xref: /openbmc/linux/fs/btrfs/zoned.c (revision dcabb06bf127b3e0d3fbc94a2b65dd56c2725851)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include "ctree.h"
8 #include "volumes.h"
9 #include "zoned.h"
10 #include "rcu-string.h"
11 #include "disk-io.h"
12 #include "block-group.h"
13 #include "transaction.h"
14 #include "dev-replace.h"
15 #include "space-info.h"
16 
17 /* Maximum number of zones to report per blkdev_report_zones() call */
18 #define BTRFS_REPORT_NR_ZONES   4096
19 /* Invalid allocation pointer value for missing devices */
20 #define WP_MISSING_DEV ((u64)-1)
21 /* Pseudo write pointer value for conventional zone */
22 #define WP_CONVENTIONAL ((u64)-2)
23 
24 /*
25  * Location of the first zone of superblock logging zone pairs.
26  *
27  * - primary superblock:    0B (zone 0)
28  * - first copy:          512G (zone starting at that offset)
29  * - second copy:           4T (zone starting at that offset)
30  */
31 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
32 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
33 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
34 
35 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
36 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
37 
38 /* Number of superblock log zones */
39 #define BTRFS_NR_SB_LOG_ZONES 2
40 
41 /*
42  * Maximum supported zone size. Currently, SMR disks have a zone size of
43  * 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. We do not
44  * expect the zone size to become larger than 8GiB in the near future.
45  */
46 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
47 
48 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
49 {
50 	struct blk_zone *zones = data;
51 
52 	memcpy(&zones[idx], zone, sizeof(*zone));
53 
54 	return 0;
55 }
56 
57 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
58 			    u64 *wp_ret)
59 {
60 	bool empty[BTRFS_NR_SB_LOG_ZONES];
61 	bool full[BTRFS_NR_SB_LOG_ZONES];
62 	sector_t sector;
63 
64 	ASSERT(zones[0].type != BLK_ZONE_TYPE_CONVENTIONAL &&
65 	       zones[1].type != BLK_ZONE_TYPE_CONVENTIONAL);
66 
67 	empty[0] = (zones[0].cond == BLK_ZONE_COND_EMPTY);
68 	empty[1] = (zones[1].cond == BLK_ZONE_COND_EMPTY);
69 	full[0] = (zones[0].cond == BLK_ZONE_COND_FULL);
70 	full[1] = (zones[1].cond == BLK_ZONE_COND_FULL);
71 
72 	/*
73 	 * Possible states of log buffer zones
74 	 *
75 	 *           Empty[0]  In use[0]  Full[0]
76 	 * Empty[1]         *          x        0
77 	 * In use[1]        0          x        0
78 	 * Full[1]          1          1        C
79 	 *
80 	 * Log position:
81 	 *   *: Special case, no superblock is written
82 	 *   0: Use write pointer of zones[0]
83 	 *   1: Use write pointer of zones[1]
84 	 *   C: Compare super blcoks from zones[0] and zones[1], use the latest
85 	 *      one determined by generation
86 	 *   x: Invalid state
87 	 */
88 
89 	if (empty[0] && empty[1]) {
90 		/* Special case to distinguish no superblock to read */
91 		*wp_ret = zones[0].start << SECTOR_SHIFT;
92 		return -ENOENT;
93 	} else if (full[0] && full[1]) {
94 		/* Compare two super blocks */
95 		struct address_space *mapping = bdev->bd_inode->i_mapping;
96 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
97 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
98 		int i;
99 
100 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
101 			u64 bytenr;
102 
103 			bytenr = ((zones[i].start + zones[i].len)
104 				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
105 
106 			page[i] = read_cache_page_gfp(mapping,
107 					bytenr >> PAGE_SHIFT, GFP_NOFS);
108 			if (IS_ERR(page[i])) {
109 				if (i == 1)
110 					btrfs_release_disk_super(super[0]);
111 				return PTR_ERR(page[i]);
112 			}
113 			super[i] = page_address(page[i]);
114 		}
115 
116 		if (super[0]->generation > super[1]->generation)
117 			sector = zones[1].start;
118 		else
119 			sector = zones[0].start;
120 
121 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
122 			btrfs_release_disk_super(super[i]);
123 	} else if (!full[0] && (empty[1] || full[1])) {
124 		sector = zones[0].wp;
125 	} else if (full[0]) {
126 		sector = zones[1].wp;
127 	} else {
128 		return -EUCLEAN;
129 	}
130 	*wp_ret = sector << SECTOR_SHIFT;
131 	return 0;
132 }
133 
134 /*
135  * Get the first zone number of the superblock mirror
136  */
137 static inline u32 sb_zone_number(int shift, int mirror)
138 {
139 	u64 zone;
140 
141 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
142 	switch (mirror) {
143 	case 0: zone = 0; break;
144 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
145 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
146 	}
147 
148 	ASSERT(zone <= U32_MAX);
149 
150 	return (u32)zone;
151 }
152 
153 /*
154  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
155  * device into static sized chunks and fake a conventional zone on each of
156  * them.
