xref: /openbmc/linux/fs/btrfs/zoned.c (revision f7b67642)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 
19 /* Maximum number of zones to report per blkdev_report_zones() call */
20 #define BTRFS_REPORT_NR_ZONES   4096
21 /* Invalid allocation pointer value for missing devices */
22 #define WP_MISSING_DEV ((u64)-1)
23 /* Pseudo write pointer value for conventional zone */
24 #define WP_CONVENTIONAL ((u64)-2)
25 
26 /*
27  * Location of the first zone of superblock logging zone pairs.
28  *
29  * - primary superblock:    0B (zone 0)
30  * - first copy:          512G (zone starting at that offset)
31  * - second copy:           4T (zone starting at that offset)
32  */
33 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
34 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
35 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
36 
37 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39 
40 /* Number of superblock log zones */
41 #define BTRFS_NR_SB_LOG_ZONES 2
42 
43 /*
44  * Minimum of active zones we need:
45  *
46  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48  * - 1 zone for tree-log dedicated block group
49  * - 1 zone for relocation
50  */
51 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
52 
53 /*
54  * Maximum supported zone size. Currently, SMR disks have a zone size of
55  * 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. We do not
56  * expect the zone size to become larger than 8GiB in the near future.
57  */
58 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
59 
60 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
61 
62 static inline bool sb_zone_is_full(const struct blk_zone *zone)
63 {
64 	return (zone->cond == BLK_ZONE_COND_FULL) ||
65 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
66 }
67 
68 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
69 {
70 	struct blk_zone *zones = data;
71 
72 	memcpy(&zones[idx], zone, sizeof(*zone));
73 
74 	return 0;
75 }
76 
77 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
78 			    u64 *wp_ret)
79 {
80 	bool empty[BTRFS_NR_SB_LOG_ZONES];
81 	bool full[BTRFS_NR_SB_LOG_ZONES];
82 	sector_t sector;
83 	int i;
84 
85 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
86 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
87 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
88 		full[i] = sb_zone_is_full(&zones[i]);
89 	}
90 
91 	/*
92 	 * Possible states of log buffer zones
93 	 *
94 	 *           Empty[0]  In use[0]  Full[0]
95 	 * Empty[1]         *          x        0
96 	 * In use[1]        0          x        0
97 	 * Full[1]          1          1        C
98 	 *
99 	 * Log position:
100 	 *   *: Special case, no superblock is written
101 	 *   0: Use write pointer of zones[0]
102 	 *   1: Use write pointer of zones[1]
103 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
104 	 *      one determined by generation
105 	 *   x: Invalid state
106 	 */
107 
108 	if (empty[0] && empty[1]) {
109 		/* Special case to distinguish no superblock to read */
110 		*wp_ret = zones[0].start << SECTOR_SHIFT;
111 		return -ENOENT;
112 	} else if (full[0] && full[1]) {
113 		/* Compare two super blocks */
114 		struct address_space *mapping = bdev->bd_inode->i_mapping;
115 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
116 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
117 		int i;
118 
119 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
120 			u64 bytenr;
121 
122 			bytenr = ((zones[i].start + zones[i].len)
123 				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
124 
125 			page[i] = read_cache_page_gfp(mapping,
126 					bytenr >> PAGE_SHIFT, GFP_NOFS);
127 			if (IS_ERR(page[i])) {
128 				if (i == 1)
129 					btrfs_release_disk_super(super[0]);
130 				return PTR_ERR(page[i]);
131 			}
132 			super[i] = page_address(page[i]);
133 		}
134 
135 		if (super[0]->generation > super[1]->generation)
136 			sector = zones[1].start;
137 		else
138 			sector = zones[0].start;
139 
140 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
141 			btrfs_release_disk_super(super[i]);
142 	} else if (!full[0] && (empty[1] || full[1])) {
143 		sector = zones[0].wp;
144 	} else if (full[0]) {
145 		sector = zones[1].wp;
146 	} else {
147 		return -EUCLEAN;
148 	}
149 	*wp_ret = sector << SECTOR_SHIFT;
150 	return 0;
151 }
152 
153 /*
154  * Get the first zone number of the superblock mirror
155  */
156 static inline u32 sb_zone_number(int shift, int mirror)
157 {
158 	u64 zone;
159 
160 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
161 	switch (mirror) {
162 	case 0: zone = 0; break;
163 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
164 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
165 	}
166 
167 	ASSERT(zone <= U32_MAX);
168 
169 	return (u32)zone;
170 }
171 
172 static inline sector_t zone_start_sector(u32 zone_number,
173 					 struct block_device *bdev)
174 {
175 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
176 }
177 
178 static inline u64 zone_start_physical(u32 zone_number,
179 				      struct btrfs_zoned_device_info *zone_info)
180 {
181 	return (u64)zone_number << zone_info->zone_size_shift;
182 }
183 
184 /*
185  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
186  * device into static sized chunks and fake a conventional zone on each of
187  * them.
188  */
189 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
190 				struct blk_zone *zones, unsigned int nr_zones)
191 {
192 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
193 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
194 	unsigned int i;
195 
196 	pos >>= SECTOR_SHIFT;
197 	for (i = 0; i < nr_zones; i++) {
198 		zones[i].start = i * zone_sectors + pos;
199 		zones[i].len = zone_sectors;
200 		zones[i].capacity = zone_sectors;
201 		zones[i].wp = zones[i].start + zone_sectors;
202 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
203 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
204 
205 		if (zones[i].wp >= bdev_size) {
206 			i++;
207 			break;
208 		}
209 	}
210 
211 	return i;
212 }
213 
214 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
215 			       struct blk_zone *zones, unsigned int *nr_zones)
216 {
217 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
218 	u32 zno;
219 	int ret;
220 
221 	if (!*nr_zones)
222 		return 0;
223 
224 	if (!bdev_is_zoned(device->bdev)) {
225 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
226 		*nr_zones = ret;
227 		return 0;
228 	}
229 
230 	/* Check cache */
231 	if (zinfo->zone_cache) {
232 		unsigned int i;
233 
234 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
235 		zno = pos >> zinfo->zone_size_shift;
236 		/*
237 		 * We cannot report zones beyond the zone end. So, it is OK to
238 		 * cap *nr_zones to at the end.
