1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 #include "internal.h" 53 54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 56 enum rw_hint hint, struct writeback_control *wbc); 57 58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 59 60 inline void touch_buffer(struct buffer_head *bh) 61 { 62 trace_block_touch_buffer(bh); 63 mark_page_accessed(bh->b_page); 64 } 65 EXPORT_SYMBOL(touch_buffer); 66 67 void __lock_buffer(struct buffer_head *bh) 68 { 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 70 } 71 EXPORT_SYMBOL(__lock_buffer); 72 73 void unlock_buffer(struct buffer_head *bh) 74 { 75 clear_bit_unlock(BH_Lock, &bh->b_state); 76 smp_mb__after_atomic(); 77 wake_up_bit(&bh->b_state, BH_Lock); 78 } 79 EXPORT_SYMBOL(unlock_buffer); 80 81 /* 82 * Returns if the page has dirty or writeback buffers. If all the buffers 83 * are unlocked and clean then the PageDirty information is stale. If 84 * any of the pages are locked, it is assumed they are locked for IO. 85 */ 86 void buffer_check_dirty_writeback(struct page *page, 87 bool *dirty, bool *writeback) 88 { 89 struct buffer_head *head, *bh; 90 *dirty = false; 91 *writeback = false; 92 93 BUG_ON(!PageLocked(page)); 94 95 if (!page_has_buffers(page)) 96 return; 97 98 if (PageWriteback(page)) 99 *writeback = true; 100 101 head = page_buffers(page); 102 bh = head; 103 do { 104 if (buffer_locked(bh)) 105 *writeback = true; 106 107 if (buffer_dirty(bh)) 108 *dirty = true; 109 110 bh = bh->b_this_page; 111 } while (bh != head); 112 } 113 EXPORT_SYMBOL(buffer_check_dirty_writeback); 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. This is what ll_rw_block uses too. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct page *page; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 203 if (!page) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 if (!page_has_buffers(page)) 208 goto out_unlock; 209 head = page_buffers(page); 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 put_page(page); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct page *page; 250 int page_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 page = bh->b_page; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 SetPageError(page); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = page_buffers(page); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 page_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If none of the buffers had errors and they are all 286 * uptodate then we can set the page uptodate. 287 */ 288 if (page_uptodate && !PageError(page)) 289 SetPageUptodate(page); 290 unlock_page(page); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct decrypt_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void decrypt_bh(struct work_struct *work) 304 { 305 struct decrypt_bh_ctx *ctx = 306 container_of(work, struct decrypt_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 int err; 309 310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 311 bh_offset(bh)); 312 end_buffer_async_read(bh, err == 0); 313 kfree(ctx); 314 } 315 316 /* 317 * I/O completion handler for block_read_full_page() - pages 318 * which come unlocked at the end of I/O. 319 */ 320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 321 { 322 /* Decrypt if needed */ 323 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) && 324 IS_ENCRYPTED(bh->b_page->mapping->host) && 325 S_ISREG(bh->b_page->mapping->host->i_mode)) { 326 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 327 328 if (ctx) { 329 INIT_WORK(&ctx->work, decrypt_bh); 330 ctx->bh = bh; 331 fscrypt_enqueue_decrypt_work(&ctx->work); 332 return; 333 } 334 uptodate = 0; 335 } 336 end_buffer_async_read(bh, uptodate); 337 } 338 339 /* 340 * Completion handler for block_write_full_page() - pages which are unlocked 341 * during I/O, and which have PageWriteback cleared upon I/O completion. 342 */ 343 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 344 { 345 unsigned long flags; 346 struct buffer_head *first; 347 struct buffer_head *tmp; 348 struct page *page; 349 350 BUG_ON(!buffer_async_write(bh)); 351 352 page = bh->b_page; 353 if (uptodate) { 354 set_buffer_uptodate(bh); 355 } else { 356 buffer_io_error(bh, ", lost async page write"); 357 mark_buffer_write_io_error(bh); 358 clear_buffer_uptodate(bh); 359 SetPageError(page); 360 } 361 362 first = page_buffers(page); 363 spin_lock_irqsave(&first->b_uptodate_lock, flags); 364 365 clear_buffer_async_write(bh); 366 unlock_buffer(bh); 367 tmp = bh->b_this_page; 368 while (tmp != bh) { 369 if (buffer_async_write(tmp)) { 370 BUG_ON(!buffer_locked(tmp)); 371 goto still_busy; 372 } 373 tmp = tmp->b_this_page; 374 } 375 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 376 end_page_writeback(page); 377 return; 378 379 still_busy: 380 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 381 return; 382 } 383 EXPORT_SYMBOL(end_buffer_async_write); 384 385 /* 386 * If a page's buffers are under async readin (end_buffer_async_read 387 * completion) then there is a possibility that another thread of 388 * control could lock one of the buffers after it has completed 389 * but while some of the other buffers have not completed. This 390 * locked buffer would confuse end_buffer_async_read() into not unlocking 391 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 392 * that this buffer is not under async I/O. 393 * 394 * The page comes unlocked when it has no locked buffer_async buffers 395 * left. 396 * 397 * PageLocked prevents anyone starting new async I/O reads any of 398 * the buffers. 399 * 400 * PageWriteback is used to prevent simultaneous writeout of the same 401 * page. 402 * 403 * PageLocked prevents anyone from starting writeback of a page which is 404 * under read I/O (PageWriteback is only ever set against a locked page). 405 */ 406 static void mark_buffer_async_read(struct buffer_head *bh) 407 { 408 bh->b_end_io = end_buffer_async_read_io; 409 set_buffer_async_read(bh); 410 } 411 412 static void mark_buffer_async_write_endio(struct buffer_head *bh, 413 bh_end_io_t *handler) 414 { 415 bh->b_end_io = handler; 416 set_buffer_async_write(bh); 417 } 418 419 void mark_buffer_async_write(struct buffer_head *bh) 420 { 421 mark_buffer_async_write_endio(bh, end_buffer_async_write); 422 } 423 EXPORT_SYMBOL(mark_buffer_async_write); 424 425 426 /* 427 * fs/buffer.c contains helper functions for buffer-backed address space's 428 * fsync functions. A common requirement for buffer-based filesystems is 429 * that certain data from the backing blockdev needs to be written out for 430 * a successful fsync(). For example, ext2 indirect blocks need to be 431 * written back and waited upon before fsync() returns. 432 * 433 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 434 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 435 * management of a list of dependent buffers at ->i_mapping->private_list. 436 * 437 * Locking is a little subtle: try_to_free_buffers() will remove buffers 438 * from their controlling inode's queue when they are being freed. But 439 * try_to_free_buffers() will be operating against the *blockdev* mapping 440 * at the time, not against the S_ISREG file which depends on those buffers. 441 * So the locking for private_list is via the private_lock in the address_space 442 * which backs the buffers. Which is different from the address_space 443 * against which the buffers are listed. So for a particular address_space, 444 * mapping->private_lock does *not* protect mapping->private_list! In fact, 445 * mapping->private_list will always be protected by the backing blockdev's 446 * ->private_lock. 447 * 448 * Which introduces a requirement: all buffers on an address_space's 449 * ->private_list must be from the same address_space: the blockdev's. 450 * 451 * address_spaces which do not place buffers at ->private_list via these 452 * utility functions are free to use private_lock and private_list for 453 * whatever they want. The only requirement is that list_empty(private_list) 454 * be true at clear_inode() time. 455 * 456 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 457 * filesystems should do that. invalidate_inode_buffers() should just go 458 * BUG_ON(!list_empty). 459 * 460 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 461 * take an address_space, not an inode. And it should be called 462 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 463 * queued up. 464 * 465 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 466 * list if it is already on a list. Because if the buffer is on a list, 467 * it *must* already be on the right one. If not, the filesystem is being 468 * silly. This will save a ton of locking. But first we have to ensure 469 * that buffers are taken *off* the old inode's list when they are freed 470 * (presumably in truncate). That requires careful auditing of all 471 * filesystems (do it inside bforget()). It could also be done by bringing 472 * b_inode back. 473 */ 474 475 /* 476 * The buffer's backing address_space's private_lock must be held 477 */ 478 static void __remove_assoc_queue(struct buffer_head *bh) 479 { 480 list_del_init(&bh->b_assoc_buffers); 481 WARN_ON(!bh->b_assoc_map); 482 bh->b_assoc_map = NULL; 483 } 484 485 int inode_has_buffers(struct inode *inode) 486 { 487 return !list_empty(&inode->i_data.private_list); 488 } 489 490 /* 491 * osync is designed to support O_SYNC io. It waits synchronously for 492 * all already-submitted IO to complete, but does not queue any new 493 * writes to the disk. 494 * 495 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 496 * you dirty the buffers, and then use osync_inode_buffers to wait for 497 * completion. Any other dirty buffers which are not yet queued for 498 * write will not be flushed to disk by the osync. 499 */ 500 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 501 { 502 struct buffer_head *bh; 503 struct list_head *p; 504 int err = 0; 505 506 spin_lock(lock); 507 repeat: 508 list_for_each_prev(p, list) { 509 bh = BH_ENTRY(p); 510 if (buffer_locked(bh)) { 511 get_bh(bh); 512 spin_unlock(lock); 513 wait_on_buffer(bh); 514 if (!buffer_uptodate(bh)) 515 err = -EIO; 516 brelse(bh); 517 spin_lock(lock); 518 goto repeat; 519 } 520 } 521 spin_unlock(lock); 522 return err; 523 } 524 525 void emergency_thaw_bdev(struct super_block *sb) 526 { 527 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 528 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 529 } 530 531 /** 532 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 533 * @mapping: the mapping which wants those buffers written 534 * 535 * Starts I/O against the buffers at mapping->private_list, and waits upon 536 * that I/O. 537 * 538 * Basically, this is a convenience function for fsync(). 539 * @mapping is a file or directory which needs those buffers to be written for 540 * a successful fsync(). 541 */ 542 int sync_mapping_buffers(struct address_space *mapping) 543 { 544 struct address_space *buffer_mapping = mapping->private_data; 545 546 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 547 return 0; 548 549 return fsync_buffers_list(&buffer_mapping->private_lock, 550 &mapping->private_list); 551 } 552 EXPORT_SYMBOL(sync_mapping_buffers); 553 554 /* 555 * Called when we've recently written block `bblock', and it is known that 556 * `bblock' was for a buffer_boundary() buffer. This means that the block at 557 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 558 * dirty, schedule it for IO. So that indirects merge nicely with their data. 559 */ 560 void write_boundary_block(struct block_device *bdev, 561 sector_t bblock, unsigned blocksize) 562 { 563 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 564 if (bh) { 565 if (buffer_dirty(bh)) 566 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 567 put_bh(bh); 568 } 569 } 570 571 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 572 { 573 struct address_space *mapping = inode->i_mapping; 574 struct address_space *buffer_mapping = bh->b_page->mapping; 575 576 mark_buffer_dirty(bh); 577 if (!mapping->private_data) { 578 mapping->private_data = buffer_mapping; 579 } else { 580 BUG_ON(mapping->private_data != buffer_mapping); 581 } 582 if (!bh->b_assoc_map) { 583 spin_lock(&buffer_mapping->private_lock); 584 list_move_tail(&bh->b_assoc_buffers, 585 &mapping->private_list); 586 bh->b_assoc_map = mapping; 587 spin_unlock(&buffer_mapping->private_lock); 588 } 589 } 590 EXPORT_SYMBOL(mark_buffer_dirty_inode); 591 592 /* 593 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 594 * dirty. 