xref: /openbmc/linux/fs/btrfs/zoned.c (revision a531b0c2)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include "ctree.h"
9 #include "volumes.h"
10 #include "zoned.h"
11 #include "rcu-string.h"
12 #include "disk-io.h"
13 #include "block-group.h"
14 #include "transaction.h"
15 #include "dev-replace.h"
16 #include "space-info.h"
17 
18 /* Maximum number of zones to report per blkdev_report_zones() call */
19 #define BTRFS_REPORT_NR_ZONES   4096
20 /* Invalid allocation pointer value for missing devices */
21 #define WP_MISSING_DEV ((u64)-1)
22 /* Pseudo write pointer value for conventional zone */
23 #define WP_CONVENTIONAL ((u64)-2)
24 
25 /*
26  * Location of the first zone of superblock logging zone pairs.
27  *
28  * - primary superblock:    0B (zone 0)
29  * - first copy:          512G (zone starting at that offset)
30  * - second copy:           4T (zone starting at that offset)
31  */
32 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
33 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
34 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
35 
36 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
37 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
38 
39 /* Number of superblock log zones */
40 #define BTRFS_NR_SB_LOG_ZONES 2
41 
42 /*
43  * Minimum of active zones we need:
44  *
45  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
46  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
47  * - 1 zone for tree-log dedicated block group
48  * - 1 zone for relocation
49  */
50 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
51 
52 /*
53  * Maximum supported zone size. Currently, SMR disks have a zone size of
54  * 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. We do not
55  * expect the zone size to become larger than 8GiB in the near future.
56  */
57 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
58 
59 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
60 
61 static inline bool sb_zone_is_full(const struct blk_zone *zone)
62 {
63 	return (zone->cond == BLK_ZONE_COND_FULL) ||
64 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
65 }
66 
67 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
68 {
69 	struct blk_zone *zones = data;
70 
71 	memcpy(&zones[idx], zone, sizeof(*zone));
72 
73 	return 0;
74 }
75 
76 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
77 			    u64 *wp_ret)
78 {
79 	bool empty[BTRFS_NR_SB_LOG_ZONES];
80 	bool full[BTRFS_NR_SB_LOG_ZONES];
81 	sector_t sector;
82 	int i;
83 
84 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
85 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
86 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
87 		full[i] = sb_zone_is_full(&zones[i]);
88 	}
89 
90 	/*
91 	 * Possible states of log buffer zones
92 	 *
93 	 *           Empty[0]  In use[0]  Full[0]
94 	 * Empty[1]         *          x        0
95 	 * In use[1]        0          x        0
96 	 * Full[1]          1          1        C
97 	 *
98 	 * Log position:
99 	 *   *: Special case, no superblock is written
100 	 *   0: Use write pointer of zones[0]
101 	 *   1: Use write pointer of zones[1]
102 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
103 	 *      one determined by generation
104 	 *   x: Invalid state
105 	 */
106 
107 	if (empty[0] && empty[1]) {
108 		/* Special case to distinguish no superblock to read */
109 		*wp_ret = zones[0].start << SECTOR_SHIFT;
110 		return -ENOENT;
111 	} else if (full[0] && full[1]) {
112 		/* Compare two super blocks */
113 		struct address_space *mapping = bdev->bd_inode->i_mapping;
114 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
115 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
116 		int i;
117 
118 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
119 			u64 bytenr;
120 
121 			bytenr = ((zones[i].start + zones[i].len)
122 				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
123 
124 			page[i] = read_cache_page_gfp(mapping,
125 					bytenr >> PAGE_SHIFT, GFP_NOFS);
126 			if (IS_ERR(page[i])) {
127 				if (i == 1)
128 					btrfs_release_disk_super(super[0]);
129 				return PTR_ERR(page[i]);
130 			}
131 			super[i] = page_address(page[i]);
132 		}
133 
134 		if (super[0]->generation > super[1]->generation)
135 			sector = zones[1].start;
136 		else
137 			sector = zones[0].start;
138 
139 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
140 			btrfs_release_disk_super(super[i]);
141 	} else if (!full[0] && (empty[1] || full[1])) {
142 		sector = zones[0].wp;
143 	} else if (full[0]) {
144 		sector = zones[1].wp;
145 	} else {
146 		return -EUCLEAN;
147 	}
148 	*wp_ret = sector << SECTOR_SHIFT;
149 	return 0;
150 }
151 
152 /*
153  * Get the first zone number of the superblock mirror
154  */
155 static inline u32 sb_zone_number(int shift, int mirror)
156 {
157 	u64 zone;
158 
159 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
160 	switch (mirror) {
161 	case 0: zone = 0; break;
162 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
163 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
164 	}
165 
166 	ASSERT(zone <= U32_MAX);
167 
168 	return (u32)zone;
169 }
170 
171 static inline sector_t zone_start_sector(u32 zone_number,
172 					 struct block_device *bdev)
173 {
174 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
175 }
176 
177 static inline u64 zone_start_physical(u32 zone_number,
178 				      struct btrfs_zoned_device_info *zone_info)
179 {
180 	return (u64)zone_number << zone_info->zone_size_shift;
181 }
182 
183 /*
184  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
185  * device into static sized chunks and fake a conventional zone on each of
186  * them.
187  */
188 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
189 				struct blk_zone *zones, unsigned int nr_zones)
190 {
191 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
192 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
193 	unsigned int i;
194 
195 	pos >>= SECTOR_SHIFT;
196 	for (i = 0; i < nr_zones; i++) {
197 		zones[i].start = i * zone_sectors + pos;
198 		zones[i].len = zone_sectors;
199 		zones[i].capacity = zone_sectors;
200 		zones[i].wp = zones[i].start + zone_sectors;
201 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
202 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
203 
204 		if (zones[i].wp >= bdev_size) {
205 			i++;
206 			break;
207 		}
208 	}
209 
210 	return i;
211 }
212 
213 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
214 			       struct blk_zone *zones, unsigned int *nr_zones)
215 {
216 	int ret;
217 
218 	if (!*nr_zones)
219 		return 0;
220 
221 	if (!bdev_is_zoned(device->bdev)) {
222 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
223 		*nr_zones = ret;
224 		return 0;
225 	}
226 
227 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
228 				  copy_zone_info_cb, zones);
229 	if (ret < 0) {
230 		btrfs_err_in_rcu(device->fs_info,
231 				 "zoned: failed to read zone %llu on %s (devid %llu)",
232 				 pos, rcu_str_deref(device->name),
233 				 device->devid);
234 		return ret;
235 	}
236 	*nr_zones = ret;
237 	if (!ret)
238 		return -EIO;
239 
240 	return 0;
241 }
242 
243 /* The emulated zone size is determined from the size of device extent */
244 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
245 {
246 	struct btrfs_path *path;
247 	struct btrfs_root *root = fs_info->dev_root;
248 	struct btrfs_key key;
249 	struct extent_buffer *leaf;
250 	struct btrfs_dev_extent *dext;
251 	int ret = 0;
252 
253 	key.objectid = 1;
254 	key.type = BTRFS_DEV_EXTENT_KEY;
255 	key.offset = 0;
256 
257 	path = btrfs_alloc_path();
258 	if (!path)
259 		return -ENOMEM;
260 
261 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
262 	if (ret < 0)
263 		goto out;
264 
265 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
266 		ret = btrfs_next_leaf(root, path);
267 		if (ret < 0)
268 			goto out;
269 		/* No dev extents at all? Not good */
270 		if (ret > 0) {
271 			ret = -EUCLEAN;
272 			goto out;
273 		}
274 	}
275 
276 	leaf = path->nodes[0];
277 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
278 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
279 	ret = 0;
280 
281 out:
282 	btrfs_free_path(path);
283 
284 	return ret;
285 }
286 
287 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
288 {
289 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
290 	struct btrfs_device *device;
291 	int ret = 0;
292 
293 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
294 	if (!btrfs_fs_incompat(fs_info, ZONED))
295 		return 0;
296 
297 	mutex_lock(&fs_devices->device_list_mutex);
298 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
299 		/* We can skip reading of zone info for missing devices */
300 		if (!device->bdev)
301 			continue;
302 
303 		ret = btrfs_get_dev_zone_info(device);
304 		if (ret)
305 			break;
306 	}
307 	mutex_unlock(&fs_devices->device_list_mutex);
308 
309 	return ret;
310 }
311 
312 int btrfs_get_dev_zone_info(struct btrfs_device *device)
313 {
314 	struct btrfs_fs_info *fs_info = device->fs_info;
315 	struct btrfs_zoned_device_info *zone_info = NULL;
316 	struct block_device *bdev = device->bdev;
317 	struct request_queue *queue = bdev_get_queue(bdev);
318 	unsigned int max_active_zones;
319 	unsigned int nactive;
320 	sector_t nr_sectors;
321 	sector_t sector = 0;
322 	struct blk_zone *zones = NULL;
323 	unsigned int i, nreported = 0, nr_zones;
324 	sector_t zone_sectors;
325 	char *model, *emulated;
326 	int ret;
327 
328 	/*
329 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
330 	 * yet be set.