239 		 */
240 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
241 
242 		for (i = 0; i < *nr_zones; i++) {
243 			struct blk_zone *zone_info;
244 
245 			zone_info = &zinfo->zone_cache[zno + i];
246 			if (!zone_info->len)
247 				break;
248 		}
249 
250 		if (i == *nr_zones) {
251 			/* Cache hit on all the zones */
252 			memcpy(zones, zinfo->zone_cache + zno,
253 			       sizeof(*zinfo->zone_cache) * *nr_zones);
254 			return 0;
255 		}
256 	}
257 
258 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
259 				  copy_zone_info_cb, zones);
260 	if (ret < 0) {
261 		btrfs_err_in_rcu(device->fs_info,
262 				 "zoned: failed to read zone %llu on %s (devid %llu)",
263 				 pos, rcu_str_deref(device->name),
264 				 device->devid);
265 		return ret;
266 	}
267 	*nr_zones = ret;
268 	if (!ret)
269 		return -EIO;
270 
271 	/* Populate cache */
272 	if (zinfo->zone_cache)
273 		memcpy(zinfo->zone_cache + zno, zones,
274 		       sizeof(*zinfo->zone_cache) * *nr_zones);
275 
276 	return 0;
277 }
278 
279 /* The emulated zone size is determined from the size of device extent */
280 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
281 {
282 	struct btrfs_path *path;
283 	struct btrfs_root *root = fs_info->dev_root;
284 	struct btrfs_key key;
285 	struct extent_buffer *leaf;
286 	struct btrfs_dev_extent *dext;
287 	int ret = 0;
288 
289 	key.objectid = 1;
290 	key.type = BTRFS_DEV_EXTENT_KEY;
291 	key.offset = 0;
292 
293 	path = btrfs_alloc_path();
294 	if (!path)
295 		return -ENOMEM;
296 
297 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
298 	if (ret < 0)
299 		goto out;
300 
301 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
302 		ret = btrfs_next_leaf(root, path);
303 		if (ret < 0)
304 			goto out;
305 		/* No dev extents at all? Not good */
306 		if (ret > 0) {
307 			ret = -EUCLEAN;
308 			goto out;
309 		}
310 	}
311 
312 	leaf = path->nodes[0];
313 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
314 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
315 	ret = 0;
316 
317 out:
318 	btrfs_free_path(path);
319 
320 	return ret;
321 }
322 
323 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
324 {
325 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
326 	struct btrfs_device *device;
327 	int ret = 0;
328 
329 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
330 	if (!btrfs_fs_incompat(fs_info, ZONED))
331 		return 0;
332 
333 	mutex_lock(&fs_devices->device_list_mutex);
334 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
335 		/* We can skip reading of zone info for missing devices */
336 		if (!device->bdev)
337 			continue;
338 
339 		ret = btrfs_get_dev_zone_info(device, true);
340 		if (ret)
341 			break;
342 	}
343 	mutex_unlock(&fs_devices->device_list_mutex);
344 
345 	return ret;
346 }
347 
348 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
349 {
350 	struct btrfs_fs_info *fs_info = device->fs_info;
351 	struct btrfs_zoned_device_info *zone_info = NULL;
352 	struct block_device *bdev = device->bdev;
353 	struct request_queue *queue = bdev_get_queue(bdev);
354 	unsigned int max_active_zones;
355 	unsigned int nactive;
356 	sector_t nr_sectors;
357 	sector_t sector = 0;
358 	struct blk_zone *zones = NULL;
359 	unsigned int i, nreported = 0, nr_zones;
360 	sector_t zone_sectors;
361 	char *model, *emulated;
362 	int ret;
363 
364 	/*
365 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
366 	 * yet be set.
367 	 */
368 	if (!btrfs_fs_incompat(fs_info, ZONED))
369 		return 0;
370 
371 	if (device->zone_info)
372 		return 0;
373 
374 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
375 	if (!zone_info)
376 		return -ENOMEM;
377 
378 	device->zone_info = zone_info;
379 
380 	if (!bdev_is_zoned(bdev)) {
381 		if (!fs_info->zone_size) {
382 			ret = calculate_emulated_zone_size(fs_info);
383 			if (ret)
384 				goto out;
385 		}
386 
387 		ASSERT(fs_info->zone_size);
388 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
389 	} else {
390 		zone_sectors = bdev_zone_sectors(bdev);
391 	}
392 
393 	/* Check if it's power of 2 (see is_power_of_2) */
394 	ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
395 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
396 
397 	/* We reject devices with a zone size larger than 8GB */
398 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
399 		btrfs_err_in_rcu(fs_info,
400 		"zoned: %s: zone size %llu larger than supported maximum %llu",
401 				 rcu_str_deref(device->name),
402 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
403 		ret = -EINVAL;
404 		goto out;
405 	}
406 
407 	nr_sectors = bdev_nr_sectors(bdev);
408 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
409 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
410 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
411 		zone_info->nr_zones++;
412 
413 	max_active_zones = queue_max_active_zones(queue);
414 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
415 		btrfs_err_in_rcu(fs_info,
416 "zoned: %s: max active zones %u is too small, need at least %u active zones",
417 				 rcu_str_deref(device->name), max_active_zones,
418 				 BTRFS_MIN_ACTIVE_ZONES);
419 		ret = -EINVAL;
420 		goto out;
421 	}
422 	zone_info->max_active_zones = max_active_zones;
423 
424 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
425 	if (!zone_info->seq_zones) {
426 		ret = -ENOMEM;
427 		goto out;
428 	}
429 
430 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
431 	if (!zone_info->empty_zones) {
432 		ret = -ENOMEM;
433 		goto out;
434 	}
435 
436 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
437 	if (!zone_info->active_zones) {
438 		ret = -ENOMEM;
439 		goto out;
440 	}
441 
442 	zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
443 	if (!zones) {
444 		ret = -ENOMEM;
445 		goto out;
446 	}
447 
448 	/*
449 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
450 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
451 	 * use the cache.
452 	 */
453 	if (populate_cache && bdev_is_zoned(device->bdev)) {
454 		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
455 						zone_info->nr_zones);
456 		if (!zone_info->zone_cache) {
457 			btrfs_err_in_rcu(device->fs_info,
458 				"zoned: failed to allocate zone cache for %s",
459 				rcu_str_deref(device->name));
460 			ret = -ENOMEM;
461 			goto out;
462 		}
463 	}
464 
465 	/* Get zones type */
466 	nactive = 0;
467 	while (sector < nr_sectors) {
468 		nr_zones = BTRFS_REPORT_NR_ZONES;
469 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
470 					  &nr_zones);
471 		if (ret)
472 			goto out;
473 
474 		for (i = 0; i < nr_zones; i++) {
475 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
476 				__set_bit(nreported, zone_info->seq_zones);
477 			switch (zones[i].cond) {
478 			case BLK_ZONE_COND_EMPTY:
479 				__set_bit(nreported, zone_info->empty_zones);
480 				break;
481 			case BLK_ZONE_COND_IMP_OPEN:
482 			case BLK_ZONE_COND_EXP_OPEN:
483 			case BLK_ZONE_COND_CLOSED:
484 				__set_bit(nreported, zone_info->active_zones);
485 				nactive++;
486 				break;
487 			}
488 			nreported++;
489 		}
490 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
491 	}
492 
493 	if (nreported != zone_info->nr_zones) {
494 		btrfs_err_in_rcu(device->fs_info,
495 				 "inconsistent number of zones on %s (%u/%u)",
496 				 rcu_str_deref(device->name), nreported,
497 				 zone_info->nr_zones);
498 		ret = -EIO;
499 		goto out;
500 	}
501 
502 	if (max_active_zones) {
503 		if (nactive > max_active_zones) {
504 			btrfs_err_in_rcu(device->fs_info,
505 			"zoned: %u active zones on %s exceeds max_active_zones %u",
506 					 nactive, rcu_str_deref(device->name),
507 					 max_active_zones);
508 			ret = -EIO;
509 			goto out;
510 		}
511 		atomic_set(&zone_info->active_zones_left,
512 			   max_active_zones - nactive);
513 	}
514 
515 	/* Validate superblock log */
516 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
517 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
518 		u32 sb_zone;
519 		u64 sb_wp;
520 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
521 
522 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
523 		if (sb_zone + 1 >= zone_info->nr_zones)
524 			continue;
525 
526 		ret = btrfs_get_dev_zones(device,
527 					  zone_start_physical(sb_zone, zone_info),
528 					  &zone_info->sb_zones[sb_pos],
529 					  &nr_zones);
530 		if (ret)
531 			goto out;
532 
533 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
534 			btrfs_err_in_rcu(device->fs_info,
535 	"zoned: failed to read super block log zone info at devid %llu zone %u",
536 					 device->devid, sb_zone);
537 			ret = -EUCLEAN;
538 			goto out;
539 		}
540 
541 		/*
542 		 * If zones[0] is conventional, always use the beginning of the
543 		 * zone to record superblock. No need to validate in that case.
