xref: /openbmc/linux/fs/btrfs/zoned.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "super.h"
19 #include "fs.h"
20 #include "accessors.h"
21 #include "bio.h"
22 
23 /* Maximum number of zones to report per blkdev_report_zones() call */
24 #define BTRFS_REPORT_NR_ZONES   4096
25 /* Invalid allocation pointer value for missing devices */
26 #define WP_MISSING_DEV ((u64)-1)
27 /* Pseudo write pointer value for conventional zone */
28 #define WP_CONVENTIONAL ((u64)-2)
29 
30 /*
31  * Location of the first zone of superblock logging zone pairs.
32  *
33  * - primary superblock:    0B (zone 0)
34  * - first copy:          512G (zone starting at that offset)
35  * - second copy:           4T (zone starting at that offset)
36  */
37 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
38 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
39 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
40 
41 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43 
44 /* Number of superblock log zones */
45 #define BTRFS_NR_SB_LOG_ZONES 2
46 
47 /*
48  * Minimum of active zones we need:
49  *
50  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52  * - 1 zone for tree-log dedicated block group
53  * - 1 zone for relocation
54  */
55 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
56 
57 /*
58  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60  * We do not expect the zone size to become larger than 8GiB or smaller than
61  * 4MiB in the near future.
62  */
63 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
64 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
65 
66 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67 
68 static inline bool sb_zone_is_full(const struct blk_zone *zone)
69 {
70 	return (zone->cond == BLK_ZONE_COND_FULL) ||
71 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
72 }
73 
74 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
75 {
76 	struct blk_zone *zones = data;
77 
78 	memcpy(&zones[idx], zone, sizeof(*zone));
79 
80 	return 0;
81 }
82 
83 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
84 			    u64 *wp_ret)
85 {
86 	bool empty[BTRFS_NR_SB_LOG_ZONES];
87 	bool full[BTRFS_NR_SB_LOG_ZONES];
88 	sector_t sector;
89 	int i;
90 
91 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
92 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
93 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
94 		full[i] = sb_zone_is_full(&zones[i]);
95 	}
96 
97 	/*
98 	 * Possible states of log buffer zones
99 	 *
100 	 *           Empty[0]  In use[0]  Full[0]
101 	 * Empty[1]         *          0        1
102 	 * In use[1]        x          x        1
103 	 * Full[1]          0          0        C
104 	 *
105 	 * Log position:
106 	 *   *: Special case, no superblock is written
107 	 *   0: Use write pointer of zones[0]
108 	 *   1: Use write pointer of zones[1]
109 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
110 	 *      one determined by generation
111 	 *   x: Invalid state
112 	 */
113 
114 	if (empty[0] && empty[1]) {
115 		/* Special case to distinguish no superblock to read */
116 		*wp_ret = zones[0].start << SECTOR_SHIFT;
117 		return -ENOENT;
118 	} else if (full[0] && full[1]) {
119 		/* Compare two super blocks */
120 		struct address_space *mapping = bdev->bd_inode->i_mapping;
121 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
122 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
123 		int i;
124 
125 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
126 			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
127 			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
128 						BTRFS_SUPER_INFO_SIZE;
129 
130 			page[i] = read_cache_page_gfp(mapping,
131 					bytenr >> PAGE_SHIFT, GFP_NOFS);
132 			if (IS_ERR(page[i])) {
133 				if (i == 1)
134 					btrfs_release_disk_super(super[0]);
135 				return PTR_ERR(page[i]);
136 			}
137 			super[i] = page_address(page[i]);
138 		}
139 
140 		if (btrfs_super_generation(super[0]) >
141 		    btrfs_super_generation(super[1]))
142 			sector = zones[1].start;
143 		else
144 			sector = zones[0].start;
145 
146 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
147 			btrfs_release_disk_super(super[i]);
148 	} else if (!full[0] && (empty[1] || full[1])) {
149 		sector = zones[0].wp;
150 	} else if (full[0]) {
151 		sector = zones[1].wp;
152 	} else {
153 		return -EUCLEAN;
154 	}
155 	*wp_ret = sector << SECTOR_SHIFT;
156 	return 0;
157 }
158 
159 /*
160  * Get the first zone number of the superblock mirror
161  */
162 static inline u32 sb_zone_number(int shift, int mirror)
163 {
164 	u64 zone = U64_MAX;
165 
166 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
167 	switch (mirror) {
168 	case 0: zone = 0; break;
169 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
170 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
171 	}
172 
173 	ASSERT(zone <= U32_MAX);
174 
175 	return (u32)zone;
176 }
177 
178 static inline sector_t zone_start_sector(u32 zone_number,
179 					 struct block_device *bdev)
180 {
181 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
182 }
183 
184 static inline u64 zone_start_physical(u32 zone_number,
185 				      struct btrfs_zoned_device_info *zone_info)
186 {
187 	return (u64)zone_number << zone_info->zone_size_shift;
188 }
189 
190 /*
191  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
192  * device into static sized chunks and fake a conventional zone on each of
193  * them.
194  */
195 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
196 				struct blk_zone *zones, unsigned int nr_zones)
197 {
198 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
199 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
200 	unsigned int i;
201 
202 	pos >>= SECTOR_SHIFT;
203 	for (i = 0; i < nr_zones; i++) {
204 		zones[i].start = i * zone_sectors + pos;
205 		zones[i].len = zone_sectors;
206 		zones[i].capacity = zone_sectors;
207 		zones[i].wp = zones[i].start + zone_sectors;
208 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
209 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
210 
211 		if (zones[i].wp >= bdev_size) {
212 			i++;
213 			break;
214 		}
215 	}
216 
217 	return i;
218 }
219 
220 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
221 			       struct blk_zone *zones, unsigned int *nr_zones)
222 {
223 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
224 	int ret;
225 
226 	if (!*nr_zones)
227 		return 0;
228 
229 	if (!bdev_is_zoned(device->bdev)) {
230 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
231 		*nr_zones = ret;
232 		return 0;
233 	}
234 
235 	/* Check cache */
236 	if (zinfo->zone_cache) {
237 		unsigned int i;
238 		u32 zno;
239 
240 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
241 		zno = pos >> zinfo->zone_size_shift;
242 		/*
243 		 * We cannot report zones beyond the zone end. So, it is OK to
244 		 * cap *nr_zones to at the end.
245 		 */
246 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
247 
248 		for (i = 0; i < *nr_zones; i++) {
249 			struct blk_zone *zone_info;
250 
251 			zone_info = &zinfo->zone_cache[zno + i];
252 			if (!zone_info->len)
253 				break;
254 		}
255 
256 		if (i == *nr_zones) {
257 			/* Cache hit on all the zones */
258 			memcpy(zones, zinfo->zone_cache + zno,
259 			       sizeof(*zinfo->zone_cache) * *nr_zones);
260 			return 0;
261 		}
262 	}
263 
264 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
265 				  copy_zone_info_cb, zones);
266 	if (ret < 0) {
267 		btrfs_err_in_rcu(device->fs_info,
268 				 "zoned: failed to read zone %llu on %s (devid %llu)",
269 				 pos, rcu_str_deref(device->name),
270 				 device->devid);
271 		return ret;
272 	}
273 	*nr_zones = ret;
274 	if (!ret)
275 		return -EIO;
276 
277 	/* Populate cache */
278 	if (zinfo->zone_cache) {
279 		u32 zno = pos >> zinfo->zone_size_shift;
280 
281 		memcpy(zinfo->zone_cache + zno, zones,
282 		       sizeof(*zinfo->zone_cache) * *nr_zones);
283 	}
284 
285 	return 0;
286 }
287 
288 /* The emulated zone size is determined from the size of device extent */
289 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
290 {
291 	struct btrfs_path *path;
292 	struct btrfs_root *root = fs_info->dev_root;
293 	struct btrfs_key key;
294 	struct extent_buffer *leaf;
295 	struct btrfs_dev_extent *dext;
296 	int ret = 0;
297 
298 	key.objectid = 1;
299 	key.type = BTRFS_DEV_EXTENT_KEY;
300 	key.offset = 0;
301 
302 	path = btrfs_alloc_path();
303 	if (!path)
304 		return -ENOMEM;
305 
306 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
307 	if (ret < 0)
308 		goto out;
309 
310 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
311 		ret = btrfs_next_leaf(root, path);
312 		if (ret < 0)
313 			goto out;
314 		/* No dev extents at all? Not good */
315 		if (ret > 0) {
316 			ret = -EUCLEAN;
317 			goto out;
318 		}
319 	}
320 
321 	leaf = path->nodes[0];
322 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
323 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
324 	ret = 0;
325 
326 out:
327 	btrfs_free_path(path);
328 
329 	return ret;
330 }
331 
332 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
333 {
334 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
335 	struct btrfs_device *device;
336 	int ret = 0;
337 
338 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
339 	if (!btrfs_fs_incompat(fs_info, ZONED))
340 		return 0;
341 
342 	mutex_lock(&fs_devices->device_list_mutex);
343 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
344 		/* We can skip reading of zone info for missing devices */
345 		if (!device->bdev)
346 			continue;
347 
348 		ret = btrfs_get_dev_zone_info(device, true);
349 		if (ret)
350 			break;
351 	}
352 	mutex_unlock(&fs_devices->device_list_mutex);
353 
354 	return ret;
355 }
356 
357 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
358 {
359 	struct btrfs_fs_info *fs_info = device->fs_info;
360 	struct btrfs_zoned_device_info *zone_info = NULL;
361 	struct block_device *bdev = device->bdev;
362 	unsigned int max_active_zones;
363 	unsigned int nactive;
364 	sector_t nr_sectors;
365 	sector_t sector = 0;
366 	struct blk_zone *zones = NULL;
367 	unsigned int i, nreported = 0, nr_zones;
368 	sector_t zone_sectors;
369 	char *model, *emulated;
370 	int ret;
371 
372 	/*
373 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
374 	 * yet be set.