331 	 */
332 	if (!btrfs_fs_incompat(fs_info, ZONED))
333 		return 0;
334 
335 	if (device->zone_info)
336 		return 0;
337 
338 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
339 	if (!zone_info)
340 		return -ENOMEM;
341 
342 	if (!bdev_is_zoned(bdev)) {
343 		if (!fs_info->zone_size) {
344 			ret = calculate_emulated_zone_size(fs_info);
345 			if (ret)
346 				goto out;
347 		}
348 
349 		ASSERT(fs_info->zone_size);
350 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
351 	} else {
352 		zone_sectors = bdev_zone_sectors(bdev);
353 	}
354 
355 	/* Check if it's power of 2 (see is_power_of_2) */
356 	ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
357 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
358 
359 	/* We reject devices with a zone size larger than 8GB */
360 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
361 		btrfs_err_in_rcu(fs_info,
362 		"zoned: %s: zone size %llu larger than supported maximum %llu",
363 				 rcu_str_deref(device->name),
364 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
365 		ret = -EINVAL;
366 		goto out;
367 	}
368 
369 	nr_sectors = bdev_nr_sectors(bdev);
370 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
371 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
372 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
373 		zone_info->nr_zones++;
374 
375 	max_active_zones = queue_max_active_zones(queue);
376 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
377 		btrfs_err_in_rcu(fs_info,
378 "zoned: %s: max active zones %u is too small, need at least %u active zones",
379 				 rcu_str_deref(device->name), max_active_zones,
380 				 BTRFS_MIN_ACTIVE_ZONES);
381 		ret = -EINVAL;
382 		goto out;
383 	}
384 	zone_info->max_active_zones = max_active_zones;
385 
386 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
387 	if (!zone_info->seq_zones) {
388 		ret = -ENOMEM;
389 		goto out;
390 	}
391 
392 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
393 	if (!zone_info->empty_zones) {
394 		ret = -ENOMEM;
395 		goto out;
396 	}
397 
398 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
399 	if (!zone_info->active_zones) {
400 		ret = -ENOMEM;
401 		goto out;
402 	}
403 
404 	zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
405 	if (!zones) {
406 		ret = -ENOMEM;
407 		goto out;
408 	}
409 
410 	/* Get zones type */
411 	nactive = 0;
412 	while (sector < nr_sectors) {
413 		nr_zones = BTRFS_REPORT_NR_ZONES;
414 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
415 					  &nr_zones);
416 		if (ret)
417 			goto out;
418 
419 		for (i = 0; i < nr_zones; i++) {
420 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
421 				__set_bit(nreported, zone_info->seq_zones);
422 			switch (zones[i].cond) {
423 			case BLK_ZONE_COND_EMPTY:
424 				__set_bit(nreported, zone_info->empty_zones);
425 				break;
426 			case BLK_ZONE_COND_IMP_OPEN:
427 			case BLK_ZONE_COND_EXP_OPEN:
428 			case BLK_ZONE_COND_CLOSED:
429 				__set_bit(nreported, zone_info->active_zones);
430 				nactive++;
431 				break;
432 			}
433 			nreported++;
434 		}
435 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
436 	}
437 
438 	if (nreported != zone_info->nr_zones) {
439 		btrfs_err_in_rcu(device->fs_info,
440 				 "inconsistent number of zones on %s (%u/%u)",
441 				 rcu_str_deref(device->name), nreported,
442 				 zone_info->nr_zones);
443 		ret = -EIO;
444 		goto out;
445 	}
446 
447 	if (max_active_zones) {
448 		if (nactive > max_active_zones) {
449 			btrfs_err_in_rcu(device->fs_info,
450 			"zoned: %u active zones on %s exceeds max_active_zones %u",
451 					 nactive, rcu_str_deref(device->name),
452 					 max_active_zones);
453 			ret = -EIO;
454 			goto out;
455 		}
456 		atomic_set(&zone_info->active_zones_left,
457 			   max_active_zones - nactive);
458 	}
459 
460 	/* Validate superblock log */
461 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
462 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
463 		u32 sb_zone;
464 		u64 sb_wp;
465 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
466 
467 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
468 		if (sb_zone + 1 >= zone_info->nr_zones)
469 			continue;
470 
471 		ret = btrfs_get_dev_zones(device,
472 					  zone_start_physical(sb_zone, zone_info),
473 					  &zone_info->sb_zones[sb_pos],
474 					  &nr_zones);
475 		if (ret)
476 			goto out;
477 
478 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
479 			btrfs_err_in_rcu(device->fs_info,
480 	"zoned: failed to read super block log zone info at devid %llu zone %u",
481 					 device->devid, sb_zone);
482 			ret = -EUCLEAN;
483 			goto out;
484 		}
485 
486 		/*
487 		 * If zones[0] is conventional, always use the beginning of the
488 		 * zone to record superblock. No need to validate in that case.
