xref: /openbmc/linux/fs/btrfs/zoned.c (revision f2bb566f5c977ff010baaa9e5e14d9a75b06e5f2)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 
19 /* Maximum number of zones to report per blkdev_report_zones() call */
20 #define BTRFS_REPORT_NR_ZONES   4096
21 /* Invalid allocation pointer value for missing devices */
22 #define WP_MISSING_DEV ((u64)-1)
23 /* Pseudo write pointer value for conventional zone */
24 #define WP_CONVENTIONAL ((u64)-2)
25 
26 /*
27  * Location of the first zone of superblock logging zone pairs.
28  *
29  * - primary superblock:    0B (zone 0)
30  * - first copy:          512G (zone starting at that offset)
31  * - second copy:           4T (zone starting at that offset)
32  */
33 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
34 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
35 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
36 
37 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39 
40 /* Number of superblock log zones */
41 #define BTRFS_NR_SB_LOG_ZONES 2
42 
43 /*
44  * Minimum of active zones we need:
45  *
46  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48  * - 1 zone for tree-log dedicated block group
49  * - 1 zone for relocation
50  */
51 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
52 
53 /*
54  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
55  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
56  * We do not expect the zone size to become larger than 8GiB or smaller than
57  * 4MiB in the near future.
58  */
59 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
60 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
61 
62 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
63 
64 static inline bool sb_zone_is_full(const struct blk_zone *zone)
65 {
66 	return (zone->cond == BLK_ZONE_COND_FULL) ||
67 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
68 }
69 
70 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
71 {
72 	struct blk_zone *zones = data;
73 
74 	memcpy(&zones[idx], zone, sizeof(*zone));
75 
76 	return 0;
77 }
78 
79 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
80 			    u64 *wp_ret)
81 {
82 	bool empty[BTRFS_NR_SB_LOG_ZONES];
83 	bool full[BTRFS_NR_SB_LOG_ZONES];
84 	sector_t sector;
85 	int i;
86 
87 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
88 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
89 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
90 		full[i] = sb_zone_is_full(&zones[i]);
91 	}
92 
93 	/*
94 	 * Possible states of log buffer zones
95 	 *
96 	 *           Empty[0]  In use[0]  Full[0]
97 	 * Empty[1]         *          0        1
98 	 * In use[1]        x          x        1
99 	 * Full[1]          0          0        C
100 	 *
101 	 * Log position:
102 	 *   *: Special case, no superblock is written
103 	 *   0: Use write pointer of zones[0]
104 	 *   1: Use write pointer of zones[1]
105 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
106 	 *      one determined by generation
107 	 *   x: Invalid state
108 	 */
109 
110 	if (empty[0] && empty[1]) {
111 		/* Special case to distinguish no superblock to read */
112 		*wp_ret = zones[0].start << SECTOR_SHIFT;
113 		return -ENOENT;
114 	} else if (full[0] && full[1]) {
115 		/* Compare two super blocks */
116 		struct address_space *mapping = bdev->bd_inode->i_mapping;
117 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
118 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
119 		int i;
120 
121 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
122 			u64 bytenr;
123 
124 			bytenr = ((zones[i].start + zones[i].len)
125 				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
126 
127 			page[i] = read_cache_page_gfp(mapping,
128 					bytenr >> PAGE_SHIFT, GFP_NOFS);
129 			if (IS_ERR(page[i])) {
130 				if (i == 1)
131 					btrfs_release_disk_super(super[0]);
132 				return PTR_ERR(page[i]);
133 			}
134 			super[i] = page_address(page[i]);
135 		}
136 
137 		if (btrfs_super_generation(super[0]) >
138 		    btrfs_super_generation(super[1]))
139 			sector = zones[1].start;
140 		else
141 			sector = zones[0].start;
142 
143 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
144 			btrfs_release_disk_super(super[i]);
145 	} else if (!full[0] && (empty[1] || full[1])) {
146 		sector = zones[0].wp;
147 	} else if (full[0]) {
148 		sector = zones[1].wp;
149 	} else {
150 		return -EUCLEAN;
151 	}
152 	*wp_ret = sector << SECTOR_SHIFT;
153 	return 0;
154 }
155 
156 /*
157  * Get the first zone number of the superblock mirror
158  */
159 static inline u32 sb_zone_number(int shift, int mirror)
160 {
161 	u64 zone;
162 
163 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
164 	switch (mirror) {
165 	case 0: zone = 0; break;
166 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
167 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
168 	}
169 
170 	ASSERT(zone <= U32_MAX);
171 
172 	return (u32)zone;
173 }
174 
175 static inline sector_t zone_start_sector(u32 zone_number,
176 					 struct block_device *bdev)
177 {
178 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
179 }
180 
181 static inline u64 zone_start_physical(u32 zone_number,
182 				      struct btrfs_zoned_device_info *zone_info)
183 {
184 	return (u64)zone_number << zone_info->zone_size_shift;
185 }
186 
187 /*
188  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
189  * device into static sized chunks and fake a conventional zone on each of
190  * them.
191  */
192 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
193 				struct blk_zone *zones, unsigned int nr_zones)
194 {
195 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
196 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
197 	unsigned int i;
198 
199 	pos >>= SECTOR_SHIFT;
200 	for (i = 0; i < nr_zones; i++) {
201 		zones[i].start = i * zone_sectors + pos;
202 		zones[i].len = zone_sectors;
203 		zones[i].capacity = zone_sectors;
204 		zones[i].wp = zones[i].start + zone_sectors;
205 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
206 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
207 
208 		if (zones[i].wp >= bdev_size) {
209 			i++;
210 			break;
211 		}
212 	}
213 
214 	return i;
215 }
216 
217 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
218 			       struct blk_zone *zones, unsigned int *nr_zones)
219 {
220 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
221 	u32 zno;
222 	int ret;
223 
224 	if (!*nr_zones)
225 		return 0;
226 
227 	if (!bdev_is_zoned(device->bdev)) {
228 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
229 		*nr_zones = ret;
230 		return 0;
231 	}
232 
233 	/* Check cache */
234 	if (zinfo->zone_cache) {
235 		unsigned int i;
236 
237 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
238 		zno = pos >> zinfo->zone_size_shift;
239 		/*
240 		 * We cannot report zones beyond the zone end. So, it is OK to
241 		 * cap *nr_zones to at the end.
242 		 */
243 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
244 
245 		for (i = 0; i < *nr_zones; i++) {
246 			struct blk_zone *zone_info;
247 
248 			zone_info = &zinfo->zone_cache[zno + i];
249 			if (!zone_info->len)
250 				break;
251 		}
252 
253 		if (i == *nr_zones) {
254 			/* Cache hit on all the zones */
255 			memcpy(zones, zinfo->zone_cache + zno,
256 			       sizeof(*zinfo->zone_cache) * *nr_zones);
257 			return 0;
258 		}
259 	}
260 
261 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
262 				  copy_zone_info_cb, zones);
263 	if (ret < 0) {
264 		btrfs_err_in_rcu(device->fs_info,
265 				 "zoned: failed to read zone %llu on %s (devid %llu)",
266 				 pos, rcu_str_deref(device->name),
267 				 device->devid);
268 		return ret;
269 	}
270 	*nr_zones = ret;
271 	if (!ret)
272 		return -EIO;
273 
274 	/* Populate cache */
275 	if (zinfo->zone_cache)
276 		memcpy(zinfo->zone_cache + zno, zones,
277 		       sizeof(*zinfo->zone_cache) * *nr_zones);
278 
279 	return 0;
280 }
281 
282 /* The emulated zone size is determined from the size of device extent */
283 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
284 {
285 	struct btrfs_path *path;
286 	struct btrfs_root *root = fs_info->dev_root;
287 	struct btrfs_key key;
288 	struct extent_buffer *leaf;
289 	struct btrfs_dev_extent *dext;
290 	int ret = 0;
291 
292 	key.objectid = 1;
293 	key.type = BTRFS_DEV_EXTENT_KEY;
294 	key.offset = 0;
295 
296 	path = btrfs_alloc_path();
297 	if (!path)
298 		return -ENOMEM;
299 
300 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
301 	if (ret < 0)
302 		goto out;
303 
304 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
305 		ret = btrfs_next_leaf(root, path);
306 		if (ret < 0)
307 			goto out;
308 		/* No dev extents at all? Not good */
309 		if (ret > 0) {
310 			ret = -EUCLEAN;
311 			goto out;
312 		}
313 	}
314 
315 	leaf = path->nodes[0];
316 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
317 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
318 	ret = 0;
319 
320 out:
321 	btrfs_free_path(path);
322 
323 	return ret;
324 }
325 
326 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
327 {
328 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
329 	struct btrfs_device *device;
330 	int ret = 0;
331 
332 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
333 	if (!btrfs_fs_incompat(fs_info, ZONED))
334 		return 0;
335 
336 	mutex_lock(&fs_devices->device_list_mutex);
337 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
338 		/* We can skip reading of zone info for missing devices */
339 		if (!device->bdev)
340 			continue;
341 
342 		ret = btrfs_get_dev_zone_info(device, true);
343 		if (ret)
344 			break;
345 	}
346 	mutex_unlock(&fs_devices->device_list_mutex);
347 
348 	return ret;
349 }
350 
351 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
352 {
353 	struct btrfs_fs_info *fs_info = device->fs_info;
354 	struct btrfs_zoned_device_info *zone_info = NULL;
355 	struct block_device *bdev = device->bdev;
356 	unsigned int max_active_zones;
357 	unsigned int nactive;
358 	sector_t nr_sectors;
359 	sector_t sector = 0;
360 	struct blk_zone *zones = NULL;
361 	unsigned int i, nreported = 0, nr_zones;
362 	sector_t zone_sectors;
363 	char *model, *emulated;
364 	int ret;
365 
366 	/*
367 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
368 	 * yet be set.
