1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 19 /* Maximum number of zones to report per blkdev_report_zones() call */ 20 #define BTRFS_REPORT_NR_ZONES 4096 21 /* Invalid allocation pointer value for missing devices */ 22 #define WP_MISSING_DEV ((u64)-1) 23 /* Pseudo write pointer value for conventional zone */ 24 #define WP_CONVENTIONAL ((u64)-2) 25 26 /* 27 * Location of the first zone of superblock logging zone pairs. 28 * 29 * - primary superblock: 0B (zone 0) 30 * - first copy: 512G (zone starting at that offset) 31 * - second copy: 4T (zone starting at that offset) 32 */ 33 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 34 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 35 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 36 37 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 38 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 39 40 /* Number of superblock log zones */ 41 #define BTRFS_NR_SB_LOG_ZONES 2 42 43 /* 44 * Minimum of active zones we need: 45 * 46 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 47 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 48 * - 1 zone for tree-log dedicated block group 49 * - 1 zone for relocation 50 */ 51 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 52 53 /* 54 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 55 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 56 * We do not expect the zone size to become larger than 8GiB or smaller than 57 * 4MiB in the near future. 58 */ 59 #define BTRFS_MAX_ZONE_SIZE SZ_8G 60 #define BTRFS_MIN_ZONE_SIZE SZ_4M 61 62 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 63 64 static inline bool sb_zone_is_full(const struct blk_zone *zone) 65 { 66 return (zone->cond == BLK_ZONE_COND_FULL) || 67 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 68 } 69 70 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 71 { 72 struct blk_zone *zones = data; 73 74 memcpy(&zones[idx], zone, sizeof(*zone)); 75 76 return 0; 77 } 78 79 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 80 u64 *wp_ret) 81 { 82 bool empty[BTRFS_NR_SB_LOG_ZONES]; 83 bool full[BTRFS_NR_SB_LOG_ZONES]; 84 sector_t sector; 85 int i; 86 87 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 88 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 89 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 90 full[i] = sb_zone_is_full(&zones[i]); 91 } 92 93 /* 94 * Possible states of log buffer zones 95 * 96 * Empty[0] In use[0] Full[0] 97 * Empty[1] * x 0 98 * In use[1] 0 x 0 99 * Full[1] 1 1 C 100 * 101 * Log position: 102 * *: Special case, no superblock is written 103 * 0: Use write pointer of zones[0] 104 * 1: Use write pointer of zones[1] 105 * C: Compare super blocks from zones[0] and zones[1], use the latest 106 * one determined by generation 107 * x: Invalid state 108 */ 109 110 if (empty[0] && empty[1]) { 111 /* Special case to distinguish no superblock to read */ 112 *wp_ret = zones[0].start << SECTOR_SHIFT; 113 return -ENOENT; 114 } else if (full[0] && full[1]) { 115 /* Compare two super blocks */ 116 struct address_space *mapping = bdev->bd_inode->i_mapping; 117 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 118 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 119 int i; 120 121 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 122 u64 bytenr; 123 124 bytenr = ((zones[i].start + zones[i].len) 125 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE; 126 127 page[i] = read_cache_page_gfp(mapping, 128 bytenr >> PAGE_SHIFT, GFP_NOFS); 129 if (IS_ERR(page[i])) { 130 if (i == 1) 131 btrfs_release_disk_super(super[0]); 132 return PTR_ERR(page[i]); 133 } 134 super[i] = page_address(page[i]); 135 } 136 137 if (super[0]->generation > super[1]->generation) 138 sector = zones[1].start; 139 else 140 sector = zones[0].start; 141 142 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 143 btrfs_release_disk_super(super[i]); 144 } else if (!full[0] && (empty[1] || full[1])) { 145 sector = zones[0].wp; 146 } else if (full[0]) { 147 sector = zones[1].wp; 148 } else { 149 return -EUCLEAN; 150 } 151 *wp_ret = sector << SECTOR_SHIFT; 152 return 0; 153 } 154 155 /* 156 * Get the first zone number of the superblock mirror 157 */ 158 static inline u32 sb_zone_number(int shift, int mirror) 159 { 160 u64 zone; 161 162 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 163 switch (mirror) { 164 case 0: zone = 0; break; 165 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 166 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 167 } 168 169 ASSERT(zone <= U32_MAX); 170 171 return (u32)zone; 172 } 173 174 static inline sector_t zone_start_sector(u32 zone_number, 175 struct block_device *bdev) 176 { 177 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 178 } 179 180 static inline u64 zone_start_physical(u32 zone_number, 181 struct btrfs_zoned_device_info *zone_info) 182 { 183 return (u64)zone_number << zone_info->zone_size_shift; 184 } 185 186 /* 187 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 188 * device into static sized chunks and fake a conventional zone on each of 189 * them. 190 */ 191 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 192 struct blk_zone *zones, unsigned int nr_zones) 193 { 194 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 195 sector_t bdev_size = bdev_nr_sectors(device->bdev); 196 unsigned int i; 197 198 pos >>= SECTOR_SHIFT; 199 for (i = 0; i < nr_zones; i++) { 200 zones[i].start = i * zone_sectors + pos; 201 zones[i].len = zone_sectors; 202 zones[i].capacity = zone_sectors; 203 zones[i].wp = zones[i].start + zone_sectors; 204 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 205 zones[i].cond = BLK_ZONE_COND_NOT_WP; 206 207 if (zones[i].wp >= bdev_size) { 208 i++; 209 break; 210 } 211 } 212 213 return i; 214 } 215 216 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 217 struct blk_zone *zones, unsigned int *nr_zones) 218 { 219 struct btrfs_zoned_device_info *zinfo = device->zone_info; 220 u32 zno; 221 int ret; 222 223 if (!*nr_zones) 224 return 0; 225 226 if (!bdev_is_zoned(device->bdev)) { 227 ret = emulate_report_zones(device, pos, zones, *nr_zones); 228 *nr_zones = ret; 229 return 0; 230 } 231 232 /* Check cache */ 233 if (zinfo->zone_cache) { 234 unsigned int i; 235 236 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 237 zno = pos >> zinfo->zone_size_shift; 238 /* 239 * We cannot report zones beyond the zone end. So, it is OK to 240 * cap *nr_zones to at the end. 241 */ 242 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 243 244 for (i = 0; i < *nr_zones; i++) { 245 struct blk_zone *zone_info; 246 247 zone_info = &zinfo->zone_cache[zno + i]; 248 if (!zone_info->len) 249 break; 250 } 251 252 if (i == *nr_zones) { 253 /* Cache hit on all the zones */ 254 memcpy(zones, zinfo->zone_cache + zno, 255 sizeof(*zinfo->zone_cache) * *nr_zones); 256 return 0; 257 } 258 } 259 260 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 261 copy_zone_info_cb, zones); 262 if (ret < 0) { 263 btrfs_err_in_rcu(device->fs_info, 264 "zoned: failed to read zone %llu on %s (devid %llu)", 265 pos, rcu_str_deref(device->name), 266 device->devid); 267 return ret; 268 } 269 *nr_zones = ret; 270 if (!ret) 271 return -EIO; 272 273 /* Populate cache */ 274 if (zinfo->zone_cache) 275 memcpy(zinfo->zone_cache + zno, zones, 276 