1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "bio.h" 21 22 /* Maximum number of zones to report per blkdev_report_zones() call */ 23 #define BTRFS_REPORT_NR_ZONES 4096 24 /* Invalid allocation pointer value for missing devices */ 25 #define WP_MISSING_DEV ((u64)-1) 26 /* Pseudo write pointer value for conventional zone */ 27 #define WP_CONVENTIONAL ((u64)-2) 28 29 /* 30 * Location of the first zone of superblock logging zone pairs. 31 * 32 * - primary superblock: 0B (zone 0) 33 * - first copy: 512G (zone starting at that offset) 34 * - second copy: 4T (zone starting at that offset) 35 */ 36 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 37 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 38 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 39 40 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 41 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 42 43 /* Number of superblock log zones */ 44 #define BTRFS_NR_SB_LOG_ZONES 2 45 46 /* 47 * Minimum of active zones we need: 48 * 49 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 50 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 51 * - 1 zone for tree-log dedicated block group 52 * - 1 zone for relocation 53 */ 54 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 55 56 /* 57 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 58 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 59 * We do not expect the zone size to become larger than 8GiB or smaller than 60 * 4MiB in the near future. 61 */ 62 #define BTRFS_MAX_ZONE_SIZE SZ_8G 63 #define BTRFS_MIN_ZONE_SIZE SZ_4M 64 65 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 66 67 static inline bool sb_zone_is_full(const struct blk_zone *zone) 68 { 69 return (zone->cond == BLK_ZONE_COND_FULL) || 70 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 71 } 72 73 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 74 { 75 struct blk_zone *zones = data; 76 77 memcpy(&zones[idx], zone, sizeof(*zone)); 78 79 return 0; 80 } 81 82 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 83 u64 *wp_ret) 84 { 85 bool empty[BTRFS_NR_SB_LOG_ZONES]; 86 bool full[BTRFS_NR_SB_LOG_ZONES]; 87 sector_t sector; 88 int i; 89 90 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 91 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 92 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 93 full[i] = sb_zone_is_full(&zones[i]); 94 } 95 96 /* 97 * Possible states of log buffer zones 98 * 99 * Empty[0] In use[0] Full[0] 100 * Empty[1] * 0 1 101 * In use[1] x x 1 102 * Full[1] 0 0 C 103 * 104 * Log position: 105 * *: Special case, no superblock is written 106 * 0: Use write pointer of zones[0] 107 * 1: Use write pointer of zones[1] 108 * C: Compare super blocks from zones[0] and zones[1], use the latest 109 * one determined by generation 110 * x: Invalid state 111 */ 112 113 if (empty[0] && empty[1]) { 114 /* Special case to distinguish no superblock to read */ 115 *wp_ret = zones[0].start << SECTOR_SHIFT; 116 return -ENOENT; 117 } else if (full[0] && full[1]) { 118 /* Compare two super blocks */ 119 struct address_space *mapping = bdev->bd_inode->i_mapping; 120 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 121 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 122 int i; 123 124 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 125 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; 126 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - 127 BTRFS_SUPER_INFO_SIZE; 128 129 page[i] = read_cache_page_gfp(mapping, 130 bytenr >> PAGE_SHIFT, GFP_NOFS); 131 if (IS_ERR(page[i])) { 132 if (i == 1) 133 btrfs_release_disk_super(super[0]); 134 return PTR_ERR(page[i]); 135 } 136 super[i] = page_address(page[i]); 137 } 138 139 if (btrfs_super_generation(super[0]) > 140 btrfs_super_generation(super[1])) 141 sector = zones[1].start; 142 else 143 sector = zones[0].start; 144 145 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 146 btrfs_release_disk_super(super[i]); 147 } else if (!full[0] && (empty[1] || full[1])) { 148 sector = zones[0].wp; 149 } else if (full[0]) { 150 sector = zones[1].wp; 151 } else { 152 return -EUCLEAN; 153 } 154 *wp_ret = sector << SECTOR_SHIFT; 155 return 0; 156 } 157 158 /* 159 * Get the first zone number of the superblock mirror 160 */ 161 static inline u32 sb_zone_number(int shift, int mirror) 162 { 163 u64 zone = U64_MAX; 164 165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 166 switch (mirror) { 167 case 0: zone = 0; break; 168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 170 } 171 172 ASSERT(zone <= U32_MAX); 173 174 return (u32)zone; 175 } 176 177 static inline sector_t zone_start_sector(u32 zone_number, 178 struct block_device *bdev) 179 { 180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 181 } 182 183 static inline u64 zone_start_physical(u32 zone_number, 184 struct btrfs_zoned_device_info *zone_info) 185 { 186 return (u64)zone_number << zone_info->zone_size_shift; 187 } 188 189 /* 190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 191 * device into static sized chunks and fake a conventional zone on each of 192 * them. 193 */ 194 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 195 struct blk_zone *zones, unsigned int nr_zones) 196 { 197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 198 sector_t bdev_size = bdev_nr_sectors(device->bdev); 199 unsigned int i; 200 201 pos >>= SECTOR_SHIFT; 202 for (i = 0; i < nr_zones; i++) { 203 zones[i].start = i * zone_sectors + pos; 204 zones[i].len = zone_sectors; 205 zones[i].capacity = zone_sectors; 206 zones[i].wp = zones[i].start + zone_sectors; 207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 208 zones[i].cond = BLK_ZONE_COND_NOT_WP; 209 210 if (zones[i].wp >= bdev_size) { 211 i++; 212 break; 213 } 214 } 215 216 return i; 217 } 218 219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 220 struct blk_zone *zones, unsigned int *nr_zones) 221 { 222 struct btrfs_zoned_device_info *zinfo = device->zone_info; 223 int ret; 224 225 if (!*nr_zones) 226 return 0; 227 228 if (!bdev_is_zoned(device->bdev)) { 229 ret = emulate_report_zones(device, pos, zones, *nr_zones); 230 *nr_zones = ret; 231 return 0; 232 } 233 234 /* Check cache */ 235 if (zinfo->zone_cache) { 236 unsigned int i; 237 u32 zno; 238 239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 240 zno = pos >> zinfo->zone_size_shift; 241 /* 242 * We cannot report zones beyond the zone end. So, it is OK to 243 * cap *nr_zones to at the end. 244 */ 245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 246 247 for (i = 0; i < *nr_zones; i++) { 248 struct blk_zone *zone_info; 249 250 zone_info = &zinfo->zone_cache[zno + i]; 251 if (!zone_info->len) 252 break; 253 } 254 255 if (i == *nr_zones) { 256 /* Cache hit on all the zones */ 257 memcpy(zones, zinfo->zone_cache + zno, 258 sizeof(*zinfo->zone_cache) * *nr_zones); 259 return 0; 260 } 261 } 262 263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 264 copy_zone_info_cb, zones); 265 if (ret < 0) { 266 btrfs_err_in_rcu(device->fs_info, 267 "zoned: failed to read zone %llu on %s (devid %llu)", 268 pos, rcu_str_deref(device->name), 269 device->devid); 270 return ret; 271 } 272 *nr_zones = ret; 273 if (!ret) 274 return -EIO; 275 276 /* Populate cache */ 277 if (zinfo->zone_cache) { 278 u32 zno = pos >> zinfo->zone_size_shift; 279 280 memcpy(zinfo->zone_cache + zno, zones, 281 sizeof(*zinfo->zone_cache) * *nr_zones); 282 } 283 284 return 0; 285 } 286 287 /* The emulated zone size is determined from the size of device extent */ 288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 289 { 290 struct btrfs_path *path; 291 struct btrfs_root *root = fs_info->dev_root; 292 struct btrfs_key key; 293 struct extent_buffer *leaf; 294 struct btrfs_dev_extent *dext; 295 int ret = 0; 296 297 key.objectid = 1; 298 key.type = BTRFS_DEV_EXTENT_KEY; 299 key.offset = 0; 300 301 path = btrfs_alloc_path(); 302 if (!path) 303 return -ENOMEM; 304 305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 306 if (ret < 0) 307 goto out; 308 309 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 310 ret = btrfs_next_leaf(root, path); 311 if (ret < 0) 312 goto out; 313 /* No dev extents