544 		 */
545 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
546 		    BLK_ZONE_TYPE_CONVENTIONAL)
547 			continue;
548 
549 		ret = sb_write_pointer(device->bdev,
550 				       &zone_info->sb_zones[sb_pos], &sb_wp);
551 		if (ret != -ENOENT && ret) {
552 			btrfs_err_in_rcu(device->fs_info,
553 			"zoned: super block log zone corrupted devid %llu zone %u",
554 					 device->devid, sb_zone);
555 			ret = -EUCLEAN;
556 			goto out;
557 		}
558 	}
559 
560 
561 	kfree(zones);
562 
563 	switch (bdev_zoned_model(bdev)) {
564 	case BLK_ZONED_HM:
565 		model = "host-managed zoned";
566 		emulated = "";
567 		break;
568 	case BLK_ZONED_HA:
569 		model = "host-aware zoned";
570 		emulated = "";
571 		break;
572 	case BLK_ZONED_NONE:
573 		model = "regular";
574 		emulated = "emulated ";
575 		break;
576 	default:
577 		/* Just in case */
578 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
579 				 bdev_zoned_model(bdev),
580 				 rcu_str_deref(device->name));
581 		ret = -EOPNOTSUPP;
582 		goto out_free_zone_info;
583 	}
584 
585 	btrfs_info_in_rcu(fs_info,
586 		"%s block device %s, %u %szones of %llu bytes",
587 		model, rcu_str_deref(device->name), zone_info->nr_zones,
588 		emulated, zone_info->zone_size);
589 
590 	return 0;
591 
592 out:
593 	kfree(zones);
594 out_free_zone_info:
595 	btrfs_destroy_dev_zone_info(device);
596 
597 	return ret;
598 }
599 
600 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
601 {
602 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
603 
604 	if (!zone_info)
605 		return;
606 
607 	bitmap_free(zone_info->active_zones);
608 	bitmap_free(zone_info->seq_zones);
609 	bitmap_free(zone_info->empty_zones);
610 	vfree(zone_info->zone_cache);
611 	kfree(zone_info);
612 	device->zone_info = NULL;
613 }
614 
615 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
616 		       struct blk_zone *zone)
617 {
618 	unsigned int nr_zones = 1;
619 	int ret;
620 
621 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
622 	if (ret != 0 || !nr_zones)
623 		return ret ? ret : -EIO;
624 
625 	return 0;
626 }
627 
628 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
629 {
630 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
631 	struct btrfs_device *device;
632 	u64 zoned_devices = 0;
633 	u64 nr_devices = 0;
634 	u64 zone_size = 0;
635 	const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
636 	int ret = 0;
637 
638 	/* Count zoned devices */
639 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
640 		enum blk_zoned_model model;
641 
642 		if (!device->bdev)
643 			continue;
644 
645 		model = bdev_zoned_model(device->bdev);
646 		/*
647 		 * A Host-Managed zoned device must be used as a zoned device.
648 		 * A Host-Aware zoned device and a non-zoned devices can be
649 		 * treated as a zoned device, if ZONED flag is enabled in the
650 		 * superblock.
651 		 */
652 		if (model == BLK_ZONED_HM ||
653 		    (model == BLK_ZONED_HA && incompat_zoned) ||
654 		    (model == BLK_ZONED_NONE && incompat_zoned)) {
655 			struct btrfs_zoned_device_info *zone_info =
656 				device->zone_info;
657 
658 			zone_info = device->zone_info;
659 			zoned_devices++;
660 			if (!zone_size) {
661 				zone_size = zone_info->zone_size;
662 			} else if (zone_info->zone_size != zone_size) {
663 				btrfs_err(fs_info,
664 		"zoned: unequal block device zone sizes: have %llu found %llu",
665 					  device->zone_info->zone_size,
666 					  zone_size);
667 				ret = -EINVAL;
668 				goto out;
669 			}
670 		}
671 		nr_devices++;
672 	}
673 
674 	if (!zoned_devices && !incompat_zoned)
675 		goto out;
676 
677 	if (!zoned_devices && incompat_zoned) {
678 		/* No zoned block device found on ZONED filesystem */
679 		btrfs_err(fs_info,
680 			  "zoned: no zoned devices found on a zoned filesystem");
681 		ret = -EINVAL;
682 		goto out;
683 	}
684 
685 	if (zoned_devices && !incompat_zoned) {
686 		btrfs_err(fs_info,
687 			  "zoned: mode not enabled but zoned device found");
688 		ret = -EINVAL;
689 		goto out;
690 	}
691 
692 	if (zoned_devices != nr_devices) {
693 		btrfs_err(fs_info,
694 			  "zoned: cannot mix zoned and regular devices");
695 		ret = -EINVAL;
696 		goto out;
697 	}
698 
699 	/*
700 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
701 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
702 	 * check the alignment here.
703 	 */
704 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
705 		btrfs_err(fs_info,
706 			  "zoned: zone size %llu not aligned to stripe %u",
707 			  zone_size, BTRFS_STRIPE_LEN);
708 		ret = -EINVAL;
709 		goto out;
710 	}
711 
712 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
713 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
714 		ret = -EINVAL;
715 		goto out;
716 	}
717 
718 	fs_info->zone_size = zone_size;
719 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
720 
721 	/*
722 	 * Check mount options here, because we might change fs_info->zoned
723 	 * from fs_info->zone_size.
724 	 */
725 	ret = btrfs_check_mountopts_zoned(fs_info);
726 	if (ret)
727 		goto out;
728 
729 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
730 out:
731 	return ret;
732 }
733 
734 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
735 {
736 	if (!btrfs_is_zoned(info))
737 		return 0;
738 
739 	/*
740 	 * Space cache writing is not COWed. Disable that to avoid write errors
741 	 * in sequential zones.
742 	 */
743 	if (btrfs_test_opt(info, SPACE_CACHE)) {
744 		btrfs_err(info, "zoned: space cache v1 is not supported");
745 		return -EINVAL;
746 	}
747 
748 	if (btrfs_test_opt(info, NODATACOW)) {
749 		btrfs_err(info, "zoned: NODATACOW not supported");
750 		return -EINVAL;
751 	}
752 
753 	return 0;
754 }
755 
756 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
757 			   int rw, u64 *bytenr_ret)
758 {
759 	u64 wp;
760 	int ret;
761 
762 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
763 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
764 		return 0;
765 	}
766 
767 	ret = sb_write_pointer(bdev, zones, &wp);
768 	if (ret != -ENOENT && ret < 0)
769 		return ret;
770 
771 	if (rw == WRITE) {
772 		struct blk_zone *reset = NULL;
773 
774 		if (wp == zones[0].start << SECTOR_SHIFT)
775 			reset = &zones[0];
776 		else if (wp == zones[1].start << SECTOR_SHIFT)
777 			reset = &zones[1];
778 
779 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
780 			ASSERT(sb_zone_is_full(reset));
781 
782 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
783 					       reset->start, reset->len,
784 					       GFP_NOFS);
785 			if (ret)
786 				return ret;
787 
788 			reset->cond = BLK_ZONE_COND_EMPTY;
789 			reset->wp = reset->start;
790 		}
791 	} else if (ret != -ENOENT) {
792 		/*
793 		 * For READ, we want the previous one. Move write pointer to
794 		 * the end of a zone, if it is at the head of a zone.