489 		 */
490 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
491 		    BLK_ZONE_TYPE_CONVENTIONAL)
492 			continue;
493 
494 		ret = sb_write_pointer(device->bdev,
495 				       &zone_info->sb_zones[sb_pos], &sb_wp);
496 		if (ret != -ENOENT && ret) {
497 			btrfs_err_in_rcu(device->fs_info,
498 			"zoned: super block log zone corrupted devid %llu zone %u",
499 					 device->devid, sb_zone);
500 			ret = -EUCLEAN;
501 			goto out;
502 		}
503 	}
504 
505 
506 	kfree(zones);
507 
508 	device->zone_info = zone_info;
509 
510 	switch (bdev_zoned_model(bdev)) {
511 	case BLK_ZONED_HM:
512 		model = "host-managed zoned";
513 		emulated = "";
514 		break;
515 	case BLK_ZONED_HA:
516 		model = "host-aware zoned";
517 		emulated = "";
518 		break;
519 	case BLK_ZONED_NONE:
520 		model = "regular";
521 		emulated = "emulated ";
522 		break;
523 	default:
524 		/* Just in case */
525 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
526 				 bdev_zoned_model(bdev),
527 				 rcu_str_deref(device->name));
528 		ret = -EOPNOTSUPP;
529 		goto out_free_zone_info;
530 	}
531 
532 	btrfs_info_in_rcu(fs_info,
533 		"%s block device %s, %u %szones of %llu bytes",
534 		model, rcu_str_deref(device->name), zone_info->nr_zones,
535 		emulated, zone_info->zone_size);
536 
537 	return 0;
538 
539 out:
540 	kfree(zones);
541 out_free_zone_info:
542 	bitmap_free(zone_info->active_zones);
543 	bitmap_free(zone_info->empty_zones);
544 	bitmap_free(zone_info->seq_zones);
545 	kfree(zone_info);
546 	device->zone_info = NULL;
547 
548 	return ret;
549 }
550 
551 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
552 {
553 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
554 
555 	if (!zone_info)
556 		return;
557 
558 	bitmap_free(zone_info->active_zones);
559 	bitmap_free(zone_info->seq_zones);
560 	bitmap_free(zone_info->empty_zones);
561 	kfree(zone_info);
562 	device->zone_info = NULL;
563 }
564 
565 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
566 		       struct blk_zone *zone)
567 {
568 	unsigned int nr_zones = 1;
569 	int ret;
570 
571 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
572 	if (ret != 0 || !nr_zones)
573 		return ret ? ret : -EIO;
574 
575 	return 0;
576 }
577 
578 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
579 {
580 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
581 	struct btrfs_device *device;
582 	u64 zoned_devices = 0;
583 	u64 nr_devices = 0;
584 	u64 zone_size = 0;
585 	const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
586 	int ret = 0;
587 
588 	/* Count zoned devices */
589 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
590 		enum blk_zoned_model model;
591 
592 		if (!device->bdev)
593 			continue;
594 
595 		model = bdev_zoned_model(device->bdev);
596 		/*
597 		 * A Host-Managed zoned device must be used as a zoned device.
598 		 * A Host-Aware zoned device and a non-zoned devices can be
599 		 * treated as a zoned device, if ZONED flag is enabled in the
600 		 * superblock.
601 		 */
602 		if (model == BLK_ZONED_HM ||
603 		    (model == BLK_ZONED_HA && incompat_zoned) ||
604 		    (model == BLK_ZONED_NONE && incompat_zoned)) {
605 			struct btrfs_zoned_device_info *zone_info =
606 				device->zone_info;
607 
608 			zone_info = device->zone_info;
609 			zoned_devices++;
610 			if (!zone_size) {
611 				zone_size = zone_info->zone_size;
612 			} else if (zone_info->zone_size != zone_size) {
613 				btrfs_err(fs_info,
614 		"zoned: unequal block device zone sizes: have %llu found %llu",
615 					  device->zone_info->zone_size,
616 					  zone_size);
617 				ret = -EINVAL;
618 				goto out;
619 			}
620 		}
621 		nr_devices++;
622 	}
623 
624 	if (!zoned_devices && !incompat_zoned)
625 		goto out;
626 
627 	if (!zoned_devices && incompat_zoned) {
628 		/* No zoned block device found on ZONED filesystem */
629 		btrfs_err(fs_info,
630 			  "zoned: no zoned devices found on a zoned filesystem");
631 		ret = -EINVAL;
632 		goto out;
633 	}
634 
635 	if (zoned_devices && !incompat_zoned) {
636 		btrfs_err(fs_info,
637 			  "zoned: mode not enabled but zoned device found");
638 		ret = -EINVAL;
639 		goto out;
640 	}
641 
642 	if (zoned_devices != nr_devices) {
643 		btrfs_err(fs_info,
644 			  "zoned: cannot mix zoned and regular devices");
645 		ret = -EINVAL;
646 		goto out;
647 	}
648 
649 	/*
650 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
651 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
652 	 * check the alignment here.
653 	 */
654 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
655 		btrfs_err(fs_info,
656 			  "zoned: zone size %llu not aligned to stripe %u",
657 			  zone_size, BTRFS_STRIPE_LEN);
658 		ret = -EINVAL;
659 		goto out;
660 	}
661 
662 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
663 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
664 		ret = -EINVAL;
665 		goto out;
666 	}
667 
668 	fs_info->zone_size = zone_size;
669 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
670 
671 	/*
672 	 * Check mount options here, because we might change fs_info->zoned
673 	 * from fs_info->zone_size.
674 	 */
675 	ret = btrfs_check_mountopts_zoned(fs_info);
676 	if (ret)
677 		goto out;
678 
679 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
680 out:
681 	return ret;
682 }
683 
684 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
685 {
686 	if (!btrfs_is_zoned(info))
687 		return 0;
688 
689 	/*
690 	 * Space cache writing is not COWed. Disable that to avoid write errors
691 	 * in sequential zones.
692 	 */
693 	if (btrfs_test_opt(info, SPACE_CACHE)) {
694 		btrfs_err(info, "zoned: space cache v1 is not supported");
695 		return -EINVAL;
696 	}
697 
698 	if (btrfs_test_opt(info, NODATACOW)) {
699 		btrfs_err(info, "zoned: NODATACOW not supported");
700 		return -EINVAL;
701 	}
702 
703 	return 0;
704 }
705 
706 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
707 			   int rw, u64 *bytenr_ret)
708 {
709 	u64 wp;
710 	int ret;
711 
712 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
713 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
714 		return 0;
715 	}
716 
717 	ret = sb_write_pointer(bdev, zones, &wp);
718 	if (ret != -ENOENT && ret < 0)
719 		return ret;
720 
721 	if (rw == WRITE) {
722 		struct blk_zone *reset = NULL;
723 
724 		if (wp == zones[0].start << SECTOR_SHIFT)
725 			reset = &zones[0];
726 		else if (wp == zones[1].start << SECTOR_SHIFT)
727 			reset = &zones[1];
728 
729 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
730 			ASSERT(sb_zone_is_full(reset));
731 
732 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
733 					       reset->start, reset->len,
734 					       GFP_NOFS);
735 			if (ret)
736 				return ret;
737 
738 			reset->cond = BLK_ZONE_COND_EMPTY;
739 			reset->wp = reset->start;
740 		}
741 	} else if (ret != -ENOENT) {
742 		/*
743 		 * For READ, we want the previous one. Move write pointer to
744 		 * the end of a zone, if it is at the head of a zone.