369 	 */
370 	if (!btrfs_fs_incompat(fs_info, ZONED))
371 		return 0;
372 
373 	if (device->zone_info)
374 		return 0;
375 
376 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
377 	if (!zone_info)
378 		return -ENOMEM;
379 
380 	device->zone_info = zone_info;
381 
382 	if (!bdev_is_zoned(bdev)) {
383 		if (!fs_info->zone_size) {
384 			ret = calculate_emulated_zone_size(fs_info);
385 			if (ret)
386 				goto out;
387 		}
388 
389 		ASSERT(fs_info->zone_size);
390 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
391 	} else {
392 		zone_sectors = bdev_zone_sectors(bdev);
393 	}
394 
395 	/* Check if it's power of 2 (see is_power_of_2) */
396 	ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
397 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
398 
399 	/* We reject devices with a zone size larger than 8GB */
400 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
401 		btrfs_err_in_rcu(fs_info,
402 		"zoned: %s: zone size %llu larger than supported maximum %llu",
403 				 rcu_str_deref(device->name),
404 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
405 		ret = -EINVAL;
406 		goto out;
407 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
408 		btrfs_err_in_rcu(fs_info,
409 		"zoned: %s: zone size %llu smaller than supported minimum %u",
410 				 rcu_str_deref(device->name),
411 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
412 		ret = -EINVAL;
413 		goto out;
414 	}
415 
416 	nr_sectors = bdev_nr_sectors(bdev);
417 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
418 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
419 	/*
420 	 * We limit max_zone_append_size also by max_segments *
421 	 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
422 	 * since btrfs adds the pages one by one to a bio, and btrfs cannot
423 	 * increase the metadata reservation even if it increases the number of
424 	 * extents, it is safe to stick with the limit.
425 	 *
426 	 * With the zoned emulation, we can have non-zoned device on the zoned
427 	 * mode. In this case, we don't have a valid max zone append size. So,
428 	 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
429 	 */
430 	if (bdev_is_zoned(bdev)) {
431 		zone_info->max_zone_append_size = min_t(u64,
432 			(u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
433 			(u64)bdev_max_segments(bdev) << PAGE_SHIFT);
434 	} else {
435 		zone_info->max_zone_append_size =
436 			(u64)bdev_max_segments(bdev) << PAGE_SHIFT;
437 	}
438 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
439 		zone_info->nr_zones++;
440 
441 	max_active_zones = bdev_max_active_zones(bdev);
442 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
443 		btrfs_err_in_rcu(fs_info,
444 "zoned: %s: max active zones %u is too small, need at least %u active zones",
445 				 rcu_str_deref(device->name), max_active_zones,
446 				 BTRFS_MIN_ACTIVE_ZONES);
447 		ret = -EINVAL;
448 		goto out;
449 	}
450 	zone_info->max_active_zones = max_active_zones;
451 
452 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
453 	if (!zone_info->seq_zones) {
454 		ret = -ENOMEM;
455 		goto out;
456 	}
457 
458 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
459 	if (!zone_info->empty_zones) {
460 		ret = -ENOMEM;
461 		goto out;
462 	}
463 
464 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
465 	if (!zone_info->active_zones) {
466 		ret = -ENOMEM;
467 		goto out;
468 	}
469 
470 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
471 	if (!zones) {
472 		ret = -ENOMEM;
473 		goto out;
474 	}
475 
476 	/*
477 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
478 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
479 	 * use the cache.
480 	 */
481 	if (populate_cache && bdev_is_zoned(device->bdev)) {
482 		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
483 						zone_info->nr_zones);
484 		if (!zone_info->zone_cache) {
485 			btrfs_err_in_rcu(device->fs_info,
486 				"zoned: failed to allocate zone cache for %s",
487 				rcu_str_deref(device->name));
488 			ret = -ENOMEM;
489 			goto out;
490 		}
491 	}
492 
493 	/* Get zones type */
494 	nactive = 0;
495 	while (sector < nr_sectors) {
496 		nr_zones = BTRFS_REPORT_NR_ZONES;
497 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
498 					  &nr_zones);
499 		if (ret)
500 			goto out;
501 
502 		for (i = 0; i < nr_zones; i++) {
503 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
504 				__set_bit(nreported, zone_info->seq_zones);
505 			switch (zones[i].cond) {
506 			case BLK_ZONE_COND_EMPTY:
507 				__set_bit(nreported, zone_info->empty_zones);
508 				break;
509 			case BLK_ZONE_COND_IMP_OPEN:
510 			case BLK_ZONE_COND_EXP_OPEN:
511 			case BLK_ZONE_COND_CLOSED:
512 				__set_bit(nreported, zone_info->active_zones);
513 				nactive++;
514 				break;
515 			}
516 			nreported++;
517 		}
518 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
519 	}
520 
521 	if (nreported != zone_info->nr_zones) {
522 		btrfs_err_in_rcu(device->fs_info,
523 				 "inconsistent number of zones on %s (%u/%u)",
524 				 rcu_str_deref(device->name), nreported,
525 				 zone_info->nr_zones);
526 		ret = -EIO;
527 		goto out;
528 	}
529 
530 	if (max_active_zones) {
531 		if (nactive > max_active_zones) {
532 			btrfs_err_in_rcu(device->fs_info,
533 			"zoned: %u active zones on %s exceeds max_active_zones %u",
534 					 nactive, rcu_str_deref(device->name),
535 					 max_active_zones);
536 			ret = -EIO;
537 			goto out;
538 		}
539 		atomic_set(&zone_info->active_zones_left,
540 			   max_active_zones - nactive);
541 	}
542 
543 	/* Validate superblock log */
544 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
545 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
546 		u32 sb_zone;
547 		u64 sb_wp;
548 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
549 
550 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
551 		if (sb_zone + 1 >= zone_info->nr_zones)
552 			continue;
553 
554 		ret = btrfs_get_dev_zones(device,
555 					  zone_start_physical(sb_zone, zone_info),
556 					  &zone_info->sb_zones[sb_pos],
557 					  &nr_zones);
558 		if (ret)
559 			goto out;
560 
561 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
562 			btrfs_err_in_rcu(device->fs_info,
563 	"zoned: failed to read super block log zone info at devid %llu zone %u",
564 					 device->devid, sb_zone);
565 			ret = -EUCLEAN;
566 			goto out;
567 		}
568 
569 		/*
570 		 * If zones[0] is conventional, always use the beginning of the
571 		 * zone to record superblock. No need to validate in that case.
