xref: /openbmc/linux/fs/btrfs/zstd.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  */
7 
8 #include <linux/bio.h>
9 #include <linux/bitmap.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/sched/mm.h>
15 #include <linux/pagemap.h>
16 #include <linux/refcount.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/zstd.h>
20 #include "compression.h"
21 #include "ctree.h"
22 
23 #define ZSTD_BTRFS_MAX_WINDOWLOG 17
24 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
25 #define ZSTD_BTRFS_DEFAULT_LEVEL 3
26 #define ZSTD_BTRFS_MAX_LEVEL 15
27 /* 307s to avoid pathologically clashing with transaction commit */
28 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
29 
30 static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level,
31 						 size_t src_len)
32 {
33 	ZSTD_parameters params = ZSTD_getParams(level, src_len, 0);
34 
35 	if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
36 		params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
37 	WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
38 	return params;
39 }
40 
41 struct workspace {
42 	void *mem;
43 	size_t size;
44 	char *buf;
45 	unsigned int level;
46 	unsigned int req_level;
47 	unsigned long last_used; /* jiffies */
48 	struct list_head list;
49 	struct list_head lru_list;
50 	ZSTD_inBuffer in_buf;
51 	ZSTD_outBuffer out_buf;
52 };
53 
54 /*
55  * Zstd Workspace Management
56  *
57  * Zstd workspaces have different memory requirements depending on the level.
58  * The zstd workspaces are managed by having individual lists for each level
59  * and a global lru.  Forward progress is maintained by protecting a max level
60  * workspace.
61  *
62  * Getting a workspace is done by using the bitmap to identify the levels that
63  * have available workspaces and scans up.  This lets us recycle higher level
64  * workspaces because of the monotonic memory guarantee.  A workspace's
65  * last_used is only updated if it is being used by the corresponding memory
66  * level.  Putting a workspace involves adding it back to the appropriate places
67  * and adding it back to the lru if necessary.
68  *
69  * A timer is used to reclaim workspaces if they have not been used for
70  * ZSTD_BTRFS_RECLAIM_JIFFIES.  This helps keep only active workspaces around.
71  * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
72  */
73 
74 struct zstd_workspace_manager {
75 	const struct btrfs_compress_op *ops;
76 	spinlock_t lock;
77 	struct list_head lru_list;
78 	struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
79 	unsigned long active_map;
80 	wait_queue_head_t wait;
81 	struct timer_list timer;
82 };
83 
84 static struct zstd_workspace_manager wsm;
85 
86 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
87 
88 static inline struct workspace *list_to_workspace(struct list_head *list)
89 {
90 	return container_of(list, struct workspace, list);
91 }
92 
93 static void zstd_free_workspace(struct list_head *ws);
94 static struct list_head *zstd_alloc_workspace(unsigned int level);
95 
96 /*
97  * zstd_reclaim_timer_fn - reclaim timer
98  * @t: timer
99  *
100  * This scans the lru_list and attempts to reclaim any workspace that hasn't
101  * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
102  */
103 static void zstd_reclaim_timer_fn(struct timer_list *timer)
104 {
105 	unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
106 	struct list_head *pos, *next;
107 
108 	spin_lock(&wsm.lock);
109 
110 	if (list_empty(&wsm.lru_list)) {
111 		spin_unlock(&wsm.lock);
112 		return;
113 	}
114 
115 	list_for_each_prev_safe(pos, next, &wsm.lru_list) {
116 		struct workspace *victim = container_of(pos, struct workspace,
117 							lru_list);
118 		unsigned int level;
119 
120 		if (time_after(victim->last_used, reclaim_threshold))
121 			break;
122 
123 		/* workspace is in use */
124 		if (victim->req_level)
125 			continue;
126 
127 		level = victim->level;
128 		list_del(&victim->lru_list);
129 		list_del(&victim->list);
130 		zstd_free_workspace(&victim->list);
131 
132 		if (list_empty(&wsm.idle_ws[level - 1]))
133 			clear_bit(level - 1, &wsm.active_map);
134 
135 	}
136 
137 	if (!list_empty(&wsm.lru_list))
138 		mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
139 
140 	spin_unlock(&wsm.lock);
141 }
142 
143 /*
144  * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds
145  *
146  * It is possible based on the level configurations that a higher level
147  * workspace uses less memory than a lower level workspace.  In order to reuse
148  * workspaces, this must be made a monotonic relationship.  This precomputes
149  * the required memory for each level and enforces the monotonicity between
150  * level and memory required.