375 	 */
376 	if (!btrfs_fs_incompat(fs_info, ZONED))
377 		return 0;
378 
379 	if (device->zone_info)
380 		return 0;
381 
382 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
383 	if (!zone_info)
384 		return -ENOMEM;
385 
386 	device->zone_info = zone_info;
387 
388 	if (!bdev_is_zoned(bdev)) {
389 		if (!fs_info->zone_size) {
390 			ret = calculate_emulated_zone_size(fs_info);
391 			if (ret)
392 				goto out;
393 		}
394 
395 		ASSERT(fs_info->zone_size);
396 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
397 	} else {
398 		zone_sectors = bdev_zone_sectors(bdev);
399 	}
400 
401 	ASSERT(is_power_of_two_u64(zone_sectors));
402 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
403 
404 	/* We reject devices with a zone size larger than 8GB */
405 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
406 		btrfs_err_in_rcu(fs_info,
407 		"zoned: %s: zone size %llu larger than supported maximum %llu",
408 				 rcu_str_deref(device->name),
409 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
410 		ret = -EINVAL;
411 		goto out;
412 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
413 		btrfs_err_in_rcu(fs_info,
414 		"zoned: %s: zone size %llu smaller than supported minimum %u",
415 				 rcu_str_deref(device->name),
416 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
417 		ret = -EINVAL;
418 		goto out;
419 	}
420 
421 	nr_sectors = bdev_nr_sectors(bdev);
422 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
423 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
424 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
425 		zone_info->nr_zones++;
426 
427 	max_active_zones = bdev_max_active_zones(bdev);
428 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
429 		btrfs_err_in_rcu(fs_info,
430 "zoned: %s: max active zones %u is too small, need at least %u active zones",
431 				 rcu_str_deref(device->name), max_active_zones,
432 				 BTRFS_MIN_ACTIVE_ZONES);
433 		ret = -EINVAL;
434 		goto out;
435 	}
436 	zone_info->max_active_zones = max_active_zones;
437 
438 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
439 	if (!zone_info->seq_zones) {
440 		ret = -ENOMEM;
441 		goto out;
442 	}
443 
444 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
445 	if (!zone_info->empty_zones) {
446 		ret = -ENOMEM;
447 		goto out;
448 	}
449 
450 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
451 	if (!zone_info->active_zones) {
452 		ret = -ENOMEM;
453 		goto out;
454 	}
455 
456 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
457 	if (!zones) {
458 		ret = -ENOMEM;
459 		goto out;
460 	}
461 
462 	/*
463 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
464 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
465 	 * use the cache.
466 	 */
467 	if (populate_cache && bdev_is_zoned(device->bdev)) {
468 		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
469 						zone_info->nr_zones);
470 		if (!zone_info->zone_cache) {
471 			btrfs_err_in_rcu(device->fs_info,
472 				"zoned: failed to allocate zone cache for %s",
473 				rcu_str_deref(device->name));
474 			ret = -ENOMEM;
475 			goto out;
476 		}
477 	}
478 
479 	/* Get zones type */
480 	nactive = 0;
481 	while (sector < nr_sectors) {
482 		nr_zones = BTRFS_REPORT_NR_ZONES;
483 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
484 					  &nr_zones);
485 		if (ret)
486 			goto out;
487 
488 		for (i = 0; i < nr_zones; i++) {
489 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
490 				__set_bit(nreported, zone_info->seq_zones);
491 			switch (zones[i].cond) {
492 			case BLK_ZONE_COND_EMPTY:
493 				__set_bit(nreported, zone_info->empty_zones);
494 				break;
495 			case BLK_ZONE_COND_IMP_OPEN:
496 			case BLK_ZONE_COND_EXP_OPEN:
497 			case BLK_ZONE_COND_CLOSED:
498 				__set_bit(nreported, zone_info->active_zones);
499 				nactive++;
500 				break;
501 			}
502 			nreported++;
503 		}
504 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
505 	}
506 
507 	if (nreported != zone_info->nr_zones) {
508 		btrfs_err_in_rcu(device->fs_info,
509 				 "inconsistent number of zones on %s (%u/%u)",
510 				 rcu_str_deref(device->name), nreported,
511 				 zone_info->nr_zones);
512 		ret = -EIO;
513 		goto out;
514 	}
515 
516 	if (max_active_zones) {
517 		if (nactive > max_active_zones) {
518 			btrfs_err_in_rcu(device->fs_info,
519 			"zoned: %u active zones on %s exceeds max_active_zones %u",
520 					 nactive, rcu_str_deref(device->name),
521 					 max_active_zones);
522 			ret = -EIO;
523 			goto out;
524 		}
525 		atomic_set(&zone_info->active_zones_left,
526 			   max_active_zones - nactive);
527 		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
528 	}
529 
530 	/* Validate superblock log */
531 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
532 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
533 		u32 sb_zone;
534 		u64 sb_wp;
535 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
536 
537 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
538 		if (sb_zone + 1 >= zone_info->nr_zones)
539 			continue;
540 
541 		ret = btrfs_get_dev_zones(device,
542 					  zone_start_physical(sb_zone, zone_info),
543 					  &zone_info->sb_zones[sb_pos],
544 					  &nr_zones);
545 		if (ret)
546 			goto out;
547 
548 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
549 			btrfs_err_in_rcu(device->fs_info,
550 	"zoned: failed to read super block log zone info at devid %llu zone %u",
551 					 device->devid, sb_zone);
552 			ret = -EUCLEAN;
553 			goto out;
554 		}
555 
556 		/*
557 		 * If zones[0] is conventional, always use the beginning of the
558 		 * zone to record superblock. No need to validate in that case.
