xref: /openbmc/linux/fs/btrfs/zoned.c (revision acf50233)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 
19 /* Maximum number of zones to report per blkdev_report_zones() call */
20 #define BTRFS_REPORT_NR_ZONES   4096
21 /* Invalid allocation pointer value for missing devices */
22 #define WP_MISSING_DEV ((u64)-1)
23 /* Pseudo write pointer value for conventional zone */
24 #define WP_CONVENTIONAL ((u64)-2)
25 
26 /*
27  * Location of the first zone of superblock logging zone pairs.
28  *
29  * - primary superblock:    0B (zone 0)
30  * - first copy:          512G (zone starting at that offset)
31  * - second copy:           4T (zone starting at that offset)
32  */
33 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
34 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
35 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
36 
37 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39 
40 /* Number of superblock log zones */
41 #define BTRFS_NR_SB_LOG_ZONES 2
42 
43 /*
44  * Minimum of active zones we need:
45  *
46  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48  * - 1 zone for tree-log dedicated block group
49  * - 1 zone for relocation
50  */
51 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
52 
53 /*
54  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
55  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
56  * We do not expect the zone size to become larger than 8GiB or smaller than
57  * 4MiB in the near future.
58  */
59 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
60 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
61 
62 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
63 
64 static inline bool sb_zone_is_full(const struct blk_zone *zone)
65 {
66 	return (zone->cond == BLK_ZONE_COND_FULL) ||
67 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
68 }
69 
70 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
71 {
72 	struct blk_zone *zones = data;
73 
74 	memcpy(&zones[idx], zone, sizeof(*zone));
75 
76 	return 0;
77 }
78 
79 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
80 			    u64 *wp_ret)
81 {
82 	bool empty[BTRFS_NR_SB_LOG_ZONES];
83 	bool full[BTRFS_NR_SB_LOG_ZONES];
84 	sector_t sector;
85 	int i;
86 
87 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
88 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
89 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
90 		full[i] = sb_zone_is_full(&zones[i]);
91 	}
92 
93 	/*
94 	 * Possible states of log buffer zones
95 	 *
96 	 *           Empty[0]  In use[0]  Full[0]
97 	 * Empty[1]         *          x        0
98 	 * In use[1]        0          x        0
99 	 * Full[1]          1          1        C
100 	 *
101 	 * Log position:
102 	 *   *: Special case, no superblock is written
103 	 *   0: Use write pointer of zones[0]
104 	 *   1: Use write pointer of zones[1]
105 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
106 	 *      one determined by generation
107 	 *   x: Invalid state
108 	 */
109 
110 	if (empty[0] && empty[1]) {
111 		/* Special case to distinguish no superblock to read */
112 		*wp_ret = zones[0].start << SECTOR_SHIFT;
113 		return -ENOENT;
114 	} else if (full[0] && full[1]) {
115 		/* Compare two super blocks */
116 		struct address_space *mapping = bdev->bd_inode->i_mapping;
117 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
118 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
119 		int i;
120 
121 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
122 			u64 bytenr;
123 
124 			bytenr = ((zones[i].start + zones[i].len)
125 				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
126 
127 			page[i] = read_cache_page_gfp(mapping,
128 					bytenr >> PAGE_SHIFT, GFP_NOFS);
129 			if (IS_ERR(page[i])) {
130 				if (i == 1)
131 					btrfs_release_disk_super(super[0]);
132 				return PTR_ERR(page[i]);
133 			}
134 			super[i] = page_address(page[i]);
135 		}
136 
137 		if (super[0]->generation > super[1]->generation)
138 			sector = zones[1].start;
139 		else
140 			sector = zones[0].start;
141 
142 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
143 			btrfs_release_disk_super(super[i]);
144 	} else if (!full[0] && (empty[1] || full[1])) {
145 		sector = zones[0].wp;
146 	} else if (full[0]) {
147 		sector = zones[1].wp;
148 	} else {
149 		return -EUCLEAN;
150 	}
151 	*wp_ret = sector << SECTOR_SHIFT;
152 	return 0;
153 }
154 
155 /*
156  * Get the first zone number of the superblock mirror
157  */
158 static inline u32 sb_zone_number(int shift, int mirror)
159 {
160 	u64 zone;
161 
162 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
163 	switch (mirror) {
164 	case 0: zone = 0; break;
165 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
166 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
167 	}
168 
169 	ASSERT(zone <= U32_MAX);
170 
171 	return (u32)zone;
172 }
173 
174 static inline sector_t zone_start_sector(u32 zone_number,
175 					 struct block_device *bdev)
176 {
177 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
178 }
179 
180 static inline u64 zone_start_physical(u32 zone_number,
181 				      struct btrfs_zoned_device_info *zone_info)
182 {
183 	return (u64)zone_number << zone_info->zone_size_shift;
184 }
185 
186 /*
187  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
188  * device into static sized chunks and fake a conventional zone on each of
189  * them.
190  */
191 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
192 				struct blk_zone *zones, unsigned int nr_zones)
193 {
194 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
195 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
196 	unsigned int i;
197 
198 	pos >>= SECTOR_SHIFT;
199 	for (i = 0; i < nr_zones; i++) {
200 		zones[i].start = i * zone_sectors + pos;
201 		zones[i].len = zone_sectors;
202 		zones[i].capacity = zone_sectors;
203 		zones[i].wp = zones[i].start + zone_sectors;
204 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
205 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
206 
207 		if (zones[i].wp >= bdev_size) {
208 			i++;
209 			break;
210 		}
211 	}
212 
213 	return i;
214 }
215 
216 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
217 			       struct blk_zone *zones, unsigned int *nr_zones)
218 {
219 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
220 	u32 zno;
221 	int ret;
222 
223 	if (!*nr_zones)
224 		return 0;
225 
226 	if (!bdev_is_zoned(device->bdev)) {
227 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
228 		*nr_zones = ret;
229 		return 0;
230 	}
231 
232 	/* Check cache */
233 	if (zinfo->zone_cache) {
234 		unsigned int i;
235 
236 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
237 		zno = pos >> zinfo->zone_size_shift;
238 		/*
239 		 * We cannot report zones beyond the zone end. So, it is OK to
240 		 * cap *nr_zones to at the end.
241 		 */
242 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
243 
244 		for (i = 0; i < *nr_zones; i++) {
245 			struct blk_zone *zone_info;
246 
247 			zone_info = &zinfo->zone_cache[zno + i];
248 			if (!zone_info->len)
249 				break;
250 		}
251 
252 		if (i == *nr_zones) {
253 			/* Cache hit on all the zones */
254 			memcpy(zones, zinfo->zone_cache + zno,
255 			       sizeof(*zinfo->zone_cache) * *nr_zones);
256 			return 0;
257 		}
258 	}
259 
260 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
261 				  copy_zone_info_cb, zones);
262 	if (ret < 0) {
263 		btrfs_err_in_rcu(device->fs_info,
264 				 "zoned: failed to read zone %llu on %s (devid %llu)",
265 				 pos, rcu_str_deref(device->name),
266 				 device->devid);
267 		return ret;
268 	}
269 	*nr_zones = ret;
270 	if (!ret)
271 		return -EIO;
272 
273 	/* Populate cache */
274 	if (zinfo->zone_cache)
275 		memcpy(zinfo->zone_cache + zno, zones,
276 		       sizeof(*zinfo->zone_cache) * *nr_zones);
277 
278 	return 0;
279 }
280 
281 /* The emulated zone size is determined from the size of device extent */
282 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
283 {
284 	struct btrfs_path *path;
285 	struct btrfs_root *root = fs_info->dev_root;
286 	struct btrfs_key key;
287 	struct extent_buffer *leaf;
288 	struct btrfs_dev_extent *dext;
289 	int ret = 0;
290 
291 	key.objectid = 1;
292 	key.type = BTRFS_DEV_EXTENT_KEY;
293 	key.offset = 0;
294 
295 	path = btrfs_alloc_path();
296 	if (!path)
297 		return -ENOMEM;
298 
299 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
300 	if (ret < 0)
301 		goto out;
302 
303 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
304 		ret = btrfs_next_leaf(root, path);
305 		if (ret < 0)
306 			goto out;
307 		/* No dev extents at all? Not good */
308 		if (ret > 0) {
309 			ret = -EUCLEAN;
310 			goto out;
311 		}
312 	}
313 
314 	leaf = path->nodes[0];
315 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
316 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
317 	ret = 0;
318 
319 out:
320 	btrfs_free_path(path);
321 
322 	return ret;
323 }
324 
325 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
326 {
327 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
328 	struct btrfs_device *device;
329 	int ret = 0;
330 
331 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
332 	if (!btrfs_fs_incompat(fs_info, ZONED))
333 		return 0;
334 
335 	mutex_lock(&fs_devices->device_list_mutex);
336 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
337 		/* We can skip reading of zone info for missing devices */
338 		if (!device->bdev)
339 			continue;
340 
341 		ret = btrfs_get_dev_zone_info(device, true);
342 		if (ret)
343 			break;
344 	}
345 	mutex_unlock(&fs_devices->device_list_mutex);
346 
347 	return ret;
348 }
349 
350 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
351 {
352 	struct btrfs_fs_info *fs_info = device->fs_info;
353 	struct btrfs_zoned_device_info *zone_info = NULL;
354 	struct block_device *bdev = device->bdev;
355 	unsigned int max_active_zones;
356 	unsigned int nactive;
357 	sector_t nr_sectors;
358 	sector_t sector = 0;
359 	struct blk_zone *zones = NULL;
360 	unsigned int i, nreported = 0, nr_zones;
361 	sector_t zone_sectors;
362 	char *model, *emulated;
363 	int ret;
364 
365 	/*
366 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
367 	 * yet be set.