795 		 */
796 		u64 zone_end = 0;
797 
798 		if (wp == zones[0].start << SECTOR_SHIFT)
799 			zone_end = zones[1].start + zones[1].capacity;
800 		else if (wp == zones[1].start << SECTOR_SHIFT)
801 			zone_end = zones[0].start + zones[0].capacity;
802 		if (zone_end)
803 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
804 					BTRFS_SUPER_INFO_SIZE);
805 
806 		wp -= BTRFS_SUPER_INFO_SIZE;
807 	}
808 
809 	*bytenr_ret = wp;
810 	return 0;
811 
812 }
813 
814 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
815 			       u64 *bytenr_ret)
816 {
817 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
818 	sector_t zone_sectors;
819 	u32 sb_zone;
820 	int ret;
821 	u8 zone_sectors_shift;
822 	sector_t nr_sectors;
823 	u32 nr_zones;
824 
825 	if (!bdev_is_zoned(bdev)) {
826 		*bytenr_ret = btrfs_sb_offset(mirror);
827 		return 0;
828 	}
829 
830 	ASSERT(rw == READ || rw == WRITE);
831 
832 	zone_sectors = bdev_zone_sectors(bdev);
833 	if (!is_power_of_2(zone_sectors))
834 		return -EINVAL;
835 	zone_sectors_shift = ilog2(zone_sectors);
836 	nr_sectors = bdev_nr_sectors(bdev);
837 	nr_zones = nr_sectors >> zone_sectors_shift;
838 
839 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
840 	if (sb_zone + 1 >= nr_zones)
841 		return -ENOENT;
842 
843 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
844 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
845 				  zones);
846 	if (ret < 0)
847 		return ret;
848 	if (ret != BTRFS_NR_SB_LOG_ZONES)
849 		return -EIO;
850 
851 	return sb_log_location(bdev, zones, rw, bytenr_ret);
852 }
853 
854 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
855 			  u64 *bytenr_ret)
856 {
857 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
858 	u32 zone_num;
859 
860 	/*
861 	 * For a zoned filesystem on a non-zoned block device, use the same
862 	 * super block locations as regular filesystem. Doing so, the super
863 	 * block can always be retrieved and the zoned flag of the volume
864 	 * detected from the super block information.
865 	 */
866 	if (!bdev_is_zoned(device->bdev)) {
867 		*bytenr_ret = btrfs_sb_offset(mirror);
868 		return 0;
869 	}
870 
871 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
872 	if (zone_num + 1 >= zinfo->nr_zones)
873 		return -ENOENT;
874 
875 	return sb_log_location(device->bdev,
876 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
877 			       rw, bytenr_ret);
878 }
879 
880 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
881 				  int mirror)
882 {
883 	u32 zone_num;
884 
885 	if (!zinfo)
886 		return false;
887 
888 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
889 	if (zone_num + 1 >= zinfo->nr_zones)
890 		return false;
891 
892 	if (!test_bit(zone_num, zinfo->seq_zones))
893 		return false;
894 
895 	return true;
896 }
897 
898 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
899 {
900 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
901 	struct blk_zone *zone;
902 	int i;
903 
904 	if (!is_sb_log_zone(zinfo, mirror))
905 		return 0;
906 
907 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
908 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
909 		/* Advance the next zone */
910 		if (zone->cond == BLK_ZONE_COND_FULL) {
911 			zone++;
912 			continue;
913 		}
914 
915 		if (zone->cond == BLK_ZONE_COND_EMPTY)
916 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
917 
918 		zone->wp += SUPER_INFO_SECTORS;
919 
920 		if (sb_zone_is_full(zone)) {
921 			/*
922 			 * No room left to write new superblock. Since
923 			 * superblock is written with REQ_SYNC, it is safe to
924 			 * finish the zone now.
925 			 *
926 			 * If the write pointer is exactly at the capacity,
927 			 * explicit ZONE_FINISH is not necessary.
928 			 */
929 			if (zone->wp != zone->start + zone->capacity) {
930 				int ret;
931 
932 				ret = blkdev_zone_mgmt(device->bdev,
933 						REQ_OP_ZONE_FINISH, zone->start,
934 						zone->len, GFP_NOFS);
935 				if (ret)
936 					return ret;
937 			}
938 
939 			zone->wp = zone->start + zone->len;
940 			zone->cond = BLK_ZONE_COND_FULL;
941 		}
942 		return 0;
943 	}
944 
945 	/* All the zones are FULL. Should not reach here. */
946 	ASSERT(0);
947 	return -EIO;
948 }
949 
950 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
951 {
952 	sector_t zone_sectors;
953 	sector_t nr_sectors;
954 	u8 zone_sectors_shift;
955 	u32 sb_zone;
956 	u32 nr_zones;
957 
958 	zone_sectors = bdev_zone_sectors(bdev);
959 	zone_sectors_shift = ilog2(zone_sectors);
960 	nr_sectors = bdev_nr_sectors(bdev);
961 	nr_zones = nr_sectors >> zone_sectors_shift;
962 
963 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
964 	if (sb_zone + 1 >= nr_zones)
965 		return -ENOENT;
966 
967 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
968 				zone_start_sector(sb_zone, bdev),
969 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
970 }
971 
972 /**
973  * btrfs_find_allocatable_zones - find allocatable zones within a given region
974  *
975  * @device:	the device to allocate a region on
976  * @hole_start: the position of the hole to allocate the region
977  * @num_bytes:	size of wanted region
978  * @hole_end:	the end of the hole
979  * @return:	position of allocatable zones
980  *
981  * Allocatable region should not contain any superblock locations.
982  */
983 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
984 				 u64 hole_end, u64 num_bytes)
985 {
986 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
987 	const u8 shift = zinfo->zone_size_shift;
988 	u64 nzones = num_bytes >> shift;
989 	u64 pos = hole_start;
990 	u64 begin, end;
991 	bool have_sb;
992 	int i;
993 
994 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
995 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
996 
997 	while (pos < hole_end) {
998 		begin = pos >> shift;
999 		end = begin + nzones;
1000 
1001 		if (end > zinfo->nr_zones)
1002 			return hole_end;
1003 
1004 		/* Check if zones in the region are all empty */
1005 		if (btrfs_dev_is_sequential(device, pos) &&
1006 		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1007 			pos += zinfo->zone_size;
1008 			continue;
1009 		}
1010 
1011 		have_sb = false;
1012 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1013 			u32 sb_zone;
1014 			u64 sb_pos;
1015 
1016 			sb_zone = sb_zone_number(shift, i);
1017 			if (!(end <= sb_zone ||
1018 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1019 				have_sb = true;
1020 				pos = zone_start_physical(
1021 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1022 				break;
1023 			}
1024 
1025 			/* We also need to exclude regular superblock positions */
1026 			sb_pos = btrfs_sb_offset(i);
1027 			if (!(pos + num_bytes <= sb_pos ||
1028 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1029 				have_sb = true;
1030 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1031 					    zinfo->zone_size);
1032 				break;
1033 			}
1034 		}
1035 		if (!have_sb)
1036 			break;
1037 	}
1038 
1039 	return pos;
1040 }
1041 
1042 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1043 {
1044 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1045 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1046 
1047 	/* We can use any number of zones */
1048 	if (zone_info->max_active_zones == 0)
1049 		return true;
1050 
1051 	if (!test_bit(zno, zone_info->active_zones)) {
1052 		/* Active zone left? */
1053 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1054 			return false;
1055 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1056 			/* Someone already set the bit */
1057 			atomic_inc(&zone_info->active_zones_left);
1058 		}
1059 	}
1060 
1061 	return true;
1062 }
1063 
1064 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1065 {
1066 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1067 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1068 
1069 	/* We can use any number of zones */
1070 	if (zone_info->max_active_zones == 0)
1071 		return;
1072 
1073 	if (test_and_clear_bit(zno, zone_info->active_zones))
1074 		atomic_inc(&zone_info->active_zones_left);
1075 }
1076 
1077 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1078 			    u64 length, u64 *bytes)
1079 {
1080 	int ret;
1081 
1082 	*bytes = 0;
1083 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1084 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1085 			       GFP_NOFS);
1086 	if (ret)
1087 		return ret;
1088 
1089 	*bytes = length;
1090 	while (length) {
1091 		btrfs_dev_set_zone_empty(device, physical);
1092 		btrfs_dev_clear_active_zone(device, physical);
1093 		physical += device->zone_info->zone_size;
1094 		length -= device->zone_info->zone_size;
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1101 {
1102 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1103 	const u8 shift = zinfo->zone_size_shift;
1104 	unsigned long begin = start >> shift;
1105 	unsigned long end = (start + size) >> shift;
1106 	u64 pos;
1107 	int ret;
1108 
1109 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1110 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1111 
1112 	if (end > zinfo->nr_zones)
1113 		return -ERANGE;
1114 
1115 	/* All the zones are conventional */
1116 	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1117 		return 0;
1118 
1119 	/* All the zones are sequential and empty */
1120 	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1121 	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1122 		return 0;
1123 
1124 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1125 		u64 reset_bytes;
1126 
1127 		if (!btrfs_dev_is_sequential(device, pos) ||
1128 		    btrfs_dev_is_empty_zone(device, pos))
1129 			continue;
1130 
1131 		/* Free regions should be empty */
1132 		btrfs_warn_in_rcu(
1133 			device->fs_info,
1134 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1135 			rcu_str_deref(device->name), device->devid, pos >> shift);
1136 		WARN_ON_ONCE(1);
1137 
1138 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1139 					      &reset_bytes);
1140 		if (ret)
1141 			return ret;
1142 	}
1143 
1144 	return 0;
1145 }
1146 
1147 /*
1148  * Calculate an allocation pointer from the extent allocation information
1149  * for a block group consist of conventional zones. It is pointed to the
1150  * end of the highest addressed extent in the block group as an allocation
1151  * offset.