559 		 */
560 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
561 		    BLK_ZONE_TYPE_CONVENTIONAL)
562 			continue;
563 
564 		ret = sb_write_pointer(device->bdev,
565 				       &zone_info->sb_zones[sb_pos], &sb_wp);
566 		if (ret != -ENOENT && ret) {
567 			btrfs_err_in_rcu(device->fs_info,
568 			"zoned: super block log zone corrupted devid %llu zone %u",
569 					 device->devid, sb_zone);
570 			ret = -EUCLEAN;
571 			goto out;
572 		}
573 	}
574 
575 
576 	kvfree(zones);
577 
578 	switch (bdev_zoned_model(bdev)) {
579 	case BLK_ZONED_HM:
580 		model = "host-managed zoned";
581 		emulated = "";
582 		break;
583 	case BLK_ZONED_HA:
584 		model = "host-aware zoned";
585 		emulated = "";
586 		break;
587 	case BLK_ZONED_NONE:
588 		model = "regular";
589 		emulated = "emulated ";
590 		break;
591 	default:
592 		/* Just in case */
593 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
594 				 bdev_zoned_model(bdev),
595 				 rcu_str_deref(device->name));
596 		ret = -EOPNOTSUPP;
597 		goto out_free_zone_info;
598 	}
599 
600 	btrfs_info_in_rcu(fs_info,
601 		"%s block device %s, %u %szones of %llu bytes",
602 		model, rcu_str_deref(device->name), zone_info->nr_zones,
603 		emulated, zone_info->zone_size);
604 
605 	return 0;
606 
607 out:
608 	kvfree(zones);
609 out_free_zone_info:
610 	btrfs_destroy_dev_zone_info(device);
611 
612 	return ret;
613 }
614 
615 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
616 {
617 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
618 
619 	if (!zone_info)
620 		return;
621 
622 	bitmap_free(zone_info->active_zones);
623 	bitmap_free(zone_info->seq_zones);
624 	bitmap_free(zone_info->empty_zones);
625 	vfree(zone_info->zone_cache);
626 	kfree(zone_info);
627 	device->zone_info = NULL;
628 }
629 
630 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
631 {
632 	struct btrfs_zoned_device_info *zone_info;
633 
634 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
635 	if (!zone_info)
636 		return NULL;
637 
638 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
639 	if (!zone_info->seq_zones)
640 		goto out;
641 
642 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
643 		    zone_info->nr_zones);
644 
645 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
646 	if (!zone_info->empty_zones)
647 		goto out;
648 
649 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
650 		    zone_info->nr_zones);
651 
652 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
653 	if (!zone_info->active_zones)
654 		goto out;
655 
656 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
657 		    zone_info->nr_zones);
658 	zone_info->zone_cache = NULL;
659 
660 	return zone_info;
661 
662 out:
663 	bitmap_free(zone_info->seq_zones);
664 	bitmap_free(zone_info->empty_zones);
665 	bitmap_free(zone_info->active_zones);
666 	kfree(zone_info);
667 	return NULL;
668 }
669 
670 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
671 		       struct blk_zone *zone)
672 {
673 	unsigned int nr_zones = 1;
674 	int ret;
675 
676 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
677 	if (ret != 0 || !nr_zones)
678 		return ret ? ret : -EIO;
679 
680 	return 0;
681 }
682 
683 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
684 {
685 	struct btrfs_device *device;
686 
687 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
688 		if (device->bdev &&
689 		    bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
690 			btrfs_err(fs_info,
691 				"zoned: mode not enabled but zoned device found: %pg",
692 				device->bdev);
693 			return -EINVAL;
694 		}
695 	}
696 
697 	return 0;
698 }
699 
700 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
701 {
702 	struct queue_limits *lim = &fs_info->limits;
703 	struct btrfs_device *device;
704 	u64 zone_size = 0;
705 	int ret;
706 
707 	/*
708 	 * Host-Managed devices can't be used without the ZONED flag.  With the
709 	 * ZONED all devices can be used, using zone emulation if required.
710 	 */
711 	if (!btrfs_fs_incompat(fs_info, ZONED))
712 		return btrfs_check_for_zoned_device(fs_info);
713 
714 	blk_set_stacking_limits(lim);
715 
716 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
717 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
718 
719 		if (!device->bdev)
720 			continue;
721 
722 		if (!zone_size) {
723 			zone_size = zone_info->zone_size;
724 		} else if (zone_info->zone_size != zone_size) {
725 			btrfs_err(fs_info,
726 		"zoned: unequal block device zone sizes: have %llu found %llu",
727 				  zone_info->zone_size, zone_size);
728 			return -EINVAL;
729 		}
730 
731 		/*
732 		 * With the zoned emulation, we can have non-zoned device on the
733 		 * zoned mode. In this case, we don't have a valid max zone
734 		 * append size.
735 		 */
736 		if (bdev_is_zoned(device->bdev)) {
737 			blk_stack_limits(lim,
738 					 &bdev_get_queue(device->bdev)->limits,
739 					 0);
740 		}
741 	}
742 
743 	/*
744 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
745 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
746 	 * check the alignment here.
747 	 */
748 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
749 		btrfs_err(fs_info,
750 			  "zoned: zone size %llu not aligned to stripe %u",
751 			  zone_size, BTRFS_STRIPE_LEN);
752 		return -EINVAL;
753 	}
754 
755 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
756 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
757 		return -EINVAL;
758 	}
759 
760 	fs_info->zone_size = zone_size;
761 	/*
762 	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
763 	 * Technically, we can have multiple pages per segment. But, since
764 	 * we add the pages one by one to a bio, and cannot increase the
765 	 * metadata reservation even if it increases the number of extents, it
766 	 * is safe to stick with the limit.
767 	 */
768 	fs_info->max_zone_append_size = ALIGN_DOWN(
769 		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
770 		     (u64)lim->max_sectors << SECTOR_SHIFT,
771 		     (u64)lim->max_segments << PAGE_SHIFT),
772 		fs_info->sectorsize);
773 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
774 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
775 		fs_info->max_extent_size = fs_info->max_zone_append_size;
776 
777 	/*
778 	 * Check mount options here, because we might change fs_info->zoned
779 	 * from fs_info->zone_size.
780 	 */
781 	ret = btrfs_check_mountopts_zoned(fs_info);
782 	if (ret)
783 		return ret;
784 
785 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
786 	return 0;
787 }
788 
789 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
790 {
791 	if (!btrfs_is_zoned(info))
792 		return 0;
793 
794 	/*
795 	 * Space cache writing is not COWed. Disable that to avoid write errors
796 	 * in sequential zones.
797 	 */
798 	if (btrfs_test_opt(info, SPACE_CACHE)) {
799 		btrfs_err(info, "zoned: space cache v1 is not supported");
800 		return -EINVAL;
801 	}
802 
803 	if (btrfs_test_opt(info, NODATACOW)) {
804 		btrfs_err(info, "zoned: NODATACOW not supported");
805 		return -EINVAL;
806 	}
807 
808 	btrfs_clear_and_info(info, DISCARD_ASYNC,
809 			"zoned: async discard ignored and disabled for zoned mode");
810 
811 	return 0;
812 }
813 
814 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
815 			   int rw, u64 *bytenr_ret)
816 {
817 	u64 wp;
818 	int ret;
819 
820 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
821 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
822 		return 0;
823 	}
824 
825 	ret = sb_write_pointer(bdev, zones, &wp);
826 	if (ret != -ENOENT && ret < 0)
827 		return ret;
828 
829 	if (rw == WRITE) {
830 		struct blk_zone *reset = NULL;
831 
832 		if (wp == zones[0].start << SECTOR_SHIFT)
833 			reset = &zones[0];
834 		else if (wp == zones[1].start << SECTOR_SHIFT)
835 			reset = &zones[1];
836 
837 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
838 			ASSERT(sb_zone_is_full(reset));
839 
840 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
841 					       reset->start, reset->len,
842 					       GFP_NOFS);
843 			if (ret)
844 				return ret;
845 
846 			reset->cond = BLK_ZONE_COND_EMPTY;
847 			reset->wp = reset->start;
848 		}
849 	} else if (ret != -ENOENT) {
850 		/*
851 		 * For READ, we want the previous one. Move write pointer to
852 		 * the end of a zone, if it is at the head of a zone.
853 		 */
854 		u64 zone_end = 0;
855 
856 		if (wp == zones[0].start << SECTOR_SHIFT)
857 			zone_end = zones[1].start + zones[1].capacity;
858 		else if (wp == zones[1].start << SECTOR_SHIFT)
859 			zone_end = zones[0].start + zones[0].capacity;
860 		if (zone_end)
861 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
862 					BTRFS_SUPER_INFO_SIZE);
863 
864 		wp -= BTRFS_SUPER_INFO_SIZE;
865 	}
866 
867 	*bytenr_ret = wp;
868 	return 0;
869 
870 }
871 
872 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
873 			       u64 *bytenr_ret)
874 {
875 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
876 	sector_t zone_sectors;
877 	u32 sb_zone;
878 	int ret;
879 	u8 zone_sectors_shift;
880 	sector_t nr_sectors;
881 	u32 nr_zones;
882 
883 	if (!bdev_is_zoned(bdev)) {
884 		*bytenr_ret = btrfs_sb_offset(mirror);
885 		return 0;
886 	}
887 
888 	ASSERT(rw == READ || rw == WRITE);
889 
890 	zone_sectors = bdev_zone_sectors(bdev);
891 	if (!is_power_of_2(zone_sectors))
892 		return -EINVAL;
893 	zone_sectors_shift = ilog2(zone_sectors);
894 	nr_sectors = bdev_nr_sectors(bdev);
895 	nr_zones = nr_sectors >> zone_sectors_shift;
896 
897 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
898 	if (sb_zone + 1 >= nr_zones)
899 		return -ENOENT;
900 
901 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
902 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
903 				  zones);
904 	if (ret < 0)
905 		return ret;
906 	if (ret != BTRFS_NR_SB_LOG_ZONES)
907 		return -EIO;
908 
909 	return sb_log_location(bdev, zones, rw, bytenr_ret);
910 }
911 
912 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
913 			  u64 *bytenr_ret)
914 {
915 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
916 	u32 zone_num;
917 
918 	/*
919 	 * For a zoned filesystem on a non-zoned block device, use the same
920 	 * super block locations as regular filesystem. Doing so, the super
921 	 * block can always be retrieved and the zoned flag of the volume
922 	 * detected from the super block information.