572 		 */
573 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
574 		    BLK_ZONE_TYPE_CONVENTIONAL)
575 			continue;
576 
577 		ret = sb_write_pointer(device->bdev,
578 				       &zone_info->sb_zones[sb_pos], &sb_wp);
579 		if (ret != -ENOENT && ret) {
580 			btrfs_err_in_rcu(device->fs_info,
581 			"zoned: super block log zone corrupted devid %llu zone %u",
582 					 device->devid, sb_zone);
583 			ret = -EUCLEAN;
584 			goto out;
585 		}
586 	}
587 
588 
589 	kvfree(zones);
590 
591 	switch (bdev_zoned_model(bdev)) {
592 	case BLK_ZONED_HM:
593 		model = "host-managed zoned";
594 		emulated = "";
595 		break;
596 	case BLK_ZONED_HA:
597 		model = "host-aware zoned";
598 		emulated = "";
599 		break;
600 	case BLK_ZONED_NONE:
601 		model = "regular";
602 		emulated = "emulated ";
603 		break;
604 	default:
605 		/* Just in case */
606 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
607 				 bdev_zoned_model(bdev),
608 				 rcu_str_deref(device->name));
609 		ret = -EOPNOTSUPP;
610 		goto out_free_zone_info;
611 	}
612 
613 	btrfs_info_in_rcu(fs_info,
614 		"%s block device %s, %u %szones of %llu bytes",
615 		model, rcu_str_deref(device->name), zone_info->nr_zones,
616 		emulated, zone_info->zone_size);
617 
618 	return 0;
619 
620 out:
621 	kvfree(zones);
622 out_free_zone_info:
623 	btrfs_destroy_dev_zone_info(device);
624 
625 	return ret;
626 }
627 
628 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
629 {
630 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
631 
632 	if (!zone_info)
633 		return;
634 
635 	bitmap_free(zone_info->active_zones);
636 	bitmap_free(zone_info->seq_zones);
637 	bitmap_free(zone_info->empty_zones);
638 	vfree(zone_info->zone_cache);
639 	kfree(zone_info);
640 	device->zone_info = NULL;
641 }
642 
643 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
644 {
645 	struct btrfs_zoned_device_info *zone_info;
646 
647 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
648 	if (!zone_info)
649 		return NULL;
650 
651 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
652 	if (!zone_info->seq_zones)
653 		goto out;
654 
655 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
656 		    zone_info->nr_zones);
657 
658 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
659 	if (!zone_info->empty_zones)
660 		goto out;
661 
662 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
663 		    zone_info->nr_zones);
664 
665 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
666 	if (!zone_info->active_zones)
667 		goto out;
668 
669 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
670 		    zone_info->nr_zones);
671 	zone_info->zone_cache = NULL;
672 
673 	return zone_info;
674 
675 out:
676 	bitmap_free(zone_info->seq_zones);
677 	bitmap_free(zone_info->empty_zones);
678 	bitmap_free(zone_info->active_zones);
679 	kfree(zone_info);
680 	return NULL;
681 }
682 
683 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
684 		       struct blk_zone *zone)
685 {
686 	unsigned int nr_zones = 1;
687 	int ret;
688 
689 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
690 	if (ret != 0 || !nr_zones)
691 		return ret ? ret : -EIO;
692 
693 	return 0;
694 }
695 
696 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
697 {
698 	struct btrfs_device *device;
699 
700 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
701 		if (device->bdev &&
702 		    bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
703 			btrfs_err(fs_info,
704 				"zoned: mode not enabled but zoned device found: %pg",
705 				device->bdev);
706 			return -EINVAL;
707 		}
708 	}
709 
710 	return 0;
711 }
712 
713 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
714 {
715 	struct btrfs_device *device;
716 	u64 zone_size = 0;
717 	u64 max_zone_append_size = 0;
718 	int ret;
719 
720 	/*
721 	 * Host-Managed devices can't be used without the ZONED flag.  With the
722 	 * ZONED all devices can be used, using zone emulation if required.
723 	 */
724 	if (!btrfs_fs_incompat(fs_info, ZONED))
725 		return btrfs_check_for_zoned_device(fs_info);
726 
727 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
728 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
729 
730 		if (!device->bdev)
731 			continue;
732 
733 		if (!zone_size) {
734 			zone_size = zone_info->zone_size;
735 		} else if (zone_info->zone_size != zone_size) {
736 			btrfs_err(fs_info,
737 		"zoned: unequal block device zone sizes: have %llu found %llu",
738 				  zone_info->zone_size, zone_size);
739 			return -EINVAL;
740 		}
741 		if (!max_zone_append_size ||
742 		    (zone_info->max_zone_append_size &&
743 		     zone_info->max_zone_append_size < max_zone_append_size))
744 			max_zone_append_size = zone_info->max_zone_append_size;
745 	}
746 
747 	/*
748 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
749 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
750 	 * check the alignment here.
751 	 */
752 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
753 		btrfs_err(fs_info,
754 			  "zoned: zone size %llu not aligned to stripe %u",
755 			  zone_size, BTRFS_STRIPE_LEN);
756 		return -EINVAL;
757 	}
758 
759 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
760 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
761 		return -EINVAL;
762 	}
763 
764 	fs_info->zone_size = zone_size;
765 	fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
766 						   fs_info->sectorsize);
767 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
768 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
769 		fs_info->max_extent_size = fs_info->max_zone_append_size;
770 
771 	/*
772 	 * Check mount options here, because we might change fs_info->zoned
773 	 * from fs_info->zone_size.
774 	 */
775 	ret = btrfs_check_mountopts_zoned(fs_info);
776 	if (ret)
777 		return ret;
778 
779 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
780 	return 0;
781 }
782 
783 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
784 {
785 	if (!btrfs_is_zoned(info))
786 		return 0;
787 
788 	/*
789 	 * Space cache writing is not COWed. Disable that to avoid write errors
790 	 * in sequential zones.
791 	 */
792 	if (btrfs_test_opt(info, SPACE_CACHE)) {
793 		btrfs_err(info, "zoned: space cache v1 is not supported");
794 		return -EINVAL;
795 	}
796 
797 	if (btrfs_test_opt(info, NODATACOW)) {
798 		btrfs_err(info, "zoned: NODATACOW not supported");
799 		return -EINVAL;
800 	}
801 
802 	return 0;
803 }
804 
805 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
806 			   int rw, u64 *bytenr_ret)
807 {
808 	u64 wp;
809 	int ret;
810 
811 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
812 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
813 		return 0;
814 	}
815 
816 	ret = sb_write_pointer(bdev, zones, &wp);
817 	if (ret != -ENOENT && ret < 0)
818 		return ret;
819 
820 	if (rw == WRITE) {
821 		struct blk_zone *reset = NULL;
822 
823 		if (wp == zones[0].start << SECTOR_SHIFT)
824 			reset = &zones[0];
825 		else if (wp == zones[1].start << SECTOR_SHIFT)
826 			reset = &zones[1];
827 
828 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
829 			ASSERT(sb_zone_is_full(reset));
830 
831 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
832 					       reset->start, reset->len,
833 					       GFP_NOFS);
834 			if (ret)
835 				return ret;
836 
837 			reset->cond = BLK_ZONE_COND_EMPTY;
838 			reset->wp = reset->start;
839 		}
840 	} else if (ret != -ENOENT) {
841 		/*
842 		 * For READ, we want the previous one. Move write pointer to
843 		 * the end of a zone, if it is at the head of a zone.
844 		 */
845 		u64 zone_end = 0;
846 
847 		if (wp == zones[0].start << SECTOR_SHIFT)
848 			zone_end = zones[1].start + zones[1].capacity;
849 		else if (wp == zones[1].start << SECTOR_SHIFT)
850 			zone_end = zones[0].start + zones[0].capacity;
851 		if (zone_end)
852 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
853 					BTRFS_SUPER_INFO_SIZE);
854 
855 		wp -= BTRFS_SUPER_INFO_SIZE;
856 	}
857 
858 	*bytenr_ret = wp;
859 	return 0;
860 
861 }
862 
863 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
864 			       u64 *bytenr_ret)
865 {
866 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
867 	sector_t zone_sectors;
868 	u32 sb_zone;
869 	int ret;
870 	u8 zone_sectors_shift;
871 	sector_t nr_sectors;
872 	u32 nr_zones;
873 
874 	if (!bdev_is_zoned(bdev)) {
875 		*bytenr_ret = btrfs_sb_offset(mirror);
876 		return 0;
877 	}
878 
879 	ASSERT(rw == READ || rw == WRITE);
880 
881 	zone_sectors = bdev_zone_sectors(bdev);
882 	if (!is_power_of_2(zone_sectors))
883 		return -EINVAL;
884 	zone_sectors_shift = ilog2(zone_sectors);
885 	nr_sectors = bdev_nr_sectors(bdev);
886 	nr_zones = nr_sectors >> zone_sectors_shift;
887 
888 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
889 	if (sb_zone + 1 >= nr_zones)
890 		return -ENOENT;
891 
892 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
893 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
894 				  zones);
895 	if (ret < 0)
896 		return ret;
897 	if (ret != BTRFS_NR_SB_LOG_ZONES)
898 		return -EIO;
899 
900 	return sb_log_location(bdev, zones, rw, bytenr_ret);
901 }
902 
903 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
904 			  u64 *bytenr_ret)
905 {
906 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
907 	u32 zone_num;
908 
909 	/*
910 	 * For a zoned filesystem on a non-zoned block device, use the same
911 	 * super block locations as regular filesystem. Doing so, the super
912 	 * block can always be retrieved and the zoned flag of the volume
913 	 * detected from the super block information.