368 	 */
369 	if (!btrfs_fs_incompat(fs_info, ZONED))
370 		return 0;
371 
372 	if (device->zone_info)
373 		return 0;
374 
375 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
376 	if (!zone_info)
377 		return -ENOMEM;
378 
379 	device->zone_info = zone_info;
380 
381 	if (!bdev_is_zoned(bdev)) {
382 		if (!fs_info->zone_size) {
383 			ret = calculate_emulated_zone_size(fs_info);
384 			if (ret)
385 				goto out;
386 		}
387 
388 		ASSERT(fs_info->zone_size);
389 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
390 	} else {
391 		zone_sectors = bdev_zone_sectors(bdev);
392 	}
393 
394 	/* Check if it's power of 2 (see is_power_of_2) */
395 	ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
396 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
397 
398 	/* We reject devices with a zone size larger than 8GB */
399 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
400 		btrfs_err_in_rcu(fs_info,
401 		"zoned: %s: zone size %llu larger than supported maximum %llu",
402 				 rcu_str_deref(device->name),
403 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
404 		ret = -EINVAL;
405 		goto out;
406 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
407 		btrfs_err_in_rcu(fs_info,
408 		"zoned: %s: zone size %llu smaller than supported minimum %u",
409 				 rcu_str_deref(device->name),
410 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
411 		ret = -EINVAL;
412 		goto out;
413 	}
414 
415 	nr_sectors = bdev_nr_sectors(bdev);
416 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
417 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
418 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
419 		zone_info->nr_zones++;
420 
421 	max_active_zones = bdev_max_active_zones(bdev);
422 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
423 		btrfs_err_in_rcu(fs_info,
424 "zoned: %s: max active zones %u is too small, need at least %u active zones",
425 				 rcu_str_deref(device->name), max_active_zones,
426 				 BTRFS_MIN_ACTIVE_ZONES);
427 		ret = -EINVAL;
428 		goto out;
429 	}
430 	zone_info->max_active_zones = max_active_zones;
431 
432 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
433 	if (!zone_info->seq_zones) {
434 		ret = -ENOMEM;
435 		goto out;
436 	}
437 
438 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
439 	if (!zone_info->empty_zones) {
440 		ret = -ENOMEM;
441 		goto out;
442 	}
443 
444 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
445 	if (!zone_info->active_zones) {
446 		ret = -ENOMEM;
447 		goto out;
448 	}
449 
450 	zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
451 	if (!zones) {
452 		ret = -ENOMEM;
453 		goto out;
454 	}
455 
456 	/*
457 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
458 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
459 	 * use the cache.
460 	 */
461 	if (populate_cache && bdev_is_zoned(device->bdev)) {
462 		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
463 						zone_info->nr_zones);
464 		if (!zone_info->zone_cache) {
465 			btrfs_err_in_rcu(device->fs_info,
466 				"zoned: failed to allocate zone cache for %s",
467 				rcu_str_deref(device->name));
468 			ret = -ENOMEM;
469 			goto out;
470 		}
471 	}
472 
473 	/* Get zones type */
474 	nactive = 0;
475 	while (sector < nr_sectors) {
476 		nr_zones = BTRFS_REPORT_NR_ZONES;
477 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
478 					  &nr_zones);
479 		if (ret)
480 			goto out;
481 
482 		for (i = 0; i < nr_zones; i++) {
483 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
484 				__set_bit(nreported, zone_info->seq_zones);
485 			switch (zones[i].cond) {
486 			case BLK_ZONE_COND_EMPTY:
487 				__set_bit(nreported, zone_info->empty_zones);
488 				break;
489 			case BLK_ZONE_COND_IMP_OPEN:
490 			case BLK_ZONE_COND_EXP_OPEN:
491 			case BLK_ZONE_COND_CLOSED:
492 				__set_bit(nreported, zone_info->active_zones);
493 				nactive++;
494 				break;
495 			}
496 			nreported++;
497 		}
498 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
499 	}
500 
501 	if (nreported != zone_info->nr_zones) {
502 		btrfs_err_in_rcu(device->fs_info,
503 				 "inconsistent number of zones on %s (%u/%u)",
504 				 rcu_str_deref(device->name), nreported,
505 				 zone_info->nr_zones);
506 		ret = -EIO;
507 		goto out;
508 	}
509 
510 	if (max_active_zones) {
511 		if (nactive > max_active_zones) {
512 			btrfs_err_in_rcu(device->fs_info,
513 			"zoned: %u active zones on %s exceeds max_active_zones %u",
514 					 nactive, rcu_str_deref(device->name),
515 					 max_active_zones);
516 			ret = -EIO;
517 			goto out;
518 		}
519 		atomic_set(&zone_info->active_zones_left,
520 			   max_active_zones - nactive);
521 	}
522 
523 	/* Validate superblock log */
524 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
525 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
526 		u32 sb_zone;
527 		u64 sb_wp;
528 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
529 
530 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
531 		if (sb_zone + 1 >= zone_info->nr_zones)
532 			continue;
533 
534 		ret = btrfs_get_dev_zones(device,
535 					  zone_start_physical(sb_zone, zone_info),
536 					  &zone_info->sb_zones[sb_pos],
537 					  &nr_zones);
538 		if (ret)
539 			goto out;
540 
541 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
542 			btrfs_err_in_rcu(device->fs_info,
543 	"zoned: failed to read super block log zone info at devid %llu zone %u",
544 					 device->devid, sb_zone);
545 			ret = -EUCLEAN;
546 			goto out;
547 		}
548 
549 		/*
550 		 * If zones[0] is conventional, always use the beginning of the
551 		 * zone to record superblock. No need to validate in that case.