923 	 */
924 	if (!bdev_is_zoned(device->bdev)) {
925 		*bytenr_ret = btrfs_sb_offset(mirror);
926 		return 0;
927 	}
928 
929 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
930 	if (zone_num + 1 >= zinfo->nr_zones)
931 		return -ENOENT;
932 
933 	return sb_log_location(device->bdev,
934 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
935 			       rw, bytenr_ret);
936 }
937 
938 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
939 				  int mirror)
940 {
941 	u32 zone_num;
942 
943 	if (!zinfo)
944 		return false;
945 
946 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
947 	if (zone_num + 1 >= zinfo->nr_zones)
948 		return false;
949 
950 	if (!test_bit(zone_num, zinfo->seq_zones))
951 		return false;
952 
953 	return true;
954 }
955 
956 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
957 {
958 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
959 	struct blk_zone *zone;
960 	int i;
961 
962 	if (!is_sb_log_zone(zinfo, mirror))
963 		return 0;
964 
965 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
966 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
967 		/* Advance the next zone */
968 		if (zone->cond == BLK_ZONE_COND_FULL) {
969 			zone++;
970 			continue;
971 		}
972 
973 		if (zone->cond == BLK_ZONE_COND_EMPTY)
974 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
975 
976 		zone->wp += SUPER_INFO_SECTORS;
977 
978 		if (sb_zone_is_full(zone)) {
979 			/*
980 			 * No room left to write new superblock. Since
981 			 * superblock is written with REQ_SYNC, it is safe to
982 			 * finish the zone now.
983 			 *
984 			 * If the write pointer is exactly at the capacity,
985 			 * explicit ZONE_FINISH is not necessary.
986 			 */
987 			if (zone->wp != zone->start + zone->capacity) {
988 				int ret;
989 
990 				ret = blkdev_zone_mgmt(device->bdev,
991 						REQ_OP_ZONE_FINISH, zone->start,
992 						zone->len, GFP_NOFS);
993 				if (ret)
994 					return ret;
995 			}
996 
997 			zone->wp = zone->start + zone->len;
998 			zone->cond = BLK_ZONE_COND_FULL;
999 		}
1000 		return 0;
1001 	}
1002 
1003 	/* All the zones are FULL. Should not reach here. */
1004 	ASSERT(0);
1005 	return -EIO;
1006 }
1007 
1008 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1009 {
1010 	sector_t zone_sectors;
1011 	sector_t nr_sectors;
1012 	u8 zone_sectors_shift;
1013 	u32 sb_zone;
1014 	u32 nr_zones;
1015 
1016 	zone_sectors = bdev_zone_sectors(bdev);
1017 	zone_sectors_shift = ilog2(zone_sectors);
1018 	nr_sectors = bdev_nr_sectors(bdev);
1019 	nr_zones = nr_sectors >> zone_sectors_shift;
1020 
1021 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1022 	if (sb_zone + 1 >= nr_zones)
1023 		return -ENOENT;
1024 
1025 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1026 				zone_start_sector(sb_zone, bdev),
1027 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1028 }
1029 
1030 /*
1031  * Find allocatable zones within a given region.
1032  *
1033  * @device:	the device to allocate a region on
1034  * @hole_start: the position of the hole to allocate the region
1035  * @num_bytes:	size of wanted region
1036  * @hole_end:	the end of the hole
1037  * @return:	position of allocatable zones
1038  *
1039  * Allocatable region should not contain any superblock locations.
1040  */
1041 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1042 				 u64 hole_end, u64 num_bytes)
1043 {
1044 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1045 	const u8 shift = zinfo->zone_size_shift;
1046 	u64 nzones = num_bytes >> shift;
1047 	u64 pos = hole_start;
1048 	u64 begin, end;
1049 	bool have_sb;
1050 	int i;
1051 
1052 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1053 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1054 
1055 	while (pos < hole_end) {
1056 		begin = pos >> shift;
1057 		end = begin + nzones;
1058 
1059 		if (end > zinfo->nr_zones)
1060 			return hole_end;
1061 
1062 		/* Check if zones in the region are all empty */
1063 		if (btrfs_dev_is_sequential(device, pos) &&
1064 		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1065 			pos += zinfo->zone_size;
1066 			continue;
1067 		}
1068 
1069 		have_sb = false;
1070 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1071 			u32 sb_zone;
1072 			u64 sb_pos;
1073 
1074 			sb_zone = sb_zone_number(shift, i);
1075 			if (!(end <= sb_zone ||
1076 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1077 				have_sb = true;
1078 				pos = zone_start_physical(
1079 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1080 				break;
1081 			}
1082 
1083 			/* We also need to exclude regular superblock positions */
1084 			sb_pos = btrfs_sb_offset(i);
1085 			if (!(pos + num_bytes <= sb_pos ||
1086 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1087 				have_sb = true;
1088 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1089 					    zinfo->zone_size);
1090 				break;
1091 			}
1092 		}
1093 		if (!have_sb)
1094 			break;
1095 	}
1096 
1097 	return pos;
1098 }
1099 
1100 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1101 {
1102 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1103 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1104 
1105 	/* We can use any number of zones */
1106 	if (zone_info->max_active_zones == 0)
1107 		return true;
1108 
1109 	if (!test_bit(zno, zone_info->active_zones)) {
1110 		/* Active zone left? */
1111 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1112 			return false;
1113 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1114 			/* Someone already set the bit */
1115 			atomic_inc(&zone_info->active_zones_left);
1116 		}
1117 	}
1118 
1119 	return true;
1120 }
1121 
1122 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1123 {
1124 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1125 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1126 
1127 	/* We can use any number of zones */
1128 	if (zone_info->max_active_zones == 0)
1129 		return;
1130 
1131 	if (test_and_clear_bit(zno, zone_info->active_zones))
1132 		atomic_inc(&zone_info->active_zones_left);
1133 }
1134 
1135 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1136 			    u64 length, u64 *bytes)
1137 {
1138 	int ret;
1139 
1140 	*bytes = 0;
1141 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1142 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1143 			       GFP_NOFS);
1144 	if (ret)
1145 		return ret;
1146 
1147 	*bytes = length;
1148 	while (length) {
1149 		btrfs_dev_set_zone_empty(device, physical);
1150 		btrfs_dev_clear_active_zone(device, physical);
1151 		physical += device->zone_info->zone_size;
1152 		length -= device->zone_info->zone_size;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1159 {
1160 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1161 	const u8 shift = zinfo->zone_size_shift;
1162 	unsigned long begin = start >> shift;
1163 	unsigned long nbits = size >> shift;
1164 	u64 pos;
1165 	int ret;
1166 
1167 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1168 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1169 
1170 	if (begin + nbits > zinfo->nr_zones)
1171 		return -ERANGE;
1172 
1173 	/* All the zones are conventional */
1174 	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1175 		return 0;
1176 
1177 	/* All the zones are sequential and empty */
1178 	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1179 	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1180 		return 0;
1181 
1182 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1183 		u64 reset_bytes;
1184 
1185 		if (!btrfs_dev_is_sequential(device, pos) ||
1186 		    btrfs_dev_is_empty_zone(device, pos))
1187 			continue;
1188 
1189 		/* Free regions should be empty */
1190 		btrfs_warn_in_rcu(
1191 			device->fs_info,
1192 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1193 			rcu_str_deref(device->name), device->devid, pos >> shift);
1194 		WARN_ON_ONCE(1);
1195 
1196 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1197 					      &reset_bytes);
1198 		if (ret)
1199 			return ret;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Calculate an allocation pointer from the extent allocation information
1207  * for a block group consist of conventional zones. It is pointed to the
1208  * end of the highest addressed extent in the block group as an allocation
1209  * offset.
1210  */
1211 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1212 				   u64 *offset_ret, bool new)
1213 {
1214 	struct btrfs_fs_info *fs_info = cache->fs_info;
1215 	struct btrfs_root *root;
1216 	struct btrfs_path *path;
1217 	struct btrfs_key key;
1218 	struct btrfs_key found_key;
1219 	int ret;
1220 	u64 length;
1221 
1222 	/*
1223 	 * Avoid  tree lookups for a new block group, there's no use for it.
1224 	 * It must always be 0.
1225 	 *
1226 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1227 	 * For new a block group, this function is called from
1228 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1229 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1230 	 * buffer locks to avoid deadlock.