at all? Not good */ 314 if (ret > 0) { 315 ret = -EUCLEAN; 316 goto out; 317 } 318 } 319 320 leaf = path->nodes[0]; 321 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 322 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 323 ret = 0; 324 325 out: 326 btrfs_free_path(path); 327 328 return ret; 329 } 330 331 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 332 { 333 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 334 struct btrfs_device *device; 335 int ret = 0; 336 337 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 338 if (!btrfs_fs_incompat(fs_info, ZONED)) 339 return 0; 340 341 mutex_lock(&fs_devices->device_list_mutex); 342 list_for_each_entry(device, &fs_devices->devices, dev_list) { 343 /* We can skip reading of zone info for missing devices */ 344 if (!device->bdev) 345 continue; 346 347 ret = btrfs_get_dev_zone_info(device, true); 348 if (ret) 349 break; 350 } 351 mutex_unlock(&fs_devices->device_list_mutex); 352 353 return ret; 354 } 355 356 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 357 { 358 struct btrfs_fs_info *fs_info = device->fs_info; 359 struct btrfs_zoned_device_info *zone_info = NULL; 360 struct block_device *bdev = device->bdev; 361 unsigned int max_active_zones; 362 unsigned int nactive; 363 sector_t nr_sectors; 364 sector_t sector = 0; 365 struct blk_zone *zones = NULL; 366 unsigned int i, nreported = 0, nr_zones; 367 sector_t zone_sectors; 368 char *model, *emulated; 369 int ret; 370 371 /* 372 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 373 * yet be set. 374 */ 375 if (!btrfs_fs_incompat(fs_info, ZONED)) 376 return 0; 377 378 if (device->zone_info) 379 return 0; 380 381 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 382 if (!zone_info) 383 return -ENOMEM; 384 385 device->zone_info = zone_info; 386 387 if (!bdev_is_zoned(bdev)) { 388 if (!fs_info->zone_size) { 389 ret = calculate_emulated_zone_size(fs_info); 390 if (ret) 391 goto out; 392 } 393 394 ASSERT(fs_info->zone_size); 395 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 396 } else { 397 zone_sectors = bdev_zone_sectors(bdev); 398 } 399 400 ASSERT(is_power_of_two_u64(zone_sectors)); 401 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 402 403 /* We reject devices with a zone size larger than 8GB */ 404 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 405 btrfs_err_in_rcu(fs_info, 406 "zoned: %s: zone size %llu larger than supported maximum %llu", 407 rcu_str_deref(device->name), 408 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 409 ret = -EINVAL; 410 goto out; 411 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 412 btrfs_err_in_rcu(fs_info, 413 "zoned: %s: zone size %llu smaller than supported minimum %u", 414 rcu_str_deref(device->name), 415 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 416 ret = -EINVAL; 417 goto out; 418 } 419 420 nr_sectors = bdev_nr_sectors(bdev); 421 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 422 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 423 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 424 zone_info->nr_zones++; 425 426 max_active_zones = bdev_max_active_zones(bdev); 427 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 428 btrfs_err_in_rcu(fs_info, 429 "zoned: %s: max active zones %u is too small, need at least %u active zones", 430 rcu_str_deref(device->name), max_active_zones, 431 BTRFS_MIN_ACTIVE_ZONES); 432 ret = -EINVAL; 433 goto out; 434 } 435 zone_info->max_active_zones = max_active_zones; 436 437 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 438 if (!zone_info->seq_zones) { 439 ret = -ENOMEM; 440 goto out; 441 } 442 443 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 444 if (!zone_info->empty_zones) { 445 ret = -ENOMEM; 446 goto out; 447 } 448 449 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 450 if (!zone_info->active_zones) { 451 ret = -ENOMEM; 452 goto out; 453 } 454 455 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 456 if (!zones) { 457 ret = -ENOMEM; 458 goto out; 459 } 460 461 /* 462 * Enable zone cache only for a zoned device. On a non-zoned device, we 463 * fill the zone info with emulated CONVENTIONAL zones, so no need to 464 * use the cache. 465 */ 466 if (populate_cache && bdev_is_zoned(device->bdev)) { 467 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) * 468 zone_info->nr_zones); 469 if (!zone_info->zone_cache) { 470 btrfs_err_in_rcu(device->fs_info, 471 "zoned: failed to allocate zone cache for %s", 472 rcu_str_deref(device->name)); 473 ret = -ENOMEM; 474 goto out; 475 } 476 } 477 478 /* Get zones type */ 479 nactive = 0; 480 while (sector < nr_sectors) { 481 nr_zones = BTRFS_REPORT_NR_ZONES; 482 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 483 &nr_zones); 484 if (ret) 485 goto out; 486 487 for (i = 0; i < nr_zones; i++) { 488 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 489 __set_bit(nreported, zone_info->seq_zones); 490 switch (zones[i].cond) { 491 case BLK_ZONE_COND_EMPTY: 492 __set_bit(nreported, zone_info->empty_zones); 493 break; 494 case BLK_ZONE_COND_IMP_OPEN: 495 case BLK_ZONE_COND_EXP_OPEN: 496 case BLK_ZONE_COND_CLOSED: 497 __set_bit(nreported, zone_info->active_zones); 498 nactive++; 499 break; 500 } 501 nreported++; 502 } 503 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 504 } 505 506 if (nreported != zone_info->nr_zones) { 507 btrfs_err_in_rcu(device->fs_info, 508 "inconsistent number of zones on %s (%u/%u)", 509 rcu_str_deref(device->name), nreported, 510 zone_info->nr_zones); 511 ret = -EIO; 512 goto out; 513 } 514 515 if (max_active_zones) { 516 if (nactive > max_active_zones) { 517 btrfs_err_in_rcu(device->fs_info, 518 "zoned: %u active zones on %s exceeds max_active_zones %u", 519 nactive, rcu_str_deref(device->name), 520 max_active_zones); 521 ret = -EIO; 522 goto out; 523 } 524 atomic_set(&zone_info->active_zones_left, 525 max_active_zones - nactive); 526 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); 527 } 528 529 /* Validate superblock log */ 530 nr_zones = BTRFS_NR_SB_LOG_ZONES; 531 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 532 u32 sb_zone; 533 u64 sb_wp; 534 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 535 536 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 537 if (sb_zone + 1 >= zone_info->nr_zones) 538 continue; 539 540 ret = btrfs_get_dev_zones(device, 541 zone_start_physical(sb_zone, zone_info), 542 &zone_info->sb_zones[sb_pos], 543 &nr_zones); 544 if (ret) 545 goto out; 546 547 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 548 btrfs_err_in_rcu(device->fs_info, 549 "zoned: failed to read super block log zone info at devid %llu zone %u", 550 device->devid, sb_zone); 551 ret = -EUCLEAN; 552 goto out; 553 } 554 555 /* 556 * If zones[0] is conventional, always use the beginning of the 557 * zone to record superblock. No need to validate in that case. 558 */ 559 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 560 BLK_ZONE_TYPE_CONVENTIONAL) 561 continue; 562 563 ret = sb_write_pointer(device->bdev, 564 &zone_info->sb_zones[sb_pos], &sb_wp); 565 if (ret != -ENOENT && ret) { 566 btrfs_err_in_rcu(device->fs_info, 567 "zoned: super block log zone corrupted devid %llu zone %u", 568 device->devid, sb_zone); 569 ret = -EUCLEAN; 570 goto out; 571 } 572 } 573 574 575 kvfree(zones); 576 577 switch (bdev_zoned_model(bdev)) { 578 case BLK_ZONED_HM: 579 model = "host-managed zoned"; 580 emulated = ""; 581 break; 582 case BLK_ZONED_HA: 583 model = "host-aware zoned"; 584 emulated = ""; 585 break; 586 case BLK_ZONED_NONE: 587 model = "regular"; 588 emulated = "emulated "; 589 break; 590 default: 591 /* Just in case */ 592 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 593 bdev_zoned_model(bdev), 594 rcu_str_deref(device->name)); 595 ret = -EOPNOTSUPP; 596 goto out_free_zone_info; 597 } 598 599 btrfs_info_in_rcu(fs_info, 600 "%s block device %s, %u %szones of %llu bytes", 601 model, rcu_str_deref(device->name), zone_info->nr_zones, 602 emulated, zone_info->zone_size); 603 604 return 0; 605 606 out: 607 kvfree(zones); 608 out_free_zone_info: 609 btrfs_destroy_dev_zone_info(device); 610 611 return ret; 612 } 613 614 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 