914 	 */
915 	if (!bdev_is_zoned(device->bdev)) {
916 		*bytenr_ret = btrfs_sb_offset(mirror);
917 		return 0;
918 	}
919 
920 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
921 	if (zone_num + 1 >= zinfo->nr_zones)
922 		return -ENOENT;
923 
924 	return sb_log_location(device->bdev,
925 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
926 			       rw, bytenr_ret);
927 }
928 
929 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
930 				  int mirror)
931 {
932 	u32 zone_num;
933 
934 	if (!zinfo)
935 		return false;
936 
937 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
938 	if (zone_num + 1 >= zinfo->nr_zones)
939 		return false;
940 
941 	if (!test_bit(zone_num, zinfo->seq_zones))
942 		return false;
943 
944 	return true;
945 }
946 
947 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
948 {
949 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
950 	struct blk_zone *zone;
951 	int i;
952 
953 	if (!is_sb_log_zone(zinfo, mirror))
954 		return 0;
955 
956 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
957 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
958 		/* Advance the next zone */
959 		if (zone->cond == BLK_ZONE_COND_FULL) {
960 			zone++;
961 			continue;
962 		}
963 
964 		if (zone->cond == BLK_ZONE_COND_EMPTY)
965 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
966 
967 		zone->wp += SUPER_INFO_SECTORS;
968 
969 		if (sb_zone_is_full(zone)) {
970 			/*
971 			 * No room left to write new superblock. Since
972 			 * superblock is written with REQ_SYNC, it is safe to
973 			 * finish the zone now.
974 			 *
975 			 * If the write pointer is exactly at the capacity,
976 			 * explicit ZONE_FINISH is not necessary.
977 			 */
978 			if (zone->wp != zone->start + zone->capacity) {
979 				int ret;
980 
981 				ret = blkdev_zone_mgmt(device->bdev,
982 						REQ_OP_ZONE_FINISH, zone->start,
983 						zone->len, GFP_NOFS);
984 				if (ret)
985 					return ret;
986 			}
987 
988 			zone->wp = zone->start + zone->len;
989 			zone->cond = BLK_ZONE_COND_FULL;
990 		}
991 		return 0;
992 	}
993 
994 	/* All the zones are FULL. Should not reach here. */
995 	ASSERT(0);
996 	return -EIO;
997 }
998 
999 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1000 {
1001 	sector_t zone_sectors;
1002 	sector_t nr_sectors;
1003 	u8 zone_sectors_shift;
1004 	u32 sb_zone;
1005 	u32 nr_zones;
1006 
1007 	zone_sectors = bdev_zone_sectors(bdev);
1008 	zone_sectors_shift = ilog2(zone_sectors);
1009 	nr_sectors = bdev_nr_sectors(bdev);
1010 	nr_zones = nr_sectors >> zone_sectors_shift;
1011 
1012 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1013 	if (sb_zone + 1 >= nr_zones)
1014 		return -ENOENT;
1015 
1016 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1017 				zone_start_sector(sb_zone, bdev),
1018 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1019 }
1020 
1021 /**
1022  * btrfs_find_allocatable_zones - find allocatable zones within a given region
1023  *
1024  * @device:	the device to allocate a region on
1025  * @hole_start: the position of the hole to allocate the region
1026  * @num_bytes:	size of wanted region
1027  * @hole_end:	the end of the hole
1028  * @return:	position of allocatable zones
1029  *
1030  * Allocatable region should not contain any superblock locations.
1031  */
1032 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1033 				 u64 hole_end, u64 num_bytes)
1034 {
1035 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1036 	const u8 shift = zinfo->zone_size_shift;
1037 	u64 nzones = num_bytes >> shift;
1038 	u64 pos = hole_start;
1039 	u64 begin, end;
1040 	bool have_sb;
1041 	int i;
1042 
1043 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1044 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1045 
1046 	while (pos < hole_end) {
1047 		begin = pos >> shift;
1048 		end = begin + nzones;
1049 
1050 		if (end > zinfo->nr_zones)
1051 			return hole_end;
1052 
1053 		/* Check if zones in the region are all empty */
1054 		if (btrfs_dev_is_sequential(device, pos) &&
1055 		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1056 			pos += zinfo->zone_size;
1057 			continue;
1058 		}
1059 
1060 		have_sb = false;
1061 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1062 			u32 sb_zone;
1063 			u64 sb_pos;
1064 
1065 			sb_zone = sb_zone_number(shift, i);
1066 			if (!(end <= sb_zone ||
1067 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1068 				have_sb = true;
1069 				pos = zone_start_physical(
1070 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1071 				break;
1072 			}
1073 
1074 			/* We also need to exclude regular superblock positions */
1075 			sb_pos = btrfs_sb_offset(i);
1076 			if (!(pos + num_bytes <= sb_pos ||
1077 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1078 				have_sb = true;
1079 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1080 					    zinfo->zone_size);
1081 				break;
1082 			}
1083 		}
1084 		if (!have_sb)
1085 			break;
1086 	}
1087 
1088 	return pos;
1089 }
1090 
1091 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1092 {
1093 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1094 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1095 
1096 	/* We can use any number of zones */
1097 	if (zone_info->max_active_zones == 0)
1098 		return true;
1099 
1100 	if (!test_bit(zno, zone_info->active_zones)) {
1101 		/* Active zone left? */
1102 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1103 			return false;
1104 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1105 			/* Someone already set the bit */
1106 			atomic_inc(&zone_info->active_zones_left);
1107 		}
1108 	}
1109 
1110 	return true;
1111 }
1112 
1113 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1114 {
1115 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1116 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1117 
1118 	/* We can use any number of zones */
1119 	if (zone_info->max_active_zones == 0)
1120 		return;
1121 
1122 	if (test_and_clear_bit(zno, zone_info->active_zones))
1123 		atomic_inc(&zone_info->active_zones_left);
1124 }
1125 
1126 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1127 			    u64 length, u64 *bytes)
1128 {
1129 	int ret;
1130 
1131 	*bytes = 0;
1132 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1133 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1134 			       GFP_NOFS);
1135 	if (ret)
1136 		return ret;
1137 
1138 	*bytes = length;
1139 	while (length) {
1140 		btrfs_dev_set_zone_empty(device, physical);
1141 		btrfs_dev_clear_active_zone(device, physical);
1142 		physical += device->zone_info->zone_size;
1143 		length -= device->zone_info->zone_size;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1150 {
1151 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1152 	const u8 shift = zinfo->zone_size_shift;
1153 	unsigned long begin = start >> shift;
1154 	unsigned long end = (start + size) >> shift;
1155 	u64 pos;
1156 	int ret;
1157 
1158 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1159 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1160 
1161 	if (end > zinfo->nr_zones)
1162 		return -ERANGE;
1163 
1164 	/* All the zones are conventional */
1165 	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1166 		return 0;
1167 
1168 	/* All the zones are sequential and empty */
1169 	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1170 	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1171 		return 0;
1172 
1173 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1174 		u64 reset_bytes;
1175 
1176 		if (!btrfs_dev_is_sequential(device, pos) ||
1177 		    btrfs_dev_is_empty_zone(device, pos))
1178 			continue;
1179 
1180 		/* Free regions should be empty */
1181 		btrfs_warn_in_rcu(
1182 			device->fs_info,
1183 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1184 			rcu_str_deref(device->name), device->devid, pos >> shift);
1185 		WARN_ON_ONCE(1);
1186 
1187 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1188 					      &reset_bytes);
1189 		if (ret)
1190 			return ret;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 /*
1197  * Calculate an allocation pointer from the extent allocation information
1198  * for a block group consist of conventional zones. It is pointed to the
1199  * end of the highest addressed extent in the block group as an allocation
1200  * offset.
1201  */
1202 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1203 				   u64 *offset_ret, bool new)
1204 {
1205 	struct btrfs_fs_info *fs_info = cache->fs_info;
1206 	struct btrfs_root *root;
1207 	struct btrfs_path *path;
1208 	struct btrfs_key key;
1209 	struct btrfs_key found_key;
1210 	int ret;
1211 	u64 length;
1212 
1213 	/*
1214 	 * Avoid  tree lookups for a new block group, there's no use for it.
1215 	 * It must always be 0.
1216 	 *
1217 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1218 	 * For new a block group, this function is called from
1219 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1220 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1221 	 * buffer locks to avoid deadlock.
