1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 19 /* Maximum number of zones to report per blkdev_report_zones() call */ 20 #define BTRFS_REPORT_NR_ZONES 4096 21 /* Invalid allocation pointer value for missing devices */ 22 #define WP_MISSING_DEV ((u64)-1) 23 /* Pseudo write pointer value for conventional zone */ 24 #define WP_CONVENTIONAL ((u64)-2) 25 26 /* 27 * Location of the first zone of superblock logging zone pairs. 28 * 29 * - primary superblock: 0B (zone 0) 30 * - first copy: 512G (zone starting at that offset) 31 * - second copy: 4T (zone starting at that offset) 32 */ 33 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 34 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 35 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 36 37 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 38 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 39 40 /* Number of superblock log zones */ 41 #define BTRFS_NR_SB_LOG_ZONES 2 42 43 /* 44 * Minimum of active zones we need: 45 * 46 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 47 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 48 * - 1 zone for tree-log dedicated block group 49 * - 1 zone for relocation 50 */ 51 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 52 53 /* 54 * Maximum supported zone size. Currently, SMR disks have a zone size of 55 * 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. We do not 56 * expect the zone size to become larger than 8GiB in the near future. 57 */ 58 #define BTRFS_MAX_ZONE_SIZE SZ_8G 59 60 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 61 62 static inline bool sb_zone_is_full(const struct blk_zone *zone) 63 { 64 return (zone->cond == BLK_ZONE_COND_FULL) || 65 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 66 } 67 68 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 69 { 70 struct blk_zone *zones = data; 71 72 memcpy(&zones[idx], zone, sizeof(*zone)); 73 74 return 0; 75 } 76 77 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 78 u64 *wp_ret) 79 { 80 bool empty[BTRFS_NR_SB_LOG_ZONES]; 81 bool full[BTRFS_NR_SB_LOG_ZONES]; 82 sector_t sector; 83 int i; 84 85 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 86 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 87 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 88 full[i] = sb_zone_is_full(&zones[i]); 89 } 90 91 /* 92 * Possible states of log buffer zones 93 * 94 * Empty[0] In use[0] Full[0] 95 * Empty[1] * x 0 96 * In use[1] 0 x 0 97 * Full[1] 1 1 C 98 * 99 * Log position: 100 * *: Special case, no superblock is written 101 * 0: Use write pointer of zones[0] 102 * 1: Use write pointer of zones[1] 103 * C: Compare super blocks from zones[0] and zones[1], use the latest 104 * one determined by generation 105 * x: Invalid state 106 */ 107 108 if (empty[0] && empty[1]) { 109 /* Special case to distinguish no superblock to read */ 110 *wp_ret = zones[0].start << SECTOR_SHIFT; 111 return -ENOENT; 112 } else if (full[0] && full[1]) { 113 /* Compare two super blocks */ 114 struct address_space *mapping = bdev->bd_inode->i_mapping; 115 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 116 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 117 int i; 118 119 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 120 u64 bytenr; 121 122 bytenr = ((zones[i].start + zones[i].len) 123 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE; 124 125 page[i] = read_cache_page_gfp(mapping, 126 bytenr >> PAGE_SHIFT, GFP_NOFS); 127 if (IS_ERR(page[i])) { 128 if (i == 1) 129 btrfs_release_disk_super(super[0]); 130 return PTR_ERR(page[i]); 131 } 132 super[i] = page_address(page[i]); 133 } 134 135 if (super[0]->generation > super[1]->generation) 136 sector = zones[1].start; 137 else 138 sector = zones[0].start; 139 140 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 141 btrfs_release_disk_super(super[i]); 142 } else if (!full[0] && (empty[1] || full[1])) { 143 sector = zones[0].wp; 144 } else if (full[0]) { 145 sector = zones[1].wp; 146 } else { 147 return -EUCLEAN; 148 } 149 *wp_ret = sector << SECTOR_SHIFT; 150 return 0; 151 } 152 153 /* 154 * Get the first zone number of the superblock mirror 155 */ 156 static inline u32 sb_zone_number(int shift, int mirror) 157 { 158 u64 zone; 159 160 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 161 switch (mirror) { 162 case 0: zone = 0; break; 163 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 164 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 165 } 166 167 ASSERT(zone <= U32_MAX); 168 169 return (u32)zone; 170 } 171 172 static inline sector_t zone_start_sector(u32 zone_number, 173 struct block_device *bdev) 174 { 175 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 176 } 177 178 static inline u64 zone_start_physical(u32 zone_number, 179 struct btrfs_zoned_device_info *zone_info) 180 { 181 return (u64)zone_number << zone_info->zone_size_shift; 182 } 183 184 /* 185 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 186 * device into static sized chunks and fake a conventional zone on each of 187 * them. 188 */ 189 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 190 struct blk_zone *zones, unsigned int nr_zones) 191 { 192 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 193 sector_t bdev_size = bdev_nr_sectors(device->bdev); 194 unsigned int i; 195 196 pos >>= SECTOR_SHIFT; 197 for (i = 0; i < nr_zones; i++) { 198 zones[i].start = i * zone_sectors + pos; 199 zones[i].len = zone_sectors; 200 zones[i].capacity = zone_sectors; 201 zones[i].wp = zones[i].start + zone_sectors; 202 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 203 zones[i].cond = BLK_ZONE_COND_NOT_WP; 204 205 if (zones[i].wp >= bdev_size) { 206 i++; 207 break; 208 } 209 } 210 211 return i; 212 } 213 214 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 215 struct blk_zone *zones, unsigned int *nr_zones) 216 { 217 struct btrfs_zoned_device_info *zinfo = device->zone_info; 218 u32 zno; 219 int ret; 220 221 if (!*nr_zones) 222 return 0; 223 224 if (!bdev_is_zoned(device->bdev)) { 225 ret = emulate_report_zones(device, pos, zones, *nr_zones); 226 *nr_zones = ret; 227 return 0; 228 } 229 230 /* Check cache */ 231 if (zinfo->zone_cache) { 232 unsigned int i; 233 234 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 235 zno = pos >> zinfo->zone_size_shift; 236 /* 237 * We cannot report zones beyond the zone end. So, it is OK to 238 * cap *nr_zones to at the end. 239 */ 240 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 241 242 for (i = 0; i < *nr_zones; i++) { 243 struct blk_zone *zone_info; 244 245 zone_info = &zinfo->zone_cache[zno + i]; 246 if (!zone_info->len) 247 break; 248 } 249 250 if (i == *nr_zones) { 251 /* Cache hit on all the zones */ 252 memcpy(zones, zinfo->zone_cache + zno, 253 sizeof(*zinfo->zone_cache) * *nr_zones); 254 return 0; 255 } 256 } 257 258 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 259 copy_zone_info_cb, zones); 260 if (ret < 0) { 261 btrfs_err_in_rcu(device->fs_info, 262 "zoned: failed to read zone %llu on %s (devid %llu)", 263 pos, rcu_str_deref(device->name), 