sizeof(*zinfo->zone_cache) * *nr_zones); 277 278 return 0; 279 } 280 281 /* The emulated zone size is determined from the size of device extent */ 282 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 283 { 284 struct btrfs_path *path; 285 struct btrfs_root *root = fs_info->dev_root; 286 struct btrfs_key key; 287 struct extent_buffer *leaf; 288 struct btrfs_dev_extent *dext; 289 int ret = 0; 290 291 key.objectid = 1; 292 key.type = BTRFS_DEV_EXTENT_KEY; 293 key.offset = 0; 294 295 path = btrfs_alloc_path(); 296 if (!path) 297 return -ENOMEM; 298 299 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 300 if (ret < 0) 301 goto out; 302 303 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 304 ret = btrfs_next_leaf(root, path); 305 if (ret < 0) 306 goto out; 307 /* No dev extents at all? Not good */ 308 if (ret > 0) { 309 ret = -EUCLEAN; 310 goto out; 311 } 312 } 313 314 leaf = path->nodes[0]; 315 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 316 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 317 ret = 0; 318 319 out: 320 btrfs_free_path(path); 321 322 return ret; 323 } 324 325 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 326 { 327 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 328 struct btrfs_device *device; 329 int ret = 0; 330 331 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 332 if (!btrfs_fs_incompat(fs_info, ZONED)) 333 return 0; 334 335 mutex_lock(&fs_devices->device_list_mutex); 336 list_for_each_entry(device, &fs_devices->devices, dev_list) { 337 /* We can skip reading of zone info for missing devices */ 338 if (!device->bdev) 339 continue; 340 341 ret = btrfs_get_dev_zone_info(device, true); 342 if (ret) 343 break; 344 } 345 mutex_unlock(&fs_devices->device_list_mutex); 346 347 return ret; 348 } 349 350 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 351 { 352 struct btrfs_fs_info *fs_info = device->fs_info; 353 struct btrfs_zoned_device_info *zone_info = NULL; 354 struct block_device *bdev = device->bdev; 355 unsigned int max_active_zones; 356 unsigned int nactive; 357 sector_t nr_sectors; 358 sector_t sector = 0; 359 struct blk_zone *zones = NULL; 360 unsigned int i, nreported = 0, nr_zones; 361 sector_t zone_sectors; 362 char *model, *emulated; 363 int ret; 364 365 /* 366 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 367 * yet be set. 368 */ 369 if (!btrfs_fs_incompat(fs_info, ZONED)) 370 return 0; 371 372 if (device->zone_info) 373 return 0; 374 375 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 376 if (!zone_info) 377 return -ENOMEM; 378 379 device->zone_info = zone_info; 380 381 if (!bdev_is_zoned(bdev)) { 382 if (!fs_info->zone_size) { 383 ret = calculate_emulated_zone_size(fs_info); 384 if (ret) 385 goto out; 386 } 387 388 ASSERT(fs_info->zone_size); 389 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 390 } else { 391 zone_sectors = bdev_zone_sectors(bdev); 392 } 393 394 /* Check if it's power of 2 (see is_power_of_2) */ 395 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0); 396 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 397 398 /* We reject devices with a zone size larger than 8GB */ 399 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 400 btrfs_err_in_rcu(fs_info, 401 "zoned: %s: zone size %llu larger than supported maximum %llu", 402 rcu_str_deref(device->name), 403 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 404 ret = -EINVAL; 405 goto out; 406 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 407 btrfs_err_in_rcu(fs_info, 408 "zoned: %s: zone size %llu smaller than supported minimum %u", 409 rcu_str_deref(device->name), 410 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 411 ret = -EINVAL; 412 goto out; 413 } 414 415 nr_sectors = bdev_nr_sectors(bdev); 416 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 417 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 418 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 419 zone_info->nr_zones++; 420 421 max_active_zones = bdev_max_active_zones(bdev); 422 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 423 btrfs_err_in_rcu(fs_info, 424 "zoned: %s: max active zones %u is too small, need at least %u active zones", 425 rcu_str_deref(device->name), max_active_zones, 426 BTRFS_MIN_ACTIVE_ZONES); 427 ret = -EINVAL; 428 goto out; 429 } 430 zone_info->max_active_zones = max_active_zones; 431 432 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 433 if (!zone_info->seq_zones) { 434 ret = -ENOMEM; 435 goto out; 436 } 437 438 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 439 if (!zone_info->empty_zones) { 440 ret = -ENOMEM; 441 goto out; 442 } 443 444 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 445 if (!zone_info->active_zones) { 446 ret = -ENOMEM; 447 goto out; 448 } 449 450 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 451 if (!zones) { 452 ret = -ENOMEM; 453 goto out; 454 } 455 456 /* 457 * Enable zone cache only for a zoned device. On a non-zoned device, we 458 * fill the zone info with emulated CONVENTIONAL zones, so no need to 459 * use the cache. 460 */ 461 if (populate_cache && bdev_is_zoned(device->bdev)) { 462 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) * 463 zone_info->nr_zones); 464 if (!zone_info->zone_cache) { 465 btrfs_err_in_rcu(device->fs_info, 466 "zoned: failed to allocate zone cache for %s", 467 rcu_str_deref(device->name)); 468 ret = -ENOMEM; 469 goto out; 470 } 471 } 472 473 /* Get zones type */ 474 nactive = 0; 475 while (sector < nr_sectors) { 476 nr_zones = BTRFS_REPORT_NR_ZONES; 477 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 478 &nr_zones); 479 if (ret) 480 goto out; 481 482 for (i = 0; i < nr_zones; i++) { 483 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 484 __set_bit(nreported, zone_info->seq_zones); 485 switch (zones[i].cond) { 486 case BLK_ZONE_COND_EMPTY: 487 __set_bit(nreported, zone_info->empty_zones); 488 break; 489 case BLK_ZONE_COND_IMP_OPEN: 490 case BLK_ZONE_COND_EXP_OPEN: 491 case BLK_ZONE_COND_CLOSED: 492 __set_bit(nreported, zone_info->active_zones); 493 nactive++; 494 break; 495 } 496 nreported++; 497 } 498 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 499 } 500 501 if (nreported != zone_info->nr_zones) { 502 btrfs_err_in_rcu(device->fs_info, 503 "inconsistent number of zones on %s (%u/%u)", 504 rcu_str_deref(device->name), nreported, 505 zone_info->nr_zones); 506 ret = -EIO; 507 goto out; 508 } 509 510 if (max_active_zones) { 511 if (nactive > max_active_zones) { 512 btrfs_err_in_rcu(device->fs_info, 513 "zoned: %u active zones on %s exceeds max_active_zones %u", 514 nactive, rcu_str_deref(device->name), 515 max_active_zones); 516 ret = -EIO; 517 goto out; 518 } 519 atomic_set(&zone_info->active_zones_left, 520 max_active_zones - nactive); 521 } 522 523 /* Validate superblock log */ 524 nr_zones = BTRFS_NR_SB_LOG_ZONES; 525 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 526 u32 sb_zone; 527 u64 sb_wp; 528 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 529 530 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 531 if (sb_zone + 1 >= zone_info->nr_zones) 532 continue; 533 534 ret = btrfs_get_dev_zones(device, 535 zone_start_physical(sb_zone, zone_info), 536 &zone_info->sb_zones[sb_pos], 537 &nr_zones); 538 if (ret) 539 goto out; 540 541 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 