1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 19 /* Maximum number of zones to report per blkdev_report_zones() call */ 20 #define BTRFS_REPORT_NR_ZONES 4096 21 /* Invalid allocation pointer value for missing devices */ 22 #define WP_MISSING_DEV ((u64)-1) 23 /* Pseudo write pointer value for conventional zone */ 24 #define WP_CONVENTIONAL ((u64)-2) 25 26 /* 27 * Location of the first zone of superblock logging zone pairs. 28 * 29 * - primary superblock: 0B (zone 0) 30 * - first copy: 512G (zone starting at that offset) 31 * - second copy: 4T (zone starting at that offset) 32 */ 33 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 34 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 35 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 36 37 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 38 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 39 40 /* Number of superblock log zones */ 41 #define BTRFS_NR_SB_LOG_ZONES 2 42 43 /* 44 * Minimum of active zones we need: 45 * 46 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 47 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 48 * - 1 zone for tree-log dedicated block group 49 * - 1 zone for relocation 50 */ 51 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 52 53 /* 54 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 55 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 56 * We do not expect the zone size to become larger than 8GiB or smaller than 57 * 4MiB in the near future. 58 */ 59 #define BTRFS_MAX_ZONE_SIZE SZ_8G 60 #define BTRFS_MIN_ZONE_SIZE SZ_4M 61 62 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 63 64 static inline bool sb_zone_is_full(const struct blk_zone *zone) 65 { 66 return (zone->cond == BLK_ZONE_COND_FULL) || 67 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 68 } 69 70 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 71 { 72 struct blk_zone *zones = data; 73 74 memcpy(&zones[idx], zone, sizeof(*zone)); 75 76 return 0; 77 } 78 79 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 80 u64 *wp_ret) 81 { 82 bool empty[BTRFS_NR_SB_LOG_ZONES]; 83 bool full[BTRFS_NR_SB_LOG_ZONES]; 84 sector_t sector; 85 int i; 86 87 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 88 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 89 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 90 full[i] = sb_zone_is_full(&zones[i]); 91 } 92 93 /* 94 * Possible states of log buffer zones 95 * 96 * Empty[0] In use[0] Full[0] 97 * Empty[1] * 0 1 98 * In use[1] x x 1 99 * Full[1] 0 0 C 100 * 101 * Log position: 102 * *: Special case, no superblock is written 103 * 0: Use write pointer of zones[0] 104 * 1: Use write pointer of zones[1] 105 * C: Compare super blocks from zones[0] and zones[1], use the latest 106 * one determined by generation 107 * x: Invalid state 108 */ 109 110 if (empty[0] && empty[1]) { 111 /* Special case to distinguish no superblock to read */ 112 *wp_ret = zones[0].start << SECTOR_SHIFT; 113 return -ENOENT; 114 } else if (full[0] && full[1]) { 115 /* Compare two super blocks */ 116 struct address_space *mapping = bdev->bd_inode->i_mapping; 117 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 118 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 119 int i; 120 121 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 122 u64 bytenr; 123 124 bytenr = ((zones[i].start + zones[i].len) 125 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE; 126 127 page[i] = read_cache_page_gfp(mapping, 128 bytenr >> PAGE_SHIFT, GFP_NOFS); 129 if (IS_ERR(page[i])) { 130 if (i == 1) 131 btrfs_release_disk_super(super[0]); 132 return PTR_ERR(page[i]); 133 } 134 super[i] = page_address(page[i]); 135 } 136 137 if (btrfs_super_generation(super[0]) > 138 btrfs_super_generation(super[1])) 139 sector = zones[1].start; 140 else 141 sector = zones[0].start; 142 143 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 144 btrfs_release_disk_super(super[i]); 145 } else if (!full[0] && (empty[1] || full[1])) { 146 sector = zones[0].wp; 147 } else if (full[0]) { 148 sector = zones[1].wp; 149 } else { 150 return -EUCLEAN; 151 } 152 *wp_ret = sector << SECTOR_SHIFT; 153 return 0; 154 } 155 156 /* 157 * Get the first zone number of the superblock mirror 158 */ 159 static inline u32 sb_zone_number(int shift, int mirror) 160 { 161 u64 zone; 162 163 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 164 switch (mirror) { 165 case 0: zone = 0; break; 166 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 167 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 168 } 169 170 ASSERT(zone <= U32_MAX); 171 172 return (u32)zone; 173 } 174 175 static inline sector_t zone_start_sector(u32 zone_number, 176 struct block_device *bdev) 177 { 178 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 179 } 180 181 static inline u64 zone_start_physical(u32 zone_number, 182 struct btrfs_zoned_device_info *zone_info) 183 { 184 return (u64)zone_number << zone_info->zone_size_shift; 185 } 186 187 /* 188 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 189 * device into static sized chunks and fake a conventional zone on each of 190 * them. 191 */ 192 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 193 struct blk_zone *zones, unsigned int nr_zones) 194 { 195 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 196 sector_t bdev_size = bdev_nr_sectors(device->bdev); 197 unsigned int i; 198 199 pos >>= SECTOR_SHIFT; 200 for (i = 0; i < nr_zones; i++) { 201 zones[i].start = i * zone_sectors + pos; 202 zones[i].len = zone_sectors; 203 zones[i].capacity = zone_sectors; 204 zones[i].wp = zones[i].start + zone_sectors; 205 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 206 zones[i].cond = BLK_ZONE_COND_NOT_WP; 207 208 if (zones[i].wp >= bdev_size) { 209 i++; 210 break; 211 } 212 } 213 214 return i; 215 } 216 217 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 218 struct blk_zone *zones, unsigned int *nr_zones) 219 { 220 struct btrfs_zoned_device_info *zinfo = device->zone_info; 221 u32 zno; 222 int ret; 223 224 if (!*nr_zones) 225 return 0; 226 227 if (!bdev_is_zoned(device->bdev)) { 228 ret = emulate_report_zones(device, pos, zones, *nr_zones); 229 *nr_zones = ret; 230 return 0; 231 } 232 233 /* Check cache */ 234 if (zinfo->zone_cache) { 235 unsigned int i; 236 237 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 238 zno = pos >> zinfo->zone_size_shift; 239 /* 240 * We cannot report zones beyond the zone end. So, it is OK to 241 * cap *nr_zones to at the end. 242 */ 243 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 244 245 for (i = 0; i < *nr_zones; i++) { 246 struct blk_zone *zone_info; 247 248 zone_info = &zinfo->zone_cache[zno + i]; 249 if (!zone_info->len) 250 break; 251 } 252 253 if (i == *nr_zones) { 254 /* Cache hit on all the zones */ 255 memcpy(zones, zinfo->zone_cache + zno, 256 sizeof(*zinfo->zone_cache) * *nr_zones); 257 return 0; 258 } 259 } 260 261 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 262 copy_zone_info_cb, zones); 263 if (ret < 0) { 264 btrfs_err_in_rcu(device->fs_info, 265 "zoned: failed to read zone %llu on %s (devid %llu)", 266 pos, rcu_str_deref(device->name), 267 device->devid); 268 return ret; 269 } 270 *nr_zones = ret; 271 if (!ret) 272 return -EIO; 273 274 /* Populate cache */ 275 if (zinfo->zone_cache) 276 memcpy(zinfo->zone_cache + zno, zones, 277 sizeof(*zinfo->zone_cache) * *nr_zones); 278 279 return 0; 280 } 281 282 /* The emulated zone size is determined from the size of device extent */ 283 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 284 { 285 struct btrfs_path *path; 286 struct btrfs_root *root = fs_info->dev_root; 287 struct btrfs_key key; 288 struct extent_buffer *leaf; 289 struct btrfs_dev_extent *dext; 290 int ret = 0; 291 292 key.objectid = 1; 293 key.type = BTRFS_DEV_EXTENT_KEY; 294 key.offset = 0; 295 296 path = btrfs_alloc_path(); 297 if (!path) 298 return -ENOMEM; 299 300 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 301 if (ret < 0) 302 goto out; 303 304 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 305 ret = btrfs_next_leaf(root, path); 306 if (ret < 0) 307 goto out; 