1231 	 */
1232 	if (new) {
1233 		*offset_ret = 0;
1234 		return 0;
1235 	}
1236 
1237 	path = btrfs_alloc_path();
1238 	if (!path)
1239 		return -ENOMEM;
1240 
1241 	key.objectid = cache->start + cache->length;
1242 	key.type = 0;
1243 	key.offset = 0;
1244 
1245 	root = btrfs_extent_root(fs_info, key.objectid);
1246 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1247 	/* We should not find the exact match */
1248 	if (!ret)
1249 		ret = -EUCLEAN;
1250 	if (ret < 0)
1251 		goto out;
1252 
1253 	ret = btrfs_previous_extent_item(root, path, cache->start);
1254 	if (ret) {
1255 		if (ret == 1) {
1256 			ret = 0;
1257 			*offset_ret = 0;
1258 		}
1259 		goto out;
1260 	}
1261 
1262 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1263 
1264 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1265 		length = found_key.offset;
1266 	else
1267 		length = fs_info->nodesize;
1268 
1269 	if (!(found_key.objectid >= cache->start &&
1270 	       found_key.objectid + length <= cache->start + cache->length)) {
1271 		ret = -EUCLEAN;
1272 		goto out;
1273 	}
1274 	*offset_ret = found_key.objectid + length - cache->start;
1275 	ret = 0;
1276 
1277 out:
1278 	btrfs_free_path(path);
1279 	return ret;
1280 }
1281 
1282 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1283 {
1284 	struct btrfs_fs_info *fs_info = cache->fs_info;
1285 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1286 	struct extent_map *em;
1287 	struct map_lookup *map;
1288 	struct btrfs_device *device;
1289 	u64 logical = cache->start;
1290 	u64 length = cache->length;
1291 	int ret;
1292 	int i;
1293 	unsigned int nofs_flag;
1294 	u64 *alloc_offsets = NULL;
1295 	u64 *caps = NULL;
1296 	u64 *physical = NULL;
1297 	unsigned long *active = NULL;
1298 	u64 last_alloc = 0;
1299 	u32 num_sequential = 0, num_conventional = 0;
1300 
1301 	if (!btrfs_is_zoned(fs_info))
1302 		return 0;
1303 
1304 	/* Sanity check */
1305 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1306 		btrfs_err(fs_info,
1307 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1308 			  logical, length, fs_info->zone_size);
1309 		return -EIO;
1310 	}
1311 
1312 	/* Get the chunk mapping */
1313 	read_lock(&em_tree->lock);
1314 	em = lookup_extent_mapping(em_tree, logical, length);
1315 	read_unlock(&em_tree->lock);
1316 
1317 	if (!em)
1318 		return -EINVAL;
1319 
1320 	map = em->map_lookup;
1321 
1322 	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1323 	if (!cache->physical_map) {
1324 		ret = -ENOMEM;
1325 		goto out;
1326 	}
1327 
1328 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1329 	if (!alloc_offsets) {
1330 		ret = -ENOMEM;
1331 		goto out;
1332 	}
1333 
1334 	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1335 	if (!caps) {
1336 		ret = -ENOMEM;
1337 		goto out;
1338 	}
1339 
1340 	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1341 	if (!physical) {
1342 		ret = -ENOMEM;
1343 		goto out;
1344 	}
1345 
1346 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1347 	if (!active) {
1348 		ret = -ENOMEM;
1349 		goto out;
1350 	}
1351 
1352 	for (i = 0; i < map->num_stripes; i++) {
1353 		bool is_sequential;
1354 		struct blk_zone zone;
1355 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1356 		int dev_replace_is_ongoing = 0;
1357 
1358 		device = map->stripes[i].dev;
1359 		physical[i] = map->stripes[i].physical;
1360 
1361 		if (device->bdev == NULL) {
1362 			alloc_offsets[i] = WP_MISSING_DEV;
1363 			continue;
1364 		}
1365 
1366 		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1367 		if (is_sequential)
1368 			num_sequential++;
1369 		else
1370 			num_conventional++;
1371 
1372 		/*
1373 		 * Consider a zone as active if we can allow any number of
1374 		 * active zones.
1375 		 */
1376 		if (!device->zone_info->max_active_zones)
1377 			__set_bit(i, active);
1378 
1379 		if (!is_sequential) {
1380 			alloc_offsets[i] = WP_CONVENTIONAL;
1381 			continue;
1382 		}
1383 
1384 		/*
1385 		 * This zone will be used for allocation, so mark this zone
1386 		 * non-empty.
1387 		 */
1388 		btrfs_dev_clear_zone_empty(device, physical[i]);
1389 
1390 		down_read(&dev_replace->rwsem);
1391 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1392 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1393 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1394 		up_read(&dev_replace->rwsem);
1395 
1396 		/*
1397 		 * The group is mapped to a sequential zone. Get the zone write
1398 		 * pointer to determine the allocation offset within the zone.
1399 		 */
1400 		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1401 		nofs_flag = memalloc_nofs_save();
1402 		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1403 		memalloc_nofs_restore(nofs_flag);
1404 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1405 			ret = 0;
1406 			alloc_offsets[i] = WP_MISSING_DEV;
1407 			continue;
1408 		} else if (ret) {
1409 			goto out;
1410 		}
1411 
1412 		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1413 			btrfs_err_in_rcu(fs_info,
1414 	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1415 				zone.start << SECTOR_SHIFT,
1416 				rcu_str_deref(device->name), device->devid);
1417 			ret = -EIO;
1418 			goto out;
1419 		}
1420 
1421 		caps[i] = (zone.capacity << SECTOR_SHIFT);
1422 
1423 		switch (zone.cond) {
1424 		case BLK_ZONE_COND_OFFLINE:
1425 		case BLK_ZONE_COND_READONLY:
1426 			btrfs_err(fs_info,
1427 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1428 				  physical[i] >> device->zone_info->zone_size_shift,
1429 				  rcu_str_deref(device->name), device->devid);
1430 			alloc_offsets[i] = WP_MISSING_DEV;
1431 			break;
1432 		case BLK_ZONE_COND_EMPTY:
1433 			alloc_offsets[i] = 0;
1434 			break;
1435 		case BLK_ZONE_COND_FULL:
1436 			alloc_offsets[i] = caps[i];
1437 			break;
1438 		default:
1439 			/* Partially used zone */
1440 			alloc_offsets[i] =
1441 					((zone.wp - zone.start) << SECTOR_SHIFT);
1442 			__set_bit(i, active);
1443 			break;
1444 		}
1445 	}
1446 
1447 	if (num_sequential > 0)
1448 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1449 
1450 	if (num_conventional > 0) {
1451 		/* Zone capacity is always zone size in emulation */
1452 		cache->zone_capacity = cache->length;
1453 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1454 		if (ret) {
1455 			btrfs_err(fs_info,
1456 			"zoned: failed to determine allocation offset of bg %llu",
1457 				  cache->start);
1458 			goto out;
1459 		} else if (map->num_stripes == num_conventional) {
1460 			cache->alloc_offset = last_alloc;
1461 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1462 			goto out;
1463 		}
1464 	}
1465 
1466 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1467 	case 0: /* single */
1468 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1469 			btrfs_err(fs_info,
1470 			"zoned: cannot recover write pointer for zone %llu",
1471 				physical[0]);
1472 			ret = -EIO;
1473 			goto out;
1474 		}
1475 		cache->alloc_offset = alloc_offsets[0];
1476 		cache->zone_capacity = caps[0];
1477 		if (test_bit(0, active))
1478 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1479 		break;
1480 	case BTRFS_BLOCK_GROUP_DUP:
1481 		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1482 			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1483 			ret = -EINVAL;
1484 			goto out;
1485 		}
1486 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1487 			btrfs_err(fs_info,
1488 			"zoned: cannot recover write pointer for zone %llu",
1489 				physical[0]);
1490 			ret = -EIO;
1491 			goto out;
1492 		}
1493 		if (alloc_offsets[1] == WP_MISSING_DEV) {
1494 			btrfs_err(fs_info,
1495 			"zoned: cannot recover write pointer for zone %llu",
1496 				physical[1]);
1497 			ret = -EIO;
1498 			goto out;
1499 		}
1500 		if (alloc_offsets[0] != alloc_offsets[1]) {
1501 			btrfs_err(fs_info,
1502 			"zoned: write pointer offset mismatch of zones in DUP profile");
1503 			ret = -EIO;
1504 			goto out;
1505 		}
1506 		if (test_bit(0, active) != test_bit(1, active)) {
1507 			if (!btrfs_zone_activate(cache)) {
1508 				ret = -EIO;
1509 				goto out;
1510 			}
1511 		} else {
1512 			if (test_bit(0, active))
1513 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1514 					&cache->runtime_flags);
1515 		}
1516 		cache->alloc_offset = alloc_offsets[0];
1517 		cache->zone_capacity = min(caps[0], caps[1]);
1518 		break;
1519 	case BTRFS_BLOCK_GROUP_RAID1:
1520 	case BTRFS_BLOCK_GROUP_RAID0:
1521 	case BTRFS_BLOCK_GROUP_RAID10:
1522 	case BTRFS_BLOCK_GROUP_RAID5:
1523 	case BTRFS_BLOCK_GROUP_RAID6:
1524 		/* non-single profiles are not supported yet */
1525 	default:
1526 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1527 			  btrfs_bg_type_to_raid_name(map->type));
1528 		ret = -EINVAL;
1529 		goto out;
1530 	}
1531 
1532 out:
1533 	if (cache->alloc_offset > fs_info->zone_size) {
1534 		btrfs_err(fs_info,
1535 			"zoned: invalid write pointer %llu in block group %llu",
1536 			cache->alloc_offset, cache->start);
1537 		ret = -EIO;
1538 	}
1539 
1540 	if (cache->alloc_offset > cache->zone_capacity) {
1541 		btrfs_err(fs_info,
1542 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1543 			  cache->alloc_offset, cache->zone_capacity,
1544 			  cache->start);
1545 		ret = -EIO;
