1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-present, Facebook, Inc. 4 * All rights reserved. 5 * 6 */ 7 8 #include <linux/bio.h> 9 #include <linux/bitmap.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/mm.h> 14 #include <linux/sched/mm.h> 15 #include <linux/pagemap.h> 16 #include <linux/refcount.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/zstd.h> 20 #include "misc.h" 21 #include "compression.h" 22 #include "ctree.h" 23 24 #define ZSTD_BTRFS_MAX_WINDOWLOG 17 25 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG) 26 #define ZSTD_BTRFS_DEFAULT_LEVEL 3 27 #define ZSTD_BTRFS_MAX_LEVEL 15 28 /* 307s to avoid pathologically clashing with transaction commit */ 29 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ) 30 31 static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level, 32 size_t src_len) 33 { 34 ZSTD_parameters params = ZSTD_getParams(level, src_len, 0); 35 36 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG) 37 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG; 38 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT); 39 return params; 40 } 41 42 struct workspace { 43 void *mem; 44 size_t size; 45 char *buf; 46 unsigned int level; 47 unsigned int req_level; 48 unsigned long last_used; /* jiffies */ 49 struct list_head list; 50 struct list_head lru_list; 51 ZSTD_inBuffer in_buf; 52 ZSTD_outBuffer out_buf; 53 }; 54 55 /* 56 * Zstd Workspace Management 57 * 58 * Zstd workspaces have different memory requirements depending on the level. 59 * The zstd workspaces are managed by having individual lists for each level 60 * and a global lru. Forward progress is maintained by protecting a max level 61 * workspace. 62 * 63 * Getting a workspace is done by using the bitmap to identify the levels that 64 * have available workspaces and scans up. This lets us recycle higher level 65 * workspaces because of the monotonic memory guarantee. A workspace's 66 * last_used is only updated if it is being used by the corresponding memory 67 * level. Putting a workspace involves adding it back to the appropriate places 68 * and adding it back to the lru if necessary. 69 * 70 * A timer is used to reclaim workspaces if they have not been used for 71 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around. 72 * The upper bound is provided by the workqueue limit which is 2 (percpu limit). 73 */ 74 75 struct zstd_workspace_manager { 76 const struct btrfs_compress_op *ops; 77 spinlock_t lock; 78 struct list_head lru_list; 79 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL]; 80 unsigned long active_map; 81 wait_queue_head_t wait; 82 struct timer_list timer; 83 }; 84 85 static struct zstd_workspace_manager wsm; 86 87 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL]; 88 89 static inline struct workspace *list_to_workspace(struct list_head *list) 90 { 91 return container_of(list, struct workspace, list); 92 } 93 94 static void zstd_free_workspace(struct list_head *ws); 95 static struct list_head *zstd_alloc_workspace(unsigned int level); 96 97 /* 98 * zstd_reclaim_timer_fn - reclaim timer 99 * @t: timer 100 * 101 * This scans the lru_list and attempts to reclaim any workspace that hasn't 102 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES. 103 */ 104 static void zstd_reclaim_timer_fn(struct timer_list *timer) 105 { 106 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES; 107 struct list_head *pos, *next; 108 109 spin_lock_bh(&wsm.lock); 110 111 if (list_empty(&wsm.lru_list)) { 112 spin_unlock_bh(&wsm.lock); 113 return; 114 } 115 116 list_for_each_prev_safe(pos, next, &wsm.lru_list) { 117 struct workspace *victim = container_of(pos, struct workspace, 118 lru_list); 119 unsigned int level; 120 121 if (time_after(victim->last_used, reclaim_threshold)) 122 break; 123 124 /* workspace is in use */ 125 if (victim->req_level) 126 continue; 127 128 level = victim->level; 129 list_del(&victim->lru_list); 130 list_del(&victim->list); 131 zstd_free_workspace(&victim->list); 132 133 if (list_empty(&wsm.idle_ws[level - 1])) 134 clear_bit(level - 1, &wsm.active_map); 135 136 } 137 138 if (!list_empty(&wsm.lru_list)) 139 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 140 141 spin_unlock_bh(&wsm.lock); 142 } 143 144 /* 145 * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds 146 * 147 * It is possible based on the level configurations that a higher level 148 * workspace uses less memory than a lower level workspace. In order to reuse 149 * workspaces, this must be made a monotonic relationship. This precomputes 150 * the required memory for each level and enforces the monotonicity between 151 * level and memory required. 