552 		 */
553 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
554 		    BLK_ZONE_TYPE_CONVENTIONAL)
555 			continue;
556 
557 		ret = sb_write_pointer(device->bdev,
558 				       &zone_info->sb_zones[sb_pos], &sb_wp);
559 		if (ret != -ENOENT && ret) {
560 			btrfs_err_in_rcu(device->fs_info,
561 			"zoned: super block log zone corrupted devid %llu zone %u",
562 					 device->devid, sb_zone);
563 			ret = -EUCLEAN;
564 			goto out;
565 		}
566 	}
567 
568 
569 	kfree(zones);
570 
571 	switch (bdev_zoned_model(bdev)) {
572 	case BLK_ZONED_HM:
573 		model = "host-managed zoned";
574 		emulated = "";
575 		break;
576 	case BLK_ZONED_HA:
577 		model = "host-aware zoned";
578 		emulated = "";
579 		break;
580 	case BLK_ZONED_NONE:
581 		model = "regular";
582 		emulated = "emulated ";
583 		break;
584 	default:
585 		/* Just in case */
586 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
587 				 bdev_zoned_model(bdev),
588 				 rcu_str_deref(device->name));
589 		ret = -EOPNOTSUPP;
590 		goto out_free_zone_info;
591 	}
592 
593 	btrfs_info_in_rcu(fs_info,
594 		"%s block device %s, %u %szones of %llu bytes",
595 		model, rcu_str_deref(device->name), zone_info->nr_zones,
596 		emulated, zone_info->zone_size);
597 
598 	return 0;
599 
600 out:
601 	kfree(zones);
602 out_free_zone_info:
603 	btrfs_destroy_dev_zone_info(device);
604 
605 	return ret;
606 }
607 
608 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
609 {
610 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
611 
612 	if (!zone_info)
613 		return;
614 
615 	bitmap_free(zone_info->active_zones);
616 	bitmap_free(zone_info->seq_zones);
617 	bitmap_free(zone_info->empty_zones);
618 	vfree(zone_info->zone_cache);
619 	kfree(zone_info);
620 	device->zone_info = NULL;
621 }
622 
623 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
624 		       struct blk_zone *zone)
625 {
626 	unsigned int nr_zones = 1;
627 	int ret;
628 
629 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
630 	if (ret != 0 || !nr_zones)
631 		return ret ? ret : -EIO;
632 
633 	return 0;
634 }
635 
636 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
637 {
638 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
639 	struct btrfs_device *device;
640 	u64 zoned_devices = 0;
641 	u64 nr_devices = 0;
642 	u64 zone_size = 0;
643 	const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
644 	int ret = 0;
645 
646 	/* Count zoned devices */
647 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
648 		enum blk_zoned_model model;
649 
650 		if (!device->bdev)
651 			continue;
652 
653 		model = bdev_zoned_model(device->bdev);
654 		/*
655 		 * A Host-Managed zoned device must be used as a zoned device.
656 		 * A Host-Aware zoned device and a non-zoned devices can be
657 		 * treated as a zoned device, if ZONED flag is enabled in the
658 		 * superblock.
659 		 */
660 		if (model == BLK_ZONED_HM ||
661 		    (model == BLK_ZONED_HA && incompat_zoned) ||
662 		    (model == BLK_ZONED_NONE && incompat_zoned)) {
663 			struct btrfs_zoned_device_info *zone_info;
664 
665 			zone_info = device->zone_info;
666 			zoned_devices++;
667 			if (!zone_size) {
668 				zone_size = zone_info->zone_size;
669 			} else if (zone_info->zone_size != zone_size) {
670 				btrfs_err(fs_info,
671 		"zoned: unequal block device zone sizes: have %llu found %llu",
672 					  device->zone_info->zone_size,
673 					  zone_size);
674 				ret = -EINVAL;
675 				goto out;
676 			}
677 		}
678 		nr_devices++;
679 	}
680 
681 	if (!zoned_devices && !incompat_zoned)
682 		goto out;
683 
684 	if (!zoned_devices && incompat_zoned) {
685 		/* No zoned block device found on ZONED filesystem */
686 		btrfs_err(fs_info,
687 			  "zoned: no zoned devices found on a zoned filesystem");
688 		ret = -EINVAL;
689 		goto out;
690 	}
691 
692 	if (zoned_devices && !incompat_zoned) {
693 		btrfs_err(fs_info,
694 			  "zoned: mode not enabled but zoned device found");
695 		ret = -EINVAL;
696 		goto out;
697 	}
698 
699 	if (zoned_devices != nr_devices) {
700 		btrfs_err(fs_info,
701 			  "zoned: cannot mix zoned and regular devices");
702 		ret = -EINVAL;
703 		goto out;
704 	}
705 
706 	/*
707 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
708 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
709 	 * check the alignment here.
710 	 */
711 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
712 		btrfs_err(fs_info,
713 			  "zoned: zone size %llu not aligned to stripe %u",
714 			  zone_size, BTRFS_STRIPE_LEN);
715 		ret = -EINVAL;
716 		goto out;
717 	}
718 
719 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
720 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
721 		ret = -EINVAL;
722 		goto out;
723 	}
724 
725 	fs_info->zone_size = zone_size;
726 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
727 
728 	/*
729 	 * Check mount options here, because we might change fs_info->zoned
730 	 * from fs_info->zone_size.
731 	 */
732 	ret = btrfs_check_mountopts_zoned(fs_info);
733 	if (ret)
734 		goto out;
735 
736 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
737 out:
738 	return ret;
739 }
740 
741 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
742 {
743 	if (!btrfs_is_zoned(info))
744 		return 0;
745 
746 	/*
747 	 * Space cache writing is not COWed. Disable that to avoid write errors
748 	 * in sequential zones.
749 	 */
750 	if (btrfs_test_opt(info, SPACE_CACHE)) {
751 		btrfs_err(info, "zoned: space cache v1 is not supported");
752 		return -EINVAL;
753 	}
754 
755 	if (btrfs_test_opt(info, NODATACOW)) {
756 		btrfs_err(info, "zoned: NODATACOW not supported");
757 		return -EINVAL;
758 	}
759 
760 	return 0;
761 }
762 
763 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
764 			   int rw, u64 *bytenr_ret)
765 {
766 	u64 wp;
767 	int ret;
768 
769 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
770 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
771 		return 0;
772 	}
773 
774 	ret = sb_write_pointer(bdev, zones, &wp);
775 	if (ret != -ENOENT && ret < 0)
776 		return ret;
777 
778 	if (rw == WRITE) {
779 		struct blk_zone *reset = NULL;
780 
781 		if (wp == zones[0].start << SECTOR_SHIFT)
782 			reset = &zones[0];
783 		else if (wp == zones[1].start << SECTOR_SHIFT)
784 			reset = &zones[1];
785 
786 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
787 			ASSERT(sb_zone_is_full(reset));
788 
789 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
790 					       reset->start, reset->len,
791 					       GFP_NOFS);
792 			if (ret)
793 				return ret;
794 
795 			reset->cond = BLK_ZONE_COND_EMPTY;
796 			reset->wp = reset->start;
797 		}
798 	} else if (ret != -ENOENT) {
799 		/*
800 		 * For READ, we want the previous one. Move write pointer to
801 		 * the end of a zone, if it is at the head of a zone.
802 		 */
803 		u64 zone_end = 0;
804 
805 		if (wp == zones[0].start << SECTOR_SHIFT)
806 			zone_end = zones[1].start + zones[1].capacity;
807 		else if (wp == zones[1].start << SECTOR_SHIFT)
808 			zone_end = zones[0].start + zones[0].capacity;
809 		if (zone_end)
810 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
811 					BTRFS_SUPER_INFO_SIZE);
812 
813 		wp -= BTRFS_SUPER_INFO_SIZE;
814 	}
815 
816 	*bytenr_ret = wp;
817 	return 0;
818 
819 }
820 
821 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
822 			       u64 *bytenr_ret)
823 {
824 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
825 	sector_t zone_sectors;
826 	u32 sb_zone;
827 	int ret;
828 	u8 zone_sectors_shift;
829 	sector_t nr_sectors;
830 	u32 nr_zones;
831 
832 	if (!bdev_is_zoned(bdev)) {
833 		*bytenr_ret = btrfs_sb_offset(mirror);
834 		return 0;
835 	}
836 
837 	ASSERT(rw == READ || rw == WRITE);
838 
839 	zone_sectors = bdev_zone_sectors(bdev);
840 	if (!is_power_of_2(zone_sectors))
841 		return -EINVAL;
842 	zone_sectors_shift = ilog2(zone_sectors);
843 	nr_sectors = bdev_nr_sectors(bdev);
844 	nr_zones = nr_sectors >> zone_sectors_shift;
845 
846 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
847 	if (sb_zone + 1 >= nr_zones)
848 		return -ENOENT;
849 
850 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
851 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
852 				  zones);
853 	if (ret < 0)
854 		return ret;
855 	if (ret != BTRFS_NR_SB_LOG_ZONES)
856 		return -EIO;
857 
858 	return sb_log_location(bdev, zones, rw, bytenr_ret);
859 }
860 
861 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
862 			  u64 *bytenr_ret)
863 {
864 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
865 	u32 zone_num;
866 
867 	/*
868 	 * For a zoned filesystem on a non-zoned block device, use the same
869 	 * super block locations as regular filesystem. Doing so, the super
870 	 * block can always be retrieved and the zoned flag of the volume
871 	 * detected from the super block information.