264 device->devid); 265 return ret; 266 } 267 *nr_zones = ret; 268 if (!ret) 269 return -EIO; 270 271 /* Populate cache */ 272 if (zinfo->zone_cache) 273 memcpy(zinfo->zone_cache + zno, zones, 274 sizeof(*zinfo->zone_cache) * *nr_zones); 275 276 return 0; 277 } 278 279 /* The emulated zone size is determined from the size of device extent */ 280 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 281 { 282 struct btrfs_path *path; 283 struct btrfs_root *root = fs_info->dev_root; 284 struct btrfs_key key; 285 struct extent_buffer *leaf; 286 struct btrfs_dev_extent *dext; 287 int ret = 0; 288 289 key.objectid = 1; 290 key.type = BTRFS_DEV_EXTENT_KEY; 291 key.offset = 0; 292 293 path = btrfs_alloc_path(); 294 if (!path) 295 return -ENOMEM; 296 297 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 298 if (ret < 0) 299 goto out; 300 301 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 302 ret = btrfs_next_leaf(root, path); 303 if (ret < 0) 304 goto out; 305 /* No dev extents at all? Not good */ 306 if (ret > 0) { 307 ret = -EUCLEAN; 308 goto out; 309 } 310 } 311 312 leaf = path->nodes[0]; 313 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 314 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 315 ret = 0; 316 317 out: 318 btrfs_free_path(path); 319 320 return ret; 321 } 322 323 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 324 { 325 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 326 struct btrfs_device *device; 327 int ret = 0; 328 329 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 330 if (!btrfs_fs_incompat(fs_info, ZONED)) 331 return 0; 332 333 mutex_lock(&fs_devices->device_list_mutex); 334 list_for_each_entry(device, &fs_devices->devices, dev_list) { 335 /* We can skip reading of zone info for missing devices */ 336 if (!device->bdev) 337 continue; 338 339 ret = btrfs_get_dev_zone_info(device, true); 340 if (ret) 341 break; 342 } 343 mutex_unlock(&fs_devices->device_list_mutex); 344 345 return ret; 346 } 347 348 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 349 { 350 struct btrfs_fs_info *fs_info = device->fs_info; 351 struct btrfs_zoned_device_info *zone_info = NULL; 352 struct block_device *bdev = device->bdev; 353 struct request_queue *queue = bdev_get_queue(bdev); 354 unsigned int max_active_zones; 355 unsigned int nactive; 356 sector_t nr_sectors; 357 sector_t sector = 0; 358 struct blk_zone *zones = NULL; 359 unsigned int i, nreported = 0, nr_zones; 360 sector_t zone_sectors; 361 char *model, *emulated; 362 int ret; 363 364 /* 365 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 366 * yet be set. 367 */ 368 if (!btrfs_fs_incompat(fs_info, ZONED)) 369 return 0; 370 371 if (device->zone_info) 372 return 0; 373 374 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 375 if (!zone_info) 376 return -ENOMEM; 377 378 device->zone_info = zone_info; 379 380 if (!bdev_is_zoned(bdev)) { 381 if (!fs_info->zone_size) { 382 ret = calculate_emulated_zone_size(fs_info); 383 if (ret) 384 goto out; 385 } 386 387 ASSERT(fs_info->zone_size); 388 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 389 } else { 390 zone_sectors = bdev_zone_sectors(bdev); 391 } 392 393 /* Check if it's power of 2 (see is_power_of_2) */ 394 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0); 395 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 396 397 /* We reject devices with a zone size larger than 8GB */ 398 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 399 btrfs_err_in_rcu(fs_info, 400 "zoned: %s: zone size %llu larger than supported maximum %llu", 401 rcu_str_deref(device->name), 402 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 403 ret = -EINVAL; 404 goto out; 405 } 406 407 nr_sectors = bdev_nr_sectors(bdev); 408 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 409 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 410 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 411 zone_info->nr_zones++; 412 413 max_active_zones = queue_max_active_zones(queue); 414 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 415 btrfs_err_in_rcu(fs_info, 416 "zoned: %s: max active zones %u is too small, need at least %u active zones", 417 rcu_str_deref(device->name), max_active_zones, 418 BTRFS_MIN_ACTIVE_ZONES); 419 ret = -EINVAL; 420 goto out; 421 } 422 zone_info->max_active_zones = max_active_zones; 423 424 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 425 if (!zone_info->seq_zones) { 426 ret = -ENOMEM; 427 goto out; 428 } 429 430 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 431 if (!zone_info->empty_zones) { 432 ret = -ENOMEM; 433 goto out; 434 } 435 436 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 437 if (!zone_info->active_zones) { 438 ret = -ENOMEM; 439 goto out; 440 } 441 442 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 443 if (!zones) { 444 ret = -ENOMEM; 445 goto out; 446 } 447 448 /* 449 * Enable zone cache only for a zoned device. On a non-zoned device, we 450 * fill the zone info with emulated CONVENTIONAL zones, so no need to 451 * use the cache. 452 */ 453 if (populate_cache && bdev_is_zoned(device->bdev)) { 454 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) * 455 zone_info->nr_zones); 456 if (!zone_info->zone_cache) { 457 btrfs_err_in_rcu(device->fs_info, 458 "zoned: failed to allocate zone cache for %s", 459 rcu_str_deref(device->name)); 460 ret = -ENOMEM; 461 goto out; 462 } 463 } 464 465 /* Get zones type */ 466 nactive = 0; 467 while (sector < nr_sectors) { 468 nr_zones = BTRFS_REPORT_NR_ZONES; 469 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 470 &nr_zones); 471 if (ret) 472 goto out; 473 474 for (i = 0; i < nr_zones; i++) { 475 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 476 __set_bit(nreported, zone_info->seq_zones); 477 switch (zones[i].cond) { 478 case BLK_ZONE_COND_EMPTY: 479 __set_bit(nreported, zone_info->empty_zones); 480 break; 481 case BLK_ZONE_COND_IMP_OPEN: 482 case BLK_ZONE_COND_EXP_OPEN: 483 case BLK_ZONE_COND_CLOSED: 484 __set_bit(nreported, zone_info->active_zones); 485 nactive++; 486 break; 487 } 488 nreported++; 489 } 490 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 491 } 492 493 if (nreported != zone_info->nr_zones) { 494 btrfs_err_in_rcu(device->fs_info, 495 "inconsistent number of zones on %s (%u/%u)", 496 rcu_str_deref(device->name), nreported, 497 zone_info->nr_zones); 498 ret = -EIO; 499 goto out; 500 } 501 502 if (max_active_zones) { 503 if (nactive > max_active_zones) { 504 btrfs_err_in_rcu(device->fs_info, 505 "zoned: %u active zones on %s exceeds max_active_zones %u", 506 nactive, rcu_str_deref(device->name), 507 max_active_zones); 508 ret = -EIO; 509 goto out; 510 } 511 atomic_set(&zone_info->active_zones_left, 512 max_active_zones - nactive); 513 } 514 515 /* Validate superblock log */ 516 nr_zones = BTRFS_NR_SB_LOG_ZONES; 517 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 518 u32 sb_zone; 519 u64 sb_wp; 520 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 521 522 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 523 if (sb_zone + 1 >= zone_info->nr_zones) 