542 btrfs_err_in_rcu(device->fs_info, 543 "zoned: failed to read super block log zone info at devid %llu zone %u", 544 device->devid, sb_zone); 545 ret = -EUCLEAN; 546 goto out; 547 } 548 549 /* 550 * If zones[0] is conventional, always use the beginning of the 551 * zone to record superblock. No need to validate in that case. 552 */ 553 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 554 BLK_ZONE_TYPE_CONVENTIONAL) 555 continue; 556 557 ret = sb_write_pointer(device->bdev, 558 &zone_info->sb_zones[sb_pos], &sb_wp); 559 if (ret != -ENOENT && ret) { 560 btrfs_err_in_rcu(device->fs_info, 561 "zoned: super block log zone corrupted devid %llu zone %u", 562 device->devid, sb_zone); 563 ret = -EUCLEAN; 564 goto out; 565 } 566 } 567 568 569 kfree(zones); 570 571 switch (bdev_zoned_model(bdev)) { 572 case BLK_ZONED_HM: 573 model = "host-managed zoned"; 574 emulated = ""; 575 break; 576 case BLK_ZONED_HA: 577 model = "host-aware zoned"; 578 emulated = ""; 579 break; 580 case BLK_ZONED_NONE: 581 model = "regular"; 582 emulated = "emulated "; 583 break; 584 default: 585 /* Just in case */ 586 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 587 bdev_zoned_model(bdev), 588 rcu_str_deref(device->name)); 589 ret = -EOPNOTSUPP; 590 goto out_free_zone_info; 591 } 592 593 btrfs_info_in_rcu(fs_info, 594 "%s block device %s, %u %szones of %llu bytes", 595 model, rcu_str_deref(device->name), zone_info->nr_zones, 596 emulated, zone_info->zone_size); 597 598 return 0; 599 600 out: 601 kfree(zones); 602 out_free_zone_info: 603 btrfs_destroy_dev_zone_info(device); 604 605 return ret; 606 } 607 608 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 609 { 610 struct btrfs_zoned_device_info *zone_info = device->zone_info; 611 612 if (!zone_info) 613 return; 614 615 bitmap_free(zone_info->active_zones); 616 bitmap_free(zone_info->seq_zones); 617 bitmap_free(zone_info->empty_zones); 618 vfree(zone_info->zone_cache); 619 kfree(zone_info); 620 device->zone_info = NULL; 621 } 622 623 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 624 struct blk_zone *zone) 625 { 626 unsigned int nr_zones = 1; 627 int ret; 628 629 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 630 if (ret != 0 || !nr_zones) 631 return ret ? ret : -EIO; 632 633 return 0; 634 } 635 636 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 637 { 638 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 639 struct btrfs_device *device; 640 u64 zoned_devices = 0; 641 u64 nr_devices = 0; 642 u64 zone_size = 0; 643 const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED); 644 int ret = 0; 645 646 /* Count zoned devices */ 647 list_for_each_entry(device, &fs_devices->devices, dev_list) { 648 enum blk_zoned_model model; 649 650 if (!device->bdev) 651 continue; 652 653 model = bdev_zoned_model(device->bdev); 654 /* 655 * A Host-Managed zoned device must be used as a zoned device. 656 * A Host-Aware zoned device and a non-zoned devices can be 657 * treated as a zoned device, if ZONED flag is enabled in the 658 * superblock. 659 */ 660 if (model == BLK_ZONED_HM || 661 (model == BLK_ZONED_HA && incompat_zoned) || 662 (model == BLK_ZONED_NONE && incompat_zoned)) { 663 struct btrfs_zoned_device_info *zone_info; 664 665 zone_info = device->zone_info; 666 zoned_devices++; 667 if (!zone_size) { 668 zone_size = zone_info->zone_size; 669 } else if (zone_info->zone_size != zone_size) { 670 btrfs_err(fs_info, 671 "zoned: unequal block device zone sizes: have %llu found %llu", 672 device->zone_info->zone_size, 673 zone_size); 674 ret = -EINVAL; 675 goto out; 676 } 677 } 678 nr_devices++; 679 } 680 681 if (!zoned_devices && !incompat_zoned) 682 goto out; 683 684 if (!zoned_devices && incompat_zoned) { 685 /* No zoned block device found on ZONED filesystem */ 686 btrfs_err(fs_info, 687 "zoned: no zoned devices found on a zoned filesystem"); 688 ret = -EINVAL; 689 goto out; 690 } 691 692 if (zoned_devices && !incompat_zoned) { 693 btrfs_err(fs_info, 694 "zoned: mode not enabled but zoned device found"); 695 ret = -EINVAL; 696 goto out; 697 } 698 699 if (zoned_devices != nr_devices) { 700 btrfs_err(fs_info, 701 "zoned: cannot mix zoned and regular devices"); 702 ret = -EINVAL; 703 goto out; 704 } 705 706 /* 707 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 708 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 709 * check the alignment here. 710 */ 711 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 712 btrfs_err(fs_info, 713 "zoned: zone size %llu not aligned to stripe %u", 714 zone_size, BTRFS_STRIPE_LEN); 715 ret = -EINVAL; 716 goto out; 717 } 718 719 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 720 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 721 ret = -EINVAL; 722 goto out; 723 } 724 725 fs_info->zone_size = zone_size; 726 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 727 728 /* 729 * Check mount options here, because we might change fs_info->zoned 730 * from fs_info->zone_size. 731 */ 732 ret = btrfs_check_mountopts_zoned(fs_info); 733 if (ret) 734 goto out; 735 736 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 737 out: 738 return ret; 739 } 740 741 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 742 { 743 if (!btrfs_is_zoned(info)) 744 return 0; 745 746 /* 747 * Space cache writing is not COWed. Disable that to avoid write errors 748 * in sequential zones. 749 */ 750 if (btrfs_test_opt(info, SPACE_CACHE)) { 751 btrfs_err(info, "zoned: space cache v1 is not supported"); 752 return -EINVAL; 753 } 754 755 if (btrfs_test_opt(info, NODATACOW)) { 756 btrfs_err(info, "zoned: NODATACOW not supported"); 757 return -EINVAL; 758 } 759 760 return 0; 761 } 762 763 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 764 int rw, u64 *bytenr_ret) 765 { 766 u64 wp; 767 int ret; 768 769 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 770 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 771 return 0; 772 } 773 774 ret = sb_write_pointer(bdev, zones, &wp); 775 if (ret != -ENOENT && ret < 0) 776 return ret; 777 778 if (rw == WRITE) { 779 struct blk_zone *reset = NULL; 780 781 if (wp == zones[0].start << SECTOR_SHIFT) 782 reset = &zones[0]; 783 else if (wp == zones[1].start << SECTOR_SHIFT) 784 reset = &zones[1]; 785 786 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 787 ASSERT(sb_zone_is_full(reset)); 788 789 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 790 reset->start, reset->len, 791 GFP_NOFS); 792 if (ret) 793 return ret; 794 795 reset->cond = BLK_ZONE_COND_EMPTY; 796 reset->wp = reset->start; 797 } 798 } else if (ret != -ENOENT) { 799 /* 800 * For READ, we want the previous one. Move write pointer to 801 * the end of a zone, if it is at the head of a zone. 802 */ 803 u64 zone_end = 0; 804 805 if (wp == zones[0].start << SECTOR_SHIFT) 806 zone_end = zones[1].start + zones[1].capacity; 807 else if (wp == zones[1].start << SECTOR_SHIFT) 808 zone_end = zones[0].start + zones[0].capacity; 809 if (zone_end) 810 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 811 BTRFS_SUPER_INFO_SIZE); 812 813 wp -= BTRFS_SUPER_INFO_SIZE; 814 } 815 816 *bytenr_ret = wp; 817 return 0; 818 819 } 820 821 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 822 u64 *bytenr_ret) 823 { 824 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 825 sector_t zone_sectors; 826 u32 sb_zone; 827 int ret; 