_lru_unlock(); 1295 return ret; 1296 } 1297 1298 /* 1299 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1300 * it in the LRU and mark it as accessed. If it is not present then return 1301 * NULL 1302 */ 1303 struct buffer_head * 1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1305 { 1306 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1307 1308 if (bh == NULL) { 1309 bh = __find_get_block_slow(bdev, block); 1310 if (bh) 1311 bh_lru_install(bh); 1312 } 1313 if (bh) 1314 touch_buffer(bh); 1315 return bh; 1316 } 1317 EXPORT_SYMBOL(__find_get_block); 1318 1319 /* 1320 * __getblk will locate (and, if necessary, create) the buffer_head 1321 * which corresponds to the passed block_device, block and size. The 1322 * returned buffer has its reference count incremented. 1323 * 1324 * __getblk() cannot fail - it just keeps trying. If you pass it an 1325 * illegal block number, __getblk() will happily return a buffer_head 1326 * which represents the non-existent block. Very weird. 1327 * 1328 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1329 * attempt is failing. FIXME, perhaps? 1330 */ 1331 struct buffer_head * 1332 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1333 { 1334 struct buffer_head *bh = __find_get_block(bdev, block, size); 1335 1336 might_sleep(); 1337 if (bh == NULL) 1338 bh = __getblk_slow(bdev, block, size); 1339 return bh; 1340 } 1341 EXPORT_SYMBOL(__getblk); 1342 1343 /* 1344 * Do async read-ahead on a buffer.. 1345 */ 1346 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1347 { 1348 struct buffer_head *bh = __getblk(bdev, block, size); 1349 if (likely(bh)) { 1350 ll_rw_block(READA, 1, &bh); 1351 brelse(bh); 1352 } 1353 } 1354 EXPORT_SYMBOL(__breadahead); 1355 1356 /** 1357 * __bread() - reads a specified block and returns the bh 1358 * @bdev: the block_device to read from 1359 * @block: number of block 1360 * @size: size (in bytes) to read 1361 * 1362 * Reads a specified block, and returns buffer head that contains it. 1363 * It returns NULL if the block was unreadable. 1364 */ 1365 struct buffer_head * 1366 __bread(struct block_device *bdev, sector_t block, unsigned size) 1367 { 1368 struct buffer_head *bh = __getblk(bdev, block, size); 1369 1370 if (likely(bh) && !buffer_uptodate(bh)) 1371 bh = __bread_slow(bh); 1372 return bh; 1373 } 1374 EXPORT_SYMBOL(__bread); 1375 1376 /* 1377 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1378 * This doesn't race because it runs in each cpu either in irq 1379 * or with preempt disabled. 1380 */ 1381 static void invalidate_bh_lru(void *arg) 1382 { 1383 struct bh_lru *b = &get_cpu_var(bh_lrus); 1384 int i; 1385 1386 for (i = 0; i < BH_LRU_SIZE; i++) { 1387 brelse(b->bhs[i]); 1388 b->bhs[i] = NULL; 1389 } 1390 put_cpu_var(bh_lrus); 1391 } 1392 1393 static bool has_bh_in_lru(int cpu, void *dummy) 1394 { 1395 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1396 int i; 1397 1398 for (i = 0; i < BH_LRU_SIZE; i++) { 1399 if (b->bhs[i]) 1400 return 1; 1401 } 1402 1403 return 0; 1404 } 1405 1406 void invalidate_bh_lrus(void) 1407 { 1408 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1409 } 1410 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1411 1412 void set_bh_page(struct buffer_head *bh, 1413 struct page *page, unsigned long offset) 1414 { 1415 bh->b_page = page; 1416 BUG_ON(offset >= PAGE_SIZE); 1417 if (PageHighMem(page)) 1418 /* 1419 * This catches illegal uses and preserves the offset: 1420 */ 1421 bh->b_data = (char *)(0 + offset); 1422 else 1423 bh->b_data = page_address(page) + offset; 1424 } 1425 EXPORT_SYMBOL(set_bh_page); 1426 1427 /* 1428 * Called when truncating a buffer on a page completely. 1429 */ 1430 static void discard_buffer(struct buffer_head * bh) 1431 { 1432 lock_buffer(bh); 1433 clear_buffer_dirty(bh); 1434 bh->b_bdev = NULL; 1435 clear_buffer_mapped(bh); 1436 clear_buffer_req(bh); 1437 clear_buffer_new(bh); 1438 clear_buffer_delay(bh); 1439 clear_buffer_unwritten(bh); 1440 unlock_buffer(bh); 1441 } 1442 1443 /** 1444 * block_invalidatepage - invalidate part or all of a buffer-backed page 1445 * 1446 * @page: the page which is affected 1447 * @offset: the index of the truncation point 1448 * 1449 * block_invalidatepage() is called when all or part of the page has become 1450 * invalidated by a truncate operation. 1451 * 1452 * block_invalidatepage() does not have to release all buffers, but it must 1453 * ensure that no dirty buffer is left outside @offset and that no I/O 1454 * is underway against any of the blocks which are outside the truncation 1455 * point. Because the caller is about to free (and possibly reuse) those 1456 * blocks on-disk. 1457 */ 1458 void block_invalidatepage(struct page *page, unsigned long offset) 1459 { 1460 struct buffer_head *head, *bh, *next; 1461 unsigned int curr_off = 0; 1462 1463 BUG_ON(!PageLocked(page)); 1464 if (!page_has_buffers(page)) 1465 goto out; 1466 1467 head = page_buffers(page); 1468 bh = head; 1469 do { 1470 unsigned int next_off = curr_off + bh->b_size; 1471 next = bh->b_this_page; 1472 1473 /* 1474 * is this block fully invalidated? 1475 */ 1476 if (offset <= curr_off) 1477 discard_buffer(bh); 1478 curr_off = next_off; 1479 bh = next; 1480 } while (bh != head); 1481 1482 /* 1483 * We release buffers only if the entire page is being invalidated. 1484 * The get_block cached value has been unconditionally invalidated, 1485 * so real IO is not possible anymore. 1486 */ 1487 if (offset == 0) 1488 try_to_release_page(page, 0); 1489 out: 1490 return; 1491 } 1492 EXPORT_SYMBOL(block_invalidatepage); 1493 1494 /* 1495 * We attach and possibly dirty the buffers atomically wrt 1496 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1497 * is already excluded via the page lock. 1498 */ 1499 void create_empty_buffers(struct page *page, 1500 unsigned long blocksize, unsigned long b_state) 1501 { 1502 struct buffer_head *bh, *head, *tail; 1503 1504 head = alloc_page_buffers(page, blocksize, 1); 1505 bh = head; 1506 do { 1507 bh->b_state |= b_state; 1508 tail = bh; 1509 bh = bh->b_this_page; 1510 } while (bh); 1511 tail->b_this_page = head; 1512 1513 spin_lock(&page->mapping->private_lock); 1514 if (PageUptodate(page) || PageDirty(page)) { 1515 bh = head; 1516 do { 1517 if (PageDirty(page)) 1518 set_buffer_dirty(bh); 1519 if (PageUptodate(page)) 1520 set_buffer_uptodate(bh); 1521 bh = bh->b_this_page; 1522 } while (bh != head); 1523 } 1524 attach_page_buffers(page, head); 1525 spin_unlock(&page->mapping->private_lock); 1526 } 1527 EXPORT_SYMBOL(create_empty_buffers); 1528 1529 /* 1530 * We are taking a block for data and we don't want any output from any 1531 * buffer-cache aliases starting from return from that function and 1532 * until the moment when something will explicitly mark the buffer 1533 * dirty (hopefully that will not happen until we will free that block ;-) 1534 * We don't even need to mark it not-uptodate - nobody can expect 1535 * anything from a newly allocated buffer anyway. We used to used 1536 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1537 * don't want to mark the alias unmapped, for example - it would confuse 1538 * anyone who might pick it with bread() afterwards... 