308 /* No dev extents at all? Not good */ 309 if (ret > 0) { 310 ret = -EUCLEAN; 311 goto out; 312 } 313 } 314 315 leaf = path->nodes[0]; 316 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 317 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 318 ret = 0; 319 320 out: 321 btrfs_free_path(path); 322 323 return ret; 324 } 325 326 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 327 { 328 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 329 struct btrfs_device *device; 330 int ret = 0; 331 332 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 333 if (!btrfs_fs_incompat(fs_info, ZONED)) 334 return 0; 335 336 mutex_lock(&fs_devices->device_list_mutex); 337 list_for_each_entry(device, &fs_devices->devices, dev_list) { 338 /* We can skip reading of zone info for missing devices */ 339 if (!device->bdev) 340 continue; 341 342 ret = btrfs_get_dev_zone_info(device, true); 343 if (ret) 344 break; 345 } 346 mutex_unlock(&fs_devices->device_list_mutex); 347 348 return ret; 349 } 350 351 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 352 { 353 struct btrfs_fs_info *fs_info = device->fs_info; 354 struct btrfs_zoned_device_info *zone_info = NULL; 355 struct block_device *bdev = device->bdev; 356 unsigned int max_active_zones; 357 unsigned int nactive; 358 sector_t nr_sectors; 359 sector_t sector = 0; 360 struct blk_zone *zones = NULL; 361 unsigned int i, nreported = 0, nr_zones; 362 sector_t zone_sectors; 363 char *model, *emulated; 364 int ret; 365 366 /* 367 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 368 * yet be set. 369 */ 370 if (!btrfs_fs_incompat(fs_info, ZONED)) 371 return 0; 372 373 if (device->zone_info) 374 return 0; 375 376 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 377 if (!zone_info) 378 return -ENOMEM; 379 380 device->zone_info = zone_info; 381 382 if (!bdev_is_zoned(bdev)) { 383 if (!fs_info->zone_size) { 384 ret = calculate_emulated_zone_size(fs_info); 385 if (ret) 386 goto out; 387 } 388 389 ASSERT(fs_info->zone_size); 390 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 391 } else { 392 zone_sectors = bdev_zone_sectors(bdev); 393 } 394 395 /* Check if it's power of 2 (see is_power_of_2) */ 396 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0); 397 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 398 399 /* We reject devices with a zone size larger than 8GB */ 400 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 401 btrfs_err_in_rcu(fs_info, 402 "zoned: %s: zone size %llu larger than supported maximum %llu", 403 rcu_str_deref(device->name), 404 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 405 ret = -EINVAL; 406 goto out; 407 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 408 btrfs_err_in_rcu(fs_info, 409 "zoned: %s: zone size %llu smaller than supported minimum %u", 410 rcu_str_deref(device->name), 411 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 412 ret = -EINVAL; 413 goto out; 414 } 415 416 nr_sectors = bdev_nr_sectors(bdev); 417 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 418 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 419 /* 420 * We limit max_zone_append_size also by max_segments * 421 * PAGE_SIZE. Technically, we can have multiple pages per segment. But, 422 * since btrfs adds the pages one by one to a bio, and btrfs cannot 423 * increase the metadata reservation even if it increases the number of 424 * extents, it is safe to stick with the limit. 425 * 426 * With the zoned emulation, we can have non-zoned device on the zoned 427 * mode. In this case, we don't have a valid max zone append size. So, 428 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size. 429 */ 430 if (bdev_is_zoned(bdev)) { 431 zone_info->max_zone_append_size = min_t(u64, 432 (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT, 433 (u64)bdev_max_segments(bdev) << PAGE_SHIFT); 434 } else { 435 zone_info->max_zone_append_size = 436 (u64)bdev_max_segments(bdev) << PAGE_SHIFT; 437 } 438 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 439 zone_info->nr_zones++; 440 441 max_active_zones = bdev_max_active_zones(bdev); 442 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 443 btrfs_err_in_rcu(fs_info, 444 "zoned: %s: max active zones %u is too small, need at least %u active zones", 445 rcu_str_deref(device->name), max_active_zones, 446 BTRFS_MIN_ACTIVE_ZONES); 447 ret = -EINVAL; 448 goto out; 449 } 450 zone_info->max_active_zones = max_active_zones; 451 452 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 453 if (!zone_info->seq_zones) { 454 ret = -ENOMEM; 455 goto out; 456 } 457 458 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 459 if (!zone_info->empty_zones) { 460 ret = -ENOMEM; 461 goto out; 462 } 463 464 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 465 if (!zone_info->active_zones) { 466 ret = -ENOMEM; 467 goto out; 468 } 469 470 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 471 if (!zones) { 472 ret = -ENOMEM; 473 goto out; 474 } 475 476 /* 477 * Enable zone cache only for a zoned device. On a non-zoned device, we 478 * fill the zone info with emulated CONVENTIONAL zones, so no need to 479 * use the cache. 480 */ 481 if (populate_cache && bdev_is_zoned(device->bdev)) { 482 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) * 483 zone_info->nr_zones); 484 if (!zone_info->zone_cache) { 485 btrfs_err_in_rcu(device->fs_info, 486 "zoned: failed to allocate zone cache for %s", 487 rcu_str_deref(device->name)); 488 ret = -ENOMEM; 489 goto out; 490 } 491 } 492 493 /* Get zones type */ 494 nactive = 0; 495 while (sector < nr_sectors) { 496 nr_zones = BTRFS_REPORT_NR_ZONES; 497 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 498 &nr_zones); 499 if (ret) 500 goto out; 501 502 for (i = 0; i < nr_zones; i++) { 503 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 504 __set_bit(nreported, zone_info->seq_zones); 505 switch (zones[i].cond) { 506 case BLK_ZONE_COND_EMPTY: 507 __set_bit(nreported, zone_info->empty_zones); 508 break; 509 case BLK_ZONE_COND_IMP_OPEN: 510 case BLK_ZONE_COND_EXP_OPEN: 511 case BLK_ZONE_COND_CLOSED: 512 __set_bit(nreported, zone_info->active_zones); 513 nactive++; 514 break; 515 } 516 nreported++; 517 } 518 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 519 } 520 521 if (nreported != zone_info->nr_zones) { 522 btrfs_err_in_rcu(device->fs_info, 523 "inconsistent number of zones on %s (%u/%u)", 524 rcu_str_deref(device->name), nreported, 525 zone_info->nr_zones); 526 ret = -EIO; 527 goto out; 528 } 529 530 if (max_active_zones) { 531 if (nactive > max_active_zones) { 532 btrfs_err_in_rcu(device->fs_info, 533 "zoned: %u active zones on %s exceeds max_active_zones %u", 534 nactive, rcu_str_deref(device->name), 535 max_active_zones); 536 ret = -EIO; 537 goto out; 538 } 539 atomic_set(&zone_info->active_zones_left, 540 max_active_zones - nactive); 541 } 542 543 /* Validate superblock log */ 544 nr_zones = BTRFS_NR_SB_LOG_ZONES; 545 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 546 u32 sb_zone; 547 u64 sb_wp; 548 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 549 550 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 551 if (sb_zone + 1 >= zone_info->nr_zones) 552 continue; 553 554 ret = btrfs_get_dev_zones(device, 555 zone_start_physical(sb_zone, zone_info), 556 &zone_info->sb_zones[sb_pos], 557 &nr_zones); 558 if (ret) 559 goto out; 560 561 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 562 btrfs_err_in_rcu(device->fs_info, 563 "zoned: failed to read super block log zone info at devid %llu zone %u", 564 device->devid, sb_zone); 565 ret = -EUCLEAN; 566 goto out; 567 } 568 569 /* 570 * If zones[0] is conventional, always use the beginning of the 571 * zone to record superblock. No need to validate in that case. 572 */ 573 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 574 BLK_ZONE_TYPE_CONVENTIONAL) 575 continue; 576 577 ret = sb_write_pointer(device->bdev, 578 &zone_info->sb_zones[sb_pos], &sb_wp); 579 if (ret != -ENOENT && ret) { 580 btrfs_err_in_rcu(device->fs_info, 581 "zoned: super block log zone corrupted devid %llu zone %u", 582 device->devid, sb_zone); 583 ret = -EUCLEAN; 