xref: /openbmc/linux/fs/btrfs/zoned.c (revision 8eab9be5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 
19 /* Maximum number of zones to report per blkdev_report_zones() call */
20 #define BTRFS_REPORT_NR_ZONES   4096
21 /* Invalid allocation pointer value for missing devices */
22 #define WP_MISSING_DEV ((u64)-1)
23 /* Pseudo write pointer value for conventional zone */
24 #define WP_CONVENTIONAL ((u64)-2)
25 
26 /*
27  * Location of the first zone of superblock logging zone pairs.
28  *
29  * - primary superblock:    0B (zone 0)
30  * - first copy:          512G (zone starting at that offset)
31  * - second copy:           4T (zone starting at that offset)
32  */
33 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
34 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
35 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
36 
37 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39 
40 /* Number of superblock log zones */
41 #define BTRFS_NR_SB_LOG_ZONES 2
42 
43 /*
44  * Minimum of active zones we need:
45  *
46  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48  * - 1 zone for tree-log dedicated block group
49  * - 1 zone for relocation
50  */
51 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
52 
53 /*
54  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
55  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
56  * We do not expect the zone size to become larger than 8GiB or smaller than
57  * 4MiB in the near future.
58  */
59 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
60 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
61 
62 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
63 
64 static inline bool sb_zone_is_full(const struct blk_zone *zone)
65 {
66 	return (zone->cond == BLK_ZONE_COND_FULL) ||
67 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
68 }
69 
70 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
71 {
72 	struct blk_zone *zones = data;
73 
74 	memcpy(&zones[idx], zone, sizeof(*zone));
75 
76 	return 0;
77 }
78 
79 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
80 			    u64 *wp_ret)
81 {
82 	bool empty[BTRFS_NR_SB_LOG_ZONES];
83 	bool full[BTRFS_NR_SB_LOG_ZONES];
84 	sector_t sector;
85 	int i;
86 
87 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
88 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
89 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
90 		full[i] = sb_zone_is_full(&zones[i]);
91 	}
92 
93 	/*
94 	 * Possible states of log buffer zones
95 	 *
96 	 *           Empty[0]  In use[0]  Full[0]
97 	 * Empty[1]         *          0        1
98 	 * In use[1]        x          x        1
99 	 * Full[1]          0          0        C
100 	 *
101 	 * Log position:
102 	 *   *: Special case, no superblock is written
103 	 *   0: Use write pointer of zones[0]
104 	 *   1: Use write pointer of zones[1]
105 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
106 	 *      one determined by generation
107 	 *   x: Invalid state
108 	 */
109 
110 	if (empty[0] && empty[1]) {
111 		/* Special case to distinguish no superblock to read */
112 		*wp_ret = zones[0].start << SECTOR_SHIFT;
113 		return -ENOENT;
114 	} else if (full[0] && full[1]) {
115 		/* Compare two super blocks */
116 		struct address_space *mapping = bdev->bd_inode->i_mapping;
117 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
118 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
119 		int i;
120 
121 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
122 			u64 bytenr;
123 
124 			bytenr = ((zones[i].start + zones[i].len)
125 				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
126 
127 			page[i] = read_cache_page_gfp(mapping,
128 					bytenr >> PAGE_SHIFT, GFP_NOFS);
129 			if (IS_ERR(page[i])) {
130 				if (i == 1)
131 					btrfs_release_disk_super(super[0]);
132 				return PTR_ERR(page[i]);
133 			}
134 			super[i] = page_address(page[i]);
135 		}
136 
137 		if (super[0]->generation > super[1]->generation)
138 			sector = zones[1].start;
139 		else
140 			sector = zones[0].start;
141 
142 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
143 			btrfs_release_disk_super(super[i]);
144 	} else if (!full[0] && (empty[1] || full[1])) {
145 		sector = zones[0].wp;
146 	} else if (full[0]) {
147 		sector = zones[1].wp;
148 	} else {
149 		return -EUCLEAN;
150 	}
151 	*wp_ret = sector << SECTOR_SHIFT;
152 	return 0;
153 }
154 
155 /*
156  * Get the first zone number of the superblock mirror
157  */
158 static inline u32 sb_zone_number(int shift, int mirror)
159 {
160 	u64 zone;
161 
162 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
163 	switch (mirror) {
164 	case 0: zone = 0; break;
165 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
166 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
167 	}
168 
169 	ASSERT(zone <= U32_MAX);
170 
171 	return (u32)zone;
172 }
173 
174 static inline sector_t zone_start_sector(u32 zone_number,
175 					 struct block_device *bdev)
176 {
177 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
178 }
179 
180 static inline u64 zone_start_physical(u32 zone_number,
181 				      struct btrfs_zoned_device_info *zone_info)
182 {
183 	return (u64)zone_number << zone_info->zone_size_shift;
184 }
185 
186 /*
187  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
188  * device into static sized chunks and fake a conventional zone on each of
189  * them.
190  */
191 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
192 				struct blk_zone *zones, unsigned int nr_zones)
193 {
194 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
195 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
196 	unsigned int i;
197 
198 	pos >>= SECTOR_SHIFT;
199 	for (i = 0; i < nr_zones; i++) {
200 		zones[i].start = i * zone_sectors + pos;
201 		zones[i].len = zone_sectors;
202 		zones[i].capacity = zone_sectors;
203 		zones[i].wp = zones[i].start + zone_sectors;
204 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
205 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
206 
207 		if (zones[i].wp >= bdev_size) {
208 			i++;
209 			break;
210 		}
211 	}
212 
213 	return i;
214 }
215 
216 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
217 			       struct blk_zone *zones, unsigned int *nr_zones)
218 {
219 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
220 	u32 zno;
221 	int ret;
222 
223 	if (!*nr_zones)
224 		return 0;
225 
226 	if (!bdev_is_zoned(device->bdev)) {
227 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
228 		*nr_zones = ret;
229 		return 0;
230 	}
231 
232 	/* Check cache */
233 	if (zinfo->zone_cache) {
234 		unsigned int i;
235 
236 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
237 		zno = pos >> zinfo->zone_size_shift;
238 		/*
239 		 * We cannot report zones beyond the zone end. So, it is OK to
240 		 * cap *nr_zones to at the end.