1152  */
1153 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1154 				   u64 *offset_ret)
1155 {
1156 	struct btrfs_fs_info *fs_info = cache->fs_info;
1157 	struct btrfs_root *root;
1158 	struct btrfs_path *path;
1159 	struct btrfs_key key;
1160 	struct btrfs_key found_key;
1161 	int ret;
1162 	u64 length;
1163 
1164 	path = btrfs_alloc_path();
1165 	if (!path)
1166 		return -ENOMEM;
1167 
1168 	key.objectid = cache->start + cache->length;
1169 	key.type = 0;
1170 	key.offset = 0;
1171 
1172 	root = btrfs_extent_root(fs_info, key.objectid);
1173 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1174 	/* We should not find the exact match */
1175 	if (!ret)
1176 		ret = -EUCLEAN;
1177 	if (ret < 0)
1178 		goto out;
1179 
1180 	ret = btrfs_previous_extent_item(root, path, cache->start);
1181 	if (ret) {
1182 		if (ret == 1) {
1183 			ret = 0;
1184 			*offset_ret = 0;
1185 		}
1186 		goto out;
1187 	}
1188 
1189 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1190 
1191 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1192 		length = found_key.offset;
1193 	else
1194 		length = fs_info->nodesize;
1195 
1196 	if (!(found_key.objectid >= cache->start &&
1197 	       found_key.objectid + length <= cache->start + cache->length)) {
1198 		ret = -EUCLEAN;
1199 		goto out;
1200 	}
1201 	*offset_ret = found_key.objectid + length - cache->start;
1202 	ret = 0;
1203 
1204 out:
1205 	btrfs_free_path(path);
1206 	return ret;
1207 }
1208 
1209 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1210 {
1211 	struct btrfs_fs_info *fs_info = cache->fs_info;
1212 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1213 	struct extent_map *em;
1214 	struct map_lookup *map;
1215 	struct btrfs_device *device;
1216 	u64 logical = cache->start;
1217 	u64 length = cache->length;
1218 	u64 physical = 0;
1219 	int ret;
1220 	int i;
1221 	unsigned int nofs_flag;
1222 	u64 *alloc_offsets = NULL;
1223 	u64 *caps = NULL;
1224 	unsigned long *active = NULL;
1225 	u64 last_alloc = 0;
1226 	u32 num_sequential = 0, num_conventional = 0;
1227 
1228 	if (!btrfs_is_zoned(fs_info))
1229 		return 0;
1230 
1231 	/* Sanity check */
1232 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1233 		btrfs_err(fs_info,
1234 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1235 			  logical, length, fs_info->zone_size);
1236 		return -EIO;
1237 	}
1238 
1239 	/* Get the chunk mapping */
1240 	read_lock(&em_tree->lock);
1241 	em = lookup_extent_mapping(em_tree, logical, length);
1242 	read_unlock(&em_tree->lock);
1243 
1244 	if (!em)
1245 		return -EINVAL;
1246 
1247 	map = em->map_lookup;
1248 
1249 	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1250 	if (!cache->physical_map) {
1251 		ret = -ENOMEM;
1252 		goto out;
1253 	}
1254 
1255 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1256 	if (!alloc_offsets) {
1257 		ret = -ENOMEM;
1258 		goto out;
1259 	}
1260 
1261 	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1262 	if (!caps) {
1263 		ret = -ENOMEM;
1264 		goto out;
1265 	}
1266 
1267 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1268 	if (!active) {
1269 		ret = -ENOMEM;
1270 		goto out;
1271 	}
1272 
1273 	for (i = 0; i < map->num_stripes; i++) {
1274 		bool is_sequential;
1275 		struct blk_zone zone;
1276 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1277 		int dev_replace_is_ongoing = 0;
1278 
1279 		device = map->stripes[i].dev;
1280 		physical = map->stripes[i].physical;
1281 
1282 		if (device->bdev == NULL) {
1283 			alloc_offsets[i] = WP_MISSING_DEV;
1284 			continue;
1285 		}
1286 
1287 		is_sequential = btrfs_dev_is_sequential(device, physical);
1288 		if (is_sequential)
1289 			num_sequential++;
1290 		else
1291 			num_conventional++;
1292 
1293 		if (!is_sequential) {
1294 			alloc_offsets[i] = WP_CONVENTIONAL;
1295 			continue;
1296 		}
1297 
1298 		/*
1299 		 * This zone will be used for allocation, so mark this zone
1300 		 * non-empty.
1301 		 */
1302 		btrfs_dev_clear_zone_empty(device, physical);
1303 
1304 		down_read(&dev_replace->rwsem);
1305 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1306 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1307 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical);
1308 		up_read(&dev_replace->rwsem);
1309 
1310 		/*
1311 		 * The group is mapped to a sequential zone. Get the zone write
1312 		 * pointer to determine the allocation offset within the zone.