584 goto out; 585 } 586 } 587 588 589 kvfree(zones); 590 591 switch (bdev_zoned_model(bdev)) { 592 case BLK_ZONED_HM: 593 model = "host-managed zoned"; 594 emulated = ""; 595 break; 596 case BLK_ZONED_HA: 597 model = "host-aware zoned"; 598 emulated = ""; 599 break; 600 case BLK_ZONED_NONE: 601 model = "regular"; 602 emulated = "emulated "; 603 break; 604 default: 605 /* Just in case */ 606 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 607 bdev_zoned_model(bdev), 608 rcu_str_deref(device->name)); 609 ret = -EOPNOTSUPP; 610 goto out_free_zone_info; 611 } 612 613 btrfs_info_in_rcu(fs_info, 614 "%s block device %s, %u %szones of %llu bytes", 615 model, rcu_str_deref(device->name), zone_info->nr_zones, 616 emulated, zone_info->zone_size); 617 618 return 0; 619 620 out: 621 kvfree(zones); 622 out_free_zone_info: 623 btrfs_destroy_dev_zone_info(device); 624 625 return ret; 626 } 627 628 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 629 { 630 struct btrfs_zoned_device_info *zone_info = device->zone_info; 631 632 if (!zone_info) 633 return; 634 635 bitmap_free(zone_info->active_zones); 636 bitmap_free(zone_info->seq_zones); 637 bitmap_free(zone_info->empty_zones); 638 vfree(zone_info->zone_cache); 639 kfree(zone_info); 640 device->zone_info = NULL; 641 } 642 643 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 644 { 645 struct btrfs_zoned_device_info *zone_info; 646 647 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 648 if (!zone_info) 649 return NULL; 650 651 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 652 if (!zone_info->seq_zones) 653 goto out; 654 655 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 656 zone_info->nr_zones); 657 658 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 659 if (!zone_info->empty_zones) 660 goto out; 661 662 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 663 zone_info->nr_zones); 664 665 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 666 if (!zone_info->active_zones) 667 goto out; 668 669 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 670 zone_info->nr_zones); 671 zone_info->zone_cache = NULL; 672 673 return zone_info; 674 675 out: 676 bitmap_free(zone_info->seq_zones); 677 bitmap_free(zone_info->empty_zones); 678 bitmap_free(zone_info->active_zones); 679 kfree(zone_info); 680 return NULL; 681 } 682 683 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 684 struct blk_zone *zone) 685 { 686 unsigned int nr_zones = 1; 687 int ret; 688 689 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 690 if (ret != 0 || !nr_zones) 691 return ret ? ret : -EIO; 692 693 return 0; 694 } 695 696 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 697 { 698 struct btrfs_device *device; 699 700 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 701 if (device->bdev && 702 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) { 703 btrfs_err(fs_info, 704 "zoned: mode not enabled but zoned device found: %pg", 705 device->bdev); 706 return -EINVAL; 707 } 708 } 709 710 return 0; 711 } 712 713 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 714 { 715 struct btrfs_device *device; 716 u64 zone_size = 0; 717 u64 max_zone_append_size = 0; 718 int ret; 719 720 /* 721 * Host-Managed devices can't be used without the ZONED flag. With the 722 * ZONED all devices can be used, using zone emulation if required. 723 */ 724 if (!btrfs_fs_incompat(fs_info, ZONED)) 725 return btrfs_check_for_zoned_device(fs_info); 726 727 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 728 struct btrfs_zoned_device_info *zone_info = device->zone_info; 729 730 if (!device->bdev) 731 continue; 732 733 if (!zone_size) { 734 zone_size = zone_info->zone_size; 735 } else if (zone_info->zone_size != zone_size) { 736 btrfs_err(fs_info, 737 "zoned: unequal block device zone sizes: have %llu found %llu", 738 zone_info->zone_size, zone_size); 739 return -EINVAL; 740 } 741 if (!max_zone_append_size || 742 (zone_info->max_zone_append_size && 743 zone_info->max_zone_append_size < max_zone_append_size)) 744 max_zone_append_size = zone_info->max_zone_append_size; 745 } 746 747 /* 748 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 749 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 750 * check the alignment here. 751 */ 752 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 753 btrfs_err(fs_info, 754 "zoned: zone size %llu not aligned to stripe %u", 755 zone_size, BTRFS_STRIPE_LEN); 756 return -EINVAL; 757 } 758 759 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 760 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 761 return -EINVAL; 762 } 763 764 fs_info->zone_size = zone_size; 765 fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size, 766 fs_info->sectorsize); 767 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 768 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 769 fs_info->max_extent_size = fs_info->max_zone_append_size; 770 771 /* 772 * Check mount options here, because we might change fs_info->zoned 773 * from fs_info->zone_size. 774 */ 775 ret = btrfs_check_mountopts_zoned(fs_info); 776 if (ret) 777 return ret; 778 779 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 780 return 0; 781 } 782 783 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 784 { 785 if (!btrfs_is_zoned(info)) 786 return 0; 787 788 /* 789 * Space cache writing is not COWed. Disable that to avoid write errors 790 * in sequential zones. 791 */ 792 if (btrfs_test_opt(info, SPACE_CACHE)) { 793 btrfs_err(info, "zoned: space cache v1 is not supported"); 794 return -EINVAL; 795 } 796 797 if (btrfs_test_opt(info, NODATACOW)) { 798 btrfs_err(info, "zoned: NODATACOW not supported"); 799 return -EINVAL; 800 } 801 802 return 0; 803 } 804 805 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 806 int rw, u64 *bytenr_ret) 807 { 808 u64 wp; 809 int ret; 810 811 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 812 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 813 return 0; 814 } 815 816 ret = sb_write_pointer(bdev, zones, &wp); 817 if (ret != -ENOENT && ret < 0) 818 return ret; 819 820 if (rw == WRITE) { 821 struct blk_zone *reset = NULL; 822 823 if (wp == zones[0].start << SECTOR_SHIFT) 824 reset = &zones[0]; 825 else if (wp == zones[1].start << SECTOR_SHIFT) 826 reset = &zones[1]; 827 828 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 829 ASSERT(sb_zone_is_full(reset)); 830 831 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 832 reset->start, reset->len, 833 GFP_NOFS); 834 if (ret) 835 return ret; 836 837 reset->cond = BLK_ZONE_COND_EMPTY; 838 reset->wp = reset->start; 839 } 840 } else if (ret != -ENOENT) { 841 /* 842 * For READ, we want the previous one. Move write pointer to 843 * the end of a zone, if it is at the head of a zone. 844 */ 845 u64 zone_end = 0; 846 847 if (wp == zones[0].start << SECTOR_SHIFT) 848 zone_end = zones[1].start + zones[1].capacity; 849 else if (wp == zones[1].start << SECTOR_SHIFT) 850 zone_end = zones[0].start + zones[0].capacity; 851 if (zone_end) 852 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 853 BTRFS_SUPER_INFO_SIZE); 854 855 wp -= BTRFS_SUPER_INFO_SIZE; 856 } 857 858 *bytenr_ret = wp; 859 return 0; 860 861 } 862 863 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 864 u64 *bytenr_ret) 865 { 866 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 867 sector_t zone_sectors; 868 u32 sb_zone; 869 int ret; 870 u8 zone_sectors_shift; 871 sector_t nr_sectors; 872 u32 nr_zones; 873 874 if (!bdev_is_zoned(bdev)) { 875 *bytenr_ret = btrfs_sb_offset(mirror); 876 return 0; 877 } 878 879 ASSERT(rw == READ || rw == WRITE); 880 881 zone_sectors = bdev_zone_sectors(bdev); 882 if (!is_power_of_2(zone_sectors)) 883 return -EINVAL; 884 zone_sectors_shift = ilog2(zone_sectors); 885 nr_sectors = bdev_nr_sectors(bdev); 886 nr_zones = nr_sectors >> zone_sectors_shift; 887 888 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 889 if (sb_zone + 1 >= nr_zones) 890 return -ENOENT; 891 892 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 893 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 894 zones); 895 if (ret < 0) 896 return ret; 897 if (ret != BTRFS_NR_SB_LOG_ZONES) 898 return -EIO; 899 900 return sb_log_location(bdev, zones, rw, bytenr_ret); 901 } 902 903 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 904 u64 *bytenr_ret) 905 { 906 struct btrfs_zoned_device_info *zinfo = device->zone_info; 907 u32 zone_num; 908 909 /* 910 * For a zoned filesystem on a non-zoned block device, use the same 911 * super block locations as regular filesystem. Doing so, the super 912 * block can always be retrieved and the zoned flag of the volume 913 * detected from the super block information. 