828 u8 zone_sectors_shift; 829 sector_t nr_sectors; 830 u32 nr_zones; 831 832 if (!bdev_is_zoned(bdev)) { 833 *bytenr_ret = btrfs_sb_offset(mirror); 834 return 0; 835 } 836 837 ASSERT(rw == READ || rw == WRITE); 838 839 zone_sectors = bdev_zone_sectors(bdev); 840 if (!is_power_of_2(zone_sectors)) 841 return -EINVAL; 842 zone_sectors_shift = ilog2(zone_sectors); 843 nr_sectors = bdev_nr_sectors(bdev); 844 nr_zones = nr_sectors >> zone_sectors_shift; 845 846 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 847 if (sb_zone + 1 >= nr_zones) 848 return -ENOENT; 849 850 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 851 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 852 zones); 853 if (ret < 0) 854 return ret; 855 if (ret != BTRFS_NR_SB_LOG_ZONES) 856 return -EIO; 857 858 return sb_log_location(bdev, zones, rw, bytenr_ret); 859 } 860 861 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 862 u64 *bytenr_ret) 863 { 864 struct btrfs_zoned_device_info *zinfo = device->zone_info; 865 u32 zone_num; 866 867 /* 868 * For a zoned filesystem on a non-zoned block device, use the same 869 * super block locations as regular filesystem. Doing so, the super 870 * block can always be retrieved and the zoned flag of the volume 871 * detected from the super block information. 872 */ 873 if (!bdev_is_zoned(device->bdev)) { 874 *bytenr_ret = btrfs_sb_offset(mirror); 875 return 0; 876 } 877 878 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 879 if (zone_num + 1 >= zinfo->nr_zones) 880 return -ENOENT; 881 882 return sb_log_location(device->bdev, 883 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 884 rw, bytenr_ret); 885 } 886 887 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 888 int mirror) 889 { 890 u32 zone_num; 891 892 if (!zinfo) 893 return false; 894 895 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 896 if (zone_num + 1 >= zinfo->nr_zones) 897 return false; 898 899 if (!test_bit(zone_num, zinfo->seq_zones)) 900 return false; 901 902 return true; 903 } 904 905 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 906 { 907 struct btrfs_zoned_device_info *zinfo = device->zone_info; 908 struct blk_zone *zone; 909 int i; 910 911 if (!is_sb_log_zone(zinfo, mirror)) 912 return 0; 913 914 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 915 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 916 /* Advance the next zone */ 917 if (zone->cond == BLK_ZONE_COND_FULL) { 918 zone++; 919 continue; 920 } 921 922 if (zone->cond == BLK_ZONE_COND_EMPTY) 923 zone->cond = BLK_ZONE_COND_IMP_OPEN; 924 925 zone->wp += SUPER_INFO_SECTORS; 926 927 if (sb_zone_is_full(zone)) { 928 /* 929 * No room left to write new superblock. Since 930 * superblock is written with REQ_SYNC, it is safe to 931 * finish the zone now. 932 * 933 * If the write pointer is exactly at the capacity, 934 * explicit ZONE_FINISH is not necessary. 935 */ 936 if (zone->wp != zone->start + zone->capacity) { 937 int ret; 938 939 ret = blkdev_zone_mgmt(device->bdev, 940 REQ_OP_ZONE_FINISH, zone->start, 941 zone->len, GFP_NOFS); 942 if (ret) 943 return ret; 944 } 945 946 zone->wp = zone->start + zone->len; 947 zone->cond = BLK_ZONE_COND_FULL; 948 } 949 return 0; 950 } 951 952 /* All the zones are FULL. Should not reach here. */ 953 ASSERT(0); 954 return -EIO; 955 } 956 957 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 958 { 959 sector_t zone_sectors; 960 sector_t nr_sectors; 961 u8 zone_sectors_shift; 962 u32 sb_zone; 963 u32 nr_zones; 964 965 zone_sectors = bdev_zone_sectors(bdev); 966 zone_sectors_shift = ilog2(zone_sectors); 967 nr_sectors = bdev_nr_sectors(bdev); 968 nr_zones = nr_sectors >> zone_sectors_shift; 969 970 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 971 if (sb_zone + 1 >= nr_zones) 972 return -ENOENT; 973 974 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 975 zone_start_sector(sb_zone, bdev), 976 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 977 } 978 979 /** 980 * btrfs_find_allocatable_zones - find allocatable zones within a given region 981 * 982 * @device: the device to allocate a region on 983 * @hole_start: the position of the hole to allocate the region 984 * @num_bytes: size of wanted region 985 * @hole_end: the end of the hole 986 * @return: position of allocatable zones 987 * 988 * Allocatable region should not contain any superblock locations. 989 */ 990 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 991 u64 hole_end, u64 num_bytes) 992 { 993 struct btrfs_zoned_device_info *zinfo = device->zone_info; 994 const u8 shift = zinfo->zone_size_shift; 995 u64 nzones = num_bytes >> shift; 996 u64 pos = hole_start; 997 u64 begin, end; 998 bool have_sb; 999 int i; 1000 1001 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1002 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1003 1004 while (pos < hole_end) { 1005 begin = pos >> shift; 1006 end = begin + nzones; 1007 1008 if (end > zinfo->nr_zones) 1009 return hole_end; 1010 1011 /* Check if zones in the region are all empty */ 1012 if (btrfs_dev_is_sequential(device, pos) && 1013 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { 1014 pos += zinfo->zone_size; 1015 continue; 1016 } 1017 1018 have_sb = false; 1019 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1020 u32 sb_zone; 1021 u64 sb_pos; 1022 1023 sb_zone = sb_zone_number(shift, i); 1024 if (!(end <= sb_zone || 1025 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1026 have_sb = true; 1027 pos = zone_start_physical( 1028 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1029 break; 1030 } 1031 1032 /* We also need to exclude regular superblock positions */ 1033 sb_pos = btrfs_sb_offset(i); 1034 if (!(pos + num_bytes <= sb_pos || 1035 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1036 have_sb = true; 1037 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1038 zinfo->zone_size); 1039 break; 1040 } 1041 } 1042 if (!have_sb) 1043 break; 1044 } 1045 1046 return pos; 1047 } 1048 1049 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1050 { 1051 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1052 unsigned int zno = (pos >> zone_info->zone_size_shift); 1053 1054 /* We can use any number of zones */ 1055 if (zone_info->max_active_zones == 0) 1056 return true; 1057 1058 if (!test_bit(zno, zone_info->active_zones)) { 1059 /* Active zone left? */ 1060 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1061 return false; 1062 if (test_and_set_bit(zno, zone_info->active_zones)) { 1063 /* Someone already set the bit */ 1064 atomic_inc(&zone_info->active_zones_left); 1065 } 1066 } 1067 1068 return true; 1069 } 1070 1071 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1072 { 1073 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1074 unsigned int zno = (pos >> zone_info->zone_size_shift); 1075 1076 /* We can use any number of zones */ 1077 if (zone_info->max_active_zones == 0) 1078 return; 1079 1080 if (test_and_clear_bit(zno, zone_info->active_zones)) 1081 atomic_inc(&zone_info->active_zones_left); 1082 } 1083 1084 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1085 u64 length, u64 *bytes) 1086 { 1087 int ret; 1088 1089 *bytes = 0; 1090 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1091 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1092 GFP_NOFS); 1093 if (ret) 1094 return ret; 1095 1096 *bytes = length; 1097 while (length) { 1098 btrfs_dev_set_zone_empty(device, physical); 1099 btrfs_dev_clear_active_zone(device, physical); 1100 physical += device->zone_info->zone_size; 1101 length -= device->zone_info->zone_size; 1102 } 1103 1104 return 0; 1105 } 1106 1107 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1108 { 1109 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1110 const u8 shift = zinfo->zone_size_shift; 1111 unsigned long begin = start >> shift; 1112 unsigned long end = (start + size) >> shift; 1113 u64 pos; 1114 int ret; 1115 1116 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1117 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1118 1119 if (end > zinfo->nr_zones) 1120 return -ERANGE; 1121 1122 /* All the zones are conventional */ 1123 if (find_next_bit(zinfo->seq_zones, begin, end) == end) 1124 return 0; 1125 1126 /* All the zones are sequential and empty */ 1127 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end && 1128 find_next_zero_bit(zinfo->empty_zones, begin, end) == end) 1129 return 0; 1130 1131 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1132 u64 reset_bytes; 1133 1134 if (!btrfs_dev_is_sequential(device, pos) || 1135 btrfs_dev_is_empty_zone(device, pos)) 1136 continue; 1137 1138 /* Free regions should be empty */ 1139 btrfs_warn_in_rcu( 1140 device->fs_info, 1141 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1142 rcu_str_deref(device->name), device->devid, pos >> shift); 1143 WARN_ON_ONCE(1); 1144 1145 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1146 &reset_bytes); 1147 if (ret) 1148 return ret; 1149 } 1150 1151 return 0; 1152 } 1153 1154 /* 1155 * Calculate an allocation pointer from the extent allocation information 1156 * for a block group consist of conventional zones. It is pointed to the 1157 * end of the highest addressed extent in the block group as an allocation 1158 * offset. 1159 */ 1160 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1161 u64 *offset_ret) 1162 { 1163 struct btrfs_fs_info *fs_info = cache->fs_info; 1164 struct btrfs_root *root; 1165 struct btrfs_path *path; 1166 struct btrfs_key key; 1167 struct btrfs_key found_key; 1168 int ret; 1169 u64 length; 1170 1171 path = btrfs_alloc_path(); 1172 if (!path) 1173 return -ENOMEM; 1174 1175 key.objectid = cache->start + cache->length; 1176 key.type = 0; 1177 key.offset = 0; 1178 1179 root = btrfs_extent_root(fs_info, key.objectid); 1180 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1181 /* We should not find the exact match */ 1182 if (!ret) 1183 ret = -EUCLEAN; 1184 if (ret < 0) 1185 goto out; 1186 1187 ret = btrfs_previous_extent_item(root, path, cache->start); 1188 if (ret) { 1189 if (ret == 1) { 1190 ret = 0; 1191 *offset_ret = 0; 1192 } 1193 goto out; 1194 } 1195 1196 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1197 1198 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1199 length = found_key.offset; 1200 else 1201 length = fs_info->nodesize; 1202 1203 if (!(found_key.objectid >= cache->start && 1204 found_key.objectid + length <= cache->start + cache->length)) { 1205 ret = -EUCLEAN; 1206 goto out; 1207 } 1208 *offset_ret = found_key.objectid + length - cache->start; 1209 ret = 0; 1210 1211 out: 1212 btrfs_free_path(path); 1213 return ret; 1214 } 1215 1216 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1217 { 1218 struct btrfs_fs_info *fs_info = cache->fs_info; 1219 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1220 struct extent_map *em; 1221 struct map_lookup *map; 1222 struct btrfs_device *device; 1223 u64 logical = cache->start; 1224 u64 length = cache->length; 1225 int ret; 1226 int i; 1227 unsigned int nofs_flag; 1228 u64 *alloc_offsets = NULL; 1229 u64 *caps = NULL; 1230 u64 *physical = NULL; 1231 unsigned long *active = NULL; 1232 u64 last_alloc = 0; 1233 u32 num_sequential = 0, num_conventional = 0; 1234 1235 if (!btrfs_is_zoned(fs_info)) 1236 return 0; 1237 1238 /* Sanity check */ 1239 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1240 btrfs_err(fs_info, 1241 "zoned: block group %llu len %llu unaligned to zone size %llu", 1242 logical, length, fs_info->zone_size); 1243 return -EIO; 1244 } 1245 1246 /* Get the chunk mapping */ 1247 read_lock(&em_tree->lock); 1248 em = lookup_extent_mapping(em_tree, logical, length); 1249 read_unlock(&em_tree->lock); 1250 1251 if (!em) 1252 return -EINVAL; 1253 1254 map = em->map_lookup; 1255 1256 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS); 1257 if (!cache->physical_map) { 1258 ret = -ENOMEM; 1259 goto out; 1260 } 1261 1262 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1263 if (!alloc_offsets) { 1264 ret = -ENOMEM; 1265 goto out; 1266 } 1267 1268 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS); 1269 if (!caps) { 1270 ret = -ENOMEM; 1271 goto out; 1272 } 1273 1274 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS); 1275 if (!physical) { 1276 ret = -ENOMEM; 1277 goto out; 1278 } 1279 1280 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1281 if (!active) { 1282 ret = -ENOMEM; 1283 goto out; 1284 } 1285 1286 for (i = 0; i < map->num_stripes; i++) { 1287 bool is_sequential; 1288 struct blk_zone zone; 1289 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1290 int dev_replace_is_ongoing = 0; 1291 1292 device = map->stripes[i].dev; 1293 physical[i] = map->stripes[i].physical; 1294 1295 if (device->bdev == NULL) { 1296 alloc_offsets[i] = WP_MISSING_DEV; 1297 continue; 1298 } 1299 1300 is_sequential = btrfs_dev_is_sequential(device, physical[i]); 1301 if (is_sequential) 1302 num_sequential++; 1303 else 1304 num_conventional++; 1305 1306 if (!is_sequential) { 1307 alloc_offsets[i] = WP_CONVENTIONAL; 1308 continue; 1309 } 1310 1311 /* 1312 * This zone will be used for allocation, so mark this zone 1313 * non-empty. 1314 */ 1315 btrfs_dev_clear_zone_empty(device, physical[i]); 1316 1317 down_read(&dev_replace->rwsem); 1318 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1319 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1320 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]); 1321 up_read(&dev_replace->rwsem); 1322 1323 /* 1324 * The group is mapped to a sequential zone. Get the zone write 1325 * pointer to determine the allocation offset within the zone. 1326 */ 1327 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size)); 1328 nofs_flag = memalloc_nofs_save(); 1329 ret = btrfs_get_dev_zone(device, physical[i], &zone); 1330 memalloc_nofs_restore(nofs_flag); 1331 if (ret == -EIO || ret == -EOPNOTSUPP) { 1332 ret = 0; 1333 alloc_offsets[i] = WP_MISSING_DEV; 1334 continue; 1335 } else if (ret) { 1336 goto out; 1337 } 1338 1339 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1340 btrfs_err_in_rcu(fs_info, 1341 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1342 zone.start << SECTOR_SHIFT, 1343 rcu_str_deref(device->name), device->devid); 1344 ret = -EIO; 1345 goto out; 1346 } 1347 1348 caps[i] = (zone.capacity << SECTOR_SHIFT); 1349 1350 switch (zone.cond) { 1351 case BLK_ZONE_COND_OFFLINE: 1352 case BLK_ZONE_COND_READONLY: 1353 btrfs_err(fs_info, 1354 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1355 physical[i] >> device->zone_info->zone_size_shift, 1356 rcu_str_deref(device->name), device->devid); 1357 alloc_offsets[i] = WP_MISSING_DEV; 1358 break; 1359 case BLK_ZONE_COND_EMPTY: 1360 alloc_offsets[i] = 0; 1361 break; 1362 case BLK_ZONE_COND_FULL: 1363 alloc_offsets[i] = caps[i]; 1364 break; 1365 default: 1366 /* Partially used zone */ 1367 alloc_offsets[i] = 1368 ((zone.wp - zone.start) << SECTOR_SHIFT); 1369 __set_bit(i, active); 1370 break; 1371 } 1372 1373 /* 1374 * Consider a zone as active if we can allow any number of 1375 * active zones. 