745 		 */
746 		u64 zone_end = 0;
747 
748 		if (wp == zones[0].start << SECTOR_SHIFT)
749 			zone_end = zones[1].start + zones[1].capacity;
750 		else if (wp == zones[1].start << SECTOR_SHIFT)
751 			zone_end = zones[0].start + zones[0].capacity;
752 		if (zone_end)
753 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
754 					BTRFS_SUPER_INFO_SIZE);
755 
756 		wp -= BTRFS_SUPER_INFO_SIZE;
757 	}
758 
759 	*bytenr_ret = wp;
760 	return 0;
761 
762 }
763 
764 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
765 			       u64 *bytenr_ret)
766 {
767 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
768 	sector_t zone_sectors;
769 	u32 sb_zone;
770 	int ret;
771 	u8 zone_sectors_shift;
772 	sector_t nr_sectors;
773 	u32 nr_zones;
774 
775 	if (!bdev_is_zoned(bdev)) {
776 		*bytenr_ret = btrfs_sb_offset(mirror);
777 		return 0;
778 	}
779 
780 	ASSERT(rw == READ || rw == WRITE);
781 
782 	zone_sectors = bdev_zone_sectors(bdev);
783 	if (!is_power_of_2(zone_sectors))
784 		return -EINVAL;
785 	zone_sectors_shift = ilog2(zone_sectors);
786 	nr_sectors = bdev_nr_sectors(bdev);
787 	nr_zones = nr_sectors >> zone_sectors_shift;
788 
789 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
790 	if (sb_zone + 1 >= nr_zones)
791 		return -ENOENT;
792 
793 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
794 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
795 				  zones);
796 	if (ret < 0)
797 		return ret;
798 	if (ret != BTRFS_NR_SB_LOG_ZONES)
799 		return -EIO;
800 
801 	return sb_log_location(bdev, zones, rw, bytenr_ret);
802 }
803 
804 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
805 			  u64 *bytenr_ret)
806 {
807 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
808 	u32 zone_num;
809 
810 	/*
811 	 * For a zoned filesystem on a non-zoned block device, use the same
812 	 * super block locations as regular filesystem. Doing so, the super
813 	 * block can always be retrieved and the zoned flag of the volume
814 	 * detected from the super block information.
815 	 */
816 	if (!bdev_is_zoned(device->bdev)) {
817 		*bytenr_ret = btrfs_sb_offset(mirror);
818 		return 0;
819 	}
820 
821 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
822 	if (zone_num + 1 >= zinfo->nr_zones)
823 		return -ENOENT;
824 
825 	return sb_log_location(device->bdev,
826 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
827 			       rw, bytenr_ret);
828 }
829 
830 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
831 				  int mirror)
832 {
833 	u32 zone_num;
834 
835 	if (!zinfo)
836 		return false;
837 
838 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
839 	if (zone_num + 1 >= zinfo->nr_zones)
840 		return false;
841 
842 	if (!test_bit(zone_num, zinfo->seq_zones))
843 		return false;
844 
845 	return true;
846 }
847 
848 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
849 {
850 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
851 	struct blk_zone *zone;
852 	int i;
853 
854 	if (!is_sb_log_zone(zinfo, mirror))
855 		return 0;
856 
857 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
858 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
859 		/* Advance the next zone */
860 		if (zone->cond == BLK_ZONE_COND_FULL) {
861 			zone++;
862 			continue;
863 		}
864 
865 		if (zone->cond == BLK_ZONE_COND_EMPTY)
866 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
867 
868 		zone->wp += SUPER_INFO_SECTORS;
869 
870 		if (sb_zone_is_full(zone)) {
871 			/*
872 			 * No room left to write new superblock. Since
873 			 * superblock is written with REQ_SYNC, it is safe to
874 			 * finish the zone now.
875 			 *
876 			 * If the write pointer is exactly at the capacity,
877 			 * explicit ZONE_FINISH is not necessary.
878 			 */
879 			if (zone->wp != zone->start + zone->capacity) {
880 				int ret;
881 
882 				ret = blkdev_zone_mgmt(device->bdev,
883 						REQ_OP_ZONE_FINISH, zone->start,
884 						zone->len, GFP_NOFS);
885 				if (ret)
886 					return ret;
887 			}
888 
889 			zone->wp = zone->start + zone->len;
890 			zone->cond = BLK_ZONE_COND_FULL;
891 		}
892 		return 0;
893 	}
894 
895 	/* All the zones are FULL. Should not reach here. */
896 	ASSERT(0);
897 	return -EIO;
898 }
899 
900 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
901 {
902 	sector_t zone_sectors;
903 	sector_t nr_sectors;
904 	u8 zone_sectors_shift;
905 	u32 sb_zone;
906 	u32 nr_zones;
907 
908 	zone_sectors = bdev_zone_sectors(bdev);
909 	zone_sectors_shift = ilog2(zone_sectors);
910 	nr_sectors = bdev_nr_sectors(bdev);
911 	nr_zones = nr_sectors >> zone_sectors_shift;
912 
913 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
914 	if (sb_zone + 1 >= nr_zones)
915 		return -ENOENT;
916 
917 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
918 				zone_start_sector(sb_zone, bdev),
919 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
920 }
921 
922 /**
923  * btrfs_find_allocatable_zones - find allocatable zones within a given region
924  *
925  * @device:	the device to allocate a region on
926  * @hole_start: the position of the hole to allocate the region
927  * @num_bytes:	size of wanted region
928  * @hole_end:	the end of the hole
929  * @return:	position of allocatable zones
930  *
931  * Allocatable region should not contain any superblock locations.
932  */
933 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
934 				 u64 hole_end, u64 num_bytes)
935 {
936 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
937 	const u8 shift = zinfo->zone_size_shift;
938 	u64 nzones = num_bytes >> shift;
939 	u64 pos = hole_start;
940 	u64 begin, end;
941 	bool have_sb;
942 	int i;
943 
944 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
945 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
946 
947 	while (pos < hole_end) {
948 		begin = pos >> shift;
949 		end = begin + nzones;
950 
951 		if (end > zinfo->nr_zones)
952 			return hole_end;
953 
954 		/* Check if zones in the region are all empty */
955 		if (btrfs_dev_is_sequential(device, pos) &&
956 		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
957 			pos += zinfo->zone_size;
958 			continue;
959 		}
960 
961 		have_sb = false;
962 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
963 			u32 sb_zone;
964 			u64 sb_pos;
965 
966 			sb_zone = sb_zone_number(shift, i);
967 			if (!(end <= sb_zone ||
968 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
969 				have_sb = true;
970 				pos = zone_start_physical(
971 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
972 				break;
973 			}
974 
975 			/* We also need to exclude regular superblock positions */
976 			sb_pos = btrfs_sb_offset(i);
977 			if (!(pos + num_bytes <= sb_pos ||
978 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
979 				have_sb = true;
980 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
981 					    zinfo->zone_size);
982 				break;
983 			}
984 		}
985 		if (!have_sb)
986 			break;
987 	}
988 
989 	return pos;
990 }
991 
992 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
993 {
994 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
995 	unsigned int zno = (pos >> zone_info->zone_size_shift);
996 
997 	/* We can use any number of zones */
998 	if (zone_info->max_active_zones == 0)
999 		return true;
1000 
1001 	if (!test_bit(zno, zone_info->active_zones)) {
1002 		/* Active zone left? */
1003 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1004 			return false;
1005 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1006 			/* Someone already set the bit */
1007 			atomic_inc(&zone_info->active_zones_left);
1008 		}
1009 	}
1010 
1011 	return true;
1012 }
1013 
1014 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1015 {
1016 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1017 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1018 
1019 	/* We can use any number of zones */
1020 	if (zone_info->max_active_zones == 0)
1021 		return;
1022 
1023 	if (test_and_clear_bit(zno, zone_info->active_zones))
1024 		atomic_inc(&zone_info->active_zones_left);
1025 }
1026 
1027 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1028 			    u64 length, u64 *bytes)
1029 {
1030 	int ret;
1031 
1032 	*bytes = 0;
1033 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1034 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1035 			       GFP_NOFS);
1036 	if (ret)
1037 		return ret;
1038 
1039 	*bytes = length;
1040 	while (length) {
1041 		btrfs_dev_set_zone_empty(device, physical);
1042 		btrfs_dev_clear_active_zone(device, physical);
1043 		physical += device->zone_info->zone_size;
1044 		length -= device->zone_info->zone_size;
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1051 {
1052 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1053 	const u8 shift = zinfo->zone_size_shift;
1054 	unsigned long begin = start >> shift;
1055 	unsigned long end = (start + size) >> shift;
1056 	u64 pos;
1057 	int ret;
1058 
1059 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1060 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1061 
1062 	if (end > zinfo->nr_zones)
1063 		return -ERANGE;
1064 
1065 	/* All the zones are conventional */
1066 	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1067 		return 0;
1068 
1069 	/* All the zones are sequential and empty */
1070 	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1071 	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1072 		return 0;
1073 
1074 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1075 		u64 reset_bytes;
1076 
1077 		if (!btrfs_dev_is_sequential(device, pos) ||
1078 		    btrfs_dev_is_empty_zone(device, pos))
1079 			continue;
1080 
1081 		/* Free regions should be empty */
1082 		btrfs_warn_in_rcu(
1083 			device->fs_info,
1084 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1085 			rcu_str_deref(device->name), device->devid, pos >> shift);
1086 		WARN_ON_ONCE(1);
1087 
1088 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1089 					      &reset_bytes);
1090 		if (ret)
1091 			return ret;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 /*
1098  * Calculate an allocation pointer from the extent allocation information
1099  * for a block group consist of conventional zones. It is pointed to the
1100  * end of the highest addressed extent in the block group as an allocation
1101  * offset.