872 	 */
873 	if (!bdev_is_zoned(device->bdev)) {
874 		*bytenr_ret = btrfs_sb_offset(mirror);
875 		return 0;
876 	}
877 
878 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
879 	if (zone_num + 1 >= zinfo->nr_zones)
880 		return -ENOENT;
881 
882 	return sb_log_location(device->bdev,
883 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
884 			       rw, bytenr_ret);
885 }
886 
887 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
888 				  int mirror)
889 {
890 	u32 zone_num;
891 
892 	if (!zinfo)
893 		return false;
894 
895 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
896 	if (zone_num + 1 >= zinfo->nr_zones)
897 		return false;
898 
899 	if (!test_bit(zone_num, zinfo->seq_zones))
900 		return false;
901 
902 	return true;
903 }
904 
905 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
906 {
907 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
908 	struct blk_zone *zone;
909 	int i;
910 
911 	if (!is_sb_log_zone(zinfo, mirror))
912 		return 0;
913 
914 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
915 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
916 		/* Advance the next zone */
917 		if (zone->cond == BLK_ZONE_COND_FULL) {
918 			zone++;
919 			continue;
920 		}
921 
922 		if (zone->cond == BLK_ZONE_COND_EMPTY)
923 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
924 
925 		zone->wp += SUPER_INFO_SECTORS;
926 
927 		if (sb_zone_is_full(zone)) {
928 			/*
929 			 * No room left to write new superblock. Since
930 			 * superblock is written with REQ_SYNC, it is safe to
931 			 * finish the zone now.
932 			 *
933 			 * If the write pointer is exactly at the capacity,
934 			 * explicit ZONE_FINISH is not necessary.
935 			 */
936 			if (zone->wp != zone->start + zone->capacity) {
937 				int ret;
938 
939 				ret = blkdev_zone_mgmt(device->bdev,
940 						REQ_OP_ZONE_FINISH, zone->start,
941 						zone->len, GFP_NOFS);
942 				if (ret)
943 					return ret;
944 			}
945 
946 			zone->wp = zone->start + zone->len;
947 			zone->cond = BLK_ZONE_COND_FULL;
948 		}
949 		return 0;
950 	}
951 
952 	/* All the zones are FULL. Should not reach here. */
953 	ASSERT(0);
954 	return -EIO;
955 }
956 
957 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
958 {
959 	sector_t zone_sectors;
960 	sector_t nr_sectors;
961 	u8 zone_sectors_shift;
962 	u32 sb_zone;
963 	u32 nr_zones;
964 
965 	zone_sectors = bdev_zone_sectors(bdev);
966 	zone_sectors_shift = ilog2(zone_sectors);
967 	nr_sectors = bdev_nr_sectors(bdev);
968 	nr_zones = nr_sectors >> zone_sectors_shift;
969 
970 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
971 	if (sb_zone + 1 >= nr_zones)
972 		return -ENOENT;
973 
974 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
975 				zone_start_sector(sb_zone, bdev),
976 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
977 }
978 
979 /**
980  * btrfs_find_allocatable_zones - find allocatable zones within a given region
981  *
982  * @device:	the device to allocate a region on
983  * @hole_start: the position of the hole to allocate the region
984  * @num_bytes:	size of wanted region
985  * @hole_end:	the end of the hole
986  * @return:	position of allocatable zones
987  *
988  * Allocatable region should not contain any superblock locations.
989  */
990 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
991 				 u64 hole_end, u64 num_bytes)
992 {
993 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
994 	const u8 shift = zinfo->zone_size_shift;
995 	u64 nzones = num_bytes >> shift;
996 	u64 pos = hole_start;
997 	u64 begin, end;
998 	bool have_sb;
999 	int i;
1000 
1001 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1002 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1003 
1004 	while (pos < hole_end) {
1005 		begin = pos >> shift;
1006 		end = begin + nzones;
1007 
1008 		if (end > zinfo->nr_zones)
1009 			return hole_end;
1010 
1011 		/* Check if zones in the region are all empty */
1012 		if (btrfs_dev_is_sequential(device, pos) &&
1013 		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1014 			pos += zinfo->zone_size;
1015 			continue;
1016 		}
1017 
1018 		have_sb = false;
1019 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1020 			u32 sb_zone;
1021 			u64 sb_pos;
1022 
1023 			sb_zone = sb_zone_number(shift, i);
1024 			if (!(end <= sb_zone ||
1025 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1026 				have_sb = true;
1027 				pos = zone_start_physical(
1028 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1029 				break;
1030 			}
1031 
1032 			/* We also need to exclude regular superblock positions */
1033 			sb_pos = btrfs_sb_offset(i);
1034 			if (!(pos + num_bytes <= sb_pos ||
1035 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1036 				have_sb = true;
1037 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1038 					    zinfo->zone_size);
1039 				break;
1040 			}
1041 		}
1042 		if (!have_sb)
1043 			break;
1044 	}
1045 
1046 	return pos;
1047 }
1048 
1049 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1050 {
1051 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1052 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1053 
1054 	/* We can use any number of zones */
1055 	if (zone_info->max_active_zones == 0)
1056 		return true;
1057 
1058 	if (!test_bit(zno, zone_info->active_zones)) {
1059 		/* Active zone left? */
1060 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1061 			return false;
1062 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1063 			/* Someone already set the bit */
1064 			atomic_inc(&zone_info->active_zones_left);
1065 		}
1066 	}
1067 
1068 	return true;
1069 }
1070 
1071 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1072 {
1073 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1074 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1075 
1076 	/* We can use any number of zones */
1077 	if (zone_info->max_active_zones == 0)
1078 		return;
1079 
1080 	if (test_and_clear_bit(zno, zone_info->active_zones))
1081 		atomic_inc(&zone_info->active_zones_left);
1082 }
1083 
1084 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1085 			    u64 length, u64 *bytes)
1086 {
1087 	int ret;
1088 
1089 	*bytes = 0;
1090 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1091 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1092 			       GFP_NOFS);
1093 	if (ret)
1094 		return ret;
1095 
1096 	*bytes = length;
1097 	while (length) {
1098 		btrfs_dev_set_zone_empty(device, physical);
1099 		btrfs_dev_clear_active_zone(device, physical);
1100 		physical += device->zone_info->zone_size;
1101 		length -= device->zone_info->zone_size;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1108 {
1109 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1110 	const u8 shift = zinfo->zone_size_shift;
1111 	unsigned long begin = start >> shift;
1112 	unsigned long end = (start + size) >> shift;
1113 	u64 pos;
1114 	int ret;
1115 
1116 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1117 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1118 
1119 	if (end > zinfo->nr_zones)
1120 		return -ERANGE;
1121 
1122 	/* All the zones are conventional */
1123 	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1124 		return 0;
1125 
1126 	/* All the zones are sequential and empty */
1127 	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1128 	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1129 		return 0;
1130 
1131 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1132 		u64 reset_bytes;
1133 
1134 		if (!btrfs_dev_is_sequential(device, pos) ||
1135 		    btrfs_dev_is_empty_zone(device, pos))
1136 			continue;
1137 
1138 		/* Free regions should be empty */
1139 		btrfs_warn_in_rcu(
1140 			device->fs_info,
1141 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1142 			rcu_str_deref(device->name), device->devid, pos >> shift);
1143 		WARN_ON_ONCE(1);
1144 
1145 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1146 					      &reset_bytes);
1147 		if (ret)
1148 			return ret;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  * Calculate an allocation pointer from the extent allocation information
1156  * for a block group consist of conventional zones. It is pointed to the
1157  * end of the highest addressed extent in the block group as an allocation
1158  * offset.