241 		 */
242 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
243 
244 		for (i = 0; i < *nr_zones; i++) {
245 			struct blk_zone *zone_info;
246 
247 			zone_info = &zinfo->zone_cache[zno + i];
248 			if (!zone_info->len)
249 				break;
250 		}
251 
252 		if (i == *nr_zones) {
253 			/* Cache hit on all the zones */
254 			memcpy(zones, zinfo->zone_cache + zno,
255 			       sizeof(*zinfo->zone_cache) * *nr_zones);
256 			return 0;
257 		}
258 	}
259 
260 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
261 				  copy_zone_info_cb, zones);
262 	if (ret < 0) {
263 		btrfs_err_in_rcu(device->fs_info,
264 				 "zoned: failed to read zone %llu on %s (devid %llu)",
265 				 pos, rcu_str_deref(device->name),
266 				 device->devid);
267 		return ret;
268 	}
269 	*nr_zones = ret;
270 	if (!ret)
271 		return -EIO;
272 
273 	/* Populate cache */
274 	if (zinfo->zone_cache)
275 		memcpy(zinfo->zone_cache + zno, zones,
276 		       sizeof(*zinfo->zone_cache) * *nr_zones);
277 
278 	return 0;
279 }
280 
281 /* The emulated zone size is determined from the size of device extent */
282 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
283 {
284 	struct btrfs_path *path;
285 	struct btrfs_root *root = fs_info->dev_root;
286 	struct btrfs_key key;
287 	struct extent_buffer *leaf;
288 	struct btrfs_dev_extent *dext;
289 	int ret = 0;
290 
291 	key.objectid = 1;
292 	key.type = BTRFS_DEV_EXTENT_KEY;
293 	key.offset = 0;
294 
295 	path = btrfs_alloc_path();
296 	if (!path)
297 		return -ENOMEM;
298 
299 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
300 	if (ret < 0)
301 		goto out;
302 
303 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
304 		ret = btrfs_next_leaf(root, path);
305 		if (ret < 0)
306 			goto out;
307 		/* No dev extents at all? Not good */
308 		if (ret > 0) {
309 			ret = -EUCLEAN;
310 			goto out;
311 		}
312 	}
313 
314 	leaf = path->nodes[0];
315 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
316 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
317 	ret = 0;
318 
319 out:
320 	btrfs_free_path(path);
321 
322 	return ret;
323 }
324 
325 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
326 {
327 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
328 	struct btrfs_device *device;
329 	int ret = 0;
330 
331 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
332 	if (!btrfs_fs_incompat(fs_info, ZONED))
333 		return 0;
334 
335 	mutex_lock(&fs_devices->device_list_mutex);
336 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
337 		/* We can skip reading of zone info for missing devices */
338 		if (!device->bdev)
339 			continue;
340 
341 		ret = btrfs_get_dev_zone_info(device, true);
342 		if (ret)
343 			break;
344 	}
345 	mutex_unlock(&fs_devices->device_list_mutex);
346 
347 	return ret;
348 }
349 
350 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
351 {
352 	struct btrfs_fs_info *fs_info = device->fs_info;
353 	struct btrfs_zoned_device_info *zone_info = NULL;
354 	struct block_device *bdev = device->bdev;
355 	unsigned int max_active_zones;
356 	unsigned int nactive;
357 	sector_t nr_sectors;
358 	sector_t sector = 0;
359 	struct blk_zone *zones = NULL;
360 	unsigned int i, nreported = 0, nr_zones;
361 	sector_t zone_sectors;
362 	char *model, *emulated;
363 	int ret;
364 
365 	/*
366 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
367 	 * yet be set.
368 	 */
369 	if (!btrfs_fs_incompat(fs_info, ZONED))
370 		return 0;
371 
372 	if (device->zone_info)
373 		return 0;
374 
375 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
376 	if (!zone_info)
377 		return -ENOMEM;
378 
379 	device->zone_info = zone_info;
380 
381 	if (!bdev_is_zoned(bdev)) {
382 		if (!fs_info->zone_size) {
383 			ret = calculate_emulated_zone_size(fs_info);
384 			if (ret)
385 				goto out;
386 		}
387 
388 		ASSERT(fs_info->zone_size);
389 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
390 	} else {
391 		zone_sectors = bdev_zone_sectors(bdev);
392 	}
393 
394 	/* Check if it's power of 2 (see is_power_of_2) */
395 	ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
396 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
397 
398 	/* We reject devices with a zone size larger than 8GB */
399 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
400 		btrfs_err_in_rcu(fs_info,
401 		"zoned: %s: zone size %llu larger than supported maximum %llu",
402 				 rcu_str_deref(device->name),
403 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
404 		ret = -EINVAL;
405 		goto out;
406 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
407 		btrfs_err_in_rcu(fs_info,
408 		"zoned: %s: zone size %llu smaller than supported minimum %u",
409 				 rcu_str_deref(device->name),
410 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
411 		ret = -EINVAL;
412 		goto out;
413 	}
414 
415 	nr_sectors = bdev_nr_sectors(bdev);
416 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
417 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
418 	/*
419 	 * We limit max_zone_append_size also by max_segments *
420 	 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
421 	 * since btrfs adds the pages one by one to a bio, and btrfs cannot
422 	 * increase the metadata reservation even if it increases the number of
423 	 * extents, it is safe to stick with the limit.
424 	 *
425 	 * With the zoned emulation, we can have non-zoned device on the zoned
426 	 * mode. In this case, we don't have a valid max zone append size. So,
427 	 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
428 	 */
429 	if (bdev_is_zoned(bdev)) {
430 		zone_info->max_zone_append_size = min_t(u64,
431 			(u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
432 			(u64)bdev_max_segments(bdev) << PAGE_SHIFT);
433 	} else {
434 		zone_info->max_zone_append_size =
435 			(u64)bdev_max_segments(bdev) << PAGE_SHIFT;
436 	}
437 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
438 		zone_info->nr_zones++;
439 
440 	max_active_zones = bdev_max_active_zones(bdev);
441 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
442 		btrfs_err_in_rcu(fs_info,
443 "zoned: %s: max active zones %u is too small, need at least %u active zones",
444 				 rcu_str_deref(device->name), max_active_zones,
445 				 BTRFS_MIN_ACTIVE_ZONES);
446 		ret = -EINVAL;
447 		goto out;
448 	}
449 	zone_info->max_active_zones = max_active_zones;
450 
451 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
452 	if (!zone_info->seq_zones) {
453 		ret = -ENOMEM;
454 		goto out;
455 	}
456 
457 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
458 	if (!zone_info->empty_zones) {
459 		ret = -ENOMEM;
460 		goto out;
461 	}
462 
463 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
464 	if (!zone_info->active_zones) {
465 		ret = -ENOMEM;
466 		goto out;
467 	}
468 
469 	zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
470 	if (!zones) {
471 		ret = -ENOMEM;
472 		goto out;
473 	}
474 
475 	/*
476 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
477 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
478 	 * use the cache.