595 * 596 * If warn is true, then emit a warning if the page is not uptodate and has 597 * not been truncated. 598 * 599 * The caller must hold lock_page_memcg(). 600 */ 601 void __set_page_dirty(struct page *page, struct address_space *mapping, 602 int warn) 603 { 604 unsigned long flags; 605 606 xa_lock_irqsave(&mapping->i_pages, flags); 607 if (page->mapping) { /* Race with truncate? */ 608 WARN_ON_ONCE(warn && !PageUptodate(page)); 609 account_page_dirtied(page, mapping); 610 __xa_set_mark(&mapping->i_pages, page_index(page), 611 PAGECACHE_TAG_DIRTY); 612 } 613 xa_unlock_irqrestore(&mapping->i_pages, flags); 614 } 615 EXPORT_SYMBOL_GPL(__set_page_dirty); 616 617 /* 618 * Add a page to the dirty page list. 619 * 620 * It is a sad fact of life that this function is called from several places 621 * deeply under spinlocking. It may not sleep. 622 * 623 * If the page has buffers, the uptodate buffers are set dirty, to preserve 624 * dirty-state coherency between the page and the buffers. It the page does 625 * not have buffers then when they are later attached they will all be set 626 * dirty. 627 * 628 * The buffers are dirtied before the page is dirtied. There's a small race 629 * window in which a writepage caller may see the page cleanness but not the 630 * buffer dirtiness. That's fine. If this code were to set the page dirty 631 * before the buffers, a concurrent writepage caller could clear the page dirty 632 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 633 * page on the dirty page list. 634 * 635 * We use private_lock to lock against try_to_free_buffers while using the 636 * page's buffer list. Also use this to protect against clean buffers being 637 * added to the page after it was set dirty. 638 * 639 * FIXME: may need to call ->reservepage here as well. That's rather up to the 640 * address_space though. 641 */ 642 int __set_page_dirty_buffers(struct page *page) 643 { 644 int newly_dirty; 645 struct address_space *mapping = page_mapping(page); 646 647 if (unlikely(!mapping)) 648 return !TestSetPageDirty(page); 649 650 spin_lock(&mapping->private_lock); 651 if (page_has_buffers(page)) { 652 struct buffer_head *head = page_buffers(page); 653 struct buffer_head *bh = head; 654 655 do { 656 set_buffer_dirty(bh); 657 bh = bh->b_this_page; 658 } while (bh != head); 659 } 660 /* 661 * Lock out page->mem_cgroup migration to keep PageDirty 662 * synchronized with per-memcg dirty page counters. 663 */ 664 lock_page_memcg(page); 665 newly_dirty = !TestSetPageDirty(page); 666 spin_unlock(&mapping->private_lock); 667 668 if (newly_dirty) 669 __set_page_dirty(page, mapping, 1); 670 671 unlock_page_memcg(page); 672 673 if (newly_dirty) 674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 675 676 return newly_dirty; 677 } 678 EXPORT_SYMBOL(__set_page_dirty_buffers); 679 680 /* 681 * Write out and wait upon a list of buffers. 682 * 683 * We have conflicting pressures: we want to make sure that all 684 * initially dirty buffers get waited on, but that any subsequently 685 * dirtied buffers don't. After all, we don't want fsync to last 686 * forever if somebody is actively writing to the file. 687 * 688 * Do this in two main stages: first we copy dirty buffers to a 689 * temporary inode list, queueing the writes as we go. Then we clean 690 * up, waiting for those writes to complete. 691 * 692 * During this second stage, any subsequent updates to the file may end 693 * up refiling the buffer on the original inode's dirty list again, so 694 * there is a chance we will end up with a buffer queued for write but 695 * not yet completed on that list. So, as a final cleanup we go through 696 * the osync code to catch these locked, dirty buffers without requeuing 697 * any newly dirty buffers for write. 698 */ 699 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 700 { 701 struct buffer_head *bh; 702 struct list_head tmp; 703 struct address_space *mapping; 704 int err = 0, err2; 705 struct blk_plug plug; 706 707 INIT_LIST_HEAD(&tmp); 708 blk_start_plug(&plug); 709 710 spin_lock(lock); 711 while (!list_empty(list)) { 712 bh = BH_ENTRY(list->next); 713 mapping = bh->b_assoc_map; 714 __remove_assoc_queue(bh); 715 /* Avoid race with mark_buffer_dirty_inode() which does 716 * a lockless check and we rely on seeing the dirty bit */ 717 smp_mb(); 718 if (buffer_dirty(bh) || buffer_locked(bh)) { 719 list_add(&bh->b_assoc_buffers, &tmp); 720 bh->b_assoc_map = mapping; 721 if (buffer_dirty(bh)) { 722 get_bh(bh); 723 spin_unlock(lock); 724 /* 725 * Ensure any pending I/O completes so that 726 * write_dirty_buffer() actually writes the 727 * current contents - it is a noop if I/O is 728 * still in flight on potentially older 729 * contents. 730 */ 731 write_dirty_buffer(bh, REQ_SYNC); 732 733 /* 734 * Kick off IO for the previous mapping. Note 735 * that we will not run the very last mapping, 736 * wait_on_buffer() will do that for us 737 * through sync_buffer(). 738 */ 739 brelse(bh); 740 spin_lock(lock); 741 } 742 } 743 } 744 745 spin_unlock(lock); 746 blk_finish_plug(&plug); 747 spin_lock(lock); 748 749 while (!list_empty(&tmp)) { 750 bh = BH_ENTRY(tmp.prev); 751 get_bh(bh); 752 mapping = bh->b_assoc_map; 753 __remove_assoc_queue(bh); 754 /* Avoid race with mark_buffer_dirty_inode() which does 755 * a lockless check and we rely on seeing the dirty bit */ 756 smp_mb(); 757 if (buffer_dirty(bh)) { 758 list_add(&bh->b_assoc_buffers, 759 &mapping->private_list); 760 bh->b_assoc_map = mapping; 761 } 762 spin_unlock(lock); 763 wait_on_buffer(bh); 764 if (!buffer_uptodate(bh)) 765 err = -EIO; 766 brelse(bh); 767 spin_lock(lock); 768 } 769 770 spin_unlock(lock); 771 err2 = osync_buffers_list(lock, list); 772 if (err) 773 return err; 774 else 775 return err2; 776 } 777 778 /* 779 * Invalidate any and all dirty buffers on a given inode. We are 780 * probably unmounting the fs, but that doesn't mean we have already 781 * done a sync(). Just drop the buffers from the inode list. 782 * 783 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 784 * assumes that all the buffers are against the blockdev. Not true 785 * for reiserfs. 786 */ 787 void invalidate_inode_buffers(struct inode *inode) 788 { 789 if (inode_has_buffers(inode)) { 790 struct address_space *mapping = &inode->i_data; 791 struct list_head *list = &mapping->private_list; 792 struct address_space *buffer_mapping = mapping->private_data; 793 794 spin_lock(&buffer_mapping->private_lock); 795 while (!list_empty(list)) 796 __remove_assoc_queue(BH_ENTRY(list->next)); 797 spin_unlock(&buffer_mapping->private_lock); 798 } 799 } 800 EXPORT_SYMBOL(invalidate_inode_buffers); 801 802 /* 803 * Remove any clean buffers from the inode's buffer list. This is called 804 * when we're trying to free the inode itself. Those buffers can pin it. 805 * 806 * Returns true if all buffers were removed. 807 */ 808 int remove_inode_buffers(struct inode *inode) 809 { 810 int ret = 1; 811 812 if (inode_has_buffers(inode)) { 813 struct address_space *mapping = &inode->i_data; 814 struct list_head *list = &mapping->private_list; 815 struct address_space *buffer_mapping = mapping->private_data; 816 817 spin_lock(&buffer_mapping->private_lock); 818 while (!list_empty(list)) { 819 struct buffer_head *bh = BH_ENTRY(list->next); 820 if (buffer_dirty(bh)) { 821 ret = 0; 822 break; 823 } 824 __remove_assoc_queue(bh); 825 } 826 spin_unlock(&buffer_mapping->private_lock); 827 } 828 return ret; 829 } 830 831 /* 832 * Create the appropriate buffers when given a page for data area and 833 * the size of each buffer.. Use the bh->b_this_page linked list to 834 * follow the buffers created. Return NULL if unable to create more 835 * buffers. 836 * 837 * The retry flag is used to differentiate async IO (paging, swapping) 838 * which may not fail from ordinary buffer allocations. 839 */ 840 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 841 bool retry) 842 { 843 struct buffer_head *bh, *head; 844 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 845 long offset; 846 struct mem_cgroup *memcg; 847 848 if (retry) 849 gfp |= __GFP_NOFAIL; 850 851 memcg = get_mem_cgroup_from_page(page); 852 memalloc_use_memcg(memcg); 853 854 head = NULL; 855 offset = PAGE_SIZE; 856 while ((offset -= size) >= 0) { 857 bh = alloc_buffer_head(gfp); 858 if (!bh) 859 goto no_grow; 860 861 bh->b_this_page = head; 862 bh->b_blocknr = -1; 863 head = bh; 864 865 bh->b_size = size; 866 867 /* Link the buffer to its page */ 868 set_bh_page(bh, page, offset); 869 } 870 out: 871 memalloc_unuse_memcg(); 872 mem_cgroup_put(memcg); 873 return head; 874 /* 875 * In case anything failed, we just free everything we got. 876 */ 877 no_grow: 878 if (head) { 879 do { 880 bh = head; 881 head = head->b_this_page; 882 free_buffer_head(bh); 883 } while (head); 884 } 885 886 goto out; 887 } 888 EXPORT_SYMBOL_GPL(alloc_page_buffers); 889 890 static inline void 891 link_dev_buffers(struct page *page, struct buffer_head *head) 892 { 893 struct buffer_head *bh, *tail; 894 895 bh = head; 896 do { 897 tail = bh; 898 bh = bh->b_this_page; 899 } while (bh); 900 tail->b_this_page = head; 901 attach_page_private(page, head); 902 } 903 904 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 905 { 906 sector_t retval = ~((sector_t)0); 907 loff_t sz = i_size_read(bdev->bd_inode); 908 909 if (sz) { 910 unsigned int sizebits = blksize_bits(size); 911 retval = (sz >> sizebits); 912 } 913 return retval; 914 } 915 916 /* 917 * Initialise the state of a blockdev page's buffers. 918 */ 919 static sector_t 920 init_page_buffers(struct page *page, struct block_device *bdev, 921 sector_t block, int size) 922 { 923 struct buffer_head *head = page_buffers(page); 924 struct buffer_head *bh = head; 925 int uptodate = PageUptodate(page); 926 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 927 928 do { 929 if (!buffer_mapped(bh)) { 930 bh->b_end_io = NULL; 931 bh->b_private = NULL; 932 bh->b_bdev = bdev; 933 bh->b_blocknr = block; 934 if (uptodate) 935 set_buffer_uptodate(bh); 936 if (block < end_block) 937 set_buffer_mapped(bh); 938 } 939 block++; 940 bh = bh->b_this_page; 941 } while (bh != head); 942 943 /* 944 * Caller needs to validate requested block against end of device. 945 */ 946 return end_block; 947 } 948 949 /* 950 * Create the page-cache page that contains the requested block. 951 * 952 * This is used purely for blockdev mappings. 953 */ 954 static int 955 grow_dev_page(struct block_device *bdev, sector_t block, 956 pgoff_t index, int size, int sizebits, gfp_t gfp) 957 { 958 struct inode *inode = bdev->bd_inode; 959 struct page *page; 960 struct buffer_head *bh; 961 sector_t end_block; 962 int ret = 0; 963 gfp_t gfp_mask; 964 965 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 966 967 /* 968 * XXX: __getblk_slow() can not really deal with failure and 969 * will endlessly loop on improvised global reclaim. Prefer 970 * looping in the allocator rather than here, at least that 971 * code knows what it's doing. 