1159  */
1160 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1161 				   u64 *offset_ret)
1162 {
1163 	struct btrfs_fs_info *fs_info = cache->fs_info;
1164 	struct btrfs_root *root;
1165 	struct btrfs_path *path;
1166 	struct btrfs_key key;
1167 	struct btrfs_key found_key;
1168 	int ret;
1169 	u64 length;
1170 
1171 	path = btrfs_alloc_path();
1172 	if (!path)
1173 		return -ENOMEM;
1174 
1175 	key.objectid = cache->start + cache->length;
1176 	key.type = 0;
1177 	key.offset = 0;
1178 
1179 	root = btrfs_extent_root(fs_info, key.objectid);
1180 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1181 	/* We should not find the exact match */
1182 	if (!ret)
1183 		ret = -EUCLEAN;
1184 	if (ret < 0)
1185 		goto out;
1186 
1187 	ret = btrfs_previous_extent_item(root, path, cache->start);
1188 	if (ret) {
1189 		if (ret == 1) {
1190 			ret = 0;
1191 			*offset_ret = 0;
1192 		}
1193 		goto out;
1194 	}
1195 
1196 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1197 
1198 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1199 		length = found_key.offset;
1200 	else
1201 		length = fs_info->nodesize;
1202 
1203 	if (!(found_key.objectid >= cache->start &&
1204 	       found_key.objectid + length <= cache->start + cache->length)) {
1205 		ret = -EUCLEAN;
1206 		goto out;
1207 	}
1208 	*offset_ret = found_key.objectid + length - cache->start;
1209 	ret = 0;
1210 
1211 out:
1212 	btrfs_free_path(path);
1213 	return ret;
1214 }
1215 
1216 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1217 {
1218 	struct btrfs_fs_info *fs_info = cache->fs_info;
1219 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1220 	struct extent_map *em;
1221 	struct map_lookup *map;
1222 	struct btrfs_device *device;
1223 	u64 logical = cache->start;
1224 	u64 length = cache->length;
1225 	int ret;
1226 	int i;
1227 	unsigned int nofs_flag;
1228 	u64 *alloc_offsets = NULL;
1229 	u64 *caps = NULL;
1230 	u64 *physical = NULL;
1231 	unsigned long *active = NULL;
1232 	u64 last_alloc = 0;
1233 	u32 num_sequential = 0, num_conventional = 0;
1234 
1235 	if (!btrfs_is_zoned(fs_info))
1236 		return 0;
1237 
1238 	/* Sanity check */
1239 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1240 		btrfs_err(fs_info,
1241 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1242 			  logical, length, fs_info->zone_size);
1243 		return -EIO;
1244 	}
1245 
1246 	/* Get the chunk mapping */
1247 	read_lock(&em_tree->lock);
1248 	em = lookup_extent_mapping(em_tree, logical, length);
1249 	read_unlock(&em_tree->lock);
1250 
1251 	if (!em)
1252 		return -EINVAL;
1253 
1254 	map = em->map_lookup;
1255 
1256 	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1257 	if (!cache->physical_map) {
1258 		ret = -ENOMEM;
1259 		goto out;
1260 	}
1261 
1262 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1263 	if (!alloc_offsets) {
1264 		ret = -ENOMEM;
1265 		goto out;
1266 	}
1267 
1268 	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1269 	if (!caps) {
1270 		ret = -ENOMEM;
1271 		goto out;
1272 	}
1273 
1274 	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1275 	if (!physical) {
1276 		ret = -ENOMEM;
1277 		goto out;
1278 	}
1279 
1280 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1281 	if (!active) {
1282 		ret = -ENOMEM;
1283 		goto out;
1284 	}
1285 
1286 	for (i = 0; i < map->num_stripes; i++) {
1287 		bool is_sequential;
1288 		struct blk_zone zone;
1289 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1290 		int dev_replace_is_ongoing = 0;
1291 
1292 		device = map->stripes[i].dev;
1293 		physical[i] = map->stripes[i].physical;
1294 
1295 		if (device->bdev == NULL) {
1296 			alloc_offsets[i] = WP_MISSING_DEV;
1297 			continue;
1298 		}
1299 
1300 		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1301 		if (is_sequential)
1302 			num_sequential++;
1303 		else
1304 			num_conventional++;
1305 
1306 		if (!is_sequential) {
1307 			alloc_offsets[i] = WP_CONVENTIONAL;
1308 			continue;
1309 		}
1310 
1311 		/*
1312 		 * This zone will be used for allocation, so mark this zone
1313 		 * non-empty.
1314 		 */
1315 		btrfs_dev_clear_zone_empty(device, physical[i]);
1316 
1317 		down_read(&dev_replace->rwsem);
1318 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1319 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1320 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1321 		up_read(&dev_replace->rwsem);
1322 
1323 		/*
1324 		 * The group is mapped to a sequential zone. Get the zone write
1325 		 * pointer to determine the allocation offset within the zone.
1326 		 */
1327 		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1328 		nofs_flag = memalloc_nofs_save();
1329 		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1330 		memalloc_nofs_restore(nofs_flag);
1331 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1332 			ret = 0;
1333 			alloc_offsets[i] = WP_MISSING_DEV;
1334 			continue;
1335 		} else if (ret) {
1336 			goto out;
1337 		}
1338 
1339 		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1340 			btrfs_err_in_rcu(fs_info,
1341 	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1342 				zone.start << SECTOR_SHIFT,
1343 				rcu_str_deref(device->name), device->devid);
1344 			ret = -EIO;
1345 			goto out;
1346 		}
1347 
1348 		caps[i] = (zone.capacity << SECTOR_SHIFT);
1349 
1350 		switch (zone.cond) {
1351 		case BLK_ZONE_COND_OFFLINE:
1352 		case BLK_ZONE_COND_READONLY:
1353 			btrfs_err(fs_info,
1354 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1355 				  physical[i] >> device->zone_info->zone_size_shift,
1356 				  rcu_str_deref(device->name), device->devid);
1357 			alloc_offsets[i] = WP_MISSING_DEV;
1358 			break;
1359 		case BLK_ZONE_COND_EMPTY:
1360 			alloc_offsets[i] = 0;
1361 			break;
1362 		case BLK_ZONE_COND_FULL:
1363 			alloc_offsets[i] = caps[i];
1364 			break;
1365 		default:
1366 			/* Partially used zone */
1367 			alloc_offsets[i] =
1368 					((zone.wp - zone.start) << SECTOR_SHIFT);
1369 			__set_bit(i, active);
1370 			break;
1371 		}
1372 
1373 		/*
1374 		 * Consider a zone as active if we can allow any number of
1375 		 * active zones.
1376 		 */
1377 		if (!device->zone_info->max_active_zones)
1378 			__set_bit(i, active);
1379 	}
1380 
1381 	if (num_sequential > 0)
1382 		cache->seq_zone = true;
1383 
1384 	if (num_conventional > 0) {
1385 		/*
1386 		 * Avoid calling calculate_alloc_pointer() for new BG. It
1387 		 * is no use for new BG. It must be always 0.
1388 		 *
1389 		 * Also, we have a lock chain of extent buffer lock ->
1390 		 * chunk mutex.  For new BG, this function is called from
1391 		 * btrfs_make_block_group() which is already taking the
1392 		 * chunk mutex. Thus, we cannot call
1393 		 * calculate_alloc_pointer() which takes extent buffer
1394 		 * locks to avoid deadlock.