152 */ 153 static void zstd_calc_ws_mem_sizes(void) 154 { 155 size_t max_size = 0; 156 unsigned int level; 157 158 for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) { 159 ZSTD_parameters params = 160 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT); 161 size_t level_size = 162 max_t(size_t, 163 ZSTD_CStreamWorkspaceBound(params.cParams), 164 ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT)); 165 166 max_size = max_t(size_t, max_size, level_size); 167 zstd_ws_mem_sizes[level - 1] = max_size; 168 } 169 } 170 171 static void zstd_init_workspace_manager(void) 172 { 173 struct list_head *ws; 174 int i; 175 176 zstd_calc_ws_mem_sizes(); 177 178 wsm.ops = &btrfs_zstd_compress; 179 spin_lock_init(&wsm.lock); 180 init_waitqueue_head(&wsm.wait); 181 timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0); 182 183 INIT_LIST_HEAD(&wsm.lru_list); 184 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) 185 INIT_LIST_HEAD(&wsm.idle_ws[i]); 186 187 ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL); 188 if (IS_ERR(ws)) { 189 pr_warn( 190 "BTRFS: cannot preallocate zstd compression workspace\n"); 191 } else { 192 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map); 193 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]); 194 } 195 } 196 197 static void zstd_cleanup_workspace_manager(void) 198 { 199 struct workspace *workspace; 200 int i; 201 202 spin_lock_bh(&wsm.lock); 203 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) { 204 while (!list_empty(&wsm.idle_ws[i])) { 205 workspace = container_of(wsm.idle_ws[i].next, 206 struct workspace, list); 207 list_del(&workspace->list); 208 list_del(&workspace->lru_list); 209 zstd_free_workspace(&workspace->list); 210 } 211 } 212 spin_unlock_bh(&wsm.lock); 213 214 del_timer_sync(&wsm.timer); 215 } 216 217 /* 218 * zstd_find_workspace - find workspace 219 * @level: compression level 220 * 221 * This iterates over the set bits in the active_map beginning at the requested 222 * compression level. This lets us utilize already allocated workspaces before 223 * allocating a new one. If the workspace is of a larger size, it is used, but 224 * the place in the lru_list and last_used times are not updated. This is to 225 * offer the opportunity to reclaim the workspace in favor of allocating an 226 * appropriately sized one in the future. 227 */ 228 static struct list_head *zstd_find_workspace(unsigned int level) 229 { 230 struct list_head *ws; 231 struct workspace *workspace; 232 int i = level - 1; 233 234 spin_lock_bh(&wsm.lock); 235 for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) { 236 if (!list_empty(&wsm.idle_ws[i])) { 237 ws = wsm.idle_ws[i].next; 238 workspace = list_to_workspace(ws); 239 list_del_init(ws); 240 /* keep its place if it's a lower level using this */ 241 workspace->req_level = level; 242 if (level == workspace->level) 243 list_del(&workspace->lru_list); 244 if (list_empty(&wsm.idle_ws[i])) 245 clear_bit(i, &wsm.active_map); 246 spin_unlock_bh(&wsm.lock); 247 return ws; 248 } 249 } 250 spin_unlock_bh(&wsm.lock); 251 252 return NULL; 253 } 254 255 /* 256 * zstd_get_workspace - zstd's get_workspace 257 * @level: compression level 258 * 259 * If @level is 0, then any compression level can be used. Therefore, we begin 260 * scanning from 1. We first scan through possible workspaces and then after 261 * attempt to allocate a new workspace. If we fail to allocate one due to 262 * memory pressure, go to sleep waiting for the max level workspace to free up. 263 */ 264 static struct list_head *zstd_get_workspace(unsigned int level) 265 { 266 struct list_head *ws; 267 unsigned int nofs_flag; 268 269 /* level == 0 means we can use any workspace */ 270 if (!level) 271 level = 1; 272 273 again: 