157  */
158 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
159 				struct blk_zone *zones, unsigned int nr_zones)
160 {
161 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
162 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
163 	unsigned int i;
164 
165 	pos >>= SECTOR_SHIFT;
166 	for (i = 0; i < nr_zones; i++) {
167 		zones[i].start = i * zone_sectors + pos;
168 		zones[i].len = zone_sectors;
169 		zones[i].capacity = zone_sectors;
170 		zones[i].wp = zones[i].start + zone_sectors;
171 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
172 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
173 
174 		if (zones[i].wp >= bdev_size) {
175 			i++;
176 			break;
177 		}
178 	}
179 
180 	return i;
181 }
182 
183 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
184 			       struct blk_zone *zones, unsigned int *nr_zones)
185 {
186 	int ret;
187 
188 	if (!*nr_zones)
189 		return 0;
190 
191 	if (!bdev_is_zoned(device->bdev)) {
192 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
193 		*nr_zones = ret;
194 		return 0;
195 	}
196 
197 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
198 				  copy_zone_info_cb, zones);
199 	if (ret < 0) {
200 		btrfs_err_in_rcu(device->fs_info,
201 				 "zoned: failed to read zone %llu on %s (devid %llu)",
202 				 pos, rcu_str_deref(device->name),
203 				 device->devid);
204 		return ret;
205 	}
206 	*nr_zones = ret;
207 	if (!ret)
208 		return -EIO;
209 
210 	return 0;
211 }
212 
213 /* The emulated zone size is determined from the size of device extent */
214 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
215 {
216 	struct btrfs_path *path;
217 	struct btrfs_root *root = fs_info->dev_root;
218 	struct btrfs_key key;
219 	struct extent_buffer *leaf;
220 	struct btrfs_dev_extent *dext;
221 	int ret = 0;
222 
223 	key.objectid = 1;
224 	key.type = BTRFS_DEV_EXTENT_KEY;
225 	key.offset = 0;
226 
227 	path = btrfs_alloc_path();
228 	if (!path)
229 		return -ENOMEM;
230 
231 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
232 	if (ret < 0)
233 		goto out;
234 
235 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
236 		ret = btrfs_next_item(root, path);
237 		if (ret < 0)
238 			goto out;
239 		/* No dev extents at all? Not good */
240 		if (ret > 0) {
241 			ret = -EUCLEAN;
242 			goto out;
243 		}
244 	}
245 
246 	leaf = path->nodes[0];
247 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
248 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
249 	ret = 0;
250 
251 out:
252 	btrfs_free_path(path);
253 
254 	return ret;
255 }
256 
257 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
258 {
259 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
260 	struct btrfs_device *device;
261 	int ret = 0;
262 
263 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
264 	if (!btrfs_fs_incompat(fs_info, ZONED))
265 		return 0;
266 
267 	mutex_lock(&fs_devices->device_list_mutex);
268 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
269 		/* We can skip reading of zone info for missing devices */
270 		if (!device->bdev)
271 			continue;
272 
273 		ret = btrfs_get_dev_zone_info(device);
274 		if (ret)
275 			break;
276 	}
277 	mutex_unlock(&fs_devices->device_list_mutex);
278 
279 	return ret;
280 }
281 
282 int btrfs_get_dev_zone_info(struct btrfs_device *device)
283 {
284 	struct btrfs_fs_info *fs_info = device->fs_info;
285 	struct btrfs_zoned_device_info *zone_info = NULL;
286 	struct block_device *bdev = device->bdev;
287 	struct request_queue *queue = bdev_get_queue(bdev);
288 	sector_t nr_sectors;
289 	sector_t sector = 0;
290 	struct blk_zone *zones = NULL;
291 	unsigned int i, nreported = 0, nr_zones;
292 	sector_t zone_sectors;
293 	char *model, *emulated;
294 	int ret;
295 
296 	/*
297 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
298 	 * yet be set.
299 	 */
300 	if (!btrfs_fs_incompat(fs_info, ZONED))
301 		return 0;
302 
303 	if (device->zone_info)
304 		return 0;
305 
306 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
307 	if (!zone_info)
308 		return -ENOMEM;
309 
310 	if (!bdev_is_zoned(bdev)) {
311 		if (!fs_info->zone_size) {
312 			ret = calculate_emulated_zone_size(fs_info);
313 			if (ret)
314 				goto out;
315 		}
316 
317 		ASSERT(fs_info->zone_size);
318 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
319 	} else {
320 		zone_sectors = bdev_zone_sectors(bdev);
321 	}
322 
323 	/* Check if it's power of 2 (see is_power_of_2) */
324 	ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
325 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
326 
327 	/* We reject devices with a zone size larger than 8GB */
328 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
329 		btrfs_err_in_rcu(fs_info,
330 		"zoned: %s: zone size %llu larger than supported maximum %llu",
331 				 rcu_str_deref(device->name),
332 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
333 		ret = -EINVAL;
334 		goto out;
335 	}
336 
337 	nr_sectors = bdev_nr_sectors(bdev);
338 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
339 	zone_info->max_zone_append_size =
340 		(u64)queue_max_zone_append_sectors(queue) << SECTOR_SHIFT;
341 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
342 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
343 		zone_info->nr_zones++;
344 
345 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
346 	if (!zone_info->seq_zones) {
347 		ret = -ENOMEM;
348 		goto out;
349 	}
350 
351 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
352 	if (!zone_info->empty_zones) {
353 		ret = -ENOMEM;
354 		goto out;
355 	}
356 
357 	zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
358 	if (!zones) {
359 		ret = -ENOMEM;
360 		goto out;
361 	}
362 
363 	/* Get zones type */
364 	while (sector < nr_sectors) {
365 		nr_zones = BTRFS_REPORT_NR_ZONES;
366 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
367 					  &nr_zones);
368 		if (ret)
369 			goto out;
370 
371 		for (i = 0; i < nr_zones; i++) {
372 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
373 				__set_bit(nreported, zone_info->seq_zones);
374 			if (zones[i].cond == BLK_ZONE_COND_EMPTY)
375 				__set_bit(nreported, zone_info->empty_zones);
376 			nreported++;
377 		}
378 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
379 	}
380 
381 	if (nreported != zone_info->nr_zones) {
382 		btrfs_err_in_rcu(device->fs_info,
383 				 "inconsistent number of zones on %s (%u/%u)",
384 				 rcu_str_deref(device->name), nreported,
385 				 zone_info->nr_zones);
386 		ret = -EIO;
387 		goto out;
388 	}
389 
390 	/* Validate superblock log */
391 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
392 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
393 		u32 sb_zone;
394 		u64 sb_wp;
395 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
396 
397 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
398 		if (sb_zone + 1 >= zone_info->nr_zones)
399 			continue;
400 
401 		sector = sb_zone << (zone_info->zone_size_shift - SECTOR_SHIFT);
402 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT,
403 					  &zone_info->sb_zones[sb_pos],
404 					  &nr_zones);
405 		if (ret)
406 			goto out;
407 
408 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
409 			btrfs_err_in_rcu(device->fs_info,
410 	"zoned: failed to read super block log zone info at devid %llu zone %u",
411 					 device->devid, sb_zone);
412 			ret = -EUCLEAN;
413 			goto out;
414 		}
415 
416 		/*
417 		 * If zones[0] is conventional, always use the beggining of the
418 		 * zone to record superblock. No need to validate in that case.