479 	 */
480 	if (populate_cache && bdev_is_zoned(device->bdev)) {
481 		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
482 						zone_info->nr_zones);
483 		if (!zone_info->zone_cache) {
484 			btrfs_err_in_rcu(device->fs_info,
485 				"zoned: failed to allocate zone cache for %s",
486 				rcu_str_deref(device->name));
487 			ret = -ENOMEM;
488 			goto out;
489 		}
490 	}
491 
492 	/* Get zones type */
493 	nactive = 0;
494 	while (sector < nr_sectors) {
495 		nr_zones = BTRFS_REPORT_NR_ZONES;
496 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
497 					  &nr_zones);
498 		if (ret)
499 			goto out;
500 
501 		for (i = 0; i < nr_zones; i++) {
502 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
503 				__set_bit(nreported, zone_info->seq_zones);
504 			switch (zones[i].cond) {
505 			case BLK_ZONE_COND_EMPTY:
506 				__set_bit(nreported, zone_info->empty_zones);
507 				break;
508 			case BLK_ZONE_COND_IMP_OPEN:
509 			case BLK_ZONE_COND_EXP_OPEN:
510 			case BLK_ZONE_COND_CLOSED:
511 				__set_bit(nreported, zone_info->active_zones);
512 				nactive++;
513 				break;
514 			}
515 			nreported++;
516 		}
517 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
518 	}
519 
520 	if (nreported != zone_info->nr_zones) {
521 		btrfs_err_in_rcu(device->fs_info,
522 				 "inconsistent number of zones on %s (%u/%u)",
523 				 rcu_str_deref(device->name), nreported,
524 				 zone_info->nr_zones);
525 		ret = -EIO;
526 		goto out;
527 	}
528 
529 	if (max_active_zones) {
530 		if (nactive > max_active_zones) {
531 			btrfs_err_in_rcu(device->fs_info,
532 			"zoned: %u active zones on %s exceeds max_active_zones %u",
533 					 nactive, rcu_str_deref(device->name),
534 					 max_active_zones);
535 			ret = -EIO;
536 			goto out;
537 		}
538 		atomic_set(&zone_info->active_zones_left,
539 			   max_active_zones - nactive);
540 	}
541 
542 	/* Validate superblock log */
543 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
544 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
545 		u32 sb_zone;
546 		u64 sb_wp;
547 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
548 
549 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
550 		if (sb_zone + 1 >= zone_info->nr_zones)
551 			continue;
552 
553 		ret = btrfs_get_dev_zones(device,
554 					  zone_start_physical(sb_zone, zone_info),
555 					  &zone_info->sb_zones[sb_pos],
556 					  &nr_zones);
557 		if (ret)
558 			goto out;
559 
560 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
561 			btrfs_err_in_rcu(device->fs_info,
562 	"zoned: failed to read super block log zone info at devid %llu zone %u",
563 					 device->devid, sb_zone);
564 			ret = -EUCLEAN;
565 			goto out;
566 		}
567 
568 		/*
569 		 * If zones[0] is conventional, always use the beginning of the
570 		 * zone to record superblock. No need to validate in that case.
571 		 */
572 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
573 		    BLK_ZONE_TYPE_CONVENTIONAL)
574 			continue;
575 
576 		ret = sb_write_pointer(device->bdev,
577 				       &zone_info->sb_zones[sb_pos], &sb_wp);
578 		if (ret != -ENOENT && ret) {
579 			btrfs_err_in_rcu(device->fs_info,
580 			"zoned: super block log zone corrupted devid %llu zone %u",
581 					 device->devid, sb_zone);
582 			ret = -EUCLEAN;
583 			goto out;
584 		}
585 	}
586 
587 
588 	kfree(zones);
589 
590 	switch (bdev_zoned_model(bdev)) {
591 	case BLK_ZONED_HM:
592 		model = "host-managed zoned";
593 		emulated = "";
594 		break;
595 	case BLK_ZONED_HA:
596 		model = "host-aware zoned";
597 		emulated = "";
598 		break;
599 	case BLK_ZONED_NONE:
600 		model = "regular";
601 		emulated = "emulated ";
602 		break;
603 	default:
604 		/* Just in case */
605 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
606 				 bdev_zoned_model(bdev),
607 				 rcu_str_deref(device->name));
608 		ret = -EOPNOTSUPP;
609 		goto out_free_zone_info;
610 	}
611 
612 	btrfs_info_in_rcu(fs_info,
613 		"%s block device %s, %u %szones of %llu bytes",
614 		model, rcu_str_deref(device->name), zone_info->nr_zones,
615 		emulated, zone_info->zone_size);
616 
617 	return 0;
618 
619 out:
620 	kfree(zones);
621 out_free_zone_info:
622 	btrfs_destroy_dev_zone_info(device);
623 
624 	return ret;
625 }
626 
627 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
628 {
629 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
630 
631 	if (!zone_info)
632 		return;
633 
634 	bitmap_free(zone_info->active_zones);
635 	bitmap_free(zone_info->seq_zones);
636 	bitmap_free(zone_info->empty_zones);
637 	vfree(zone_info->zone_cache);
638 	kfree(zone_info);
639 	device->zone_info = NULL;
640 }
641 
642 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
643 {
644 	struct btrfs_zoned_device_info *zone_info;
645 
646 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
647 	if (!zone_info)
648 		return NULL;
649 
650 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
651 	if (!zone_info->seq_zones)
652 		goto out;
653 
654 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
655 		    zone_info->nr_zones);
656 
657 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
658 	if (!zone_info->empty_zones)
659 		goto out;
660 
661 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
662 		    zone_info->nr_zones);
663 
664 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
665 	if (!zone_info->active_zones)
666 		goto out;
667 
668 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
669 		    zone_info->nr_zones);
670 	zone_info->zone_cache = NULL;
671 
672 	return zone_info;
673 
674 out:
675 	bitmap_free(zone_info->seq_zones);
676 	bitmap_free(zone_info->empty_zones);
677 	bitmap_free(zone_info->active_zones);
678 	kfree(zone_info);
679 	return NULL;
680 }
681 
682 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
683 		       struct blk_zone *zone)
684 {
685 	unsigned int nr_zones = 1;
686 	int ret;
687 
688 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
689 	if (ret != 0 || !nr_zones)
690 		return ret ? ret : -EIO;
691 
692 	return 0;
693 }
694 
695 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
696 {
697 	struct btrfs_device *device;
698 
699 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
700 		if (device->bdev &&
701 		    bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
702 			btrfs_err(fs_info,
703 				"zoned: mode not enabled but zoned device found: %pg",
704 				device->bdev);
705 			return -EINVAL;
706 		}
707 	}
708 
709 	return 0;
710 }
711 
712 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
713 {
714 	struct btrfs_device *device;
715 	u64 zone_size = 0;
716 	u64 max_zone_append_size = 0;
717 	int ret;
718 
719 	/*
720 	 * Host-Managed devices can't be used without the ZONED flag.  With the
721 	 * ZONED all devices can be used, using zone emulation if required.
722 	 */
723 	if (!btrfs_fs_incompat(fs_info, ZONED))
724 		return btrfs_check_for_zoned_device(fs_info);
725 
726 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
727 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
728 
729 		if (!device->bdev)
730 			continue;
731 
732 		if (!zone_size) {
733 			zone_size = zone_info->zone_size;
734 		} else if (zone_info->zone_size != zone_size) {
735 			btrfs_err(fs_info,
736 		"zoned: unequal block device zone sizes: have %llu found %llu",
737 				  zone_info->zone_size, zone_size);
738 			return -EINVAL;
739 		}
740 		if (!max_zone_append_size ||
741 		    (zone_info->max_zone_append_size &&
742 		     zone_info->max_zone_append_size < max_zone_append_size))
743 			max_zone_append_size = zone_info->max_zone_append_size;
744 	}
745 
746 	/*
747 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
748 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
749 	 * check the alignment here.