1222 	 */
1223 	if (new) {
1224 		*offset_ret = 0;
1225 		return 0;
1226 	}
1227 
1228 	path = btrfs_alloc_path();
1229 	if (!path)
1230 		return -ENOMEM;
1231 
1232 	key.objectid = cache->start + cache->length;
1233 	key.type = 0;
1234 	key.offset = 0;
1235 
1236 	root = btrfs_extent_root(fs_info, key.objectid);
1237 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1238 	/* We should not find the exact match */
1239 	if (!ret)
1240 		ret = -EUCLEAN;
1241 	if (ret < 0)
1242 		goto out;
1243 
1244 	ret = btrfs_previous_extent_item(root, path, cache->start);
1245 	if (ret) {
1246 		if (ret == 1) {
1247 			ret = 0;
1248 			*offset_ret = 0;
1249 		}
1250 		goto out;
1251 	}
1252 
1253 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1254 
1255 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1256 		length = found_key.offset;
1257 	else
1258 		length = fs_info->nodesize;
1259 
1260 	if (!(found_key.objectid >= cache->start &&
1261 	       found_key.objectid + length <= cache->start + cache->length)) {
1262 		ret = -EUCLEAN;
1263 		goto out;
1264 	}
1265 	*offset_ret = found_key.objectid + length - cache->start;
1266 	ret = 0;
1267 
1268 out:
1269 	btrfs_free_path(path);
1270 	return ret;
1271 }
1272 
1273 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1274 {
1275 	struct btrfs_fs_info *fs_info = cache->fs_info;
1276 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1277 	struct extent_map *em;
1278 	struct map_lookup *map;
1279 	struct btrfs_device *device;
1280 	u64 logical = cache->start;
1281 	u64 length = cache->length;
1282 	int ret;
1283 	int i;
1284 	unsigned int nofs_flag;
1285 	u64 *alloc_offsets = NULL;
1286 	u64 *caps = NULL;
1287 	u64 *physical = NULL;
1288 	unsigned long *active = NULL;
1289 	u64 last_alloc = 0;
1290 	u32 num_sequential = 0, num_conventional = 0;
1291 
1292 	if (!btrfs_is_zoned(fs_info))
1293 		return 0;
1294 
1295 	/* Sanity check */
1296 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1297 		btrfs_err(fs_info,
1298 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1299 			  logical, length, fs_info->zone_size);
1300 		return -EIO;
1301 	}
1302 
1303 	/* Get the chunk mapping */
1304 	read_lock(&em_tree->lock);
1305 	em = lookup_extent_mapping(em_tree, logical, length);
1306 	read_unlock(&em_tree->lock);
1307 
1308 	if (!em)
1309 		return -EINVAL;
1310 
1311 	map = em->map_lookup;
1312 
1313 	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1314 	if (!cache->physical_map) {
1315 		ret = -ENOMEM;
1316 		goto out;
1317 	}
1318 
1319 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1320 	if (!alloc_offsets) {
1321 		ret = -ENOMEM;
1322 		goto out;
1323 	}
1324 
1325 	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1326 	if (!caps) {
1327 		ret = -ENOMEM;
1328 		goto out;
1329 	}
1330 
1331 	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1332 	if (!physical) {
1333 		ret = -ENOMEM;
1334 		goto out;
1335 	}
1336 
1337 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1338 	if (!active) {
1339 		ret = -ENOMEM;
1340 		goto out;
1341 	}
1342 
1343 	for (i = 0; i < map->num_stripes; i++) {
1344 		bool is_sequential;
1345 		struct blk_zone zone;
1346 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1347 		int dev_replace_is_ongoing = 0;
1348 
1349 		device = map->stripes[i].dev;
1350 		physical[i] = map->stripes[i].physical;
1351 
1352 		if (device->bdev == NULL) {
1353 			alloc_offsets[i] = WP_MISSING_DEV;
1354 			continue;
1355 		}
1356 
1357 		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1358 		if (is_sequential)
1359 			num_sequential++;
1360 		else
1361 			num_conventional++;
1362 
1363 		/*
1364 		 * Consider a zone as active if we can allow any number of
1365 		 * active zones.
1366 		 */
1367 		if (!device->zone_info->max_active_zones)
1368 			__set_bit(i, active);
1369 
1370 		if (!is_sequential) {
1371 			alloc_offsets[i] = WP_CONVENTIONAL;
1372 			continue;
1373 		}
1374 
1375 		/*
1376 		 * This zone will be used for allocation, so mark this zone
1377 		 * non-empty.
1378 		 */
1379 		btrfs_dev_clear_zone_empty(device, physical[i]);
1380 
1381 		down_read(&dev_replace->rwsem);
1382 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1383 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1384 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1385 		up_read(&dev_replace->rwsem);
1386 
1387 		/*
1388 		 * The group is mapped to a sequential zone. Get the zone write
1389 		 * pointer to determine the allocation offset within the zone.
1390 		 */
1391 		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1392 		nofs_flag = memalloc_nofs_save();
1393 		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1394 		memalloc_nofs_restore(nofs_flag);
1395 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1396 			ret = 0;
1397 			alloc_offsets[i] = WP_MISSING_DEV;
1398 			continue;
1399 		} else if (ret) {
1400 			goto out;
1401 		}
1402 
1403 		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1404 			btrfs_err_in_rcu(fs_info,
1405 	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1406 				zone.start << SECTOR_SHIFT,
1407 				rcu_str_deref(device->name), device->devid);
1408 			ret = -EIO;
1409 			goto out;
1410 		}
1411 
1412 		caps[i] = (zone.capacity << SECTOR_SHIFT);
1413 
1414 		switch (zone.cond) {
1415 		case BLK_ZONE_COND_OFFLINE:
1416 		case BLK_ZONE_COND_READONLY:
1417 			btrfs_err(fs_info,
1418 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1419 				  physical[i] >> device->zone_info->zone_size_shift,
1420 				  rcu_str_deref(device->name), device->devid);
1421 			alloc_offsets[i] = WP_MISSING_DEV;
1422 			break;
1423 		case BLK_ZONE_COND_EMPTY:
1424 			alloc_offsets[i] = 0;
1425 			break;
1426 		case BLK_ZONE_COND_FULL:
1427 			alloc_offsets[i] = caps[i];
1428 			break;
1429 		default:
1430 			/* Partially used zone */
1431 			alloc_offsets[i] =
1432 					((zone.wp - zone.start) << SECTOR_SHIFT);
1433 			__set_bit(i, active);
1434 			break;
1435 		}
1436 	}
1437 
1438 	if (num_sequential > 0)
1439 		cache->seq_zone = true;
1440 
1441 	if (num_conventional > 0) {
1442 		/* Zone capacity is always zone size in emulation */
1443 		cache->zone_capacity = cache->length;
1444 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1445 		if (ret) {
1446 			btrfs_err(fs_info,
1447 			"zoned: failed to determine allocation offset of bg %llu",
1448 				  cache->start);
1449 			goto out;
1450 		} else if (map->num_stripes == num_conventional) {
1451 			cache->alloc_offset = last_alloc;
1452 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1453 			goto out;
1454 		}
1455 	}
1456 
1457 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1458 	case 0: /* single */
1459 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1460 			btrfs_err(fs_info,
1461 			"zoned: cannot recover write pointer for zone %llu",
1462 				physical[0]);
1463 			ret = -EIO;
1464 			goto out;
1465 		}
1466 		cache->alloc_offset = alloc_offsets[0];
1467 		cache->zone_capacity = caps[0];
1468 		if (test_bit(0, active))
1469 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1470 		break;
1471 	case BTRFS_BLOCK_GROUP_DUP:
1472 		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1473 			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1474 			ret = -EINVAL;
1475 			goto out;
1476 		}
1477 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1478 			btrfs_err(fs_info,
1479 			"zoned: cannot recover write pointer for zone %llu",
1480 				physical[0]);
1481 			ret = -EIO;
1482 			goto out;
1483 		}
1484 		if (alloc_offsets[1] == WP_MISSING_DEV) {
1485 			btrfs_err(fs_info,
1486 			"zoned: cannot recover write pointer for zone %llu",
1487 				physical[1]);
1488 			ret = -EIO;
1489 			goto out;
1490 		}
1491 		if (alloc_offsets[0] != alloc_offsets[1]) {
1492 			btrfs_err(fs_info,
1493 			"zoned: write pointer offset mismatch of zones in DUP profile");
1494 			ret = -EIO;
1495 			goto out;
1496 		}
1497 		if (test_bit(0, active) != test_bit(1, active)) {
1498 			if (!btrfs_zone_activate(cache)) {
1499 				ret = -EIO;
1500 				goto out;
1501 			}
1502 		} else {
1503 			if (test_bit(0, active))
1504 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1505 					&cache->runtime_flags);
1506 		}
1507 		cache->alloc_offset = alloc_offsets[0];
1508 		cache->zone_capacity = min(caps[0], caps[1]);
1509 		break;
1510 	case BTRFS_BLOCK_GROUP_RAID1:
1511 	case BTRFS_BLOCK_GROUP_RAID0:
1512 	case BTRFS_BLOCK_GROUP_RAID10:
1513 	case BTRFS_BLOCK_GROUP_RAID5:
1514 	case BTRFS_BLOCK_GROUP_RAID6:
1515 		/* non-single profiles are not supported yet */
1516 	default:
1517 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1518 			  btrfs_bg_type_to_raid_name(map->type));
1519 		ret = -EINVAL;
1520 		goto out;