419 		 */
420 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
421 		    BLK_ZONE_TYPE_CONVENTIONAL)
422 			continue;
423 
424 		ret = sb_write_pointer(device->bdev,
425 				       &zone_info->sb_zones[sb_pos], &sb_wp);
426 		if (ret != -ENOENT && ret) {
427 			btrfs_err_in_rcu(device->fs_info,
428 			"zoned: super block log zone corrupted devid %llu zone %u",
429 					 device->devid, sb_zone);
430 			ret = -EUCLEAN;
431 			goto out;
432 		}
433 	}
434 
435 
436 	kfree(zones);
437 
438 	device->zone_info = zone_info;
439 
440 	switch (bdev_zoned_model(bdev)) {
441 	case BLK_ZONED_HM:
442 		model = "host-managed zoned";
443 		emulated = "";
444 		break;
445 	case BLK_ZONED_HA:
446 		model = "host-aware zoned";
447 		emulated = "";
448 		break;
449 	case BLK_ZONED_NONE:
450 		model = "regular";
451 		emulated = "emulated ";
452 		break;
453 	default:
454 		/* Just in case */
455 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
456 				 bdev_zoned_model(bdev),
457 				 rcu_str_deref(device->name));
458 		ret = -EOPNOTSUPP;
459 		goto out_free_zone_info;
460 	}
461 
462 	btrfs_info_in_rcu(fs_info,
463 		"%s block device %s, %u %szones of %llu bytes",
464 		model, rcu_str_deref(device->name), zone_info->nr_zones,
465 		emulated, zone_info->zone_size);
466 
467 	return 0;
468 
469 out:
470 	kfree(zones);
471 out_free_zone_info:
472 	bitmap_free(zone_info->empty_zones);
473 	bitmap_free(zone_info->seq_zones);
474 	kfree(zone_info);
475 	device->zone_info = NULL;
476 
477 	return ret;
478 }
479 
480 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
481 {
482 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
483 
484 	if (!zone_info)
485 		return;
486 
487 	bitmap_free(zone_info->seq_zones);
488 	bitmap_free(zone_info->empty_zones);
489 	kfree(zone_info);
490 	device->zone_info = NULL;
491 }
492 
493 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
494 		       struct blk_zone *zone)
495 {
496 	unsigned int nr_zones = 1;
497 	int ret;
498 
499 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
500 	if (ret != 0 || !nr_zones)
501 		return ret ? ret : -EIO;
502 
503 	return 0;
504 }
505 
506 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
507 {
508 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
509 	struct btrfs_device *device;
510 	u64 zoned_devices = 0;
511 	u64 nr_devices = 0;
512 	u64 zone_size = 0;
513 	u64 max_zone_append_size = 0;
514 	const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
515 	int ret = 0;
516 
517 	/* Count zoned devices */
518 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
519 		enum blk_zoned_model model;
520 
521 		if (!device->bdev)
522 			continue;
523 
524 		model = bdev_zoned_model(device->bdev);
525 		/*
526 		 * A Host-Managed zoned device must be used as a zoned device.
527 		 * A Host-Aware zoned device and a non-zoned devices can be
528 		 * treated as a zoned device, if ZONED flag is enabled in the
529 		 * superblock.
530 		 */
531 		if (model == BLK_ZONED_HM ||
532 		    (model == BLK_ZONED_HA && incompat_zoned) ||
533 		    (model == BLK_ZONED_NONE && incompat_zoned)) {
534 			struct btrfs_zoned_device_info *zone_info =
535 				device->zone_info;
536 
537 			zone_info = device->zone_info;
538 			zoned_devices++;
539 			if (!zone_size) {
540 				zone_size = zone_info->zone_size;
541 			} else if (zone_info->zone_size != zone_size) {
542 				btrfs_err(fs_info,
543 		"zoned: unequal block device zone sizes: have %llu found %llu",
544 					  device->zone_info->zone_size,
545 					  zone_size);
546 				ret = -EINVAL;
547 				goto out;
548 			}
549 			if (!max_zone_append_size ||
550 			    (zone_info->max_zone_append_size &&
551 			     zone_info->max_zone_append_size < max_zone_append_size))
552 				max_zone_append_size =
553 					zone_info->max_zone_append_size;
554 		}
555 		nr_devices++;
556 	}
557 
558 	if (!zoned_devices && !incompat_zoned)
559 		goto out;
560 
561 	if (!zoned_devices && incompat_zoned) {
562 		/* No zoned block device found on ZONED filesystem */
563 		btrfs_err(fs_info,
564 			  "zoned: no zoned devices found on a zoned filesystem");
565 		ret = -EINVAL;
566 		goto out;
567 	}
568 
569 	if (zoned_devices && !incompat_zoned) {
570 		btrfs_err(fs_info,
571 			  "zoned: mode not enabled but zoned device found");
572 		ret = -EINVAL;
573 		goto out;
574 	}
575 
576 	if (zoned_devices != nr_devices) {
577 		btrfs_err(fs_info,
578 			  "zoned: cannot mix zoned and regular devices");
579 		ret = -EINVAL;
580 		goto out;
581 	}
582 
583 	/*
584 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
585 	 * __btrfs_alloc_chunk(). Since we want stripe_len == zone_size,
586 	 * check the alignment here.