1313 		 */
1314 		WARN_ON(!IS_ALIGNED(physical, fs_info->zone_size));
1315 		nofs_flag = memalloc_nofs_save();
1316 		ret = btrfs_get_dev_zone(device, physical, &zone);
1317 		memalloc_nofs_restore(nofs_flag);
1318 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1319 			ret = 0;
1320 			alloc_offsets[i] = WP_MISSING_DEV;
1321 			continue;
1322 		} else if (ret) {
1323 			goto out;
1324 		}
1325 
1326 		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1327 			btrfs_err_in_rcu(fs_info,
1328 	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1329 				zone.start << SECTOR_SHIFT,
1330 				rcu_str_deref(device->name), device->devid);
1331 			ret = -EIO;
1332 			goto out;
1333 		}
1334 
1335 		caps[i] = (zone.capacity << SECTOR_SHIFT);
1336 
1337 		switch (zone.cond) {
1338 		case BLK_ZONE_COND_OFFLINE:
1339 		case BLK_ZONE_COND_READONLY:
1340 			btrfs_err(fs_info,
1341 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1342 				  physical >> device->zone_info->zone_size_shift,
1343 				  rcu_str_deref(device->name), device->devid);
1344 			alloc_offsets[i] = WP_MISSING_DEV;
1345 			break;
1346 		case BLK_ZONE_COND_EMPTY:
1347 			alloc_offsets[i] = 0;
1348 			break;
1349 		case BLK_ZONE_COND_FULL:
1350 			alloc_offsets[i] = caps[i];
1351 			break;
1352 		default:
1353 			/* Partially used zone */
1354 			alloc_offsets[i] =
1355 					((zone.wp - zone.start) << SECTOR_SHIFT);
1356 			__set_bit(i, active);
1357 			break;
1358 		}
1359 
1360 		/*
1361 		 * Consider a zone as active if we can allow any number of
1362 		 * active zones.
1363 		 */
1364 		if (!device->zone_info->max_active_zones)
1365 			__set_bit(i, active);
1366 	}
1367 
1368 	if (num_sequential > 0)
1369 		cache->seq_zone = true;
1370 
1371 	if (num_conventional > 0) {
1372 		/*
1373 		 * Avoid calling calculate_alloc_pointer() for new BG. It
1374 		 * is no use for new BG. It must be always 0.
1375 		 *
1376 		 * Also, we have a lock chain of extent buffer lock ->
1377 		 * chunk mutex.  For new BG, this function is called from
1378 		 * btrfs_make_block_group() which is already taking the
1379 		 * chunk mutex. Thus, we cannot call
1380 		 * calculate_alloc_pointer() which takes extent buffer
1381 		 * locks to avoid deadlock.
1382 		 */
1383 
1384 		/* Zone capacity is always zone size in emulation */
1385 		cache->zone_capacity = cache->length;
1386 		if (new) {
1387 			cache->alloc_offset = 0;
1388 			goto out;
1389 		}
1390 		ret = calculate_alloc_pointer(cache, &last_alloc);
1391 		if (ret || map->num_stripes == num_conventional) {
1392 			if (!ret)
1393 				cache->alloc_offset = last_alloc;
1394 			else
1395 				btrfs_err(fs_info,
1396 			"zoned: failed to determine allocation offset of bg %llu",
1397 					  cache->start);
1398 			goto out;
1399 		}
1400 	}
1401 
1402 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1403 	case 0: /* single */
1404 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1405 			btrfs_err(fs_info,
1406 			"zoned: cannot recover write pointer for zone %llu",
1407 				physical);
1408 			ret = -EIO;
1409 			goto out;
1410 		}
1411 		cache->alloc_offset = alloc_offsets[0];
1412 		cache->zone_capacity = caps[0];
1413 		cache->zone_is_active = test_bit(0, active);
1414 		break;
1415 	case BTRFS_BLOCK_GROUP_DUP:
1416 	case BTRFS_BLOCK_GROUP_RAID1:
1417 	case BTRFS_BLOCK_GROUP_RAID0:
1418 	case BTRFS_BLOCK_GROUP_RAID10:
1419 	case BTRFS_BLOCK_GROUP_RAID5:
1420 	case BTRFS_BLOCK_GROUP_RAID6:
1421 		/* non-single profiles are not supported yet */
1422 	default:
1423 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1424 			  btrfs_bg_type_to_raid_name(map->type));
1425 		ret = -EINVAL;
1426 		goto out;
1427 	}
1428 
1429 	if (cache->zone_is_active) {
1430 		btrfs_get_block_group(cache);
1431 		spin_lock(&fs_info->zone_active_bgs_lock);
1432 		list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs);
1433 		spin_unlock(&fs_info->zone_active_bgs_lock);
1434 	}
1435 
1436 out:
1437 	if (cache->alloc_offset > fs_info->zone_size) {
1438 		btrfs_err(fs_info,
1439 			"zoned: invalid write pointer %llu in block group %llu",
1440 			cache->alloc_offset, cache->start);
1441 		ret = -EIO;
1442 	}
1443 
1444 	if (cache->alloc_offset > cache->zone_capacity) {
1445 		btrfs_err(fs_info,
1446 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1447 			  cache->alloc_offset, cache->zone_capacity,
1448 			  cache->start);
1449 		ret = -EIO;
1450 	}
1451 
1452 	/* An extent is allocated after the write pointer */
1453 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1454 		btrfs_err(fs_info,
1455 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1456 			  logical, last_alloc, cache->alloc_offset);
1457 		ret = -EIO;
1458 	}
1459 
1460 	if (!ret)
1461 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1462 
1463 	if (ret) {
1464 		kfree(cache->physical_map);
1465 		cache->physical_map = NULL;
1466 	}
1467 	bitmap_free(active);
1468 	kfree(caps);
1469 	kfree(alloc_offsets);
1470 	free_extent_map(em);
1471 
1472 	return ret;
1473 }
1474 
1475 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1476 {
1477 	u64 unusable, free;
1478 
1479 	if (!btrfs_is_zoned(cache->fs_info))
1480 		return;
1481 
1482 	WARN_ON(cache->bytes_super != 0);
1483 	unusable = (cache->alloc_offset - cache->used) +
1484 		   (cache->length - cache->zone_capacity);
1485 	free = cache->zone_capacity - cache->alloc_offset;
1486 
1487 	/* We only need ->free_space in ALLOC_SEQ block groups */
1488 	cache->last_byte_to_unpin = (u64)-1;
1489 	cache->cached = BTRFS_CACHE_FINISHED;
1490 	cache->free_space_ctl->free_space = free;
1491 	cache->zone_unusable = unusable;
1492 }
1493 
1494 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1495 			    struct extent_buffer *eb)
1496 {
1497 	struct btrfs_fs_info *fs_info = eb->fs_info;
1498 
1499 	if (!btrfs_is_zoned(fs_info) ||
1500 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1501 	    !list_empty(&eb->release_list))
1502 		return;
1503 
1504 	set_extent_buffer_dirty(eb);
1505 	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1506 			       eb->start + eb->len - 1, EXTENT_DIRTY);
1507 	memzero_extent_buffer(eb, 0, eb->len);
1508 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1509 
1510 	spin_lock(&trans->releasing_ebs_lock);
1511 	list_add_tail(&eb->release_list, &trans->releasing_ebs);
1512 	spin_unlock(&trans->releasing_ebs_lock);
1513 	atomic_inc(&eb->refs);
1514 }
1515 
1516 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1517 {
1518 	spin_lock(&trans->releasing_ebs_lock);
1519 	while (!list_empty(&trans->releasing_ebs)) {
1520 		struct extent_buffer *eb;
1521 
1522 		eb = list_first_entry(&trans->releasing_ebs,
1523 				      struct extent_buffer, release_list);
1524 		list_del_init(&eb->release_list);
1525 		free_extent_buffer(eb);
1526 	}
1527 	spin_unlock(&trans->releasing_ebs_lock);
1528 }
1529 
1530 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1531 {
1532 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1533 	struct btrfs_block_group *cache;
1534 	bool ret = false;
1535 
1536 	if (!btrfs_is_zoned(fs_info))
1537 		return false;
1538 
1539 	if (!is_data_inode(&inode->vfs_inode))
1540 		return false;
1541 
1542 	/*
1543 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1544 	 * extent layout the relocation code has.
1545 	 * Furthermore we have set aside own block-group from which only the
1546 	 * relocation "process" can allocate and make sure only one process at a
1547 	 * time can add pages to an extent that gets relocated, so it's safe to
1548 	 * use regular REQ_OP_WRITE for this special case.