274 ws = zstd_find_workspace(level); 275 if (ws) 276 return ws; 277 278 nofs_flag = memalloc_nofs_save(); 279 ws = zstd_alloc_workspace(level); 280 memalloc_nofs_restore(nofs_flag); 281 282 if (IS_ERR(ws)) { 283 DEFINE_WAIT(wait); 284 285 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE); 286 schedule(); 287 finish_wait(&wsm.wait, &wait); 288 289 goto again; 290 } 291 292 return ws; 293 } 294 295 /* 296 * zstd_put_workspace - zstd put_workspace 297 * @ws: list_head for the workspace 298 * 299 * When putting back a workspace, we only need to update the LRU if we are of 300 * the requested compression level. Here is where we continue to protect the 301 * max level workspace or update last_used accordingly. If the reclaim timer 302 * isn't set, it is also set here. Only the max level workspace tries and wakes 303 * up waiting workspaces. 304 */ 305 static void zstd_put_workspace(struct list_head *ws) 306 { 307 struct workspace *workspace = list_to_workspace(ws); 308 309 spin_lock_bh(&wsm.lock); 310 311 /* A node is only taken off the lru if we are the corresponding level */ 312 if (workspace->req_level == workspace->level) { 313 /* Hide a max level workspace from reclaim */ 314 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) { 315 INIT_LIST_HEAD(&workspace->lru_list); 316 } else { 317 workspace->last_used = jiffies; 318 list_add(&workspace->lru_list, &wsm.lru_list); 319 if (!timer_pending(&wsm.timer)) 320 mod_timer(&wsm.timer, 321 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 322 } 323 } 324 325 set_bit(workspace->level - 1, &wsm.active_map); 326 list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]); 327 workspace->req_level = 0; 328 329 spin_unlock_bh(&wsm.lock); 330 331 if (workspace->level == ZSTD_BTRFS_MAX_LEVEL) 332 cond_wake_up(&wsm.wait); 333 } 334 335 static void zstd_free_workspace(struct list_head *ws) 336 { 337 struct workspace *workspace = list_entry(ws, struct workspace, list); 338 339 kvfree(workspace->mem); 340 kfree(workspace->buf); 341 kfree(workspace); 342 } 343 344 static struct list_head *zstd_alloc_workspace(unsigned int level) 345 { 346 struct workspace *workspace; 347 348 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); 349 if (!workspace) 350 return ERR_PTR(-ENOMEM); 351 352 workspace->size = zstd_ws_mem_sizes[level - 1]; 353 workspace->level = level; 354 workspace->req_level = level; 355 workspace->last_used = jiffies; 356 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL); 357 workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 358 if (!workspace->mem || !workspace->buf) 359 goto fail; 360 361 INIT_LIST_HEAD(&workspace->list); 362 INIT_LIST_HEAD(&workspace->lru_list); 363 364 return &workspace->list; 365 fail: 366 zstd_free_workspace(&workspace->list); 367 return ERR_PTR(-ENOMEM); 368 } 369 370 static int zstd_compress_pages(struct list_head *ws, 371 struct address_space *mapping, 372 u64 start, 373 struct page **pages, 374 unsigned long *out_pages, 375 unsigned long *total_in, 376 unsigned long *total_out) 377 { 378 struct workspace *workspace = list_entry(ws, struct workspace, list); 379 ZSTD_CStream *stream; 380 int ret = 0; 381 int nr_pages = 0; 382 struct page *in_page = NULL; /* The current page to read */ 383 struct page *out_page = NULL; /* The current page to write to */ 384 unsigned long tot_in = 0; 385 unsigned long tot_out = 0; 386 unsigned long len = *total_out; 387 const unsigned long nr_dest_pages = *out_pages; 388 unsigned long max_out = nr_dest_pages * PAGE_SIZE; 389 ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level, 390 len); 391 392 *out_pages = 0; 393 *total_out = 0; 394 *total_in = 0; 395 396 /* Initialize the stream */ 397 stream = ZSTD_initCStream(params, len, workspace->mem, 398 workspace->size); 399 if (!stream) { 400 pr_warn("BTRFS: ZSTD_initCStream failed\n"); 401 ret = -EIO; 402 goto out; 403 } 404 405 /* map in the first page of input data */ 406 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 407 workspace->in_buf.src = kmap(in_page); 408 workspace->in_buf.pos = 0; 409 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 410 411 412 /* Allocate and map in the output buffer */ 413 