587 	 */
588 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
589 		btrfs_err(fs_info,
590 			  "zoned: zone size %llu not aligned to stripe %u",
591 			  zone_size, BTRFS_STRIPE_LEN);
592 		ret = -EINVAL;
593 		goto out;
594 	}
595 
596 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
597 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
598 		ret = -EINVAL;
599 		goto out;
600 	}
601 
602 	fs_info->zone_size = zone_size;
603 	fs_info->max_zone_append_size = max_zone_append_size;
604 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
605 
606 	/*
607 	 * Check mount options here, because we might change fs_info->zoned
608 	 * from fs_info->zone_size.
609 	 */
610 	ret = btrfs_check_mountopts_zoned(fs_info);
611 	if (ret)
612 		goto out;
613 
614 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
615 out:
616 	return ret;
617 }
618 
619 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
620 {
621 	if (!btrfs_is_zoned(info))
622 		return 0;
623 
624 	/*
625 	 * Space cache writing is not COWed. Disable that to avoid write errors
626 	 * in sequential zones.
627 	 */
628 	if (btrfs_test_opt(info, SPACE_CACHE)) {
629 		btrfs_err(info, "zoned: space cache v1 is not supported");
630 		return -EINVAL;
631 	}
632 
633 	if (btrfs_test_opt(info, NODATACOW)) {
634 		btrfs_err(info, "zoned: NODATACOW not supported");
635 		return -EINVAL;
636 	}
637 
638 	return 0;
639 }
640 
641 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
642 			   int rw, u64 *bytenr_ret)
643 {
644 	u64 wp;
645 	int ret;
646 
647 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
648 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
649 		return 0;
650 	}
651 
652 	ret = sb_write_pointer(bdev, zones, &wp);
653 	if (ret != -ENOENT && ret < 0)
654 		return ret;
655 
656 	if (rw == WRITE) {
657 		struct blk_zone *reset = NULL;
658 
659 		if (wp == zones[0].start << SECTOR_SHIFT)
660 			reset = &zones[0];
661 		else if (wp == zones[1].start << SECTOR_SHIFT)
662 			reset = &zones[1];
663 
664 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
665 			ASSERT(reset->cond == BLK_ZONE_COND_FULL);
666 
667 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
668 					       reset->start, reset->len,
669 					       GFP_NOFS);
670 			if (ret)
671 				return ret;
672 
673 			reset->cond = BLK_ZONE_COND_EMPTY;
674 			reset->wp = reset->start;
675 		}
676 	} else if (ret != -ENOENT) {
677 		/* For READ, we want the precious one */
678 		if (wp == zones[0].start << SECTOR_SHIFT)
679 			wp = (zones[1].start + zones[1].len) << SECTOR_SHIFT;
680 		wp -= BTRFS_SUPER_INFO_SIZE;
681 	}
682 
683 	*bytenr_ret = wp;
684 	return 0;
685 
686 }
687 
688 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
689 			       u64 *bytenr_ret)
690 {
691 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
692 	sector_t zone_sectors;
693 	u32 sb_zone;
694 	int ret;
695 	u8 zone_sectors_shift;
696 	sector_t nr_sectors;
697 	u32 nr_zones;
698 
699 	if (!bdev_is_zoned(bdev)) {
700 		*bytenr_ret = btrfs_sb_offset(mirror);
701 		return 0;
702 	}
703 
704 	ASSERT(rw == READ || rw == WRITE);
705 
706 	zone_sectors = bdev_zone_sectors(bdev);
707 	if (!is_power_of_2(zone_sectors))
708 		return -EINVAL;
709 	zone_sectors_shift = ilog2(zone_sectors);
710 	nr_sectors = bdev_nr_sectors(bdev);
711 	nr_zones = nr_sectors >> zone_sectors_shift;
712 
713 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
714 	if (sb_zone + 1 >= nr_zones)
715 		return -ENOENT;
716 
717 	ret = blkdev_report_zones(bdev, sb_zone << zone_sectors_shift,
718 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
719 				  zones);
720 	if (ret < 0)
721 		return ret;
722 	if (ret != BTRFS_NR_SB_LOG_ZONES)
723 		return -EIO;
724 
725 	return sb_log_location(bdev, zones, rw, bytenr_ret);
726 }
727 
728 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
729 			  u64 *bytenr_ret)
730 {
731 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
732 	u32 zone_num;
733 
734 	/*
735 	 * For a zoned filesystem on a non-zoned block device, use the same
736 	 * super block locations as regular filesystem. Doing so, the super
737 	 * block can always be retrieved and the zoned flag of the volume
738 	 * detected from the super block information.