1395 		 */
1396 
1397 		/* Zone capacity is always zone size in emulation */
1398 		cache->zone_capacity = cache->length;
1399 		if (new) {
1400 			cache->alloc_offset = 0;
1401 			goto out;
1402 		}
1403 		ret = calculate_alloc_pointer(cache, &last_alloc);
1404 		if (ret || map->num_stripes == num_conventional) {
1405 			if (!ret)
1406 				cache->alloc_offset = last_alloc;
1407 			else
1408 				btrfs_err(fs_info,
1409 			"zoned: failed to determine allocation offset of bg %llu",
1410 					  cache->start);
1411 			goto out;
1412 		}
1413 	}
1414 
1415 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1416 	case 0: /* single */
1417 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1418 			btrfs_err(fs_info,
1419 			"zoned: cannot recover write pointer for zone %llu",
1420 				physical[0]);
1421 			ret = -EIO;
1422 			goto out;
1423 		}
1424 		cache->alloc_offset = alloc_offsets[0];
1425 		cache->zone_capacity = caps[0];
1426 		cache->zone_is_active = test_bit(0, active);
1427 		break;
1428 	case BTRFS_BLOCK_GROUP_DUP:
1429 		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1430 			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1431 			ret = -EINVAL;
1432 			goto out;
1433 		}
1434 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1435 			btrfs_err(fs_info,
1436 			"zoned: cannot recover write pointer for zone %llu",
1437 				physical[0]);
1438 			ret = -EIO;
1439 			goto out;
1440 		}
1441 		if (alloc_offsets[1] == WP_MISSING_DEV) {
1442 			btrfs_err(fs_info,
1443 			"zoned: cannot recover write pointer for zone %llu",
1444 				physical[1]);
1445 			ret = -EIO;
1446 			goto out;
1447 		}
1448 		if (alloc_offsets[0] != alloc_offsets[1]) {
1449 			btrfs_err(fs_info,
1450 			"zoned: write pointer offset mismatch of zones in DUP profile");
1451 			ret = -EIO;
1452 			goto out;
1453 		}
1454 		if (test_bit(0, active) != test_bit(1, active)) {
1455 			if (!btrfs_zone_activate(cache)) {
1456 				ret = -EIO;
1457 				goto out;
1458 			}
1459 		} else {
1460 			cache->zone_is_active = test_bit(0, active);
1461 		}
1462 		cache->alloc_offset = alloc_offsets[0];
1463 		cache->zone_capacity = min(caps[0], caps[1]);
1464 		break;
1465 	case BTRFS_BLOCK_GROUP_RAID1:
1466 	case BTRFS_BLOCK_GROUP_RAID0:
1467 	case BTRFS_BLOCK_GROUP_RAID10:
1468 	case BTRFS_BLOCK_GROUP_RAID5:
1469 	case BTRFS_BLOCK_GROUP_RAID6:
1470 		/* non-single profiles are not supported yet */
1471 	default:
1472 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1473 			  btrfs_bg_type_to_raid_name(map->type));
1474 		ret = -EINVAL;
1475 		goto out;
1476 	}
1477 
1478 	if (cache->zone_is_active) {
1479 		btrfs_get_block_group(cache);
1480 		spin_lock(&fs_info->zone_active_bgs_lock);
1481 		list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs);
1482 		spin_unlock(&fs_info->zone_active_bgs_lock);
1483 	}
1484 
1485 out:
1486 	if (cache->alloc_offset > fs_info->zone_size) {
1487 		btrfs_err(fs_info,
1488 			"zoned: invalid write pointer %llu in block group %llu",
1489 			cache->alloc_offset, cache->start);
1490 		ret = -EIO;
1491 	}
1492 
1493 	if (cache->alloc_offset > cache->zone_capacity) {
1494 		btrfs_err(fs_info,
1495 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1496 			  cache->alloc_offset, cache->zone_capacity,
1497 			  cache->start);
1498 		ret = -EIO;
1499 	}
1500 
1501 	/* An extent is allocated after the write pointer */
1502 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1503 		btrfs_err(fs_info,
1504 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1505 			  logical, last_alloc, cache->alloc_offset);
1506 		ret = -EIO;
1507 	}
1508 
1509 	if (!ret)
1510 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1511 
1512 	if (ret) {
1513 		kfree(cache->physical_map);
1514 		cache->physical_map = NULL;
1515 	}
1516 	bitmap_free(active);
1517 	kfree(physical);
1518 	kfree(caps);
1519 	kfree(alloc_offsets);
1520 	free_extent_map(em);
1521 
1522 	return ret;
1523 }
1524 
1525 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1526 {
1527 	u64 unusable, free;
1528 
1529 	if (!btrfs_is_zoned(cache->fs_info))
1530 		return;
1531 
1532 	WARN_ON(cache->bytes_super != 0);
1533 	unusable = (cache->alloc_offset - cache->used) +
1534 		   (cache->length - cache->zone_capacity);
1535 	free = cache->zone_capacity - cache->alloc_offset;
1536 
1537 	/* We only need ->free_space in ALLOC_SEQ block groups */
1538 	cache->last_byte_to_unpin = (u64)-1;
1539 	cache->cached = BTRFS_CACHE_FINISHED;
1540 	cache->free_space_ctl->free_space = free;
1541 	cache->zone_unusable = unusable;
1542 }
1543 
1544 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1545 			    struct extent_buffer *eb)
1546 {
1547 	struct btrfs_fs_info *fs_info = eb->fs_info;
1548 
1549 	if (!btrfs_is_zoned(fs_info) ||
1550 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1551 	    !list_empty(&eb->release_list))
1552 		return;
1553 
1554 	set_extent_buffer_dirty(eb);
1555 	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1556 			       eb->start + eb->len - 1, EXTENT_DIRTY);
1557 	memzero_extent_buffer(eb, 0, eb->len);
1558 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1559 
1560 	spin_lock(&trans->releasing_ebs_lock);
1561 	list_add_tail(&eb->release_list, &trans->releasing_ebs);
1562 	spin_unlock(&trans->releasing_ebs_lock);
1563 	atomic_inc(&eb->refs);
1564 }
1565 
1566 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1567 {
1568 	spin_lock(&trans->releasing_ebs_lock);
1569 	while (!list_empty(&trans->releasing_ebs)) {
1570 		struct extent_buffer *eb;
1571 
1572 		eb = list_first_entry(&trans->releasing_ebs,
1573 				      struct extent_buffer, release_list);
1574 		list_del_init(&eb->release_list);
1575 		free_extent_buffer(eb);
1576 	}
1577 	spin_unlock(&trans->releasing_ebs_lock);
1578 }
1579 
1580 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1581 {
1582 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1583 	struct btrfs_block_group *cache;
1584 	bool ret = false;
1585 
1586 	if (!btrfs_is_zoned(fs_info))
1587 		return false;
1588 
1589 	if (!is_data_inode(&inode->vfs_inode))
1590 		return false;
1591 
1592 	/*
1593 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1594 	 * extent layout the relocation code has.
1595 	 * Furthermore we have set aside own block-group from which only the
1596 	 * relocation "process" can allocate and make sure only one process at a
1597 	 * time can add pages to an extent that gets relocated, so it's safe to
1598 	 * use regular REQ_OP_WRITE for this special case.