972 */ 973 gfp_mask |= __GFP_NOFAIL; 974 975 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 976 977 BUG_ON(!PageLocked(page)); 978 979 if (page_has_buffers(page)) { 980 bh = page_buffers(page); 981 if (bh->b_size == size) { 982 end_block = init_page_buffers(page, bdev, 983 (sector_t)index << sizebits, 984 size); 985 goto done; 986 } 987 if (!try_to_free_buffers(page)) 988 goto failed; 989 } 990 991 /* 992 * Allocate some buffers for this page 993 */ 994 bh = alloc_page_buffers(page, size, true); 995 996 /* 997 * Link the page to the buffers and initialise them. Take the 998 * lock to be atomic wrt __find_get_block(), which does not 999 * run under the page lock. 1000 */ 1001 spin_lock(&inode->i_mapping->private_lock); 1002 link_dev_buffers(page, bh); 1003 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1004 size); 1005 spin_unlock(&inode->i_mapping->private_lock); 1006 done: 1007 ret = (block < end_block) ? 1 : -ENXIO; 1008 failed: 1009 unlock_page(page); 1010 put_page(page); 1011 return ret; 1012 } 1013 1014 /* 1015 * Create buffers for the specified block device block's page. If 1016 * that page was dirty, the buffers are set dirty also. 1017 */ 1018 static int 1019 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1020 { 1021 pgoff_t index; 1022 int sizebits; 1023 1024 sizebits = -1; 1025 do { 1026 sizebits++; 1027 } while ((size << sizebits) < PAGE_SIZE); 1028 1029 index = block >> sizebits; 1030 1031 /* 1032 * Check for a block which wants to lie outside our maximum possible 1033 * pagecache index. (this comparison is done using sector_t types). 1034 */ 1035 if (unlikely(index != block >> sizebits)) { 1036 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1037 "device %pg\n", 1038 __func__, (unsigned long long)block, 1039 bdev); 1040 return -EIO; 1041 } 1042 1043 /* Create a page with the proper size buffers.. */ 1044 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1045 } 1046 1047 static struct buffer_head * 1048 __getblk_slow(struct block_device *bdev, sector_t block, 1049 unsigned size, gfp_t gfp) 1050 { 1051 /* Size must be multiple of hard sectorsize */ 1052 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1053 (size < 512 || size > PAGE_SIZE))) { 1054 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1055 size); 1056 printk(KERN_ERR "logical block size: %d\n", 1057 bdev_logical_block_size(bdev)); 1058 1059 dump_stack(); 1060 return NULL; 1061 } 1062 1063 for (;;) { 1064 struct buffer_head *bh; 1065 int ret; 1066 1067 bh = __find_get_block(bdev, block, size); 1068 if (bh) 1069 return bh; 1070 1071 ret = grow_buffers(bdev, block, size, gfp); 1072 if (ret < 0) 1073 return NULL; 1074 } 1075 } 1076 1077 /* 1078 * The relationship between dirty buffers and dirty pages: 1079 * 1080 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1081 * the page is tagged dirty in the page cache. 1082 * 1083 * At all times, the dirtiness of the buffers represents the dirtiness of 1084 * subsections of the page. If the page has buffers, the page dirty bit is 1085 * merely a hint about the true dirty state. 1086 * 1087 * When a page is set dirty in its entirety, all its buffers are marked dirty 1088 * (if the page has buffers). 1089 * 1090 * When a buffer is marked dirty, its page is dirtied, but the page's other 1091 * buffers are not. 1092 * 1093 * Also. When blockdev buffers are explicitly read with bread(), they 1094 * individually become uptodate. But their backing page remains not 1095 * uptodate - even if all of its buffers are uptodate. A subsequent 1096 * block_read_full_page() against that page will discover all the uptodate 1097 * buffers, will set the page uptodate and will perform no I/O. 1098 */ 1099 1100 /** 1101 * mark_buffer_dirty - mark a buffer_head as needing writeout 1102 * @bh: the buffer_head to mark dirty 1103 * 1104 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1105 * its backing page dirty, then tag the page as dirty in the page cache 1106 * and then attach the address_space's inode to its superblock's dirty 1107 * inode list. 1108 * 1109 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1110 * i_pages lock and mapping->host->i_lock. 1111 */ 1112 void mark_buffer_dirty(struct buffer_head *bh) 1113 { 1114 WARN_ON_ONCE(!buffer_uptodate(bh)); 1115 1116 trace_block_dirty_buffer(bh); 1117 1118 /* 1119 * Very *carefully* optimize the it-is-already-dirty case. 1120 * 1121 * Don't let the final "is it dirty" escape to before we 1122 * perhaps modified the buffer. 1123 */ 1124 if (buffer_dirty(bh)) { 1125 smp_mb(); 1126 if (buffer_dirty(bh)) 1127 return; 1128 } 1129 1130 if (!test_set_buffer_dirty(bh)) { 1131 struct page *page = bh->b_page; 1132 struct address_space *mapping = NULL; 1133 1134 lock_page_memcg(page); 1135 if (!TestSetPageDirty(page)) { 1136 mapping = page_mapping(page); 1137 if (mapping) 1138 __set_page_dirty(page, mapping, 0); 1139 } 1140 unlock_page_memcg(page); 1141 if (mapping) 1142 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1143 } 1144 } 1145 EXPORT_SYMBOL(mark_buffer_dirty); 1146 1147 void mark_buffer_write_io_error(struct buffer_head *bh) 1148 { 1149 struct super_block *sb; 1150 1151 set_buffer_write_io_error(bh); 1152 /* FIXME: do we need to set this in both places? */ 1153 if (bh->b_page && bh->b_page->mapping) 1154 mapping_set_error(bh->b_page->mapping, -EIO); 1155 if (bh->b_assoc_map) 1156 mapping_set_error(bh->b_assoc_map, -EIO); 1157 rcu_read_lock(); 1158 sb = READ_ONCE(bh->b_bdev->bd_super); 1159 if (sb) 1160 errseq_set(&sb->s_wb_err, -EIO); 1161 rcu_read_unlock(); 1162 } 1163 EXPORT_SYMBOL(mark_buffer_write_io_error); 1164 1165 /* 1166 * Decrement a buffer_head's reference count. If all buffers against a page 1167 * have zero reference count, are clean and unlocked, and if the page is clean 1168 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1169 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1170 * a page but it ends up not being freed, and buffers may later be reattached). 1171 */ 1172 void __brelse(struct buffer_head * buf) 1173 { 1174 if (atomic_read(&buf->b_count)) { 1175 put_bh(buf); 1176 return; 1177 } 1178 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1179 } 1180 EXPORT_SYMBOL(__brelse); 1181 1182 /* 1183 * bforget() is like brelse(), except it discards any 1184 * potentially dirty data. 1185 */ 1186 void __bforget(struct buffer_head *bh) 1187 { 1188 clear_buffer_dirty(bh); 1189 if (bh->b_assoc_map) { 1190 struct address_space *buffer_mapping = bh->b_page->mapping; 1191 1192 spin_lock(&buffer_mapping->private_lock); 1193 list_del_init(&bh->b_assoc_buffers); 1194 bh->b_assoc_map = NULL; 1195 spin_unlock(&buffer_mapping->private_lock); 1196 } 1197 __brelse(bh); 1198 } 1199 EXPORT_SYMBOL(__bforget); 1200 1201 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1202 { 1203 lock_buffer(bh); 1204 if (buffer_uptodate(bh)) { 1205 unlock_buffer(bh); 1206 return bh; 1207 } else { 1208 get_bh(bh); 1209 bh->b_end_io = end_buffer_read_sync; 1210 submit_bh(REQ_OP_READ, 0, bh); 1211 wait_on_buffer(bh); 1212 if (buffer_uptodate(bh)) 1213 return bh; 1214 } 1215 brelse(bh); 1216 return NULL; 1217 } 1218 1219 /* 1220 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1221 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1222 * refcount elevated by one when they're in an LRU. A buffer can only appear 1223 * once in a particular CPU's LRU. A single buffer can be present in multiple 1224 * CPU's LRUs at the same time. 1225 * 1226 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1227 * sb_find_get_block(). 1228 * 1229 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1230 * a local interrupt disable for that. 1231 */ 1232 1233 #define BH_LRU_SIZE 16 1234 1235 struct bh_lru { 1236 struct buffer_head *bhs[BH_LRU_SIZE]; 1237 }; 1238 1239 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1240 1241 #ifdef CONFIG_SMP 1242 #define bh_lru_lock() local_irq_disable() 1243 #define bh_lru_unlock() local_irq_enable() 1244 #else 1245 #define bh_lru_lock() preempt_disable() 1246 #define bh_lru_unlock() preempt_enable() 1247 #endif 1248 1249 static inline void check_irqs_on(void) 1250 { 1251 #ifdef irqs_disabled 1252 BUG_ON(irqs_disabled()); 1253 #endif 1254 } 1255 1256 /* 1257 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1258 * inserted at the front, and the buffer_head at the back if any is evicted. 1259 * Or, if already in the LRU it is moved to the front. 1260 */ 1261 static void bh_lru_install(struct buffer_head *bh) 1262 { 1263 struct buffer_head *evictee = bh; 1264 struct bh_lru *b; 1265 int i; 1266 1267 check_irqs_on(); 1268 bh_lru_lock(); 1269 1270 b = this_cpu_ptr(&bh_lrus); 1271 for (i = 0; i < BH_LRU_SIZE; i++) { 1272 swap(evictee, b->bhs[i]); 1273 if (evictee == bh) { 1274 bh_lru_unlock(); 1275 return; 1276 } 1277 } 1278 1279 get_bh(bh); 1280 bh_lru_unlock(); 1281 brelse(evictee); 1282 } 1283 1284 /* 1285 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1286 */ 1287 static struct buffer_head * 1288 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1289 { 1290 struct buffer_head *ret = NULL; 1291 unsigned int i; 1292 1293 check_irqs_on(); 1294 bh_lru_lock(); 1295 for (i = 0; i < BH_LRU_SIZE; i++) { 1296 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1297 1298 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1299 bh->b_size == size) { 1300 if (i) { 1301 while (i) { 1302 __this_cpu_write(bh_lrus.bhs[i], 1303 __this_cpu_read(bh_lrus.bhs[i - 1])); 1304 i--; 1305 } 1306 __this_cpu_write(bh_lrus.bhs[0], bh); 1307 } 1308 get_bh(bh); 1309 ret = bh; 1310 break; 1311 } 1312 } 1313 bh_lru_unlock(); 1314 return ret; 1315 } 1316 1317 /* 1318 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1319 * it in the LRU and mark it as accessed. If it is not present then return 1320 * NULL 1321 */ 1322 struct buffer_head * 1323 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1324 { 1325 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1326 1327 if (bh == NULL) { 1328 /* __find_get_block_slow will mark the page accessed */ 1329 bh = __find_get_block_slow(bdev, block); 1330 if (bh) 1331 bh_lru_install(bh); 1332 } else 1333 touch_buffer(bh); 1334 1335 return bh; 1336 } 1337 EXPORT_SYMBOL(__find_get_block); 1338 1339 /* 1340 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1341 * which corresponds to the passed block_device, block and size. The 1342 * returned buffer has its reference count incremented. 1343 * 1344 * __getblk_gfp() will lock up the machine if grow_dev_page's 1345 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1346 */ 1347 struct buffer_head * 1348 __getblk_gfp(struct block_device *bdev, sector_t block, 1349 unsigned size, gfp_t gfp) 1350 { 1351 struct buffer_head *bh = __find_get_block(bdev, block, size); 1352 1353 might_sleep(); 1354 if (bh == NULL) 1355 bh = __getblk_slow(bdev, block, size, gfp); 1356 return bh; 1357 } 1358 EXPORT_SYMBOL(__getblk_gfp); 1359 1360 /* 1361 * Do async read-ahead on a buffer.. 1362 */ 1363 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1364 { 1365 struct buffer_head *bh = __getblk(bdev, block, size); 1366 if (likely(bh)) { 1367 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1368 brelse(bh); 1369 } 1370 } 1371 EXPORT_SYMBOL(__breadahead); 1372 1373 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size, 1374 gfp_t gfp) 1375 { 1376 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1377 if (likely(bh)) { 1378 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1379 brelse(bh); 1380 } 1381 } 1382 EXPORT_SYMBOL(__breadahead_gfp); 1383 1384 /** 1385 * __bread_gfp() - reads a specified block and returns the bh 1386 * @bdev: the block_device to read from 1387 * @block: number of block 1388 * @size: size (in bytes) to read 1389 * @gfp: page allocation flag 1390 * 1391 * Reads a specified block, and returns buffer head that contains it. 1392 * The page cache can be allocated from non-movable area 1393 * not to prevent page migration if you set gfp to zero. 1394 * It returns NULL if the block was unreadable. 