524 continue; 525 526 ret = btrfs_get_dev_zones(device, 527 zone_start_physical(sb_zone, zone_info), 528 &zone_info->sb_zones[sb_pos], 529 &nr_zones); 530 if (ret) 531 goto out; 532 533 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 534 btrfs_err_in_rcu(device->fs_info, 535 "zoned: failed to read super block log zone info at devid %llu zone %u", 536 device->devid, sb_zone); 537 ret = -EUCLEAN; 538 goto out; 539 } 540 541 /* 542 * If zones[0] is conventional, always use the beginning of the 543 * zone to record superblock. No need to validate in that case. 544 */ 545 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 546 BLK_ZONE_TYPE_CONVENTIONAL) 547 continue; 548 549 ret = sb_write_pointer(device->bdev, 550 &zone_info->sb_zones[sb_pos], &sb_wp); 551 if (ret != -ENOENT && ret) { 552 btrfs_err_in_rcu(device->fs_info, 553 "zoned: super block log zone corrupted devid %llu zone %u", 554 device->devid, sb_zone); 555 ret = -EUCLEAN; 556 goto out; 557 } 558 } 559 560 561 kfree(zones); 562 563 switch (bdev_zoned_model(bdev)) { 564 case BLK_ZONED_HM: 565 model = "host-managed zoned"; 566 emulated = ""; 567 break; 568 case BLK_ZONED_HA: 569 model = "host-aware zoned"; 570 emulated = ""; 571 break; 572 case BLK_ZONED_NONE: 573 model = "regular"; 574 emulated = "emulated "; 575 break; 576 default: 577 /* Just in case */ 578 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 579 bdev_zoned_model(bdev), 580 rcu_str_deref(device->name)); 581 ret = -EOPNOTSUPP; 582 goto out_free_zone_info; 583 } 584 585 btrfs_info_in_rcu(fs_info, 586 "%s block device %s, %u %szones of %llu bytes", 587 model, rcu_str_deref(device->name), zone_info->nr_zones, 588 emulated, zone_info->zone_size); 589 590 return 0; 591 592 out: 593 kfree(zones); 594 out_free_zone_info: 595 btrfs_destroy_dev_zone_info(device); 596 597 return ret; 598 } 599 600 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 601 { 602 struct btrfs_zoned_device_info *zone_info = device->zone_info; 603 604 if (!zone_info) 605 return; 606 607 bitmap_free(zone_info->active_zones); 608 bitmap_free(zone_info->seq_zones); 609 bitmap_free(zone_info->empty_zones); 610 vfree(zone_info->zone_cache); 611 kfree(zone_info); 612 device->zone_info = NULL; 613 } 614 615 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 616 struct blk_zone *zone) 617 { 618 unsigned int nr_zones = 1; 619 int ret; 620 621 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 622 if (ret != 0 || !nr_zones) 623 return ret ? ret : -EIO; 624 625 return 0; 626 } 627 628 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 629 { 630 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 631 struct btrfs_device *device; 632 u64 zoned_devices = 0; 633 u64 nr_devices = 0; 634 u64 zone_size = 0; 635 const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED); 636 int ret = 0; 637 638 /* Count zoned devices */ 639 list_for_each_entry(device, &fs_devices->devices, dev_list) { 640 enum blk_zoned_model model; 641 642 if (!device->bdev) 643 continue; 644 645 model = bdev_zoned_model(device->bdev); 646 /* 647 * A Host-Managed zoned device must be used as a zoned device. 648 * A Host-Aware zoned device and a non-zoned devices can be 649 * treated as a zoned device, if ZONED flag is enabled in the 650 * superblock. 651 */ 652 if (model == BLK_ZONED_HM || 653 (model == BLK_ZONED_HA && incompat_zoned) || 654 (model == BLK_ZONED_NONE && incompat_zoned)) { 655 struct btrfs_zoned_device_info *zone_info; 656 657 zone_info = device->zone_info; 658 zoned_devices++; 659 if (!zone_size) { 660 zone_size = zone_info->zone_size; 661 } else if (zone_info->zone_size != zone_size) { 662 btrfs_err(fs_info, 663 "zoned: unequal block device zone sizes: have %llu found %llu", 664 device->zone_info->zone_size, 665 zone_size); 666 ret = -EINVAL; 667 goto out; 668 } 669 } 670 nr_devices++; 671 } 672 673 if (!zoned_devices && !incompat_zoned) 674 goto out; 675 676 if (!zoned_devices && incompat_zoned) { 677 /* No zoned block device found on ZONED filesystem */ 678 btrfs_err(fs_info, 679 "zoned: no zoned devices found on a zoned filesystem"); 680 ret = -EINVAL; 681 goto out; 682 } 683 684 if (zoned_devices && !incompat_zoned) { 685 btrfs_err(fs_info, 686 "zoned: mode not enabled but zoned device found"); 687 ret = -EINVAL; 688 goto out; 689 } 690 691 if (zoned_devices != nr_devices) { 692 btrfs_err(fs_info, 693 "zoned: cannot mix zoned and regular devices"); 694 ret = -EINVAL; 695 goto out; 696 } 697 698 /* 699 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 700 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 701 * check the alignment here. 702 */ 703 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 704 btrfs_err(fs_info, 705 "zoned: zone size %llu not aligned to stripe %u", 706 zone_size, BTRFS_STRIPE_LEN); 707 ret = -EINVAL; 708 goto out; 709 } 710 711 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 712 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 713 ret = -EINVAL; 714 goto out; 715 } 716 717 fs_info->zone_size = zone_size; 718 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 719 720 /* 721 * Check mount options here, because we might change fs_info->zoned 722 * from fs_info->zone_size. 723 */ 724 ret = btrfs_check_mountopts_zoned(fs_info); 725 if (ret) 726 goto out; 727 728 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 729 out: 730 return ret; 731 } 732 733 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 734 { 735 if (!btrfs_is_zoned(info)) 736 return 0; 737 738 /* 739 * Space cache writing is not COWed. Disable that to avoid write errors 740 * in sequential zones. 741 */ 742 if (btrfs_test_opt(info, SPACE_CACHE)) { 743 btrfs_err(info, "zoned: space cache v1 is not supported"); 744 return -EINVAL; 745 } 746 747 if (btrfs_test_opt(info, NODATACOW)) { 748 btrfs_err(info, "zoned: NODATACOW not supported"); 749 return -EINVAL; 750 } 751 752 return 0; 753 } 754 755 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 756 int rw, u64 *bytenr_ret) 757 { 758 u64 wp; 759 int ret; 760 761 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 762 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 763 return 0; 764 } 765 766 ret = sb_write_pointer(bdev, zones, &wp); 767 if (ret != -ENOENT && ret < 0) 768 return ret; 769 770 if (rw == WRITE) { 771 struct blk_zone *reset = NULL; 772 773 if (wp == zones[0].start << SECTOR_SHIFT) 774 reset = &zones[0]; 775 else if (wp == zones[1].start << SECTOR_SHIFT) 776 reset = &zones[1]; 777 778 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 779 ASSERT(sb_zone_is_full(reset)); 780 781 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 782 reset->start, reset->len, 783 GFP_NOFS); 784 if (ret) 785 return ret; 786 787 reset->cond = BLK_ZONE_COND_EMPTY; 788 reset->wp = reset->start; 789 } 790 } else if (ret != -ENOENT) { 791 /* 792 * For READ, we want the previous one. Move write pointer to 793 * the end of a zone, if it is at the head of a zone. 794 */ 795 u64 zone_end = 0; 796 797 if (wp == zones[0].start << SECTOR_SHIFT) 798 zone_end = zones[1].start + zones[1].capacity; 799 else if (wp == zones[1].start << SECTOR_SHIFT) 800 zone_end = zones[0].start + zones[0].capacity; 801 if (zone_end) 802 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 803 BTRFS_SUPER_INFO_SIZE); 804 805 wp -= BTRFS_SUPER_INFO_SIZE; 806 } 807 808 *bytenr_ret = wp; 809 return 0; 810 811 } 812 813 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 814 u64 *bytenr_ret) 815 { 816 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 817 sector_t zone_sectors; 818 u32 sb_zone; 819 int ret; 820 u8 zone_sectors_shift; 821 sector_t nr_sectors; 822 u32 nr_zones; 823 824 if (!bdev_is_zoned(bdev)) { 825 *bytenr_ret = btrfs_sb_offset(mirror); 826 return 0; 827 } 828 829 ASSERT(rw == READ || rw == WRITE); 830 831 zone_sectors = bdev_zone_sectors(bdev); 832 if (!is_power_of_2(zone_sectors)) 833 return -EINVAL; 834 zone_sectors_shift = ilog2(zone_sectors); 835 nr_sectors = bdev_nr_sectors(bdev); 836 nr_zones = nr_sectors >> zone_sectors_shift; 837 838 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 839 if (sb_zone + 1 >= nr_zones) 840 return -ENOENT; 841 842 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 843 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 844 zones); 845 if (ret < 0) 846 return ret; 847 if (ret != BTRFS_NR_SB_LOG_ZONES) 848 return -EIO; 849 850 return sb_log_location(bdev, zones, rw, bytenr_ret); 851 } 852 853 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 854 u64 *bytenr_ret) 855 { 856 struct btrfs_zoned_device_info *zinfo = device->zone_info; 857 u32 zone_num; 858 859 /* 860 * For a zoned filesystem on a non-zoned block device, use the same 861 * super block locations as regular filesystem. Doing so, the super 862 * block can always be retrieved and the zoned flag of the volume 863 * detected from the super block information. 864 */ 865 if (!bdev_is_zoned(device->bdev)) { 866 *bytenr_ret = btrfs_sb_offset(mirror); 867 return 0; 868 } 869 870 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 871 if (zone_num + 1 >= zinfo->nr_zones) 872 return -ENOENT; 873 874 return sb_log_location(device->bdev, 875 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 876 rw, bytenr_ret); 877 } 878 879 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 880 int mirror) 881 { 882 u32 zone_num; 883 884 if (!zinfo) 885 return false; 886 887 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 888 if (zone_num + 1 >= zinfo->nr_zones) 889 return false; 890 891 if (!test_bit(zone_num, zinfo->seq_zones)) 892 return false; 893 894 return true; 895 } 896 897 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 898 { 899 struct btrfs_zoned_device_info *zinfo = device->zone_info; 900 struct blk_zone *zone; 901 int i; 902 903 if (!is_sb_log_zone(zinfo, mirror)) 904 return 0; 905 906 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 907 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 908 /* Advance the next zone */ 909 if (zone->cond == BLK_ZONE_COND_FULL) { 910 zone++; 911 continue; 912 } 913 914 if (zone->cond == BLK_ZONE_COND_EMPTY) 915 zone->cond = BLK_ZONE_COND_IMP_OPEN; 916 917 zone->wp += SUPER_INFO_SECTORS; 918 919 if (sb_zone_is_full(zone)) { 920 /* 921 * No room left to write new superblock. Since 922 * superblock is written with REQ_SYNC, it is safe to 923 * finish the zone now. 924 * 925 * If the write pointer is exactly at the capacity, 926 * explicit ZONE_FINISH is not necessary. 927 */ 928 if (zone->wp != zone->start + zone->capacity) { 929 int ret; 930 931 ret = blkdev_zone_mgmt(device->bdev, 932 REQ_OP_ZONE_FINISH, zone->start, 933 zone->len, GFP_NOFS); 934 if (ret) 935 return ret; 936 } 937 938 zone->wp = zone->start + zone->len; 939 zone->cond = BLK_ZONE_COND_FULL; 940 } 941 return 0; 942 } 943 944 /* All the zones are FULL. Should not reach here. */ 945 ASSERT(0); 946 return -EIO; 947 } 948 949 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 950 { 951 sector_t zone_sectors; 952 sector_t nr_sectors; 953 u8 zone_sectors_shift; 954 u32 sb_zone; 955 u32 nr_zones; 956 957 zone_sectors = bdev_zone_sectors(bdev); 958 zone_sectors_shift = ilog2(zone_sectors); 959 nr_sectors = bdev_nr_sectors(bdev); 960 nr_zones = nr_sectors >> zone_sectors_shift; 961 962 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 963 if (sb_zone + 1 >= nr_zones) 964 return -ENOENT; 965 966 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 967 zone_start_sector(sb_zone, bdev), 968 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 969 } 970 971 /** 972 * btrfs_find_allocatable_zones - find allocatable zones within a given region 973 * 974 * @device: the device to allocate a region on 975 * @hole_start: the position of the hole to allocate the region 976 * @num_bytes: size of wanted region 977 * @hole_end: the end of the hole 978 * @return: position of allocatable zones 979 * 980 * Allocatable region should not contain any superblock locations. 981 */ 982 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 983 u64 hole_end, u64 num_bytes) 984 { 985 struct btrfs_zoned_device_info *zinfo = device->zone_info; 986 const u8 shift = zinfo->zone_size_shift; 987 u64 nzones = num_bytes >> shift; 988 u64 pos = hole_start; 989 u64 begin, end; 990 bool have_sb; 991 int i; 992 993 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 994 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 995 996 while (pos < hole_end) { 997 begin = pos >> shift; 998 end = begin + nzones; 999 1000 if (end > zinfo->nr_zones) 1001 return hole_end; 1002 1003 /* Check if zones in the region are all empty */ 1004 if (btrfs_dev_is_sequential(device, pos) && 1005 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { 1006 pos += zinfo->zone_size; 1007 continue; 1008 } 1009 1010 have_sb = false; 1011 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1012 u32 sb_zone; 1013 u64 sb_pos; 1014 1015 sb_zone = sb_zone_number(shift, i); 1016 if (!(end <= sb_zone || 1017 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1018 have_sb = true; 1019 pos = zone_start_physical( 1020 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1021 break; 1022 } 1023 1024 /* We also need to exclude regular superblock positions */ 1025 sb_pos = btrfs_sb_offset(i); 1026 if (!