914 */ 915 if (!bdev_is_zoned(device->bdev)) { 916 *bytenr_ret = btrfs_sb_offset(mirror); 917 return 0; 918 } 919 920 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 921 if (zone_num + 1 >= zinfo->nr_zones) 922 return -ENOENT; 923 924 return sb_log_location(device->bdev, 925 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 926 rw, bytenr_ret); 927 } 928 929 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 930 int mirror) 931 { 932 u32 zone_num; 933 934 if (!zinfo) 935 return false; 936 937 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 938 if (zone_num + 1 >= zinfo->nr_zones) 939 return false; 940 941 if (!test_bit(zone_num, zinfo->seq_zones)) 942 return false; 943 944 return true; 945 } 946 947 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 948 { 949 struct btrfs_zoned_device_info *zinfo = device->zone_info; 950 struct blk_zone *zone; 951 int i; 952 953 if (!is_sb_log_zone(zinfo, mirror)) 954 return 0; 955 956 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 957 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 958 /* Advance the next zone */ 959 if (zone->cond == BLK_ZONE_COND_FULL) { 960 zone++; 961 continue; 962 } 963 964 if (zone->cond == BLK_ZONE_COND_EMPTY) 965 zone->cond = BLK_ZONE_COND_IMP_OPEN; 966 967 zone->wp += SUPER_INFO_SECTORS; 968 969 if (sb_zone_is_full(zone)) { 970 /* 971 * No room left to write new superblock. Since 972 * superblock is written with REQ_SYNC, it is safe to 973 * finish the zone now. 974 * 975 * If the write pointer is exactly at the capacity, 976 * explicit ZONE_FINISH is not necessary. 977 */ 978 if (zone->wp != zone->start + zone->capacity) { 979 int ret; 980 981 ret = blkdev_zone_mgmt(device->bdev, 982 REQ_OP_ZONE_FINISH, zone->start, 983 zone->len, GFP_NOFS); 984 if (ret) 985 return ret; 986 } 987 988 zone->wp = zone->start + zone->len; 989 zone->cond = BLK_ZONE_COND_FULL; 990 } 991 return 0; 992 } 993 994 /* All the zones are FULL. Should not reach here. */ 995 ASSERT(0); 996 return -EIO; 997 } 998 999 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 1000 { 1001 sector_t zone_sectors; 1002 sector_t nr_sectors; 1003 u8 zone_sectors_shift; 1004 u32 sb_zone; 1005 u32 nr_zones; 1006 1007 zone_sectors = bdev_zone_sectors(bdev); 1008 zone_sectors_shift = ilog2(zone_sectors); 1009 nr_sectors = bdev_nr_sectors(bdev); 1010 nr_zones = nr_sectors >> zone_sectors_shift; 1011 1012 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1013 if (sb_zone + 1 >= nr_zones) 1014 return -ENOENT; 1015 1016 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1017 zone_start_sector(sb_zone, bdev), 1018 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 1019 } 1020 1021 /** 1022 * btrfs_find_allocatable_zones - find allocatable zones within a given region 1023 * 1024 * @device: the device to allocate a region on 1025 * @hole_start: the position of the hole to allocate the region 1026 * @num_bytes: size of wanted region 1027 * @hole_end: the end of the hole 1028 * @return: position of allocatable zones 1029 * 1030 * Allocatable region should not contain any superblock locations. 1031 */ 1032 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1033 u64 hole_end, u64 num_bytes) 1034 { 1035 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1036 const u8 shift = zinfo->zone_size_shift; 1037 u64 nzones = num_bytes >> shift; 1038 u64 pos = hole_start; 1039 u64 begin, end; 1040 bool have_sb; 1041 int i; 1042 1043 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1044 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1045 1046 while (pos < hole_end) { 1047 begin = pos >> shift; 1048 end = begin + nzones; 1049 1050 if (end > zinfo->nr_zones) 1051 return hole_end; 1052 1053 /* Check if zones in the region are all empty */ 1054 if (btrfs_dev_is_sequential(device, pos) && 1055 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { 1056 pos += zinfo->zone_size; 1057 continue; 1058 } 1059 1060 have_sb = false; 1061 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1062 u32 sb_zone; 1063 u64 sb_pos; 1064 1065 sb_zone = sb_zone_number(shift, i); 1066 if (!(end <= sb_zone || 1067 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1068 have_sb = true; 1069 pos = zone_start_physical( 1070 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1071 break; 1072 } 1073 1074 /* We also need to exclude regular superblock positions */ 1075 sb_pos = btrfs_sb_offset(i); 1076 if (!(pos + num_bytes <= sb_pos || 1077 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1078 have_sb = true; 1079 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1080 zinfo->zone_size); 1081 break; 1082 } 1083 } 1084 if (!have_sb) 1085 break; 1086 } 1087 1088 return pos; 1089 } 1090 1091 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1092 { 1093 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1094 unsigned int zno = (pos >> zone_info->zone_size_shift); 1095 1096 /* We can use any number of zones */ 1097 if (zone_info->max_active_zones == 0) 1098 return true; 1099 1100 if (!test_bit(zno, zone_info->active_zones)) { 1101 /* Active zone left? */ 1102 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1103 return false; 1104 if (test_and_set_bit(zno, zone_info->active_zones)) { 1105 /* Someone already set the bit */ 1106 atomic_inc(&zone_info->active_zones_left); 1107 } 1108 } 1109 1110 return true; 1111 } 1112 1113 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1114 { 1115 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1116 unsigned int zno = (pos >> zone_info->zone_size_shift); 1117 1118 /* We can use any number of zones */ 1119 if (zone_info->max_active_zones == 0) 1120 return; 1121 1122 if (test_and_clear_bit(zno, zone_info->active_zones)) 1123 atomic_inc(&zone_info->active_zones_left); 1124 } 1125 1126 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1127 u64 length, u64 *bytes) 1128 { 1129 int ret; 1130 1131 *bytes = 0; 1132 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1133 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1134 GFP_NOFS); 1135 if (ret) 1136 return ret; 1137 1138 *bytes = length; 1139 while (length) { 1140 btrfs_dev_set_zone_empty(device, physical); 1141 btrfs_dev_clear_active_zone(device, physical); 1142 physical += device->zone_info->zone_size; 1143 length -= device->zone_info->zone_size; 1144 } 1145 1146 return 0; 1147 } 1148 1149 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1150 { 1151 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1152 const u8 shift = zinfo->zone_size_shift; 1153 unsigned long begin = start >> shift; 1154 unsigned long end = (start + size) >> shift; 1155 u64 pos; 1156 int ret; 1157 1158 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1159 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1160 1161 if (end > zinfo->nr_zones) 1162 return -ERANGE; 1163 1164 /* All the zones are conventional */ 1165 if (find_next_bit(zinfo->seq_zones, begin, end) == end) 1166 return 0; 1167 1168 /* All the zones are sequential and empty */ 1169 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end && 1170 find_next_zero_bit(zinfo->empty_zones, begin, end) == end) 1171 return 0; 1172 1173 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1174 u64 reset_bytes; 1175 1176 if (!btrfs_dev_is_sequential(device, pos) || 1177 btrfs_dev_is_empty_zone(device, pos)) 1178 continue; 1179 1180 /* Free regions should be empty */ 1181 btrfs_warn_in_rcu( 1182 device->fs_info, 1183 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1184 rcu_str_deref(device->name), device->devid, pos >> shift); 1185 WARN_ON_ONCE(1); 1186 1187 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1188 &reset_bytes); 1189 if (ret) 1190 return ret; 1191 } 1192 1193 return 0; 1194 } 1195 1196 /* 1197 * Calculate an allocation pointer from the extent allocation information 1198 * for a block group consist of conventional zones. It is pointed to the 1199 * end of the highest addressed extent in the block group as an allocation 1200 * offset. 