1395 */ 1396 struct buffer_head * 1397 __bread_gfp(struct block_device *bdev, sector_t block, 1398 unsigned size, gfp_t gfp) 1399 { 1400 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1401 1402 if (likely(bh) && !buffer_uptodate(bh)) 1403 bh = __bread_slow(bh); 1404 return bh; 1405 } 1406 EXPORT_SYMBOL(__bread_gfp); 1407 1408 /* 1409 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1410 * This doesn't race because it runs in each cpu either in irq 1411 * or with preempt disabled. 1412 */ 1413 static void invalidate_bh_lru(void *arg) 1414 { 1415 struct bh_lru *b = &get_cpu_var(bh_lrus); 1416 int i; 1417 1418 for (i = 0; i < BH_LRU_SIZE; i++) { 1419 brelse(b->bhs[i]); 1420 b->bhs[i] = NULL; 1421 } 1422 put_cpu_var(bh_lrus); 1423 } 1424 1425 static bool has_bh_in_lru(int cpu, void *dummy) 1426 { 1427 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1428 int i; 1429 1430 for (i = 0; i < BH_LRU_SIZE; i++) { 1431 if (b->bhs[i]) 1432 return true; 1433 } 1434 1435 return false; 1436 } 1437 1438 void invalidate_bh_lrus(void) 1439 { 1440 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1441 } 1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1443 1444 void set_bh_page(struct buffer_head *bh, 1445 struct page *page, unsigned long offset) 1446 { 1447 bh->b_page = page; 1448 BUG_ON(offset >= PAGE_SIZE); 1449 if (PageHighMem(page)) 1450 /* 1451 * This catches illegal uses and preserves the offset: 1452 */ 1453 bh->b_data = (char *)(0 + offset); 1454 else 1455 bh->b_data = page_address(page) + offset; 1456 } 1457 EXPORT_SYMBOL(set_bh_page); 1458 1459 /* 1460 * Called when truncating a buffer on a page completely. 1461 */ 1462 1463 /* Bits that are cleared during an invalidate */ 1464 #define BUFFER_FLAGS_DISCARD \ 1465 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1466 1 << BH_Delay | 1 << BH_Unwritten) 1467 1468 static void discard_buffer(struct buffer_head * bh) 1469 { 1470 unsigned long b_state, b_state_old; 1471 1472 lock_buffer(bh); 1473 clear_buffer_dirty(bh); 1474 bh->b_bdev = NULL; 1475 b_state = bh->b_state; 1476 for (;;) { 1477 b_state_old = cmpxchg(&bh->b_state, b_state, 1478 (b_state & ~BUFFER_FLAGS_DISCARD)); 1479 if (b_state_old == b_state) 1480 break; 1481 b_state = b_state_old; 1482 } 1483 unlock_buffer(bh); 1484 } 1485 1486 /** 1487 * block_invalidatepage - invalidate part or all of a buffer-backed page 1488 * 1489 * @page: the page which is affected 1490 * @offset: start of the range to invalidate 1491 * @length: length of the range to invalidate 1492 * 1493 * block_invalidatepage() is called when all or part of the page has become 1494 * invalidated by a truncate operation. 1495 * 1496 * block_invalidatepage() does not have to release all buffers, but it must 1497 * ensure that no dirty buffer is left outside @offset and that no I/O 1498 * is underway against any of the blocks which are outside the truncation 1499 * point. Because the caller is about to free (and possibly reuse) those 1500 * blocks on-disk. 1501 */ 1502 void block_invalidatepage(struct page *page, unsigned int offset, 1503 unsigned int length) 1504 { 1505 struct buffer_head *head, *bh, *next; 1506 unsigned int curr_off = 0; 1507 unsigned int stop = length + offset; 1508 1509 BUG_ON(!PageLocked(page)); 1510 if (!page_has_buffers(page)) 1511 goto out; 1512 1513 /* 1514 * Check for overflow 1515 */ 1516 BUG_ON(stop > PAGE_SIZE || stop < length); 1517 1518 head = page_buffers(page); 1519 bh = head; 1520 do { 1521 unsigned int next_off = curr_off + bh->b_size; 1522 next = bh->b_this_page; 1523 1524 /* 1525 * Are we still fully in range ? 1526 */ 1527 if (next_off > stop) 1528 goto out; 1529 1530 /* 1531 * is this block fully invalidated? 1532 */ 1533 if (offset <= curr_off) 1534 discard_buffer(bh); 1535 curr_off = next_off; 1536 bh = next; 1537 } while (bh != head); 1538 1539 /* 1540 * We release buffers only if the entire page is being invalidated. 1541 * The get_block cached value has been unconditionally invalidated, 1542 * so real IO is not possible anymore. 1543 */ 1544 if (length == PAGE_SIZE) 1545 try_to_release_page(page, 0); 1546 out: 1547 return; 1548 } 1549 EXPORT_SYMBOL(block_invalidatepage); 1550 1551 1552 /* 1553 * We attach and possibly dirty the buffers atomically wrt 1554 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1555 * is already excluded via the page lock. 1556 */ 1557 void create_empty_buffers(struct page *page, 1558 unsigned long blocksize, unsigned long b_state) 1559 { 1560 struct buffer_head *bh, *head, *tail; 1561 1562 head = alloc_page_buffers(page, blocksize, true); 1563 bh = head; 1564 do { 1565 bh->b_state |= b_state; 1566 tail = bh; 1567 bh = bh->b_this_page; 1568 } while (bh); 1569 tail->b_this_page = head; 1570 1571 spin_lock(&page->mapping->private_lock); 1572 if (PageUptodate(page) || PageDirty(page)) { 1573 bh = head; 1574 do { 1575 if (PageDirty(page)) 1576 set_buffer_dirty(bh); 1577 if (PageUptodate(page)) 1578 set_buffer_uptodate(bh); 1579 bh = bh->b_this_page; 1580 } while (bh != head); 1581 } 1582 attach_page_private(page, head); 1583 spin_unlock(&page->mapping->private_lock); 1584 } 1585 EXPORT_SYMBOL(create_empty_buffers); 1586 1587 /** 1588 * clean_bdev_aliases: clean a range of buffers in block device 1589 * @bdev: Block device to clean buffers in 1590 * @block: Start of a range of blocks to clean 1591 * @len: Number of blocks to clean 1592 * 1593 * We are taking a range of blocks for data and we don't want writeback of any 1594 * buffer-cache aliases starting from return from this function and until the 1595 * moment when something will explicitly mark the buffer dirty (hopefully that 1596 * will not happen until we will free that block ;-) We don't even need to mark 1597 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1598 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1599 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1600 * would confuse anyone who might pick it with bread() afterwards... 1601 * 1602 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1603 * writeout I/O going on against recently-freed buffers. We don't wait on that 1604 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1605 * need to. That happens here. 1606 */ 1607 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1608 { 1609 struct inode *bd_inode = bdev->bd_inode; 1610 struct address_space *bd_mapping = bd_inode->i_mapping; 1611 struct pagevec pvec; 1612 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1613 pgoff_t end; 1614 int i, count; 1615 struct buffer_head *bh; 1616 struct buffer_head *head; 1617 1618 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1619 pagevec_init(&pvec); 1620 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1621 count = pagevec_count(&pvec); 1622 for (i = 0; i < count; i++) { 1623 struct page *page = pvec.pages[i]; 1624 1625 if (!page_has_buffers(page)) 1626 continue; 1627 /* 1628 * We use page lock instead of bd_mapping->private_lock 1629 * to pin buffers here since we can afford to sleep and 1630 * it scales better than a global spinlock lock. 1631 */ 1632 lock_page(page); 1633 /* Recheck when the page is locked which pins bhs */ 1634 if (!page_has_buffers(page)) 1635 goto unlock_page; 1636 head = page_buffers(page); 1637 bh = head; 1638 do { 1639 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1640 goto next; 1641 if (bh->b_blocknr >= block + len) 1642 break; 1643 clear_buffer_dirty(bh); 1644 wait_on_buffer(bh); 1645 clear_buffer_req(bh); 1646 next: 1647 bh = bh->b_this_page; 1648 } while (bh != head); 1649 unlock_page: 1650 unlock_page(page); 1651 } 1652 pagevec_release(&pvec); 1653 cond_resched(); 1654 /* End of range already reached? */ 1655 if (index > end || !index) 1656 break; 1657 } 1658 } 1659 EXPORT_SYMBOL(clean_bdev_aliases); 1660 1661 /* 1662 * Size is a power-of-two in the range 512..PAGE_SIZE, 1663 * and the case we care about most is PAGE_SIZE. 1664 * 1665 * So this *could* possibly be written with those 1666 * constraints in mind (relevant mostly if some 1667 * architecture has a slow bit-scan instruction) 1668 */ 1669 static inline int block_size_bits(unsigned int blocksize) 1670 { 1671 return ilog2(blocksize); 1672 } 1673 1674 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1675 { 1676 BUG_ON(!PageLocked(page)); 1677 1678 if (!page_has_buffers(page)) 1679 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1680 b_state); 1681 return page_buffers(page); 1682 } 1683 1684 /* 1685 * NOTE! All mapped/uptodate combinations are valid: 1686 * 1687 * Mapped Uptodate Meaning 1688 * 1689 * No No "unknown" - must do get_block() 1690 * No Yes "hole" - zero-filled 1691 * Yes No "allocated" - allocated on disk, not read in 1692 * Yes Yes "valid" - allocated and up-to-date in memory. 1693 * 1694 * "Dirty" is valid only with the last case (mapped+uptodate). 1695 */ 1696 1697 /* 1698 * While block_write_full_page is writing back the dirty buffers under 1699 * the page lock, whoever dirtied the buffers may decide to clean them 1700 * again at any time. We handle that by only looking at the buffer 1701 * state inside lock_buffer(). 1702 * 1703 * If block_write_full_page() is called for regular writeback 1704 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1705 * locked buffer. This only can happen if someone has written the buffer 1706 * directly, with submit_bh(). At the address_space level PageWriteback 1707 * prevents this contention from occurring. 1708 * 1709 * If block_write_full_page() is called with wbc->sync_mode == 1710 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1711 * causes the writes to be flagged as synchronous writes. 1712 */ 1713 int __block_write_full_page(struct inode *inode, struct page *page, 1714 get_block_t *get_block, struct writeback_control *wbc, 1715 bh_end_io_t *handler) 1716 { 1717 int err; 1718 sector_t block; 1719 sector_t last_block; 1720 struct buffer_head *bh, *head; 1721 unsigned int blocksize, bbits; 1722 int nr_underway = 0; 1723 int write_flags = wbc_to_write_flags(wbc); 1724 1725 head = create_page_buffers(page, inode, 1726 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1727 1728 /* 1729 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1730 * here, and the (potentially unmapped) buffers may become dirty at 1731 * any time. If a buffer becomes dirty here after we've inspected it 1732 * then we just miss that fact, and the page stays dirty. 1733 * 1734 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1735 * handle that here by just cleaning them. 1736 */ 1737 1738 bh = head; 1739 blocksize = bh->b_size; 1740 bbits = block_size_bits(blocksize); 1741 1742 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1743 last_block = (i_size_read(inode) - 1) >> bbits; 1744 1745 /* 1746 * Get all the dirty buffers mapped to disk addresses and 1747 * handle any aliases from the underlying blockdev's mapping. 1748 */ 1749 do { 1750 if (block > last_block) { 1751 /* 1752 * mapped buffers outside i_size will occur, because 1753 * this page can be outside i_size when there is a 1754 * truncate in progress. 1755 */ 1756 /* 1757 * The buffer was zeroed by block_write_full_page() 1758 */ 1759 clear_buffer_dirty(bh); 1760 set_buffer_uptodate(bh); 1761 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1762 buffer_dirty(bh)) { 1763 WARN_ON(bh->b_size != blocksize); 1764 err = get_block(inode, block, bh, 1); 1765 if (err) 1766 goto recover; 1767 clear_buffer_delay(bh); 1768 if (buffer_new(bh)) { 1769 /* blockdev mappings never come here */ 1770 clear_buffer_new(bh); 1771 clean_bdev_bh_alias(bh); 1772 } 1773 } 1774 bh = bh->b_this_page; 1775 block++; 1776 } while (bh != head); 1777 1778 do { 1779 if (!buffer_mapped(bh)) 1780 continue; 1781 /* 1782 * If it's a fully non-blocking write attempt and we cannot 1783 * lock the buffer then redirty the page. Note that this can 1784 * potentially cause a busy-wait loop from writeback threads 1785 * and kswapd activity, but those code paths have their own 1786 * higher-level throttling. 