151  */
152 static void zstd_calc_ws_mem_sizes(void)
153 {
154 	size_t max_size = 0;
155 	unsigned int level;
156 
157 	for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
158 		ZSTD_parameters params =
159 			zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
160 		size_t level_size =
161 			max_t(size_t,
162 			      ZSTD_CStreamWorkspaceBound(params.cParams),
163 			      ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT));
164 
165 		max_size = max_t(size_t, max_size, level_size);
166 		zstd_ws_mem_sizes[level - 1] = max_size;
167 	}
168 }
169 
170 static void zstd_init_workspace_manager(void)
171 {
172 	struct list_head *ws;
173 	int i;
174 
175 	zstd_calc_ws_mem_sizes();
176 
177 	wsm.ops = &btrfs_zstd_compress;
178 	spin_lock_init(&wsm.lock);
179 	init_waitqueue_head(&wsm.wait);
180 	timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
181 
182 	INIT_LIST_HEAD(&wsm.lru_list);
183 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
184 		INIT_LIST_HEAD(&wsm.idle_ws[i]);
185 
186 	ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
187 	if (IS_ERR(ws)) {
188 		pr_warn(
189 		"BTRFS: cannot preallocate zstd compression workspace\n");
190 	} else {
191 		set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
192 		list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
193 	}
194 }
195 
196 static void zstd_cleanup_workspace_manager(void)
197 {
198 	struct workspace *workspace;
199 	int i;
200 
201 	spin_lock(&wsm.lock);
202 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
203 		while (!list_empty(&wsm.idle_ws[i])) {
204 			workspace = container_of(wsm.idle_ws[i].next,
205 						 struct workspace, list);
206 			list_del(&workspace->list);
207 			list_del(&workspace->lru_list);
208 			zstd_free_workspace(&workspace->list);
209 		}
210 	}
211 	spin_unlock(&wsm.lock);
212 
213 	del_timer_sync(&wsm.timer);
214 }
215 
216 /*
217  * zstd_find_workspace - find workspace
218  * @level: compression level
219  *
220  * This iterates over the set bits in the active_map beginning at the requested
221  * compression level.  This lets us utilize already allocated workspaces before
222  * allocating a new one.  If the workspace is of a larger size, it is used, but
223  * the place in the lru_list and last_used times are not updated.  This is to
224  * offer the opportunity to reclaim the workspace in favor of allocating an
225  * appropriately sized one in the future.
226  */
227 static struct list_head *zstd_find_workspace(unsigned int level)
228 {
229 	struct list_head *ws;
230 	struct workspace *workspace;
231 	int i = level - 1;
232 
233 	spin_lock(&wsm.lock);
234 	for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
235 		if (!list_empty(&wsm.idle_ws[i])) {
236 			ws = wsm.idle_ws[i].next;
237 			workspace = list_to_workspace(ws);
238 			list_del_init(ws);
239 			/* keep its place if it's a lower level using this */
240 			workspace->req_level = level;
241 			if (level == workspace->level)
242 				list_del(&workspace->lru_list);
243 			if (list_empty(&wsm.idle_ws[i]))
244 				clear_bit(i, &wsm.active_map);
245 			spin_unlock(&wsm.lock);
246 			return ws;
247 		}
248 	}
249 	spin_unlock(&wsm.lock);
250 
251 	return NULL;
252 }
253 
254 /*
255  * zstd_get_workspace - zstd's get_workspace
256  * @level: compression level
257  *
258  * If @level is 0, then any compression level can be used.  Therefore, we begin
259  * scanning from 1.  We first scan through possible workspaces and then after
260  * attempt to allocate a new workspace.  If we fail to allocate one due to
261  * memory pressure, go to sleep waiting for the max level workspace to free up.