1201 */ 1202 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1203 u64 *offset_ret, bool new) 1204 { 1205 struct btrfs_fs_info *fs_info = cache->fs_info; 1206 struct btrfs_root *root; 1207 struct btrfs_path *path; 1208 struct btrfs_key key; 1209 struct btrfs_key found_key; 1210 int ret; 1211 u64 length; 1212 1213 /* 1214 * Avoid tree lookups for a new block group, there's no use for it. 1215 * It must always be 0. 1216 * 1217 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1218 * For new a block group, this function is called from 1219 * btrfs_make_block_group() which is already taking the chunk mutex. 1220 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1221 * buffer locks to avoid deadlock. 1222 */ 1223 if (new) { 1224 *offset_ret = 0; 1225 return 0; 1226 } 1227 1228 path = btrfs_alloc_path(); 1229 if (!path) 1230 return -ENOMEM; 1231 1232 key.objectid = cache->start + cache->length; 1233 key.type = 0; 1234 key.offset = 0; 1235 1236 root = btrfs_extent_root(fs_info, key.objectid); 1237 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1238 /* We should not find the exact match */ 1239 if (!ret) 1240 ret = -EUCLEAN; 1241 if (ret < 0) 1242 goto out; 1243 1244 ret = btrfs_previous_extent_item(root, path, cache->start); 1245 if (ret) { 1246 if (ret == 1) { 1247 ret = 0; 1248 *offset_ret = 0; 1249 } 1250 goto out; 1251 } 1252 1253 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1254 1255 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1256 length = found_key.offset; 1257 else 1258 length = fs_info->nodesize; 1259 1260 if (!(found_key.objectid >= cache->start && 1261 found_key.objectid + length <= cache->start + cache->length)) { 1262 ret = -EUCLEAN; 1263 goto out; 1264 } 1265 *offset_ret = found_key.objectid + length - cache->start; 1266 ret = 0; 1267 1268 out: 1269 btrfs_free_path(path); 1270 return ret; 1271 } 1272 1273 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1274 { 1275 struct btrfs_fs_info *fs_info = cache->fs_info; 1276 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1277 struct extent_map *em; 1278 struct map_lookup *map; 1279 struct btrfs_device *device; 1280 u64 logical = cache->start; 1281 u64 length = cache->length; 1282 int ret; 1283 int i; 1284 unsigned int nofs_flag; 1285 u64 *alloc_offsets = NULL; 1286 u64 *caps = NULL; 1287 u64 *physical = NULL; 1288 unsigned long *active = NULL; 1289 u64 last_alloc = 0; 1290 u32 num_sequential = 0, num_conventional = 0; 1291 1292 if (!btrfs_is_zoned(fs_info)) 1293 return 0; 1294 1295 /* Sanity check */ 1296 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1297 btrfs_err(fs_info, 1298 "zoned: block group %llu len %llu unaligned to zone size %llu", 1299 logical, length, fs_info->zone_size); 1300 return -EIO; 1301 } 1302 1303 /* Get the chunk mapping */ 1304 read_lock(&em_tree->lock); 1305 em = lookup_extent_mapping(em_tree, logical, length); 1306 read_unlock(&em_tree->lock); 1307 1308 if (!em) 1309 return -EINVAL; 1310 1311 map = em->map_lookup; 1312 1313 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS); 1314 if (!cache->physical_map) { 1315 ret = -ENOMEM; 1316 goto out; 1317 } 1318 1319 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1320 if (!alloc_offsets) { 1321 ret = -ENOMEM; 1322 goto out; 1323 } 1324 1325 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS); 1326 if (!caps) { 1327 ret = -ENOMEM; 1328 goto out; 1329 } 1330 1331 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS); 1332 if (!physical) { 1333 ret = -ENOMEM; 1334 goto out; 1335 } 1336 1337 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1338 if (!active) { 1339 ret = -ENOMEM; 1340 goto out; 1341 } 1342 1343 for (i = 0; i < map->num_stripes; i++) { 1344 bool is_sequential; 1345 struct blk_zone zone; 1346 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1347 int dev_replace_is_ongoing = 0; 1348 1349 device = map->stripes[i].dev; 1350 physical[i] = map->stripes[i].physical; 1351 1352 if (device->bdev == NULL) { 1353 alloc_offsets[i] = WP_MISSING_DEV; 1354 continue; 1355 } 1356 1357 is_sequential = btrfs_dev_is_sequential(device, physical[i]); 1358 if (is_sequential) 1359 num_sequential++; 1360 else 1361 num_conventional++; 1362 1363 /* 1364 * Consider a zone as active if we can allow any number of 1365 * active zones. 1366 */ 1367 if (!device->zone_info->max_active_zones) 1368 __set_bit(i, active); 1369 1370 if (!is_sequential) { 1371 alloc_offsets[i] = WP_CONVENTIONAL; 1372 continue; 1373 } 1374 1375 /* 1376 * This zone will be used for allocation, so mark this zone 1377 * non-empty. 1378 */ 1379 btrfs_dev_clear_zone_empty(device, physical[i]); 1380 1381 down_read(&dev_replace->rwsem); 1382 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1383 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1384 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]); 1385 up_read(&dev_replace->rwsem); 1386 1387 /* 1388 * The group is mapped to a sequential zone. Get the zone write 1389 * pointer to determine the allocation offset within the zone. 1390 */ 1391 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size)); 1392 nofs_flag = memalloc_nofs_save(); 1393 ret = btrfs_get_dev_zone(device, physical[i], &zone); 1394 memalloc_nofs_restore(nofs_flag); 1395 if (ret == -EIO || ret == -EOPNOTSUPP) { 1396 ret = 0; 1397 alloc_offsets[i] = WP_MISSING_DEV; 1398 continue; 1399 } else if (ret) { 1400 goto out; 1401 } 1402 1403 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1404 btrfs_err_in_rcu(fs_info, 1405 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1406 zone.start << SECTOR_SHIFT, 1407 rcu_str_deref(device->name), device->devid); 1408 ret = -EIO; 1409 goto out; 1410 } 1411 1412 caps[i] = (zone.capacity << SECTOR_SHIFT); 1413 1414 switch (zone.cond) { 1415 case BLK_ZONE_COND_OFFLINE: 1416 case BLK_ZONE_COND_READONLY: 1417 btrfs_err(fs_info, 1418 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1419 physical[i] >> device->zone_info->zone_size_shift, 1420 rcu_str_deref(device->name), device->devid); 1421 alloc_offsets[i] = WP_MISSING_DEV; 1422 break; 1423 case BLK_ZONE_COND_EMPTY: 1424 alloc_offsets[i] = 0; 1425 break; 1426 case BLK_ZONE_COND_FULL: 1427 alloc_offsets[i] = caps[i]; 1428 break; 1429 default: 1430 /* Partially used zone */ 1431 alloc_offsets[i] = 1432 ((zone.wp - zone.start) << SECTOR_SHIFT); 1433 __set_bit(i, active); 1434 break; 1435 } 1436 } 1437 1438 if (num_sequential > 0) 1439 cache->seq_zone = true; 1440 1441 if (num_conventional > 0) { 1442 /* Zone capacity is always zone size in emulation */ 1443 cache->zone_capacity = cache->length; 1444 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1445 if (ret) { 1446 btrfs_err(fs_info, 1447 "zoned: failed to determine allocation offset of bg %llu", 1448 cache->start); 1449 goto out; 1450 } else if (map->num_stripes == num_conventional) { 1451 cache->alloc_offset = last_alloc; 1452 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1453 goto out; 1454 } 1455 } 1456 1457 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1458 case 0: /* single */ 1459 if (alloc_offsets[0] == WP_MISSING_DEV) { 1460 btrfs_err(fs_info, 1461 "zoned: cannot recover write pointer for zone %llu", 1462 physical[0]); 1463 ret = -EIO; 1464 goto out; 1465 } 1466 cache->alloc_offset = alloc_offsets[0]; 1467 cache->zone_capacity = caps[0]; 1468 if (test_bit(0, active)) 1469 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1470 break; 1471 case BTRFS_BLOCK_GROUP_DUP: 1472 if (map->type & BTRFS_BLOCK_GROUP_DATA) { 1473 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg"); 1474 ret = -EINVAL; 1475 goto out; 1476 } 1477 if (alloc_offsets[0] == WP_MISSING_DEV) { 1478 btrfs_err(fs_info, 1479 "zoned: cannot recover write pointer for zone %llu", 1480 physical[0]); 1481 ret = -EIO; 1482 goto out; 1483 } 1484 if (alloc_offsets[1] == WP_MISSING_DEV) { 1485 btrfs_err(fs_info, 1486 "zoned: cannot recover write pointer for zone %llu", 1487 physical[1]); 1488 ret = -EIO; 1489 goto out; 1490 } 1491 if (alloc_offsets[0] != alloc_offsets[1]) { 1492 btrfs_err(fs_info, 1493 "zoned: write pointer offset mismatch of zones in DUP profile"); 1494 ret = -EIO; 1495 goto out; 1496 } 1497 if (test_bit(0, active) != test_bit(1, active)) { 1498 if (!btrfs_zone_activate(cache)) { 1499 ret = -EIO; 1500 goto out; 1501 } 1502 } else { 1503 if (test_bit(0, active)) 1504 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1505 &cache->runtime_flags); 1506 } 1507 cache->alloc_offset = alloc_offsets[0]; 1508 cache->zone_capacity = min(caps[0], caps[1]); 1509 break; 1510 case BTRFS_BLOCK_GROUP_RAID1: 1511 case BTRFS_BLOCK_GROUP_RAID0: 1512 case BTRFS_BLOCK_GROUP_RAID10: 1513 case BTRFS_BLOCK_GROUP_RAID5: 1514 case BTRFS_BLOCK_GROUP_RAID6: 1515 /* non-single profiles are not supported yet */ 1516 default: 1517 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1518 btrfs_bg_type_to_raid_name(map->type)); 1519 ret = -EINVAL; 1520 goto out; 1521 } 1522 1523 out: 1524 if (cache->alloc_offset > fs_info->zone_size) { 1525 btrfs_err(fs_info, 1526 "zoned: invalid write pointer %llu in block group %llu", 1527 cache->alloc_offset, cache->start); 1528 ret = -EIO; 1529 } 1530 1531 if (cache->alloc_offset > cache->zone_capacity) { 1532 btrfs_err(fs_info, 1533 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1534 cache->alloc_offset, cache->zone_capacity, 1535 cache->start); 1536 ret = -EIO; 1537 } 1538 1539 /* An extent is allocated after the write pointer */ 1540 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1541 btrfs_err(fs_info, 1542 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1543 logical, last_alloc, cache->alloc_offset); 1544 ret = -EIO; 1545 } 1546 1547 if (!ret) { 1548 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1549 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1550 btrfs_get_block_group(cache); 1551 spin_lock(&fs_info->zone_active_bgs_lock); 1552 list_add_tail(&cache->active_bg_list, 1553 &fs_info->zone_active_bgs); 1554 spin_unlock(&fs_info->zone_active_bgs_lock); 1555 } 1556 } else { 1557 kfree(cache->physical_map); 1558 cache->physical_map = NULL; 1559 } 1560 bitmap_free(active); 1561 kfree(physical); 1562 kfree(caps); 1563 kfree(alloc_offsets); 1564 free_extent_map(em); 1565 1566 return ret; 1567 } 1568 1569 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1570 { 1571 u64 unusable, free; 1572 1573 if (!btrfs_is_zoned(cache->fs_info)) 1574 return; 1575 1576 WARN_ON(cache->bytes_super != 0); 1577 unusable = (cache->alloc_offset - cache->used) + 1578 (cache->length - cache->zone_capacity); 1579 free = cache->zone_capacity - cache->alloc_offset; 1580 1581 /* We only need ->free_space in ALLOC_SEQ block groups */ 1582 cache->cached = BTRFS_CACHE_FINISHED; 1583 cache->free_space_ctl->free_space = free; 1584 cache->zone_unusable = unusable; 1585 } 1586 1587 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1588 struct extent_buffer *eb) 1589 { 1590 struct btrfs_fs_info *fs_info = eb->fs_info; 1591 1592 if (!btrfs_is_zoned(fs_info) || 1593 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || 1594 !list_empty(&eb->release_list)) 1595 return; 1596 1597 set_extent_buffer_dirty(eb); 1598 set_extent_bits_nowait(&trans->dirty_pages, eb->start, 1599 eb->start + eb->len - 1, EXTENT_DIRTY); 1600 memzero_extent_buffer(eb, 0, eb->len); 1601 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1602 1603 spin_lock(&trans->releasing_ebs_lock); 1604 list_add_tail(&eb->release_list, &trans->releasing_ebs); 1605 spin_unlock(&trans->releasing_ebs_lock); 1606 atomic_inc(&eb->refs); 1607 } 1608 1609 void btrfs_free_redirty_list(struct btrfs_transaction *trans) 1610 { 1611 spin_lock(&trans->releasing_ebs_lock); 1612 while (!list_empty(&trans->releasing_ebs)) { 1613 struct extent_buffer *eb; 1614 1615 eb = list_first_entry(&trans->releasing_ebs, 1616 struct extent_buffer, release_list); 1617 list_del_init(&eb->release_list); 1618 free_extent_buffer(eb); 1619 } 1620 spin_unlock(&trans->releasing_ebs_lock); 1621 } 1622 1623 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start) 1624 { 1625 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1626 struct btrfs_block_group *cache; 1627 bool ret = false; 1628 1629 if (!btrfs_is_zoned(fs_info)) 1630 return false; 1631 1632 if (!is_data_inode(&inode->vfs_inode)) 1633 return false; 1634 1635 /* 1636 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1637 * extent layout the relocation code has. 1638 * Furthermore we have set aside own block-group from which only the 1639 * relocation "process" can allocate and make sure only one process at a 1640 * time can add pages to an extent that gets relocated, so it's safe to 1641 * use regular REQ_OP_WRITE for this special case. 1642 */ 1643 if (btrfs_is_data_reloc_root(inode->root)) 1644 return false; 1645 1646 cache = btrfs_lookup_block_group(fs_info, start); 1647 ASSERT(cache); 1648 if (!cache) 1649 return false; 1650 1651 ret = cache->seq_zone; 1652 btrfs_put_block_group(cache); 1653 1654 return ret; 1655 } 1656 1657 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset, 1658 struct bio *bio) 1659 { 1660 struct btrfs_ordered_extent *ordered; 1661 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 1662 1663 if (bio_op(bio) != REQ_OP_ZONE_APPEND) 1664 return; 1665 1666 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset); 1667 if (WARN_ON(!ordered)) 1668 return; 1669 1670 ordered->physical = physical; 1671 ordered->bdev = bio->bi_bdev; 1672 1673 btrfs_put_ordered_extent(ordered); 1674 } 1675 1676 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) 1677 { 1678 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1679 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1680 struct extent_map_tree *em_tree; 1681 struct extent_map *em; 1682 struct btrfs_ordered_sum *sum; 1683 u64 orig_logical = ordered->disk_bytenr; 1684 u64 *logical = NULL; 1685 int nr, stripe_len; 1686 1687 /* Zoned devices should not have partitions. So, we can assume it is 0 */ 1688 ASSERT(!bdev_is_partition(ordered->bdev)); 1689 if (WARN_ON(!ordered->bdev)) 1690 return; 1691 1692 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev, 1693 ordered->physical, &logical, &nr, 1694 &stripe_len))) 1695 goto out; 1696 1697 WARN_ON(nr != 1); 1698 1699 if (orig_logical == *logical) 1700 goto out; 1701 1702 ordered->disk_bytenr = *logical; 1703 1704 em_tree = &inode->extent_tree; 1705 write_lock(&em_tree->lock); 1706 em = search_extent_mapping(em_tree, ordered->file_offset, 1707 ordered->num_bytes); 1708 em->block_start = *logical; 1709 free_extent_map(em); 1710 write_unlock(&em_tree->lock); 1711 1712 list_for_each_entry(sum, &ordered->list, list) { 1713 if (*logical < orig_logical) 1714 sum->bytenr -= orig_logical - *logical; 1715 else 1716 sum->bytenr += *logical - orig_logical; 1717 } 1718 1719 out: 1720 kfree(logical); 1721 } 1722 1723 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1724 struct extent_buffer *eb, 1725 struct btrfs_block_group **cache_ret) 1726 { 1727 struct btrfs_block_group *cache; 1728 bool ret = true; 1729 1730 if (!btrfs_is_zoned(fs_info)) 1731 return true; 1732 1733 cache = btrfs_lookup_block_group(fs_info, eb->start); 1734 if (!cache) 1735 return true; 1736 1737 if (cache->meta_write_pointer != eb->start) { 1738 btrfs_put_block_group(cache); 1739 cache = NULL; 1740 ret = false; 1741 } else { 1742 cache->meta_write_pointer = eb->start + eb->len; 1743 } 1744 1745 *cache_ret = cache; 1746 1747 return ret; 1748 } 1749 1750 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1751 struct extent_buffer *eb) 1752 { 1753 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1754 return; 1755 1756 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1757 cache->meta_write_pointer = eb->start; 1758 } 1759 1760 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1761 { 1762 if (!btrfs_dev_is_sequential(device, physical)) 1763 return -EOPNOTSUPP; 1764 1765 