1787 */ 1788 if (wbc->sync_mode != WB_SYNC_NONE) { 1789 lock_buffer(bh); 1790 } else if (!trylock_buffer(bh)) { 1791 redirty_page_for_writepage(wbc, page); 1792 continue; 1793 } 1794 if (test_clear_buffer_dirty(bh)) { 1795 mark_buffer_async_write_endio(bh, handler); 1796 } else { 1797 unlock_buffer(bh); 1798 } 1799 } while ((bh = bh->b_this_page) != head); 1800 1801 /* 1802 * The page and its buffers are protected by PageWriteback(), so we can 1803 * drop the bh refcounts early. 1804 */ 1805 BUG_ON(PageWriteback(page)); 1806 set_page_writeback(page); 1807 1808 do { 1809 struct buffer_head *next = bh->b_this_page; 1810 if (buffer_async_write(bh)) { 1811 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1812 inode->i_write_hint, wbc); 1813 nr_underway++; 1814 } 1815 bh = next; 1816 } while (bh != head); 1817 unlock_page(page); 1818 1819 err = 0; 1820 done: 1821 if (nr_underway == 0) { 1822 /* 1823 * The page was marked dirty, but the buffers were 1824 * clean. Someone wrote them back by hand with 1825 * ll_rw_block/submit_bh. A rare case. 1826 */ 1827 end_page_writeback(page); 1828 1829 /* 1830 * The page and buffer_heads can be released at any time from 1831 * here on. 1832 */ 1833 } 1834 return err; 1835 1836 recover: 1837 /* 1838 * ENOSPC, or some other error. We may already have added some 1839 * blocks to the file, so we need to write these out to avoid 1840 * exposing stale data. 1841 * The page is currently locked and not marked for writeback 1842 */ 1843 bh = head; 1844 /* Recovery: lock and submit the mapped buffers */ 1845 do { 1846 if (buffer_mapped(bh) && buffer_dirty(bh) && 1847 !buffer_delay(bh)) { 1848 lock_buffer(bh); 1849 mark_buffer_async_write_endio(bh, handler); 1850 } else { 1851 /* 1852 * The buffer may have been set dirty during 1853 * attachment to a dirty page. 1854 */ 1855 clear_buffer_dirty(bh); 1856 } 1857 } while ((bh = bh->b_this_page) != head); 1858 SetPageError(page); 1859 BUG_ON(PageWriteback(page)); 1860 mapping_set_error(page->mapping, err); 1861 set_page_writeback(page); 1862 do { 1863 struct buffer_head *next = bh->b_this_page; 1864 if (buffer_async_write(bh)) { 1865 clear_buffer_dirty(bh); 1866 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1867 inode->i_write_hint, wbc); 1868 nr_underway++; 1869 } 1870 bh = next; 1871 } while (bh != head); 1872 unlock_page(page); 1873 goto done; 1874 } 1875 EXPORT_SYMBOL(__block_write_full_page); 1876 1877 /* 1878 * If a page has any new buffers, zero them out here, and mark them uptodate 1879 * and dirty so they'll be written out (in order to prevent uninitialised 1880 * block data from leaking). And clear the new bit. 1881 */ 1882 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1883 { 1884 unsigned int block_start, block_end; 1885 struct buffer_head *head, *bh; 1886 1887 BUG_ON(!PageLocked(page)); 1888 if (!page_has_buffers(page)) 1889 return; 1890 1891 bh = head = page_buffers(page); 1892 block_start = 0; 1893 do { 1894 block_end = block_start + bh->b_size; 1895 1896 if (buffer_new(bh)) { 1897 if (block_end > from && block_start < to) { 1898 if (!PageUptodate(page)) { 1899 unsigned start, size; 1900 1901 start = max(from, block_start); 1902 size = min(to, block_end) - start; 1903 1904 zero_user(page, start, size); 1905 set_buffer_uptodate(bh); 1906 } 1907 1908 clear_buffer_new(bh); 1909 mark_buffer_dirty(bh); 1910 } 1911 } 1912 1913 block_start = block_end; 1914 bh = bh->b_this_page; 1915 } while (bh != head); 1916 } 1917 EXPORT_SYMBOL(page_zero_new_buffers); 1918 1919 static void 1920 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1921 struct iomap *iomap) 1922 { 1923 loff_t offset = block << inode->i_blkbits; 1924 1925 bh->b_bdev = iomap->bdev; 1926 1927 /* 1928 * Block points to offset in file we need to map, iomap contains 1929 * the offset at which the map starts. If the map ends before the 1930 * current block, then do not map the buffer and let the caller 1931 * handle it. 1932 */ 1933 BUG_ON(offset >= iomap->offset + iomap->length); 1934 1935 switch (iomap->type) { 1936 case IOMAP_HOLE: 1937 /* 1938 * If the buffer is not up to date or beyond the current EOF, 1939 * we need to mark it as new to ensure sub-block zeroing is 1940 * executed if necessary. 1941 */ 1942 if (!buffer_uptodate(bh) || 1943 (offset >= i_size_read(inode))) 1944 set_buffer_new(bh); 1945 break; 1946 case IOMAP_DELALLOC: 1947 if (!buffer_uptodate(bh) || 1948 (offset >= i_size_read(inode))) 1949 set_buffer_new(bh); 1950 set_buffer_uptodate(bh); 1951 set_buffer_mapped(bh); 1952 set_buffer_delay(bh); 1953 break; 1954 case IOMAP_UNWRITTEN: 1955 /* 1956 * For unwritten regions, we always need to ensure that regions 1957 * in the block we are not writing to are zeroed. Mark the 1958 * buffer as new to ensure this. 1959 */ 1960 set_buffer_new(bh); 1961 set_buffer_unwritten(bh); 1962 /* FALLTHRU */ 1963 case IOMAP_MAPPED: 1964 if ((iomap->flags & IOMAP_F_NEW) || 1965 offset >= i_size_read(inode)) 1966 set_buffer_new(bh); 1967 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1968 inode->i_blkbits; 1969 set_buffer_mapped(bh); 1970 break; 1971 } 1972 } 1973 1974 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1975 get_block_t *get_block, struct iomap *iomap) 1976 { 1977 unsigned from = pos & (PAGE_SIZE - 1); 1978 unsigned to = from + len; 1979 struct inode *inode = page->mapping->host; 1980 unsigned block_start, block_end; 1981 sector_t block; 1982 int err = 0; 1983 unsigned blocksize, bbits; 1984 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1985 1986 BUG_ON(!PageLocked(page)); 1987 BUG_ON(from > PAGE_SIZE); 1988 BUG_ON(to > PAGE_SIZE); 1989 BUG_ON(from > to); 1990 1991 head = create_page_buffers(page, inode, 0); 1992 blocksize = head->b_size; 1993 bbits = block_size_bits(blocksize); 1994 1995 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1996 1997 for(bh = head, block_start = 0; bh != head || !block_start; 1998 block++, block_start=block_end, bh = bh->b_this_page) { 1999 block_end = block_start + blocksize; 2000 if (block_end <= from || block_start >= to) { 2001 if (PageUptodate(page)) { 2002 if (!buffer_uptodate(bh)) 2003 set_buffer_uptodate(bh); 2004 } 2005 continue; 2006 } 2007 if (buffer_new(bh)) 2008 clear_buffer_new(bh); 2009 if (!buffer_mapped(bh)) { 2010 WARN_ON(bh->b_size != blocksize); 2011 if (get_block) { 2012 err = get_block(inode, block, bh, 1); 2013 if (err) 2014 break; 2015 } else { 2016 iomap_to_bh(inode, block, bh, iomap); 2017 } 2018 2019 if (buffer_new(bh)) { 2020 clean_bdev_bh_alias(bh); 2021 if (PageUptodate(page)) { 2022 clear_buffer_new(bh); 2023 set_buffer_uptodate(bh); 2024 mark_buffer_dirty(bh); 2025 continue; 2026 } 2027 if (block_end > to || block_start < from) 2028 zero_user_segments(page, 2029 to, block_end, 2030 block_start, from); 2031 continue; 2032 } 2033 } 2034 if (PageUptodate(page)) { 2035 if (!buffer_uptodate(bh)) 2036 set_buffer_uptodate(bh); 2037 continue; 2038 } 2039 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2040 !buffer_unwritten(bh) && 2041 (block_start < from || block_end > to)) { 2042 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2043 *wait_bh++=bh; 2044 } 2045 } 2046 /* 2047 * If we issued read requests - let them complete. 2048 */ 2049 while(wait_bh > wait) { 2050 wait_on_buffer(*--wait_bh); 2051 if (!buffer_uptodate(*wait_bh)) 2052 err = -EIO; 2053 } 2054 if (unlikely(err)) 2055 page_zero_new_buffers(page, from, to); 2056 return err; 2057 } 2058 2059 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2060 get_block_t *get_block) 2061 { 2062 return __block_write_begin_int(page, pos, len, get_block, NULL); 2063 } 2064 EXPORT_SYMBOL(__block_write_begin); 2065 2066 static int __block_commit_write(struct inode *inode, struct page *page, 2067 unsigned from, unsigned to) 2068 { 2069 unsigned block_start, block_end; 2070 int partial = 0; 2071 unsigned blocksize; 2072 struct buffer_head *bh, *head; 2073 2074 bh = head = page_buffers(page); 2075 blocksize = bh->b_size; 2076 2077 block_start = 0; 2078 do { 2079 block_end = block_start + blocksize; 2080 if (block_end <= from || block_start >= to) { 2081 if (!buffer_uptodate(bh)) 2082 partial = 1; 2083 } else { 2084 set_buffer_uptodate(bh); 2085 mark_buffer_dirty(bh); 2086 } 2087 clear_buffer_new(bh); 2088 2089 block_start = block_end; 2090 bh = bh->b_this_page; 2091 } while (bh != head); 2092 2093 /* 2094 * If this is a partial write which happened to make all buffers 2095 * uptodate then we can optimize away a bogus readpage() for 2096 * the next read(). Here we 'discover' whether the page went 2097 * uptodate as a result of this (potentially partial) write. 2098 */ 2099 if (!partial) 2100 SetPageUptodate(page); 2101 return 0; 2102 } 2103 2104 /* 2105 * block_write_begin takes care of the basic task of block allocation and 2106 * bringing partial write blocks uptodate first. 2107 * 2108 * The filesystem needs to handle block truncation upon failure. 2109 */ 2110 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2111 unsigned flags, struct page **pagep, get_block_t *get_block) 2112 { 2113 pgoff_t index = pos >> PAGE_SHIFT; 2114 struct page *page; 2115 int status; 2116 2117 page = grab_cache_page_write_begin(mapping, index, flags); 2118 if (!page) 2119 return -ENOMEM; 2120 2121 status = __block_write_begin(page, pos, len, get_block); 2122 if (unlikely(status)) { 2123 unlock_page(page); 2124 put_page(page); 2125 page = NULL; 2126 } 2127 2128 *pagep = page; 2129 return status; 2130 } 2131 EXPORT_SYMBOL(block_write_begin); 2132 2133 int block_write_end(struct file *file, struct address_space *mapping, 2134 loff_t pos, unsigned len, unsigned copied, 2135 struct page *page, void *fsdata) 2136 { 2137 struct inode *inode = mapping->host; 2138 unsigned start; 2139 2140 start = pos & (PAGE_SIZE - 1); 2141 2142 if (unlikely(copied < len)) { 2143 /* 2144 * The buffers that were written will now be uptodate, so we 2145 * don't have to worry about a readpage reading them and 2146 * overwriting a partial write. However if we have encountered 2147 * a short write and only partially written into a buffer, it 2148 * will not be marked uptodate, so a readpage might come in and 2149 * destroy our partial write. 2150 * 2151 * Do the simplest thing, and just treat any short write to a 2152 * non uptodate page as a zero-length write, and force the 2153 * caller to redo the whole thing. 2154 */ 2155 if (!PageUptodate(page)) 2156 copied = 0; 2157 2158 page_zero_new_buffers(page, start+copied, start+len); 2159 } 2160 flush_dcache_page(page); 2161 2162 /* This could be a short (even 0-length) commit */ 2163 __block_commit_write(inode, page, start, start+copied); 2164 2165 return copied; 2166 } 2167 EXPORT_SYMBOL(block_write_end); 2168 2169 int generic_write_end(struct file *file, struct address_space *mapping, 2170 loff_t pos, unsigned len, unsigned copied, 2171 struct page *page, void *fsdata) 2172 { 2173 struct inode *inode = mapping->host; 2174 loff_t old_size = inode->i_size; 2175 bool i_size_changed = false; 2176 2177 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2178 2179 /* 2180 * No need to use i_size_read() here, the i_size cannot change under us 2181 * because we hold i_rwsem. 2182 * 2183 * But it's important to update i_size while still holding page lock: 2184 * page writeout could otherwise come in and zero beyond i_size. 2185 */ 2186 if (pos + copied > inode->i_size) { 2187 i_size_write(inode, pos + copied); 2188 i_size_changed = true; 2189 } 2190 2191 unlock_page(page); 2192 put_page(page); 2193 2194 if (old_size < pos) 2195 pagecache_isize_extended(inode, old_size, pos); 2196 /* 2197 * Don't mark the inode dirty under page lock. First, it unnecessarily 2198 * makes the holding time of page lock longer. Second, it forces lock 2199 * ordering of page lock and transaction start for journaling 2200 * filesystems. 