1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-present, Facebook, Inc. 4 * All rights reserved. 5 * 6 */ 7 8 #include <linux/bio.h> 9 #include <linux/bitmap.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/mm.h> 14 #include <linux/sched/mm.h> 15 #include <linux/pagemap.h> 16 #include <linux/refcount.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/zstd.h> 20 #include "misc.h" 21 #include "compression.h" 22 #include "ctree.h" 23 24 #define ZSTD_BTRFS_MAX_WINDOWLOG 17 25 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG) 26 #define ZSTD_BTRFS_DEFAULT_LEVEL 3 27 #define ZSTD_BTRFS_MAX_LEVEL 15 28 /* 307s to avoid pathologically clashing with transaction commit */ 29 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ) 30 31 static zstd_parameters zstd_get_btrfs_parameters(unsigned int level, 32 size_t src_len) 33 { 34 zstd_parameters params = zstd_get_params(level, src_len); 35 36 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG) 37 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG; 38 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT); 39 return params; 40 } 41 42 struct workspace { 43 void *mem; 44 size_t size; 45 char *buf; 46 unsigned int level; 47 unsigned int req_level; 48 unsigned long last_used; /* jiffies */ 49 struct list_head list; 50 struct list_head lru_list; 51 zstd_in_buffer in_buf; 52 zstd_out_buffer out_buf; 53 }; 54 55 /* 56 * Zstd Workspace Management 57 * 58 * Zstd workspaces have different memory requirements depending on the level. 59 * The zstd workspaces are managed by having individual lists for each level 60 * and a global lru. Forward progress is maintained by protecting a max level 61 * workspace. 62 * 63 * Getting a workspace is done by using the bitmap to identify the levels that 64 * have available workspaces and scans up. This lets us recycle higher level 65 * workspaces because of the monotonic memory guarantee. A workspace's 66 * last_used is only updated if it is being used by the corresponding memory 67 * level. Putting a workspace involves adding it back to the appropriate places 68 * and adding it back to the lru if necessary. 69 * 70 * A timer is used to reclaim workspaces if they have not been used for 71 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around. 72 * The upper bound is provided by the workqueue limit which is 2 (percpu limit). 73 */ 74 75 struct zstd_workspace_manager { 76 const struct btrfs_compress_op *ops; 77 spinlock_t lock; 78 struct list_head lru_list; 79 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL]; 80 unsigned long active_map; 81 wait_queue_head_t wait; 82 struct timer_list timer; 83 }; 84 85 static struct zstd_workspace_manager wsm; 86 87 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL]; 88 89 static inline struct workspace *list_to_workspace(struct list_head *list) 90 { 91 return container_of(list, struct workspace, list); 92 } 93 94 void zstd_free_workspace(struct list_head *ws); 95 struct list_head *zstd_alloc_workspace(unsigned int level); 96 97 /** 98 * Timer callback to free unused workspaces. 99 * 100 * @t: timer 101 * 102 * This scans the lru_list and attempts to reclaim any workspace that hasn't 103 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES. 104 * 105 * The context is softirq and does not need the _bh locking primitives. 106 */ 107 static void zstd_reclaim_timer_fn(struct timer_list *timer) 108 { 109 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES; 110 struct list_head *pos, *next; 111 112 spin_lock(&wsm.lock); 113 114 if (list_empty(&wsm.lru_list)) { 115 spin_unlock(&wsm.lock); 116 return; 117 } 118 119 list_for_each_prev_safe(pos, next, &wsm.lru_list) { 120 struct workspace *victim = container_of(pos, struct workspace, 121 lru_list); 122 unsigned int level; 123 124 if (time_after(victim->last_used, reclaim_threshold)) 125 break; 126 127 /* workspace is in use */ 128 if (victim->req_level) 129 continue; 130 131 level = victim->level; 132 list_del(&victim->lru_list); 133 list_del(&victim->list); 134 zstd_free_workspace(&victim->list); 135 136 if (list_empty(&wsm.idle_ws[level - 1])) 137 clear_bit(level - 1, &wsm.active_map); 138 139 } 140 141 if (!list_empty(&wsm.lru_list)) 142 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 143 144 spin_unlock(&wsm.lock); 145 } 146 147 /* 148 * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds 149 * 150 * It is possible based on the level configurations that a higher level 151 * workspace uses less memory than a lower level workspace. In order to reuse 152 * workspaces, this must be made a monotonic relationship. This precomputes 153 * the required memory for each level and enforces the monotonicity between 154 * level and memory required. 155 */ 156 static void zstd_calc_ws_mem_sizes(void) 157 { 158 size_t max_size = 0; 159 unsigned int level; 160 161 for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) { 162 zstd_parameters params = 163 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT); 164 size_t level_size = 165 max_t(size_t, 166 zstd_cstream_workspace_bound(¶ms.cParams), 167 zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT)); 168 169 max_size = max_t(size_t, max_size, level_size); 170 zstd_ws_mem_sizes[level - 1] = max_size; 171 } 172 } 173 174 void zstd_init_workspace_manager(void) 175 { 176 struct list_head *ws; 177 int i; 178 179 zstd_calc_ws_mem_sizes(); 180 181 wsm.ops = &btrfs_zstd_compress; 182 spin_lock_init(&wsm.lock); 183 init_waitqueue_head(&wsm.wait); 184 timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0); 185 186 INIT_LIST_HEAD(&wsm.lru_list); 187 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) 188 INIT_LIST_HEAD(&wsm.idle_ws[i]); 189 190 ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL); 191 if (IS_ERR(ws)) { 192 pr_warn( 193 "BTRFS: cannot preallocate zstd compression workspace\n"); 194 } else { 195 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map); 196 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]); 197 } 198 } 199 200 void zstd_cleanup_workspace_manager(void) 201 { 202 struct workspace *workspace; 203 int i; 204 205 spin_lock_bh(&wsm.lock); 206 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) { 207 while (!list_empty(&wsm.idle_ws[i])) { 208 workspace = container_of(wsm.idle_ws[i].next, 209 struct workspace, list); 210 list_del(&workspace->list); 211 list_del(&workspace->lru_list); 212 zstd_free_workspace(&workspace->list); 213 } 214 } 215 spin_unlock_bh(&wsm.lock); 216 217 del_timer_sync(&wsm.timer); 218 } 219 220 /* 221 * zstd_find_workspace - find workspace 222 * @level: compression level 223 * 224 * This iterates over the set bits in the active_map beginning at the requested 225 * compression level. This lets us utilize already allocated workspaces before 226 * allocating a new one. If the workspace is of a larger size, it is used, but 227 * the place in the lru_list and last_used times are not updated. This is to 228 * offer the opportunity to reclaim the workspace in favor of allocating an 229 * appropriately sized one in the future. 230 */ 231 static struct list_head *zstd_find_workspace(unsigned int level) 232 { 233 struct list_head *ws; 234 struct workspace *workspace; 235 int i = level - 1; 236 237 spin_lock_bh(&wsm.lock); 238 for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) { 239 if (!list_empty(&wsm.idle_ws[i])) { 240 ws = wsm.idle_ws[i].next; 241 workspace = list_to_workspace(ws); 242 list_del_init(ws); 243 /* keep its place if it's a lower level using this */ 244 workspace->req_level = level; 245 if (level == workspace->level) 246 list_del(&workspace->lru_list); 247 if (list_empty(&wsm.idle_ws[i])) 248 clear_bit(i, &wsm.active_map); 249 spin_unlock_bh(&wsm.lock); 250 return ws; 251 } 252 } 253 spin_unlock_bh(&wsm.lock); 254 255 return NULL; 256 } 257 258 /* 259 * zstd_get_workspace - zstd's get_workspace 260 * @level: compression level 261 * 262 * If @level is 0, then any compression level can be used. Therefore, we begin 263 * scanning from 1. We first scan through possible workspaces and then after 264 * attempt to allocate a new workspace. If we fail to allocate one due to 265 * memory pressure, go