1599 	 */
1600 	if (btrfs_is_data_reloc_root(inode->root))
1601 		return false;
1602 
1603 	cache = btrfs_lookup_block_group(fs_info, start);
1604 	ASSERT(cache);
1605 	if (!cache)
1606 		return false;
1607 
1608 	ret = cache->seq_zone;
1609 	btrfs_put_block_group(cache);
1610 
1611 	return ret;
1612 }
1613 
1614 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1615 				 struct bio *bio)
1616 {
1617 	struct btrfs_ordered_extent *ordered;
1618 	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1619 
1620 	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1621 		return;
1622 
1623 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1624 	if (WARN_ON(!ordered))
1625 		return;
1626 
1627 	ordered->physical = physical;
1628 	ordered->bdev = bio->bi_bdev;
1629 
1630 	btrfs_put_ordered_extent(ordered);
1631 }
1632 
1633 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1634 {
1635 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1636 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1637 	struct extent_map_tree *em_tree;
1638 	struct extent_map *em;
1639 	struct btrfs_ordered_sum *sum;
1640 	u64 orig_logical = ordered->disk_bytenr;
1641 	u64 *logical = NULL;
1642 	int nr, stripe_len;
1643 
1644 	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1645 	ASSERT(!bdev_is_partition(ordered->bdev));
1646 	if (WARN_ON(!ordered->bdev))
1647 		return;
1648 
1649 	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1650 				     ordered->physical, &logical, &nr,
1651 				     &stripe_len)))
1652 		goto out;
1653 
1654 	WARN_ON(nr != 1);
1655 
1656 	if (orig_logical == *logical)
1657 		goto out;
1658 
1659 	ordered->disk_bytenr = *logical;
1660 
1661 	em_tree = &inode->extent_tree;
1662 	write_lock(&em_tree->lock);
1663 	em = search_extent_mapping(em_tree, ordered->file_offset,
1664 				   ordered->num_bytes);
1665 	em->block_start = *logical;
1666 	free_extent_map(em);
1667 	write_unlock(&em_tree->lock);
1668 
1669 	list_for_each_entry(sum, &ordered->list, list) {
1670 		if (*logical < orig_logical)
1671 			sum->bytenr -= orig_logical - *logical;
1672 		else
1673 			sum->bytenr += *logical - orig_logical;
1674 	}
1675 
1676 out:
1677 	kfree(logical);
1678 }
1679 
1680 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1681 				    struct extent_buffer *eb,
1682 				    struct btrfs_block_group **cache_ret)
1683 {
1684 	struct btrfs_block_group *cache;
1685 	bool ret = true;
1686 
1687 	if (!btrfs_is_zoned(fs_info))
1688 		return true;
1689 
1690 	cache = btrfs_lookup_block_group(fs_info, eb->start);
1691 	if (!cache)
1692 		return true;
1693 
1694 	if (cache->meta_write_pointer != eb->start) {
1695 		btrfs_put_block_group(cache);
1696 		cache = NULL;
1697 		ret = false;
1698 	} else {
1699 		cache->meta_write_pointer = eb->start + eb->len;
1700 	}
1701 
1702 	*cache_ret = cache;
1703 
1704 	return ret;
1705 }
1706 
1707 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1708 				     struct extent_buffer *eb)
1709 {
1710 	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1711 		return;
1712 
1713 	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1714 	cache->meta_write_pointer = eb->start;
1715 }
1716 
1717 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1718 {
1719 	if (!btrfs_dev_is_sequential(device, physical))
1720 		return -EOPNOTSUPP;
1721 
1722 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1723 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1724 }
1725 
1726 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1727 			  struct blk_zone *zone)
1728 {
1729 	struct btrfs_io_context *bioc = NULL;
1730 	u64 mapped_length = PAGE_SIZE;
1731 	unsigned int nofs_flag;
1732 	int nmirrors;
1733 	int i, ret;
1734 
1735 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1736 			       &mapped_length, &bioc);
1737 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1738 		btrfs_put_bioc(bioc);
1739 		return -EIO;
1740 	}
1741 
1742 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1743 		return -EINVAL;
1744 
1745 	nofs_flag = memalloc_nofs_save();
1746 	nmirrors = (int)bioc->num_stripes;
1747 	for (i = 0; i < nmirrors; i++) {
1748 		u64 physical = bioc->stripes[i].physical;
1749 		struct btrfs_device *dev = bioc->stripes[i].dev;
1750 
1751 		/* Missing device */
1752 		if (!dev->bdev)
1753 			continue;
1754 
1755 		ret = btrfs_get_dev_zone(dev, physical, zone);
1756 		/* Failing device */
1757 		if (ret == -EIO || ret == -EOPNOTSUPP)
1758 			continue;
1759 		break;
1760 	}
1761 	memalloc_nofs_restore(nofs_flag);
1762 
1763 	return ret;
1764 }
1765 
1766 /*
1767  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1768  * filling zeros between @physical_pos to a write pointer of dev-replace
1769  * source device.
1770  */
1771 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1772 				    u64 physical_start, u64 physical_pos)
1773 {
1774 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1775 	struct blk_zone zone;
1776 	u64 length;
1777 	u64 wp;
1778 	int ret;
1779 
1780 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1781 		return 0;
1782 
1783 	ret = read_zone_info(fs_info, logical, &zone);
1784 	if (ret)
1785 		return ret;
1786 
1787 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1788 
1789 	if (physical_pos == wp)
1790 		return 0;
1791 
1792 	if (physical_pos > wp)
1793 		return -EUCLEAN;
1794 
1795 	length = wp - physical_pos;
1796 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1797 }
1798 
1799 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1800 					    u64 logical, u64 length)
1801 {
1802 	struct btrfs_device *device;
1803 	struct extent_map *em;
1804 	struct map_lookup *map;
1805 
1806 	em = btrfs_get_chunk_map(fs_info, logical, length);
1807 	if (IS_ERR(em))
1808 		return ERR_CAST(em);
1809 
1810 	map = em->map_lookup;
1811 	/* We only support single profile for now */
1812 	device = map->stripes[0].dev;
1813 
1814 	free_extent_map(em);
1815 
1816 	return device;
1817 }
1818 
1819 /**
1820  * Activate block group and underlying device zones
1821  *
1822  * @block_group: the block group to activate
1823  *
1824  * Return: true on success, false otherwise
1825  */
1826 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1827 {
1828 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1829 	struct map_lookup *map;
1830 	struct btrfs_device *device;
1831 	u64 physical;
1832 	bool ret;
1833 	int i;
1834 
1835 	if (!btrfs_is_zoned(block_group->fs_info))
1836 		return true;
1837 
1838 	map = block_group->physical_map;
1839 
1840 	spin_lock(&block_group->lock);
1841 	if (block_group->zone_is_active) {
1842 		ret = true;
1843 		goto out_unlock;
1844 	}
1845 
1846 	/* No space left */
1847 	if (btrfs_zoned_bg_is_full(block_group)) {
1848 		ret = false;
1849 		goto out_unlock;
1850 	}
1851 
1852 	for (i = 0; i < map->num_stripes; i++) {
1853 		device = map->stripes[i].dev;
1854 		physical = map->stripes[i].physical;
1855 
1856 		if (device->zone_info->max_active_zones == 0)
1857 			continue;
1858 
1859 		if (!btrfs_dev_set_active_zone(device, physical)) {
1860 			/* Cannot activate the zone */
1861 			ret = false;
1862 			goto out_unlock;
1863 		}
1864 	}
1865 
1866 	/* Successfully activated all the zones */
1867 	block_group->zone_is_active = 1;
1868 	spin_unlock(&block_group->lock);
1869 
1870 	/* For the active block group list */
1871 	btrfs_get_block_group(block_group);
1872 
1873 	spin_lock(&fs_info->zone_active_bgs_lock);
1874 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1875 	spin_unlock(&fs_info->zone_active_bgs_lock);
1876 
1877 	return true;
1878 
1879 out_unlock:
1880 	spin_unlock(&block_group->lock);
1881 	return ret;
1882 }
1883 
1884 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1885 {
1886 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1887 	struct map_lookup *map;
1888 	bool need_zone_finish;
1889 	int ret = 0;
1890 	int i;
1891 
1892 	spin_lock(&block_group->lock);
1893 	if (!block_group->zone_is_active) {
1894 		spin_unlock(&block_group->lock);
1895 		return 0;
1896 	}
1897 
1898 	/* Check if we have unwritten allocated space */
1899 	if ((block_group->flags &
1900 	     (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) &&
1901 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1902 		spin_unlock(&block_group->lock);
1903 		return -EAGAIN;
1904 	}
1905 
1906 	/*
1907 	 * If we are sure that the block group is full (= no more room left for
1908 	 * new allocation) and the IO for the last usable block is completed, we
1909 	 * don't need to wait for the other IOs. This holds because we ensure
1910 	 * the sequential IO submissions using the ZONE_APPEND command for data
1911 	 * and block_group->meta_write_pointer for metadata.