2201 */ 2202 if (i_size_changed) 2203 mark_inode_dirty(inode); 2204 return copied; 2205 } 2206 EXPORT_SYMBOL(generic_write_end); 2207 2208 /* 2209 * block_is_partially_uptodate checks whether buffers within a page are 2210 * uptodate or not. 2211 * 2212 * Returns true if all buffers which correspond to a file portion 2213 * we want to read are uptodate. 2214 */ 2215 int block_is_partially_uptodate(struct page *page, unsigned long from, 2216 unsigned long count) 2217 { 2218 unsigned block_start, block_end, blocksize; 2219 unsigned to; 2220 struct buffer_head *bh, *head; 2221 int ret = 1; 2222 2223 if (!page_has_buffers(page)) 2224 return 0; 2225 2226 head = page_buffers(page); 2227 blocksize = head->b_size; 2228 to = min_t(unsigned, PAGE_SIZE - from, count); 2229 to = from + to; 2230 if (from < blocksize && to > PAGE_SIZE - blocksize) 2231 return 0; 2232 2233 bh = head; 2234 block_start = 0; 2235 do { 2236 block_end = block_start + blocksize; 2237 if (block_end > from && block_start < to) { 2238 if (!buffer_uptodate(bh)) { 2239 ret = 0; 2240 break; 2241 } 2242 if (block_end >= to) 2243 break; 2244 } 2245 block_start = block_end; 2246 bh = bh->b_this_page; 2247 } while (bh != head); 2248 2249 return ret; 2250 } 2251 EXPORT_SYMBOL(block_is_partially_uptodate); 2252 2253 /* 2254 * Generic "read page" function for block devices that have the normal 2255 * get_block functionality. This is most of the block device filesystems. 2256 * Reads the page asynchronously --- the unlock_buffer() and 2257 * set/clear_buffer_uptodate() functions propagate buffer state into the 2258 * page struct once IO has completed. 2259 */ 2260 int block_read_full_page(struct page *page, get_block_t *get_block) 2261 { 2262 struct inode *inode = page->mapping->host; 2263 sector_t iblock, lblock; 2264 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2265 unsigned int blocksize, bbits; 2266 int nr, i; 2267 int fully_mapped = 1; 2268 2269 head = create_page_buffers(page, inode, 0); 2270 blocksize = head->b_size; 2271 bbits = block_size_bits(blocksize); 2272 2273 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2274 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2275 bh = head; 2276 nr = 0; 2277 i = 0; 2278 2279 do { 2280 if (buffer_uptodate(bh)) 2281 continue; 2282 2283 if (!buffer_mapped(bh)) { 2284 int err = 0; 2285 2286 fully_mapped = 0; 2287 if (iblock < lblock) { 2288 WARN_ON(bh->b_size != blocksize); 2289 err = get_block(inode, iblock, bh, 0); 2290 if (err) 2291 SetPageError(page); 2292 } 2293 if (!buffer_mapped(bh)) { 2294 zero_user(page, i * blocksize, blocksize); 2295 if (!err) 2296 set_buffer_uptodate(bh); 2297 continue; 2298 } 2299 /* 2300 * get_block() might have updated the buffer 2301 * synchronously 2302 */ 2303 if (buffer_uptodate(bh)) 2304 continue; 2305 } 2306 arr[nr++] = bh; 2307 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2308 2309 if (fully_mapped) 2310 SetPageMappedToDisk(page); 2311 2312 if (!nr) { 2313 /* 2314 * All buffers are uptodate - we can set the page uptodate 2315 * as well. But not if get_block() returned an error. 2316 */ 2317 if (!PageError(page)) 2318 SetPageUptodate(page); 2319 unlock_page(page); 2320 return 0; 2321 } 2322 2323 /* Stage two: lock the buffers */ 2324 for (i = 0; i < nr; i++) { 2325 bh = arr[i]; 2326 lock_buffer(bh); 2327 mark_buffer_async_read(bh); 2328 } 2329 2330 /* 2331 * Stage 3: start the IO. Check for uptodateness 2332 * inside the buffer lock in case another process reading 2333 * the underlying blockdev brought it uptodate (the sct fix). 2334 */ 2335 for (i = 0; i < nr; i++) { 2336 bh = arr[i]; 2337 if (buffer_uptodate(bh)) 2338 end_buffer_async_read(bh, 1); 2339 else 2340 submit_bh(REQ_OP_READ, 0, bh); 2341 } 2342 return 0; 2343 } 2344 EXPORT_SYMBOL(block_read_full_page); 2345 2346 /* utility function for filesystems that need to do work on expanding 2347 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2348 * deal with the hole. 2349 */ 2350 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2351 { 2352 struct address_space *mapping = inode->i_mapping; 2353 struct page *page; 2354 void *fsdata; 2355 int err; 2356 2357 err = inode_newsize_ok(inode, size); 2358 if (err) 2359 goto out; 2360 2361 err = pagecache_write_begin(NULL, mapping, size, 0, 2362 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2363 if (err) 2364 goto out; 2365 2366 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2367 BUG_ON(err > 0); 2368 2369 out: 2370 return err; 2371 } 2372 EXPORT_SYMBOL(generic_cont_expand_simple); 2373 2374 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2375 loff_t pos, loff_t *bytes) 2376 { 2377 struct inode *inode = mapping->host; 2378 unsigned int blocksize = i_blocksize(inode); 2379 struct page *page; 2380 void *fsdata; 2381 pgoff_t index, curidx; 2382 loff_t curpos; 2383 unsigned zerofrom, offset, len; 2384 int err = 0; 2385 2386 index = pos >> PAGE_SHIFT; 2387 offset = pos & ~PAGE_MASK; 2388 2389 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2390 zerofrom = curpos & ~PAGE_MASK; 2391 if (zerofrom & (blocksize-1)) { 2392 *bytes |= (blocksize-1); 2393 (*bytes)++; 2394 } 2395 len = PAGE_SIZE - zerofrom; 2396 2397 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2398 &page, &fsdata); 2399 if (err) 2400 goto out; 2401 zero_user(page, zerofrom, len); 2402 err = pagecache_write_end(file, mapping, curpos, len, len, 2403 page, fsdata); 2404 if (err < 0) 2405 goto out; 2406 BUG_ON(err != len); 2407 err = 0; 2408 2409 balance_dirty_pages_ratelimited(mapping); 2410 2411 if (fatal_signal_pending(current)) { 2412 err = -EINTR; 2413 goto out; 2414 } 2415 } 2416 2417 /* page covers the boundary, find the boundary offset */ 2418 if (index == curidx) { 2419 zerofrom = curpos & ~PAGE_MASK; 2420 /* if we will expand the thing last block will be filled */ 2421 if (offset <= zerofrom) { 2422 goto out; 2423 } 2424 if (zerofrom & (blocksize-1)) { 2425 *bytes |= (blocksize-1); 2426 (*bytes)++; 2427 } 2428 len = offset - zerofrom; 2429 2430 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2431 &page, &fsdata); 2432 if (err) 2433 goto out; 2434 zero_user(page, zerofrom, len); 2435 err = pagecache_write_end(file, mapping, curpos, len, len, 2436 page, fsdata); 2437 if (err < 0) 2438 goto out; 2439 BUG_ON(err != len); 2440 err = 0; 2441 } 2442 out: 2443 return err; 2444 } 2445 2446 /* 2447 * For moronic filesystems that do not allow holes in file. 2448 * We may have to extend the file. 2449 */ 2450 int cont_write_begin(struct file *file, struct address_space *mapping, 2451 loff_t pos, unsigned len, unsigned flags, 2452 struct page **pagep, void **fsdata, 2453 get_block_t *get_block, loff_t *bytes) 2454 { 2455 struct inode *inode = mapping->host; 2456 unsigned int blocksize = i_blocksize(inode); 2457 unsigned int zerofrom; 2458 int err; 2459 2460 err = cont_expand_zero(file, mapping, pos, bytes); 2461 if (err) 2462 return err; 2463 2464 zerofrom = *bytes & ~PAGE_MASK; 2465 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2466 *bytes |= (blocksize-1); 2467 (*bytes)++; 2468 } 2469 2470 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2471 } 2472 EXPORT_SYMBOL(cont_write_begin); 2473 2474 int block_commit_write(struct page *page, unsigned from, unsigned to) 2475 { 2476 struct inode *inode = page->mapping->host; 2477 __block_commit_write(inode,page,from,to); 2478 return 0; 2479 } 2480 EXPORT_SYMBOL(block_commit_write); 2481 2482 /* 2483 * block_page_mkwrite() is not allowed to change the file size as it gets 2484 * called from a page fault handler when a page is first dirtied. Hence we must 2485 * be careful to check for EOF conditions here. We set the page up correctly 2486 * for a written page which means we get ENOSPC checking when writing into 2487 * holes and correct delalloc and unwritten extent mapping on filesystems that 2488 * support these features. 2489 * 2490 * We are not allowed to take the i_mutex here so we have to play games to 2491 * protect against truncate races as the page could now be beyond EOF. Because 2492 * truncate writes the inode size before removing pages, once we have the 2493 * page lock we can determine safely if the page is beyond EOF. If it is not 2494 * beyond EOF, then the page is guaranteed safe against truncation until we 2495 * unlock the page. 2496 * 2497 * Direct callers of this function should protect against filesystem freezing 2498 * using sb_start_pagefault() - sb_end_pagefault() functions. 2499 */ 2500 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2501 get_block_t get_block) 2502 { 2503 struct page *page = vmf->page; 2504 struct inode *inode = file_inode(vma->vm_file); 2505 unsigned long end; 2506 loff_t size; 2507 int ret; 2508 2509 lock_page(page); 2510 size = i_size_read(inode); 2511 if ((page->mapping != inode->i_mapping) || 2512 (page_offset(page) > size)) { 2513 /* We overload EFAULT to mean page got truncated */ 2514 ret = -EFAULT; 2515 goto out_unlock; 2516 } 2517 2518 /* page is wholly or partially inside EOF */ 2519 if (((page->index + 1) << PAGE_SHIFT) > size) 2520 end = size & ~PAGE_MASK; 2521 else 2522 end = PAGE_SIZE; 2523 2524 ret = __block_write_begin(page, 0, end, get_block); 2525 if (!ret) 2526 ret = block_commit_write(page, 0, end); 2527 2528 if (unlikely(ret < 0)) 2529 goto out_unlock; 2530 set_page_dirty(page); 2531 wait_for_stable_page(page); 2532 return 0; 2533 out_unlock: 2534 unlock_page(page); 2535 return ret; 2536 } 2537 EXPORT_SYMBOL(block_page_mkwrite); 2538 2539 /* 2540 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2541 * immediately, while under the page lock. So it needs a special end_io 2542 * handler which does not touch the bh after unlocking it. 2543 */ 2544 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2545 { 2546 __end_buffer_read_notouch(bh, uptodate); 2547 } 2548 2549 /* 2550 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2551 * the page (converting it to circular linked list and taking care of page 2552 * dirty races). 2553 */ 2554 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2555 { 2556 struct buffer_head *bh; 2557 2558 BUG_ON(!PageLocked(page)); 2559 2560 spin_lock(&page->mapping->private_lock); 2561 bh = head; 2562 do { 2563 if (PageDirty(page)) 2564 set_buffer_dirty(bh); 2565 if (!bh->b_this_page) 2566 bh->b_this_page = head; 2567 bh = bh->b_this_page; 2568 } while (bh != head); 2569 attach_page_private(page, head); 2570 spin_unlock(&page->mapping->private_lock); 2571 } 2572 2573 /* 2574 * On entry, the page is fully not uptodate. 2575 * On exit the page is fully uptodate in the areas outside (from,to) 2576 * The filesystem needs to handle block truncation upon failure. 2577 */ 2578 int nobh_write_begin(struct address_space *mapping, 2579 loff_t pos, unsigned len, unsigned flags, 2580 struct page **pagep, void **fsdata, 2581 get_block_t *get_block) 2582 { 2583 struct inode *inode = mapping->host; 2584 const unsigned blkbits = inode->i_blkbits; 2585 const unsigned blocksize = 1 << blkbits; 2586 struct buffer_head *head, *bh; 2587 struct page *page; 2588 pgoff_t index; 2589 unsigned from, to; 2590 unsigned block_in_page; 2591 unsigned block_start, block_end; 2592 sector_t block_in_file; 2593 int nr_reads = 0; 2594 int ret = 0; 2595 int is_mapped_to_disk = 1; 2596 2597 index = pos >> PAGE_SHIFT; 2598 from = pos & (PAGE_SIZE - 1); 2599 to = from + len; 2600 2601 page = grab_cache_page_write_begin(mapping, index, flags); 2602 if (!page) 2603 return -ENOMEM; 2604 *pagep = page; 2605 *fsdata = NULL; 2606 2607 if (page_has_buffers(page)) { 2608 ret = __block_write_begin(page, pos, len, get_block); 2609 if (unlikely(ret)) 2610 goto out_release; 2611 return ret; 2612 } 2613 2614 if (PageMappedToDisk(page)) 2615 return 0; 2616 2617 /* 2618 * Allocate buffers so that we can keep track of state, and potentially 2619 * attach them to the page if an error occurs. In the common case of 2620 * no error, they will just be freed again without ever being attached 2621 * to the page (which is all OK, because we're under the page lock). 