1546 	}
1547 
1548 	/* An extent is allocated after the write pointer */
1549 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1550 		btrfs_err(fs_info,
1551 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1552 			  logical, last_alloc, cache->alloc_offset);
1553 		ret = -EIO;
1554 	}
1555 
1556 	if (!ret) {
1557 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1558 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1559 			btrfs_get_block_group(cache);
1560 			spin_lock(&fs_info->zone_active_bgs_lock);
1561 			list_add_tail(&cache->active_bg_list,
1562 				      &fs_info->zone_active_bgs);
1563 			spin_unlock(&fs_info->zone_active_bgs_lock);
1564 		}
1565 	} else {
1566 		kfree(cache->physical_map);
1567 		cache->physical_map = NULL;
1568 	}
1569 	bitmap_free(active);
1570 	kfree(physical);
1571 	kfree(caps);
1572 	kfree(alloc_offsets);
1573 	free_extent_map(em);
1574 
1575 	return ret;
1576 }
1577 
1578 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1579 {
1580 	u64 unusable, free;
1581 
1582 	if (!btrfs_is_zoned(cache->fs_info))
1583 		return;
1584 
1585 	WARN_ON(cache->bytes_super != 0);
1586 
1587 	/* Check for block groups never get activated */
1588 	if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &cache->fs_info->flags) &&
1589 	    cache->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM) &&
1590 	    !test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags) &&
1591 	    cache->alloc_offset == 0) {
1592 		unusable = cache->length;
1593 		free = 0;
1594 	} else {
1595 		unusable = (cache->alloc_offset - cache->used) +
1596 			   (cache->length - cache->zone_capacity);
1597 		free = cache->zone_capacity - cache->alloc_offset;
1598 	}
1599 
1600 	/* We only need ->free_space in ALLOC_SEQ block groups */
1601 	cache->cached = BTRFS_CACHE_FINISHED;
1602 	cache->free_space_ctl->free_space = free;
1603 	cache->zone_unusable = unusable;
1604 }
1605 
1606 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1607 			    struct extent_buffer *eb)
1608 {
1609 	if (!btrfs_is_zoned(eb->fs_info) ||
1610 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN))
1611 		return;
1612 
1613 	ASSERT(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1614 
1615 	memzero_extent_buffer(eb, 0, eb->len);
1616 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1617 	set_extent_buffer_dirty(eb);
1618 	set_extent_bit(&trans->dirty_pages, eb->start, eb->start + eb->len - 1,
1619 			EXTENT_DIRTY | EXTENT_NOWAIT, NULL);
1620 }
1621 
1622 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1623 {
1624 	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1625 	struct btrfs_inode *inode = bbio->inode;
1626 	struct btrfs_fs_info *fs_info = bbio->fs_info;
1627 	struct btrfs_block_group *cache;
1628 	bool ret = false;
1629 
1630 	if (!btrfs_is_zoned(fs_info))
1631 		return false;
1632 
1633 	if (!inode || !is_data_inode(&inode->vfs_inode))
1634 		return false;
1635 
1636 	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1637 		return false;
1638 
1639 	/*
1640 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1641 	 * extent layout the relocation code has.
1642 	 * Furthermore we have set aside own block-group from which only the
1643 	 * relocation "process" can allocate and make sure only one process at a
1644 	 * time can add pages to an extent that gets relocated, so it's safe to
1645 	 * use regular REQ_OP_WRITE for this special case.
1646 	 */
1647 	if (btrfs_is_data_reloc_root(inode->root))
1648 		return false;
1649 
1650 	cache = btrfs_lookup_block_group(fs_info, start);
1651 	ASSERT(cache);
1652 	if (!cache)
1653 		return false;
1654 
1655 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1656 	btrfs_put_block_group(cache);
1657 
1658 	return ret;
1659 }
1660 
1661 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1662 {
1663 	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1664 	struct btrfs_ordered_sum *sum = bbio->sums;
1665 
1666 	if (physical < bbio->orig_physical)
1667 		sum->logical -= bbio->orig_physical - physical;
1668 	else
1669 		sum->logical += physical - bbio->orig_physical;
1670 }
1671 
1672 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1673 					u64 logical)
1674 {
1675 	struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1676 	struct extent_map *em;
1677 
1678 	ordered->disk_bytenr = logical;
1679 
1680 	write_lock(&em_tree->lock);
1681 	em = search_extent_mapping(em_tree, ordered->file_offset,
1682 				   ordered->num_bytes);
1683 	em->block_start = logical;
1684 	free_extent_map(em);
1685 	write_unlock(&em_tree->lock);
1686 }
1687 
1688 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1689 				      u64 logical, u64 len)
1690 {
1691 	struct btrfs_ordered_extent *new;
1692 
1693 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1694 	    split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1695 			     ordered->num_bytes, len, logical))
1696 		return false;
1697 
1698 	new = btrfs_split_ordered_extent(ordered, len);
1699 	if (IS_ERR(new))
1700 		return false;
1701 	new->disk_bytenr = logical;
1702 	btrfs_finish_one_ordered(new);
1703 	return true;
1704 }
1705 
1706 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1707 {
1708 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1709 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1710 	struct btrfs_ordered_sum *sum =
1711 		list_first_entry(&ordered->list, typeof(*sum), list);
1712 	u64 logical = sum->logical;
1713 	u64 len = sum->len;
1714 
1715 	while (len < ordered->disk_num_bytes) {
1716 		sum = list_next_entry(sum, list);
1717 		if (sum->logical == logical + len) {
1718 			len += sum->len;
1719 			continue;
1720 		}
1721 		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1722 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1723 			btrfs_err(fs_info, "failed to split ordered extent");
1724 			goto out;
1725 		}
1726 		logical = sum->logical;
1727 		len = sum->len;
1728 	}
1729 
1730 	if (ordered->disk_bytenr != logical)
1731 		btrfs_rewrite_logical_zoned(ordered, logical);
1732 
1733 out:
1734 	/*
1735 	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1736 	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1737 	 * addresses and don't contain actual checksums.  We thus must free them
1738 	 * here so that we don't attempt to log the csums later.
1739 	 */
1740 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1741 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1742 		while ((sum = list_first_entry_or_null(&ordered->list,
1743 						       typeof(*sum), list))) {
1744 			list_del(&sum->list);
1745 			kfree(sum);
1746 		}
1747 	}
1748 }
1749 
1750 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1751 				    struct extent_buffer *eb,
1752 				    struct btrfs_block_group **cache_ret)
1753 {
1754 	struct btrfs_block_group *cache;
1755 	bool ret = true;
1756 
1757 	if (!btrfs_is_zoned(fs_info))
1758 		return true;
1759 
1760 	cache = btrfs_lookup_block_group(fs_info, eb->start);
1761 	if (!cache)
1762 		return true;
1763 
1764 	if (cache->meta_write_pointer != eb->start) {
1765 		btrfs_put_block_group(cache);
1766 		cache = NULL;
1767 		ret = false;
1768 	} else {
1769 		cache->meta_write_pointer = eb->start + eb->len;
1770 	}
1771 
1772 	*cache_ret = cache;
1773 
1774 	return ret;
1775 }
1776 
1777 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1778 				     struct extent_buffer *eb)
1779 {
1780 	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1781 		return;
1782 
1783 	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1784 	cache->meta_write_pointer = eb->start;
1785 }
1786 
1787 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1788 {
1789 	if (!btrfs_dev_is_sequential(device, physical))
1790 		return -EOPNOTSUPP;
1791 
1792 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1793 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1794 }
1795 
1796 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1797 			  struct blk_zone *zone)
1798 {
1799 	struct btrfs_io_context *bioc = NULL;
1800 	u64 mapped_length = PAGE_SIZE;
1801 	unsigned int nofs_flag;
1802 	int nmirrors;
1803 	int i, ret;
1804 
1805 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1806 			      &mapped_length, &bioc, NULL, NULL, 1);
1807 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1808 		ret = -EIO;
1809 		goto out_put_bioc;
1810 	}
1811 
1812 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1813 		ret = -EINVAL;
1814 		goto out_put_bioc;
1815 	}
1816 
1817 	nofs_flag = memalloc_nofs_save();
1818 	nmirrors = (int)bioc->num_stripes;
1819 	for (i = 0; i < nmirrors; i++) {
1820 		u64 physical = bioc->stripes[i].physical;
1821 		struct btrfs_device *dev = bioc->stripes[i].dev;
1822 
1823 		/* Missing device */
1824 		if (!dev->bdev)
1825 			continue;
1826 
1827 		ret = btrfs_get_dev_zone(dev, physical, zone);
1828 		/* Failing device */
1829 		if (ret == -EIO || ret == -EOPNOTSUPP)
1830 			continue;
1831 		break;
1832 	}
1833 	memalloc_nofs_restore(nofs_flag);
1834 out_put_bioc:
1835 	btrfs_put_bioc(bioc);
1836 	return ret;
1837 }
1838 
1839 /*
1840  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1841  * filling zeros between @physical_pos to a write pointer of dev-replace
1842  * source device.