1521 	}
1522 
1523 out:
1524 	if (cache->alloc_offset > fs_info->zone_size) {
1525 		btrfs_err(fs_info,
1526 			"zoned: invalid write pointer %llu in block group %llu",
1527 			cache->alloc_offset, cache->start);
1528 		ret = -EIO;
1529 	}
1530 
1531 	if (cache->alloc_offset > cache->zone_capacity) {
1532 		btrfs_err(fs_info,
1533 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1534 			  cache->alloc_offset, cache->zone_capacity,
1535 			  cache->start);
1536 		ret = -EIO;
1537 	}
1538 
1539 	/* An extent is allocated after the write pointer */
1540 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1541 		btrfs_err(fs_info,
1542 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1543 			  logical, last_alloc, cache->alloc_offset);
1544 		ret = -EIO;
1545 	}
1546 
1547 	if (!ret) {
1548 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1549 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1550 			btrfs_get_block_group(cache);
1551 			spin_lock(&fs_info->zone_active_bgs_lock);
1552 			list_add_tail(&cache->active_bg_list,
1553 				      &fs_info->zone_active_bgs);
1554 			spin_unlock(&fs_info->zone_active_bgs_lock);
1555 		}
1556 	} else {
1557 		kfree(cache->physical_map);
1558 		cache->physical_map = NULL;
1559 	}
1560 	bitmap_free(active);
1561 	kfree(physical);
1562 	kfree(caps);
1563 	kfree(alloc_offsets);
1564 	free_extent_map(em);
1565 
1566 	return ret;
1567 }
1568 
1569 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1570 {
1571 	u64 unusable, free;
1572 
1573 	if (!btrfs_is_zoned(cache->fs_info))
1574 		return;
1575 
1576 	WARN_ON(cache->bytes_super != 0);
1577 	unusable = (cache->alloc_offset - cache->used) +
1578 		   (cache->length - cache->zone_capacity);
1579 	free = cache->zone_capacity - cache->alloc_offset;
1580 
1581 	/* We only need ->free_space in ALLOC_SEQ block groups */
1582 	cache->cached = BTRFS_CACHE_FINISHED;
1583 	cache->free_space_ctl->free_space = free;
1584 	cache->zone_unusable = unusable;
1585 }
1586 
1587 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1588 			    struct extent_buffer *eb)
1589 {
1590 	struct btrfs_fs_info *fs_info = eb->fs_info;
1591 
1592 	if (!btrfs_is_zoned(fs_info) ||
1593 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1594 	    !list_empty(&eb->release_list))
1595 		return;
1596 
1597 	set_extent_buffer_dirty(eb);
1598 	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1599 			       eb->start + eb->len - 1, EXTENT_DIRTY);
1600 	memzero_extent_buffer(eb, 0, eb->len);
1601 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1602 
1603 	spin_lock(&trans->releasing_ebs_lock);
1604 	list_add_tail(&eb->release_list, &trans->releasing_ebs);
1605 	spin_unlock(&trans->releasing_ebs_lock);
1606 	atomic_inc(&eb->refs);
1607 }
1608 
1609 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1610 {
1611 	spin_lock(&trans->releasing_ebs_lock);
1612 	while (!list_empty(&trans->releasing_ebs)) {
1613 		struct extent_buffer *eb;
1614 
1615 		eb = list_first_entry(&trans->releasing_ebs,
1616 				      struct extent_buffer, release_list);
1617 		list_del_init(&eb->release_list);
1618 		free_extent_buffer(eb);
1619 	}
1620 	spin_unlock(&trans->releasing_ebs_lock);
1621 }
1622 
1623 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1624 {
1625 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1626 	struct btrfs_block_group *cache;
1627 	bool ret = false;
1628 
1629 	if (!btrfs_is_zoned(fs_info))
1630 		return false;
1631 
1632 	if (!is_data_inode(&inode->vfs_inode))
1633 		return false;
1634 
1635 	/*
1636 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1637 	 * extent layout the relocation code has.
1638 	 * Furthermore we have set aside own block-group from which only the
1639 	 * relocation "process" can allocate and make sure only one process at a
1640 	 * time can add pages to an extent that gets relocated, so it's safe to
1641 	 * use regular REQ_OP_WRITE for this special case.
1642 	 */
1643 	if (btrfs_is_data_reloc_root(inode->root))
1644 		return false;
1645 
1646 	cache = btrfs_lookup_block_group(fs_info, start);
1647 	ASSERT(cache);
1648 	if (!cache)
1649 		return false;
1650 
1651 	ret = cache->seq_zone;
1652 	btrfs_put_block_group(cache);
1653 
1654 	return ret;
1655 }
1656 
1657 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1658 				 struct bio *bio)
1659 {
1660 	struct btrfs_ordered_extent *ordered;
1661 	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1662 
1663 	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1664 		return;
1665 
1666 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1667 	if (WARN_ON(!ordered))
1668 		return;
1669 
1670 	ordered->physical = physical;
1671 	ordered->bdev = bio->bi_bdev;
1672 
1673 	btrfs_put_ordered_extent(ordered);
1674 }
1675 
1676 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1677 {
1678 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1679 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1680 	struct extent_map_tree *em_tree;
1681 	struct extent_map *em;
1682 	struct btrfs_ordered_sum *sum;
1683 	u64 orig_logical = ordered->disk_bytenr;
1684 	u64 *logical = NULL;
1685 	int nr, stripe_len;
1686 
1687 	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1688 	ASSERT(!bdev_is_partition(ordered->bdev));
1689 	if (WARN_ON(!ordered->bdev))
1690 		return;
1691 
1692 	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1693 				     ordered->physical, &logical, &nr,
1694 				     &stripe_len)))
1695 		goto out;
1696 
1697 	WARN_ON(nr != 1);
1698 
1699 	if (orig_logical == *logical)
1700 		goto out;
1701 
1702 	ordered->disk_bytenr = *logical;
1703 
1704 	em_tree = &inode->extent_tree;
1705 	write_lock(&em_tree->lock);
1706 	em = search_extent_mapping(em_tree, ordered->file_offset,
1707 				   ordered->num_bytes);
1708 	em->block_start = *logical;
1709 	free_extent_map(em);
1710 	write_unlock(&em_tree->lock);
1711 
1712 	list_for_each_entry(sum, &ordered->list, list) {
1713 		if (*logical < orig_logical)
1714 			sum->bytenr -= orig_logical - *logical;
1715 		else
1716 			sum->bytenr += *logical - orig_logical;
1717 	}
1718 
1719 out:
1720 	kfree(logical);
1721 }
1722 
1723 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1724 				    struct extent_buffer *eb,
1725 				    struct btrfs_block_group **cache_ret)
1726 {
1727 	struct btrfs_block_group *cache;
1728 	bool ret = true;
1729 
1730 	if (!btrfs_is_zoned(fs_info))
1731 		return true;
1732 
1733 	cache = btrfs_lookup_block_group(fs_info, eb->start);
1734 	if (!cache)
1735 		return true;
1736 
1737 	if (cache->meta_write_pointer != eb->start) {
1738 		btrfs_put_block_group(cache);
1739 		cache = NULL;
1740 		ret = false;
1741 	} else {
1742 		cache->meta_write_pointer = eb->start + eb->len;
1743 	}
1744 
1745 	*cache_ret = cache;
1746 
1747 	return ret;
1748 }
1749 
1750 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1751 				     struct extent_buffer *eb)
1752 {
1753 	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1754 		return;
1755 
1756 	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1757 	cache->meta_write_pointer = eb->start;
1758 }
1759 
1760 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1761 {
1762 	if (!btrfs_dev_is_sequential(device, physical))
1763 		return -EOPNOTSUPP;
1764 
1765 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1766 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1767 }
1768 
1769 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1770 			  struct blk_zone *zone)
1771 {
1772 	struct btrfs_io_context *bioc = NULL;
1773 	u64 mapped_length = PAGE_SIZE;
1774 	unsigned int nofs_flag;
1775 	int nmirrors;
1776 	int i, ret;
1777 
1778 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1779 			       &mapped_length, &bioc);
1780 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1781 		ret = -EIO;
1782 		goto out_put_bioc;
1783 	}
1784 
1785 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1786 		ret = -EINVAL;
1787 		goto out_put_bioc;
1788 	}
1789 
1790 	nofs_flag = memalloc_nofs_save();
1791 	nmirrors = (int)bioc->num_stripes;
1792 	for (i = 0; i < nmirrors; i++) {
1793 		u64 physical = bioc->stripes[i].physical;
1794 		struct btrfs_device *dev = bioc->stripes[i].dev;
1795 
1796 		/* Missing device */
1797 		if (!dev->bdev)
1798 			continue;
1799 
1800 		ret = btrfs_get_dev_zone(dev, physical, zone);
1801 		/* Failing device */
1802 		if (ret == -EIO || ret == -EOPNOTSUPP)
1803 			continue;
1804 		break;
1805 	}
1806 	memalloc_nofs_restore(nofs_flag);
1807 out_put_bioc:
1808 	btrfs_put_bioc(bioc);
1809 	return ret;
1810 }
1811 
1812 /*
1813  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1814  * filling zeros between @physical_pos to a write pointer of dev-replace
1815  * source device.