2622 * 2623 * Be careful: the buffer linked list is a NULL terminated one, rather 2624 * than the circular one we're used to. 2625 */ 2626 head = alloc_page_buffers(page, blocksize, false); 2627 if (!head) { 2628 ret = -ENOMEM; 2629 goto out_release; 2630 } 2631 2632 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2633 2634 /* 2635 * We loop across all blocks in the page, whether or not they are 2636 * part of the affected region. This is so we can discover if the 2637 * page is fully mapped-to-disk. 2638 */ 2639 for (block_start = 0, block_in_page = 0, bh = head; 2640 block_start < PAGE_SIZE; 2641 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2642 int create; 2643 2644 block_end = block_start + blocksize; 2645 bh->b_state = 0; 2646 create = 1; 2647 if (block_start >= to) 2648 create = 0; 2649 ret = get_block(inode, block_in_file + block_in_page, 2650 bh, create); 2651 if (ret) 2652 goto failed; 2653 if (!buffer_mapped(bh)) 2654 is_mapped_to_disk = 0; 2655 if (buffer_new(bh)) 2656 clean_bdev_bh_alias(bh); 2657 if (PageUptodate(page)) { 2658 set_buffer_uptodate(bh); 2659 continue; 2660 } 2661 if (buffer_new(bh) || !buffer_mapped(bh)) { 2662 zero_user_segments(page, block_start, from, 2663 to, block_end); 2664 continue; 2665 } 2666 if (buffer_uptodate(bh)) 2667 continue; /* reiserfs does this */ 2668 if (block_start < from || block_end > to) { 2669 lock_buffer(bh); 2670 bh->b_end_io = end_buffer_read_nobh; 2671 submit_bh(REQ_OP_READ, 0, bh); 2672 nr_reads++; 2673 } 2674 } 2675 2676 if (nr_reads) { 2677 /* 2678 * The page is locked, so these buffers are protected from 2679 * any VM or truncate activity. Hence we don't need to care 2680 * for the buffer_head refcounts. 2681 */ 2682 for (bh = head; bh; bh = bh->b_this_page) { 2683 wait_on_buffer(bh); 2684 if (!buffer_uptodate(bh)) 2685 ret = -EIO; 2686 } 2687 if (ret) 2688 goto failed; 2689 } 2690 2691 if (is_mapped_to_disk) 2692 SetPageMappedToDisk(page); 2693 2694 *fsdata = head; /* to be released by nobh_write_end */ 2695 2696 return 0; 2697 2698 failed: 2699 BUG_ON(!ret); 2700 /* 2701 * Error recovery is a bit difficult. We need to zero out blocks that 2702 * were newly allocated, and dirty them to ensure they get written out. 2703 * Buffers need to be attached to the page at this point, otherwise 2704 * the handling of potential IO errors during writeout would be hard 2705 * (could try doing synchronous writeout, but what if that fails too?) 2706 */ 2707 attach_nobh_buffers(page, head); 2708 page_zero_new_buffers(page, from, to); 2709 2710 out_release: 2711 unlock_page(page); 2712 put_page(page); 2713 *pagep = NULL; 2714 2715 return ret; 2716 } 2717 EXPORT_SYMBOL(nobh_write_begin); 2718 2719 int nobh_write_end(struct file *file, struct address_space *mapping, 2720 loff_t pos, unsigned len, unsigned copied, 2721 struct page *page, void *fsdata) 2722 { 2723 struct inode *inode = page->mapping->host; 2724 struct buffer_head *head = fsdata; 2725 struct buffer_head *bh; 2726 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2727 2728 if (unlikely(copied < len) && head) 2729 attach_nobh_buffers(page, head); 2730 if (page_has_buffers(page)) 2731 return generic_write_end(file, mapping, pos, len, 2732 copied, page, fsdata); 2733 2734 SetPageUptodate(page); 2735 set_page_dirty(page); 2736 if (pos+copied > inode->i_size) { 2737 i_size_write(inode, pos+copied); 2738 mark_inode_dirty(inode); 2739 } 2740 2741 unlock_page(page); 2742 put_page(page); 2743 2744 while (head) { 2745 bh = head; 2746 head = head->b_this_page; 2747 free_buffer_head(bh); 2748 } 2749 2750 return copied; 2751 } 2752 EXPORT_SYMBOL(nobh_write_end); 2753 2754 /* 2755 * nobh_writepage() - based on block_full_write_page() except 2756 * that it tries to operate without attaching bufferheads to 2757 * the page. 2758 */ 2759 int nobh_writepage(struct page *page, get_block_t *get_block, 2760 struct writeback_control *wbc) 2761 { 2762 struct inode * const inode = page->mapping->host; 2763 loff_t i_size = i_size_read(inode); 2764 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2765 unsigned offset; 2766 int ret; 2767 2768 /* Is the page fully inside i_size? */ 2769 if (page->index < end_index) 2770 goto out; 2771 2772 /* Is the page fully outside i_size? (truncate in progress) */ 2773 offset = i_size & (PAGE_SIZE-1); 2774 if (page->index >= end_index+1 || !offset) { 2775 /* 2776 * The page may have dirty, unmapped buffers. For example, 2777 * they may have been added in ext3_writepage(). Make them 2778 * freeable here, so the page does not leak. 2779 */ 2780 #if 0 2781 /* Not really sure about this - do we need this ? */ 2782 if (page->mapping->a_ops->invalidatepage) 2783 page->mapping->a_ops->invalidatepage(page, offset); 2784 #endif 2785 unlock_page(page); 2786 return 0; /* don't care */ 2787 } 2788 2789 /* 2790 * The page straddles i_size. It must be zeroed out on each and every 2791 * writepage invocation because it may be mmapped. "A file is mapped 2792 * in multiples of the page size. For a file that is not a multiple of 2793 * the page size, the remaining memory is zeroed when mapped, and 2794 * writes to that region are not written out to the file." 2795 */ 2796 zero_user_segment(page, offset, PAGE_SIZE); 2797 out: 2798 ret = mpage_writepage(page, get_block, wbc); 2799 if (ret == -EAGAIN) 2800 ret = __block_write_full_page(inode, page, get_block, wbc, 2801 end_buffer_async_write); 2802 return ret; 2803 } 2804 EXPORT_SYMBOL(nobh_writepage); 2805 2806 int nobh_truncate_page(struct address_space *mapping, 2807 loff_t from, get_block_t *get_block) 2808 { 2809 pgoff_t index = from >> PAGE_SHIFT; 2810 unsigned offset = from & (PAGE_SIZE-1); 2811 unsigned blocksize; 2812 sector_t iblock; 2813 unsigned length, pos; 2814 struct inode *inode = mapping->host; 2815 struct page *page; 2816 struct buffer_head map_bh; 2817 int err; 2818 2819 blocksize = i_blocksize(inode); 2820 length = offset & (blocksize - 1); 2821 2822 /* Block boundary? Nothing to do */ 2823 if (!length) 2824 return 0; 2825 2826 length = blocksize - length; 2827 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2828 2829 page = grab_cache_page(mapping, index); 2830 err = -ENOMEM; 2831 if (!page) 2832 goto out; 2833 2834 if (page_has_buffers(page)) { 2835 has_buffers: 2836 unlock_page(page); 2837 put_page(page); 2838 return block_truncate_page(mapping, from, get_block); 2839 } 2840 2841 /* Find the buffer that contains "offset" */ 2842 pos = blocksize; 2843 while (offset >= pos) { 2844 iblock++; 2845 pos += blocksize; 2846 } 2847 2848 map_bh.b_size = blocksize; 2849 map_bh.b_state = 0; 2850 err = get_block(inode, iblock, &map_bh, 0); 2851 if (err) 2852 goto unlock; 2853 /* unmapped? It's a hole - nothing to do */ 2854 if (!buffer_mapped(&map_bh)) 2855 goto unlock; 2856 2857 /* Ok, it's mapped. Make sure it's up-to-date */ 2858 if (!PageUptodate(page)) { 2859 err = mapping->a_ops->readpage(NULL, page); 2860 if (err) { 2861 put_page(page); 2862 goto out; 2863 } 2864 lock_page(page); 2865 if (!PageUptodate(page)) { 2866 err = -EIO; 2867 goto unlock; 2868 } 2869 if (page_has_buffers(page)) 2870 goto has_buffers; 2871 } 2872 zero_user(page, offset, length); 2873 set_page_dirty(page); 2874 err = 0; 2875 2876 unlock: 2877 unlock_page(page); 2878 put_page(page); 2879 out: 2880 return err; 2881 } 2882 EXPORT_SYMBOL(nobh_truncate_page); 2883 2884 int block_truncate_page(struct address_space *mapping, 2885 loff_t from, get_block_t *get_block) 2886 { 2887 pgoff_t index = from >> PAGE_SHIFT; 2888 unsigned offset = from & (PAGE_SIZE-1); 2889 unsigned blocksize; 2890 sector_t iblock; 2891 unsigned length, pos; 2892 struct inode *inode = mapping->host; 2893 struct page *page; 2894 struct buffer_head *bh; 2895 int err; 2896 2897 blocksize = i_blocksize(inode); 2898 length = offset & (blocksize - 1); 2899 2900 /* Block boundary? Nothing to do */ 2901 if (!length) 2902 return 0; 2903 2904 length = blocksize - length; 2905 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2906 2907 page = grab_cache_page(mapping, index); 2908 err = -ENOMEM; 2909 if (!page) 2910 goto out; 2911 2912 if (!page_has_buffers(page)) 2913 create_empty_buffers(page, blocksize, 0); 2914 2915 /* Find the buffer that contains "offset" */ 2916 bh = page_buffers(page); 2917 pos = blocksize; 2918 while (offset >= pos) { 2919 bh = bh->b_this_page; 2920 iblock++; 2921 pos += blocksize; 2922 } 2923 2924 err = 0; 2925 if (!buffer_mapped(bh)) { 2926 WARN_ON(bh->b_size != blocksize); 2927 err = get_block(inode, iblock, bh, 0); 2928 if (err) 2929 goto unlock; 2930 /* unmapped? It's a hole - nothing to do */ 2931 if (!buffer_mapped(bh)) 2932 goto unlock; 2933 } 2934 2935 /* Ok, it's mapped. Make sure it's up-to-date */ 2936 if (PageUptodate(page)) 2937 set_buffer_uptodate(bh); 2938 2939 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2940 err = -EIO; 2941 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2942 wait_on_buffer(bh); 2943 /* Uhhuh. Read error. Complain and punt. */ 2944 if (!buffer_uptodate(bh)) 2945 goto unlock; 2946 } 2947 2948 zero_user(page, offset, length); 2949 mark_buffer_dirty(bh); 2950 err = 0; 2951 2952 unlock: 2953 unlock_page(page); 2954 put_page(page); 2955 out: 2956 return err; 2957 } 2958 EXPORT_SYMBOL(block_truncate_page); 2959 2960 /* 2961 * The generic ->writepage function for buffer-backed address_spaces 2962 */ 2963 int block_write_full_page(struct page *page, get_block_t *get_block, 2964 struct writeback_control *wbc) 2965 { 2966 struct inode * const inode = page->mapping->host; 2967 loff_t i_size = i_size_read(inode); 2968 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2969 unsigned offset; 2970 2971 /* Is the page fully inside i_size? */ 2972 if (page->index < end_index) 2973 return __block_write_full_page(inode, page, get_block, wbc, 2974 end_buffer_async_write); 2975 2976 /* Is the page fully outside i_size? (truncate in progress) */ 2977 offset = i_size & (PAGE_SIZE-1); 2978 if (page->index >= end_index+1 || !offset) { 2979 /* 2980 * The page may have dirty, unmapped buffers. For example, 2981 * they may have been added in ext3_writepage(). Make them 2982 * freeable here, so the page does not leak. 2983 */ 2984 do_invalidatepage(page, 0, PAGE_SIZE); 2985 unlock_page(page); 2986 return 0; /* don't care */ 2987 } 2988 2989 /* 2990 * The page straddles i_size. It must be zeroed out on each and every 2991 * writepage invocation because it may be mmapped. "A file is mapped 2992 * in multiples of the page size. For a file that is not a multiple of 2993 * the page size, the remaining memory is zeroed when mapped, and 2994 * writes to that region are not written out to the file." 2995 */ 2996 zero_user_segment(page, offset, PAGE_SIZE); 2997 return __block_write_full_page(inode, page, get_block, wbc, 2998 end_buffer_async_write); 2999 } 3000 EXPORT_SYMBOL(block_write_full_page); 3001 3002 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 3003 get_block_t *get_block) 3004 { 3005 struct inode *inode = mapping->host; 3006 struct buffer_head tmp = { 3007 .b_size = i_blocksize(inode), 3008 }; 3009 3010 get_block(inode, block, &tmp, 0); 3011 return tmp.b_blocknr; 3012 } 3013 EXPORT_SYMBOL(generic_block_bmap); 3014 3015 static void end_bio_bh_io_sync(struct bio *bio) 3016 { 3017 struct buffer_head *bh = bio->bi_private; 3018 3019 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3020 set_bit(BH_Quiet, &bh->b_state); 3021 3022 bh->b_end_io(bh, !bio->bi_status); 3023 bio_put(bio); 3024 } 3025 3026 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3027 enum rw_hint write_hint, struct writeback_control *wbc) 3028 { 3029 struct bio *bio; 3030 3031 