(pos + num_bytes <= sb_pos || 1027 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1028 have_sb = true; 1029 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1030 zinfo->zone_size); 1031 break; 1032 } 1033 } 1034 if (!have_sb) 1035 break; 1036 } 1037 1038 return pos; 1039 } 1040 1041 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1042 { 1043 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1044 unsigned int zno = (pos >> zone_info->zone_size_shift); 1045 1046 /* We can use any number of zones */ 1047 if (zone_info->max_active_zones == 0) 1048 return true; 1049 1050 if (!test_bit(zno, zone_info->active_zones)) { 1051 /* Active zone left? */ 1052 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1053 return false; 1054 if (test_and_set_bit(zno, zone_info->active_zones)) { 1055 /* Someone already set the bit */ 1056 atomic_inc(&zone_info->active_zones_left); 1057 } 1058 } 1059 1060 return true; 1061 } 1062 1063 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1064 { 1065 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1066 unsigned int zno = (pos >> zone_info->zone_size_shift); 1067 1068 /* We can use any number of zones */ 1069 if (zone_info->max_active_zones == 0) 1070 return; 1071 1072 if (test_and_clear_bit(zno, zone_info->active_zones)) 1073 atomic_inc(&zone_info->active_zones_left); 1074 } 1075 1076 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1077 u64 length, u64 *bytes) 1078 { 1079 int ret; 1080 1081 *bytes = 0; 1082 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1083 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1084 GFP_NOFS); 1085 if (ret) 1086 return ret; 1087 1088 *bytes = length; 1089 while (length) { 1090 btrfs_dev_set_zone_empty(device, physical); 1091 btrfs_dev_clear_active_zone(device, physical); 1092 physical += device->zone_info->zone_size; 1093 length -= device->zone_info->zone_size; 1094 } 1095 1096 return 0; 1097 } 1098 1099 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1100 { 1101 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1102 const u8 shift = zinfo->zone_size_shift; 1103 unsigned long begin = start >> shift; 1104 unsigned long end = (start + size) >> shift; 1105 u64 pos; 1106 int ret; 1107 1108 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1109 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1110 1111 if (end > zinfo->nr_zones) 1112 return -ERANGE; 1113 1114 /* All the zones are conventional */ 1115 if (find_next_bit(zinfo->seq_zones, begin, end) == end) 1116 return 0; 1117 1118 /* All the zones are sequential and empty */ 1119 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end && 1120 find_next_zero_bit(zinfo->empty_zones, begin, end) == end) 1121 return 0; 1122 1123 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1124 u64 reset_bytes; 1125 1126 if (!btrfs_dev_is_sequential(device, pos) || 1127 btrfs_dev_is_empty_zone(device, pos)) 1128 continue; 1129 1130 /* Free regions should be empty */ 1131 btrfs_warn_in_rcu( 1132 device->fs_info, 1133 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1134 rcu_str_deref(device->name), device->devid, pos >> shift); 1135 WARN_ON_ONCE(1); 1136 1137 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1138 &reset_bytes); 1139 if (ret) 1140 return ret; 1141 } 1142 1143 return 0; 1144 } 1145 1146 /* 1147 * Calculate an allocation pointer from the extent allocation information 1148 * for a block group consist of conventional zones. It is pointed to the 1149 * end of the highest addressed extent in the block group as an allocation 1150 * offset. 1151 */ 1152 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1153 u64 *offset_ret) 1154 { 1155 struct btrfs_fs_info *fs_info = cache->fs_info; 1156 struct btrfs_root *root; 1157 struct btrfs_path *path; 1158 struct btrfs_key key; 1159 struct btrfs_key found_key; 1160 int ret; 1161 u64 length; 1162 1163 path = btrfs_alloc_path(); 1164 if (!path) 1165 return -ENOMEM; 1166 1167 key.objectid = cache->start + cache->length; 1168 key.type = 0; 1169 key.offset = 0; 1170 1171 root = btrfs_extent_root(fs_info, key.objectid); 1172 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1173 /* We should not find the exact match */ 1174 if (!ret) 1175 ret = -EUCLEAN; 1176 if (ret < 0) 1177 goto out; 1178 1179 ret = btrfs_previous_extent_item(root, path, cache->start); 1180 if (ret) { 1181 if (ret == 1) { 1182 ret = 0; 1183 *offset_ret = 0; 1184 } 1185 goto out; 1186 } 1187 1188 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1189 1190 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1191 length = found_key.offset; 1192 else 1193 length = fs_info->nodesize; 1194 1195 if (!(found_key.objectid >= cache->start && 1196 found_key.objectid + length <= cache->start + cache->length)) { 1197 ret = -EUCLEAN; 1198 goto out; 1199 } 1200 *offset_ret = found_key.objectid + length - cache->start; 1201 ret = 0; 1202 1203 out: 1204 btrfs_free_path(path); 1205 return ret; 1206 } 1207 1208 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1209 { 1210 struct btrfs_fs_info *fs_info = cache->fs_info; 1211 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1212 struct extent_map *em; 1213 struct map_lookup *map; 1214 struct btrfs_device *device; 1215 u64 logical = cache->start; 1216 u64 length = cache->length; 1217 int ret; 1218 int i; 1219 unsigned int nofs_flag; 1220 u64 *alloc_offsets = NULL; 1221 u64 *caps = NULL; 1222 u64 *physical = NULL; 1223 unsigned long *active = NULL; 1224 u64 last_alloc = 0; 1225 u32 num_sequential = 0, num_conventional = 0; 1226 1227 if (!btrfs_is_zoned(fs_info)) 1228 return 0; 1229 1230 /* Sanity check */ 1231 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1232 btrfs_err(fs_info, 1233 "zoned: block group %llu len %llu unaligned to zone size %llu", 1234 logical, length, fs_info->zone_size); 1235 return -EIO; 1236 } 1237 1238 /* Get the chunk mapping */ 1239 read_lock(&em_tree->lock); 1240 em = lookup_extent_mapping(em_tree, logical, length); 1241 read_unlock(&em_tree->lock); 1242 1243 if (!em) 1244 return -EINVAL; 1245 1246 map = em->map_lookup; 1247 1248 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS); 1249 if (!cache->physical_map) { 1250 ret = -ENOMEM; 1251 goto out; 1252 } 1253 1254 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1255 if (!alloc_offsets) { 1256 ret = -ENOMEM; 1257 goto out; 1258 } 1259 1260 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS); 1261 if (!caps) { 1262 ret = -ENOMEM; 1263 goto out; 1264 } 1265 1266 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS); 1267 if (!physical) { 1268 ret = -ENOMEM; 1269 goto out; 1270 } 1271 1272 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1273 if (!active) { 1274 ret = -ENOMEM; 1275 goto out; 1276 } 1277 1278 for (i = 0; i < map->num_stripes; i++) { 1279 bool is_sequential; 1280 struct blk_zone zone; 1281 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1282 int dev_replace_is_ongoing = 0; 1283 1284 device = map->stripes[i].dev; 1285 physical[i] = map->stripes[i].physical; 1286 1287 if (device->bdev == NULL) { 1288 alloc_offsets[i] = WP_MISSING_DEV; 1289 continue; 1290 } 1291 1292 is_sequential = btrfs_dev_is_sequential(device, physical[i]); 1293 if (is_sequential) 1294 num_sequential++; 1295 else 1296 num_conventional++; 1297 1298 if (!is_sequential) { 1299 alloc_offsets[i] = WP_CONVENTIONAL; 1300 continue; 1301 } 1302 1303 /* 1304 * This zone will be used for allocation, so mark this zone 1305 * non-empty. 