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1766 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1767 } 1768 1769 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1770 struct blk_zone *zone) 1771 { 1772 struct btrfs_io_context *bioc = NULL; 1773 u64 mapped_length = PAGE_SIZE; 1774 unsigned int nofs_flag; 1775 int nmirrors; 1776 int i, ret; 1777 1778 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1779 &mapped_length, &bioc); 1780 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1781 ret = -EIO; 1782 goto out_put_bioc; 1783 } 1784 1785 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1786 ret = -EINVAL; 1787 goto out_put_bioc; 1788 } 1789 1790 nofs_flag = memalloc_nofs_save(); 1791 nmirrors = (int)bioc->num_stripes; 1792 for (i = 0; i < nmirrors; i++) { 1793 u64 physical = bioc->stripes[i].physical; 1794 struct btrfs_device *dev = bioc->stripes[i].dev; 1795 1796 /* Missing device */ 1797 if (!dev->bdev) 1798 continue; 1799 1800 ret = btrfs_get_dev_zone(dev, physical, zone); 1801 /* Failing device */ 1802 if (ret == -EIO || ret == -EOPNOTSUPP) 1803 continue; 1804 break; 1805 } 1806 memalloc_nofs_restore(nofs_flag); 1807 out_put_bioc: 1808 btrfs_put_bioc(bioc); 1809 return ret; 1810 } 1811 1812 /* 1813 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1814 * filling zeros between @physical_pos to a write pointer of dev-replace 1815 * source device. 1816 */ 1817 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1818 u64 physical_start, u64 physical_pos) 1819 { 1820 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1821 struct blk_zone zone; 1822 u64 length; 1823 u64 wp; 1824 int ret; 1825 1826 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1827 return 0; 1828 1829 ret = read_zone_info(fs_info, logical, &zone); 1830 if (ret) 1831 return ret; 1832 1833 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1834 1835 if (physical_pos == wp) 1836 return 0; 1837 1838 if (physical_pos > wp) 1839 return -EUCLEAN; 1840 1841 length = wp - physical_pos; 1842 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1843 } 1844 1845 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info, 1846 u64 logical, u64 length) 1847 { 1848 struct btrfs_device *device; 1849 struct extent_map *em; 1850 struct map_lookup *map; 1851 1852 em = btrfs_get_chunk_map(fs_info, logical, length); 1853 if (IS_ERR(em)) 1854 return ERR_CAST(em); 1855 1856 map = em->map_lookup; 1857 /* We only support single profile for now */ 1858 device = map->stripes[0].dev; 1859 1860 free_extent_map(em); 1861 1862 return device; 1863 } 1864 1865 /** 1866 * Activate block group and underlying device zones 1867 * 1868 * @block_group: the block group to activate 1869 * 1870 * Return: true on success, false otherwise 1871 */ 1872 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 1873 { 1874 struct btrfs_fs_info *fs_info = block_group->fs_info; 1875 struct btrfs_space_info *space_info = block_group->space_info; 1876 struct map_lookup *map; 1877 struct btrfs_device *device; 1878 u64 physical; 1879 bool ret; 1880 int i; 1881 1882 if (!btrfs_is_zoned(block_group->fs_info)) 1883 return true; 1884 1885 map = block_group->physical_map; 1886 1887 spin_lock(&space_info->lock); 1888 spin_lock(&block_group->lock); 1889 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1890 ret = true; 1891 goto out_unlock; 1892 } 1893 1894 /* No space left */ 1895 if (btrfs_zoned_bg_is_full(block_group)) { 1896 ret = false; 1897 goto out_unlock; 1898 } 1899 1900 for (i = 0; i < map->num_stripes; i++) { 1901 device = map->stripes[i].dev; 1902 physical = map->stripes[i].physical; 1903 1904 if (device->zone_info->max_active_zones == 0) 1905 continue; 1906 1907 if (!btrfs_dev_set_active_zone(device, physical)) { 1908 /* Cannot activate the zone */ 1909 ret = false; 1910 goto out_unlock; 1911 } 1912 } 1913 1914 /* Successfully activated all the zones */ 1915 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 1916 space_info->active_total_bytes += block_group->length; 1917 spin_unlock(&block_group->lock); 1918 btrfs_try_granting_tickets(fs_info, space_info); 1919 spin_unlock(&space_info->lock); 1920 1921 /* For the active block group list */ 1922 btrfs_get_block_group(block_group); 1923 1924 spin_lock(&fs_info->zone_active_bgs_lock); 1925 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 1926 spin_unlock(&fs_info->zone_active_bgs_lock); 1927 1928 return true; 1929 1930 out_unlock: 1931 spin_unlock(&block_group->lock); 1932 spin_unlock(&space_info->lock); 1933 return ret; 1934 } 1935 1936 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 1937 { 1938 struct btrfs_fs_info *fs_info = block_group->fs_info; 1939 const u64 end = block_group->start + block_group->length; 1940 struct radix_tree_iter iter; 1941 struct extent_buffer *eb; 1942 void __rcu **slot; 1943 1944 rcu_read_lock(); 1945 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 1946 block_group->start >> fs_info->sectorsize_bits) { 1947 eb = radix_tree_deref_slot(slot); 1948 if (!eb) 1949 continue; 1950 if (radix_tree_deref_retry(eb)) { 1951 slot = radix_tree_iter_retry(&iter); 1952 continue; 1953 } 1954 1955 if (eb->start < block_group->start) 1956 continue; 1957 if (eb->start >= end) 1958 break; 1959 1960 slot = radix_tree_iter_resume(slot, &iter); 1961 rcu_read_unlock(); 1962 wait_on_extent_buffer_writeback(eb); 1963 rcu_read_lock(); 1964 } 1965 rcu_read_unlock(); 1966 } 1967 1968 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 1969 { 1970 struct btrfs_fs_info *fs_info = block_group->fs_info; 1971 struct map_lookup *map; 1972 const bool is_metadata = (block_group->flags & 1973 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 1974 int ret = 0; 1975 int i; 1976 1977 spin_lock(&block_group->lock); 1978 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1979 spin_unlock(&block_group->lock); 1980 return 0; 1981 } 1982 1983 /* Check if we have unwritten allocated space */ 1984 if (is_metadata && 1985 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 1986 spin_unlock(&block_group->lock); 1987 return -EAGAIN; 1988 } 1989 1990 /* 1991 * If we are sure that the block group is full (= no more room left for 1992 * new allocation) and the IO for the last usable block is completed, we 1993 * don't need to wait for the other IOs. This holds because we ensure 1994 * the sequential IO submissions using the ZONE_APPEND command for data 1995 * and block_group->meta_write_pointer for metadata. 1996 */ 1997 if (!fully_written) { 1998 spin_unlock(&block_group->lock); 1999 2000 ret = btrfs_inc_block_group_ro(block_group, false); 2001 if (ret) 2002 return ret; 2003 2004 /* Ensure all writes in this block group finish */ 2005 btrfs_wait_block_group_reservations(block_group); 2006 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2007 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 2008 block_group->length); 2009 /* Wait for extent buffers to be written. */ 2010 if (is_metadata) 2011 wait_eb_writebacks(block_group); 2012 2013 spin_lock(&block_group->lock); 2014 2015 /* 2016 * Bail out if someone already deactivated the block group, or 2017 * allocated space is left in the block group. 