615 { 616 struct btrfs_zoned_device_info *zone_info = device->zone_info; 617 618 if (!zone_info) 619 return; 620 621 bitmap_free(zone_info->active_zones); 622 bitmap_free(zone_info->seq_zones); 623 bitmap_free(zone_info->empty_zones); 624 vfree(zone_info->zone_cache); 625 kfree(zone_info); 626 device->zone_info = NULL; 627 } 628 629 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 630 { 631 struct btrfs_zoned_device_info *zone_info; 632 633 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 634 if (!zone_info) 635 return NULL; 636 637 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 638 if (!zone_info->seq_zones) 639 goto out; 640 641 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 642 zone_info->nr_zones); 643 644 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 645 if (!zone_info->empty_zones) 646 goto out; 647 648 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 649 zone_info->nr_zones); 650 651 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 652 if (!zone_info->active_zones) 653 goto out; 654 655 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 656 zone_info->nr_zones); 657 zone_info->zone_cache = NULL; 658 659 return zone_info; 660 661 out: 662 bitmap_free(zone_info->seq_zones); 663 bitmap_free(zone_info->empty_zones); 664 bitmap_free(zone_info->active_zones); 665 kfree(zone_info); 666 return NULL; 667 } 668 669 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 670 struct blk_zone *zone) 671 { 672 unsigned int nr_zones = 1; 673 int ret; 674 675 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 676 if (ret != 0 || !nr_zones) 677 return ret ? ret : -EIO; 678 679 return 0; 680 } 681 682 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 683 { 684 struct btrfs_device *device; 685 686 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 687 if (device->bdev && 688 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) { 689 btrfs_err(fs_info, 690 "zoned: mode not enabled but zoned device found: %pg", 691 device->bdev); 692 return -EINVAL; 693 } 694 } 695 696 return 0; 697 } 698 699 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 700 { 701 struct queue_limits *lim = &fs_info->limits; 702 struct btrfs_device *device; 703 u64 zone_size = 0; 704 int ret; 705 706 /* 707 * Host-Managed devices can't be used without the ZONED flag. With the 708 * ZONED all devices can be used, using zone emulation if required. 709 */ 710 if (!btrfs_fs_incompat(fs_info, ZONED)) 711 return btrfs_check_for_zoned_device(fs_info); 712 713 blk_set_stacking_limits(lim); 714 715 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 716 struct btrfs_zoned_device_info *zone_info = device->zone_info; 717 718 if (!device->bdev) 719 continue; 720 721 if (!zone_size) { 722 zone_size = zone_info->zone_size; 723 } else if (zone_info->zone_size != zone_size) { 724 btrfs_err(fs_info, 725 "zoned: unequal block device zone sizes: have %llu found %llu", 726 zone_info->zone_size, zone_size); 727 return -EINVAL; 728 } 729 730 /* 731 * With the zoned emulation, we can have non-zoned device on the 732 * zoned mode. In this case, we don't have a valid max zone 733 * append size. 734 */ 735 if (bdev_is_zoned(device->bdev)) { 736 blk_stack_limits(lim, 737 &bdev_get_queue(device->bdev)->limits, 738 0); 739 } 740 } 741 742 /* 743 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 744 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 745 * check the alignment here. 746 */ 747 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 748 btrfs_err(fs_info, 749 "zoned: zone size %llu not aligned to stripe %u", 750 zone_size, BTRFS_STRIPE_LEN); 751 return -EINVAL; 752 } 753 754 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 755 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 756 return -EINVAL; 757 } 758 759 fs_info->zone_size = zone_size; 760 /* 761 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 762 * Technically, we can have multiple pages per segment. But, since 763 * we add the pages one by one to a bio, and cannot increase the 764 * metadata reservation even if it increases the number of extents, it 765 * is safe to stick with the limit. 766 */ 767 fs_info->max_zone_append_size = ALIGN_DOWN( 768 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 769 (u64)lim->max_sectors << SECTOR_SHIFT, 770 (u64)lim->max_segments << PAGE_SHIFT), 771 fs_info->sectorsize); 772 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 773 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 774 fs_info->max_extent_size = fs_info->max_zone_append_size; 775 776 /* 777 * Check mount options here, because we might change fs_info->zoned 778 * from fs_info->zone_size. 779 */ 780 ret = btrfs_check_mountopts_zoned(fs_info); 781 if (ret) 782 return ret; 783 784 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 785 return 0; 786 } 787 788 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 789 { 790 if (!btrfs_is_zoned(info)) 791 return 0; 792 793 /* 794 * Space cache writing is not COWed. Disable that to avoid write errors 795 * in sequential zones. 796 */ 797 if (btrfs_test_opt(info, SPACE_CACHE)) { 798 btrfs_err(info, "zoned: space cache v1 is not supported"); 799 return -EINVAL; 800 } 801 802 if (btrfs_test_opt(info, NODATACOW)) { 803 btrfs_err(info, "zoned: NODATACOW not supported"); 804 return -EINVAL; 805 } 806 807 return 0; 808 } 809 810 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 811 int rw, u64 *bytenr_ret) 812 { 813 u64 wp; 814 int ret; 815 816 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 817 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 818 return 0; 819 } 820 821 ret = sb_write_pointer(bdev, zones, &wp); 822 if (ret != -ENOENT && ret < 0) 823 return ret; 824 825 if (rw == WRITE) { 826 struct blk_zone *reset = NULL; 827 828 if (wp == zones[0].start << SECTOR_SHIFT) 829 reset = &zones[0]; 830 else if (wp == zones[1].start << SECTOR_SHIFT) 831 reset = &zones[1]; 832 833 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 834 ASSERT(sb_zone_is_full(reset)); 835 836 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 837 reset->start, reset->len, 838 GFP_NOFS); 839 if (ret) 840 return ret; 841 842 reset->cond = BLK_ZONE_COND_EMPTY; 843 reset->wp = reset->start; 844 } 845 } else if (ret != -ENOENT) { 846 /* 847 * For READ, we want the previous one. Move write pointer to 848 * the end of a zone, if it is at the head of a zone. 849 */ 850 u64 zone_end = 0; 851 852 if (wp == zones[0].start << SECTOR_SHIFT) 853 zone_end = zones[1].start + zones[1].capacity; 854 else if (wp == zones[1].start << SECTOR_SHIFT) 855 zone_end = zones[0].start + zones[0].capacity; 856 if (zone_end) 857 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 858 BTRFS_SUPER_INFO_SIZE); 859 860 wp -= BTRFS_SUPER_INFO_SIZE; 861 } 862 863 *bytenr_ret = wp; 864 return 0; 865 866 } 867 868 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 869 u64 *bytenr_ret) 870 { 871 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 872 sector_t zone_sectors; 873 u32 sb_zone; 874 int ret; 875 u8 zone_sectors_shift; 876 sector_t nr_sectors; 877 u32 nr_zones; 878 879 if (!bdev_is_zoned(bdev)) { 880 *bytenr_ret = btrfs_sb_offset(mirror); 881 return 0; 882 } 883 884 ASSERT(rw == READ || rw == WRITE); 885 886 zone_sectors = bdev_zone_sectors(bdev); 887 if (!is_power_of_2(zone_sectors)) 888 return -EINVAL; 889 zone_sectors_shift = ilog2(zone_sectors); 890 nr_sectors = bdev_nr_sectors(bdev); 891 nr_zones = nr_sectors >> zone_sectors_shift; 892 893 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 894 if (sb_zone + 1 >= nr_zones) 895 return -ENOENT; 896 897 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 898 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 899 zones); 900 if (ret < 0) 901 return ret; 902 if (ret != BTRFS_NR_SB_LOG_ZONES) 903 return -EIO; 904 905 return sb_log_location(bdev, zones, rw, bytenr_ret); 906 } 907 908 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 909 u64 *bytenr_ret) 910 { 911 struct btrfs_zoned_device_info *zinfo = device->zone_info; 912 u32 zone_num; 913 914 /* 915 * For a zoned filesystem on a non-zoned block device, use the same 916 * super block locations as regular filesystem. Doing so, the super 917 * block can always be retrieved and the zoned flag of the volume 918 * detected from the super block information. 