to sleep waiting for the max level workspace to free up. 266 */ 267 struct list_head *zstd_get_workspace(unsigned int level) 268 { 269 struct list_head *ws; 270 unsigned int nofs_flag; 271 272 /* level == 0 means we can use any workspace */ 273 if (!level) 274 level = 1; 275 276 again: 277 ws = zstd_find_workspace(level); 278 if (ws) 279 return ws; 280 281 nofs_flag = memalloc_nofs_save(); 282 ws = zstd_alloc_workspace(level); 283 memalloc_nofs_restore(nofs_flag); 284 285 if (IS_ERR(ws)) { 286 DEFINE_WAIT(wait); 287 288 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE); 289 schedule(); 290 finish_wait(&wsm.wait, &wait); 291 292 goto again; 293 } 294 295 return ws; 296 } 297 298 /* 299 * zstd_put_workspace - zstd put_workspace 300 * @ws: list_head for the workspace 301 * 302 * When putting back a workspace, we only need to update the LRU if we are of 303 * the requested compression level. Here is where we continue to protect the 304 * max level workspace or update last_used accordingly. If the reclaim timer 305 * isn't set, it is also set here. Only the max level workspace tries and wakes 306 * up waiting workspaces. 307 */ 308 void zstd_put_workspace(struct list_head *ws) 309 { 310 struct workspace *workspace = list_to_workspace(ws); 311 312 spin_lock_bh(&wsm.lock); 313 314 /* A node is only taken off the lru if we are the corresponding level */ 315 if (workspace->req_level == workspace->level) { 316 /* Hide a max level workspace from reclaim */ 317 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) { 318 INIT_LIST_HEAD(&workspace->lru_list); 319 } else { 320 workspace->last_used = jiffies; 321 list_add(&workspace->lru_list, &wsm.lru_list); 322 if (!timer_pending(&wsm.timer)) 323 mod_timer(&wsm.timer, 324 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 325 } 326 } 327 328 set_bit(workspace->level - 1, &wsm.active_map); 329 list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]); 330 workspace->req_level = 0; 331 332 spin_unlock_bh(&wsm.lock); 333 334 if (workspace->level == ZSTD_BTRFS_MAX_LEVEL) 335 cond_wake_up(&wsm.wait); 336 } 337 338 void zstd_free_workspace(struct list_head *ws) 339 { 340 struct workspace *workspace = list_entry(ws, struct workspace, list); 341 342 kvfree(workspace->mem); 343 kfree(workspace->buf); 344 kfree(workspace); 345 } 346 347 struct list_head *zstd_alloc_workspace(unsigned int level) 348 { 349 struct workspace *workspace; 350 351 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); 352 if (!workspace) 353 return ERR_PTR(-ENOMEM); 354 355 workspace->size = zstd_ws_mem_sizes[level - 1]; 356 workspace->level = level; 357 workspace->req_level = level; 358 workspace->last_used = jiffies; 359 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL); 360 workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 361 if (!workspace->mem || !workspace->buf) 362 goto fail; 363 364 INIT_LIST_HEAD(&workspace->list); 365 INIT_LIST_HEAD(&workspace->lru_list); 366 367 return &workspace->list; 368 fail: 369 zstd_free_workspace(&workspace->list); 370 return ERR_PTR(-ENOMEM); 371 } 372 373 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping, 374 u64 start, struct page **pages, unsigned long *out_pages, 375 unsigned long *total_in, unsigned long *total_out) 376 { 377 struct workspace *workspace = list_entry(ws, struct workspace, list); 378 zstd_cstream *stream; 379 int ret = 0; 380 int nr_pages = 0; 381 struct page *in_page = NULL; /* The current page to read */ 382 struct page *out_page = NULL; /* The current page to write to */ 383 unsigned long tot_in = 0; 384 unsigned long tot_out = 0; 385 unsigned long len = *total_out; 386 const unsigned long nr_dest_pages = *out_pages; 387 unsigned long max_out = nr_dest_pages * PAGE_SIZE; 388 zstd_parameters params = zstd_get_btrfs_parameters(workspace->req_level, 389 len); 390 391 *out_pages = 0; 392 *total_out = 0; 393 *total_in = 0; 394 395 /* Initialize the stream */ 396 stream = zstd_init_cstream(¶ms, len, workspace->mem, 397 workspace->size); 398 if (!stream) { 399 pr_warn("BTRFS: zstd_init_cstream failed\n"); 400 