2018 */ 2019 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2020 &block_group->runtime_flags)) { 2021 spin_unlock(&block_group->lock); 2022 btrfs_dec_block_group_ro(block_group); 2023 return 0; 2024 } 2025 2026 if (block_group->reserved) { 2027 spin_unlock(&block_group->lock); 2028 btrfs_dec_block_group_ro(block_group); 2029 return -EAGAIN; 2030 } 2031 } 2032 2033 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2034 block_group->alloc_offset = block_group->zone_capacity; 2035 block_group->free_space_ctl->free_space = 0; 2036 btrfs_clear_treelog_bg(block_group); 2037 btrfs_clear_data_reloc_bg(block_group); 2038 spin_unlock(&block_group->lock); 2039 2040 map = block_group->physical_map; 2041 for (i = 0; i < map->num_stripes; i++) { 2042 struct btrfs_device *device = map->stripes[i].dev; 2043 const u64 physical = map->stripes[i].physical; 2044 2045 if (device->zone_info->max_active_zones == 0) 2046 continue; 2047 2048 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2049 physical >> SECTOR_SHIFT, 2050 device->zone_info->zone_size >> SECTOR_SHIFT, 2051 GFP_NOFS); 2052 2053 if (ret) 2054 return ret; 2055 2056 btrfs_dev_clear_active_zone(device, physical); 2057 } 2058 2059 if (!fully_written) 2060 btrfs_dec_block_group_ro(block_group); 2061 2062 spin_lock(&fs_info->zone_active_bgs_lock); 2063 ASSERT(!list_empty(&block_group->active_bg_list)); 2064 list_del_init(&block_group->active_bg_list); 2065 spin_unlock(&fs_info->zone_active_bgs_lock); 2066 2067 /* For active_bg_list */ 2068 btrfs_put_block_group(block_group); 2069 2070 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2071 2072 return 0; 2073 } 2074 2075 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2076 { 2077 if (!btrfs_is_zoned(block_group->fs_info)) 2078 return 0; 2079 2080 return do_zone_finish(block_group, false); 2081 } 2082 2083 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2084 { 2085 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2086 struct btrfs_device *device; 2087 bool ret = false; 2088 2089 if (!btrfs_is_zoned(fs_info)) 2090 return true; 2091 2092 /* Check if there is a device with active zones left */ 2093 mutex_lock(&fs_info->chunk_mutex); 2094 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2095 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2096 2097 if (!device->bdev) 2098 continue; 2099 2100 if (!zinfo->max_active_zones || 2101 atomic_read(&zinfo->active_zones_left)) { 2102 ret = true; 2103 break; 2104 } 2105 } 2106 mutex_unlock(&fs_info->chunk_mutex); 2107 2108 if (!ret) 2109 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2110 2111 return ret; 2112 } 2113 2114 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2115 { 2116 struct btrfs_block_group *block_group; 2117 u64 min_alloc_bytes; 2118 2119 if (!btrfs_is_zoned(fs_info)) 2120 return; 2121 2122 block_group = btrfs_lookup_block_group(fs_info, logical); 2123 ASSERT(block_group); 2124 2125 /* No MIXED_BG on zoned btrfs. */ 2126 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2127 min_alloc_bytes = fs_info->sectorsize; 2128 else 2129 min_alloc_bytes = fs_info->nodesize; 2130 2131 /* Bail out if we can allocate more data from this block group. */ 2132 if (logical + length + min_alloc_bytes <= 2133 block_group->start + block_group->zone_capacity) 2134 goto out; 2135 2136 do_zone_finish(block_group, true); 2137 2138 out: 2139 btrfs_put_block_group(block_group); 2140 } 2141 2142 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2143 { 2144 struct btrfs_block_group *bg = 2145 container_of(work, struct btrfs_block_group, zone_finish_work); 2146 2147 wait_on_extent_buffer_writeback(bg->last_eb); 2148 free_extent_buffer(bg->last_eb); 2149 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2150 btrfs_put_block_group(bg); 2151 } 2152 2153 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2154 struct extent_buffer *eb) 2155 { 2156 if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2157 return; 2158 2159 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2160 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2161 bg->start); 2162 return; 2163 } 2164 2165 /* For the work */ 2166 btrfs_get_block_group(bg); 2167 atomic_inc(&eb->refs); 2168 bg->last_eb = eb; 2169 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2170 queue_work(system_unbound_wq, &bg->zone_finish_work); 2171 } 2172 2173 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2174 { 2175 struct btrfs_fs_info *fs_info = bg->fs_info; 2176 2177 spin_lock(&fs_info->relocation_bg_lock); 2178 if (fs_info->data_reloc_bg == bg->start) 2179 fs_info->data_reloc_bg = 0; 2180 spin_unlock(&fs_info->relocation_bg_lock); 2181 } 2182 2183 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2184 { 2185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2186 struct btrfs_device *device; 2187 2188 if (!btrfs_is_zoned(fs_info)) 2189 return; 2190 2191 mutex_lock(&fs_devices->device_list_mutex); 2192 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2193 if (device->zone_info) { 2194 vfree(device->zone_info->zone_cache); 2195 device->zone_info->zone_cache = NULL; 2196 } 2197 } 2198 mutex_unlock(&fs_devices->device_list_mutex); 2199 } 2200 2201 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2202 { 2203 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2204 struct btrfs_device *device; 2205 u64 used = 0; 2206 u64 total = 0; 2207 u64 factor; 2208 2209 ASSERT(btrfs_is_zoned(fs_info)); 2210 2211 if (fs_info->bg_reclaim_threshold == 0) 2212 return false; 2213 2214 mutex_lock(&fs_devices->device_list_mutex); 2215 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2216 if (!device->bdev) 2217 continue; 2218 2219 total += device->disk_total_bytes; 2220 used += device->bytes_used; 2221 } 2222 mutex_unlock(&fs_devices->device_list_mutex); 2223 2224 factor = div64_u64(used * 100, total); 2225 return factor >= fs_info->bg_reclaim_threshold; 2226 } 2227 2228 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2229 u64 length) 2230 { 2231 struct btrfs_block_group *block_group; 2232 2233 if (!btrfs_is_zoned(fs_info)) 2234 return; 2235 2236 block_group = btrfs_lookup_block_group(fs_info, logical); 2237 /* It should be called on a previous data relocation block group. */ 2238 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2239 2240 spin_lock(&block_group->lock); 2241 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2242 goto out; 2243 2244 /* All relocation extents are written. */ 2245 if (block_group->start + block_group->alloc_offset == logical + length) { 2246 /* Now, release this block group for further allocations. */ 2247 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2248 &block_group->runtime_flags); 2249 } 2250 2251 out: 2252 spin_unlock(&block_group->lock); 2253 btrfs_put_block_group(block_group); 2254 } 2255 2256 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2257 { 2258 struct btrfs_block_group *block_group; 2259 struct btrfs_block_group *min_bg = NULL; 2260 u64 min_avail = U64_MAX; 2261 int ret; 2262 2263 spin_lock(&fs_info->zone_active_bgs_lock); 2264 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2265 active_bg_list) { 2266 u64 avail; 2267 2268 spin_lock(&block_group->lock); 2269 if (block_group->reserved || 2270 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) { 2271 spin_unlock(&block_group->lock); 2272 continue; 2273 } 2274 2275 avail = block_group->zone_capacity - block_group->alloc_offset; 2276 if (min_avail > avail) { 2277 if (min_bg) 2278 btrfs_put_block_group(min_bg); 2279 min_bg = block_group; 2280 min_avail = avail; 2281 btrfs_get_block_group(min_bg); 2282 } 2283 spin_unlock(&block_group->lock); 2284 } 2285 spin_unlock(&fs_info->zone_active_bgs_lock); 2286 2287 if (!min_bg) 2288 return 0; 2289 2290 ret = btrfs_zone_finish(min_bg); 2291 btrfs_put_block_group(min_bg); 2292 2293 return ret < 0 ? ret : 1; 2294 } 2295 2296 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2297 struct btrfs_space_info *space_info, 2298 bool do_finish) 2299 { 2300 struct btrfs_block_group *bg; 2301 int index; 2302 2303 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2304 return 0; 2305 2306 /* No more block groups to activate */ 2307 if (space_info->active_total_bytes == space_info->total_bytes) 2308 return 0; 2309 2310 for (;;) { 2311 int ret; 2312 bool need_finish = false; 2313 2314 down_read(&space_info->groups_sem); 2315 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2316 list_for_each_entry(bg, &space_info->block_groups[index], 2317 list) { 2318 if (!spin_trylock(&bg->lock)) 2319 continue; 2320 if (btrfs_zoned_bg_is_full(bg) || 2321 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2322 &bg->runtime_flags)) { 2323 spin_unlock(&bg->lock); 2324 continue; 2325 } 2326 spin_unlock(&bg->lock); 2327 2328 if (btrfs_zone_activate(bg)) { 2329 up_read(&space_info->groups_sem); 2330 return 1; 2331 } 2332 2333 need_finish = true; 2334 } 2335 } 2336 up_read(&space_info->groups_sem); 2337 2338 if (!do_finish || !need_finish) 2339 break; 2340 2341 ret = btrfs_zone_finish_one_bg(fs_info); 2342 if (ret == 0) 2343 break; 2344 if (ret < 0) 2345 return ret; 2346 } 2347 2348 return 0; 2349 } 2350