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 414 if (out_page == NULL) { 415 ret = -ENOMEM; 416 goto out; 417 } 418 pages[nr_pages++] = out_page; 419 workspace->out_buf.dst = kmap(out_page); 420 workspace->out_buf.pos = 0; 421 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 422 423 while (1) { 424 size_t ret2; 425 426 ret2 = ZSTD_compressStream(stream, &workspace->out_buf, 427 &workspace->in_buf); 428 if (ZSTD_isError(ret2)) { 429 pr_debug("BTRFS: ZSTD_compressStream returned %d\n", 430 ZSTD_getErrorCode(ret2)); 431 ret = -EIO; 432 goto out; 433 } 434 435 /* Check to see if we are making it bigger */ 436 if (tot_in + workspace->in_buf.pos > 8192 && 437 tot_in + workspace->in_buf.pos < 438 tot_out + workspace->out_buf.pos) { 439 ret = -E2BIG; 440 goto out; 441 } 442 443 /* We've reached the end of our output range */ 444 if (workspace->out_buf.pos >= max_out) { 445 tot_out += workspace->out_buf.pos; 446 ret = -E2BIG; 447 goto out; 448 } 449 450 /* Check if we need more output space */ 451 if (workspace->out_buf.pos == workspace->out_buf.size) { 452 tot_out += PAGE_SIZE; 453 max_out -= PAGE_SIZE; 454 kunmap(out_page); 455 if (nr_pages == nr_dest_pages) { 456 out_page = NULL; 457 ret = -E2BIG; 458 goto out; 459 } 460 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 461 if (out_page == NULL) { 462 ret = -ENOMEM; 463 goto out; 464 } 465 pages[nr_pages++] = out_page; 466 workspace->out_buf.dst = kmap(out_page); 467 workspace->out_buf.pos = 0; 468 workspace->out_buf.size = min_t(size_t, max_out, 469 PAGE_SIZE); 470 } 471 472 /* We've reached the end of the input */ 473 if (workspace->in_buf.pos >= len) { 474 tot_in += workspace->in_buf.pos; 475 break; 476 } 477 478 /* Check if we need more input */ 479 if (workspace->in_buf.pos == workspace->in_buf.size) { 480 tot_in += PAGE_SIZE; 481 kunmap(in_page); 482 put_page(in_page); 483 484 start += PAGE_SIZE; 485 len -= PAGE_SIZE; 486 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 487 workspace->in_buf.src = kmap(in_page); 488 workspace->in_buf.pos = 0; 489 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 490 } 491 } 492 while (1) { 493 size_t ret2; 494 495 ret2 = ZSTD_endStream(stream, &workspace->out_buf); 496 if (ZSTD_isError(ret2)) { 497 pr_debug("BTRFS: ZSTD_endStream returned %d\n", 498 ZSTD_getErrorCode(ret2)); 499 ret = -EIO; 500 goto out; 501 } 502 if (ret2 == 0) { 503 tot_out += workspace->out_buf.pos; 504 break; 505 } 506 if (workspace->out_buf.pos >= max_out) { 507 tot_out += workspace->out_buf.pos; 508 ret = -E2BIG; 509 goto out; 510 } 511 512 tot_out += PAGE_SIZE; 513 max_out -= PAGE_SIZE; 514 kunmap(out_page); 515 if (nr_pages == nr_dest_pages) { 516 out_page = NULL; 517 ret = -E2BIG; 518 goto out; 519 } 520 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 521 if (out_page == NULL) { 522 ret = -ENOMEM; 523 goto out; 524 } 525 pages[nr_pages++] = out_page; 526 workspace->out_buf.dst = kmap(out_page); 527 workspace->out_buf.pos = 0; 528 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 529 } 530 531 if (tot_out >= tot_in) { 532 ret = -E2BIG; 533 goto out; 534 } 535 536 ret = 0; 537 *total_in = tot_in; 538 *total_out = tot_out; 539 out: 540 *out_pages = nr_pages; 541 /* Cleanup */ 542 if (in_page) { 543 kunmap(in_page); 544 put_page(in_page); 545 } 546 if (out_page) 547 kunmap(out_page); 548 return ret; 549 } 550 551 static int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb) 552 { 553 struct workspace *workspace = list_entry(ws, struct workspace, list); 554 struct page **pages_in = cb->compressed_pages; 555 u64 disk_start = cb->start; 556 struct bio *orig_bio = cb->orig_bio; 557 size_t srclen = cb->compressed_len; 558 ZSTD_DStream *stream; 559 int ret = 0; 560 unsigned long page_in_index = 0; 561 unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE); 562 unsigned long buf_start; 563 unsigned long total_out = 0; 564 565 stream = ZSTD_initDStream( 566 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 567 if (!stream) { 568 pr_debug("BTRFS: ZSTD_initDStream failed\n"); 569 ret = -EIO; 570 goto done; 571 } 572 573 workspace->in_buf.src = kmap(pages_in[page_in_index]); 574 workspace->in_buf.pos = 0; 575 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 