ret = -EIO; 401 goto out; 402 } 403 404 /* map in the first page of input data */ 405 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 406 workspace->in_buf.src = kmap(in_page); 407 workspace->in_buf.pos = 0; 408 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 409 410 411 /* Allocate and map in the output buffer */ 412 out_page = alloc_page(GFP_NOFS); 413 if (out_page == NULL) { 414 ret = -ENOMEM; 415 goto out; 416 } 417 pages[nr_pages++] = out_page; 418 workspace->out_buf.dst = kmap(out_page); 419 workspace->out_buf.pos = 0; 420 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 421 422 while (1) { 423 size_t ret2; 424 425 ret2 = zstd_compress_stream(stream, &workspace->out_buf, 426 &workspace->in_buf); 427 if (zstd_is_error(ret2)) { 428 pr_debug("BTRFS: zstd_compress_stream returned %d\n", 429 zstd_get_error_code(ret2)); 430 ret = -EIO; 431 goto out; 432 } 433 434 /* Check to see if we are making it bigger */ 435 if (tot_in + workspace->in_buf.pos > 8192 && 436 tot_in + workspace->in_buf.pos < 437 tot_out + workspace->out_buf.pos) { 438 ret = -E2BIG; 439 goto out; 440 } 441 442 /* We've reached the end of our output range */ 443 if (workspace->out_buf.pos >= max_out) { 444 tot_out += workspace->out_buf.pos; 445 ret = -E2BIG; 446 goto out; 447 } 448 449 /* Check if we need more output space */ 450 if (workspace->out_buf.pos == workspace->out_buf.size) { 451 tot_out += PAGE_SIZE; 452 max_out -= PAGE_SIZE; 453 kunmap(out_page); 454 if (nr_pages == nr_dest_pages) { 455 out_page = NULL; 456 ret = -E2BIG; 457 goto out; 458 } 459 out_page = alloc_page(GFP_NOFS); 460 if (out_page == NULL) { 461 ret = -ENOMEM; 462 goto out; 463 } 464 pages[nr_pages++] = out_page; 465 workspace->out_buf.dst = kmap(out_page); 466 workspace->out_buf.pos = 0; 467 workspace->out_buf.size = min_t(size_t, max_out, 468 PAGE_SIZE); 469 } 470 471 /* We've reached the end of the input */ 472 if (workspace->in_buf.pos >= len) { 473 tot_in += workspace->in_buf.pos; 474 break; 475 } 476 477 /* Check if we need more input */ 478 if (workspace->in_buf.pos == workspace->in_buf.size) { 479 tot_in += PAGE_SIZE; 480 kunmap(in_page); 481 put_page(in_page); 482 483 start += PAGE_SIZE; 484 len -= PAGE_SIZE; 485 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 486 workspace->in_buf.src = kmap(in_page); 487 workspace->in_buf.pos = 0; 488 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 489 } 490 } 491 while (1) { 492 size_t ret2; 493 494 ret2 = zstd_end_stream(stream, &workspace->out_buf); 495 if (zstd_is_error(ret2)) { 496 pr_debug("BTRFS: zstd_end_stream returned %d\n", 497 zstd_get_error_code(ret2)); 498 ret = -EIO; 499 goto out; 500 } 501 if (ret2 == 0) { 502 tot_out += workspace->out_buf.pos; 503 break; 504 } 505 if (workspace->out_buf.pos >= max_out) { 506 tot_out += workspace->out_buf.pos; 507 ret = -E2BIG; 508 goto out; 509 } 510 511 tot_out += PAGE_SIZE; 512 max_out -= PAGE_SIZE; 513 kunmap(out_page); 514 if (nr_pages == nr_dest_pages) { 515 out_page = NULL; 516 ret = -E2BIG; 517 goto out; 518 } 519 out_page = alloc_page(GFP_NOFS); 520 if (out_page == NULL) { 521 ret = -ENOMEM; 522 goto out; 523 } 524 pages[nr_pages++] = out_page; 525 workspace->out_buf.dst = kmap(out_page); 526 workspace->out_buf.pos = 0; 527 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 528 } 529 530 if (tot_out >= tot_in) { 531 ret = -E2BIG; 532 goto out; 533 } 534 535 ret = 0; 536 *total_in = tot_in; 537 *total_out = tot_out; 538 out: 539 *out_pages = nr_pages; 540 /* Cleanup */ 541 if (in_page) { 542 kunmap(in_page); 543 put_page(in_page); 544 } 545 if (out_page) 546 kunmap(out_page); 547 return ret; 548 } 549 550 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb) 551 { 552 struct workspace *workspace = list_entry(ws, struct workspace, list); 553 struct page **pages_in = cb->compressed_pages; 554 size_t srclen = cb->compressed_len; 555 zstd_dstream *stream; 556 int ret = 0; 557 unsigned long page_in_index = 0; 558 unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE); 559 unsigned long buf_start; 560 unsigned long total_out = 0; 