1376 */ 1377 if (!device->zone_info->max_active_zones) 1378 __set_bit(i, active); 1379 } 1380 1381 if (num_sequential > 0) 1382 cache->seq_zone = true; 1383 1384 if (num_conventional > 0) { 1385 /* 1386 * Avoid calling calculate_alloc_pointer() for new BG. It 1387 * is no use for new BG. It must be always 0. 1388 * 1389 * Also, we have a lock chain of extent buffer lock -> 1390 * chunk mutex. For new BG, this function is called from 1391 * btrfs_make_block_group() which is already taking the 1392 * chunk mutex. Thus, we cannot call 1393 * calculate_alloc_pointer() which takes extent buffer 1394 * locks to avoid deadlock. 1395 */ 1396 1397 /* Zone capacity is always zone size in emulation */ 1398 cache->zone_capacity = cache->length; 1399 if (new) { 1400 cache->alloc_offset = 0; 1401 goto out; 1402 } 1403 ret = calculate_alloc_pointer(cache, &last_alloc); 1404 if (ret || map->num_stripes == num_conventional) { 1405 if (!ret) 1406 cache->alloc_offset = last_alloc; 1407 else 1408 btrfs_err(fs_info, 1409 "zoned: failed to determine allocation offset of bg %llu", 1410 cache->start); 1411 goto out; 1412 } 1413 } 1414 1415 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1416 case 0: /* single */ 1417 if (alloc_offsets[0] == WP_MISSING_DEV) { 1418 btrfs_err(fs_info, 1419 "zoned: cannot recover write pointer for zone %llu", 1420 physical[0]); 1421 ret = -EIO; 1422 goto out; 1423 } 1424 cache->alloc_offset = alloc_offsets[0]; 1425 cache->zone_capacity = caps[0]; 1426 cache->zone_is_active = test_bit(0, active); 1427 break; 1428 case BTRFS_BLOCK_GROUP_DUP: 1429 if (map->type & BTRFS_BLOCK_GROUP_DATA) { 1430 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg"); 1431 ret = -EINVAL; 1432 goto out; 1433 } 1434 if (alloc_offsets[0] == WP_MISSING_DEV) { 1435 btrfs_err(fs_info, 1436 "zoned: cannot recover write pointer for zone %llu", 1437 physical[0]); 1438 ret = -EIO; 1439 goto out; 1440 } 1441 if (alloc_offsets[1] == WP_MISSING_DEV) { 1442 btrfs_err(fs_info, 1443 "zoned: cannot recover write pointer for zone %llu", 1444 physical[1]); 1445 ret = -EIO; 1446 goto out; 1447 } 1448 if (alloc_offsets[0] != alloc_offsets[1]) { 1449 btrfs_err(fs_info, 1450 "zoned: write pointer offset mismatch of zones in DUP profile"); 1451 ret = -EIO; 1452 goto out; 1453 } 1454 if (test_bit(0, active) != test_bit(1, active)) { 1455 if (!btrfs_zone_activate(cache)) { 1456 ret = -EIO; 1457 goto out; 1458 } 1459 } else { 1460 cache->zone_is_active = test_bit(0, active); 1461 } 1462 cache->alloc_offset = alloc_offsets[0]; 1463 cache->zone_capacity = min(caps[0], caps[1]); 1464 break; 1465 case BTRFS_BLOCK_GROUP_RAID1: 1466 case BTRFS_BLOCK_GROUP_RAID0: 1467 case BTRFS_BLOCK_GROUP_RAID10: 1468 case BTRFS_BLOCK_GROUP_RAID5: 1469 case BTRFS_BLOCK_GROUP_RAID6: 1470 /* non-single profiles are not supported yet */ 1471 default: 1472 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1473 btrfs_bg_type_to_raid_name(map->type)); 1474 ret = -EINVAL; 1475 goto out; 1476 } 1477 1478 if (cache->zone_is_active) { 1479 btrfs_get_block_group(cache); 1480 spin_lock(&fs_info->zone_active_bgs_lock); 1481 list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs); 1482 spin_unlock(&fs_info->zone_active_bgs_lock); 1483 } 1484 1485 out: 1486 if (cache->alloc_offset > fs_info->zone_size) { 1487 btrfs_err(fs_info, 1488 "zoned: invalid write pointer %llu in block group %llu", 1489 cache->alloc_offset, cache->start); 1490 ret = -EIO; 1491 } 1492 1493 if (cache->alloc_offset > cache->zone_capacity) { 1494 btrfs_err(fs_info, 1495 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1496 cache->alloc_offset, cache->zone_capacity, 1497 cache->start); 1498 ret = -EIO; 1499 } 1500 1501 /* An extent is allocated after the write pointer */ 1502 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1503 btrfs_err(fs_info, 1504 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1505 logical, last_alloc, cache->alloc_offset); 1506 ret = -EIO; 1507 } 1508 1509 if (!ret) 1510 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1511 1512 if (ret) { 1513 kfree(cache->physical_map); 1514 cache->physical_map = NULL; 1515 } 1516 bitmap_free(active); 1517 kfree(physical); 1518 kfree(caps); 1519 kfree(alloc_offsets); 1520 free_extent_map(em); 1521 1522 return ret; 1523 } 1524 1525 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1526 { 1527 u64 unusable, free; 1528 1529 if (!btrfs_is_zoned(cache->fs_info)) 1530 return; 1531 1532 WARN_ON(cache->bytes_super != 0); 1533 unusable = (cache->alloc_offset - cache->used) + 1534 (cache->length - cache->zone_capacity); 1535 free = cache->zone_capacity - cache->alloc_offset; 1536 1537 /* We only need ->free_space in ALLOC_SEQ block groups */ 1538 cache->last_byte_to_unpin = (u64)-1; 1539 cache->cached = BTRFS_CACHE_FINISHED; 1540 cache->free_space_ctl->free_space = free; 1541 cache->zone_unusable = unusable; 1542 } 1543 1544 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1545 struct extent_buffer *eb) 1546 { 1547 struct btrfs_fs_info *fs_info = eb->fs_info; 1548 1549 if (!btrfs_is_zoned(fs_info) || 1550 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || 1551 !list_empty(&eb->release_list)) 1552 return; 1553 1554 set_extent_buffer_dirty(eb); 1555 set_extent_bits_nowait(&trans->dirty_pages, eb->start, 1556 eb->start + eb->len - 1, EXTENT_DIRTY); 1557 memzero_extent_buffer(eb, 0, eb->len); 1558 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1559 1560 spin_lock(&trans->releasing_ebs_lock); 1561 list_add_tail(&eb->release_list, &trans->releasing_ebs); 1562 spin_unlock(&trans->releasing_ebs_lock); 1563 atomic_inc(&eb->refs); 1564 } 1565 1566 void btrfs_free_redirty_list(struct btrfs_transaction *trans) 1567 { 1568 spin_lock(&trans->releasing_ebs_lock); 1569 while (!list_empty(&trans->releasing_ebs)) { 1570 struct extent_buffer *eb; 1571 1572 eb = list_first_entry(&trans->releasing_ebs, 1573 struct extent_buffer, release_list); 1574 list_del_init(&eb->release_list); 1575 free_extent_buffer(eb); 1576 } 1577 spin_unlock(&trans->releasing_ebs_lock); 1578 } 1579 1580 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start) 1581 { 1582 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1583 struct btrfs_block_group *cache; 1584 bool ret = false; 1585 1586 if (!btrfs_is_zoned(fs_info)) 1587 return false; 1588 1589 if (!is_data_inode(&inode->vfs_inode)) 1590 return false; 1591 1592 /* 1593 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1594 * extent layout the relocation code has. 1595 * Furthermore we have set aside own block-group from which only the 1596 * relocation "process" can allocate and make sure only one process at a 1597 * time can add pages to an extent that gets relocated, so it's safe to 1598 * use regular REQ_OP_WRITE for this special case. 1599 */ 1600 if (btrfs_is_data_reloc_root(inode->root)) 1601 return false; 1602 1603 cache = btrfs_lookup_block_group(fs_info, start); 1604 ASSERT(cache); 1605 if (!cache) 1606 return false; 1607 1608 ret = cache->seq_zone; 1609 btrfs_put_block_group(cache); 1610 1611 return ret; 1612 } 1613 1614 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset, 1615 struct bio *bio) 1616 { 1617 struct btrfs_ordered_extent *ordered; 1618 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 1619 1620 if (bio_op(bio) != REQ_OP_ZONE_APPEND) 1621 return; 1622 1623 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset); 1624 if (WARN_ON(!ordered)) 1625 return; 1626 1627 ordered->physical = physical; 1628 ordered->bdev = bio->bi_bdev; 1629 1630 btrfs_put_ordered_extent(ordered); 1631 } 1632 1633 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) 1634 { 1635 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1636 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1637 struct extent_map_tree *em_tree; 1638 struct extent_map *em; 1639 struct btrfs_ordered_sum *sum; 1640 u64 orig_logical = ordered->disk_bytenr; 1641 u64 *logical = NULL; 1642 int nr, stripe_len; 1643 1644 /* Zoned devices should not have partitions. So, we can assume it is 0 */ 1645 ASSERT(!bdev_is_partition(ordered->bdev)); 1646 if (WARN_ON(!ordered->bdev)) 1647 return; 1648 1649 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev, 1650 ordered->physical, &logical, &nr, 1651 &stripe_len))) 1652 goto out; 1653 1654 WARN_ON(nr != 1); 1655 1656 if (orig_logical == *logical) 1657 goto out; 1658 1659 ordered->disk_bytenr = *logical; 1660 1661 em_tree = &inode->extent_tree; 1662 write_lock(&em_tree->lock); 1663 em = search_extent_mapping(em_tree, ordered->file_offset, 1664 ordered->num_bytes); 1665 em->block_start = *logical; 1666 free_extent_map(em); 1667 write_unlock(&em_tree->lock); 1668 1669 list_for_each_entry(sum, &ordered->list, list) { 1670 if (*logical < orig_logical) 1671 sum->bytenr -= orig_logical - *logical; 1672 else 1673 sum->bytenr += *logical - orig_logical; 1674 } 1675 1676 out: 1677 kfree(logical); 1678 } 1679 1680 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1681 struct extent_buffer *eb, 1682 struct btrfs_block_group **cache_ret) 1683 { 1684 struct btrfs_block_group *cache; 1685 bool ret = true; 1686 1687 if (!btrfs_is_zoned(fs_info)) 1688 return true; 1689 1690 cache = btrfs_lookup_block_group(fs_info, eb->start); 1691 if (!cache) 1692 return true; 1693 1694 if (cache->meta_write_pointer != eb->start) { 1695 btrfs_put_block_group(cache); 1696 cache = NULL; 1697 ret = false; 1698 } else { 1699 cache->meta_write_pointer = eb->start + eb->len; 1700 } 1701 1702 *cache_ret = cache; 1703 1704 return ret; 1705 } 1706 1707 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1708 struct extent_buffer *eb) 1709 { 1710 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1711 return; 1712 1713 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1714 cache->meta_write_pointer = eb->start; 1715 } 1716 1717 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1718 { 1719 if (!btrfs_dev_is_sequential(device, physical)) 1720 return -EOPNOTSUPP; 1721 1722 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1723 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1724 } 1725 1726 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1727 struct blk_zone *zone) 1728 { 1729 struct btrfs_io_context *bioc = NULL; 1730 u64 mapped_length = PAGE_SIZE; 1731 unsigned int nofs_flag; 1732 int nmirrors; 1733 int i, ret; 1734 1735 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1736 &mapped_length, &bioc); 1737 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1738 btrfs_put_bioc(bioc); 1739 return -EIO; 1740 } 1741 1742 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1743 return -EINVAL; 1744 1745 nofs_flag = memalloc_nofs_save(); 1746 nmirrors = (int)bioc->num_stripes; 1747 for (i = 0; i < nmirrors; i++) { 1748 u64 physical = bioc->stripes[i].physical; 1749 struct btrfs_device *dev = bioc->stripes[i].dev; 1750 1751 /* Missing device */ 1752 if (!dev->bdev) 1753 continue; 1754 1755 ret = btrfs_get_dev_zone(dev, physical, zone); 1756 /* Failing device */ 1757 if (ret == -EIO || ret == -EOPNOTSUPP) 1758 continue; 1759 break; 1760 } 1761 memalloc_nofs_restore(nofs_flag); 1762 1763 return ret; 1764 } 1765 1766 /* 1767 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1768 * filling zeros between @physical_pos to a write pointer of dev-replace 1769 * source device. 1770 */ 1771 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1772 u64 physical_start, u64 physical_pos) 1773 { 1774 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1775 struct blk_zone zone; 1776 u64 length; 1777 u64 wp; 1778 int ret; 1779 1780 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1781 return 0; 1782 1783 ret = read_zone_info(fs_info, logical, &zone); 1784 if (ret) 1785 return ret; 1786 1787 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1788 1789 if (physical_pos == wp) 1790 return 0; 1791 1792 if (physical_pos > wp) 1793 return -EUCLEAN; 1794 1795 length = wp - physical_pos; 1796 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1797 } 1798 1799 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info, 1800 u64 logical, u64 length) 1801 { 1802 struct btrfs_device *device; 1803 struct extent_map *em; 1804 struct map_lookup *map; 1805 1806 em = btrfs_get_chunk_map(fs_info, logical, length); 1807 if (IS_ERR(em)) 1808 return ERR_CAST(em); 1809 1810 map = em->map_lookup; 1811 /* We only support single profile for now */ 1812 device = map->stripes[0].dev; 1813 1814 free_extent_map(em); 1815 1816 return device; 1817 } 1818 1819 /** 1820 * Activate block group and underlying device zones 1821 * 1822 * @block_group: the block group to activate 1823 * 1824 * Return: true on success, false otherwise 1825 */ 1826 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 1827 { 1828 struct btrfs_fs_info *fs_info = block_group->fs_info; 1829 struct map_lookup *map; 1830 struct btrfs_device *device; 1831 u64 physical; 1832 bool ret; 1833 int i; 1834 1835 if (!btrfs_is_zoned(block_group->fs_info)) 1836 return true; 1837 1838 map = block_group->physical_map; 1839 1840 spin_lock(&block_group->lock); 1841 if (block_group->zone_is_active) { 1842 ret = true; 1843 goto out_unlock; 1844 } 1845 1846 /* No space left */ 1847 if (btrfs_zoned_bg_is_full(block_group)) { 1848 ret = false; 1849 goto out_unlock; 1850 } 1851 1852 for (i = 0; i < map->num_stripes; i++) { 1853 device = map->stripes[i].dev; 1854 physical = map->stripes[i].physical; 1855 1856 if (device->zone_info->max_active_zones == 0) 1857 continue; 1858 1859 if (!btrfs_dev_set_active_zone(device, physical)) { 1860 /* Cannot activate the zone */ 1861 ret = false; 1862 goto out_unlock; 1863 } 1864 } 1865 1866 /* Successfully activated all the zones */ 1867 block_group->zone_is_active = 1; 1868 spin_unlock(&block_group->lock); 1869 1870 /* For the active block group list */ 1871 btrfs_get_block_group(block_group); 1872 1873 spin_lock(&fs_info->zone_active_bgs_lock); 1874 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 1875 spin_unlock(&fs_info->zone_active_bgs_lock); 1876 1877 return true; 1878 1879 out_unlock: 1880 spin_unlock(&block_group->lock); 1881 return ret; 1882 } 1883 1884 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 1885 { 1886 struct btrfs_fs_info *fs_info = block_group->fs_info; 1887 struct map_lookup *map; 1888 bool need_zone_finish; 1889 int ret = 0; 1890 int i; 1891 1892 spin_lock(&block_group->lock); 1893 if (!block_group->zone_is_active) { 1894 spin_unlock(&block_group->lock); 1895 return 0; 1896 } 1897 1898 /* Check if we have unwritten allocated space */ 1899 if ((block_group->flags & 1900 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) && 1901 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 1902 spin_unlock(&block_group->lock); 1903 return -EAGAIN; 1904 } 1905 1906 /* 1907 * If we are sure that the block group is full (= no more room left for 1908 * new allocation) and the IO for the last usable block is completed, we 1909 * don't need to wait for the other IOs. This holds because we ensure 1910 * the sequential IO submissions using the ZONE_APPEND command for data 1911 * and block_group->meta_write_pointer for metadata. 