1102  */
1103 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1104 				   u64 *offset_ret)
1105 {
1106 	struct btrfs_fs_info *fs_info = cache->fs_info;
1107 	struct btrfs_root *root = fs_info->extent_root;
1108 	struct btrfs_path *path;
1109 	struct btrfs_key key;
1110 	struct btrfs_key found_key;
1111 	int ret;
1112 	u64 length;
1113 
1114 	path = btrfs_alloc_path();
1115 	if (!path)
1116 		return -ENOMEM;
1117 
1118 	key.objectid = cache->start + cache->length;
1119 	key.type = 0;
1120 	key.offset = 0;
1121 
1122 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1123 	/* We should not find the exact match */
1124 	if (!ret)
1125 		ret = -EUCLEAN;
1126 	if (ret < 0)
1127 		goto out;
1128 
1129 	ret = btrfs_previous_extent_item(root, path, cache->start);
1130 	if (ret) {
1131 		if (ret == 1) {
1132 			ret = 0;
1133 			*offset_ret = 0;
1134 		}
1135 		goto out;
1136 	}
1137 
1138 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1139 
1140 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1141 		length = found_key.offset;
1142 	else
1143 		length = fs_info->nodesize;
1144 
1145 	if (!(found_key.objectid >= cache->start &&
1146 	       found_key.objectid + length <= cache->start + cache->length)) {
1147 		ret = -EUCLEAN;
1148 		goto out;
1149 	}
1150 	*offset_ret = found_key.objectid + length - cache->start;
1151 	ret = 0;
1152 
1153 out:
1154 	btrfs_free_path(path);
1155 	return ret;
1156 }
1157 
1158 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1159 {
1160 	struct btrfs_fs_info *fs_info = cache->fs_info;
1161 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1162 	struct extent_map *em;
1163 	struct map_lookup *map;
1164 	struct btrfs_device *device;
1165 	u64 logical = cache->start;
1166 	u64 length = cache->length;
1167 	u64 physical = 0;
1168 	int ret;
1169 	int i;
1170 	unsigned int nofs_flag;
1171 	u64 *alloc_offsets = NULL;
1172 	u64 *caps = NULL;
1173 	unsigned long *active = NULL;
1174 	u64 last_alloc = 0;
1175 	u32 num_sequential = 0, num_conventional = 0;
1176 
1177 	if (!btrfs_is_zoned(fs_info))
1178 		return 0;
1179 
1180 	/* Sanity check */
1181 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1182 		btrfs_err(fs_info,
1183 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1184 			  logical, length, fs_info->zone_size);
1185 		return -EIO;
1186 	}
1187 
1188 	/* Get the chunk mapping */
1189 	read_lock(&em_tree->lock);
1190 	em = lookup_extent_mapping(em_tree, logical, length);
1191 	read_unlock(&em_tree->lock);
1192 
1193 	if (!em)
1194 		return -EINVAL;
1195 
1196 	map = em->map_lookup;
1197 
1198 	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1199 	if (!cache->physical_map) {
1200 		ret = -ENOMEM;
1201 		goto out;
1202 	}
1203 
1204 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1205 	if (!alloc_offsets) {
1206 		ret = -ENOMEM;
1207 		goto out;
1208 	}
1209 
1210 	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1211 	if (!caps) {
1212 		ret = -ENOMEM;
1213 		goto out;
1214 	}
1215 
1216 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1217 	if (!active) {
1218 		ret = -ENOMEM;
1219 		goto out;
1220 	}
1221 
1222 	for (i = 0; i < map->num_stripes; i++) {
1223 		bool is_sequential;
1224 		struct blk_zone zone;
1225 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1226 		int dev_replace_is_ongoing = 0;
1227 
1228 		device = map->stripes[i].dev;
1229 		physical = map->stripes[i].physical;
1230 
1231 		if (device->bdev == NULL) {
1232 			alloc_offsets[i] = WP_MISSING_DEV;
1233 			continue;
1234 		}
1235 
1236 		is_sequential = btrfs_dev_is_sequential(device, physical);
1237 		if (is_sequential)
1238 			num_sequential++;
1239 		else
1240 			num_conventional++;
1241 
1242 		if (!is_sequential) {
1243 			alloc_offsets[i] = WP_CONVENTIONAL;
1244 			continue;
1245 		}
1246 
1247 		/*
1248 		 * This zone will be used for allocation, so mark this zone
1249 		 * non-empty.
1250 		 */
1251 		btrfs_dev_clear_zone_empty(device, physical);
1252 
1253 		down_read(&dev_replace->rwsem);
1254 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1255 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1256 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical);
1257 		up_read(&dev_replace->rwsem);
1258 
1259 		/*
1260 		 * The group is mapped to a sequential zone. Get the zone write
1261 		 * pointer to determine the allocation offset within the zone.
1262 		 */
1263 		WARN_ON(!IS_ALIGNED(physical, fs_info->zone_size));
1264 		nofs_flag = memalloc_nofs_save();
1265 		ret = btrfs_get_dev_zone(device, physical, &zone);
1266 		memalloc_nofs_restore(nofs_flag);
1267 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1268 			ret = 0;
1269 			alloc_offsets[i] = WP_MISSING_DEV;
1270 			continue;
1271 		} else if (ret) {
1272 			goto out;
1273 		}
1274 
1275 		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1276 			btrfs_err_in_rcu(fs_info,
1277 	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1278 				zone.start << SECTOR_SHIFT,
1279 				rcu_str_deref(device->name), device->devid);
1280 			ret = -EIO;
1281 			goto out;
1282 		}
1283 
1284 		caps[i] = (zone.capacity << SECTOR_SHIFT);
1285 
1286 		switch (zone.cond) {
1287 		case BLK_ZONE_COND_OFFLINE:
1288 		case BLK_ZONE_COND_READONLY:
1289 			btrfs_err(fs_info,
1290 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1291 				  physical >> device->zone_info->zone_size_shift,
1292 				  rcu_str_deref(device->name), device->devid);
1293 			alloc_offsets[i] = WP_MISSING_DEV;
1294 			break;
1295 		case BLK_ZONE_COND_EMPTY:
1296 			alloc_offsets[i] = 0;
1297 			break;
1298 		case BLK_ZONE_COND_FULL:
1299 			alloc_offsets[i] = caps[i];
1300 			break;
1301 		default:
1302 			/* Partially used zone */
1303 			alloc_offsets[i] =
1304 					((zone.wp - zone.start) << SECTOR_SHIFT);
1305 			__set_bit(i, active);
1306 			break;
1307 		}
1308 
1309 		/*
1310 		 * Consider a zone as active if we can allow any number of
1311 		 * active zones.