739 	 */
740 	if (!bdev_is_zoned(device->bdev)) {
741 		*bytenr_ret = btrfs_sb_offset(mirror);
742 		return 0;
743 	}
744 
745 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
746 	if (zone_num + 1 >= zinfo->nr_zones)
747 		return -ENOENT;
748 
749 	return sb_log_location(device->bdev,
750 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
751 			       rw, bytenr_ret);
752 }
753 
754 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
755 				  int mirror)
756 {
757 	u32 zone_num;
758 
759 	if (!zinfo)
760 		return false;
761 
762 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
763 	if (zone_num + 1 >= zinfo->nr_zones)
764 		return false;
765 
766 	if (!test_bit(zone_num, zinfo->seq_zones))
767 		return false;
768 
769 	return true;
770 }
771 
772 void btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
773 {
774 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
775 	struct blk_zone *zone;
776 
777 	if (!is_sb_log_zone(zinfo, mirror))
778 		return;
779 
780 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
781 	if (zone->cond != BLK_ZONE_COND_FULL) {
782 		if (zone->cond == BLK_ZONE_COND_EMPTY)
783 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
784 
785 		zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT);
786 
787 		if (zone->wp == zone->start + zone->len)
788 			zone->cond = BLK_ZONE_COND_FULL;
789 
790 		return;
791 	}
792 
793 	zone++;
794 	ASSERT(zone->cond != BLK_ZONE_COND_FULL);
795 	if (zone->cond == BLK_ZONE_COND_EMPTY)
796 		zone->cond = BLK_ZONE_COND_IMP_OPEN;
797 
798 	zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT);
799 
800 	if (zone->wp == zone->start + zone->len)
801 		zone->cond = BLK_ZONE_COND_FULL;
802 }
803 
804 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
805 {
806 	sector_t zone_sectors;
807 	sector_t nr_sectors;
808 	u8 zone_sectors_shift;
809 	u32 sb_zone;
810 	u32 nr_zones;
811 
812 	zone_sectors = bdev_zone_sectors(bdev);
813 	zone_sectors_shift = ilog2(zone_sectors);
814 	nr_sectors = bdev_nr_sectors(bdev);
815 	nr_zones = nr_sectors >> zone_sectors_shift;
816 
817 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
818 	if (sb_zone + 1 >= nr_zones)
819 		return -ENOENT;
820 
821 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
822 				sb_zone << zone_sectors_shift,
823 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
824 }
825 
826 /**
827  * btrfs_find_allocatable_zones - find allocatable zones within a given region
828  *
829  * @device:	the device to allocate a region on
830  * @hole_start: the position of the hole to allocate the region
831  * @num_bytes:	size of wanted region
832  * @hole_end:	the end of the hole
833  * @return:	position of allocatable zones
834  *
835  * Allocatable region should not contain any superblock locations.
836  */
837 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
838 				 u64 hole_end, u64 num_bytes)
839 {
840 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
841 	const u8 shift = zinfo->zone_size_shift;
842 	u64 nzones = num_bytes >> shift;
843 	u64 pos = hole_start;
844 	u64 begin, end;
845 	bool have_sb;
846 	int i;
847 
848 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
849 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
850 
851 	while (pos < hole_end) {
852 		begin = pos >> shift;
853 		end = begin + nzones;
854 
855 		if (end > zinfo->nr_zones)
856 			return hole_end;
857 
858 		/* Check if zones in the region are all empty */
859 		if (btrfs_dev_is_sequential(device, pos) &&
860 		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
861 			pos += zinfo->zone_size;
862 			continue;
863 		}
864 
865 		have_sb = false;
866 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
867 			u32 sb_zone;
868 			u64 sb_pos;
869 
870 			sb_zone = sb_zone_number(shift, i);
871 			if (!(end <= sb_zone ||
872 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
873 				have_sb = true;
874 				pos = ((u64)sb_zone + BTRFS_NR_SB_LOG_ZONES) << shift;
875 				break;
876 			}
877 
878 			/* We also need to exclude regular superblock positions */
879 			sb_pos = btrfs_sb_offset(i);
880 			if (!(pos + num_bytes <= sb_pos ||
881 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
882 				have_sb = true;
883 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
884 					    zinfo->zone_size);
885 				break;
886 			}
887 		}
888 		if (!have_sb)
889 			break;
890 	}
891 
892 	return pos;
893 }
894 
895 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
896 			    u64 length, u64 *bytes)
897 {
898 	int ret;
899 
900 	*bytes = 0;
901 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
902 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
903 			       GFP_NOFS);
904 	if (ret)
905 		return ret;
906 
907 	*bytes = length;
908 	while (length) {
909 		btrfs_dev_set_zone_empty(device, physical);
910 		physical += device->zone_info->zone_size;
911 		length -= device->zone_info->zone_size;
912 	}
913 
914 	return 0;
915 }
916 
917 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
918 {
919 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
920 	const u8 shift = zinfo->zone_size_shift;
921 	unsigned long begin = start >> shift;
922 	unsigned long end = (start + size) >> shift;
923 	u64 pos;
924 	int ret;
925 
926 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
927 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
928 
929 	if (end > zinfo->nr_zones)
930 		return -ERANGE;
931 
932 	/* All the zones are conventional */
933 	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
934 		return 0;
935 
936 	/* All the zones are sequential and empty */
937 	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
938 	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
939 		return 0;
940 
941 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
942 		u64 reset_bytes;
943 
944 		if (!btrfs_dev_is_sequential(device, pos) ||
945 		    btrfs_dev_is_empty_zone(device, pos))
946 			continue;
947 
948 		/* Free regions should be empty */
949 		btrfs_warn_in_rcu(
950 			device->fs_info,
951 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
952 			rcu_str_deref(device->name), device->devid, pos >> shift);
953 		WARN_ON_ONCE(1);
954 
955 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
956 					      &reset_bytes);
957 		if (ret)
958 			return ret;
959 	}
960 
961 	return 0;
962 }
963 
964 /*
965  * Calculate an allocation pointer from the extent allocation information
966  * for a block group consist of conventional zones. It is pointed to the
967  * end of the highest addressed extent in the block group as an allocation
968  * offset.