1549 	 */
1550 	if (btrfs_is_data_reloc_root(inode->root))
1551 		return false;
1552 
1553 	cache = btrfs_lookup_block_group(fs_info, start);
1554 	ASSERT(cache);
1555 	if (!cache)
1556 		return false;
1557 
1558 	ret = cache->seq_zone;
1559 	btrfs_put_block_group(cache);
1560 
1561 	return ret;
1562 }
1563 
1564 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1565 				 struct bio *bio)
1566 {
1567 	struct btrfs_ordered_extent *ordered;
1568 	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1569 
1570 	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1571 		return;
1572 
1573 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1574 	if (WARN_ON(!ordered))
1575 		return;
1576 
1577 	ordered->physical = physical;
1578 	ordered->bdev = bio->bi_bdev;
1579 
1580 	btrfs_put_ordered_extent(ordered);
1581 }
1582 
1583 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1584 {
1585 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1586 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1587 	struct extent_map_tree *em_tree;
1588 	struct extent_map *em;
1589 	struct btrfs_ordered_sum *sum;
1590 	u64 orig_logical = ordered->disk_bytenr;
1591 	u64 *logical = NULL;
1592 	int nr, stripe_len;
1593 
1594 	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1595 	ASSERT(!bdev_is_partition(ordered->bdev));
1596 	if (WARN_ON(!ordered->bdev))
1597 		return;
1598 
1599 	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1600 				     ordered->physical, &logical, &nr,
1601 				     &stripe_len)))
1602 		goto out;
1603 
1604 	WARN_ON(nr != 1);
1605 
1606 	if (orig_logical == *logical)
1607 		goto out;
1608 
1609 	ordered->disk_bytenr = *logical;
1610 
1611 	em_tree = &inode->extent_tree;
1612 	write_lock(&em_tree->lock);
1613 	em = search_extent_mapping(em_tree, ordered->file_offset,
1614 				   ordered->num_bytes);
1615 	em->block_start = *logical;
1616 	free_extent_map(em);
1617 	write_unlock(&em_tree->lock);
1618 
1619 	list_for_each_entry(sum, &ordered->list, list) {
1620 		if (*logical < orig_logical)
1621 			sum->bytenr -= orig_logical - *logical;
1622 		else
1623 			sum->bytenr += *logical - orig_logical;
1624 	}
1625 
1626 out:
1627 	kfree(logical);
1628 }
1629 
1630 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1631 				    struct extent_buffer *eb,
1632 				    struct btrfs_block_group **cache_ret)
1633 {
1634 	struct btrfs_block_group *cache;
1635 	bool ret = true;
1636 
1637 	if (!btrfs_is_zoned(fs_info))
1638 		return true;
1639 
1640 	cache = btrfs_lookup_block_group(fs_info, eb->start);
1641 	if (!cache)
1642 		return true;
1643 
1644 	if (cache->meta_write_pointer != eb->start) {
1645 		btrfs_put_block_group(cache);
1646 		cache = NULL;
1647 		ret = false;
1648 	} else {
1649 		cache->meta_write_pointer = eb->start + eb->len;
1650 	}
1651 
1652 	*cache_ret = cache;
1653 
1654 	return ret;
1655 }
1656 
1657 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1658 				     struct extent_buffer *eb)
1659 {
1660 	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1661 		return;
1662 
1663 	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1664 	cache->meta_write_pointer = eb->start;
1665 }
1666 
1667 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1668 {
1669 	if (!btrfs_dev_is_sequential(device, physical))
1670 		return -EOPNOTSUPP;
1671 
1672 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1673 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1674 }
1675 
1676 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1677 			  struct blk_zone *zone)
1678 {
1679 	struct btrfs_io_context *bioc = NULL;
1680 	u64 mapped_length = PAGE_SIZE;
1681 	unsigned int nofs_flag;
1682 	int nmirrors;
1683 	int i, ret;
1684 
1685 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1686 			       &mapped_length, &bioc);
1687 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1688 		btrfs_put_bioc(bioc);
1689 		return -EIO;
1690 	}
1691 
1692 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1693 		return -EINVAL;
1694 
1695 	nofs_flag = memalloc_nofs_save();
1696 	nmirrors = (int)bioc->num_stripes;
1697 	for (i = 0; i < nmirrors; i++) {
1698 		u64 physical = bioc->stripes[i].physical;
1699 		struct btrfs_device *dev = bioc->stripes[i].dev;
1700 
1701 		/* Missing device */
1702 		if (!dev->bdev)
1703 			continue;
1704 
1705 		ret = btrfs_get_dev_zone(dev, physical, zone);
1706 		/* Failing device */
1707 		if (ret == -EIO || ret == -EOPNOTSUPP)
1708 			continue;
1709 		break;
1710 	}
1711 	memalloc_nofs_restore(nofs_flag);
1712 
1713 	return ret;
1714 }
1715 
1716 /*
1717  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1718  * filling zeros between @physical_pos to a write pointer of dev-replace
1719  * source device.
1720  */
1721 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1722 				    u64 physical_start, u64 physical_pos)
1723 {
1724 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1725 	struct blk_zone zone;
1726 	u64 length;
1727 	u64 wp;
1728 	int ret;
1729 
1730 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1731 		return 0;
1732 
1733 	ret = read_zone_info(fs_info, logical, &zone);
1734 	if (ret)
1735 		return ret;
1736 
1737 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1738 
1739 	if (physical_pos == wp)
1740 		return 0;
1741 
1742 	if (physical_pos > wp)
1743 		return -EUCLEAN;
1744 
1745 	length = wp - physical_pos;
1746 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1747 }
1748 
1749 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1750 					    u64 logical, u64 length)
1751 {
1752 	struct btrfs_device *device;
1753 	struct extent_map *em;
1754 	struct map_lookup *map;
1755 
1756 	em = btrfs_get_chunk_map(fs_info, logical, length);
1757 	if (IS_ERR(em))
1758 		return ERR_CAST(em);
1759 
1760 	map = em->map_lookup;
1761 	/* We only support single profile for now */
1762 	ASSERT(map->num_stripes == 1);
1763 	device = map->stripes[0].dev;
1764 
1765 	free_extent_map(em);
1766 
1767 	return device;
1768 }
1769 
1770 /**
1771  * Activate block group and underlying device zones
1772  *
1773  * @block_group: the block group to activate
1774  *
1775  * Return: true on success, false otherwise
1776  */
1777 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1778 {
1779 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1780 	struct map_lookup *map;
1781 	struct btrfs_device *device;
1782 	u64 physical;
1783 	bool ret;
1784 
1785 	if (!btrfs_is_zoned(block_group->fs_info))
1786 		return true;
1787 
1788 	map = block_group->physical_map;
1789 	/* Currently support SINGLE profile only */
1790 	ASSERT(map->num_stripes == 1);
1791 	device = map->stripes[0].dev;
1792 	physical = map->stripes[0].physical;
1793 
1794 	if (device->zone_info->max_active_zones == 0)
1795 		return true;
1796 
1797 	spin_lock(&block_group->lock);
1798 
1799 	if (block_group->zone_is_active) {
1800 		ret = true;
1801 		goto out_unlock;
1802 	}
1803 
1804 	/* No space left */