1312 		 */
1313 		if (!device->zone_info->max_active_zones)
1314 			__set_bit(i, active);
1315 	}
1316 
1317 	if (num_sequential > 0)
1318 		cache->seq_zone = true;
1319 
1320 	if (num_conventional > 0) {
1321 		/*
1322 		 * Avoid calling calculate_alloc_pointer() for new BG. It
1323 		 * is no use for new BG. It must be always 0.
1324 		 *
1325 		 * Also, we have a lock chain of extent buffer lock ->
1326 		 * chunk mutex.  For new BG, this function is called from
1327 		 * btrfs_make_block_group() which is already taking the
1328 		 * chunk mutex. Thus, we cannot call
1329 		 * calculate_alloc_pointer() which takes extent buffer
1330 		 * locks to avoid deadlock.
1331 		 */
1332 
1333 		/* Zone capacity is always zone size in emulation */
1334 		cache->zone_capacity = cache->length;
1335 		if (new) {
1336 			cache->alloc_offset = 0;
1337 			goto out;
1338 		}
1339 		ret = calculate_alloc_pointer(cache, &last_alloc);
1340 		if (ret || map->num_stripes == num_conventional) {
1341 			if (!ret)
1342 				cache->alloc_offset = last_alloc;
1343 			else
1344 				btrfs_err(fs_info,
1345 			"zoned: failed to determine allocation offset of bg %llu",
1346 					  cache->start);
1347 			goto out;
1348 		}
1349 	}
1350 
1351 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1352 	case 0: /* single */
1353 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1354 			btrfs_err(fs_info,
1355 			"zoned: cannot recover write pointer for zone %llu",
1356 				physical);
1357 			ret = -EIO;
1358 			goto out;
1359 		}
1360 		cache->alloc_offset = alloc_offsets[0];
1361 		cache->zone_capacity = caps[0];
1362 		cache->zone_is_active = test_bit(0, active);
1363 		break;
1364 	case BTRFS_BLOCK_GROUP_DUP:
1365 	case BTRFS_BLOCK_GROUP_RAID1:
1366 	case BTRFS_BLOCK_GROUP_RAID0:
1367 	case BTRFS_BLOCK_GROUP_RAID10:
1368 	case BTRFS_BLOCK_GROUP_RAID5:
1369 	case BTRFS_BLOCK_GROUP_RAID6:
1370 		/* non-single profiles are not supported yet */
1371 	default:
1372 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1373 			  btrfs_bg_type_to_raid_name(map->type));
1374 		ret = -EINVAL;
1375 		goto out;
1376 	}
1377 
1378 	if (cache->zone_is_active) {
1379 		btrfs_get_block_group(cache);
1380 		spin_lock(&fs_info->zone_active_bgs_lock);
1381 		list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs);
1382 		spin_unlock(&fs_info->zone_active_bgs_lock);
1383 	}
1384 
1385 out:
1386 	if (cache->alloc_offset > fs_info->zone_size) {
1387 		btrfs_err(fs_info,
1388 			"zoned: invalid write pointer %llu in block group %llu",
1389 			cache->alloc_offset, cache->start);
1390 		ret = -EIO;
1391 	}
1392 
1393 	if (cache->alloc_offset > cache->zone_capacity) {
1394 		btrfs_err(fs_info,
1395 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1396 			  cache->alloc_offset, cache->zone_capacity,
1397 			  cache->start);
1398 		ret = -EIO;
1399 	}
1400 
1401 	/* An extent is allocated after the write pointer */
1402 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1403 		btrfs_err(fs_info,
1404 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1405 			  logical, last_alloc, cache->alloc_offset);
1406 		ret = -EIO;
1407 	}
1408 
1409 	if (!ret)
1410 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1411 
1412 	if (ret) {
1413 		kfree(cache->physical_map);
1414 		cache->physical_map = NULL;
1415 	}
1416 	bitmap_free(active);
1417 	kfree(caps);
1418 	kfree(alloc_offsets);
1419 	free_extent_map(em);
1420 
1421 	return ret;
1422 }
1423 
1424 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1425 {
1426 	u64 unusable, free;
1427 
1428 	if (!btrfs_is_zoned(cache->fs_info))
1429 		return;
1430 
1431 	WARN_ON(cache->bytes_super != 0);
1432 	unusable = (cache->alloc_offset - cache->used) +
1433 		   (cache->length - cache->zone_capacity);
1434 	free = cache->zone_capacity - cache->alloc_offset;
1435 
1436 	/* We only need ->free_space in ALLOC_SEQ block groups */
1437 	cache->last_byte_to_unpin = (u64)-1;
1438 	cache->cached = BTRFS_CACHE_FINISHED;
1439 	cache->free_space_ctl->free_space = free;
1440 	cache->zone_unusable = unusable;
1441 }
1442 
1443 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1444 			    struct extent_buffer *eb)
1445 {
1446 	struct btrfs_fs_info *fs_info = eb->fs_info;
1447 
1448 	if (!btrfs_is_zoned(fs_info) ||
1449 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1450 	    !list_empty(&eb->release_list))
1451 		return;
1452 
1453 	set_extent_buffer_dirty(eb);
1454 	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1455 			       eb->start + eb->len - 1, EXTENT_DIRTY);
1456 	memzero_extent_buffer(eb, 0, eb->len);
1457 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1458 
1459 	spin_lock(&trans->releasing_ebs_lock);
1460 	list_add_tail(&eb->release_list, &trans->releasing_ebs);
1461 	spin_unlock(&trans->releasing_ebs_lock);
1462 	atomic_inc(&eb->refs);
1463 }
1464 
1465 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1466 {
1467 	spin_lock(&trans->releasing_ebs_lock);
1468 	while (!list_empty(&trans->releasing_ebs)) {
1469 		struct extent_buffer *eb;
1470 
1471 		eb = list_first_entry(&trans->releasing_ebs,
1472 				      struct extent_buffer, release_list);
1473 		list_del_init(&eb->release_list);
1474 		free_extent_buffer(eb);
1475 	}
1476 	spin_unlock(&trans->releasing_ebs_lock);
1477 }
1478 
1479 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1480 {
1481 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1482 	struct btrfs_block_group *cache;
1483 	bool ret = false;
1484 
1485 	if (!btrfs_is_zoned(fs_info))
1486 		return false;
1487 
1488 	if (!is_data_inode(&inode->vfs_inode))
1489 		return false;
1490 
1491 	/*
1492 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1493 	 * extent layout the relocation code has.
1494 	 * Furthermore we have set aside own block-group from which only the
1495 	 * relocation "process" can allocate and make sure only one process at a
1496 	 * time can add pages to an extent that gets relocated, so it's safe to
1497 	 * use regular REQ_OP_WRITE for this special case.