1539 * 1540 * Also.. Note that bforget() doesn't lock the buffer. So there can 1541 * be writeout I/O going on against recently-freed buffers. We don't 1542 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1543 * only if we really need to. That happens here. 1544 */ 1545 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1546 { 1547 struct buffer_head *old_bh; 1548 1549 might_sleep(); 1550 1551 old_bh = __find_get_block_slow(bdev, block); 1552 if (old_bh) { 1553 clear_buffer_dirty(old_bh); 1554 wait_on_buffer(old_bh); 1555 clear_buffer_req(old_bh); 1556 __brelse(old_bh); 1557 } 1558 } 1559 EXPORT_SYMBOL(unmap_underlying_metadata); 1560 1561 /* 1562 * NOTE! All mapped/uptodate combinations are valid: 1563 * 1564 * Mapped Uptodate Meaning 1565 * 1566 * No No "unknown" - must do get_block() 1567 * No Yes "hole" - zero-filled 1568 * Yes No "allocated" - allocated on disk, not read in 1569 * Yes Yes "valid" - allocated and up-to-date in memory. 1570 * 1571 * "Dirty" is valid only with the last case (mapped+uptodate). 1572 */ 1573 1574 /* 1575 * While block_write_full_page is writing back the dirty buffers under 1576 * the page lock, whoever dirtied the buffers may decide to clean them 1577 * again at any time. We handle that by only looking at the buffer 1578 * state inside lock_buffer(). 1579 * 1580 * If block_write_full_page() is called for regular writeback 1581 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1582 * locked buffer. This only can happen if someone has written the buffer 1583 * directly, with submit_bh(). At the address_space level PageWriteback 1584 * prevents this contention from occurring. 1585 * 1586 * If block_write_full_page() is called with wbc->sync_mode == 1587 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1588 * causes the writes to be flagged as synchronous writes. 1589 */ 1590 static int __block_write_full_page(struct inode *inode, struct page *page, 1591 get_block_t *get_block, struct writeback_control *wbc, 1592 bh_end_io_t *handler) 1593 { 1594 int err; 1595 sector_t block; 1596 sector_t last_block; 1597 struct buffer_head *bh, *head; 1598 const unsigned blocksize = 1 << inode->i_blkbits; 1599 int nr_underway = 0; 1600 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1601 WRITE_SYNC : WRITE); 1602 1603 BUG_ON(!PageLocked(page)); 1604 1605 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1606 1607 if (!page_has_buffers(page)) { 1608 create_empty_buffers(page, blocksize, 1609 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1610 } 1611 1612 /* 1613 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1614 * here, and the (potentially unmapped) buffers may become dirty at 1615 * any time. If a buffer becomes dirty here after we've inspected it 1616 * then we just miss that fact, and the page stays dirty. 1617 * 1618 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1619 * handle that here by just cleaning them. 1620 */ 1621 1622 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1623 head = page_buffers(page); 1624 bh = head; 1625 1626 /* 1627 * Get all the dirty buffers mapped to disk addresses and 1628 * handle any aliases from the underlying blockdev's mapping. 1629 */ 1630 do { 1631 if (block > last_block) { 1632 /* 1633 * mapped buffers outside i_size will occur, because 1634 * this page can be outside i_size when there is a 1635 * truncate in progress. 1636 */ 1637 /* 1638 * The buffer was zeroed by block_write_full_page() 1639 */ 1640 clear_buffer_dirty(bh); 1641 set_buffer_uptodate(bh); 1642 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1643 buffer_dirty(bh)) { 1644 WARN_ON(bh->b_size != blocksize); 1645 err = get_block(inode, block, bh, 1); 1646 if (err) 1647 goto recover; 1648 clear_buffer_delay(bh); 1649 if (buffer_new(bh)) { 1650 /* blockdev mappings never come here */ 1651 clear_buffer_new(bh); 1652 unmap_underlying_metadata(bh->b_bdev, 1653 bh->b_blocknr); 1654 } 1655 } 1656 bh = bh->b_this_page; 1657 block++; 1658 } while (bh != head); 1659 1660 do { 1661 if (!buffer_mapped(bh)) 1662 continue; 1663 /* 1664 * If it's a fully non-blocking write attempt and we cannot 1665 * lock the buffer then redirty the page. Note that this can 1666 * potentially cause a busy-wait loop from writeback threads 1667 * and kswapd activity, but those code paths have their own 1668 * higher-level throttling. 1669 */ 1670 if (wbc->sync_mode != WB_SYNC_NONE) { 1671 lock_buffer(bh); 1672 } else if (!trylock_buffer(bh)) { 1673 redirty_page_for_writepage(wbc, page); 1674 continue; 1675 } 1676 if (test_clear_buffer_dirty(bh)) { 1677 mark_buffer_async_write_endio(bh, handler); 1678 } else { 1679 unlock_buffer(bh); 1680 } 1681 } while ((bh = bh->b_this_page) != head); 1682 1683 /* 1684 * The page and its buffers are protected by PageWriteback(), so we can 1685 * drop the bh refcounts early. 1686 */ 1687 BUG_ON(PageWriteback(page)); 1688 set_page_writeback(page); 1689 1690 do { 1691 struct buffer_head *next = bh->b_this_page; 1692 if (buffer_async_write(bh)) { 1693 submit_bh(write_op, bh); 1694 nr_underway++; 1695 } 1696 bh = next; 1697 } while (bh != head); 1698 unlock_page(page); 1699 1700 err = 0; 1701 done: 1702 if (nr_underway == 0) { 1703 /* 1704 * The page was marked dirty, but the buffers were 1705 * clean. Someone wrote them back by hand with 1706 * ll_rw_block/submit_bh. A rare case. 1707 */ 1708 end_page_writeback(page); 1709 1710 /* 1711 * The page and buffer_heads can be released at any time from 1712 * here on. 1713 */ 1714 } 1715 return err; 1716 1717 recover: 1718 /* 1719 * ENOSPC, or some other error. We may already have added some 1720 * blocks to the file, so we need to write these out to avoid 1721 * exposing stale data. 1722 * The page is currently locked and not marked for writeback 1723 */ 1724 bh = head; 1725 /* Recovery: lock and submit the mapped buffers */ 1726 do { 1727 if (buffer_mapped(bh) && buffer_dirty(bh) && 1728 !buffer_delay(bh)) { 1729 lock_buffer(bh); 1730 mark_buffer_async_write_endio(bh, handler); 1731 } else { 1732 /* 1733 * The buffer may have been set dirty during 1734 * attachment to a dirty page. 1735 */ 1736 clear_buffer_dirty(bh); 1737 } 1738 } while ((bh = bh->b_this_page) != head); 1739 SetPageError(page); 1740 BUG_ON(PageWriteback(page)); 1741 mapping_set_error(page->mapping, err); 1742 set_page_writeback(page); 1743 do { 1744 struct buffer_head *next = bh->b_this_page; 1745 if (buffer_async_write(bh)) { 1746 clear_buffer_dirty(bh); 1747 submit_bh(write_op, bh); 1748 nr_underway++; 1749 } 1750 bh = next; 1751 } while (bh != head); 1752 unlock_page(page); 1753 goto done; 1754 } 1755 1756 /* 1757 * If a page has any new buffers, zero them out here, and mark them uptodate 1758 * and dirty so they'll be written out (in order to prevent uninitialised 1759 * block data from leaking). And clear the new bit. 1760 */ 1761 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1762 { 1763 unsigned int block_start, block_end; 1764 struct buffer_head *head, *bh; 1765 1766 BUG_ON(!PageLocked(page)); 1767 if (!page_has_buffers(page)) 1768 return; 1769 1770 bh = head = page_buffers(page); 1771 block_start = 0; 1772 do { 1773 block_end = block_start + bh->b_size; 1774 1775 if (buffer_new(bh)) { 1776 if (block_end > from && block_start < to) { 1777 if (!PageUptodate(page)) { 1778 unsigned start, size; 1779 1780 start = max(from, block_start); 1781 size = min(to, block_end) - start; 1782 1783 zero_user(page, start, size); 1784 set_buffer_uptodate(bh); 1785 } 1786 1787 clear_buffer_new(bh); 1788 mark_buffer_dirty(bh); 1789 } 1790 } 1791 1792 block_start = block_end; 1793 bh = bh->b_this_page; 1794 } while (bh != head); 1795 } 1796 EXPORT_SYMBOL(page_zero_new_buffers); 1797 1798 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1799 get_block_t *get_block) 1800 { 1801 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1802 unsigned to = from + len; 1803 struct inode *inode = page->mapping->host; 1804 unsigned block_start, block_end; 1805 sector_t block; 1806 int err = 0; 1807 unsigned blocksize, bbits; 1808 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1809 1810 BUG_ON(!PageLocked(page)); 1811 BUG_ON(from > PAGE_CACHE_SIZE); 1812 BUG_ON(to > PAGE_CACHE_SIZE); 1813 BUG_ON(from > to); 1814 1815 blocksize = 1 << inode->i_blkbits; 1816 if (!page_has_buffers(page)) 1817 create_empty_buffers(page, blocksize, 0); 1818 head = page_buffers(page); 1819 1820 bbits = inode->i_blkbits; 1821 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1822 1823 for(bh = head, block_start = 0; bh != head || !block_start; 1824 block++, block_start=block_end, bh = bh->b_this_page) { 1825 block_end = block_start + blocksize; 1826 if (block_end <= from || block_start >= to) { 1827 if (PageUptodate(page)) { 1828 if (!buffer_uptodate(bh)) 1829 set_buffer_uptodate(bh); 1830 } 1831 continue; 1832 } 1833 if (buffer_new(bh)) 1834 clear_buffer_new(bh); 1835 if (!buffer_mapped(bh)) { 1836 WARN_ON(bh->b_size != blocksize); 1837 err = get_block(inode, block, bh, 1); 1838 if (err) 1839 break; 1840 if (buffer_new(bh)) { 1841 unmap_underlying_metadata(bh->b_bdev, 1842 bh->b_blocknr); 1843 if (PageUptodate(page)) { 1844 clear_buffer_new(bh); 1845 set_buffer_uptodate(bh); 1846 mark_buffer_dirty(bh); 1847 continue; 1848 } 1849 if (block_end > to || block_start < from) 1850 zero_user_segments(page, 1851 to, block_end, 1852 block_start, from); 1853 continue; 1854 } 1855 } 1856 if (PageUptodate(page)) { 1857 if (!buffer_uptodate(bh)) 1858 set_buffer_uptodate(bh); 1859 continue; 1860 } 1861 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1862 !buffer_unwritten(bh) && 1863 (block_start < from || block_end > to)) { 1864 ll_rw_block(READ, 1, &bh); 1865 *wait_bh++=bh; 1866 } 1867 } 1868 /* 1869 * If we issued read requests - let them complete. 1870 */ 1871 while(wait_bh > wait) { 1872 wait_on_buffer(*--wait_bh); 1873 if (!buffer_uptodate(*wait_bh)) 1874 err = -EIO; 1875 } 1876 if (unlikely(err)) 1877 page_zero_new_buffers(page, from, to); 1878 return err; 1879 } 1880 EXPORT_SYMBOL(__block_write_begin); 1881 1882 static int __block_commit_write(struct inode *inode, struct page *page, 1883 unsigned from, unsigned to) 1884 { 1885 unsigned block_start, block_end; 1886 int partial = 0; 1887 unsigned blocksize; 1888 struct buffer_head *bh, *head; 1889 1890 blocksize = 1 << inode->i_blkbits; 1891 1892 for(bh = head = page_buffers(page), block_start = 0; 1893 bh != head || !block_start; 1894 block_start=block_end, bh = bh->b_this_page) { 1895 block_end = block_start + blocksize; 1896 if (block_end <= from || block_start >= to) { 1897 if (!buffer_uptodate(bh)) 1898 partial = 1; 1899 } else { 1900 set_buffer_uptodate(bh); 1901 mark_buffer_dirty(bh); 1902 } 1903 clear_buffer_new(bh); 1904 } 1905 1906 /* 1907 * If this is a partial write which happened to make all buffers 1908 * uptodate then we can optimize away a bogus readpage() for 1909 * the next read(). Here we 'discover' whether the page went 1910 * uptodate as a result of this (potentially partial) write. 1911 */ 1912 if (!partial) 1913 SetPageUptodate(page); 1914 return 0; 1915 } 1916 1917 /* 1918 * block_write_begin takes care of the basic task of block allocation and 1919 * bringing partial write blocks uptodate first. 1920 * 1921 * The filesystem needs to handle block truncation upon failure. 1922 */ 1923 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1924 unsigned flags, struct page **pagep, get_block_t *get_block) 1925 { 1926 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1927 struct page *page; 1928 int status; 1929 1930 page = grab_cache_page_write_begin(mapping, index, flags); 1931 if (!page) 1932 return -ENOMEM; 1933 1934 status = __block_write_begin(page, pos, len, get_block); 1935 if (unlikely(status)) { 1936 unlock_page(page); 1937 page_cache_release(page); 1938 page = NULL; 1939 } 1940 1941 *pagep = page; 1942 return status; 1943 } 1944 EXPORT_SYMBOL(block_write_begin); 1945 1946 int block_write_end(struct file *file, struct address_space *mapping, 1947 loff_t pos, unsigned len, unsigned copied, 1948 struct page *page, void *fsdata) 1949 { 1950 struct inode *inode = mapping->host; 1951 unsigned start; 1952 1953 start = pos & (PAGE_CACHE_SIZE - 1); 1954 1955 if (unlikely(copied < len)) { 1956 /* 1957 * The buffers that were written will now be uptodate, so we 1958 * don't have to worry about a readpage reading them and 1959 * overwriting a partial write. However if we have encountered 1960 * a short write and only partially written into a buffer, it 1961 * will not be marked uptodate, so a readpage might come in and 1962 * destroy our partial write. 1963 * 1964 * Do the simplest thing, and just treat any short write to a 1965 * non uptodate page as a zero-length write, and force the 1966 * caller to redo the whole thing. 1967 */ 1968 if (!PageUptodate(page)) 1969 copied = 0; 1970 1971 page_zero_new_buffers(page, start+copied, start+len); 1972 } 1973 flush_dcache_page(page); 1974 1975 /* This could be a short (even 0-length) commit */ 1976 __block_commit_write(inode, page, start, start+copied); 1977 1978 return copied; 1979 } 1980 EXPORT_SYMBOL(block_write_end); 1981 1982 int generic_write_end(struct file *file, struct address_space *mapping, 1983 loff_t pos, unsigned len, unsigned copied, 1984 struct page *page, void *fsdata) 1985 { 1986 struct inode *inode = mapping->host; 1987 int i_size_changed = 0; 1988 1989 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1990 1991 /* 1992 * No need to use i_size_read() here, the i_size 1993 * cannot change under us because we hold i_mutex. 1994 * 1995 * But it's important to update i_size while still holding page lock: 1996 * page writeout could otherwise come in and zero beyond i_size. 1997 */ 1998 if (pos+copied > inode->i_size) { 1999 i_size_write(inode, pos+copied); 2000 i_size_changed = 1; 2001 } 2002 2003 unlock_page(page); 2004 page_cache_release(page); 2005 2006 /* 2007 * Don't mark the inode dirty under page lock. First, it unnecessarily 2008 * makes the holding time of page lock longer. Second, it forces lock 2009 * ordering of page lock and transaction start for journaling 2010 * filesystems. 2011 */ 2012 if (i_size_changed) 2013 mark_inode_dirty(inode); 2014 2015 return copied; 2016 } 2017 EXPORT_SYMBOL(generic_write_end); 2018 2019 /* 2020 * block_is_partially_uptodate checks whether buffers within a page are 2021 * uptodate or not. 2022 * 2023 * Returns true if all buffers which correspond to a file portion 2024 * we want to read are uptodate. 