BUG_ON(!buffer_locked(bh)); 3032 BUG_ON(!buffer_mapped(bh)); 3033 BUG_ON(!bh->b_end_io); 3034 BUG_ON(buffer_delay(bh)); 3035 BUG_ON(buffer_unwritten(bh)); 3036 3037 /* 3038 * Only clear out a write error when rewriting 3039 */ 3040 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3041 clear_buffer_write_io_error(bh); 3042 3043 /* 3044 * from here on down, it's all bio -- do the initial mapping, 3045 * submit_bio -> generic_make_request may further map this bio around 3046 */ 3047 bio = bio_alloc(GFP_NOIO, 1); 3048 3049 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3050 bio_set_dev(bio, bh->b_bdev); 3051 bio->bi_write_hint = write_hint; 3052 3053 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3054 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3055 3056 bio->bi_end_io = end_bio_bh_io_sync; 3057 bio->bi_private = bh; 3058 3059 if (buffer_meta(bh)) 3060 op_flags |= REQ_META; 3061 if (buffer_prio(bh)) 3062 op_flags |= REQ_PRIO; 3063 bio_set_op_attrs(bio, op, op_flags); 3064 3065 /* Take care of bh's that straddle the end of the device */ 3066 guard_bio_eod(bio); 3067 3068 if (wbc) { 3069 wbc_init_bio(wbc, bio); 3070 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 3071 } 3072 3073 submit_bio(bio); 3074 return 0; 3075 } 3076 3077 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3078 { 3079 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3080 } 3081 EXPORT_SYMBOL(submit_bh); 3082 3083 /** 3084 * ll_rw_block: low-level access to block devices (DEPRECATED) 3085 * @op: whether to %READ or %WRITE 3086 * @op_flags: req_flag_bits 3087 * @nr: number of &struct buffer_heads in the array 3088 * @bhs: array of pointers to &struct buffer_head 3089 * 3090 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3091 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3092 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3093 * %REQ_RAHEAD. 3094 * 3095 * This function drops any buffer that it cannot get a lock on (with the 3096 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3097 * request, and any buffer that appears to be up-to-date when doing read 3098 * request. Further it marks as clean buffers that are processed for 3099 * writing (the buffer cache won't assume that they are actually clean 3100 * until the buffer gets unlocked). 3101 * 3102 * ll_rw_block sets b_end_io to simple completion handler that marks 3103 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3104 * any waiters. 3105 * 3106 * All of the buffers must be for the same device, and must also be a 3107 * multiple of the current approved size for the device. 3108 */ 3109 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3110 { 3111 int i; 3112 3113 for (i = 0; i < nr; i++) { 3114 struct buffer_head *bh = bhs[i]; 3115 3116 if (!trylock_buffer(bh)) 3117 continue; 3118 if (op == WRITE) { 3119 if (test_clear_buffer_dirty(bh)) { 3120 bh->b_end_io = end_buffer_write_sync; 3121 get_bh(bh); 3122 submit_bh(op, op_flags, bh); 3123 continue; 3124 } 3125 } else { 3126 if (!buffer_uptodate(bh)) { 3127 bh->b_end_io = end_buffer_read_sync; 3128 get_bh(bh); 3129 submit_bh(op, op_flags, bh); 3130 continue; 3131 } 3132 } 3133 unlock_buffer(bh); 3134 } 3135 } 3136 EXPORT_SYMBOL(ll_rw_block); 3137 3138 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3139 { 3140 lock_buffer(bh); 3141 if (!test_clear_buffer_dirty(bh)) { 3142 unlock_buffer(bh); 3143 return; 3144 } 3145 bh->b_end_io = end_buffer_write_sync; 3146 get_bh(bh); 3147 submit_bh(REQ_OP_WRITE, op_flags, bh); 3148 } 3149 EXPORT_SYMBOL(write_dirty_buffer); 3150 3151 /* 3152 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3153 * and then start new I/O and then wait upon it. The caller must have a ref on 3154 * the buffer_head. 3155 */ 3156 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3157 { 3158 int ret = 0; 3159 3160 WARN_ON(atomic_read(&bh->b_count) < 1); 3161 lock_buffer(bh); 3162 if (test_clear_buffer_dirty(bh)) { 3163 get_bh(bh); 3164 bh->b_end_io = end_buffer_write_sync; 3165 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3166 wait_on_buffer(bh); 3167 if (!ret && !buffer_uptodate(bh)) 3168 ret = -EIO; 3169 } else { 3170 unlock_buffer(bh); 3171 } 3172 return ret; 3173 } 3174 EXPORT_SYMBOL(__sync_dirty_buffer); 3175 3176 int sync_dirty_buffer(struct buffer_head *bh) 3177 { 3178 return __sync_dirty_buffer(bh, REQ_SYNC); 3179 } 3180 EXPORT_SYMBOL(sync_dirty_buffer); 3181 3182 /* 3183 * try_to_free_buffers() checks if all the buffers on this particular page 3184 * are unused, and releases them if so. 3185 * 3186 * Exclusion against try_to_free_buffers may be obtained by either 3187 * locking the page or by holding its mapping's private_lock. 3188 * 3189 * If the page is dirty but all the buffers are clean then we need to 3190 * be sure to mark the page clean as well. This is because the page 3191 * may be against a block device, and a later reattachment of buffers 3192 * to a dirty page will set *all* buffers dirty. Which would corrupt 3193 * filesystem data on the same device. 3194 * 3195 * The same applies to regular filesystem pages: if all the buffers are 3196 * clean then we set the page clean and proceed. To do that, we require 3197 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3198 * private_lock. 3199 * 3200 * try_to_free_buffers() is non-blocking. 3201 */ 3202 static inline int buffer_busy(struct buffer_head *bh) 3203 { 3204 return atomic_read(&bh->b_count) | 3205 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3206 } 3207 3208 static int 3209 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3210 { 3211 struct buffer_head *head = page_buffers(page); 3212 struct buffer_head *bh; 3213 3214 bh = head; 3215 do { 3216 if (buffer_busy(bh)) 3217 goto failed; 3218 bh = bh->b_this_page; 3219 } while (bh != head); 3220 3221 do { 3222 struct buffer_head *next = bh->b_this_page; 3223 3224 if (bh->b_assoc_map) 3225 __remove_assoc_queue(bh); 3226 bh = next; 3227 } while (bh != head); 3228 *buffers_to_free = head; 3229 detach_page_private(page); 3230 return 1; 3231 failed: 3232 return 0; 3233 } 3234 3235 int try_to_free_buffers(struct page *page) 3236 { 3237 struct address_space * const mapping = page->mapping; 3238 struct buffer_head *buffers_to_free = NULL; 3239 int ret = 0; 3240 3241 BUG_ON(!PageLocked(page)); 3242 if (PageWriteback(page)) 3243 return 0; 3244 3245 if (mapping == NULL) { /* can this still happen? */ 3246 ret = drop_buffers(page, &buffers_to_free); 3247 goto out; 3248 } 3249 3250 spin_lock(&mapping->private_lock); 3251 ret = drop_buffers(page, &buffers_to_free); 3252 3253 /* 3254 * If the filesystem writes its buffers by hand (eg ext3) 3255 * then we can have clean buffers against a dirty page. We 3256 * clean the page here; otherwise the VM will never notice 3257 * that the filesystem did any IO at all. 3258 * 3259 * Also, during truncate, discard_buffer will have marked all 3260 * the page's buffers clean. We discover that here and clean 3261 * the page also. 3262 * 3263 * private_lock must be held over this entire operation in order 3264 * to synchronise against __set_page_dirty_buffers and prevent the 3265 * dirty bit from being lost. 3266 */ 3267 if (ret) 3268 cancel_dirty_page(page); 3269 spin_unlock(&mapping->private_lock); 3270 out: 3271 if (buffers_to_free) { 3272 struct buffer_head *bh = buffers_to_free; 3273 3274 do { 3275 struct buffer_head *next = bh->b_this_page; 3276 free_buffer_head(bh); 3277 bh = next; 3278 } while (bh != buffers_to_free); 3279 } 3280 return ret; 3281 } 3282 EXPORT_SYMBOL(try_to_free_buffers); 3283 3284 /* 3285 * There are no bdflush tunables left. But distributions are 3286 * still running obsolete flush daemons, so we terminate them here. 3287 * 3288 * Use of bdflush() is deprecated and will be removed in a future kernel. 3289 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3290 */ 3291 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3292 { 3293 static int msg_count; 3294 3295 if (!capable(CAP_SYS_ADMIN)) 3296 return -EPERM; 3297 3298 if (msg_count < 5) { 3299 msg_count++; 3300 printk(KERN_INFO 3301 "warning: process `%s' used the obsolete bdflush" 3302 " system call\n", current->comm); 3303 printk(KERN_INFO "Fix your initscripts?\n"); 3304 } 3305 3306 if (func == 1) 3307 do_exit(0); 3308 return 0; 3309 } 3310 3311 /* 3312 * Buffer-head allocation 3313 */ 3314 static struct kmem_cache *bh_cachep __read_mostly; 3315 3316 /* 3317 * Once the number of bh's in the machine exceeds this level, we start 3318 * stripping them in writeback. 3319 */ 3320 static unsigned long max_buffer_heads; 3321 3322 int buffer_heads_over_limit; 3323 3324 struct bh_accounting { 3325 int nr; /* Number of live bh's */ 3326 int ratelimit; /* Limit cacheline bouncing */ 3327 }; 3328 3329 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3330 3331 static void recalc_bh_state(void) 3332 { 3333 int i; 3334 int tot = 0; 3335 3336 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3337 return; 3338 __this_cpu_write(bh_accounting.ratelimit, 0); 3339 for_each_online_cpu(i) 3340 tot += per_cpu(bh_accounting, i).nr; 3341 buffer_heads_over_limit = (tot > max_buffer_heads); 3342 } 3343 3344 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3345 { 3346 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3347 if (ret) { 3348 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3349 spin_lock_init(&ret->b_uptodate_lock); 3350 preempt_disable(); 3351 __this_cpu_inc(bh_accounting.nr); 3352 recalc_bh_state(); 3353 preempt_enable(); 3354 } 3355 return ret; 3356 } 3357 EXPORT_SYMBOL(alloc_buffer_head); 3358 3359 void free_buffer_head(struct buffer_head *bh) 3360 { 3361 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3362 kmem_cache_free(bh_cachep, bh); 3363 preempt_disable(); 3364 __this_cpu_dec(bh_accounting.nr); 3365 recalc_bh_state(); 3366 preempt_enable(); 3367 } 3368 EXPORT_SYMBOL(free_buffer_head); 3369 3370 static int buffer_exit_cpu_dead(unsigned int cpu) 3371 { 3372 int i; 3373 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3374 3375 for (i = 0; i < BH_LRU_SIZE; i++) { 3376 brelse(b->bhs[i]); 3377 b->bhs[i] = NULL; 3378 } 3379 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3380 per_cpu(bh_accounting, cpu).nr = 0; 3381 return 0; 3382 } 3383 3384 /** 3385 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3386 * @bh: struct buffer_head 3387 * 3388 * Return true if the buffer is up-to-date and false, 3389 * with the buffer locked, if not. 3390 */ 3391 int bh_uptodate_or_lock(struct buffer_head *bh) 3392 { 3393 if (!buffer_uptodate(bh)) { 3394 lock_buffer(bh); 3395 if (!buffer_uptodate(bh)) 3396 return 0; 3397 unlock_buffer(bh); 3398 } 3399 return 1; 3400 } 3401 EXPORT_SYMBOL(bh_uptodate_or_lock); 3402 3403 /** 3404 * bh_submit_read - Submit a locked buffer for reading 3405 * @bh: struct buffer_head 3406 * 3407 * Returns zero on success and -EIO on error. 3408 */ 3409 int bh_submit_read(struct buffer_head *bh) 3410 { 3411 BUG_ON(!buffer_locked(bh)); 3412 3413 if (buffer_uptodate(bh)) { 3414 unlock_buffer(bh); 3415 return 0; 3416 } 3417 3418 get_bh(bh); 3419 bh->b_end_io = end_buffer_read_sync; 3420 submit_bh(REQ_OP_READ, 0, bh); 3421 wait_on_buffer(bh); 3422 if (buffer_uptodate(bh)) 3423 return 0; 3424 return -EIO; 3425 } 3426 EXPORT_SYMBOL(bh_submit_read); 3427 3428 void __init buffer_init(void) 3429 { 3430 unsigned long nrpages; 3431 int ret; 3432 3433 bh_cachep = kmem_cache_create("buffer_head", 3434 sizeof(struct buffer_head), 0, 3435 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3436 SLAB_MEM_SPREAD), 3437 NULL); 3438 3439 /* 3440 * Limit the bh occupancy to 10% of ZONE_NORMAL 3441 */ 3442 nrpages = (nr_free_buffer_pages() * 10) / 100; 3443 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3444 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3445 NULL, buffer_exit_cpu_dead); 3446 WARN_ON(ret < 0); 3447 } 3448