1816  */
1817 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1818 				    u64 physical_start, u64 physical_pos)
1819 {
1820 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1821 	struct blk_zone zone;
1822 	u64 length;
1823 	u64 wp;
1824 	int ret;
1825 
1826 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1827 		return 0;
1828 
1829 	ret = read_zone_info(fs_info, logical, &zone);
1830 	if (ret)
1831 		return ret;
1832 
1833 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1834 
1835 	if (physical_pos == wp)
1836 		return 0;
1837 
1838 	if (physical_pos > wp)
1839 		return -EUCLEAN;
1840 
1841 	length = wp - physical_pos;
1842 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1843 }
1844 
1845 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1846 					    u64 logical, u64 length)
1847 {
1848 	struct btrfs_device *device;
1849 	struct extent_map *em;
1850 	struct map_lookup *map;
1851 
1852 	em = btrfs_get_chunk_map(fs_info, logical, length);
1853 	if (IS_ERR(em))
1854 		return ERR_CAST(em);
1855 
1856 	map = em->map_lookup;
1857 	/* We only support single profile for now */
1858 	device = map->stripes[0].dev;
1859 
1860 	free_extent_map(em);
1861 
1862 	return device;
1863 }
1864 
1865 /**
1866  * Activate block group and underlying device zones
1867  *
1868  * @block_group: the block group to activate
1869  *
1870  * Return: true on success, false otherwise
1871  */
1872 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1873 {
1874 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1875 	struct btrfs_space_info *space_info = block_group->space_info;
1876 	struct map_lookup *map;
1877 	struct btrfs_device *device;
1878 	u64 physical;
1879 	bool ret;
1880 	int i;
1881 
1882 	if (!btrfs_is_zoned(block_group->fs_info))
1883 		return true;
1884 
1885 	map = block_group->physical_map;
1886 
1887 	spin_lock(&space_info->lock);
1888 	spin_lock(&block_group->lock);
1889 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1890 		ret = true;
1891 		goto out_unlock;
1892 	}
1893 
1894 	/* No space left */
1895 	if (btrfs_zoned_bg_is_full(block_group)) {
1896 		ret = false;
1897 		goto out_unlock;
1898 	}
1899 
1900 	for (i = 0; i < map->num_stripes; i++) {
1901 		device = map->stripes[i].dev;
1902 		physical = map->stripes[i].physical;
1903 
1904 		if (device->zone_info->max_active_zones == 0)
1905 			continue;
1906 
1907 		if (!btrfs_dev_set_active_zone(device, physical)) {
1908 			/* Cannot activate the zone */
1909 			ret = false;
1910 			goto out_unlock;
1911 		}
1912 	}
1913 
1914 	/* Successfully activated all the zones */
1915 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1916 	space_info->active_total_bytes += block_group->length;
1917 	spin_unlock(&block_group->lock);
1918 	btrfs_try_granting_tickets(fs_info, space_info);
1919 	spin_unlock(&space_info->lock);
1920 
1921 	/* For the active block group list */
1922 	btrfs_get_block_group(block_group);
1923 
1924 	spin_lock(&fs_info->zone_active_bgs_lock);
1925 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1926 	spin_unlock(&fs_info->zone_active_bgs_lock);
1927 
1928 	return true;
1929 
1930 out_unlock:
1931 	spin_unlock(&block_group->lock);
1932 	spin_unlock(&space_info->lock);
1933 	return ret;
1934 }
1935 
1936 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1937 {
1938 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1939 	const u64 end = block_group->start + block_group->length;
1940 	struct radix_tree_iter iter;
1941 	struct extent_buffer *eb;
1942 	void __rcu **slot;
1943 
1944 	rcu_read_lock();
1945 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1946 				 block_group->start >> fs_info->sectorsize_bits) {
1947 		eb = radix_tree_deref_slot(slot);
1948 		if (!eb)
1949 			continue;
1950 		if (radix_tree_deref_retry(eb)) {
1951 			slot = radix_tree_iter_retry(&iter);
1952 			continue;
1953 		}
1954 
1955 		if (eb->start < block_group->start)
1956 			continue;
1957 		if (eb->start >= end)
1958 			break;
1959 
1960 		slot = radix_tree_iter_resume(slot, &iter);
1961 		rcu_read_unlock();
1962 		wait_on_extent_buffer_writeback(eb);
1963 		rcu_read_lock();
1964 	}
1965 	rcu_read_unlock();
1966 }
1967 
1968 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1969 {
1970 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1971 	struct map_lookup *map;
1972 	const bool is_metadata = (block_group->flags &
1973 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1974 	int ret = 0;
1975 	int i;
1976 
1977 	spin_lock(&block_group->lock);
1978 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1979 		spin_unlock(&block_group->lock);
1980 		return 0;
1981 	}
1982 
1983 	/* Check if we have unwritten allocated space */
1984 	if (is_metadata &&
1985 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1986 		spin_unlock(&block_group->lock);
1987 		return -EAGAIN;
1988 	}
1989 
1990 	/*
1991 	 * If we are sure that the block group is full (= no more room left for
1992 	 * new allocation) and the IO for the last usable block is completed, we
1993 	 * don't need to wait for the other IOs. This holds because we ensure
1994 	 * the sequential IO submissions using the ZONE_APPEND command for data
1995 	 * and block_group->meta_write_pointer for metadata.
1996 	 */
1997 	if (!fully_written) {
1998 		spin_unlock(&block_group->lock);
1999 
2000 		ret = btrfs_inc_block_group_ro(block_group, false);
2001 		if (ret)
2002 			return ret;
2003 
2004 		/* Ensure all writes in this block group finish */
2005 		btrfs_wait_block_group_reservations(block_group);
2006 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2007 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2008 					 block_group->length);
2009 		/* Wait for extent buffers to be written. */
2010 		if (is_metadata)
2011 			wait_eb_writebacks(block_group);
2012 
2013 		spin_lock(&block_group->lock);
2014 
2015 		/*
2016 		 * Bail out if someone already deactivated the block group, or
2017 		 * allocated space is left in the block group.