1498 	 */
1499 	if (btrfs_is_data_reloc_root(inode->root))
1500 		return false;
1501 
1502 	cache = btrfs_lookup_block_group(fs_info, start);
1503 	ASSERT(cache);
1504 	if (!cache)
1505 		return false;
1506 
1507 	ret = cache->seq_zone;
1508 	btrfs_put_block_group(cache);
1509 
1510 	return ret;
1511 }
1512 
1513 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1514 				 struct bio *bio)
1515 {
1516 	struct btrfs_ordered_extent *ordered;
1517 	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1518 
1519 	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1520 		return;
1521 
1522 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1523 	if (WARN_ON(!ordered))
1524 		return;
1525 
1526 	ordered->physical = physical;
1527 	ordered->bdev = bio->bi_bdev;
1528 
1529 	btrfs_put_ordered_extent(ordered);
1530 }
1531 
1532 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1533 {
1534 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1535 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1536 	struct extent_map_tree *em_tree;
1537 	struct extent_map *em;
1538 	struct btrfs_ordered_sum *sum;
1539 	u64 orig_logical = ordered->disk_bytenr;
1540 	u64 *logical = NULL;
1541 	int nr, stripe_len;
1542 
1543 	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1544 	ASSERT(!bdev_is_partition(ordered->bdev));
1545 	if (WARN_ON(!ordered->bdev))
1546 		return;
1547 
1548 	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1549 				     ordered->physical, &logical, &nr,
1550 				     &stripe_len)))
1551 		goto out;
1552 
1553 	WARN_ON(nr != 1);
1554 
1555 	if (orig_logical == *logical)
1556 		goto out;
1557 
1558 	ordered->disk_bytenr = *logical;
1559 
1560 	em_tree = &inode->extent_tree;
1561 	write_lock(&em_tree->lock);
1562 	em = search_extent_mapping(em_tree, ordered->file_offset,
1563 				   ordered->num_bytes);
1564 	em->block_start = *logical;
1565 	free_extent_map(em);
1566 	write_unlock(&em_tree->lock);
1567 
1568 	list_for_each_entry(sum, &ordered->list, list) {
1569 		if (*logical < orig_logical)
1570 			sum->bytenr -= orig_logical - *logical;
1571 		else
1572 			sum->bytenr += *logical - orig_logical;
1573 	}
1574 
1575 out:
1576 	kfree(logical);
1577 }
1578 
1579 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1580 				    struct extent_buffer *eb,
1581 				    struct btrfs_block_group **cache_ret)
1582 {
1583 	struct btrfs_block_group *cache;
1584 	bool ret = true;
1585 
1586 	if (!btrfs_is_zoned(fs_info))
1587 		return true;
1588 
1589 	cache = *cache_ret;
1590 
1591 	if (cache && (eb->start < cache->start ||
1592 		      cache->start + cache->length <= eb->start)) {
1593 		btrfs_put_block_group(cache);
1594 		cache = NULL;
1595 		*cache_ret = NULL;
1596 	}
1597 
1598 	if (!cache)
1599 		cache = btrfs_lookup_block_group(fs_info, eb->start);
1600 
1601 	if (cache) {
1602 		if (cache->meta_write_pointer != eb->start) {
1603 			btrfs_put_block_group(cache);
1604 			cache = NULL;
1605 			ret = false;
1606 		} else {
1607 			cache->meta_write_pointer = eb->start + eb->len;
1608 		}
1609 
1610 		*cache_ret = cache;
1611 	}
1612 
1613 	return ret;
1614 }
1615 
1616 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1617 				     struct extent_buffer *eb)
1618 {
1619 	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1620 		return;
1621 
1622 	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1623 	cache->meta_write_pointer = eb->start;
1624 }
1625 
1626 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1627 {
1628 	if (!btrfs_dev_is_sequential(device, physical))
1629 		return -EOPNOTSUPP;
1630 
1631 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1632 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1633 }
1634 
1635 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1636 			  struct blk_zone *zone)
1637 {
1638 	struct btrfs_io_context *bioc = NULL;
1639 	u64 mapped_length = PAGE_SIZE;
1640 	unsigned int nofs_flag;
1641 	int nmirrors;
1642 	int i, ret;
1643 
1644 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1645 			       &mapped_length, &bioc);
1646 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1647 		btrfs_put_bioc(bioc);
1648 		return -EIO;
1649 	}
1650 
1651 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1652 		return -EINVAL;
1653 
1654 	nofs_flag = memalloc_nofs_save();
1655 	nmirrors = (int)bioc->num_stripes;
1656 	for (i = 0; i < nmirrors; i++) {
1657 		u64 physical = bioc->stripes[i].physical;
1658 		struct btrfs_device *dev = bioc->stripes[i].dev;
1659 
1660 		/* Missing device */
1661 		if (!dev->bdev)
1662 			continue;
1663 
1664 		ret = btrfs_get_dev_zone(dev, physical, zone);
1665 		/* Failing device */
1666 		if (ret == -EIO || ret == -EOPNOTSUPP)
1667 			continue;
1668 		break;
1669 	}
1670 	memalloc_nofs_restore(nofs_flag);
1671 
1672 	return ret;
1673 }
1674 
1675 /*
1676  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1677  * filling zeros between @physical_pos to a write pointer of dev-replace
1678  * source device.