750 	 */
751 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752 		btrfs_err(fs_info,
753 			  "zoned: zone size %llu not aligned to stripe %u",
754 			  zone_size, BTRFS_STRIPE_LEN);
755 		return -EINVAL;
756 	}
757 
758 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
760 		return -EINVAL;
761 	}
762 
763 	fs_info->zone_size = zone_size;
764 	fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
765 						   fs_info->sectorsize);
766 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
767 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
768 		fs_info->max_extent_size = fs_info->max_zone_append_size;
769 
770 	/*
771 	 * Check mount options here, because we might change fs_info->zoned
772 	 * from fs_info->zone_size.
773 	 */
774 	ret = btrfs_check_mountopts_zoned(fs_info);
775 	if (ret)
776 		return ret;
777 
778 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
779 	return 0;
780 }
781 
782 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
783 {
784 	if (!btrfs_is_zoned(info))
785 		return 0;
786 
787 	/*
788 	 * Space cache writing is not COWed. Disable that to avoid write errors
789 	 * in sequential zones.
790 	 */
791 	if (btrfs_test_opt(info, SPACE_CACHE)) {
792 		btrfs_err(info, "zoned: space cache v1 is not supported");
793 		return -EINVAL;
794 	}
795 
796 	if (btrfs_test_opt(info, NODATACOW)) {
797 		btrfs_err(info, "zoned: NODATACOW not supported");
798 		return -EINVAL;
799 	}
800 
801 	return 0;
802 }
803 
804 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
805 			   int rw, u64 *bytenr_ret)
806 {
807 	u64 wp;
808 	int ret;
809 
810 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
811 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
812 		return 0;
813 	}
814 
815 	ret = sb_write_pointer(bdev, zones, &wp);
816 	if (ret != -ENOENT && ret < 0)
817 		return ret;
818 
819 	if (rw == WRITE) {
820 		struct blk_zone *reset = NULL;
821 
822 		if (wp == zones[0].start << SECTOR_SHIFT)
823 			reset = &zones[0];
824 		else if (wp == zones[1].start << SECTOR_SHIFT)
825 			reset = &zones[1];
826 
827 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
828 			ASSERT(sb_zone_is_full(reset));
829 
830 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
831 					       reset->start, reset->len,
832 					       GFP_NOFS);
833 			if (ret)
834 				return ret;
835 
836 			reset->cond = BLK_ZONE_COND_EMPTY;
837 			reset->wp = reset->start;
838 		}
839 	} else if (ret != -ENOENT) {
840 		/*
841 		 * For READ, we want the previous one. Move write pointer to
842 		 * the end of a zone, if it is at the head of a zone.
843 		 */
844 		u64 zone_end = 0;
845 
846 		if (wp == zones[0].start << SECTOR_SHIFT)
847 			zone_end = zones[1].start + zones[1].capacity;
848 		else if (wp == zones[1].start << SECTOR_SHIFT)
849 			zone_end = zones[0].start + zones[0].capacity;
850 		if (zone_end)
851 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
852 					BTRFS_SUPER_INFO_SIZE);
853 
854 		wp -= BTRFS_SUPER_INFO_SIZE;
855 	}
856 
857 	*bytenr_ret = wp;
858 	return 0;
859 
860 }
861 
862 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
863 			       u64 *bytenr_ret)
864 {
865 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
866 	sector_t zone_sectors;
867 	u32 sb_zone;
868 	int ret;
869 	u8 zone_sectors_shift;
870 	sector_t nr_sectors;
871 	u32 nr_zones;
872 
873 	if (!bdev_is_zoned(bdev)) {
874 		*bytenr_ret = btrfs_sb_offset(mirror);
875 		return 0;
876 	}
877 
878 	ASSERT(rw == READ || rw == WRITE);
879 
880 	zone_sectors = bdev_zone_sectors(bdev);
881 	if (!is_power_of_2(zone_sectors))
882 		return -EINVAL;
883 	zone_sectors_shift = ilog2(zone_sectors);
884 	nr_sectors = bdev_nr_sectors(bdev);
885 	nr_zones = nr_sectors >> zone_sectors_shift;
886 
887 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
888 	if (sb_zone + 1 >= nr_zones)
889 		return -ENOENT;
890 
891 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
892 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
893 				  zones);
894 	if (ret < 0)
895 		return ret;
896 	if (ret != BTRFS_NR_SB_LOG_ZONES)
897 		return -EIO;
898 
899 	return sb_log_location(bdev, zones, rw, bytenr_ret);
900 }
901 
902 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
903 			  u64 *bytenr_ret)
904 {
905 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
906 	u32 zone_num;
907 
908 	/*
909 	 * For a zoned filesystem on a non-zoned block device, use the same
910 	 * super block locations as regular filesystem. Doing so, the super
911 	 * block can always be retrieved and the zoned flag of the volume
912 	 * detected from the super block information.
913 	 */
914 	if (!bdev_is_zoned(device->bdev)) {
915 		*bytenr_ret = btrfs_sb_offset(mirror);
916 		return 0;
917 	}
918 
919 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
920 	if (zone_num + 1 >= zinfo->nr_zones)
921 		return -ENOENT;
922 
923 	return sb_log_location(device->bdev,
924 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
925 			       rw, bytenr_ret);
926 }
927 
928 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
929 				  int mirror)
930 {
931 	u32 zone_num;
932 
933 	if (!zinfo)
934 		return false;
935 
936 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
937 	if (zone_num + 1 >= zinfo->nr_zones)
938 		return false;
939 
940 	if (!test_bit(zone_num, zinfo->seq_zones))
941 		return false;
942 
943 	return true;
944 }
945 
946 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
947 {
948 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
949 	struct blk_zone *zone;
950 	int i;
951 
952 	if (!is_sb_log_zone(zinfo, mirror))
953 		return 0;
954 
955 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
956 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
957 		/* Advance the next zone */
958 		if (zone->cond == BLK_ZONE_COND_FULL) {
959 			zone++;
960 			continue;
961 		}
962 
963 		if (zone->cond == BLK_ZONE_COND_EMPTY)
964 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
965 
966 		zone->wp += SUPER_INFO_SECTORS;
967 
968 		if (sb_zone_is_full(zone)) {
969 			/*
970 			 * No room left to write new superblock. Since
971 			 * superblock is written with REQ_SYNC, it is safe to
972 			 * finish the zone now.
973 			 *
974 			 * If the write pointer is exactly at the capacity,
975 			 * explicit ZONE_FINISH is not necessary.
976 			 */
977 			if (zone->wp != zone->start + zone->capacity) {
978 				int ret;
979 
980 				ret = blkdev_zone_mgmt(device->bdev,
981 						REQ_OP_ZONE_FINISH, zone->start,
982 						zone->len, GFP_NOFS);
983 				if (ret)
984 					return ret;
985 			}
986 
987 			zone->wp = zone->start + zone->len;
988 			zone->cond = BLK_ZONE_COND_FULL;
989 		}
990 		return 0;
991 	}
992 
993 	/* All the zones are FULL. Should not reach here. */
994 	ASSERT(0);
995 	return -EIO;
996 }
997 
998 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
999 {
1000 	sector_t zone_sectors;
1001 	sector_t nr_sectors;
1002 	u8 zone_sectors_shift;
1003 	u32 sb_zone;
1004 	u32 nr_zones;
1005 
1006 	zone_sectors = bdev_zone_sectors(bdev);
1007 	zone_sectors_shift = ilog2(zone_sectors);
1008 	nr_sectors = bdev_nr_sectors(bdev);
1009 	nr_zones = nr_sectors >> zone_sectors_shift;
1010 
1011 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1012 	if (sb_zone + 1 >= nr_zones)
1013 		return -ENOENT;
1014 
1015 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1016 				zone_start_sector(sb_zone, bdev),
1017 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1018 }
1019 
1020 /**
1021  * btrfs_find_allocatable_zones - find allocatable zones within a given region
1022  *
1023  * @device:	the device to allocate a region on
1024  * @hole_start: the position of the hole to allocate the region
1025  * @num_bytes:	size of wanted region
1026  * @hole_end:	the end of the hole
1027  * @return:	position of allocatable zones
1028  *
1029  * Allocatable region should not contain any superblock locations.