969  */
970 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
971 				   u64 *offset_ret)
972 {
973 	struct btrfs_fs_info *fs_info = cache->fs_info;
974 	struct btrfs_root *root = fs_info->extent_root;
975 	struct btrfs_path *path;
976 	struct btrfs_key key;
977 	struct btrfs_key found_key;
978 	int ret;
979 	u64 length;
980 
981 	path = btrfs_alloc_path();
982 	if (!path)
983 		return -ENOMEM;
984 
985 	key.objectid = cache->start + cache->length;
986 	key.type = 0;
987 	key.offset = 0;
988 
989 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
990 	/* We should not find the exact match */
991 	if (!ret)
992 		ret = -EUCLEAN;
993 	if (ret < 0)
994 		goto out;
995 
996 	ret = btrfs_previous_extent_item(root, path, cache->start);
997 	if (ret) {
998 		if (ret == 1) {
999 			ret = 0;
1000 			*offset_ret = 0;
1001 		}
1002 		goto out;
1003 	}
1004 
1005 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1006 
1007 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1008 		length = found_key.offset;
1009 	else
1010 		length = fs_info->nodesize;
1011 
1012 	if (!(found_key.objectid >= cache->start &&
1013 	       found_key.objectid + length <= cache->start + cache->length)) {
1014 		ret = -EUCLEAN;
1015 		goto out;
1016 	}
1017 	*offset_ret = found_key.objectid + length - cache->start;
1018 	ret = 0;
1019 
1020 out:
1021 	btrfs_free_path(path);
1022 	return ret;
1023 }
1024 
1025 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1026 {
1027 	struct btrfs_fs_info *fs_info = cache->fs_info;
1028 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1029 	struct extent_map *em;
1030 	struct map_lookup *map;
1031 	struct btrfs_device *device;
1032 	u64 logical = cache->start;
1033 	u64 length = cache->length;
1034 	u64 physical = 0;
1035 	int ret;
1036 	int i;
1037 	unsigned int nofs_flag;
1038 	u64 *alloc_offsets = NULL;
1039 	u64 last_alloc = 0;
1040 	u32 num_sequential = 0, num_conventional = 0;
1041 
1042 	if (!btrfs_is_zoned(fs_info))
1043 		return 0;
1044 
1045 	/* Sanity check */
1046 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1047 		btrfs_err(fs_info,
1048 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1049 			  logical, length, fs_info->zone_size);
1050 		return -EIO;
1051 	}
1052 
1053 	/* Get the chunk mapping */
1054 	read_lock(&em_tree->lock);
1055 	em = lookup_extent_mapping(em_tree, logical, length);
1056 	read_unlock(&em_tree->lock);
1057 
1058 	if (!em)
1059 		return -EINVAL;
1060 
1061 	map = em->map_lookup;
1062 
1063 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1064 	if (!alloc_offsets) {
1065 		free_extent_map(em);
1066 		return -ENOMEM;
1067 	}
1068 
1069 	for (i = 0; i < map->num_stripes; i++) {
1070 		bool is_sequential;
1071 		struct blk_zone zone;
1072 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1073 		int dev_replace_is_ongoing = 0;
1074 
1075 		device = map->stripes[i].dev;
1076 		physical = map->stripes[i].physical;
1077 
1078 		if (device->bdev == NULL) {
1079 			alloc_offsets[i] = WP_MISSING_DEV;
1080 			continue;
1081 		}
1082 
1083 		is_sequential = btrfs_dev_is_sequential(device, physical);
1084 		if (is_sequential)
1085 			num_sequential++;
1086 		else
1087 			num_conventional++;
1088 
1089 		if (!is_sequential) {
1090 			alloc_offsets[i] = WP_CONVENTIONAL;
1091 			continue;
1092 		}
1093 
1094 		/*
1095 		 * This zone will be used for allocation, so mark this zone
1096 		 * non-empty.
1097 		 */
1098 		btrfs_dev_clear_zone_empty(device, physical);
1099 
1100 		down_read(&dev_replace->rwsem);
1101 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1102 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1103 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical);
1104 		up_read(&dev_replace->rwsem);
1105 
1106 		/*
1107 		 * The group is mapped to a sequential zone. Get the zone write
1108 		 * pointer to determine the allocation offset within the zone.
1109 		 */
1110 		WARN_ON(!IS_ALIGNED(physical, fs_info->zone_size));
1111 		nofs_flag = memalloc_nofs_save();
1112 		ret = btrfs_get_dev_zone(device, physical, &zone);
1113 		memalloc_nofs_restore(nofs_flag);
1114 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1115 			ret = 0;
1116 			alloc_offsets[i] = WP_MISSING_DEV;
1117 			continue;
1118 		} else if (ret) {
1119 			goto out;
1120 		}
1121 
1122 		switch (zone.cond) {
1123 		case BLK_ZONE_COND_OFFLINE:
1124 		case BLK_ZONE_COND_READONLY:
1125 			btrfs_err(fs_info,
1126 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1127 				  physical >> device->zone_info->zone_size_shift,
1128 				  rcu_str_deref(device->name), device->devid);
1129 			alloc_offsets[i] = WP_MISSING_DEV;
1130 			break;
1131 		case BLK_ZONE_COND_EMPTY:
1132 			alloc_offsets[i] = 0;
1133 			break;
1134 		case BLK_ZONE_COND_FULL:
1135 			alloc_offsets[i] = fs_info->zone_size;
1136 			break;
1137 		default:
1138 			/* Partially used zone */
1139 			alloc_offsets[i] =
1140 					((zone.wp - zone.start) << SECTOR_SHIFT);
1141 			break;
1142 		}
1143 	}
1144 
1145 	if (num_sequential > 0)
1146 		cache->seq_zone = true;
1147 
1148 	if (num_conventional > 0) {
1149 		/*
1150 		 * Avoid calling calculate_alloc_pointer() for new BG. It
1151 		 * is no use for new BG. It must be always 0.