576 577 workspace->out_buf.dst = workspace->buf; 578 workspace->out_buf.pos = 0; 579 workspace->out_buf.size = PAGE_SIZE; 580 581 while (1) { 582 size_t ret2; 583 584 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf, 585 &workspace->in_buf); 586 if (ZSTD_isError(ret2)) { 587 pr_debug("BTRFS: ZSTD_decompressStream returned %d\n", 588 ZSTD_getErrorCode(ret2)); 589 ret = -EIO; 590 goto done; 591 } 592 buf_start = total_out; 593 total_out += workspace->out_buf.pos; 594 workspace->out_buf.pos = 0; 595 596 ret = btrfs_decompress_buf2page(workspace->out_buf.dst, 597 buf_start, total_out, disk_start, orig_bio); 598 if (ret == 0) 599 break; 600 601 if (workspace->in_buf.pos >= srclen) 602 break; 603 604 /* Check if we've hit the end of a frame */ 605 if (ret2 == 0) 606 break; 607 608 if (workspace->in_buf.pos == workspace->in_buf.size) { 609 kunmap(pages_in[page_in_index++]); 610 if (page_in_index >= total_pages_in) { 611 workspace->in_buf.src = NULL; 612 ret = -EIO; 613 goto done; 614 } 615 srclen -= PAGE_SIZE; 616 workspace->in_buf.src = kmap(pages_in[page_in_index]); 617 workspace->in_buf.pos = 0; 618 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 619 } 620 } 621 ret = 0; 622 zero_fill_bio(orig_bio); 623 done: 624 if (workspace->in_buf.src) 625 kunmap(pages_in[page_in_index]); 626 return ret; 627 } 628 629 static int zstd_decompress(struct list_head *ws, unsigned char *data_in, 630 struct page *dest_page, 631 unsigned long start_byte, 632 size_t srclen, size_t destlen) 633 { 634 struct workspace *workspace = list_entry(ws, struct workspace, list); 635 ZSTD_DStream *stream; 636 int ret = 0; 637 size_t ret2; 638 unsigned long total_out = 0; 639 unsigned long pg_offset = 0; 640 char *kaddr; 641 642 stream = ZSTD_initDStream( 643 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 644 if (!stream) { 645 pr_warn("BTRFS: ZSTD_initDStream failed\n"); 646 ret = -EIO; 647 goto finish; 648 } 649 650 destlen = min_t(size_t, destlen, PAGE_SIZE); 651 652 workspace->in_buf.src = data_in; 653 workspace->in_buf.pos = 0; 654 workspace->in_buf.size = srclen; 655 656 workspace->out_buf.dst = workspace->buf; 657 workspace->out_buf.pos = 0; 658 workspace->out_buf.size = PAGE_SIZE; 659 660 ret2 = 1; 661 while (pg_offset < destlen 662 && workspace->in_buf.pos < workspace->in_buf.size) { 663 unsigned long buf_start; 664 unsigned long buf_offset; 665 unsigned long bytes; 666 667 /* Check if the frame is over and we still need more input */ 668 if (ret2 == 0) { 669 pr_debug("BTRFS: ZSTD_decompressStream ended early\n"); 670 ret = -EIO; 671 goto finish; 672 } 673 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf, 674 &workspace->in_buf); 675 if (ZSTD_isError(ret2)) { 676 pr_debug("BTRFS: ZSTD_decompressStream returned %d\n", 677 ZSTD_getErrorCode(ret2)); 678 ret = -EIO; 679 goto finish; 680 } 681 682 buf_start = total_out; 683 total_out += workspace->out_buf.pos; 684 workspace->out_buf.pos = 0; 685 686 if (total_out <= start_byte) 687 continue; 688 689 if (total_out > start_byte && buf_start < start_byte) 690 buf_offset = start_byte - buf_start; 691 else 692 buf_offset = 0; 693 694 bytes = min_t(unsigned long, destlen - pg_offset, 695 workspace->out_buf.size - buf_offset); 696 697 kaddr = kmap_atomic(dest_page); 698 memcpy(kaddr + pg_offset, workspace->out_buf.dst + buf_offset, 699 bytes); 700 kunmap_atomic(kaddr); 701 702 pg_offset += bytes; 703 } 704 ret = 0; 705 finish: 706 if (pg_offset < destlen) { 707 kaddr = kmap_atomic(dest_page); 708 memset(kaddr + pg_offset, 0, destlen - pg_offset); 709 kunmap_atomic(kaddr); 710 } 711 return ret; 712 } 713 714 const struct btrfs_compress_op btrfs_zstd_compress = { 715 .init_workspace_manager = zstd_init_workspace_manager, 716 .cleanup_workspace_manager = zstd_cleanup_workspace_manager, 717 .get_workspace = zstd_get_workspace, 718 .put_workspace = zstd_put_workspace, 719 .alloc_workspace = zstd_alloc_workspace, 720 .free_workspace = zstd_free_workspace, 721 .compress_pages = zstd_compress_pages, 722 .decompress_bio = zstd_decompress_bio, 723 .decompress = zstd_decompress, 724 .max_level = ZSTD_BTRFS_MAX_LEVEL, 725 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL, 726 }; 727