1030  */
1031 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1032 				 u64 hole_end, u64 num_bytes)
1033 {
1034 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1035 	const u8 shift = zinfo->zone_size_shift;
1036 	u64 nzones = num_bytes >> shift;
1037 	u64 pos = hole_start;
1038 	u64 begin, end;
1039 	bool have_sb;
1040 	int i;
1041 
1042 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1043 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1044 
1045 	while (pos < hole_end) {
1046 		begin = pos >> shift;
1047 		end = begin + nzones;
1048 
1049 		if (end > zinfo->nr_zones)
1050 			return hole_end;
1051 
1052 		/* Check if zones in the region are all empty */
1053 		if (btrfs_dev_is_sequential(device, pos) &&
1054 		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1055 			pos += zinfo->zone_size;
1056 			continue;
1057 		}
1058 
1059 		have_sb = false;
1060 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1061 			u32 sb_zone;
1062 			u64 sb_pos;
1063 
1064 			sb_zone = sb_zone_number(shift, i);
1065 			if (!(end <= sb_zone ||
1066 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1067 				have_sb = true;
1068 				pos = zone_start_physical(
1069 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1070 				break;
1071 			}
1072 
1073 			/* We also need to exclude regular superblock positions */
1074 			sb_pos = btrfs_sb_offset(i);
1075 			if (!(pos + num_bytes <= sb_pos ||
1076 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1077 				have_sb = true;
1078 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1079 					    zinfo->zone_size);
1080 				break;
1081 			}
1082 		}
1083 		if (!have_sb)
1084 			break;
1085 	}
1086 
1087 	return pos;
1088 }
1089 
1090 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1091 {
1092 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1093 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1094 
1095 	/* We can use any number of zones */
1096 	if (zone_info->max_active_zones == 0)
1097 		return true;
1098 
1099 	if (!test_bit(zno, zone_info->active_zones)) {
1100 		/* Active zone left? */
1101 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1102 			return false;
1103 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1104 			/* Someone already set the bit */
1105 			atomic_inc(&zone_info->active_zones_left);
1106 		}
1107 	}
1108 
1109 	return true;
1110 }
1111 
1112 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1113 {
1114 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1115 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1116 
1117 	/* We can use any number of zones */
1118 	if (zone_info->max_active_zones == 0)
1119 		return;
1120 
1121 	if (test_and_clear_bit(zno, zone_info->active_zones))
1122 		atomic_inc(&zone_info->active_zones_left);
1123 }
1124 
1125 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1126 			    u64 length, u64 *bytes)
1127 {
1128 	int ret;
1129 
1130 	*bytes = 0;
1131 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1132 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1133 			       GFP_NOFS);
1134 	if (ret)
1135 		return ret;
1136 
1137 	*bytes = length;
1138 	while (length) {
1139 		btrfs_dev_set_zone_empty(device, physical);
1140 		btrfs_dev_clear_active_zone(device, physical);
1141 		physical += device->zone_info->zone_size;
1142 		length -= device->zone_info->zone_size;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1149 {
1150 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1151 	const u8 shift = zinfo->zone_size_shift;
1152 	unsigned long begin = start >> shift;
1153 	unsigned long end = (start + size) >> shift;
1154 	u64 pos;
1155 	int ret;
1156 
1157 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1158 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1159 
1160 	if (end > zinfo->nr_zones)
1161 		return -ERANGE;
1162 
1163 	/* All the zones are conventional */
1164 	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1165 		return 0;
1166 
1167 	/* All the zones are sequential and empty */
1168 	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1169 	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1170 		return 0;
1171 
1172 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1173 		u64 reset_bytes;
1174 
1175 		if (!btrfs_dev_is_sequential(device, pos) ||
1176 		    btrfs_dev_is_empty_zone(device, pos))
1177 			continue;
1178 
1179 		/* Free regions should be empty */
1180 		btrfs_warn_in_rcu(
1181 			device->fs_info,
1182 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1183 			rcu_str_deref(device->name), device->devid, pos >> shift);
1184 		WARN_ON_ONCE(1);
1185 
1186 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1187 					      &reset_bytes);
1188 		if (ret)
1189 			return ret;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 /*
1196  * Calculate an allocation pointer from the extent allocation information
1197  * for a block group consist of conventional zones. It is pointed to the
1198  * end of the highest addressed extent in the block group as an allocation
1199  * offset.
1200  */
1201 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1202 				   u64 *offset_ret, bool new)
1203 {
1204 	struct btrfs_fs_info *fs_info = cache->fs_info;
1205 	struct btrfs_root *root;
1206 	struct btrfs_path *path;
1207 	struct btrfs_key key;
1208 	struct btrfs_key found_key;
1209 	int ret;
1210 	u64 length;
1211 
1212 	/*
1213 	 * Avoid  tree lookups for a new block group, there's no use for it.
1214 	 * It must always be 0.
1215 	 *
1216 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1217 	 * For new a block group, this function is called from
1218 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1219 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1220 	 * buffer locks to avoid deadlock.