262  */
263 static struct list_head *zstd_get_workspace(unsigned int level)
264 {
265 	struct list_head *ws;
266 	unsigned int nofs_flag;
267 
268 	/* level == 0 means we can use any workspace */
269 	if (!level)
270 		level = 1;
271 
272 again:
273 	ws = zstd_find_workspace(level);
274 	if (ws)
275 		return ws;
276 
277 	nofs_flag = memalloc_nofs_save();
278 	ws = zstd_alloc_workspace(level);
279 	memalloc_nofs_restore(nofs_flag);
280 
281 	if (IS_ERR(ws)) {
282 		DEFINE_WAIT(wait);
283 
284 		prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
285 		schedule();
286 		finish_wait(&wsm.wait, &wait);
287 
288 		goto again;
289 	}
290 
291 	return ws;
292 }
293 
294 /*
295  * zstd_put_workspace - zstd put_workspace
296  * @ws: list_head for the workspace
297  *
298  * When putting back a workspace, we only need to update the LRU if we are of
299  * the requested compression level.  Here is where we continue to protect the
300  * max level workspace or update last_used accordingly.  If the reclaim timer
301  * isn't set, it is also set here.  Only the max level workspace tries and wakes
302  * up waiting workspaces.
303  */
304 static void zstd_put_workspace(struct list_head *ws)
305 {
306 	struct workspace *workspace = list_to_workspace(ws);
307 
308 	spin_lock(&wsm.lock);
309 
310 	/* A node is only taken off the lru if we are the corresponding level */
311 	if (workspace->req_level == workspace->level) {
312 		/* Hide a max level workspace from reclaim */
313 		if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
314 			INIT_LIST_HEAD(&workspace->lru_list);
315 		} else {
316 			workspace->last_used = jiffies;
317 			list_add(&workspace->lru_list, &wsm.lru_list);
318 			if (!timer_pending(&wsm.timer))
319 				mod_timer(&wsm.timer,
320 					  jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
321 		}
322 	}
323 
324 	set_bit(workspace->level - 1, &wsm.active_map);
325 	list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
326 	workspace->req_level = 0;
327 
328 	spin_unlock(&wsm.lock);
329 
330 	if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
331 		cond_wake_up(&wsm.wait);
332 }
333 
334 static void zstd_free_workspace(struct list_head *ws)
335 {
336 	struct workspace *workspace = list_entry(ws, struct workspace, list);
337 
338 	kvfree(workspace->mem);
339 	kfree(workspace->buf);
340 	kfree(workspace);
341 }
342 
343 static struct list_head *zstd_alloc_workspace(unsigned int level)
344 {
345 	struct workspace *workspace;
346 
347 	workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
348 	if (!workspace)
349 		return ERR_PTR(-ENOMEM);
350 
351 	workspace->size = zstd_ws_mem_sizes[level - 1];
352 	workspace->level = level;
353 	workspace->req_level = level;
354 	workspace->last_used = jiffies;
355 	workspace->mem = kvmalloc(workspace->size, GFP_KERNEL);
356 	workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
357 	if (!workspace->mem || !workspace->buf)
358 		goto fail;
359 
360 	INIT_LIST_HEAD(&workspace->list);
361 	INIT_LIST_HEAD(&workspace->lru_list);
362 
363 	return &workspace->list;
364 fail:
365 	zstd_free_workspace(&workspace->list);
366 	return ERR_PTR(-ENOMEM);
367 }
368 
369 static int zstd_compress_pages(struct list_head *ws,
370 		struct address_space *mapping,
371 		u64 start,
372 		struct page **pages,
373 		unsigned long *out_pages,
374 		unsigned long *total_in,
375 		unsigned long *total_out)
376 {