1912 */ 1913 if (!fully_written) { 1914 spin_unlock(&block_group->lock); 1915 1916 ret = btrfs_inc_block_group_ro(block_group, false); 1917 if (ret) 1918 return ret; 1919 1920 /* Ensure all writes in this block group finish */ 1921 btrfs_wait_block_group_reservations(block_group); 1922 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 1923 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 1924 block_group->length); 1925 1926 spin_lock(&block_group->lock); 1927 1928 /* 1929 * Bail out if someone already deactivated the block group, or 1930 * allocated space is left in the block group. 1931 */ 1932 if (!block_group->zone_is_active) { 1933 spin_unlock(&block_group->lock); 1934 btrfs_dec_block_group_ro(block_group); 1935 return 0; 1936 } 1937 1938 if (block_group->reserved) { 1939 spin_unlock(&block_group->lock); 1940 btrfs_dec_block_group_ro(block_group); 1941 return -EAGAIN; 1942 } 1943 } 1944 1945 /* 1946 * The block group is not fully allocated, so not fully written yet. We 1947 * need to send ZONE_FINISH command to free up an active zone. 1948 */ 1949 need_zone_finish = !btrfs_zoned_bg_is_full(block_group); 1950 1951 block_group->zone_is_active = 0; 1952 block_group->alloc_offset = block_group->zone_capacity; 1953 block_group->free_space_ctl->free_space = 0; 1954 btrfs_clear_treelog_bg(block_group); 1955 btrfs_clear_data_reloc_bg(block_group); 1956 spin_unlock(&block_group->lock); 1957 1958 map = block_group->physical_map; 1959 for (i = 0; i < map->num_stripes; i++) { 1960 struct btrfs_device *device = map->stripes[i].dev; 1961 const u64 physical = map->stripes[i].physical; 1962 1963 if (device->zone_info->max_active_zones == 0) 1964 continue; 1965 1966 if (need_zone_finish) { 1967 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 1968 physical >> SECTOR_SHIFT, 1969 device->zone_info->zone_size >> SECTOR_SHIFT, 1970 GFP_NOFS); 1971 1972 if (ret) 1973 return ret; 1974 } 1975 1976 btrfs_dev_clear_active_zone(device, physical); 1977 } 1978 1979 if (!fully_written) 1980 btrfs_dec_block_group_ro(block_group); 1981 1982 spin_lock(&fs_info->zone_active_bgs_lock); 1983 ASSERT(!list_empty(&block_group->active_bg_list)); 1984 list_del_init(&block_group->active_bg_list); 1985 spin_unlock(&fs_info->zone_active_bgs_lock); 1986 1987 /* For active_bg_list */ 1988 btrfs_put_block_group(block_group); 1989 1990 return 0; 1991 } 1992 1993 int btrfs_zone_finish(struct btrfs_block_group *block_group) 1994 { 1995 if (!btrfs_is_zoned(block_group->fs_info)) 1996 return 0; 1997 1998 return do_zone_finish(block_group, false); 1999 } 2000 2001 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2002 { 2003 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2004 struct btrfs_device *device; 2005 bool ret = false; 2006 2007 if (!btrfs_is_zoned(fs_info)) 2008 return true; 2009 2010 /* Check if there is a device with active zones left */ 2011 mutex_lock(&fs_info->chunk_mutex); 2012 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2013 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2014 2015 if (!device->bdev) 2016 continue; 2017 2018 if (!zinfo->max_active_zones || 2019 atomic_read(&zinfo->active_zones_left)) { 2020 ret = true; 2021 break; 2022 } 2023 } 2024 mutex_unlock(&fs_info->chunk_mutex); 2025 2026 return ret; 2027 } 2028 2029 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2030 { 2031 struct btrfs_block_group *block_group; 2032 u64 min_alloc_bytes; 2033 2034 if (!btrfs_is_zoned(fs_info)) 2035 return; 2036 2037 block_group = btrfs_lookup_block_group(fs_info, logical); 2038 ASSERT(block_group); 2039 2040 /* No MIXED_BG on zoned btrfs. */ 2041 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2042 min_alloc_bytes = fs_info->sectorsize; 2043 else 2044 min_alloc_bytes = fs_info->nodesize; 2045 2046 /* Bail out if we can allocate more data from this block group. */ 2047 if (logical + length + min_alloc_bytes <= 2048 block_group->start + block_group->zone_capacity) 2049 goto out; 2050 2051 do_zone_finish(block_group, true); 2052 2053 out: 2054 btrfs_put_block_group(block_group); 2055 } 2056 2057 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2058 { 2059 struct btrfs_block_group *bg = 2060 container_of(work, struct btrfs_block_group, zone_finish_work); 2061 2062 wait_on_extent_buffer_writeback(bg->last_eb); 2063 free_extent_buffer(bg->last_eb); 2064 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2065 btrfs_put_block_group(bg); 2066 } 2067 2068 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2069 struct extent_buffer *eb) 2070 { 2071 if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2072 return; 2073 2074 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2075 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2076 bg->start); 2077 return; 2078 } 2079 2080 /* For the work */ 2081 btrfs_get_block_group(bg); 2082 atomic_inc(&eb->refs); 2083 bg->last_eb = eb; 2084 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2085 queue_work(system_unbound_wq, &bg->zone_finish_work); 2086 } 2087 2088 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2089 { 2090 struct btrfs_fs_info *fs_info = bg->fs_info; 2091 2092 spin_lock(&fs_info->relocation_bg_lock); 2093 if (fs_info->data_reloc_bg == bg->start) 2094 fs_info->data_reloc_bg = 0; 2095 spin_unlock(&fs_info->relocation_bg_lock); 2096 } 2097 2098 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2099 { 2100 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2101 struct btrfs_device *device; 2102 2103 if (!btrfs_is_zoned(fs_info)) 2104 return; 2105 2106 mutex_lock(&fs_devices->device_list_mutex); 2107 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2108 if (device->zone_info) { 2109 vfree(device->zone_info->zone_cache); 2110 device->zone_info->zone_cache = NULL; 2111 } 2112 } 2113 mutex_unlock(&fs_devices->device_list_mutex); 2114 } 2115 2116 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2117 { 2118 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2119 struct btrfs_device *device; 2120 u64 used = 0; 2121 u64 total = 0; 2122 u64 factor; 2123 2124 ASSERT(btrfs_is_zoned(fs_info)); 2125 2126 if (fs_info->bg_reclaim_threshold == 0) 2127 return false; 2128 2129 mutex_lock(&fs_devices->device_list_mutex); 2130 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2131 if (!device->bdev) 2132 continue; 2133 2134 total += device->disk_total_bytes; 2135 used += device->bytes_used; 2136 } 2137 mutex_unlock(&fs_devices->device_list_mutex); 2138 2139 factor = div64_u64(used * 100, total); 2140 return factor >= fs_info->bg_reclaim_threshold; 2141 } 2142