1221 	 */
1222 	if (new) {
1223 		*offset_ret = 0;
1224 		return 0;
1225 	}
1226 
1227 	path = btrfs_alloc_path();
1228 	if (!path)
1229 		return -ENOMEM;
1230 
1231 	key.objectid = cache->start + cache->length;
1232 	key.type = 0;
1233 	key.offset = 0;
1234 
1235 	root = btrfs_extent_root(fs_info, key.objectid);
1236 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1237 	/* We should not find the exact match */
1238 	if (!ret)
1239 		ret = -EUCLEAN;
1240 	if (ret < 0)
1241 		goto out;
1242 
1243 	ret = btrfs_previous_extent_item(root, path, cache->start);
1244 	if (ret) {
1245 		if (ret == 1) {
1246 			ret = 0;
1247 			*offset_ret = 0;
1248 		}
1249 		goto out;
1250 	}
1251 
1252 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1253 
1254 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1255 		length = found_key.offset;
1256 	else
1257 		length = fs_info->nodesize;
1258 
1259 	if (!(found_key.objectid >= cache->start &&
1260 	       found_key.objectid + length <= cache->start + cache->length)) {
1261 		ret = -EUCLEAN;
1262 		goto out;
1263 	}
1264 	*offset_ret = found_key.objectid + length - cache->start;
1265 	ret = 0;
1266 
1267 out:
1268 	btrfs_free_path(path);
1269 	return ret;
1270 }
1271 
1272 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1273 {
1274 	struct btrfs_fs_info *fs_info = cache->fs_info;
1275 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1276 	struct extent_map *em;
1277 	struct map_lookup *map;
1278 	struct btrfs_device *device;
1279 	u64 logical = cache->start;
1280 	u64 length = cache->length;
1281 	int ret;
1282 	int i;
1283 	unsigned int nofs_flag;
1284 	u64 *alloc_offsets = NULL;
1285 	u64 *caps = NULL;
1286 	u64 *physical = NULL;
1287 	unsigned long *active = NULL;
1288 	u64 last_alloc = 0;
1289 	u32 num_sequential = 0, num_conventional = 0;
1290 
1291 	if (!btrfs_is_zoned(fs_info))
1292 		return 0;
1293 
1294 	/* Sanity check */
1295 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1296 		btrfs_err(fs_info,
1297 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1298 			  logical, length, fs_info->zone_size);
1299 		return -EIO;
1300 	}
1301 
1302 	/* Get the chunk mapping */
1303 	read_lock(&em_tree->lock);
1304 	em = lookup_extent_mapping(em_tree, logical, length);
1305 	read_unlock(&em_tree->lock);
1306 
1307 	if (!em)
1308 		return -EINVAL;
1309 
1310 	map = em->map_lookup;
1311 
1312 	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1313 	if (!cache->physical_map) {
1314 		ret = -ENOMEM;
1315 		goto out;
1316 	}
1317 
1318 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1319 	if (!alloc_offsets) {
1320 		ret = -ENOMEM;
1321 		goto out;
1322 	}
1323 
1324 	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1325 	if (!caps) {
1326 		ret = -ENOMEM;
1327 		goto out;
1328 	}
1329 
1330 	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1331 	if (!physical) {
1332 		ret = -ENOMEM;
1333 		goto out;
1334 	}
1335 
1336 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1337 	if (!active) {
1338 		ret = -ENOMEM;
1339 		goto out;
1340 	}
1341 
1342 	for (i = 0; i < map->num_stripes; i++) {
1343 		bool is_sequential;
1344 		struct blk_zone zone;
1345 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1346 		int dev_replace_is_ongoing = 0;
1347 
1348 		device = map->stripes[i].dev;
1349 		physical[i] = map->stripes[i].physical;
1350 
1351 		if (device->bdev == NULL) {
1352 			alloc_offsets[i] = WP_MISSING_DEV;
1353 			continue;
1354 		}
1355 
1356 		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1357 		if (is_sequential)
1358 			num_sequential++;
1359 		else
1360 			num_conventional++;
1361 
1362 		/*
1363 		 * Consider a zone as active if we can allow any number of
1364 		 * active zones.
1365 		 */
1366 		if (!device->zone_info->max_active_zones)
1367 			__set_bit(i, active);
1368 
1369 		if (!is_sequential) {
1370 			alloc_offsets[i] = WP_CONVENTIONAL;
1371 			continue;
1372 		}
1373 
1374 		/*
1375 		 * This zone will be used for allocation, so mark this zone
1376 		 * non-empty.
1377 		 */
1378 		btrfs_dev_clear_zone_empty(device, physical[i]);
1379 
1380 		down_read(&dev_replace->rwsem);
1381 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1382 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1383 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1384 		up_read(&dev_replace->rwsem);
1385 
1386 		/*
1387 		 * The group is mapped to a sequential zone. Get the zone write
1388 		 * pointer to determine the allocation offset within the zone.
1389 		 */
1390 		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1391 		nofs_flag = memalloc_nofs_save();
1392 		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1393 		memalloc_nofs_restore(nofs_flag);
1394 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1395 			ret = 0;
1396 			alloc_offsets[i] = WP_MISSING_DEV;
1397 			continue;
1398 		} else if (ret) {
1399 			goto out;
1400 		}
1401 
1402 		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1403 			btrfs_err_in_rcu(fs_info,
1404 	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1405 				zone.start << SECTOR_SHIFT,
1406 				rcu_str_deref(device->name), device->devid);
1407 			ret = -EIO;
1408 			goto out;
1409 		}
1410 
1411 		caps[i] = (zone.capacity << SECTOR_SHIFT);
1412 
1413 		switch (zone.cond) {
1414 		case BLK_ZONE_COND_OFFLINE:
1415 		case BLK_ZONE_COND_READONLY:
1416 			btrfs_err(fs_info,
1417 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1418 				  physical[i] >> device->zone_info->zone_size_shift,
1419 				  rcu_str_deref(device->name), device->devid);
1420 			alloc_offsets[i] = WP_MISSING_DEV;
1421 			break;
1422 		case BLK_ZONE_COND_EMPTY:
1423 			alloc_offsets[i] = 0;
1424 			break;
1425 		case BLK_ZONE_COND_FULL:
1426 			alloc_offsets[i] = caps[i];
1427 			break;
1428 		default:
1429 			/* Partially used zone */
1430 			alloc_offsets[i] =
1431 					((zone.wp - zone.start) << SECTOR_SHIFT);
1432 			__set_bit(i, active);
1433 			break;
1434 		}
1435 	}
1436 
1437 	if (num_sequential > 0)
1438 		cache->seq_zone = true;
1439 
1440 	if (num_conventional > 0) {
1441 		/* Zone capacity is always zone size in emulation */
1442 		cache->zone_capacity = cache->length;
1443 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1444 		if (ret) {
1445 			btrfs_err(fs_info,
1446 			"zoned: failed to determine allocation offset of bg %llu",