919 */ 920 if (!bdev_is_zoned(device->bdev)) { 921 *bytenr_ret = btrfs_sb_offset(mirror); 922 return 0; 923 } 924 925 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 926 if (zone_num + 1 >= zinfo->nr_zones) 927 return -ENOENT; 928 929 return sb_log_location(device->bdev, 930 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 931 rw, bytenr_ret); 932 } 933 934 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 935 int mirror) 936 { 937 u32 zone_num; 938 939 if (!zinfo) 940 return false; 941 942 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 943 if (zone_num + 1 >= zinfo->nr_zones) 944 return false; 945 946 if (!test_bit(zone_num, zinfo->seq_zones)) 947 return false; 948 949 return true; 950 } 951 952 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 953 { 954 struct btrfs_zoned_device_info *zinfo = device->zone_info; 955 struct blk_zone *zone; 956 int i; 957 958 if (!is_sb_log_zone(zinfo, mirror)) 959 return 0; 960 961 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 962 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 963 /* Advance the next zone */ 964 if (zone->cond == BLK_ZONE_COND_FULL) { 965 zone++; 966 continue; 967 } 968 969 if (zone->cond == BLK_ZONE_COND_EMPTY) 970 zone->cond = BLK_ZONE_COND_IMP_OPEN; 971 972 zone->wp += SUPER_INFO_SECTORS; 973 974 if (sb_zone_is_full(zone)) { 975 /* 976 * No room left to write new superblock. Since 977 * superblock is written with REQ_SYNC, it is safe to 978 * finish the zone now. 979 * 980 * If the write pointer is exactly at the capacity, 981 * explicit ZONE_FINISH is not necessary. 982 */ 983 if (zone->wp != zone->start + zone->capacity) { 984 int ret; 985 986 ret = blkdev_zone_mgmt(device->bdev, 987 REQ_OP_ZONE_FINISH, zone->start, 988 zone->len, GFP_NOFS); 989 if (ret) 990 return ret; 991 } 992 993 zone->wp = zone->start + zone->len; 994 zone->cond = BLK_ZONE_COND_FULL; 995 } 996 return 0; 997 } 998 999 /* All the zones are FULL. Should not reach here. */ 1000 ASSERT(0); 1001 return -EIO; 1002 } 1003 1004 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 1005 { 1006 sector_t zone_sectors; 1007 sector_t nr_sectors; 1008 u8 zone_sectors_shift; 1009 u32 sb_zone; 1010 u32 nr_zones; 1011 1012 zone_sectors = bdev_zone_sectors(bdev); 1013 zone_sectors_shift = ilog2(zone_sectors); 1014 nr_sectors = bdev_nr_sectors(bdev); 1015 nr_zones = nr_sectors >> zone_sectors_shift; 1016 1017 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1018 if (sb_zone + 1 >= nr_zones) 1019 return -ENOENT; 1020 1021 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1022 zone_start_sector(sb_zone, bdev), 1023 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 1024 } 1025 1026 /* 1027 * Find allocatable zones within a given region. 1028 * 1029 * @device: the device to allocate a region on 1030 * @hole_start: the position of the hole to allocate the region 1031 * @num_bytes: size of wanted region 1032 * @hole_end: the end of the hole 1033 * @return: position of allocatable zones 1034 * 1035 * Allocatable region should not contain any superblock locations. 1036 */ 1037 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1038 u64 hole_end, u64 num_bytes) 1039 { 1040 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1041 const u8 shift = zinfo->zone_size_shift; 1042 u64 nzones = num_bytes >> shift; 1043 u64 pos = hole_start; 1044 u64 begin, end; 1045 bool have_sb; 1046 int i; 1047 1048 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1049 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1050 1051 while (pos < hole_end) { 1052 begin = pos >> shift; 1053 end = begin + nzones; 1054 1055 if (end > zinfo->nr_zones) 1056 return hole_end; 1057 1058 /* Check if zones in the region are all empty */ 1059 if (btrfs_dev_is_sequential(device, pos) && 1060 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { 1061 pos += zinfo->zone_size; 1062 continue; 1063 } 1064 1065 have_sb = false; 1066 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1067 u32 sb_zone; 1068 u64 sb_pos; 1069 1070 sb_zone = sb_zone_number(shift, i); 1071 if (!(end <= sb_zone || 1072 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1073 have_sb = true; 1074 pos = zone_start_physical( 1075 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1076 break; 1077 } 1078 1079 /* We also need to exclude regular superblock positions */ 1080 sb_pos = btrfs_sb_offset(i); 1081 if (!(pos + num_bytes <= sb_pos || 1082 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1083 have_sb = true; 1084 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1085 zinfo->zone_size); 1086 break; 1087 } 1088 } 1089 if (!have_sb) 1090 break; 1091 } 1092 1093 return pos; 1094 } 1095 1096 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1097 { 1098 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1099 unsigned int zno = (pos >> zone_info->zone_size_shift); 1100 1101 /* We can use any number of zones */ 1102 if (zone_info->max_active_zones == 0) 1103 return true; 1104 1105 if (!test_bit(zno, zone_info->active_zones)) { 1106 /* Active zone left? */ 1107 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1108 return false; 1109 if (test_and_set_bit(zno, zone_info->active_zones)) { 1110 /* Someone already set the bit */ 1111 atomic_inc(&zone_info->active_zones_left); 1112 } 1113 } 1114 1115 return true; 1116 } 1117 1118 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1119 { 1120 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1121 unsigned int zno = (pos >> zone_info->zone_size_shift); 1122 1123 /* We can use any number of zones */ 1124 if (zone_info->max_active_zones == 0) 1125 return; 1126 1127 if (test_and_clear_bit(zno, zone_info->active_zones)) 1128 atomic_inc(&zone_info->active_zones_left); 1129 } 1130 1131 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1132 u64 length, u64 *bytes) 1133 { 1134 int ret; 1135 1136 *bytes = 0; 1137 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1138 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1139 GFP_NOFS); 1140 if (ret) 1141 return ret; 1142 1143 *bytes = length; 1144 while (length) { 1145 btrfs_dev_set_zone_empty(device, physical); 1146 btrfs_dev_clear_active_zone(device, physical); 1147 physical += device->zone_info->zone_size; 1148 length -= device->zone_info->zone_size; 1149 } 1150 1151 return 0; 1152 } 1153 1154 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1155 { 1156 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1157 const u8 shift = zinfo->zone_size_shift; 1158 unsigned long begin = start >> shift; 1159 unsigned long end = (start + size) >> shift; 1160 u64 pos; 1161 int ret; 1162 1163 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1164 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1165 1166 if (end > zinfo->nr_zones) 1167 return -ERANGE; 1168 1169 /* All the zones are conventional */ 1170 if (find_next_bit(zinfo->seq_zones, end, begin) == end) 1171 return 0; 1172 1173 /* All the zones are sequential and empty */ 1174 if (find_next_zero_bit(zinfo->seq_zones, end, begin) == end && 1175 find_next_zero_bit(zinfo->empty_zones, end, begin) == end) 1176 return 0; 1177 1178 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1179 u64 reset_bytes; 1180 1181 if (!btrfs_dev_is_sequential(device, pos) || 1182 btrfs_dev_is_empty_zone(device, pos)) 1183 continue; 1184 1185 /* Free regions should be empty */ 1186 btrfs_warn_in_rcu( 1187 device->fs_info, 1188 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1189 rcu_str_deref(device->name), device->devid, pos >> shift); 1190 WARN_ON_ONCE(1); 1191 1192 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1193 &reset_bytes); 1194 if (ret) 1195 return ret; 1196 } 1197 1198 return 0; 1199 } 1200 1201 /* 1202 * Calculate an allocation pointer from the extent allocation information 1203 * for a block group consist of conventional zones. It is pointed to the 1204 * end of the highest addressed extent in the block group as an allocation 1205 * offset. 