2025 */ 2026 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2027 unsigned long from) 2028 { 2029 struct inode *inode = page->mapping->host; 2030 unsigned block_start, block_end, blocksize; 2031 unsigned to; 2032 struct buffer_head *bh, *head; 2033 int ret = 1; 2034 2035 if (!page_has_buffers(page)) 2036 return 0; 2037 2038 blocksize = 1 << inode->i_blkbits; 2039 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2040 to = from + to; 2041 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2042 return 0; 2043 2044 head = page_buffers(page); 2045 bh = head; 2046 block_start = 0; 2047 do { 2048 block_end = block_start + blocksize; 2049 if (block_end > from && block_start < to) { 2050 if (!buffer_uptodate(bh)) { 2051 ret = 0; 2052 break; 2053 } 2054 if (block_end >= to) 2055 break; 2056 } 2057 block_start = block_end; 2058 bh = bh->b_this_page; 2059 } while (bh != head); 2060 2061 return ret; 2062 } 2063 EXPORT_SYMBOL(block_is_partially_uptodate); 2064 2065 /* 2066 * Generic "read page" function for block devices that have the normal 2067 * get_block functionality. This is most of the block device filesystems. 2068 * Reads the page asynchronously --- the unlock_buffer() and 2069 * set/clear_buffer_uptodate() functions propagate buffer state into the 2070 * page struct once IO has completed. 2071 */ 2072 int block_read_full_page(struct page *page, get_block_t *get_block) 2073 { 2074 struct inode *inode = page->mapping->host; 2075 sector_t iblock, lblock; 2076 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2077 unsigned int blocksize; 2078 int nr, i; 2079 int fully_mapped = 1; 2080 2081 BUG_ON(!PageLocked(page)); 2082 blocksize = 1 << inode->i_blkbits; 2083 if (!page_has_buffers(page)) 2084 create_empty_buffers(page, blocksize, 0); 2085 head = page_buffers(page); 2086 2087 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2088 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2089 bh = head; 2090 nr = 0; 2091 i = 0; 2092 2093 do { 2094 if (buffer_uptodate(bh)) 2095 continue; 2096 2097 if (!buffer_mapped(bh)) { 2098 int err = 0; 2099 2100 fully_mapped = 0; 2101 if (iblock < lblock) { 2102 WARN_ON(bh->b_size != blocksize); 2103 err = get_block(inode, iblock, bh, 0); 2104 if (err) 2105 SetPageError(page); 2106 } 2107 if (!buffer_mapped(bh)) { 2108 zero_user(page, i * blocksize, blocksize); 2109 if (!err) 2110 set_buffer_uptodate(bh); 2111 continue; 2112 } 2113 /* 2114 * get_block() might have updated the buffer 2115 * synchronously 2116 */ 2117 if (buffer_uptodate(bh)) 2118 continue; 2119 } 2120 arr[nr++] = bh; 2121 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2122 2123 if (fully_mapped) 2124 SetPageMappedToDisk(page); 2125 2126 if (!nr) { 2127 /* 2128 * All buffers are uptodate - we can set the page uptodate 2129 * as well. But not if get_block() returned an error. 2130 */ 2131 if (!PageError(page)) 2132 SetPageUptodate(page); 2133 unlock_page(page); 2134 return 0; 2135 } 2136 2137 /* Stage two: lock the buffers */ 2138 for (i = 0; i < nr; i++) { 2139 bh = arr[i]; 2140 lock_buffer(bh); 2141 mark_buffer_async_read(bh); 2142 } 2143 2144 /* 2145 * Stage 3: start the IO. Check for uptodateness 2146 * inside the buffer lock in case another process reading 2147 * the underlying blockdev brought it uptodate (the sct fix). 2148 */ 2149 for (i = 0; i < nr; i++) { 2150 bh = arr[i]; 2151 if (buffer_uptodate(bh)) 2152 end_buffer_async_read(bh, 1); 2153 else 2154 submit_bh(READ, bh); 2155 } 2156 return 0; 2157 } 2158 EXPORT_SYMBOL(block_read_full_page); 2159 2160 /* utility function for filesystems that need to do work on expanding 2161 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2162 * deal with the hole. 2163 */ 2164 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2165 { 2166 struct address_space *mapping = inode->i_mapping; 2167 struct page *page; 2168 void *fsdata; 2169 int err; 2170 2171 err = inode_newsize_ok(inode, size); 2172 if (err) 2173 goto out; 2174 2175 err = pagecache_write_begin(NULL, mapping, size, 0, 2176 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2177 &page, &fsdata); 2178 if (err) 2179 goto out; 2180 2181 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2182 BUG_ON(err > 0); 2183 2184 out: 2185 return err; 2186 } 2187 EXPORT_SYMBOL(generic_cont_expand_simple); 2188 2189 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2190 loff_t pos, loff_t *bytes) 2191 { 2192 struct inode *inode = mapping->host; 2193 unsigned blocksize = 1 << inode->i_blkbits; 2194 struct page *page; 2195 void *fsdata; 2196 pgoff_t index, curidx; 2197 loff_t curpos; 2198 unsigned zerofrom, offset, len; 2199 int err = 0; 2200 2201 index = pos >> PAGE_CACHE_SHIFT; 2202 offset = pos & ~PAGE_CACHE_MASK; 2203 2204 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2205 zerofrom = curpos & ~PAGE_CACHE_MASK; 2206 if (zerofrom & (blocksize-1)) { 2207 *bytes |= (blocksize-1); 2208 (*bytes)++; 2209 } 2210 len = PAGE_CACHE_SIZE - zerofrom; 2211 2212 err = pagecache_write_begin(file, mapping, curpos, len, 2213 AOP_FLAG_UNINTERRUPTIBLE, 2214 &page, &fsdata); 2215 if (err) 2216 goto out; 2217 zero_user(page, zerofrom, len); 2218 err = pagecache_write_end(file, mapping, curpos, len, len, 2219 page, fsdata); 2220 if (err < 0) 2221 goto out; 2222 BUG_ON(err != len); 2223 err = 0; 2224 2225 balance_dirty_pages_ratelimited(mapping); 2226 } 2227 2228 /* page covers the boundary, find the boundary offset */ 2229 if (index == curidx) { 2230 zerofrom = curpos & ~PAGE_CACHE_MASK; 2231 /* if we will expand the thing last block will be filled */ 2232 if (offset <= zerofrom) { 2233 goto out; 2234 } 2235 if (zerofrom & (blocksize-1)) { 2236 *bytes |= (blocksize-1); 2237 (*bytes)++; 2238 } 2239 len = offset - zerofrom; 2240 2241 err = pagecache_write_begin(file, mapping, curpos, len, 2242 AOP_FLAG_UNINTERRUPTIBLE, 2243 &page, &fsdata); 2244 if (err) 2245 goto out; 2246 zero_user(page, zerofrom, len); 2247 err = pagecache_write_end(file, mapping, curpos, len, len, 2248 page, fsdata); 2249 if (err < 0) 2250 goto out; 2251 BUG_ON(err != len); 2252 err = 0; 2253 } 2254 out: 2255 return err; 2256 } 2257 2258 /* 2259 * For moronic filesystems that do not allow holes in file. 2260 * We may have to extend the file. 2261 */ 2262 int cont_write_begin(struct file *file, struct address_space *mapping, 2263 loff_t pos, unsigned len, unsigned flags, 2264 struct page **pagep, void **fsdata, 2265 get_block_t *get_block, loff_t *bytes) 2266 { 2267 struct inode *inode = mapping->host; 2268 unsigned blocksize = 1 << inode->i_blkbits; 2269 unsigned zerofrom; 2270 int err; 2271 2272 err = cont_expand_zero(file, mapping, pos, bytes); 2273 if (err) 2274 return err; 2275 2276 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2277 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2278 *bytes |= (blocksize-1); 2279 (*bytes)++; 2280 } 2281 2282 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2283 } 2284 EXPORT_SYMBOL(cont_write_begin); 2285 2286 int block_commit_write(struct page *page, unsigned from, unsigned to) 2287 { 2288 struct inode *inode = page->mapping->host; 2289 __block_commit_write(inode,page,from,to); 2290 return 0; 2291 } 2292 EXPORT_SYMBOL(block_commit_write); 2293 2294 /* 2295 * block_page_mkwrite() is not allowed to change the file size as it gets 2296 * called from a page fault handler when a page is first dirtied. Hence we must 2297 * be careful to check for EOF conditions here. We set the page up correctly 2298 * for a written page which means we get ENOSPC checking when writing into 2299 * holes and correct delalloc and unwritten extent mapping on filesystems that 2300 * support these features. 