1152 		 *
1153 		 * Also, we have a lock chain of extent buffer lock ->
1154 		 * chunk mutex.  For new BG, this function is called from
1155 		 * btrfs_make_block_group() which is already taking the
1156 		 * chunk mutex. Thus, we cannot call
1157 		 * calculate_alloc_pointer() which takes extent buffer
1158 		 * locks to avoid deadlock.
1159 		 */
1160 		if (new) {
1161 			cache->alloc_offset = 0;
1162 			goto out;
1163 		}
1164 		ret = calculate_alloc_pointer(cache, &last_alloc);
1165 		if (ret || map->num_stripes == num_conventional) {
1166 			if (!ret)
1167 				cache->alloc_offset = last_alloc;
1168 			else
1169 				btrfs_err(fs_info,
1170 			"zoned: failed to determine allocation offset of bg %llu",
1171 					  cache->start);
1172 			goto out;
1173 		}
1174 	}
1175 
1176 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1177 	case 0: /* single */
1178 		cache->alloc_offset = alloc_offsets[0];
1179 		break;
1180 	case BTRFS_BLOCK_GROUP_DUP:
1181 	case BTRFS_BLOCK_GROUP_RAID1:
1182 	case BTRFS_BLOCK_GROUP_RAID0:
1183 	case BTRFS_BLOCK_GROUP_RAID10:
1184 	case BTRFS_BLOCK_GROUP_RAID5:
1185 	case BTRFS_BLOCK_GROUP_RAID6:
1186 		/* non-single profiles are not supported yet */
1187 	default:
1188 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1189 			  btrfs_bg_type_to_raid_name(map->type));
1190 		ret = -EINVAL;
1191 		goto out;
1192 	}
1193 
1194 out:
1195 	/* An extent is allocated after the write pointer */
1196 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1197 		btrfs_err(fs_info,
1198 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1199 			  logical, last_alloc, cache->alloc_offset);
1200 		ret = -EIO;
1201 	}
1202 
1203 	if (!ret)
1204 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1205 
1206 	kfree(alloc_offsets);
1207 	free_extent_map(em);
1208 
1209 	return ret;
1210 }
1211 
1212 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1213 {
1214 	u64 unusable, free;
1215 
1216 	if (!btrfs_is_zoned(cache->fs_info))
1217 		return;
1218 
1219 	WARN_ON(cache->bytes_super != 0);
1220 	unusable = cache->alloc_offset - cache->used;
1221 	free = cache->length - cache->alloc_offset;
1222 
1223 	/* We only need ->free_space in ALLOC_SEQ block groups */
1224 	cache->last_byte_to_unpin = (u64)-1;
1225 	cache->cached = BTRFS_CACHE_FINISHED;
1226 	cache->free_space_ctl->free_space = free;
1227 	cache->zone_unusable = unusable;
1228 
1229 	/* Should not have any excluded extents. Just in case, though */
1230 	btrfs_free_excluded_extents(cache);
1231 }
1232 
1233 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1234 			    struct extent_buffer *eb)
1235 {
1236 	struct btrfs_fs_info *fs_info = eb->fs_info;
1237 
1238 	if (!btrfs_is_zoned(fs_info) ||
1239 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1240 	    !list_empty(&eb->release_list))
1241 		return;
1242 
1243 	set_extent_buffer_dirty(eb);
1244 	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1245 			       eb->start + eb->len - 1, EXTENT_DIRTY);
1246 	memzero_extent_buffer(eb, 0, eb->len);
1247 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1248 
1249 	spin_lock(&trans->releasing_ebs_lock);
1250 	list_add_tail(&eb->release_list, &trans->releasing_ebs);
1251 	spin_unlock(&trans->releasing_ebs_lock);
1252 	atomic_inc(&eb->refs);
1253 }
1254 
1255 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1256 {
1257 	spin_lock(&trans->releasing_ebs_lock);
1258 	while (!list_empty(&trans->releasing_ebs)) {
1259 		struct extent_buffer *eb;
1260 
1261 		eb = list_first_entry(&trans->releasing_ebs,
1262 				      struct extent_buffer, release_list);
1263 		list_del_init(&eb->release_list);
1264 		free_extent_buffer(eb);
1265 	}
1266 	spin_unlock(&trans->releasing_ebs_lock);
1267 }
1268 
1269 bool btrfs_use_zone_append(struct btrfs_inode *inode, struct extent_map *em)
1270 {
1271 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1272 	struct btrfs_block_group *cache;
1273 	bool ret = false;
1274 
1275 	if (!btrfs_is_zoned(fs_info))
1276 		return false;
1277 
1278 	if (!fs_info->max_zone_append_size)
1279 		return false;
1280 
1281 	if (!is_data_inode(&inode->vfs_inode))
1282 		return false;
1283 
1284 	cache = btrfs_lookup_block_group(fs_info, em->block_start);
1285 	ASSERT(cache);
1286 	if (!cache)
1287 		return false;
1288 
1289 	ret = cache->seq_zone;
1290 	btrfs_put_block_group(cache);
1291 
1292 	return ret;
1293 }
1294 
1295 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1296 				 struct bio *bio)
1297 {
1298 	struct btrfs_ordered_extent *ordered;
1299 	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1300 
1301 	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1302 		return;
1303 
1304 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1305 	if (WARN_ON(!ordered))
1306 		return;
1307 
1308 	ordered->physical = physical;
1309 	ordered->disk = bio->bi_bdev->bd_disk;
1310 	ordered->partno = bio->bi_bdev->bd_partno;
1311 
1312 	btrfs_put_ordered_extent(ordered);