1206 */ 1207 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1208 u64 *offset_ret, bool new) 1209 { 1210 struct btrfs_fs_info *fs_info = cache->fs_info; 1211 struct btrfs_root *root; 1212 struct btrfs_path *path; 1213 struct btrfs_key key; 1214 struct btrfs_key found_key; 1215 int ret; 1216 u64 length; 1217 1218 /* 1219 * Avoid tree lookups for a new block group, there's no use for it. 1220 * It must always be 0. 1221 * 1222 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1223 * For new a block group, this function is called from 1224 * btrfs_make_block_group() which is already taking the chunk mutex. 1225 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1226 * buffer locks to avoid deadlock. 1227 */ 1228 if (new) { 1229 *offset_ret = 0; 1230 return 0; 1231 } 1232 1233 path = btrfs_alloc_path(); 1234 if (!path) 1235 return -ENOMEM; 1236 1237 key.objectid = cache->start + cache->length; 1238 key.type = 0; 1239 key.offset = 0; 1240 1241 root = btrfs_extent_root(fs_info, key.objectid); 1242 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1243 /* We should not find the exact match */ 1244 if (!ret) 1245 ret = -EUCLEAN; 1246 if (ret < 0) 1247 goto out; 1248 1249 ret = btrfs_previous_extent_item(root, path, cache->start); 1250 if (ret) { 1251 if (ret == 1) { 1252 ret = 0; 1253 *offset_ret = 0; 1254 } 1255 goto out; 1256 } 1257 1258 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1259 1260 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1261 length = found_key.offset; 1262 else 1263 length = fs_info->nodesize; 1264 1265 if (!(found_key.objectid >= cache->start && 1266 found_key.objectid + length <= cache->start + cache->length)) { 1267 ret = -EUCLEAN; 1268 goto out; 1269 } 1270 *offset_ret = found_key.objectid + length - cache->start; 1271 ret = 0; 1272 1273 out: 1274 btrfs_free_path(path); 1275 return ret; 1276 } 1277 1278 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1279 { 1280 struct btrfs_fs_info *fs_info = cache->fs_info; 1281 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1282 struct extent_map *em; 1283 struct map_lookup *map; 1284 struct btrfs_device *device; 1285 u64 logical = cache->start; 1286 u64 length = cache->length; 1287 int ret; 1288 int i; 1289 unsigned int nofs_flag; 1290 u64 *alloc_offsets = NULL; 1291 u64 *caps = NULL; 1292 u64 *physical = NULL; 1293 unsigned long *active = NULL; 1294 u64 last_alloc = 0; 1295 u32 num_sequential = 0, num_conventional = 0; 1296 1297 if (!btrfs_is_zoned(fs_info)) 1298 return 0; 1299 1300 /* Sanity check */ 1301 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1302 btrfs_err(fs_info, 1303 "zoned: block group %llu len %llu unaligned to zone size %llu", 1304 logical, length, fs_info->zone_size); 1305 return -EIO; 1306 } 1307 1308 /* Get the chunk mapping */ 1309 read_lock(&em_tree->lock); 1310 em = lookup_extent_mapping(em_tree, logical, length); 1311 read_unlock(&em_tree->lock); 1312 1313 if (!em) 1314 return -EINVAL; 1315 1316 map = em->map_lookup; 1317 1318 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS); 1319 if (!cache->physical_map) { 1320 ret = -ENOMEM; 1321 goto out; 1322 } 1323 1324 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1325 if (!alloc_offsets) { 1326 ret = -ENOMEM; 1327 goto out; 1328 } 1329 1330 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS); 1331 if (!caps) { 1332 ret = -ENOMEM; 1333 goto out; 1334 } 1335 1336 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS); 1337 if (!physical) { 1338 ret = -ENOMEM; 1339 goto out; 1340 } 1341 1342 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1343 if (!active) { 1344 ret = -ENOMEM; 1345 goto out; 1346 } 1347 1348 for (i = 0; i < map->num_stripes; i++) { 1349 bool is_sequential; 1350 struct blk_zone zone; 1351 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1352 int dev_replace_is_ongoing = 0; 1353 1354 device = map->stripes[i].dev; 1355 physical[i] = map->stripes[i].physical; 1356 1357 if (device->bdev == NULL) { 1358 alloc_offsets[i] = WP_MISSING_DEV; 1359 continue; 1360 } 1361 1362 is_sequential = btrfs_dev_is_sequential(device, physical[i]); 1363 if (is_sequential) 1364 num_sequential++; 1365 else 1366 num_conventional++; 1367 1368 /* 1369 * Consider a zone as active if we can allow any number of 1370 * active zones. 1371 */ 1372 if (!device->zone_info->max_active_zones) 1373 __set_bit(i, active); 1374 1375 if (!is_sequential) { 1376 alloc_offsets[i] = WP_CONVENTIONAL; 1377 continue; 1378 } 1379 1380 /* 1381 * This zone will be used for allocation, so mark this zone 1382 * non-empty. 1383 */ 1384 btrfs_dev_clear_zone_empty(device, physical[i]); 1385 1386 down_read(&dev_replace->rwsem); 1387 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1388 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1389 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]); 1390 up_read(&dev_replace->rwsem); 1391 1392 /* 1393 * The group is mapped to a sequential zone. Get the zone write 1394 * pointer to determine the allocation offset within the zone. 1395 */ 1396 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size)); 1397 nofs_flag = memalloc_nofs_save(); 1398 ret = btrfs_get_dev_zone(device, physical[i], &zone); 1399 memalloc_nofs_restore(nofs_flag); 1400 if (ret == -EIO || ret == -EOPNOTSUPP) { 1401 ret = 0; 1402 alloc_offsets[i] = WP_MISSING_DEV; 1403 continue; 1404 } else if (ret) { 1405 goto out; 1406 } 1407 1408 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1409 btrfs_err_in_rcu(fs_info, 1410 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1411 zone.start << SECTOR_SHIFT, 1412 rcu_str_deref(device->name), device->devid); 1413 ret = -EIO; 1414 goto out; 1415 } 1416 1417 caps[i] = (zone.capacity << SECTOR_SHIFT); 1418 1419 switch (zone.cond) { 1420 case BLK_ZONE_COND_OFFLINE: 1421 case BLK_ZONE_COND_READONLY: 1422 btrfs_err(fs_info, 1423 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1424 physical[i] >> device->zone_info->zone_size_shift, 1425 rcu_str_deref(device->name), device->devid); 1426 alloc_offsets[i] = WP_MISSING_DEV; 1427 break; 1428 case BLK_ZONE_COND_EMPTY: 1429 alloc_offsets[i] = 0; 1430 break; 1431 case BLK_ZONE_COND_FULL: 1432 alloc_offsets[i] = caps[i]; 1433 break; 1434 default: 1435 /* Partially used zone */ 1436 alloc_offsets[i] = 1437 ((zone.wp - zone.start) << SECTOR_SHIFT); 1438 __set_bit(i, active); 1439 break; 1440 } 1441 } 1442 1443 if (num_sequential > 0) 1444 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1445 1446 if (num_conventional > 0) { 1447 /* Zone capacity is always zone size in emulation */ 1448 cache->zone_capacity = cache->length; 1449 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1450 if (ret) { 1451 btrfs_err(fs_info, 1452 "zoned: failed to determine allocation offset of bg %llu", 1453 cache->start); 1454 goto out; 1455 } else if (map->num_stripes == num_conventional) { 1456 cache->alloc_offset = last_alloc; 1457 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1458 goto out; 1459 } 1460 } 1461 1462 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1463 case 0: /* single */ 1464 if (alloc_offsets[0] == WP_MISSING_DEV) { 1465 btrfs_err(fs_info, 1466 "zoned: cannot recover write pointer for zone %llu", 1467 physical[0]); 1468 ret = -EIO; 1469 goto out; 1470 } 1471 cache->alloc_offset = alloc_offsets[0]; 1472 cache->zone_capacity = caps[0]; 1473 if (test_bit(0, active)) 1474 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1475 break; 1476 case BTRFS_BLOCK_GROUP_DUP: 1477 if (map->type & BTRFS_BLOCK_GROUP_DATA) { 1478 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg"); 1479 ret = -EINVAL; 1480 goto out; 1481 } 1482 if (alloc_offsets[0] == WP_MISSING_DEV) { 1483 btrfs_err(fs_info, 1484 "zoned: cannot recover write pointer for zone %llu", 1485 physical[0]); 1486 ret = -EIO; 1487 goto out; 1488 } 1489 if (alloc_offsets[1] == WP_MISSING_DEV) { 1490 btrfs_err(fs_info, 1491 "zoned: cannot recover write pointer for zone %llu", 1492 physical[1]); 1493 ret = -EIO; 1494 goto out; 1495 } 1496 if (alloc_offsets[0] != alloc_offsets[1]) { 1497 btrfs_err(fs_info, 1498 "zoned: write pointer offset mismatch of zones in DUP profile"); 1499 ret = -EIO; 1500 goto out; 1501 } 1502 if (test_bit(0, active) != test_bit(1, active)) { 1503 if (!btrfs_zone_activate(cache)) { 