2301 * 2302 * We are not allowed to take the i_mutex here so we have to play games to 2303 * protect against truncate races as the page could now be beyond EOF. Because 2304 * truncate writes the inode size before removing pages, once we have the 2305 * page lock we can determine safely if the page is beyond EOF. If it is not 2306 * beyond EOF, then the page is guaranteed safe against truncation until we 2307 * unlock the page. 2308 * 2309 * Direct callers of this function should protect against filesystem freezing 2310 * using sb_start_write() - sb_end_write() functions. 2311 */ 2312 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2313 get_block_t get_block) 2314 { 2315 struct page *page = vmf->page; 2316 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2317 unsigned long end; 2318 loff_t size; 2319 int ret; 2320 2321 /* 2322 * Update file times before taking page lock. We may end up failing the 2323 * fault so this update may be superfluous but who really cares... 2324 */ 2325 file_update_time(vma->vm_file); 2326 2327 lock_page(page); 2328 size = i_size_read(inode); 2329 if ((page->mapping != inode->i_mapping) || 2330 (page_offset(page) > size)) { 2331 /* We overload EFAULT to mean page got truncated */ 2332 ret = -EFAULT; 2333 goto out_unlock; 2334 } 2335 2336 /* page is wholly or partially inside EOF */ 2337 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2338 end = size & ~PAGE_CACHE_MASK; 2339 else 2340 end = PAGE_CACHE_SIZE; 2341 2342 ret = __block_write_begin(page, 0, end, get_block); 2343 if (!ret) 2344 ret = block_commit_write(page, 0, end); 2345 2346 if (unlikely(ret < 0)) 2347 goto out_unlock; 2348 set_page_dirty(page); 2349 wait_on_page_writeback(page); 2350 return 0; 2351 out_unlock: 2352 unlock_page(page); 2353 return ret; 2354 } 2355 EXPORT_SYMBOL(__block_page_mkwrite); 2356 2357 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2358 get_block_t get_block) 2359 { 2360 int ret; 2361 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb; 2362 2363 sb_start_pagefault(sb); 2364 ret = __block_page_mkwrite(vma, vmf, get_block); 2365 sb_end_pagefault(sb); 2366 return block_page_mkwrite_return(ret); 2367 } 2368 EXPORT_SYMBOL(block_page_mkwrite); 2369 2370 /* 2371 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2372 * immediately, while under the page lock. So it needs a special end_io 2373 * handler which does not touch the bh after unlocking it. 2374 */ 2375 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2376 { 2377 __end_buffer_read_notouch(bh, uptodate); 2378 } 2379 2380 /* 2381 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2382 * the page (converting it to circular linked list and taking care of page 2383 * dirty races). 2384 */ 2385 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2386 { 2387 struct buffer_head *bh; 2388 2389 BUG_ON(!PageLocked(page)); 2390 2391 spin_lock(&page->mapping->private_lock); 2392 bh = head; 2393 do { 2394 if (PageDirty(page)) 2395 set_buffer_dirty(bh); 2396 if (!bh->b_this_page) 2397 bh->b_this_page = head; 2398 bh = bh->b_this_page; 2399 } while (bh != head); 2400 attach_page_buffers(page, head); 2401 spin_unlock(&page->mapping->private_lock); 2402 } 2403 2404 /* 2405 * On entry, the page is fully not uptodate. 2406 * On exit the page is fully uptodate in the areas outside (from,to) 2407 * The filesystem needs to handle block truncation upon failure. 2408 */ 2409 int nobh_write_begin(struct address_space *mapping, 2410 loff_t pos, unsigned len, unsigned flags, 2411 struct page **pagep, void **fsdata, 2412 get_block_t *get_block) 2413 { 2414 struct inode *inode = mapping->host; 2415 const unsigned blkbits = inode->i_blkbits; 2416 const unsigned blocksize = 1 << blkbits; 2417 struct buffer_head *head, *bh; 2418 struct page *page; 2419 pgoff_t index; 2420 unsigned from, to; 2421 unsigned block_in_page; 2422 unsigned block_start, block_end; 2423 sector_t block_in_file; 2424 int nr_reads = 0; 2425 int ret = 0; 2426 int is_mapped_to_disk = 1; 2427 2428 index = pos >> PAGE_CACHE_SHIFT; 2429 from = pos & (PAGE_CACHE_SIZE - 1); 2430 to = from + len; 2431 2432 page = grab_cache_page_write_begin(mapping, index, flags); 2433 if (!page) 2434 return -ENOMEM; 2435 *pagep = page; 2436 *fsdata = NULL; 2437 2438 if (page_has_buffers(page)) { 2439 ret = __block_write_begin(page, pos, len, get_block); 2440 if (unlikely(ret)) 2441 goto out_release; 2442 return ret; 2443 } 2444 2445 if (PageMappedToDisk(page)) 2446 return 0; 2447 2448 /* 2449 * Allocate buffers so that we can keep track of state, and potentially 2450 * attach them to the page if an error occurs. In the common case of 2451 * no error, they will just be freed again without ever being attached 2452 * to the page (which is all OK, because we're under the page lock). 2453 * 2454 * Be careful: the buffer linked list is a NULL terminated one, rather 2455 * than the circular one we're used to. 2456 */ 2457 head = alloc_page_buffers(page, blocksize, 0); 2458 if (!head) { 2459 ret = -ENOMEM; 2460 goto out_release; 2461 } 2462 2463 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2464 2465 /* 2466 * We loop across all blocks in the page, whether or not they are 2467 * part of the affected region. This is so we can discover if the 2468 * page is fully mapped-to-disk. 2469 */ 2470 for (block_start = 0, block_in_page = 0, bh = head; 2471 block_start < PAGE_CACHE_SIZE; 2472 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2473 int create; 2474 2475 block_end = block_start + blocksize; 2476 bh->b_state = 0; 2477 create = 1; 2478 if (block_start >= to) 2479 create = 0; 2480 ret = get_block(inode, block_in_file + block_in_page, 2481 bh, create); 2482 if (ret) 2483 goto failed; 2484 if (!buffer_mapped(bh)) 2485 is_mapped_to_disk = 0; 2486 if (buffer_new(bh)) 2487 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2488 if (PageUptodate(page)) { 2489 set_buffer_uptodate(bh); 2490 continue; 2491 } 2492 if (buffer_new(bh) || !buffer_mapped(bh)) { 2493 zero_user_segments(page, block_start, from, 2494 to, block_end); 2495 continue; 2496 } 2497 if (buffer_uptodate(bh)) 2498 continue; /* reiserfs does this */ 2499 if (block_start < from || block_end > to) { 2500 lock_buffer(bh); 2501 bh->b_end_io = end_buffer_read_nobh; 2502 submit_bh(READ, bh); 2503 nr_reads++; 2504 } 2505 } 2506 2507 if (nr_reads) { 2508 /* 2509 * The page is locked, so these buffers are protected from 2510 * any VM or truncate activity. Hence we don't need to care 2511 * for the buffer_head refcounts. 