1843  */
1844 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1845 				    u64 physical_start, u64 physical_pos)
1846 {
1847 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1848 	struct blk_zone zone;
1849 	u64 length;
1850 	u64 wp;
1851 	int ret;
1852 
1853 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1854 		return 0;
1855 
1856 	ret = read_zone_info(fs_info, logical, &zone);
1857 	if (ret)
1858 		return ret;
1859 
1860 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1861 
1862 	if (physical_pos == wp)
1863 		return 0;
1864 
1865 	if (physical_pos > wp)
1866 		return -EUCLEAN;
1867 
1868 	length = wp - physical_pos;
1869 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1870 }
1871 
1872 /*
1873  * Activate block group and underlying device zones
1874  *
1875  * @block_group: the block group to activate
1876  *
1877  * Return: true on success, false otherwise
1878  */
1879 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1880 {
1881 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1882 	struct btrfs_space_info *space_info = block_group->space_info;
1883 	struct map_lookup *map;
1884 	struct btrfs_device *device;
1885 	u64 physical;
1886 	bool ret;
1887 	int i;
1888 
1889 	if (!btrfs_is_zoned(block_group->fs_info))
1890 		return true;
1891 
1892 	map = block_group->physical_map;
1893 
1894 	spin_lock(&space_info->lock);
1895 	spin_lock(&block_group->lock);
1896 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1897 		ret = true;
1898 		goto out_unlock;
1899 	}
1900 
1901 	/* No space left */
1902 	if (btrfs_zoned_bg_is_full(block_group)) {
1903 		ret = false;
1904 		goto out_unlock;
1905 	}
1906 
1907 	for (i = 0; i < map->num_stripes; i++) {
1908 		device = map->stripes[i].dev;
1909 		physical = map->stripes[i].physical;
1910 
1911 		if (device->zone_info->max_active_zones == 0)
1912 			continue;
1913 
1914 		if (!btrfs_dev_set_active_zone(device, physical)) {
1915 			/* Cannot activate the zone */
1916 			ret = false;
1917 			goto out_unlock;
1918 		}
1919 	}
1920 
1921 	/* Successfully activated all the zones */
1922 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1923 	WARN_ON(block_group->alloc_offset != 0);
1924 	if (block_group->zone_unusable == block_group->length) {
1925 		block_group->zone_unusable = block_group->length - block_group->zone_capacity;
1926 		space_info->bytes_zone_unusable -= block_group->zone_capacity;
1927 	}
1928 	spin_unlock(&block_group->lock);
1929 	btrfs_try_granting_tickets(fs_info, space_info);
1930 	spin_unlock(&space_info->lock);
1931 
1932 	/* For the active block group list */
1933 	btrfs_get_block_group(block_group);
1934 
1935 	spin_lock(&fs_info->zone_active_bgs_lock);
1936 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1937 	spin_unlock(&fs_info->zone_active_bgs_lock);
1938 
1939 	return true;
1940 
1941 out_unlock:
1942 	spin_unlock(&block_group->lock);
1943 	spin_unlock(&space_info->lock);
1944 	return ret;
1945 }
1946 
1947 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1948 {
1949 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1950 	const u64 end = block_group->start + block_group->length;
1951 	struct radix_tree_iter iter;
1952 	struct extent_buffer *eb;
1953 	void __rcu **slot;
1954 
1955 	rcu_read_lock();
1956 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1957 				 block_group->start >> fs_info->sectorsize_bits) {
1958 		eb = radix_tree_deref_slot(slot);
1959 		if (!eb)
1960 			continue;
1961 		if (radix_tree_deref_retry(eb)) {
1962 			slot = radix_tree_iter_retry(&iter);
1963 			continue;
1964 		}
1965 
1966 		if (eb->start < block_group->start)
1967 			continue;
1968 		if (eb->start >= end)
1969 			break;
1970 
1971 		slot = radix_tree_iter_resume(slot, &iter);
1972 		rcu_read_unlock();
1973 		wait_on_extent_buffer_writeback(eb);
1974 		rcu_read_lock();
1975 	}
1976 	rcu_read_unlock();
1977 }
1978 
1979 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1980 {
1981 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1982 	struct map_lookup *map;
1983 	const bool is_metadata = (block_group->flags &
1984 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1985 	int ret = 0;
1986 	int i;
1987 
1988 	spin_lock(&block_group->lock);
1989 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1990 		spin_unlock(&block_group->lock);
1991 		return 0;
1992 	}
1993 
1994 	/* Check if we have unwritten allocated space */
1995 	if (is_metadata &&
1996 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1997 		spin_unlock(&block_group->lock);
1998 		return -EAGAIN;
1999 	}
2000 
2001 	/*
2002 	 * If we are sure that the block group is full (= no more room left for
2003 	 * new allocation) and the IO for the last usable block is completed, we
2004 	 * don't need to wait for the other IOs. This holds because we ensure
2005 	 * the sequential IO submissions using the ZONE_APPEND command for data
2006 	 * and block_group->meta_write_pointer for metadata.
2007 	 */
2008 	if (!fully_written) {
2009 		spin_unlock(&block_group->lock);
2010 
2011 		ret = btrfs_inc_block_group_ro(block_group, false);
2012 		if (ret)
2013 			return ret;
2014 
2015 		/* Ensure all writes in this block group finish */
2016 		btrfs_wait_block_group_reservations(block_group);
2017 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2018 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2019 					 block_group->length);
2020 		/* Wait for extent buffers to be written. */
2021 		if (is_metadata)
2022 			wait_eb_writebacks(block_group);
2023 
2024 		spin_lock(&block_group->lock);
2025 
2026 		/*
2027 		 * Bail out if someone already deactivated the block group, or
2028 		 * allocated space is left in the block group.