377 	struct workspace *workspace = list_entry(ws, struct workspace, list);
378 	ZSTD_CStream *stream;
379 	int ret = 0;
380 	int nr_pages = 0;
381 	struct page *in_page = NULL;  /* The current page to read */
382 	struct page *out_page = NULL; /* The current page to write to */
383 	unsigned long tot_in = 0;
384 	unsigned long tot_out = 0;
385 	unsigned long len = *total_out;
386 	const unsigned long nr_dest_pages = *out_pages;
387 	unsigned long max_out = nr_dest_pages * PAGE_SIZE;
388 	ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
389 							   len);
390 
391 	*out_pages = 0;
392 	*total_out = 0;
393 	*total_in = 0;
394 
395 	/* Initialize the stream */
396 	stream = ZSTD_initCStream(params, len, workspace->mem,
397 			workspace->size);
398 	if (!stream) {
399 		pr_warn("BTRFS: ZSTD_initCStream failed\n");
400 		ret = -EIO;
401 		goto out;
402 	}
403 
404 	/* map in the first page of input data */
405 	in_page = find_get_page(mapping, start >> PAGE_SHIFT);
406 	workspace->in_buf.src = kmap(in_page);
407 	workspace->in_buf.pos = 0;
408 	workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
409 
410 
411 	/* Allocate and map in the output buffer */
412 	out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
413 	if (out_page == NULL) {
414 		ret = -ENOMEM;
415 		goto out;
416 	}
417 	pages[nr_pages++] = out_page;
418 	workspace->out_buf.dst = kmap(out_page);
419 	workspace->out_buf.pos = 0;
420 	workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
421 
422 	while (1) {
423 		size_t ret2;
424 
425 		ret2 = ZSTD_compressStream(stream, &workspace->out_buf,
426 				&workspace->in_buf);
427 		if (ZSTD_isError(ret2)) {
428 			pr_debug("BTRFS: ZSTD_compressStream returned %d\n",
429 					ZSTD_getErrorCode(ret2));
430 			ret = -EIO;
431 			goto out;
432 		}
433 
434 		/* Check to see if we are making it bigger */
435 		if (tot_in + workspace->in_buf.pos > 8192 &&
436 				tot_in + workspace->in_buf.pos <
437 				tot_out + workspace->out_buf.pos) {
438 			ret = -E2BIG;
439 			goto out;
440 		}
441 
442 		/* We've reached the end of our output range */
443 		if (workspace->out_buf.pos >= max_out) {
444 			tot_out += workspace->out_buf.pos;
445 			ret = -E2BIG;
446 			goto out;
447 		}
448 
449 		/* Check if we need more output space */
450 		if (workspace->out_buf.pos == workspace->out_buf.size) {
451 			tot_out += PAGE_SIZE;
452 			max_out -= PAGE_SIZE;
453 			kunmap(out_page);
454 			if (nr_pages == nr_dest_pages) {
455 				out_page = NULL;
456 				ret = -E2BIG;
457 				goto out;
458 			}
459 			out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
460 			if (out_page == NULL) {
461 				ret = -ENOMEM;
462 				goto out;
463 			}
464 			pages[nr_pages++] = out_page;
465 			workspace->out_buf.dst = kmap(out_page);
466 			workspace->out_buf.pos = 0;
467 			workspace->out_buf.size = min_t(size_t, max_out,
468 							PAGE_SIZE);
469 		}
470 
471 		/* We've reached the end of the input */
472 		if (workspace->in_buf.pos >= len) {
473 			tot_in += workspace->in_buf.pos;
474 			break;
475 		}
476 
477 		/* Check if we need more input */
478 		if (workspace->in_buf.pos == workspace->in_buf.size) {
479 			tot_in += PAGE_SIZE;
480 			kunmap(in_page);
481 			put_page(in_page);
482 
483 			start += PAGE_SIZE;
484 			len -= PAGE_SIZE;
485 			in_page = find_get_page(mapping, start >> PAGE_SHIFT);
486 			workspace->in_buf.src = kmap(in_page);
487 			workspace->in_buf.pos = 0;
488 			workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