2512 */ 2513 for (bh = head; bh; bh = bh->b_this_page) { 2514 wait_on_buffer(bh); 2515 if (!buffer_uptodate(bh)) 2516 ret = -EIO; 2517 } 2518 if (ret) 2519 goto failed; 2520 } 2521 2522 if (is_mapped_to_disk) 2523 SetPageMappedToDisk(page); 2524 2525 *fsdata = head; /* to be released by nobh_write_end */ 2526 2527 return 0; 2528 2529 failed: 2530 BUG_ON(!ret); 2531 /* 2532 * Error recovery is a bit difficult. We need to zero out blocks that 2533 * were newly allocated, and dirty them to ensure they get written out. 2534 * Buffers need to be attached to the page at this point, otherwise 2535 * the handling of potential IO errors during writeout would be hard 2536 * (could try doing synchronous writeout, but what if that fails too?) 2537 */ 2538 attach_nobh_buffers(page, head); 2539 page_zero_new_buffers(page, from, to); 2540 2541 out_release: 2542 unlock_page(page); 2543 page_cache_release(page); 2544 *pagep = NULL; 2545 2546 return ret; 2547 } 2548 EXPORT_SYMBOL(nobh_write_begin); 2549 2550 int nobh_write_end(struct file *file, struct address_space *mapping, 2551 loff_t pos, unsigned len, unsigned copied, 2552 struct page *page, void *fsdata) 2553 { 2554 struct inode *inode = page->mapping->host; 2555 struct buffer_head *head = fsdata; 2556 struct buffer_head *bh; 2557 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2558 2559 if (unlikely(copied < len) && head) 2560 attach_nobh_buffers(page, head); 2561 if (page_has_buffers(page)) 2562 return generic_write_end(file, mapping, pos, len, 2563 copied, page, fsdata); 2564 2565 SetPageUptodate(page); 2566 set_page_dirty(page); 2567 if (pos+copied > inode->i_size) { 2568 i_size_write(inode, pos+copied); 2569 mark_inode_dirty(inode); 2570 } 2571 2572 unlock_page(page); 2573 page_cache_release(page); 2574 2575 while (head) { 2576 bh = head; 2577 head = head->b_this_page; 2578 free_buffer_head(bh); 2579 } 2580 2581 return copied; 2582 } 2583 EXPORT_SYMBOL(nobh_write_end); 2584 2585 /* 2586 * nobh_writepage() - based on block_full_write_page() except 2587 * that it tries to operate without attaching bufferheads to 2588 * the page. 2589 */ 2590 int nobh_writepage(struct page *page, get_block_t *get_block, 2591 struct writeback_control *wbc) 2592 { 2593 struct inode * const inode = page->mapping->host; 2594 loff_t i_size = i_size_read(inode); 2595 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2596 unsigned offset; 2597 int ret; 2598 2599 /* Is the page fully inside i_size? */ 2600 if (page->index < end_index) 2601 goto out; 2602 2603 /* Is the page fully outside i_size? (truncate in progress) */ 2604 offset = i_size & (PAGE_CACHE_SIZE-1); 2605 if (page->index >= end_index+1 || !offset) { 2606 /* 2607 * The page may have dirty, unmapped buffers. For example, 2608 * they may have been added in ext3_writepage(). Make them 2609 * freeable here, so the page does not leak. 2610 */ 2611 #if 0 2612 /* Not really sure about this - do we need this ? */ 2613 if (page->mapping->a_ops->invalidatepage) 2614 page->mapping->a_ops->invalidatepage(page, offset); 2615 #endif 2616 unlock_page(page); 2617 return 0; /* don't care */ 2618 } 2619 2620 /* 2621 * The page straddles i_size. It must be zeroed out on each and every 2622 * writepage invocation because it may be mmapped. "A file is mapped 2623 * in multiples of the page size. For a file that is not a multiple of 2624 * the page size, the remaining memory is zeroed when mapped, and 2625 * writes to that region are not written out to the file." 2626 */ 2627 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2628 out: 2629 ret = mpage_writepage(page, get_block, wbc); 2630 if (ret == -EAGAIN) 2631 ret = __block_write_full_page(inode, page, get_block, wbc, 2632 end_buffer_async_write); 2633 return ret; 2634 } 2635 EXPORT_SYMBOL(nobh_writepage); 2636 2637 int nobh_truncate_page(struct address_space *mapping, 2638 loff_t from, get_block_t *get_block) 2639 { 2640 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2641 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2642 unsigned blocksize; 2643 sector_t iblock; 2644 unsigned length, pos; 2645 struct inode *inode = mapping->host; 2646 struct page *page; 2647 struct buffer_head map_bh; 2648 int err; 2649 2650 blocksize = 1 << inode->i_blkbits; 2651 length = offset & (blocksize - 1); 2652 2653 /* Block boundary? Nothing to do */ 2654 if (!length) 2655 return 0; 2656 2657 length = blocksize - length; 2658 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2659 2660 page = grab_cache_page(mapping, index); 2661 err = -ENOMEM; 2662 if (!page) 2663 goto out; 2664 2665 if (page_has_buffers(page)) { 2666 has_buffers: 2667 unlock_page(page); 2668 page_cache_release(page); 2669 return block_truncate_page(mapping, from, get_block); 2670 } 2671 2672 /* Find the buffer that contains "offset" */ 2673 pos = blocksize; 2674 while (offset >= pos) { 2675 iblock++; 2676 pos += blocksize; 2677 } 2678 2679 map_bh.b_size = blocksize; 2680 map_bh.b_state = 0; 2681 err = get_block(inode, iblock, &map_bh, 0); 2682 if (err) 2683 goto unlock; 2684 /* unmapped? It's a hole - nothing to do */ 2685 if (!buffer_mapped(&map_bh)) 2686 goto unlock; 2687 2688 /* Ok, it's mapped. Make sure it's up-to-date */ 2689 if (!PageUptodate(page)) { 2690 err = mapping->a_ops->readpage(NULL, page); 2691 if (err) { 2692 page_cache_release(page); 2693 goto out; 2694 } 2695 lock_page(page); 2696 if (!PageUptodate(page)) { 2697 err = -EIO; 2698 goto unlock; 2699 } 2700 if (page_has_buffers(page)) 2701 goto has_buffers; 2702 } 2703 zero_user(page, offset, length); 2704 set_page_dirty(page); 2705 err = 0; 2706 2707 unlock: 2708 unlock_page(page); 2709 page_cache_release(page); 2710 out: 2711 return err; 2712 } 2713 EXPORT_SYMBOL(nobh_truncate_page); 2714 2715 int block_truncate_page(struct address_space *mapping, 2716 loff_t from, get_block_t *get_block) 2717 { 2718 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2719 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2720 unsigned blocksize; 2721 sector_t iblock; 2722 unsigned length, pos; 2723 struct inode *inode = mapping->host; 2724 struct page *page; 2725 struct buffer_head *bh; 2726 int err; 2727 2728 blocksize = 1 << inode->i_blkbits; 2729 length = offset & (blocksize - 1); 2730 2731 /* Block boundary? Nothing to do */ 2732 if (!length) 2733 return 0; 2734 2735 length = blocksize - length; 2736 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2737 2738 page = grab_cache_page(mapping, index); 2739 err = -ENOMEM; 2740 if (!page) 2741 goto out; 2742 2743 if (!page_has_buffers(page)) 2744 create_empty_buffers(page, blocksize, 0); 2745 2746 /* Find the buffer that contains "offset" */ 2747 bh = page_buffers(page); 2748 pos = blocksize; 2749 while (offset >= pos) { 2750 bh = bh->b_this_page; 2751 iblock++; 2752 pos += blocksize; 2753 } 2754 2755 err = 0; 2756 if (!buffer_mapped(bh)) { 2757 WARN_ON(bh->b_size != blocksize); 2758 err = get_block(inode, iblock, bh, 0); 2759 if (err) 2760 goto unlock; 2761 /* unmapped? It's a hole - nothing to do */ 2762 if (!buffer_mapped(bh)) 2763 goto unlock; 2764 } 2765 2766 /* Ok, it's mapped. Make sure it's up-to-date */ 2767 if (PageUptodate(page)) 2768 set_buffer_uptodate(bh); 2769 2770 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2771 err = -EIO; 2772 ll_rw_block(READ, 1, &bh); 2773 wait_on_buffer(bh); 2774 /* Uhhuh. Read error. Complain and punt. */ 2775 if (!buffer_uptodate(bh)) 2776 goto unlock; 2777 } 2778 2779 zero_user(page, offset, length); 2780 mark_buffer_dirty(bh); 2781 err = 0; 2782 2783 unlock: 2784 unlock_page(page); 2785 page_cache_release(page); 2786 out: 2787 return err; 2788 } 2789 EXPORT_SYMBOL(block_truncate_page); 2790 2791 /* 2792 * The generic ->writepage function for buffer-backed address_spaces 2793 * this