1447 				  cache->start);
1448 			goto out;
1449 		} else if (map->num_stripes == num_conventional) {
1450 			cache->alloc_offset = last_alloc;
1451 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1452 			goto out;
1453 		}
1454 	}
1455 
1456 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1457 	case 0: /* single */
1458 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1459 			btrfs_err(fs_info,
1460 			"zoned: cannot recover write pointer for zone %llu",
1461 				physical[0]);
1462 			ret = -EIO;
1463 			goto out;
1464 		}
1465 		cache->alloc_offset = alloc_offsets[0];
1466 		cache->zone_capacity = caps[0];
1467 		if (test_bit(0, active))
1468 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1469 		break;
1470 	case BTRFS_BLOCK_GROUP_DUP:
1471 		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1472 			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1473 			ret = -EINVAL;
1474 			goto out;
1475 		}
1476 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1477 			btrfs_err(fs_info,
1478 			"zoned: cannot recover write pointer for zone %llu",
1479 				physical[0]);
1480 			ret = -EIO;
1481 			goto out;
1482 		}
1483 		if (alloc_offsets[1] == WP_MISSING_DEV) {
1484 			btrfs_err(fs_info,
1485 			"zoned: cannot recover write pointer for zone %llu",
1486 				physical[1]);
1487 			ret = -EIO;
1488 			goto out;
1489 		}
1490 		if (alloc_offsets[0] != alloc_offsets[1]) {
1491 			btrfs_err(fs_info,
1492 			"zoned: write pointer offset mismatch of zones in DUP profile");
1493 			ret = -EIO;
1494 			goto out;
1495 		}
1496 		if (test_bit(0, active) != test_bit(1, active)) {
1497 			if (!btrfs_zone_activate(cache)) {
1498 				ret = -EIO;
1499 				goto out;
1500 			}
1501 		} else {
1502 			if (test_bit(0, active))
1503 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1504 					&cache->runtime_flags);
1505 		}
1506 		cache->alloc_offset = alloc_offsets[0];
1507 		cache->zone_capacity = min(caps[0], caps[1]);
1508 		break;
1509 	case BTRFS_BLOCK_GROUP_RAID1:
1510 	case BTRFS_BLOCK_GROUP_RAID0:
1511 	case BTRFS_BLOCK_GROUP_RAID10:
1512 	case BTRFS_BLOCK_GROUP_RAID5:
1513 	case BTRFS_BLOCK_GROUP_RAID6:
1514 		/* non-single profiles are not supported yet */
1515 	default:
1516 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1517 			  btrfs_bg_type_to_raid_name(map->type));
1518 		ret = -EINVAL;
1519 		goto out;
1520 	}
1521 
1522 out:
1523 	if (cache->alloc_offset > fs_info->zone_size) {
1524 		btrfs_err(fs_info,
1525 			"zoned: invalid write pointer %llu in block group %llu",
1526 			cache->alloc_offset, cache->start);
1527 		ret = -EIO;
1528 	}
1529 
1530 	if (cache->alloc_offset > cache->zone_capacity) {
1531 		btrfs_err(fs_info,
1532 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1533 			  cache->alloc_offset, cache->zone_capacity,
1534 			  cache->start);
1535 		ret = -EIO;
1536 	}
1537 
1538 	/* An extent is allocated after the write pointer */
1539 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1540 		btrfs_err(fs_info,
1541 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1542 			  logical, last_alloc, cache->alloc_offset);
1543 		ret = -EIO;
1544 	}
1545 
1546 	if (!ret) {
1547 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1548 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1549 			btrfs_get_block_group(cache);
1550 			spin_lock(&fs_info->zone_active_bgs_lock);
1551 			list_add_tail(&cache->active_bg_list,
1552 				      &fs_info->zone_active_bgs);
1553 			spin_unlock(&fs_info->zone_active_bgs_lock);
1554 		}
1555 	} else {
1556 		kfree(cache->physical_map);
1557 		cache->physical_map = NULL;
1558 	}
1559 	bitmap_free(active);
1560 	kfree(physical);
1561 	kfree(caps);
1562 	kfree(alloc_offsets);
1563 	free_extent_map(em);
1564 
1565 	return ret;
1566 }
1567 
1568 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1569 {
1570 	u64 unusable, free;
1571 
1572 	if (!btrfs_is_zoned(cache->fs_info))
1573 		return;
1574 
1575 	WARN_ON(cache->bytes_super != 0);
1576 	unusable = (cache->alloc_offset - cache->used) +
1577 		   (cache->length - cache->zone_capacity);
1578 	free = cache->zone_capacity - cache->alloc_offset;
1579 
1580 	/* We only need ->free_space in ALLOC_SEQ block groups */
1581 	cache->cached = BTRFS_CACHE_FINISHED;
1582 	cache->free_space_ctl->free_space = free;
1583 	cache->zone_unusable = unusable;
1584 }
1585 
1586 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1587 			    struct extent_buffer *eb)
1588 {
1589 	struct btrfs_fs_info *fs_info = eb->fs_info;
1590 
1591 	if (!btrfs_is_zoned(fs_info) ||
1592 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1593 	    !list_empty(&eb->release_list))
1594 		return;
1595 
1596 	set_extent_buffer_dirty(eb);
1597 	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1598 			       eb->start + eb->len - 1, EXTENT_DIRTY);
1599 	memzero_extent_buffer(eb, 0, eb->len);
1600 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1601 
1602 	spin_lock(&trans->releasing_ebs_lock);
1603 	list_add_tail(&eb->release_list, &trans->releasing_ebs);
1604 	spin_unlock(&trans->releasing_ebs_lock);
1605 	atomic_inc(&eb->refs);
1606 }
1607 
1608 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1609 {
1610 	spin_lock(&trans->releasing_ebs_lock);
1611 	while (!list_empty(&trans->releasing_ebs)) {
1612 		struct extent_buffer *eb;
1613 
1614 		eb = list_first_entry(&trans->releasing_ebs,
1615 				      struct extent_buffer, release_list);
1616 		list_del_init(&eb->release_list);
1617 		free_extent_buffer(eb);
1618 	}
1619 	spin_unlock(&trans->releasing_ebs_lock);
1620 }
1621 
1622 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1623 {
1624 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1625 	struct btrfs_block_group *cache;
1626 	bool ret = false;
1627 
1628 	if (!btrfs_is_zoned(fs_info))
1629 		return false;
1630 
1631 	if (!is_data_inode(&inode->vfs_inode))
1632 		return false;
1633 
1634 	/*
1635 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1636 	 * extent layout the relocation code has.
1637 	 * Furthermore we have set aside own block-group from which only the
1638 	 * relocation "process" can allocate and make sure only one process at a
1639 	 * time can add pages to an extent that gets relocated, so it's safe to
1640 	 * use regular REQ_OP_WRITE for this special case.