1306 */ 1307 btrfs_dev_clear_zone_empty(device, physical[i]); 1308 1309 down_read(&dev_replace->rwsem); 1310 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1311 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1312 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]); 1313 up_read(&dev_replace->rwsem); 1314 1315 /* 1316 * The group is mapped to a sequential zone. Get the zone write 1317 * pointer to determine the allocation offset within the zone. 1318 */ 1319 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size)); 1320 nofs_flag = memalloc_nofs_save(); 1321 ret = btrfs_get_dev_zone(device, physical[i], &zone); 1322 memalloc_nofs_restore(nofs_flag); 1323 if (ret == -EIO || ret == -EOPNOTSUPP) { 1324 ret = 0; 1325 alloc_offsets[i] = WP_MISSING_DEV; 1326 continue; 1327 } else if (ret) { 1328 goto out; 1329 } 1330 1331 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1332 btrfs_err_in_rcu(fs_info, 1333 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1334 zone.start << SECTOR_SHIFT, 1335 rcu_str_deref(device->name), device->devid); 1336 ret = -EIO; 1337 goto out; 1338 } 1339 1340 caps[i] = (zone.capacity << SECTOR_SHIFT); 1341 1342 switch (zone.cond) { 1343 case BLK_ZONE_COND_OFFLINE: 1344 case BLK_ZONE_COND_READONLY: 1345 btrfs_err(fs_info, 1346 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1347 physical[i] >> device->zone_info->zone_size_shift, 1348 rcu_str_deref(device->name), device->devid); 1349 alloc_offsets[i] = WP_MISSING_DEV; 1350 break; 1351 case BLK_ZONE_COND_EMPTY: 1352 alloc_offsets[i] = 0; 1353 break; 1354 case BLK_ZONE_COND_FULL: 1355 alloc_offsets[i] = caps[i]; 1356 break; 1357 default: 1358 /* Partially used zone */ 1359 alloc_offsets[i] = 1360 ((zone.wp - zone.start) << SECTOR_SHIFT); 1361 __set_bit(i, active); 1362 break; 1363 } 1364 1365 /* 1366 * Consider a zone as active if we can allow any number of 1367 * active zones. 1368 */ 1369 if (!device->zone_info->max_active_zones) 1370 __set_bit(i, active); 1371 } 1372 1373 if (num_sequential > 0) 1374 cache->seq_zone = true; 1375 1376 if (num_conventional > 0) { 1377 /* 1378 * Avoid calling calculate_alloc_pointer() for new BG. It 1379 * is no use for new BG. It must be always 0. 1380 * 1381 * Also, we have a lock chain of extent buffer lock -> 1382 * chunk mutex. For new BG, this function is called from 1383 * btrfs_make_block_group() which is already taking the 1384 * chunk mutex. Thus, we cannot call 1385 * calculate_alloc_pointer() which takes extent buffer 1386 * locks to avoid deadlock. 1387 */ 1388 1389 /* Zone capacity is always zone size in emulation */ 1390 cache->zone_capacity = cache->length; 1391 if (new) { 1392 cache->alloc_offset = 0; 1393 goto out; 1394 } 1395 ret = calculate_alloc_pointer(cache, &last_alloc); 1396 if (ret || map->num_stripes == num_conventional) { 1397 if (!ret) 1398 cache->alloc_offset = last_alloc; 1399 else 1400 btrfs_err(fs_info, 1401 "zoned: failed to determine allocation offset of bg %llu", 1402 cache->start); 1403 goto out; 1404 } 1405 } 1406 1407 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1408 case 0: /* single */ 1409 if (alloc_offsets[0] == WP_MISSING_DEV) { 1410 btrfs_err(fs_info, 1411 "zoned: cannot recover write pointer for zone %llu", 1412 physical[0]); 1413 ret = -EIO; 1414 goto out; 1415 } 1416 cache->alloc_offset = alloc_offsets[0]; 1417 cache->zone_capacity = caps[0]; 1418 cache->zone_is_active = test_bit(0, active); 1419 break; 1420 case BTRFS_BLOCK_GROUP_DUP: 1421 if (map->type & BTRFS_BLOCK_GROUP_DATA) { 1422 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg"); 1423 ret = -EINVAL; 1424 goto out; 1425 } 1426 if (alloc_offsets[0] == WP_MISSING_DEV) { 1427 btrfs_err(fs_info, 1428 "zoned: cannot recover write pointer for zone %llu", 1429 physical[0]); 1430 ret = -EIO; 1431 goto out; 1432 } 1433 if (alloc_offsets[1] == WP_MISSING_DEV) { 1434 btrfs_err(fs_info, 1435 "zoned: cannot recover write pointer for zone %llu", 1436 physical[1]); 1437 ret = -EIO; 1438 goto out; 1439 } 1440 if (alloc_offsets[0] != alloc_offsets[1]) { 1441 btrfs_err(fs_info, 1442 "zoned: write pointer offset mismatch of zones in DUP profile"); 1443 ret = -EIO; 1444 goto out; 1445 } 1446 if (test_bit(0, active) != test_bit(1, active)) { 1447 if (!btrfs_zone_activate(cache)) { 1448 ret = -EIO; 1449 goto out; 1450 } 1451 } else { 1452 cache->zone_is_active = test_bit(0, active); 1453 } 1454 cache->alloc_offset = alloc_offsets[0]; 1455 cache->zone_capacity = min(caps[0], caps[1]); 1456 break; 1457 case BTRFS_BLOCK_GROUP_RAID1: 1458 case BTRFS_BLOCK_GROUP_RAID0: 1459 case BTRFS_BLOCK_GROUP_RAID10: 1460 case BTRFS_BLOCK_GROUP_RAID5: 1461 case BTRFS_BLOCK_GROUP_RAID6: 1462 /* non-single profiles are not supported yet */ 1463 default: 1464 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1465 btrfs_bg_type_to_raid_name(map->type)); 1466 ret = -EINVAL; 1467 goto out; 1468 } 1469 1470 if (cache->zone_is_active) { 1471 btrfs_get_block_group(cache); 1472 spin_lock(&fs_info->zone_active_bgs_lock); 1473 list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs); 1474 spin_unlock(&fs_info->zone_active_bgs_lock); 1475 } 1476 1477 out: 1478 if (cache->alloc_offset > fs_info->zone_size) { 1479 btrfs_err(fs_info, 1480 "zoned: invalid write pointer %llu in block group %llu", 1481 cache->alloc_offset, cache->start); 1482 ret = -EIO; 1483 } 1484 1485 if (cache->alloc_offset > cache->zone_capacity) { 1486 btrfs_err(fs_info, 1487 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1488 cache->alloc_offset, cache->zone_capacity, 1489 cache->start); 1490 ret = -EIO; 1491 } 1492 1493 /* An extent is allocated after the write pointer */ 1494 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1495 btrfs_err(fs_info, 1496 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1497 logical, last_alloc, cache->alloc_offset); 1498 ret = -EIO; 1499 } 1500 1501 if (!ret) 1502 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1503 1504 if (ret) { 1505 kfree(cache->physical_map); 1506 cache->physical_map = NULL; 1507 } 1508 bitmap_free(active); 1509 kfree(physical); 1510 kfree(caps); 1511 kfree(alloc_offsets); 1512 free_extent_map(em); 1513 1514 return ret; 1515 } 1516 1517 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1518 { 1519 u64 unusable, free; 1520 1521 if (!btrfs_is_zoned(cache->fs_info)) 1522 return; 1523 1524 WARN_ON(cache->bytes_super != 0); 1525 unusable = (cache->alloc_offset - cache->used) + 1526 (cache->length - cache->zone_capacity); 1527 free = cache->zone_capacity - cache->alloc_offset; 1528 1529 /* We only need ->free_space in ALLOC_SEQ block groups */ 1530 cache->last_byte_to_unpin = (u64)-1; 1531 cache->cached = BTRFS_CACHE_FINISHED; 1532 cache->free_space_ctl->free_space = free; 1533 cache->zone_unusable = unusable; 1534 } 1535 1536 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1537 struct extent_buffer *eb) 1538 { 1539 struct btrfs_fs_info *fs_info = eb->fs_info; 1540 1541 if (!btrfs_is_zoned(fs_info) || 1542 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || 1543 !list_empty(&eb->release_list)) 1544 return; 1545 1546 set_extent_buffer_dirty(eb); 1547 set_extent_bits_nowait(&trans->dirty_pages, eb->start, 1548 eb->start + eb->len - 1, EXTENT_DIRTY); 1549 memzero_extent_buffer(eb, 0, eb->len); 1550 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1551 1552 spin_lock(&trans->releasing_ebs_lock); 1553 list_add_tail(&eb->release_list, &trans->releasing_ebs); 1554 spin_unlock(&trans->releasing_ebs_lock); 1555 atomic_inc(&eb->refs); 1556 } 1557 1558 void btrfs_free_redirty_list(struct btrfs_transaction *trans) 1559 { 1560 spin_lock(&trans->releasing_ebs_lock); 