489 		}
490 	}
491 	while (1) {
492 		size_t ret2;
493 
494 		ret2 = ZSTD_endStream(stream, &workspace->out_buf);
495 		if (ZSTD_isError(ret2)) {
496 			pr_debug("BTRFS: ZSTD_endStream returned %d\n",
497 					ZSTD_getErrorCode(ret2));
498 			ret = -EIO;
499 			goto out;
500 		}
501 		if (ret2 == 0) {
502 			tot_out += workspace->out_buf.pos;
503 			break;
504 		}
505 		if (workspace->out_buf.pos >= max_out) {
506 			tot_out += workspace->out_buf.pos;
507 			ret = -E2BIG;
508 			goto out;
509 		}
510 
511 		tot_out += PAGE_SIZE;
512 		max_out -= PAGE_SIZE;
513 		kunmap(out_page);
514 		if (nr_pages == nr_dest_pages) {
515 			out_page = NULL;
516 			ret = -E2BIG;
517 			goto out;
518 		}
519 		out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
520 		if (out_page == NULL) {
521 			ret = -ENOMEM;
522 			goto out;
523 		}
524 		pages[nr_pages++] = out_page;
525 		workspace->out_buf.dst = kmap(out_page);
526 		workspace->out_buf.pos = 0;
527 		workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
528 	}
529 
530 	if (tot_out >= tot_in) {
531 		ret = -E2BIG;
532 		goto out;
533 	}
534 
535 	ret = 0;
536 	*total_in = tot_in;
537 	*total_out = tot_out;
538 out:
539 	*out_pages = nr_pages;
540 	/* Cleanup */
541 	if (in_page) {
542 		kunmap(in_page);
543 		put_page(in_page);
544 	}
545 	if (out_page)
546 		kunmap(out_page);
547 	return ret;
548 }
549 
550 static int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
551 {
552 	struct workspace *workspace = list_entry(ws, struct workspace, list);
553 	struct page **pages_in = cb->compressed_pages;
554 	u64 disk_start = cb->start;
555 	struct bio *orig_bio = cb->orig_bio;
556 	size_t srclen = cb->compressed_len;
557 	ZSTD_DStream *stream;
558 	int ret = 0;
559 	unsigned long page_in_index = 0;
560 	unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
561 	unsigned long buf_start;
562 	unsigned long total_out = 0;
563 
564 	stream = ZSTD_initDStream(
565 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
566 	if (!stream) {
567 		pr_debug("BTRFS: ZSTD_initDStream failed\n");
568 		ret = -EIO;
569 		goto done;
570 	}
571 
572 	workspace->in_buf.src = kmap(pages_in[page_in_index]);
573 	workspace->in_buf.pos = 0;
574 	workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
575 
576 	workspace->out_buf.dst = workspace->buf;
577 	workspace->out_buf.pos = 0;
578 	workspace->out_buf.size = PAGE_SIZE;
579 
580 	while (1) {
581 		size_t ret2;
582 
583 		ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
584 				&workspace->in_buf);
585 		if (ZSTD_isError(ret2)) {
586 			pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
587 					ZSTD_getErrorCode(ret2));
588 			ret = -EIO;
589 			goto done;
590 		}
591 		buf_start = total_out;
592 		total_out += workspace->out_buf.pos;
593 		workspace->out_buf.pos = 0;
594 
595 		ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
596 				buf_start, total_out, disk_start, orig_bio);
597 		if (ret == 0)
598 			break;
599 
600 		if (workspace->in_buf.pos >= srclen)
601 			break;
602 
603 		/* Check if we've hit the end of a frame */
604 		if (ret2 == 0)
605 			break;
606 
607 		if (workspace->in_buf.pos == workspace->in_buf.size) {
608 			kunmap(pages_in[page_in_index++]);
609 			if (page_in_index >= total_pages_in) {
610 				workspace->in_buf.src = NULL;
611 				ret = -EIO;
612 				goto done;
613 			}
614 			srclen -= PAGE_SIZE;