1504 ret = -EIO; 1505 goto out; 1506 } 1507 } else { 1508 if (test_bit(0, active)) 1509 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1510 &cache->runtime_flags); 1511 } 1512 cache->alloc_offset = alloc_offsets[0]; 1513 cache->zone_capacity = min(caps[0], caps[1]); 1514 break; 1515 case BTRFS_BLOCK_GROUP_RAID1: 1516 case BTRFS_BLOCK_GROUP_RAID0: 1517 case BTRFS_BLOCK_GROUP_RAID10: 1518 case BTRFS_BLOCK_GROUP_RAID5: 1519 case BTRFS_BLOCK_GROUP_RAID6: 1520 /* non-single profiles are not supported yet */ 1521 default: 1522 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1523 btrfs_bg_type_to_raid_name(map->type)); 1524 ret = -EINVAL; 1525 goto out; 1526 } 1527 1528 out: 1529 if (cache->alloc_offset > fs_info->zone_size) { 1530 btrfs_err(fs_info, 1531 "zoned: invalid write pointer %llu in block group %llu", 1532 cache->alloc_offset, cache->start); 1533 ret = -EIO; 1534 } 1535 1536 if (cache->alloc_offset > cache->zone_capacity) { 1537 btrfs_err(fs_info, 1538 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1539 cache->alloc_offset, cache->zone_capacity, 1540 cache->start); 1541 ret = -EIO; 1542 } 1543 1544 /* An extent is allocated after the write pointer */ 1545 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1546 btrfs_err(fs_info, 1547 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1548 logical, last_alloc, cache->alloc_offset); 1549 ret = -EIO; 1550 } 1551 1552 if (!ret) { 1553 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1554 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1555 btrfs_get_block_group(cache); 1556 spin_lock(&fs_info->zone_active_bgs_lock); 1557 list_add_tail(&cache->active_bg_list, 1558 &fs_info->zone_active_bgs); 1559 spin_unlock(&fs_info->zone_active_bgs_lock); 1560 } 1561 } else { 1562 kfree(cache->physical_map); 1563 cache->physical_map = NULL; 1564 } 1565 bitmap_free(active); 1566 kfree(physical); 1567 kfree(caps); 1568 kfree(alloc_offsets); 1569 free_extent_map(em); 1570 1571 return ret; 1572 } 1573 1574 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1575 { 1576 u64 unusable, free; 1577 1578 if (!btrfs_is_zoned(cache->fs_info)) 1579 return; 1580 1581 WARN_ON(cache->bytes_super != 0); 1582 1583 /* Check for block groups never get activated */ 1584 if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &cache->fs_info->flags) && 1585 cache->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM) && 1586 !test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags) && 1587 cache->alloc_offset == 0) { 1588 unusable = cache->length; 1589 free = 0; 1590 } else { 1591 unusable = (cache->alloc_offset - cache->used) + 1592 (cache->length - cache->zone_capacity); 1593 free = cache->zone_capacity - cache->alloc_offset; 1594 } 1595 1596 /* We only need ->free_space in ALLOC_SEQ block groups */ 1597 cache->cached = BTRFS_CACHE_FINISHED; 1598 cache->free_space_ctl->free_space = free; 1599 cache->zone_unusable = unusable; 1600 } 1601 1602 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1603 struct extent_buffer *eb) 1604 { 1605 struct btrfs_fs_info *fs_info = eb->fs_info; 1606 1607 if (!btrfs_is_zoned(fs_info) || 1608 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || 1609 !list_empty(&eb->release_list)) 1610 return; 1611 1612 memzero_extent_buffer(eb, 0, eb->len); 1613 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1614 set_extent_buffer_dirty(eb); 1615 set_extent_bits_nowait(&trans->dirty_pages, eb->start, 1616 eb->start + eb->len - 1, EXTENT_DIRTY); 1617 1618 spin_lock(&trans->releasing_ebs_lock); 1619 list_add_tail(&eb->release_list, &trans->releasing_ebs); 1620 spin_unlock(&trans->releasing_ebs_lock); 1621 atomic_inc(&eb->refs); 1622 } 1623 1624 void btrfs_free_redirty_list(struct btrfs_transaction *trans) 1625 { 1626 spin_lock(&trans->releasing_ebs_lock); 1627 while (!list_empty(&trans->releasing_ebs)) { 1628 struct extent_buffer *eb; 1629 1630 eb = list_first_entry(&trans->releasing_ebs, 1631 struct extent_buffer, release_list); 1632 list_del_init(&eb->release_list); 1633 free_extent_buffer(eb); 1634 } 1635 spin_unlock(&trans->releasing_ebs_lock); 1636 } 1637 1638 bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1639 { 1640 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1641 struct btrfs_inode *inode = bbio->inode; 1642 struct btrfs_fs_info *fs_info = bbio->fs_info; 1643 struct btrfs_block_group *cache; 1644 bool ret = false; 1645 1646 if (!btrfs_is_zoned(fs_info)) 1647 return false; 1648 1649 if (!inode || !is_data_inode(&inode->vfs_inode)) 1650 return false; 1651 1652 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1653 return false; 1654 1655 /* 1656 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1657 * extent layout the relocation code has. 1658 * Furthermore we have set aside own block-group from which only the 1659 * relocation "process" can allocate and make sure only one process at a 1660 * time can add pages to an extent that gets relocated, so it's safe to 1661 * use regular REQ_OP_WRITE for this special case. 1662 */ 1663 if (btrfs_is_data_reloc_root(inode->root)) 1664 return false; 1665 1666 cache = btrfs_lookup_block_group(fs_info, start); 1667 ASSERT(cache); 1668 if (!cache) 1669 return false; 1670 1671 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1672 btrfs_put_block_group(cache); 1673 1674 return ret; 1675 } 1676 1677 void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1678 { 1679 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1680 struct btrfs_ordered_extent *ordered; 1681 1682 ordered = btrfs_lookup_ordered_extent(bbio->inode, bbio->file_offset); 1683 if (WARN_ON(!ordered)) 1684 return; 1685 1686 ordered->physical = physical; 1687 btrfs_put_ordered_extent(ordered); 1688 } 1689 1690 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) 1691 { 1692 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1693 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1694 struct extent_map_tree *em_tree; 1695 struct extent_map *em; 1696 struct btrfs_ordered_sum *sum; 1697 u64 orig_logical = ordered->disk_bytenr; 1698 struct map_lookup *map; 1699 u64 physical = ordered->physical; 1700 u64 chunk_start_phys; 1701 u64 logical; 1702 1703 em = btrfs_get_chunk_map(fs_info, orig_logical, 1); 1704 if (IS_ERR(em)) 1705 return; 1706 map = em->map_lookup; 1707 chunk_start_phys = map->stripes[0].physical; 1708 1709 if (WARN_ON_ONCE(map->num_stripes > 1) || 1710 WARN_ON_ONCE((map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0) || 1711 WARN_ON_ONCE(physical < chunk_start_phys) || 1712 WARN_ON_ONCE(physical > chunk_start_phys + em->orig_block_len)) { 1713 free_extent_map(em); 1714 return; 1715 } 1716 logical = em->start + (physical - map->stripes[0].physical); 1717 free_extent_map(em); 1718 1719 if (orig_logical == logical) 1720 return; 1721 1722 ordered->disk_bytenr = logical; 1723 1724 em_tree = &inode->extent_tree; 1725 write_lock(&em_tree->lock); 1726 em = search_extent_mapping(em_tree, ordered->file_offset, 1727 ordered->num_bytes); 1728 em->block_start = logical; 1729 free_extent_map(em); 1730 write_unlock(&em_tree->lock); 1731 1732 list_for_each_entry(sum, &ordered->list, list) { 1733 if (logical < orig_logical) 1734 sum->bytenr -= orig_logical - logical; 1735 else 1736 sum->bytenr += logical - orig_logical; 1737 } 1738 } 1739 1740 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1741 struct extent_buffer *eb, 1742 struct btrfs_block_group **cache_ret) 1743 { 1744 struct btrfs_block_group *cache; 1745 bool ret = true; 1746 1747 if (!btrfs_is_zoned(fs_info)) 1748 return true; 1749 1750 cache = btrfs_lookup_block_group(fs_info, eb->start); 1751 if (!cache) 1752 return true; 1753 1754 if (cache->meta_write_pointer != eb->start) { 1755 btrfs_put_block_group(cache); 1756 cache = NULL; 1757 ret = false; 1758 } else { 1759 cache->meta_write_pointer = eb->start + eb->len; 1760 } 1761 1762 *cache_ret = cache; 1763 1764 return ret; 1765 } 1766 1767 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1768 struct extent_buffer *eb) 1769 { 1770 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1771 return; 1772 1773 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1774 cache->meta_write_pointer = eb->start; 1775 } 1776 1777 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1778 { 1779 if (!btrfs_dev_is_sequential(device, physical)) 1780 return -EOPNOTSUPP; 1781 1782 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1783 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1784 } 1785 1786 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1787 struct blk_zone *zone) 1788 { 1789 struct btrfs_io_context *bioc = NULL; 1790 u64 mapped_length = PAGE_SIZE; 1791 unsigned int nofs_flag; 1792 int nmirrors; 1793 int i, ret; 1794 1795 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1796 &mapped_length, &bioc); 1797 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1798 ret = -EIO; 1799 goto out_put_bioc; 1800 } 1801 1802 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1803 ret = -EINVAL; 1804 goto out_put_bioc; 1805 } 1806 1807 nofs_flag = memalloc_nofs_save(); 1808 nmirrors = (int)bioc->num_stripes; 1809 for (i = 0; i < nmirrors; i++) { 1810 u64 physical = bioc->stripes[i].physical; 1811 struct btrfs_device *dev = bioc->stripes[i].dev; 1812 1813 /* Missing device */ 1814 if (!dev->bdev) 1815 continue; 1816 1817 ret = btrfs_get_dev_zone(dev, physical, zone); 1818 /* Failing device */ 1819 if (ret == -EIO || ret == -EOPNOTSUPP) 1820 continue; 1821 break; 1822 } 1823 memalloc_nofs_restore(nofs_flag); 1824 out_put_bioc: 1825 btrfs_put_bioc(bioc); 1826 return ret; 1827 } 1828 1829 /* 1830 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1831 * filling zeros between @physical_pos to a write pointer of dev-replace 1832 * source device. 1833 */ 1834 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1835 u64 physical_start, u64 physical_pos) 1836 { 1837 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1838 struct blk_zone zone; 1839 u64 length; 1840 u64 wp; 1841 int ret; 1842 1843 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1844 return 0; 1845 1846 ret = read_zone_info(fs_info, logical, &zone); 1847 if (ret) 1848 return ret; 1849 1850 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1851 1852 if (physical_pos == wp) 1853 return 0; 1854 1855 if (physical_pos > wp) 1856 return -EUCLEAN; 1857 1858 length = wp - physical_pos; 1859 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1860 } 1861 1862 /* 1863 * Activate block group and underlying device zones 1864 * 1865 * @block_group: the block group to activate 1866 * 1867 * Return: true on success, false otherwise 1868 */ 1869 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 1870 { 1871 struct btrfs_fs_info *fs_info = block_group->fs_info; 1872 struct btrfs_space_info *space_info = block_group->space_info; 1873 struct map_lookup *map; 1874 struct btrfs_device *device; 1875 u64 physical; 1876 bool ret; 1877 int i; 1878 1879 if (!btrfs_is_zoned(block_group->fs_info)) 1880 return true; 1881 1882 map = block_group->physical_map; 1883 1884 spin_lock(&space_info->lock); 1885 spin_lock(&block_group->lock); 1886 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1887 ret = true; 1888 goto out_unlock; 1889 } 1890 1891 /* No space left */ 1892 if (btrfs_zoned_bg_is_full(block_group)) { 1893 ret = false; 1894 goto out_unlock; 1895 } 1896 1897 for (i = 0; i < map->num_stripes; i++) { 1898 device = map->stripes[i].dev; 1899 physical = map->stripes[i].physical; 1900 1901 if (device->zone_info->max_active_zones == 0) 1902 continue; 1903 1904 if (!btrfs_dev_set_active_zone(device, physical)) { 1905 /* Cannot activate the zone */ 1906 ret = false; 1907 goto out_unlock; 1908 } 1909 } 1910 1911 /* Successfully activated all the zones */ 1912 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 1913 WARN_ON(block_group->alloc_offset != 0); 1914 if (block_group->zone_unusable == block_group->length) { 1915 block_group->zone_unusable = block_group->length - block_group->zone_capacity; 1916 space_info->bytes_zone_unusable -= block_group->zone_capacity; 1917 } 1918 spin_unlock(&block_group->lock); 1919 btrfs_try_granting_tickets(fs_info, space_info); 1920 spin_unlock(&space_info->lock); 1921 1922 /* For the active block group list */ 1923 btrfs_get_block_group(block_group); 1924 1925 spin_lock(&fs_info->zone_active_bgs_lock); 1926 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 1927 spin_unlock(&fs_info->zone_active_bgs_lock); 1928 1929 return true; 1930 1931 out_unlock: 1932 spin_unlock(&block_group->lock); 1933 spin_unlock(&space_info->lock); 1934 return ret; 1935 } 1936 1937 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 1938 { 1939 struct btrfs_fs_info *fs_info = block_group->fs_info; 1940 const u64 end = block_group->start + block_group->length; 1941 struct radix_tree_iter iter; 1942 struct extent_buffer *eb; 1943 void __rcu **slot; 1944 1945 rcu_read_lock(); 1946 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 1947 block_group->start >> fs_info->sectorsize_bits) { 1948 eb = radix_tree_deref_slot(slot); 1949 if (!eb) 1950 continue; 1951 if (radix_tree_deref_retry(eb)) { 1952 slot = radix_tree_iter_retry(&iter); 1953 continue; 1954 } 1955 1956 if (eb->start < block_group->start) 1957 continue; 1958 if (eb->start >= end) 1959 break; 1960 1961 slot = radix_tree_iter_resume(slot, &iter); 1962 rcu_read_unlock(); 1963 wait_on_extent_buffer_writeback(eb); 1964 rcu_read_lock(); 1965 } 1966 rcu_read_unlock(); 1967 } 1968 1969 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 1970 { 1971 struct btrfs_fs_info *fs_info = block_group->fs_info; 1972 struct map_lookup *map; 1973 const bool is_metadata = (block_group->flags & 1974 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 1975 int ret = 0; 1976 int i; 1977 1978 spin_lock(&block_group->lock); 1979 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1980 spin_unlock(&block_group->lock); 1981 return 0; 1982 } 1983 1984 /* Check if we have unwritten allocated space */ 1985 if (is_metadata && 1986 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 1987 spin_unlock(&block_group->lock); 1988 return -EAGAIN; 1989 } 1990 1991 /* 1992 * If we are sure that the block group is full (= no more room left for 1993 * new allocation) and the IO for the last usable block is completed, we 1994 * don't need to wait for the other IOs. This holds because we ensure 1995 * the sequential IO submissions using the ZONE_APPEND command for data 1996 * and block_group->meta_write_pointer for metadata. 1997 */ 1998 if (!fully_written) { 1999 spin_unlock(&block_group->lock); 2000 2001 ret = btrfs_inc_block_group_ro(block_group, false); 2002 if (ret) 2003 return ret; 2004 2005 /* Ensure all writes in this block group finish */ 2006 btrfs_wait_block_group_reservations(block_group); 2007 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2008 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 2009 block_group->length); 2010 /* Wait for extent buffers to be written. */ 2011 if (is_metadata) 2012 wait_eb_writebacks(block_group); 2013 2014 spin_lock(&block_group->lock); 2015 2016 /* 2017 * Bail out if someone already deactivated the block group, or 2018 * allocated space is left in the block group. 