2029 		 */
2030 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2031 			      &block_group->runtime_flags)) {
2032 			spin_unlock(&block_group->lock);
2033 			btrfs_dec_block_group_ro(block_group);
2034 			return 0;
2035 		}
2036 
2037 		if (block_group->reserved) {
2038 			spin_unlock(&block_group->lock);
2039 			btrfs_dec_block_group_ro(block_group);
2040 			return -EAGAIN;
2041 		}
2042 	}
2043 
2044 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2045 	block_group->alloc_offset = block_group->zone_capacity;
2046 	block_group->free_space_ctl->free_space = 0;
2047 	btrfs_clear_treelog_bg(block_group);
2048 	btrfs_clear_data_reloc_bg(block_group);
2049 	spin_unlock(&block_group->lock);
2050 
2051 	map = block_group->physical_map;
2052 	for (i = 0; i < map->num_stripes; i++) {
2053 		struct btrfs_device *device = map->stripes[i].dev;
2054 		const u64 physical = map->stripes[i].physical;
2055 
2056 		if (device->zone_info->max_active_zones == 0)
2057 			continue;
2058 
2059 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2060 				       physical >> SECTOR_SHIFT,
2061 				       device->zone_info->zone_size >> SECTOR_SHIFT,
2062 				       GFP_NOFS);
2063 
2064 		if (ret)
2065 			return ret;
2066 
2067 		btrfs_dev_clear_active_zone(device, physical);
2068 	}
2069 
2070 	if (!fully_written)
2071 		btrfs_dec_block_group_ro(block_group);
2072 
2073 	spin_lock(&fs_info->zone_active_bgs_lock);
2074 	ASSERT(!list_empty(&block_group->active_bg_list));
2075 	list_del_init(&block_group->active_bg_list);
2076 	spin_unlock(&fs_info->zone_active_bgs_lock);
2077 
2078 	/* For active_bg_list */
2079 	btrfs_put_block_group(block_group);
2080 
2081 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2082 
2083 	return 0;
2084 }
2085 
2086 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2087 {
2088 	if (!btrfs_is_zoned(block_group->fs_info))
2089 		return 0;
2090 
2091 	return do_zone_finish(block_group, false);
2092 }
2093 
2094 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2095 {
2096 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2097 	struct btrfs_device *device;
2098 	bool ret = false;
2099 
2100 	if (!btrfs_is_zoned(fs_info))
2101 		return true;
2102 
2103 	/* Check if there is a device with active zones left */
2104 	mutex_lock(&fs_info->chunk_mutex);
2105 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2106 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2107 
2108 		if (!device->bdev)
2109 			continue;
2110 
2111 		if (!zinfo->max_active_zones) {
2112 			ret = true;
2113 			break;
2114 		}
2115 
2116 		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2117 		case 0: /* single */
2118 			ret = (atomic_read(&zinfo->active_zones_left) >= 1);
2119 			break;
2120 		case BTRFS_BLOCK_GROUP_DUP:
2121 			ret = (atomic_read(&zinfo->active_zones_left) >= 2);
2122 			break;
2123 		}
2124 		if (ret)
2125 			break;
2126 	}
2127 	mutex_unlock(&fs_info->chunk_mutex);
2128 
2129 	if (!ret)
2130 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2131 
2132 	return ret;
2133 }
2134 
2135 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2136 {
2137 	struct btrfs_block_group *block_group;
2138 	u64 min_alloc_bytes;
2139 
2140 	if (!btrfs_is_zoned(fs_info))
2141 		return;
2142 
2143 	block_group = btrfs_lookup_block_group(fs_info, logical);
2144 	ASSERT(block_group);
2145 
2146 	/* No MIXED_BG on zoned btrfs. */
2147 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2148 		min_alloc_bytes = fs_info->sectorsize;
2149 	else
2150 		min_alloc_bytes = fs_info->nodesize;
2151 
2152 	/* Bail out if we can allocate more data from this block group. */
2153 	if (logical + length + min_alloc_bytes <=
2154 	    block_group->start + block_group->zone_capacity)
2155 		goto out;
2156 
2157 	do_zone_finish(block_group, true);
2158 
2159 out:
2160 	btrfs_put_block_group(block_group);
2161 }
2162 
2163 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2164 {
2165 	struct btrfs_block_group *bg =
2166 		container_of(work, struct btrfs_block_group, zone_finish_work);
2167 
2168 	wait_on_extent_buffer_writeback(bg->last_eb);
2169 	free_extent_buffer(bg->last_eb);
2170 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2171 	btrfs_put_block_group(bg);
2172 }
2173 
2174 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2175 				   struct extent_buffer *eb)
2176 {
2177 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2178 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2179 		return;
2180 
2181 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2182 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2183 			  bg->start);
2184 		return;
2185 	}
2186 
2187 	/* For the work */
2188 	btrfs_get_block_group(bg);
2189 	atomic_inc(&eb->refs);
2190 	bg->last_eb = eb;
2191 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2192 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2193 }
2194 
2195 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2196 {
2197 	struct btrfs_fs_info *fs_info = bg->fs_info;
2198 
2199 	spin_lock(&fs_info->relocation_bg_lock);
2200 	if (fs_info->data_reloc_bg == bg->start)
2201 		fs_info->data_reloc_bg = 0;
2202 	spin_unlock(&fs_info->relocation_bg_lock);
2203 }
2204 
2205 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2206 {
2207 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2208 	struct btrfs_device *device;
2209 
2210 	if (!btrfs_is_zoned(fs_info))
2211 		return;
2212 
2213 	mutex_lock(&fs_devices->device_list_mutex);
2214 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2215 		if (device->zone_info) {
2216 			vfree(device->zone_info->zone_cache);
2217 			device->zone_info->zone_cache = NULL;
2218 		}
2219 	}
2220 	mutex_unlock(&fs_devices->device_list_mutex);
2221 }
2222 
2223 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2224 {
2225 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2226 	struct btrfs_device *device;
2227 	u64 used = 0;
2228 	u64 total = 0;
2229 	u64 factor;
2230 
2231 	ASSERT(btrfs_is_zoned(fs_info));
2232 
2233 	if (fs_info->bg_reclaim_threshold == 0)
2234 		return false;
2235 
2236 	mutex_lock(&fs_devices->device_list_mutex);
2237 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2238 		if (!device->bdev)
2239 			continue;
2240 
2241 		total += device->disk_total_bytes;
2242 		used += device->bytes_used;
2243 	}
2244 	mutex_unlock(&fs_devices->device_list_mutex);
2245 
2246 	factor = div64_u64(used * 100, total);
2247 	return factor >= fs_info->bg_reclaim_threshold;
2248 }
2249 
2250 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2251 				       u64 length)
2252 {
2253 	struct btrfs_block_group *block_group;
2254 
2255 	if (!btrfs_is_zoned(fs_info))
2256 		return;
2257 
2258 	block_group = btrfs_lookup_block_group(fs_info, logical);
2259 	/* It should be called on a previous data relocation block group. */
2260 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2261 
2262 	spin_lock(&block_group->lock);
2263 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2264 		goto out;
2265 
2266 	/* All relocation extents are written. */
2267 	if (block_group->start + block_group->alloc_offset == logical + length) {
2268 		/* Now, release this block group for further allocations. */
2269 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2270 			  &block_group->runtime_flags);
2271 	}
2272 
2273 out:
2274 	spin_unlock(&block_group->lock);
2275 	btrfs_put_block_group(block_group);
2276 }
2277 
2278 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2279 {
2280 	struct btrfs_block_group *block_group;
2281 	struct btrfs_block_group *min_bg = NULL;
2282 	u64 min_avail = U64_MAX;
2283 	int ret;
2284 
2285 	spin_lock(&fs_info->zone_active_bgs_lock);
2286 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2287 			    active_bg_list) {
2288 		u64 avail;
2289 
2290 		spin_lock(&block_group->lock);
2291 		if (block_group->reserved || block_group->alloc_offset == 0 ||
2292 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2293 			spin_unlock(&block_group->lock);
2294 			continue;
2295 		}
2296 
2297 		avail = block_group->zone_capacity - block_group->alloc_offset;
2298 		if (min_avail > avail) {
2299 			if (min_bg)
2300 				btrfs_put_block_group(min_bg);
2301 			min_bg = block_group;
2302 			min_avail = avail;
2303 			btrfs_get_block_group(min_bg);
2304 		}
2305 		spin_unlock(&block_group->lock);
2306 	}
2307 	spin_unlock(&fs_info->zone_active_bgs_lock);
2308 
2309 	if (!min_bg)
2310 		return 0;
2311 
2312 	ret = btrfs_zone_finish(min_bg);
2313 	btrfs_put_block_group(min_bg);
2314 
2315 	return ret < 0 ? ret : 1;
2316 }
2317 
2318 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2319 				struct btrfs_space_info *space_info,
2320 				bool do_finish)
2321 {
2322 	struct btrfs_block_group *bg;
2323 	int index;
2324 
2325 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2326 		return 0;
2327 
2328 	for (;;) {
2329 		int ret;
2330 		bool need_finish = false;
2331 
2332 		down_read(&space_info->groups_sem);
2333 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2334 			list_for_each_entry(bg, &space_info->block_groups[index],
2335 					    list) {
2336 				if (!spin_trylock(&bg->lock))
2337 					continue;
2338 				if (btrfs_zoned_bg_is_full(bg) ||
2339 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2340 					     &bg->runtime_flags)) {
2341 					spin_unlock(&bg->lock);
2342 					continue;
2343 				}
2344 				spin_unlock(&bg->lock);
2345 
2346 				if (btrfs_zone_activate(bg)) {
2347 					up_read(&space_info->groups_sem);
2348 					return 1;
2349 				}
2350 
2351 				need_finish = true;
2352 			}
2353 		}
2354 		up_read(&space_info->groups_sem);
2355 
2356 		if (!do_finish || !need_finish)
2357 			break;
2358 
2359 		ret = btrfs_zone_finish_one_bg(fs_info);
2360 		if (ret == 0)
2361 			break;
2362 		if (ret < 0)
2363 			return ret;
2364 	}
2365 
2366 	return 0;
2367 }
2368