1561 while (!list_empty(&trans->releasing_ebs)) { 1562 struct extent_buffer *eb; 1563 1564 eb = list_first_entry(&trans->releasing_ebs, 1565 struct extent_buffer, release_list); 1566 list_del_init(&eb->release_list); 1567 free_extent_buffer(eb); 1568 } 1569 spin_unlock(&trans->releasing_ebs_lock); 1570 } 1571 1572 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start) 1573 { 1574 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1575 struct btrfs_block_group *cache; 1576 bool ret = false; 1577 1578 if (!btrfs_is_zoned(fs_info)) 1579 return false; 1580 1581 if (!is_data_inode(&inode->vfs_inode)) 1582 return false; 1583 1584 /* 1585 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1586 * extent layout the relocation code has. 1587 * Furthermore we have set aside own block-group from which only the 1588 * relocation "process" can allocate and make sure only one process at a 1589 * time can add pages to an extent that gets relocated, so it's safe to 1590 * use regular REQ_OP_WRITE for this special case. 1591 */ 1592 if (btrfs_is_data_reloc_root(inode->root)) 1593 return false; 1594 1595 cache = btrfs_lookup_block_group(fs_info, start); 1596 ASSERT(cache); 1597 if (!cache) 1598 return false; 1599 1600 ret = cache->seq_zone; 1601 btrfs_put_block_group(cache); 1602 1603 return ret; 1604 } 1605 1606 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset, 1607 struct bio *bio) 1608 { 1609 struct btrfs_ordered_extent *ordered; 1610 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 1611 1612 if (bio_op(bio) != REQ_OP_ZONE_APPEND) 1613 return; 1614 1615 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset); 1616 if (WARN_ON(!ordered)) 1617 return; 1618 1619 ordered->physical = physical; 1620 ordered->bdev = bio->bi_bdev; 1621 1622 btrfs_put_ordered_extent(ordered); 1623 } 1624 1625 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) 1626 { 1627 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1628 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1629 struct extent_map_tree *em_tree; 1630 struct extent_map *em; 1631 struct btrfs_ordered_sum *sum; 1632 u64 orig_logical = ordered->disk_bytenr; 1633 u64 *logical = NULL; 1634 int nr, stripe_len; 1635 1636 /* Zoned devices should not have partitions. So, we can assume it is 0 */ 1637 ASSERT(!bdev_is_partition(ordered->bdev)); 1638 if (WARN_ON(!ordered->bdev)) 1639 return; 1640 1641 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev, 1642 ordered->physical, &logical, &nr, 1643 &stripe_len))) 1644 goto out; 1645 1646 WARN_ON(nr != 1); 1647 1648 if (orig_logical == *logical) 1649 goto out; 1650 1651 ordered->disk_bytenr = *logical; 1652 1653 em_tree = &inode->extent_tree; 1654 write_lock(&em_tree->lock); 1655 em = search_extent_mapping(em_tree, ordered->file_offset, 1656 ordered->num_bytes); 1657 em->block_start = *logical; 1658 free_extent_map(em); 1659 write_unlock(&em_tree->lock); 1660 1661 list_for_each_entry(sum, &ordered->list, list) { 1662 if (*logical < orig_logical) 1663 sum->bytenr -= orig_logical - *logical; 1664 else 1665 sum->bytenr += *logical - orig_logical; 1666 } 1667 1668 out: 1669 kfree(logical); 1670 } 1671 1672 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1673 struct extent_buffer *eb, 1674 struct btrfs_block_group **cache_ret) 1675 { 1676 struct btrfs_block_group *cache; 1677 bool ret = true; 1678 1679 if (!btrfs_is_zoned(fs_info)) 1680 return true; 1681 1682 cache = btrfs_lookup_block_group(fs_info, eb->start); 1683 if (!cache) 1684 return true; 1685 1686 if (cache->meta_write_pointer != eb->start) { 1687 btrfs_put_block_group(cache); 1688 cache = NULL; 1689 ret = false; 1690 } else { 1691 cache->meta_write_pointer = eb->start + eb->len; 1692 } 1693 1694 *cache_ret = cache; 1695 1696 return ret; 1697 } 1698 1699 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1700 struct extent_buffer *eb) 1701 { 1702 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1703 return; 1704 1705 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1706 cache->meta_write_pointer = eb->start; 1707 } 1708 1709 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1710 { 1711 if (!btrfs_dev_is_sequential(device, physical)) 1712 return -EOPNOTSUPP; 1713 1714 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1715 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1716 } 1717 1718 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1719 struct blk_zone *zone) 1720 { 1721 struct btrfs_io_context *bioc = NULL; 1722 u64 mapped_length = PAGE_SIZE; 1723 unsigned int nofs_flag; 1724 int nmirrors; 1725 int i, ret; 1726 1727 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1728 &mapped_length, &bioc); 1729 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1730 btrfs_put_bioc(bioc); 1731 return -EIO; 1732 } 1733 1734 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1735 return -EINVAL; 1736 1737 nofs_flag = memalloc_nofs_save(); 1738 nmirrors = (int)bioc->num_stripes; 1739 for (i = 0; i < nmirrors; i++) { 1740 u64 physical = bioc->stripes[i].physical; 1741 struct btrfs_device *dev = bioc->stripes[i].dev; 1742 1743 /* Missing device */ 1744 if (!dev->bdev) 1745 continue; 1746 1747 ret = btrfs_get_dev_zone(dev, physical, zone); 1748 /* Failing device */ 1749 if (ret == -EIO || ret == -EOPNOTSUPP) 1750 continue; 1751 break; 1752 } 1753 memalloc_nofs_restore(nofs_flag); 1754 1755 return ret; 1756 } 1757 1758 /* 1759 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1760 * filling zeros between @physical_pos to a write pointer of dev-replace 1761 * source device. 1762 */ 1763 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1764 u64 physical_start, u64 physical_pos) 1765 { 1766 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1767 struct blk_zone zone; 1768 u64 length; 1769 u64 wp; 1770 int ret; 1771 1772 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1773 return 0; 1774 1775 ret = read_zone_info(fs_info, logical, &zone); 1776 if (ret) 1777 return ret; 1778 1779 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1780 1781 if (physical_pos == wp) 1782 return 0; 1783 1784 if (physical_pos > wp) 1785 return -EUCLEAN; 1786 1787 length = wp - physical_pos; 1788 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1789 } 1790 1791 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info, 1792 u64 logical, u64 length) 1793 { 1794 struct btrfs_device *device; 1795 struct extent_map *em; 1796 struct map_lookup *map; 1797 1798 em = btrfs_get_chunk_map(fs_info, logical, length); 1799 if (IS_ERR(em)) 1800 return ERR_CAST(em); 1801 1802 map = em->map_lookup; 1803 /* We only support single profile for now */ 1804 device = map->stripes[0].dev; 1805 1806 free_extent_map(em); 1807 1808 return device; 1809 } 1810 1811 /** 1812 * Activate block group and underlying device zones 1813 * 1814 * @block_group: the block group to activate 1815 * 1816 * Return: true on success, false otherwise 1817 */ 1818 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 1819 { 1820 struct btrfs_fs_info *fs_info = block_group->fs_info; 1821 struct map_lookup *map; 1822 struct btrfs_device *device; 1823 u64 physical; 1824 bool ret; 1825 int i; 1826 1827 if (!btrfs_is_zoned(block_group->fs_info)) 1828 return true; 1829 1830 map = block_group->physical_map; 1831 1832 spin_lock(&block_group->lock); 1833 if (block_group->zone_is_active) { 1834 ret = true; 1835 goto out_unlock; 1836 } 1837 1838 /* No space left */ 1839 if (block_group->alloc_offset == block_group->zone_capacity) { 1840 ret = false; 1841 goto out_unlock; 1842 } 1843 1844 for (i = 0; i < map->num_stripes; i++) { 1845 device = map->stripes[i].dev; 1846 physical = map->stripes[i].physical; 1847 1848 if (device->zone_info->max_active_zones == 0) 1849 continue; 1850 1851 if (!btrfs_dev_set_active_zone(device, physical)) { 1852 /* Cannot activate the zone */ 1853 ret = false; 1854 goto out_unlock; 1855 } 1856 } 1857 1858 /* Successfully activated all the zones */ 1859 block_group->zone_is_active = 1; 1860 spin_unlock(&block_group->lock); 1861 1862 /* For the active block group list */ 1863 btrfs_get_block_group(block_group); 1864 1865 spin_lock(&fs_info->zone_active_bgs_lock); 1866 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 1867 spin_unlock(&fs_info->zone_active_bgs_lock); 1868 1869 return true; 1870 1871 out_unlock: 1872 spin_unlock(&block_group->lock); 1873 return ret; 1874 } 1875 1876 int btrfs_zone_finish(struct btrfs_block_group *block_group) 1877 { 1878 struct btrfs_fs_info *fs_info = block_group->fs_info; 1879 struct map_lookup *map; 1880 struct btrfs_device *device; 1881 u64 physical; 1882 int ret = 0; 1883 int i; 1884 1885 if (!btrfs_is_zoned(fs_info)) 1886 return 0; 1887 1888 map = block_group->physical_map; 1889 1890 spin_lock(&block_group->lock); 1891 if (!block_group->zone_is_active) { 1892 spin_unlock(&block_group->lock); 1893 return 0; 1894 } 1895 1896 /* Check if we have unwritten allocated space */ 1897 if ((block_group->flags & 1898 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) && 1899 block_group->alloc_offset > block_group->meta_write_pointer) { 1900 spin_unlock(&block_group->lock); 1901 return -EAGAIN; 1902 } 1903 spin_unlock(&block_group->lock); 1904 1905 ret = btrfs_inc_block_group_ro(block_group, false); 1906 if (ret) 1907 return ret; 1908 1909 /* Ensure all writes in this block group finish */ 1910 btrfs_wait_block_group_reservations(block_group); 1911 /* No need to wait for NOCOW writers. Zoned mode does not allow that. */ 1912 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 1913 block_group->length); 1914 1915 spin_lock(&block_group->lock); 1916 1917 /* 1918 * Bail out if someone already deactivated the block group, or 1919 * allocated space is left in the block group. 1920 */ 1921 if (!block_group->zone_is_active) { 1922 spin_unlock(&block_group->lock); 1923 btrfs_dec_block_group_ro(block_group); 1924 return 0; 1925 } 1926 1927 if (block_group->reserved) { 1928 spin_unlock(&block_group->lock); 1929 btrfs_dec_block_group_ro(block_group); 1930 return -EAGAIN; 1931 } 1932 1933 block_group->zone_is_active = 0; 1934 block_group->alloc_offset = block_group->zone_capacity; 1935 block_group->free_space_ctl->free_space = 0; 1936 btrfs_clear_treelog_bg(block_group); 1937 btrfs_clear_data_reloc_bg(block_group); 1938 spin_unlock(&block_group->lock); 1939 1940 for (i = 0; i < map->num_stripes; i++) { 1941 device = map->stripes[i].dev; 1942 physical = map->stripes[i].physical; 1943 1944 if (device->zone_info->max_active_zones == 0) 1945 continue; 1946 1947 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 1948 physical >> SECTOR_SHIFT, 1949 device->zone_info->zone_size >> SECTOR_SHIFT, 1950 GFP_NOFS); 1951 1952 if (ret) 1953 return ret; 1954 1955 btrfs_dev_clear_active_zone(device, physical); 1956 } 1957 btrfs_dec_block_group_ro(block_group); 1958 1959 spin_lock(&fs_info->zone_active_bgs_lock); 1960 ASSERT(!list_empty(&block_group->active_bg_list)); 1961 list_del_init(&block_group->active_bg_list); 1962 spin_unlock(&fs_info->zone_active_bgs_lock); 1963 1964 /* For active_bg_list */ 1965 btrfs_put_block_group(block_group); 1966 1967 return 0; 1968 } 1969 1970 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 1971 { 1972 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 1973 struct btrfs_device *device; 1974 bool ret = false; 1975 1976 if (!btrfs_is_zoned(fs_info)) 1977 return true; 1978 1979 /* Check if there is a device with active zones left */ 1980 mutex_lock(&fs_info->chunk_mutex); 1981 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 1982 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1983 1984 if (!device->bdev) 1985 continue; 1986 1987 if (!zinfo->max_active_zones || 1988 atomic_read(&zinfo->active_zones_left)) { 1989 ret = true; 1990 break; 1991 } 1992 } 1993 mutex_unlock(&fs_info->chunk_mutex); 1994 1995 return ret; 1996 } 1997 1998 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 1999 { 2000 struct btrfs_block_group *block_group; 2001 struct map_lookup *map; 2002 struct btrfs_device *device; 2003 u64 physical; 2004 2005 if (!btrfs_is_zoned(fs_info)) 2006 return; 2007 2008 block_group = btrfs_lookup_block_group(fs_info, logical); 2009 ASSERT(block_group); 2010 2011 if (logical + length < block_group->start + block_group->zone_capacity) 2012 goto out; 2013 2014 spin_lock(&block_group->lock); 2015 2016 if (!block_group->zone_is_active) { 2017 spin_unlock(&block_group->lock); 2018 goto out; 2019 } 2020 2021 block_group->zone_is_active = 0; 2022 /* We should have consumed all the free space */ 2023 ASSERT(block_group->alloc_offset == block_group->zone_capacity); 2024 ASSERT(block_group->free_space_ctl->free_space == 0); 2025 btrfs_clear_treelog_bg(block_group); 2026 btrfs_clear_data_reloc_bg(block_group); 2027 spin_unlock(&block_group->lock); 2028 2029 map = block_group->physical_map; 2030 device = map->stripes[0].dev; 2031 physical = map->stripes[0].physical; 2032 2033 if (!device->zone_info->max_active_zones) 2034 goto out; 2035 2036 btrfs_dev_clear_active_zone(device, physical); 2037 2038 spin_lock(&fs_info->zone_active_bgs_lock); 2039 ASSERT(!list_empty(&block_group->active_bg_list)); 2040 list_del_init(&block_group->active_bg_list); 2041 spin_unlock(&fs_info->zone_active_bgs_lock); 2042 2043 btrfs_put_block_group(block_group); 2044 2045 out: 2046 btrfs_put_block_group(block_group); 2047 } 2048 2049 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2050 { 2051 struct btrfs_fs_info *fs_info = bg->fs_info; 2052 2053 spin_lock(&fs_info->relocation_bg_lock); 2054 if (fs_info->data_reloc_bg == bg->start) 2055 fs_info->data_reloc_bg = 0; 2056 spin_unlock(&fs_info->relocation_bg_lock); 2057 } 2058 2059 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2060 { 2061 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2062 struct btrfs_device *device; 2063 2064 if (!btrfs_is_zoned(fs_info)) 2065 return; 2066 2067 mutex_lock(&fs_devices->device_list_mutex); 2068 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2069 if (device->zone_info) { 2070 vfree(device->zone_info->zone_cache); 2071 device->zone_info->zone_cache = NULL; 2072 } 2073 } 2074 mutex_unlock(&fs_devices->device_list_mutex); 2075 } 2076