561 562 stream = zstd_init_dstream( 563 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 564 if (!stream) { 565 pr_debug("BTRFS: zstd_init_dstream failed\n"); 566 ret = -EIO; 567 goto done; 568 } 569 570 workspace->in_buf.src = kmap(pages_in[page_in_index]); 571 workspace->in_buf.pos = 0; 572 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 573 574 workspace->out_buf.dst = workspace->buf; 575 workspace->out_buf.pos = 0; 576 workspace->out_buf.size = PAGE_SIZE; 577 578 while (1) { 579 size_t ret2; 580 581 ret2 = zstd_decompress_stream(stream, &workspace->out_buf, 582 &workspace->in_buf); 583 if (zstd_is_error(ret2)) { 584 pr_debug("BTRFS: zstd_decompress_stream returned %d\n", 585 zstd_get_error_code(ret2)); 586 ret = -EIO; 587 goto done; 588 } 589 buf_start = total_out; 590 total_out += workspace->out_buf.pos; 591 workspace->out_buf.pos = 0; 592 593 ret = btrfs_decompress_buf2page(workspace->out_buf.dst, 594 total_out - buf_start, cb, buf_start); 595 if (ret == 0) 596 break; 597 598 if (workspace->in_buf.pos >= srclen) 599 break; 600 601 /* Check if we've hit the end of a frame */ 602 if (ret2 == 0) 603 break; 604 605 if (workspace->in_buf.pos == workspace->in_buf.size) { 606 kunmap(pages_in[page_in_index++]); 607 if (page_in_index >= total_pages_in) { 608 workspace->in_buf.src = NULL; 609 ret = -EIO; 610 goto done; 611 } 612 srclen -= PAGE_SIZE; 613 workspace->in_buf.src = kmap(pages_in[page_in_index]); 614 workspace->in_buf.pos = 0; 615 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 616 } 617 } 618 ret = 0; 619 zero_fill_bio(cb->orig_bio); 620 done: 621 if (workspace->in_buf.src) 622 kunmap(pages_in[page_in_index]); 623 return ret; 624 } 625 626 int zstd_decompress(struct list_head *ws, unsigned char *data_in, 627 struct page *dest_page, unsigned long start_byte, size_t srclen, 628 size_t destlen) 629 { 630 struct workspace *workspace = list_entry(ws, struct workspace, list); 631 zstd_dstream *stream; 632 int ret = 0; 633 size_t ret2; 634 unsigned long total_out = 0; 635 unsigned long pg_offset = 0; 636 637 stream = zstd_init_dstream( 638 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 639 if (!stream) { 640 pr_warn("BTRFS: zstd_init_dstream failed\n"); 641 ret = -EIO; 642 goto finish; 643 } 644 645 destlen = min_t(size_t, destlen, PAGE_SIZE); 646 647 workspace->in_buf.src = data_in; 648 workspace->in_buf.pos = 0; 649 workspace->in_buf.size = srclen; 650 651 workspace->out_buf.dst = workspace->buf; 652 workspace->out_buf.pos = 0; 653 workspace->out_buf.size = PAGE_SIZE; 654 655 ret2 = 1; 656 while (pg_offset < destlen 657 && workspace->in_buf.pos < workspace->in_buf.size) { 658 unsigned long buf_start; 659 unsigned long buf_offset; 660 unsigned long bytes; 661 662 /* Check if the frame is over and we still need more input */ 663 if (ret2 == 0) { 664 pr_debug("BTRFS: zstd_decompress_stream ended early\n"); 665 ret = -EIO; 666 goto finish; 667 } 668 ret2 = zstd_decompress_stream(stream, &workspace->out_buf, 669 &workspace->in_buf); 670 if (zstd_is_error(ret2)) { 671 pr_debug("BTRFS: zstd_decompress_stream returned %d\n", 672 zstd_get_error_code(ret2)); 673 ret = -EIO; 674 goto finish; 675 } 676 677 buf_start = total_out; 678 total_out += workspace->out_buf.pos; 679 workspace->out_buf.pos = 0; 680 681 if (total_out <= start_byte) 682 continue; 683 684 if (total_out > start_byte && buf_start < start_byte) 685 buf_offset = start_byte - buf_start; 686 else 687 buf_offset = 0; 688 689 bytes = min_t(unsigned long, destlen - pg_offset, 690 workspace->out_buf.size - buf_offset); 691 692 memcpy_to_page(dest_page, pg_offset, 693 workspace->out_buf.dst + buf_offset, bytes); 694 695 pg_offset += bytes; 696 } 697 ret = 0; 698 finish: 699 if (pg_offset < destlen) { 700 memzero_page(dest_page, pg_offset, destlen - pg_offset); 701 } 702 return ret; 703 } 704 705 const struct btrfs_compress_op btrfs_zstd_compress = { 706 /* ZSTD uses own workspace manager */ 707 .workspace_manager = NULL, 708 .max_level = ZSTD_BTRFS_MAX_LEVEL, 709 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL, 710 }; 711