2019 */ 2020 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2021 &block_group->runtime_flags)) { 2022 spin_unlock(&block_group->lock); 2023 btrfs_dec_block_group_ro(block_group); 2024 return 0; 2025 } 2026 2027 if (block_group->reserved) { 2028 spin_unlock(&block_group->lock); 2029 btrfs_dec_block_group_ro(block_group); 2030 return -EAGAIN; 2031 } 2032 } 2033 2034 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2035 block_group->alloc_offset = block_group->zone_capacity; 2036 block_group->free_space_ctl->free_space = 0; 2037 btrfs_clear_treelog_bg(block_group); 2038 btrfs_clear_data_reloc_bg(block_group); 2039 spin_unlock(&block_group->lock); 2040 2041 map = block_group->physical_map; 2042 for (i = 0; i < map->num_stripes; i++) { 2043 struct btrfs_device *device = map->stripes[i].dev; 2044 const u64 physical = map->stripes[i].physical; 2045 2046 if (device->zone_info->max_active_zones == 0) 2047 continue; 2048 2049 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2050 physical >> SECTOR_SHIFT, 2051 device->zone_info->zone_size >> SECTOR_SHIFT, 2052 GFP_NOFS); 2053 2054 if (ret) 2055 return ret; 2056 2057 btrfs_dev_clear_active_zone(device, physical); 2058 } 2059 2060 if (!fully_written) 2061 btrfs_dec_block_group_ro(block_group); 2062 2063 spin_lock(&fs_info->zone_active_bgs_lock); 2064 ASSERT(!list_empty(&block_group->active_bg_list)); 2065 list_del_init(&block_group->active_bg_list); 2066 spin_unlock(&fs_info->zone_active_bgs_lock); 2067 2068 /* For active_bg_list */ 2069 btrfs_put_block_group(block_group); 2070 2071 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2072 2073 return 0; 2074 } 2075 2076 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2077 { 2078 if (!btrfs_is_zoned(block_group->fs_info)) 2079 return 0; 2080 2081 return do_zone_finish(block_group, false); 2082 } 2083 2084 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2085 { 2086 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2087 struct btrfs_device *device; 2088 bool ret = false; 2089 2090 if (!btrfs_is_zoned(fs_info)) 2091 return true; 2092 2093 /* Check if there is a device with active zones left */ 2094 mutex_lock(&fs_info->chunk_mutex); 2095 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2096 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2097 2098 if (!device->bdev) 2099 continue; 2100 2101 if (!zinfo->max_active_zones) { 2102 ret = true; 2103 break; 2104 } 2105 2106 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 2107 case 0: /* single */ 2108 ret = (atomic_read(&zinfo->active_zones_left) >= 1); 2109 break; 2110 case BTRFS_BLOCK_GROUP_DUP: 2111 ret = (atomic_read(&zinfo->active_zones_left) >= 2); 2112 break; 2113 } 2114 if (ret) 2115 break; 2116 } 2117 mutex_unlock(&fs_info->chunk_mutex); 2118 2119 if (!ret) 2120 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2121 2122 return ret; 2123 } 2124 2125 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2126 { 2127 struct btrfs_block_group *block_group; 2128 u64 min_alloc_bytes; 2129 2130 if (!btrfs_is_zoned(fs_info)) 2131 return; 2132 2133 block_group = btrfs_lookup_block_group(fs_info, logical); 2134 ASSERT(block_group); 2135 2136 /* No MIXED_BG on zoned btrfs. */ 2137 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2138 min_alloc_bytes = fs_info->sectorsize; 2139 else 2140 min_alloc_bytes = fs_info->nodesize; 2141 2142 /* Bail out if we can allocate more data from this block group. */ 2143 if (logical + length + min_alloc_bytes <= 2144 block_group->start + block_group->zone_capacity) 2145 goto out; 2146 2147 do_zone_finish(block_group, true); 2148 2149 out: 2150 btrfs_put_block_group(block_group); 2151 } 2152 2153 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2154 { 2155 struct btrfs_block_group *bg = 2156 container_of(work, struct btrfs_block_group, zone_finish_work); 2157 2158 wait_on_extent_buffer_writeback(bg->last_eb); 2159 free_extent_buffer(bg->last_eb); 2160 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2161 btrfs_put_block_group(bg); 2162 } 2163 2164 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2165 struct extent_buffer *eb) 2166 { 2167 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2168 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2169 return; 2170 2171 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2172 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2173 bg->start); 2174 return; 2175 } 2176 2177 /* For the work */ 2178 btrfs_get_block_group(bg); 2179 atomic_inc(&eb->refs); 2180 bg->last_eb = eb; 2181 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2182 queue_work(system_unbound_wq, &bg->zone_finish_work); 2183 } 2184 2185 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2186 { 2187 struct btrfs_fs_info *fs_info = bg->fs_info; 2188 2189 spin_lock(&fs_info->relocation_bg_lock); 2190 if (fs_info->data_reloc_bg == bg->start) 2191 fs_info->data_reloc_bg = 0; 2192 spin_unlock(&fs_info->relocation_bg_lock); 2193 } 2194 2195 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2196 { 2197 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2198 struct btrfs_device *device; 2199 2200 if (!btrfs_is_zoned(fs_info)) 2201 return; 2202 2203 mutex_lock(&fs_devices->device_list_mutex); 2204 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2205 if (device->zone_info) { 2206 vfree(device->zone_info->zone_cache); 2207 device->zone_info->zone_cache = NULL; 2208 } 2209 } 2210 mutex_unlock(&fs_devices->device_list_mutex); 2211 } 2212 2213 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2214 { 2215 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2216 struct btrfs_device *device; 2217 u64 used = 0; 2218 u64 total = 0; 2219 u64 factor; 2220 2221 ASSERT(btrfs_is_zoned(fs_info)); 2222 2223 if (fs_info->bg_reclaim_threshold == 0) 2224 return false; 2225 2226 mutex_lock(&fs_devices->device_list_mutex); 2227 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2228 if (!device->bdev) 2229 continue; 2230 2231 total += device->disk_total_bytes; 2232 used += device->bytes_used; 2233 } 2234 mutex_unlock(&fs_devices->device_list_mutex); 2235 2236 factor = div64_u64(used * 100, total); 2237 return factor >= fs_info->bg_reclaim_threshold; 2238 } 2239 2240 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2241 u64 length) 2242 { 2243 struct btrfs_block_group *block_group; 2244 2245 if (!btrfs_is_zoned(fs_info)) 2246 return; 2247 2248 block_group = btrfs_lookup_block_group(fs_info, logical); 2249 /* It should be called on a previous data relocation block group. */ 2250 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2251 2252 spin_lock(&block_group->lock); 2253 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2254 goto out; 2255 2256 /* All relocation extents are written. */ 2257 if (block_group->start + block_group->alloc_offset == logical + length) { 2258 /* Now, release this block group for further allocations. */ 2259 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2260 &block_group->runtime_flags); 2261 } 2262 2263 out: 2264 spin_unlock(&block_group->lock); 2265 btrfs_put_block_group(block_group); 2266 } 2267 2268 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2269 { 2270 struct btrfs_block_group *block_group; 2271 struct btrfs_block_group *min_bg = NULL; 2272 u64 min_avail = U64_MAX; 2273 int ret; 2274 2275 spin_lock(&fs_info->zone_active_bgs_lock); 2276 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2277 active_bg_list) { 2278 u64 avail; 2279 2280 spin_lock(&block_group->lock); 2281 if (block_group->reserved || block_group->alloc_offset == 0 || 2282 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) { 2283 spin_unlock(&block_group->lock); 2284 continue; 2285 } 2286 2287 avail = block_group->zone_capacity - block_group->alloc_offset; 2288 if (min_avail > avail) { 2289 if (min_bg) 2290 btrfs_put_block_group(min_bg); 2291 min_bg = block_group; 2292 min_avail = avail; 2293 btrfs_get_block_group(min_bg); 2294 } 2295 spin_unlock(&block_group->lock); 2296 } 2297 spin_unlock(&fs_info->zone_active_bgs_lock); 2298 2299 if (!min_bg) 2300 return 0; 2301 2302 ret = btrfs_zone_finish(min_bg); 2303 btrfs_put_block_group(min_bg); 2304 2305 return ret < 0 ? ret : 1; 2306 } 2307 2308 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2309 struct btrfs_space_info *space_info, 2310 bool do_finish) 2311 { 2312 struct btrfs_block_group *bg; 2313 int index; 2314 2315 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2316 return 0; 2317 2318 for (;;) { 2319 int ret; 2320 bool need_finish = false; 2321 2322 down_read(&space_info->groups_sem); 2323 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2324 list_for_each_entry(bg, &space_info->block_groups[index], 2325 list) { 2326 if (!spin_trylock(&bg->lock)) 2327 continue; 2328 if (btrfs_zoned_bg_is_full(bg) || 2329 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2330 &bg->runtime_flags)) { 2331 spin_unlock(&bg->lock); 2332 continue; 2333 } 2334 spin_unlock(&bg->lock); 2335 2336 if (btrfs_zone_activate(bg)) { 2337 up_read(&space_info->groups_sem); 2338 return 1; 2339 } 2340 2341 need_finish = true; 2342 } 2343 } 2344 up_read(&space_info->groups_sem); 2345 2346 if (!do_finish || !need_finish) 2347 break; 2348 2349 ret = btrfs_zone_finish_one_bg(fs_info); 2350 if (ret == 0) 2351 break; 2352 if (ret < 0) 2353 return ret; 2354 } 2355 2356 return 0; 2357 } 2358