form passes in the end_io handler used to finish the IO. 2794 */ 2795 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2796 struct writeback_control *wbc, bh_end_io_t *handler) 2797 { 2798 struct inode * const inode = page->mapping->host; 2799 loff_t i_size = i_size_read(inode); 2800 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2801 unsigned offset; 2802 2803 /* Is the page fully inside i_size? */ 2804 if (page->index < end_index) 2805 return __block_write_full_page(inode, page, get_block, wbc, 2806 handler); 2807 2808 /* Is the page fully outside i_size? (truncate in progress) */ 2809 offset = i_size & (PAGE_CACHE_SIZE-1); 2810 if (page->index >= end_index+1 || !offset) { 2811 /* 2812 * The page may have dirty, unmapped buffers. For example, 2813 * they may have been added in ext3_writepage(). Make them 2814 * freeable here, so the page does not leak. 2815 */ 2816 do_invalidatepage(page, 0); 2817 unlock_page(page); 2818 return 0; /* don't care */ 2819 } 2820 2821 /* 2822 * The page straddles i_size. It must be zeroed out on each and every 2823 * writepage invocation because it may be mmapped. "A file is mapped 2824 * in multiples of the page size. For a file that is not a multiple of 2825 * the page size, the remaining memory is zeroed when mapped, and 2826 * writes to that region are not written out to the file." 2827 */ 2828 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2829 return __block_write_full_page(inode, page, get_block, wbc, handler); 2830 } 2831 EXPORT_SYMBOL(block_write_full_page_endio); 2832 2833 /* 2834 * The generic ->writepage function for buffer-backed address_spaces 2835 */ 2836 int block_write_full_page(struct page *page, get_block_t *get_block, 2837 struct writeback_control *wbc) 2838 { 2839 return block_write_full_page_endio(page, get_block, wbc, 2840 end_buffer_async_write); 2841 } 2842 EXPORT_SYMBOL(block_write_full_page); 2843 2844 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2845 get_block_t *get_block) 2846 { 2847 struct buffer_head tmp; 2848 struct inode *inode = mapping->host; 2849 tmp.b_state = 0; 2850 tmp.b_blocknr = 0; 2851 tmp.b_size = 1 << inode->i_blkbits; 2852 get_block(inode, block, &tmp, 0); 2853 return tmp.b_blocknr; 2854 } 2855 EXPORT_SYMBOL(generic_block_bmap); 2856 2857 static void end_bio_bh_io_sync(struct bio *bio, int err) 2858 { 2859 struct buffer_head *bh = bio->bi_private; 2860 2861 if (err == -EOPNOTSUPP) { 2862 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2863 } 2864 2865 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2866 set_bit(BH_Quiet, &bh->b_state); 2867 2868 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2869 bio_put(bio); 2870 } 2871 2872 int submit_bh(int rw, struct buffer_head * bh) 2873 { 2874 struct bio *bio; 2875 int ret = 0; 2876 2877 BUG_ON(!buffer_locked(bh)); 2878 BUG_ON(!buffer_mapped(bh)); 2879 BUG_ON(!bh->b_end_io); 2880 BUG_ON(buffer_delay(bh)); 2881 BUG_ON(buffer_unwritten(bh)); 2882 2883 /* 2884 * Only clear out a write error when rewriting 2885 */ 2886 if (test_set_buffer_req(bh) && (rw & WRITE)) 2887 clear_buffer_write_io_error(bh); 2888 2889 /* 2890 * from here on down, it's all bio -- do the initial mapping, 2891 * submit_bio -> generic_make_request may further map this bio around 2892 */ 2893 bio = bio_alloc(GFP_NOIO, 1); 2894 2895 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2896 bio->bi_bdev = bh->b_bdev; 2897 bio->bi_io_vec[0].bv_page = bh->b_page; 2898 bio->bi_io_vec[0].bv_len = bh->b_size; 2899 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2900 2901 bio->bi_vcnt = 1; 2902 bio->bi_idx = 0; 2903 bio->bi_size = bh->b_size; 2904 2905 bio->bi_end_io = end_bio_bh_io_sync; 2906 bio->bi_private = bh; 2907 2908 bio_get(bio); 2909 submit_bio(rw, bio); 2910 2911 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2912 ret = -EOPNOTSUPP; 2913 2914 bio_put(bio); 2915 return ret; 2916 } 2917 EXPORT_SYMBOL(submit_bh); 2918 2919 /** 2920 * ll_rw_block: low-level access to block devices (DEPRECATED) 2921 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 2922 * @nr: number of &struct buffer_heads in the array 2923 * @bhs: array of pointers to &struct buffer_head 2924 * 2925 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2926 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2927 * %READA option is described in the documentation for generic_make_request() 2928 * which ll_rw_block() calls. 2929 * 2930 * This function drops any buffer that it cannot get a lock on (with the 2931 * BH_Lock state bit), any buffer that appears to be clean when doing a write 2932 * request, and any buffer that appears to be up-to-date when doing read 2933 * request. Further it marks as clean buffers that are processed for 2934 * writing (the buffer cache won't assume that they are actually clean 2935 * until the buffer gets unlocked). 2936 * 2937 * ll_rw_block sets b_end_io to simple completion handler that marks 2938 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2939 * any waiters. 2940 * 2941 * All of the buffers must be for the same device, and must also be a 2942 * multiple of the current approved size for the device. 2943 */ 2944 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2945 { 2946 int i; 2947 2948 for (i = 0; i < nr; i++) { 2949 struct buffer_head *bh = bhs[i]; 2950 2951 if (!trylock_buffer(bh)) 2952 continue; 2953 if (rw == WRITE) { 2954 if (test_clear_buffer_dirty(bh)) { 2955 bh->b_end_io = end_buffer_write_sync; 2956 get_bh(bh); 2957 submit_bh(WRITE, bh); 2958 continue; 2959 } 2960 } else { 2961 if (!buffer_uptodate(bh)) { 2962 bh->b_end_io = end_buffer_read_sync; 2963 get_bh(bh); 2964 submit_bh(rw, bh); 2965 continue; 2966 } 2967 } 2968 unlock_buffer(bh); 2969 } 2970 } 2971 EXPORT_SYMBOL(ll_rw_block); 2972 2973 void write_dirty_buffer(struct buffer_head *bh, int rw) 2974 { 2975 lock_buffer(bh); 2976 if (!test_clear_buffer_dirty(bh)) { 2977 unlock_buffer(bh); 2978 return; 2979 } 2980 bh->b_end_io = end_buffer_write_sync; 2981 get_bh(bh); 2982 submit_bh(rw, bh); 2983 } 2984 EXPORT_SYMBOL(write_dirty_buffer); 2985 2986 /* 2987 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2988 * and then start new I/O and then wait upon it. The caller must have a ref on 2989 * the buffer_head. 2990 */ 2991 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 2992 { 2993 int ret = 0; 2994 2995 WARN_ON(atomic_read(&bh->b_count) < 1); 2996 lock_buffer(bh); 2997 if (test_clear_buffer_dirty(bh)) { 2998 get_bh(bh); 2999 bh->b_end_io = end_buffer_write_sync; 3000 ret = submit_bh(rw, bh); 3001 wait_on_buffer(bh); 3002 if (!ret && !buffer_uptodate(bh)) 3003 ret = -EIO; 3004 } else { 3005 unlock_buffer(bh); 3006 } 3007 return ret; 3008 } 3009 EXPORT_SYMBOL(__sync_dirty_buffer); 3010 3011 int sync_dirty_buffer(struct buffer_head *bh) 3012 { 3013 return __sync_dirty_buffer(bh, WRITE_SYNC); 3014 } 3015 EXPORT_SYMBOL(sync_dirty_buffer); 3016 3017 /* 3018 * try_to_free_buffers() checks if all the buffers on this particular page 3019 * are unused, and releases them if so. 3020 * 3021 * Exclusion against try_to_free_buffers may be obtained by either 3022 * locking the page or by holding its mapping's private_lock. 3023 * 3024 * If the page is dirty but all the buffers are clean then we need to 3025 * be sure to mark the page clean as well. This is because the page 3026 * may be against a block device, and a later reattachment of buffers 3027 * to a dirty page will set *all* buffers dirty. Which would corrupt 3028 * filesystem data on the same device. 