615 			workspace->in_buf.src = kmap(pages_in[page_in_index]);
616 			workspace->in_buf.pos = 0;
617 			workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
618 		}
619 	}
620 	ret = 0;
621 	zero_fill_bio(orig_bio);
622 done:
623 	if (workspace->in_buf.src)
624 		kunmap(pages_in[page_in_index]);
625 	return ret;
626 }
627 
628 static int zstd_decompress(struct list_head *ws, unsigned char *data_in,
629 		struct page *dest_page,
630 		unsigned long start_byte,
631 		size_t srclen, size_t destlen)
632 {
633 	struct workspace *workspace = list_entry(ws, struct workspace, list);
634 	ZSTD_DStream *stream;
635 	int ret = 0;
636 	size_t ret2;
637 	unsigned long total_out = 0;
638 	unsigned long pg_offset = 0;
639 	char *kaddr;
640 
641 	stream = ZSTD_initDStream(
642 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
643 	if (!stream) {
644 		pr_warn("BTRFS: ZSTD_initDStream failed\n");
645 		ret = -EIO;
646 		goto finish;
647 	}
648 
649 	destlen = min_t(size_t, destlen, PAGE_SIZE);
650 
651 	workspace->in_buf.src = data_in;
652 	workspace->in_buf.pos = 0;
653 	workspace->in_buf.size = srclen;
654 
655 	workspace->out_buf.dst = workspace->buf;
656 	workspace->out_buf.pos = 0;
657 	workspace->out_buf.size = PAGE_SIZE;
658 
659 	ret2 = 1;
660 	while (pg_offset < destlen
661 	       && workspace->in_buf.pos < workspace->in_buf.size) {
662 		unsigned long buf_start;
663 		unsigned long buf_offset;
664 		unsigned long bytes;
665 
666 		/* Check if the frame is over and we still need more input */
667 		if (ret2 == 0) {
668 			pr_debug("BTRFS: ZSTD_decompressStream ended early\n");
669 			ret = -EIO;
670 			goto finish;
671 		}
672 		ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
673 				&workspace->in_buf);
674 		if (ZSTD_isError(ret2)) {
675 			pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
676 					ZSTD_getErrorCode(ret2));
677 			ret = -EIO;
678 			goto finish;
679 		}
680 
681 		buf_start = total_out;
682 		total_out += workspace->out_buf.pos;
683 		workspace->out_buf.pos = 0;
684 
685 		if (total_out <= start_byte)
686 			continue;
687 
688 		if (total_out > start_byte && buf_start < start_byte)
689 			buf_offset = start_byte - buf_start;
690 		else
691 			buf_offset = 0;
692 
693 		bytes = min_t(unsigned long, destlen - pg_offset,
694 				workspace->out_buf.size - buf_offset);
695 
696 		kaddr = kmap_atomic(dest_page);
697 		memcpy(kaddr + pg_offset, workspace->out_buf.dst + buf_offset,
698 				bytes);
699 		kunmap_atomic(kaddr);
700 
701 		pg_offset += bytes;
702 	}
703 	ret = 0;
704 finish:
705 	if (pg_offset < destlen) {
706 		kaddr = kmap_atomic(dest_page);
707 		memset(kaddr + pg_offset, 0, destlen - pg_offset);
708 		kunmap_atomic(kaddr);
709 	}
710 	return ret;
711 }
712 
713 static unsigned int zstd_set_level(unsigned int level)
714 {
715 	if (!level)
716 		return ZSTD_BTRFS_DEFAULT_LEVEL;
717 
718 	return min_t(unsigned int, level, ZSTD_BTRFS_MAX_LEVEL);
719 }
720 
721 const struct btrfs_compress_op btrfs_zstd_compress = {
722 	.init_workspace_manager = zstd_init_workspace_manager,
723 	.cleanup_workspace_manager = zstd_cleanup_workspace_manager,
724 	.get_workspace = zstd_get_workspace,
725 	.put_workspace = zstd_put_workspace,
726 	.alloc_workspace = zstd_alloc_workspace,
727 	.free_workspace = zstd_free_workspace,
728 	.compress_pages = zstd_compress_pages,
729 	.decompress_bio = zstd_decompress_bio,
730 	.decompress = zstd_decompress,
731 	.set_level = zstd_set_level,
732 };
733