1313 }
1314 
1315 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1316 {
1317 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1318 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1319 	struct extent_map_tree *em_tree;
1320 	struct extent_map *em;
1321 	struct btrfs_ordered_sum *sum;
1322 	struct block_device *bdev;
1323 	u64 orig_logical = ordered->disk_bytenr;
1324 	u64 *logical = NULL;
1325 	int nr, stripe_len;
1326 
1327 	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1328 	ASSERT(ordered->partno == 0);
1329 	bdev = bdgrab(ordered->disk->part0);
1330 	if (WARN_ON(!bdev))
1331 		return;
1332 
1333 	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, bdev,
1334 				     ordered->physical, &logical, &nr,
1335 				     &stripe_len)))
1336 		goto out;
1337 
1338 	WARN_ON(nr != 1);
1339 
1340 	if (orig_logical == *logical)
1341 		goto out;
1342 
1343 	ordered->disk_bytenr = *logical;
1344 
1345 	em_tree = &inode->extent_tree;
1346 	write_lock(&em_tree->lock);
1347 	em = search_extent_mapping(em_tree, ordered->file_offset,
1348 				   ordered->num_bytes);
1349 	em->block_start = *logical;
1350 	free_extent_map(em);
1351 	write_unlock(&em_tree->lock);
1352 
1353 	list_for_each_entry(sum, &ordered->list, list) {
1354 		if (*logical < orig_logical)
1355 			sum->bytenr -= orig_logical - *logical;
1356 		else
1357 			sum->bytenr += *logical - orig_logical;
1358 	}
1359 
1360 out:
1361 	kfree(logical);
1362 	bdput(bdev);
1363 }
1364 
1365 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1366 				    struct extent_buffer *eb,
1367 				    struct btrfs_block_group **cache_ret)
1368 {
1369 	struct btrfs_block_group *cache;
1370 	bool ret = true;
1371 
1372 	if (!btrfs_is_zoned(fs_info))
1373 		return true;
1374 
1375 	cache = *cache_ret;
1376 
1377 	if (cache && (eb->start < cache->start ||
1378 		      cache->start + cache->length <= eb->start)) {
1379 		btrfs_put_block_group(cache);
1380 		cache = NULL;
1381 		*cache_ret = NULL;
1382 	}
1383 
1384 	if (!cache)
1385 		cache = btrfs_lookup_block_group(fs_info, eb->start);
1386 
1387 	if (cache) {
1388 		if (cache->meta_write_pointer != eb->start) {
1389 			btrfs_put_block_group(cache);
1390 			cache = NULL;
1391 			ret = false;
1392 		} else {
1393 			cache->meta_write_pointer = eb->start + eb->len;
1394 		}
1395 
1396 		*cache_ret = cache;
1397 	}
1398 
1399 	return ret;
1400 }
1401 
1402 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1403 				     struct extent_buffer *eb)
1404 {
1405 	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1406 		return;
1407 
1408 	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1409 	cache->meta_write_pointer = eb->start;
1410 }
1411 
1412 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1413 {
1414 	if (!btrfs_dev_is_sequential(device, physical))
1415 		return -EOPNOTSUPP;
1416 
1417 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1418 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1419 }
1420 
1421 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1422 			  struct blk_zone *zone)
1423 {
1424 	struct btrfs_bio *bbio = NULL;
1425 	u64 mapped_length = PAGE_SIZE;
1426 	unsigned int nofs_flag;
1427 	int nmirrors;
1428 	int i, ret;
1429 
1430 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1431 			       &mapped_length, &bbio);
1432 	if (ret || !bbio || mapped_length < PAGE_SIZE) {
1433 		btrfs_put_bbio(bbio);
1434 		return -EIO;
1435 	}
1436 
1437 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1438 		return -EINVAL;
1439 
1440 	nofs_flag = memalloc_nofs_save();
1441 	nmirrors = (int)bbio->num_stripes;
1442 	for (i = 0; i < nmirrors; i++) {
1443 		u64 physical = bbio->stripes[i].physical;
1444 		struct btrfs_device *dev = bbio->stripes[i].dev;
1445 
1446 		/* Missing device */
1447 		if (!dev->bdev)
1448 			continue;
1449 
1450 		ret = btrfs_get_dev_zone(dev, physical, zone);
1451 		/* Failing device */
1452 		if (ret == -EIO || ret == -EOPNOTSUPP)
1453 			continue;
1454 		break;
1455 	}
1456 	memalloc_nofs_restore(nofs_flag);
1457 
1458 	return ret;
1459 }
1460 
1461 /*
1462  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1463  * filling zeros between @physical_pos to a write pointer of dev-replace
1464  * source device.
1465  */
1466 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1467 				    u64 physical_start, u64 physical_pos)
1468 {
1469 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1470 	struct blk_zone zone;
1471 	u64 length;
1472 	u64 wp;
1473 	int ret;
1474 
1475 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1476 		return 0;
1477 
1478 	ret = read_zone_info(fs_info, logical, &zone);
1479 	if (ret)
1480 		return ret;
1481 
1482 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1483 
1484 	if (physical_pos == wp)
1485 		return 0;
1486 
1487 	if (physical_pos > wp)
1488 		return -EUCLEAN;
1489 
1490 	length = wp - physical_pos;
1491 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1492 }
1493