1805 	if (block_group->alloc_offset == block_group->zone_capacity) {
1806 		ret = false;
1807 		goto out_unlock;
1808 	}
1809 
1810 	if (!btrfs_dev_set_active_zone(device, physical)) {
1811 		/* Cannot activate the zone */
1812 		ret = false;
1813 		goto out_unlock;
1814 	}
1815 
1816 	/* Successfully activated all the zones */
1817 	block_group->zone_is_active = 1;
1818 
1819 	spin_unlock(&block_group->lock);
1820 
1821 	/* For the active block group list */
1822 	btrfs_get_block_group(block_group);
1823 
1824 	spin_lock(&fs_info->zone_active_bgs_lock);
1825 	ASSERT(list_empty(&block_group->active_bg_list));
1826 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1827 	spin_unlock(&fs_info->zone_active_bgs_lock);
1828 
1829 	return true;
1830 
1831 out_unlock:
1832 	spin_unlock(&block_group->lock);
1833 	return ret;
1834 }
1835 
1836 int btrfs_zone_finish(struct btrfs_block_group *block_group)
1837 {
1838 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1839 	struct map_lookup *map;
1840 	struct btrfs_device *device;
1841 	u64 physical;
1842 	int ret = 0;
1843 
1844 	if (!btrfs_is_zoned(fs_info))
1845 		return 0;
1846 
1847 	map = block_group->physical_map;
1848 	/* Currently support SINGLE profile only */
1849 	ASSERT(map->num_stripes == 1);
1850 
1851 	device = map->stripes[0].dev;
1852 	physical = map->stripes[0].physical;
1853 
1854 	if (device->zone_info->max_active_zones == 0)
1855 		return 0;
1856 
1857 	spin_lock(&block_group->lock);
1858 	if (!block_group->zone_is_active) {
1859 		spin_unlock(&block_group->lock);
1860 		return 0;
1861 	}
1862 
1863 	/* Check if we have unwritten allocated space */
1864 	if ((block_group->flags &
1865 	     (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) &&
1866 	    block_group->alloc_offset > block_group->meta_write_pointer) {
1867 		spin_unlock(&block_group->lock);
1868 		return -EAGAIN;
1869 	}
1870 	spin_unlock(&block_group->lock);
1871 
1872 	ret = btrfs_inc_block_group_ro(block_group, false);
1873 	if (ret)
1874 		return ret;
1875 
1876 	/* Ensure all writes in this block group finish */
1877 	btrfs_wait_block_group_reservations(block_group);
1878 	/* No need to wait for NOCOW writers. Zoned mode does not allow that. */
1879 	btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1880 				 block_group->length);
1881 
1882 	spin_lock(&block_group->lock);
1883 
1884 	/*
1885 	 * Bail out if someone already deactivated the block group, or
1886 	 * allocated space is left in the block group.
1887 	 */
1888 	if (!block_group->zone_is_active) {
1889 		spin_unlock(&block_group->lock);
1890 		btrfs_dec_block_group_ro(block_group);
1891 		return 0;
1892 	}
1893 
1894 	if (block_group->reserved) {
1895 		spin_unlock(&block_group->lock);
1896 		btrfs_dec_block_group_ro(block_group);
1897 		return -EAGAIN;
1898 	}
1899 
1900 	block_group->zone_is_active = 0;
1901 	block_group->alloc_offset = block_group->zone_capacity;
1902 	block_group->free_space_ctl->free_space = 0;
1903 	btrfs_clear_treelog_bg(block_group);
1904 	btrfs_clear_data_reloc_bg(block_group);
1905 	spin_unlock(&block_group->lock);
1906 
1907 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
1908 			       physical >> SECTOR_SHIFT,
1909 			       device->zone_info->zone_size >> SECTOR_SHIFT,
1910 			       GFP_NOFS);
1911 	btrfs_dec_block_group_ro(block_group);
1912 
1913 	if (!ret) {
1914 		btrfs_dev_clear_active_zone(device, physical);
1915 
1916 		spin_lock(&fs_info->zone_active_bgs_lock);
1917 		ASSERT(!list_empty(&block_group->active_bg_list));
1918 		list_del_init(&block_group->active_bg_list);
1919 		spin_unlock(&fs_info->zone_active_bgs_lock);
1920 
1921 		/* For active_bg_list */
1922 		btrfs_put_block_group(block_group);
1923 	}
1924 
1925 	return ret;
1926 }
1927 
1928 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
1929 {
1930 	struct btrfs_device *device;
1931 	bool ret = false;
1932 
1933 	if (!btrfs_is_zoned(fs_devices->fs_info))
1934 		return true;
1935 
1936 	/* Non-single profiles are not supported yet */
1937 	ASSERT((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0);
1938 
1939 	/* Check if there is a device with active zones left */
1940 	mutex_lock(&fs_devices->device_list_mutex);
1941 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1942 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
1943 
1944 		if (!device->bdev)
1945 			continue;
1946 
1947 		if (!zinfo->max_active_zones ||
1948 		    atomic_read(&zinfo->active_zones_left)) {
1949 			ret = true;
1950 			break;
1951 		}
1952 	}
1953 	mutex_unlock(&fs_devices->device_list_mutex);
1954 
1955 	return ret;
1956 }
1957 
1958 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
1959 {
1960 	struct btrfs_block_group *block_group;
1961 	struct map_lookup *map;
1962 	struct btrfs_device *device;
1963 	u64 physical;
1964 
1965 	if (!btrfs_is_zoned(fs_info))
1966 		return;
1967 
1968 	block_group = btrfs_lookup_block_group(fs_info, logical);
1969 	ASSERT(block_group);
1970 
1971 	if (logical + length < block_group->start + block_group->zone_capacity)
1972 		goto out;
1973 
1974 	spin_lock(&block_group->lock);
1975 
1976 	if (!block_group->zone_is_active) {
1977 		spin_unlock(&block_group->lock);
1978 		goto out;
1979 	}
1980 
1981 	block_group->zone_is_active = 0;
1982 	/* We should have consumed all the free space */
1983 	ASSERT(block_group->alloc_offset == block_group->zone_capacity);
1984 	ASSERT(block_group->free_space_ctl->free_space == 0);
1985 	btrfs_clear_treelog_bg(block_group);
1986 	btrfs_clear_data_reloc_bg(block_group);
1987 	spin_unlock(&block_group->lock);
1988 
1989 	map = block_group->physical_map;
1990 	device = map->stripes[0].dev;
1991 	physical = map->stripes[0].physical;
1992 
1993 	if (!device->zone_info->max_active_zones)
1994 		goto out;
1995 
1996 	btrfs_dev_clear_active_zone(device, physical);
1997 
1998 	spin_lock(&fs_info->zone_active_bgs_lock);
1999 	ASSERT(!list_empty(&block_group->active_bg_list));
2000 	list_del_init(&block_group->active_bg_list);
2001 	spin_unlock(&fs_info->zone_active_bgs_lock);
2002 
2003 	btrfs_put_block_group(block_group);
2004 
2005 out:
2006 	btrfs_put_block_group(block_group);
2007 }
2008 
2009 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2010 {
2011 	struct btrfs_fs_info *fs_info = bg->fs_info;
2012 
2013 	spin_lock(&fs_info->relocation_bg_lock);
2014 	if (fs_info->data_reloc_bg == bg->start)
2015 		fs_info->data_reloc_bg = 0;
2016 	spin_unlock(&fs_info->relocation_bg_lock);
2017 }
2018 
2019 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2020 {
2021 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2022 	struct btrfs_device *device;
2023 
2024 	if (!btrfs_is_zoned(fs_info))
2025 		return;
2026 
2027 	mutex_lock(&fs_devices->device_list_mutex);
2028 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2029 		if (device->zone_info) {
2030 			vfree(device->zone_info->zone_cache);
2031 			device->zone_info->zone_cache = NULL;
2032 		}
2033 	}
2034 	mutex_unlock(&fs_devices->device_list_mutex);
2035 }
2036