1912 	 */
1913 	if (!fully_written) {
1914 		spin_unlock(&block_group->lock);
1915 
1916 		ret = btrfs_inc_block_group_ro(block_group, false);
1917 		if (ret)
1918 			return ret;
1919 
1920 		/* Ensure all writes in this block group finish */
1921 		btrfs_wait_block_group_reservations(block_group);
1922 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
1923 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1924 					 block_group->length);
1925 
1926 		spin_lock(&block_group->lock);
1927 
1928 		/*
1929 		 * Bail out if someone already deactivated the block group, or
1930 		 * allocated space is left in the block group.
1931 		 */
1932 		if (!block_group->zone_is_active) {
1933 			spin_unlock(&block_group->lock);
1934 			btrfs_dec_block_group_ro(block_group);
1935 			return 0;
1936 		}
1937 
1938 		if (block_group->reserved) {
1939 			spin_unlock(&block_group->lock);
1940 			btrfs_dec_block_group_ro(block_group);
1941 			return -EAGAIN;
1942 		}
1943 	}
1944 
1945 	/*
1946 	 * The block group is not fully allocated, so not fully written yet. We
1947 	 * need to send ZONE_FINISH command to free up an active zone.
1948 	 */
1949 	need_zone_finish = !btrfs_zoned_bg_is_full(block_group);
1950 
1951 	block_group->zone_is_active = 0;
1952 	block_group->alloc_offset = block_group->zone_capacity;
1953 	block_group->free_space_ctl->free_space = 0;
1954 	btrfs_clear_treelog_bg(block_group);
1955 	btrfs_clear_data_reloc_bg(block_group);
1956 	spin_unlock(&block_group->lock);
1957 
1958 	map = block_group->physical_map;
1959 	for (i = 0; i < map->num_stripes; i++) {
1960 		struct btrfs_device *device = map->stripes[i].dev;
1961 		const u64 physical = map->stripes[i].physical;
1962 
1963 		if (device->zone_info->max_active_zones == 0)
1964 			continue;
1965 
1966 		if (need_zone_finish) {
1967 			ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
1968 					       physical >> SECTOR_SHIFT,
1969 					       device->zone_info->zone_size >> SECTOR_SHIFT,
1970 					       GFP_NOFS);
1971 
1972 			if (ret)
1973 				return ret;
1974 		}
1975 
1976 		btrfs_dev_clear_active_zone(device, physical);
1977 	}
1978 
1979 	if (!fully_written)
1980 		btrfs_dec_block_group_ro(block_group);
1981 
1982 	spin_lock(&fs_info->zone_active_bgs_lock);
1983 	ASSERT(!list_empty(&block_group->active_bg_list));
1984 	list_del_init(&block_group->active_bg_list);
1985 	spin_unlock(&fs_info->zone_active_bgs_lock);
1986 
1987 	/* For active_bg_list */
1988 	btrfs_put_block_group(block_group);
1989 
1990 	return 0;
1991 }
1992 
1993 int btrfs_zone_finish(struct btrfs_block_group *block_group)
1994 {
1995 	if (!btrfs_is_zoned(block_group->fs_info))
1996 		return 0;
1997 
1998 	return do_zone_finish(block_group, false);
1999 }
2000 
2001 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2002 {
2003 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2004 	struct btrfs_device *device;
2005 	bool ret = false;
2006 
2007 	if (!btrfs_is_zoned(fs_info))
2008 		return true;
2009 
2010 	/* Check if there is a device with active zones left */
2011 	mutex_lock(&fs_info->chunk_mutex);
2012 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2013 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2014 
2015 		if (!device->bdev)
2016 			continue;
2017 
2018 		if (!zinfo->max_active_zones ||
2019 		    atomic_read(&zinfo->active_zones_left)) {
2020 			ret = true;
2021 			break;
2022 		}
2023 	}
2024 	mutex_unlock(&fs_info->chunk_mutex);
2025 
2026 	return ret;
2027 }
2028 
2029 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2030 {
2031 	struct btrfs_block_group *block_group;
2032 	u64 min_alloc_bytes;
2033 
2034 	if (!btrfs_is_zoned(fs_info))
2035 		return;
2036 
2037 	block_group = btrfs_lookup_block_group(fs_info, logical);
2038 	ASSERT(block_group);
2039 
2040 	/* No MIXED_BG on zoned btrfs. */
2041 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2042 		min_alloc_bytes = fs_info->sectorsize;
2043 	else
2044 		min_alloc_bytes = fs_info->nodesize;
2045 
2046 	/* Bail out if we can allocate more data from this block group. */
2047 	if (logical + length + min_alloc_bytes <=
2048 	    block_group->start + block_group->zone_capacity)
2049 		goto out;
2050 
2051 	do_zone_finish(block_group, true);
2052 
2053 out:
2054 	btrfs_put_block_group(block_group);
2055 }
2056 
2057 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2058 {
2059 	struct btrfs_block_group *bg =
2060 		container_of(work, struct btrfs_block_group, zone_finish_work);
2061 
2062 	wait_on_extent_buffer_writeback(bg->last_eb);
2063 	free_extent_buffer(bg->last_eb);
2064 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2065 	btrfs_put_block_group(bg);
2066 }
2067 
2068 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2069 				   struct extent_buffer *eb)
2070 {
2071 	if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2072 		return;
2073 
2074 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2075 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2076 			  bg->start);
2077 		return;
2078 	}
2079 
2080 	/* For the work */
2081 	btrfs_get_block_group(bg);
2082 	atomic_inc(&eb->refs);
2083 	bg->last_eb = eb;
2084 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2085 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2086 }
2087 
2088 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2089 {
2090 	struct btrfs_fs_info *fs_info = bg->fs_info;
2091 
2092 	spin_lock(&fs_info->relocation_bg_lock);
2093 	if (fs_info->data_reloc_bg == bg->start)
2094 		fs_info->data_reloc_bg = 0;
2095 	spin_unlock(&fs_info->relocation_bg_lock);
2096 }
2097 
2098 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2099 {
2100 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2101 	struct btrfs_device *device;
2102 
2103 	if (!btrfs_is_zoned(fs_info))
2104 		return;
2105 
2106 	mutex_lock(&fs_devices->device_list_mutex);
2107 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2108 		if (device->zone_info) {
2109 			vfree(device->zone_info->zone_cache);
2110 			device->zone_info->zone_cache = NULL;
2111 		}
2112 	}
2113 	mutex_unlock(&fs_devices->device_list_mutex);
2114 }
2115 
2116 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2117 {
2118 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2119 	struct btrfs_device *device;
2120 	u64 used = 0;
2121 	u64 total = 0;
2122 	u64 factor;
2123 
2124 	ASSERT(btrfs_is_zoned(fs_info));
2125 
2126 	if (fs_info->bg_reclaim_threshold == 0)
2127 		return false;
2128 
2129 	mutex_lock(&fs_devices->device_list_mutex);
2130 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2131 		if (!device->bdev)
2132 			continue;
2133 
2134 		total += device->disk_total_bytes;
2135 		used += device->bytes_used;
2136 	}
2137 	mutex_unlock(&fs_devices->device_list_mutex);
2138 
2139 	factor = div64_u64(used * 100, total);
2140 	return factor >= fs_info->bg_reclaim_threshold;
2141 }
2142 
2143 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2144 				       u64 length)
2145 {
2146 	struct btrfs_block_group *block_group;
2147 
2148 	if (!btrfs_is_zoned(fs_info))
2149 		return;
2150 
2151 	block_group = btrfs_lookup_block_group(fs_info, logical);
2152 	/* It should be called on a previous data relocation block group. */
2153 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2154 
2155 	spin_lock(&block_group->lock);
2156 	if (!block_group->zoned_data_reloc_ongoing)
2157 		goto out;
2158 
2159 	/* All relocation extents are written. */
2160 	if (block_group->start + block_group->alloc_offset == logical + length) {
2161 		/* Now, release this block group for further allocations. */
2162 		block_group->zoned_data_reloc_ongoing = 0;
2163 	}
2164 
2165 out:
2166 	spin_unlock(&block_group->lock);
2167 	btrfs_put_block_group(block_group);
2168 }
2169