3029 * 3030 * The same applies to regular filesystem pages: if all the buffers are 3031 * clean then we set the page clean and proceed. To do that, we require 3032 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3033 * private_lock. 3034 * 3035 * try_to_free_buffers() is non-blocking. 3036 */ 3037 static inline int buffer_busy(struct buffer_head *bh) 3038 { 3039 return atomic_read(&bh->b_count) | 3040 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3041 } 3042 3043 static int 3044 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3045 { 3046 struct buffer_head *head = page_buffers(page); 3047 struct buffer_head *bh; 3048 3049 bh = head; 3050 do { 3051 if (buffer_write_io_error(bh) && page->mapping) 3052 set_bit(AS_EIO, &page->mapping->flags); 3053 if (buffer_busy(bh)) 3054 goto failed; 3055 bh = bh->b_this_page; 3056 } while (bh != head); 3057 3058 do { 3059 struct buffer_head *next = bh->b_this_page; 3060 3061 if (bh->b_assoc_map) 3062 __remove_assoc_queue(bh); 3063 bh = next; 3064 } while (bh != head); 3065 *buffers_to_free = head; 3066 __clear_page_buffers(page); 3067 return 1; 3068 failed: 3069 return 0; 3070 } 3071 3072 int try_to_free_buffers(struct page *page) 3073 { 3074 struct address_space * const mapping = page->mapping; 3075 struct buffer_head *buffers_to_free = NULL; 3076 int ret = 0; 3077 3078 BUG_ON(!PageLocked(page)); 3079 if (PageWriteback(page)) 3080 return 0; 3081 3082 if (mapping == NULL) { /* can this still happen? */ 3083 ret = drop_buffers(page, &buffers_to_free); 3084 goto out; 3085 } 3086 3087 spin_lock(&mapping->private_lock); 3088 ret = drop_buffers(page, &buffers_to_free); 3089 3090 /* 3091 * If the filesystem writes its buffers by hand (eg ext3) 3092 * then we can have clean buffers against a dirty page. We 3093 * clean the page here; otherwise the VM will never notice 3094 * that the filesystem did any IO at all. 3095 * 3096 * Also, during truncate, discard_buffer will have marked all 3097 * the page's buffers clean. We discover that here and clean 3098 * the page also. 3099 * 3100 * private_lock must be held over this entire operation in order 3101 * to synchronise against __set_page_dirty_buffers and prevent the 3102 * dirty bit from being lost. 3103 */ 3104 if (ret) 3105 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3106 spin_unlock(&mapping->private_lock); 3107 out: 3108 if (buffers_to_free) { 3109 struct buffer_head *bh = buffers_to_free; 3110 3111 do { 3112 struct buffer_head *next = bh->b_this_page; 3113 free_buffer_head(bh); 3114 bh = next; 3115 } while (bh != buffers_to_free); 3116 } 3117 return ret; 3118 } 3119 EXPORT_SYMBOL(try_to_free_buffers); 3120 3121 /* 3122 * There are no bdflush tunables left. But distributions are 3123 * still running obsolete flush daemons, so we terminate them here. 3124 * 3125 * Use of bdflush() is deprecated and will be removed in a future kernel. 3126 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3127 */ 3128 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3129 { 3130 static int msg_count; 3131 3132 if (!capable(CAP_SYS_ADMIN)) 3133 return -EPERM; 3134 3135 if (msg_count < 5) { 3136 msg_count++; 3137 printk(KERN_INFO 3138 "warning: process `%s' used the obsolete bdflush" 3139 " system call\n", current->comm); 3140 printk(KERN_INFO "Fix your initscripts?\n"); 3141 } 3142 3143 if (func == 1) 3144 do_exit(0); 3145 return 0; 3146 } 3147 3148 /* 3149 * Buffer-head allocation 3150 */ 3151 static struct kmem_cache *bh_cachep __read_mostly; 3152 3153 /* 3154 * Once the number of bh's in the machine exceeds this level, we start 3155 * stripping them in writeback. 3156 */ 3157 static int max_buffer_heads; 3158 3159 int buffer_heads_over_limit; 3160 3161 struct bh_accounting { 3162 int nr; /* Number of live bh's */ 3163 int ratelimit; /* Limit cacheline bouncing */ 3164 }; 3165 3166 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3167 3168 static void recalc_bh_state(void) 3169 { 3170 int i; 3171 int tot = 0; 3172 3173 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3174 return; 3175 __this_cpu_write(bh_accounting.ratelimit, 0); 3176 for_each_online_cpu(i) 3177 tot += per_cpu(bh_accounting, i).nr; 3178 buffer_heads_over_limit = (tot > max_buffer_heads); 3179 } 3180 3181 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3182 { 3183 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3184 if (ret) { 3185 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3186 preempt_disable(); 3187 __this_cpu_inc(bh_accounting.nr); 3188 recalc_bh_state(); 3189 preempt_enable(); 3190 } 3191 return ret; 3192 } 3193 EXPORT_SYMBOL(alloc_buffer_head); 3194 3195 void free_buffer_head(struct buffer_head *bh) 3196 { 3197 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3198 kmem_cache_free(bh_cachep, bh); 3199 preempt_disable(); 3200 __this_cpu_dec(bh_accounting.nr); 3201 recalc_bh_state(); 3202 preempt_enable(); 3203 } 3204 EXPORT_SYMBOL(free_buffer_head); 3205 3206 static void buffer_exit_cpu(int cpu) 3207 { 3208 int i; 3209 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3210 3211 for (i = 0; i < BH_LRU_SIZE; i++) { 3212 brelse(b->bhs[i]); 3213 b->bhs[i] = NULL; 3214 } 3215 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3216 per_cpu(bh_accounting, cpu).nr = 0; 3217 } 3218 3219 static int buffer_cpu_notify(struct notifier_block *self, 3220 unsigned long action, void *hcpu) 3221 { 3222 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3223 buffer_exit_cpu((unsigned long)hcpu); 3224 return NOTIFY_OK; 3225 } 3226 3227 /** 3228 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3229 * @bh: struct buffer_head 3230 * 3231 * Return true if the buffer is up-to-date and false, 3232 * with the buffer locked, if not. 3233 */ 3234 int bh_uptodate_or_lock(struct buffer_head *bh) 3235 { 3236 if (!buffer_uptodate(bh)) { 3237 lock_buffer(bh); 3238 if (!buffer_uptodate(bh)) 3239 return 0; 3240 unlock_buffer(bh); 3241 } 3242 return 1; 3243 } 3244 EXPORT_SYMBOL(bh_uptodate_or_lock); 3245 3246 /** 3247 * bh_submit_read - Submit a locked buffer for reading 3248 * @bh: struct buffer_head 3249 * 3250 * Returns zero on success and -EIO on error. 3251 */ 3252 int bh_submit_read(struct buffer_head *bh) 3253 { 3254 BUG_ON(!buffer_locked(bh)); 3255 3256 if (buffer_uptodate(bh)) { 3257 unlock_buffer(bh); 3258 return 0; 3259 } 3260 3261 get_bh(bh); 3262 bh->b_end_io = end_buffer_read_sync; 3263 submit_bh(READ, bh); 3264 wait_on_buffer(bh); 3265 if (buffer_uptodate(bh)) 3266 return 0; 3267 return -EIO; 3268 } 3269 EXPORT_SYMBOL(bh_submit_read); 3270 3271 void __init buffer_init(void) 3272 { 3273 int nrpages; 3274 3275 bh_cachep = kmem_cache_create("buffer_head", 3276 sizeof(struct buffer_head), 0, 3277 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3278 SLAB_MEM_SPREAD), 3279 NULL); 3280 3281 /* 3282 * Limit the bh occupancy to 10% of ZONE_NORMAL 3283 */ 3284 nrpages = (nr_free_buffer_pages() * 10) / 100; 3285 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3286 hotcpu_notifier(buffer_cpu_notify, 0); 3287 } 3288