2018 		 */
2019 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2020 			      &block_group->runtime_flags)) {
2021 			spin_unlock(&block_group->lock);
2022 			btrfs_dec_block_group_ro(block_group);
2023 			return 0;
2024 		}
2025 
2026 		if (block_group->reserved) {
2027 			spin_unlock(&block_group->lock);
2028 			btrfs_dec_block_group_ro(block_group);
2029 			return -EAGAIN;
2030 		}
2031 	}
2032 
2033 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2034 	block_group->alloc_offset = block_group->zone_capacity;
2035 	block_group->free_space_ctl->free_space = 0;
2036 	btrfs_clear_treelog_bg(block_group);
2037 	btrfs_clear_data_reloc_bg(block_group);
2038 	spin_unlock(&block_group->lock);
2039 
2040 	map = block_group->physical_map;
2041 	for (i = 0; i < map->num_stripes; i++) {
2042 		struct btrfs_device *device = map->stripes[i].dev;
2043 		const u64 physical = map->stripes[i].physical;
2044 
2045 		if (device->zone_info->max_active_zones == 0)
2046 			continue;
2047 
2048 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2049 				       physical >> SECTOR_SHIFT,
2050 				       device->zone_info->zone_size >> SECTOR_SHIFT,
2051 				       GFP_NOFS);
2052 
2053 		if (ret)
2054 			return ret;
2055 
2056 		btrfs_dev_clear_active_zone(device, physical);
2057 	}
2058 
2059 	if (!fully_written)
2060 		btrfs_dec_block_group_ro(block_group);
2061 
2062 	spin_lock(&fs_info->zone_active_bgs_lock);
2063 	ASSERT(!list_empty(&block_group->active_bg_list));
2064 	list_del_init(&block_group->active_bg_list);
2065 	spin_unlock(&fs_info->zone_active_bgs_lock);
2066 
2067 	/* For active_bg_list */
2068 	btrfs_put_block_group(block_group);
2069 
2070 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2071 
2072 	return 0;
2073 }
2074 
2075 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2076 {
2077 	if (!btrfs_is_zoned(block_group->fs_info))
2078 		return 0;
2079 
2080 	return do_zone_finish(block_group, false);
2081 }
2082 
2083 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2084 {
2085 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2086 	struct btrfs_device *device;
2087 	bool ret = false;
2088 
2089 	if (!btrfs_is_zoned(fs_info))
2090 		return true;
2091 
2092 	/* Check if there is a device with active zones left */
2093 	mutex_lock(&fs_info->chunk_mutex);
2094 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2095 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2096 
2097 		if (!device->bdev)
2098 			continue;
2099 
2100 		if (!zinfo->max_active_zones ||
2101 		    atomic_read(&zinfo->active_zones_left)) {
2102 			ret = true;
2103 			break;
2104 		}
2105 	}
2106 	mutex_unlock(&fs_info->chunk_mutex);
2107 
2108 	if (!ret)
2109 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2110 
2111 	return ret;
2112 }
2113 
2114 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2115 {
2116 	struct btrfs_block_group *block_group;
2117 	u64 min_alloc_bytes;
2118 
2119 	if (!btrfs_is_zoned(fs_info))
2120 		return;
2121 
2122 	block_group = btrfs_lookup_block_group(fs_info, logical);
2123 	ASSERT(block_group);
2124 
2125 	/* No MIXED_BG on zoned btrfs. */
2126 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2127 		min_alloc_bytes = fs_info->sectorsize;
2128 	else
2129 		min_alloc_bytes = fs_info->nodesize;
2130 
2131 	/* Bail out if we can allocate more data from this block group. */
2132 	if (logical + length + min_alloc_bytes <=
2133 	    block_group->start + block_group->zone_capacity)
2134 		goto out;
2135 
2136 	do_zone_finish(block_group, true);
2137 
2138 out:
2139 	btrfs_put_block_group(block_group);
2140 }
2141 
2142 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2143 {
2144 	struct btrfs_block_group *bg =
2145 		container_of(work, struct btrfs_block_group, zone_finish_work);
2146 
2147 	wait_on_extent_buffer_writeback(bg->last_eb);
2148 	free_extent_buffer(bg->last_eb);
2149 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2150 	btrfs_put_block_group(bg);
2151 }
2152 
2153 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2154 				   struct extent_buffer *eb)
2155 {
2156 	if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2157 		return;
2158 
2159 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2160 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2161 			  bg->start);
2162 		return;
2163 	}
2164 
2165 	/* For the work */
2166 	btrfs_get_block_group(bg);
2167 	atomic_inc(&eb->refs);
2168 	bg->last_eb = eb;
2169 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2170 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2171 }
2172 
2173 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2174 {
2175 	struct btrfs_fs_info *fs_info = bg->fs_info;
2176 
2177 	spin_lock(&fs_info->relocation_bg_lock);
2178 	if (fs_info->data_reloc_bg == bg->start)
2179 		fs_info->data_reloc_bg = 0;
2180 	spin_unlock(&fs_info->relocation_bg_lock);
2181 }
2182 
2183 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2184 {
2185 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2186 	struct btrfs_device *device;
2187 
2188 	if (!btrfs_is_zoned(fs_info))
2189 		return;
2190 
2191 	mutex_lock(&fs_devices->device_list_mutex);
2192 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2193 		if (device->zone_info) {
2194 			vfree(device->zone_info->zone_cache);
2195 			device->zone_info->zone_cache = NULL;
2196 		}
2197 	}
2198 	mutex_unlock(&fs_devices->device_list_mutex);
2199 }
2200 
2201 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2202 {
2203 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2204 	struct btrfs_device *device;
2205 	u64 used = 0;
2206 	u64 total = 0;
2207 	u64 factor;
2208 
2209 	ASSERT(btrfs_is_zoned(fs_info));
2210 
2211 	if (fs_info->bg_reclaim_threshold == 0)
2212 		return false;
2213 
2214 	mutex_lock(&fs_devices->device_list_mutex);
2215 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2216 		if (!device->bdev)
2217 			continue;
2218 
2219 		total += device->disk_total_bytes;
2220 		used += device->bytes_used;
2221 	}
2222 	mutex_unlock(&fs_devices->device_list_mutex);
2223 
2224 	factor = div64_u64(used * 100, total);
2225 	return factor >= fs_info->bg_reclaim_threshold;
2226 }
2227 
2228 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2229 				       u64 length)
2230 {
2231 	struct btrfs_block_group *block_group;
2232 
2233 	if (!btrfs_is_zoned(fs_info))
2234 		return;
2235 
2236 	block_group = btrfs_lookup_block_group(fs_info, logical);
2237 	/* It should be called on a previous data relocation block group. */
2238 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2239 
2240 	spin_lock(&block_group->lock);
2241 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2242 		goto out;
2243 
2244 	/* All relocation extents are written. */
2245 	if (block_group->start + block_group->alloc_offset == logical + length) {
2246 		/* Now, release this block group for further allocations. */
2247 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2248 			  &block_group->runtime_flags);
2249 	}
2250 
2251 out:
2252 	spin_unlock(&block_group->lock);
2253 	btrfs_put_block_group(block_group);
2254 }
2255 
2256 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2257 {
2258 	struct btrfs_block_group *block_group;
2259 	struct btrfs_block_group *min_bg = NULL;
2260 	u64 min_avail = U64_MAX;
2261 	int ret;
2262 
2263 	spin_lock(&fs_info->zone_active_bgs_lock);
2264 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2265 			    active_bg_list) {
2266 		u64 avail;
2267 
2268 		spin_lock(&block_group->lock);
2269 		if (block_group->reserved ||
2270 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2271 			spin_unlock(&block_group->lock);
2272 			continue;
2273 		}
2274 
2275 		avail = block_group->zone_capacity - block_group->alloc_offset;
2276 		if (min_avail > avail) {
2277 			if (min_bg)
2278 				btrfs_put_block_group(min_bg);
2279 			min_bg = block_group;
2280 			min_avail = avail;
2281 			btrfs_get_block_group(min_bg);
2282 		}
2283 		spin_unlock(&block_group->lock);
2284 	}
2285 	spin_unlock(&fs_info->zone_active_bgs_lock);
2286 
2287 	if (!min_bg)
2288 		return 0;
2289 
2290 	ret = btrfs_zone_finish(min_bg);
2291 	btrfs_put_block_group(min_bg);
2292 
2293 	return ret < 0 ? ret : 1;
2294 }
2295 
2296 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2297 				struct btrfs_space_info *space_info,
2298 				bool do_finish)
2299 {
2300 	struct btrfs_block_group *bg;
2301 	int index;
2302 
2303 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2304 		return 0;
2305 
2306 	/* No more block groups to activate */
2307 	if (space_info->active_total_bytes == space_info->total_bytes)
2308 		return 0;
2309 
2310 	for (;;) {
2311 		int ret;
2312 		bool need_finish = false;
2313 
2314 		down_read(&space_info->groups_sem);
2315 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2316 			list_for_each_entry(bg, &space_info->block_groups[index],
2317 					    list) {
2318 				if (!spin_trylock(&bg->lock))
2319 					continue;
2320 				if (btrfs_zoned_bg_is_full(bg) ||
2321 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2322 					     &bg->runtime_flags)) {
2323 					spin_unlock(&bg->lock);
2324 					continue;
2325 				}
2326 				spin_unlock(&bg->lock);
2327 
2328 				if (btrfs_zone_activate(bg)) {
2329 					up_read(&space_info->groups_sem);
2330 					return 1;
2331 				}
2332 
2333 				need_finish = true;
2334 			}
2335 		}
2336 		up_read(&space_info->groups_sem);
2337 
2338 		if (!do_finish || !need_finish)
2339 			break;
2340 
2341 		ret = btrfs_zone_finish_one_bg(fs_info);
2342 		if (ret == 0)
2343 			break;
2344 		if (ret < 0)
2345 			return ret;
2346 	}
2347 
2348 	return 0;
2349 }
2350