1679  */
1680 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1681 				    u64 physical_start, u64 physical_pos)
1682 {
1683 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1684 	struct blk_zone zone;
1685 	u64 length;
1686 	u64 wp;
1687 	int ret;
1688 
1689 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1690 		return 0;
1691 
1692 	ret = read_zone_info(fs_info, logical, &zone);
1693 	if (ret)
1694 		return ret;
1695 
1696 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1697 
1698 	if (physical_pos == wp)
1699 		return 0;
1700 
1701 	if (physical_pos > wp)
1702 		return -EUCLEAN;
1703 
1704 	length = wp - physical_pos;
1705 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1706 }
1707 
1708 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1709 					    u64 logical, u64 length)
1710 {
1711 	struct btrfs_device *device;
1712 	struct extent_map *em;
1713 	struct map_lookup *map;
1714 
1715 	em = btrfs_get_chunk_map(fs_info, logical, length);
1716 	if (IS_ERR(em))
1717 		return ERR_CAST(em);
1718 
1719 	map = em->map_lookup;
1720 	/* We only support single profile for now */
1721 	ASSERT(map->num_stripes == 1);
1722 	device = map->stripes[0].dev;
1723 
1724 	free_extent_map(em);
1725 
1726 	return device;
1727 }
1728 
1729 /**
1730  * Activate block group and underlying device zones
1731  *
1732  * @block_group: the block group to activate
1733  *
1734  * Return: true on success, false otherwise
1735  */
1736 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1737 {
1738 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1739 	struct map_lookup *map;
1740 	struct btrfs_device *device;
1741 	u64 physical;
1742 	bool ret;
1743 
1744 	if (!btrfs_is_zoned(block_group->fs_info))
1745 		return true;
1746 
1747 	map = block_group->physical_map;
1748 	/* Currently support SINGLE profile only */
1749 	ASSERT(map->num_stripes == 1);
1750 	device = map->stripes[0].dev;
1751 	physical = map->stripes[0].physical;
1752 
1753 	if (device->zone_info->max_active_zones == 0)
1754 		return true;
1755 
1756 	spin_lock(&block_group->lock);
1757 
1758 	if (block_group->zone_is_active) {
1759 		ret = true;
1760 		goto out_unlock;
1761 	}
1762 
1763 	/* No space left */
1764 	if (block_group->alloc_offset == block_group->zone_capacity) {
1765 		ret = false;
1766 		goto out_unlock;
1767 	}
1768 
1769 	if (!btrfs_dev_set_active_zone(device, physical)) {
1770 		/* Cannot activate the zone */
1771 		ret = false;
1772 		goto out_unlock;
1773 	}
1774 
1775 	/* Successfully activated all the zones */
1776 	block_group->zone_is_active = 1;
1777 
1778 	spin_unlock(&block_group->lock);
1779 
1780 	/* For the active block group list */
1781 	btrfs_get_block_group(block_group);
1782 
1783 	spin_lock(&fs_info->zone_active_bgs_lock);
1784 	ASSERT(list_empty(&block_group->active_bg_list));
1785 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1786 	spin_unlock(&fs_info->zone_active_bgs_lock);
1787 
1788 	return true;
1789 
1790 out_unlock:
1791 	spin_unlock(&block_group->lock);
1792 	return ret;
1793 }
1794 
1795 int btrfs_zone_finish(struct btrfs_block_group *block_group)
1796 {
1797 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1798 	struct map_lookup *map;
1799 	struct btrfs_device *device;
1800 	u64 physical;
1801 	int ret = 0;
1802 
1803 	if (!btrfs_is_zoned(fs_info))
1804 		return 0;
1805 
1806 	map = block_group->physical_map;
1807 	/* Currently support SINGLE profile only */
1808 	ASSERT(map->num_stripes == 1);
1809 
1810 	device = map->stripes[0].dev;
1811 	physical = map->stripes[0].physical;
1812 
1813 	if (device->zone_info->max_active_zones == 0)
1814 		return 0;
1815 
1816 	spin_lock(&block_group->lock);
1817 	if (!block_group->zone_is_active) {
1818 		spin_unlock(&block_group->lock);
1819 		return 0;
1820 	}
1821 
1822 	/* Check if we have unwritten allocated space */
1823 	if ((block_group->flags &
1824 	     (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) &&
1825 	    block_group->alloc_offset > block_group->meta_write_pointer) {
1826 		spin_unlock(&block_group->lock);
1827 		return -EAGAIN;
1828 	}
1829 	spin_unlock(&block_group->lock);
1830 
1831 	ret = btrfs_inc_block_group_ro(block_group, false);
1832 	if (ret)
1833 		return ret;
1834 
1835 	/* Ensure all writes in this block group finish */
1836 	btrfs_wait_block_group_reservations(block_group);
1837 	/* No need to wait for NOCOW writers. Zoned mode does not allow that. */
1838 	btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1839 				 block_group->length);
1840 
1841 	spin_lock(&block_group->lock);
1842 
1843 	/*
1844 	 * Bail out if someone already deactivated the block group, or
1845 	 * allocated space is left in the block group.
1846 	 */
1847 	if (!block_group->zone_is_active) {
1848 		spin_unlock(&block_group->lock);
1849 		btrfs_dec_block_group_ro(block_group);
1850 		return 0;
1851 	}
1852 
1853 	if (block_group->reserved) {
1854 		spin_unlock(&block_group->lock);
1855 		btrfs_dec_block_group_ro(block_group);
1856 		return -EAGAIN;
1857 	}
1858 
1859 	block_group->zone_is_active = 0;
1860 	block_group->alloc_offset = block_group->zone_capacity;
1861 	block_group->free_space_ctl->free_space = 0;
1862 	btrfs_clear_treelog_bg(block_group);
1863 	spin_unlock(&block_group->lock);
1864 
1865 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
1866 			       physical >> SECTOR_SHIFT,
1867 			       device->zone_info->zone_size >> SECTOR_SHIFT,
1868 			       GFP_NOFS);
1869 	btrfs_dec_block_group_ro(block_group);
1870 
1871 	if (!ret) {
1872 		btrfs_dev_clear_active_zone(device, physical);
1873 
1874 		spin_lock(&fs_info->zone_active_bgs_lock);
1875 		ASSERT(!list_empty(&block_group->active_bg_list));
1876 		list_del_init(&block_group->active_bg_list);
1877 		spin_unlock(&fs_info->zone_active_bgs_lock);
1878 
1879 		/* For active_bg_list */
1880 		btrfs_put_block_group(block_group);
1881 	}
1882 
1883 	return ret;
1884 }
1885 
1886 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, int raid_index)
1887 {
1888 	struct btrfs_device *device;
1889 	bool ret = false;
1890 
1891 	if (!btrfs_is_zoned(fs_devices->fs_info))
1892 		return true;
1893 
1894 	/* Non-single profiles are not supported yet */
1895 	if (raid_index != BTRFS_RAID_SINGLE)
1896 		return false;
1897 
1898 	/* Check if there is a device with active zones left */
1899 	mutex_lock(&fs_devices->device_list_mutex);
1900 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1901 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
1902 
1903 		if (!device->bdev)
1904 			continue;
1905 
1906 		if (!zinfo->max_active_zones ||
1907 		    atomic_read(&zinfo->active_zones_left)) {
1908 			ret = true;
1909 			break;
1910 		}
1911 	}
1912 	mutex_unlock(&fs_devices->device_list_mutex);
1913 
1914 	return ret;
1915 }
1916 
1917 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
1918 {
1919 	struct btrfs_block_group *block_group;
1920 	struct map_lookup *map;
1921 	struct btrfs_device *device;
1922 	u64 physical;
1923 
1924 	if (!btrfs_is_zoned(fs_info))
1925 		return;
1926 
1927 	block_group = btrfs_lookup_block_group(fs_info, logical);
1928 	ASSERT(block_group);
1929 
1930 	if (logical + length < block_group->start + block_group->zone_capacity)
1931 		goto out;
1932 
1933 	spin_lock(&block_group->lock);
1934 
1935 	if (!block_group->zone_is_active) {
1936 		spin_unlock(&block_group->lock);
1937 		goto out;
1938 	}
1939 
1940 	block_group->zone_is_active = 0;
1941 	/* We should have consumed all the free space */
1942 	ASSERT(block_group->alloc_offset == block_group->zone_capacity);
1943 	ASSERT(block_group->free_space_ctl->free_space == 0);
1944 	btrfs_clear_treelog_bg(block_group);
1945 	spin_unlock(&block_group->lock);
1946 
1947 	map = block_group->physical_map;
1948 	device = map->stripes[0].dev;
1949 	physical = map->stripes[0].physical;
1950 
1951 	if (!device->zone_info->max_active_zones)
1952 		goto out;
1953 
1954 	btrfs_dev_clear_active_zone(device, physical);
1955 
1956 	spin_lock(&fs_info->zone_active_bgs_lock);
1957 	ASSERT(!list_empty(&block_group->active_bg_list));
1958 	list_del_init(&block_group->active_bg_list);
1959 	spin_unlock(&fs_info->zone_active_bgs_lock);
1960 
1961 	btrfs_put_block_group(block_group);
1962 
1963 out:
1964 	btrfs_put_block_group(block_group);
1965 }
1966 
1967 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
1968 {
1969 	struct btrfs_fs_info *fs_info = bg->fs_info;
1970 
1971 	spin_lock(&fs_info->relocation_bg_lock);
1972 	if (fs_info->data_reloc_bg == bg->start)
1973 		fs_info->data_reloc_bg = 0;
1974 	spin_unlock(&fs_info->relocation_bg_lock);
1975 }
1976