1641 	 */
1642 	if (btrfs_is_data_reloc_root(inode->root))
1643 		return false;
1644 
1645 	cache = btrfs_lookup_block_group(fs_info, start);
1646 	ASSERT(cache);
1647 	if (!cache)
1648 		return false;
1649 
1650 	ret = cache->seq_zone;
1651 	btrfs_put_block_group(cache);
1652 
1653 	return ret;
1654 }
1655 
1656 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1657 				 struct bio *bio)
1658 {
1659 	struct btrfs_ordered_extent *ordered;
1660 	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1661 
1662 	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1663 		return;
1664 
1665 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1666 	if (WARN_ON(!ordered))
1667 		return;
1668 
1669 	ordered->physical = physical;
1670 	ordered->bdev = bio->bi_bdev;
1671 
1672 	btrfs_put_ordered_extent(ordered);
1673 }
1674 
1675 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1676 {
1677 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1678 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1679 	struct extent_map_tree *em_tree;
1680 	struct extent_map *em;
1681 	struct btrfs_ordered_sum *sum;
1682 	u64 orig_logical = ordered->disk_bytenr;
1683 	u64 *logical = NULL;
1684 	int nr, stripe_len;
1685 
1686 	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1687 	ASSERT(!bdev_is_partition(ordered->bdev));
1688 	if (WARN_ON(!ordered->bdev))
1689 		return;
1690 
1691 	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1692 				     ordered->physical, &logical, &nr,
1693 				     &stripe_len)))
1694 		goto out;
1695 
1696 	WARN_ON(nr != 1);
1697 
1698 	if (orig_logical == *logical)
1699 		goto out;
1700 
1701 	ordered->disk_bytenr = *logical;
1702 
1703 	em_tree = &inode->extent_tree;
1704 	write_lock(&em_tree->lock);
1705 	em = search_extent_mapping(em_tree, ordered->file_offset,
1706 				   ordered->num_bytes);
1707 	em->block_start = *logical;
1708 	free_extent_map(em);
1709 	write_unlock(&em_tree->lock);
1710 
1711 	list_for_each_entry(sum, &ordered->list, list) {
1712 		if (*logical < orig_logical)
1713 			sum->bytenr -= orig_logical - *logical;
1714 		else
1715 			sum->bytenr += *logical - orig_logical;
1716 	}
1717 
1718 out:
1719 	kfree(logical);
1720 }
1721 
1722 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1723 				    struct extent_buffer *eb,
1724 				    struct btrfs_block_group **cache_ret)
1725 {
1726 	struct btrfs_block_group *cache;
1727 	bool ret = true;
1728 
1729 	if (!btrfs_is_zoned(fs_info))
1730 		return true;
1731 
1732 	cache = btrfs_lookup_block_group(fs_info, eb->start);
1733 	if (!cache)
1734 		return true;
1735 
1736 	if (cache->meta_write_pointer != eb->start) {
1737 		btrfs_put_block_group(cache);
1738 		cache = NULL;
1739 		ret = false;
1740 	} else {
1741 		cache->meta_write_pointer = eb->start + eb->len;
1742 	}
1743 
1744 	*cache_ret = cache;
1745 
1746 	return ret;
1747 }
1748 
1749 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1750 				     struct extent_buffer *eb)
1751 {
1752 	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1753 		return;
1754 
1755 	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1756 	cache->meta_write_pointer = eb->start;
1757 }
1758 
1759 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1760 {
1761 	if (!btrfs_dev_is_sequential(device, physical))
1762 		return -EOPNOTSUPP;
1763 
1764 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1765 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1766 }
1767 
1768 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1769 			  struct blk_zone *zone)
1770 {
1771 	struct btrfs_io_context *bioc = NULL;
1772 	u64 mapped_length = PAGE_SIZE;
1773 	unsigned int nofs_flag;
1774 	int nmirrors;
1775 	int i, ret;
1776 
1777 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1778 			       &mapped_length, &bioc);
1779 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1780 		ret = -EIO;
1781 		goto out_put_bioc;
1782 	}
1783 
1784 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1785 		ret = -EINVAL;
1786 		goto out_put_bioc;
1787 	}
1788 
1789 	nofs_flag = memalloc_nofs_save();
1790 	nmirrors = (int)bioc->num_stripes;
1791 	for (i = 0; i < nmirrors; i++) {
1792 		u64 physical = bioc->stripes[i].physical;
1793 		struct btrfs_device *dev = bioc->stripes[i].dev;
1794 
1795 		/* Missing device */
1796 		if (!dev->bdev)
1797 			continue;
1798 
1799 		ret = btrfs_get_dev_zone(dev, physical, zone);
1800 		/* Failing device */
1801 		if (ret == -EIO || ret == -EOPNOTSUPP)
1802 			continue;
1803 		break;
1804 	}
1805 	memalloc_nofs_restore(nofs_flag);
1806 out_put_bioc:
1807 	btrfs_put_bioc(bioc);
1808 	return ret;
1809 }
1810 
1811 /*
1812  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1813  * filling zeros between @physical_pos to a write pointer of dev-replace
1814  * source device.
1815  */
1816 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1817 				    u64 physical_start, u64 physical_pos)
1818 {
1819 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1820 	struct blk_zone zone;
1821 	u64 length;
1822 	u64 wp;
1823 	int ret;
1824 
1825 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1826 		return 0;
1827 
1828 	ret = read_zone_info(fs_info, logical, &zone);
1829 	if (ret)
1830 		return ret;
1831 
1832 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1833 
1834 	if (physical_pos == wp)
1835 		return 0;
1836 
1837 	if (physical_pos > wp)
1838 		return -EUCLEAN;
1839 
1840 	length = wp - physical_pos;
1841 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1842 }
1843 
1844 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1845 					    u64 logical, u64 length)
1846 {
1847 	struct btrfs_device *device;
1848 	struct extent_map *em;
1849 	struct map_lookup *map;
1850 
1851 	em = btrfs_get_chunk_map(fs_info, logical, length);
1852 	if (IS_ERR(em))
1853 		return ERR_CAST(em);
1854 
1855 	map = em->map_lookup;
1856 	/* We only support single profile for now */
1857 	device = map->stripes[0].dev;
1858 
1859 	free_extent_map(em);
1860 
1861 	return device;
1862 }
1863 
1864 /**
1865  * Activate block group and underlying device zones
1866  *
1867  * @block_group: the block group to activate
1868  *
1869  * Return: true on success, false otherwise
1870  */
1871 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1872 {
1873 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1874 	struct btrfs_space_info *space_info = block_group->space_info;
1875 	struct map_lookup *map;
1876 	struct btrfs_device *device;
1877 	u64 physical;
1878 	bool ret;
1879 	int i;
1880 
1881 	if (!btrfs_is_zoned(block_group->fs_info))
1882 		return true;
1883 
1884 	map = block_group->physical_map;
1885 
1886 	spin_lock(&space_info->lock);
1887 	spin_lock(&block_group->lock);
1888 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1889 		ret = true;
1890 		goto out_unlock;
1891 	}
1892 
1893 	/* No space left */
1894 	if (btrfs_zoned_bg_is_full(block_group)) {
1895 		ret = false;
1896 		goto out_unlock;
1897 	}
1898 
1899 	for (i = 0; i < map->num_stripes; i++) {
1900 		device = map->stripes[i].dev;
1901 		physical = map->stripes[i].physical;
1902 
1903 		if (device->zone_info->max_active_zones == 0)
1904 			continue;
1905 
1906 		if (!btrfs_dev_set_active_zone(device, physical)) {
1907 			/* Cannot activate the zone */
1908 			ret = false;
1909 			goto out_unlock;
1910 		}
1911 	}
1912 
1913 	/* Successfully activated all the zones */
1914 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1915 	space_info->active_total_bytes += block_group->length;
1916 	spin_unlock(&block_group->lock);
1917 	btrfs_try_granting_tickets(fs_info, space_info);
1918 	spin_unlock(&space_info->lock);
1919 
1920 	/* For the active block group list */
1921 	btrfs_get_block_group(block_group);
1922 
1923 	spin_lock(&fs_info->zone_active_bgs_lock);
1924 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1925 	spin_unlock(&fs_info->zone_active_bgs_lock);
1926 
1927 	return true;
1928 
1929 out_unlock:
1930 	spin_unlock(&block_group->lock);
1931 	spin_unlock(&space_info->lock);
1932 	return ret;
1933 }
1934 
1935 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1936 {
1937 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1938 	const u64 end = block_group->start + block_group->length;
1939 	struct radix_tree_iter iter;
1940 	struct extent_buffer *eb;
1941 	void __rcu **slot;
1942 
1943 	rcu_read_lock();
1944 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1945 				 block_group->start >> fs_info->sectorsize_bits) {
1946 		eb = radix_tree_deref_slot(slot);
1947 		if (!eb)
1948 			continue;
1949 		if (radix_tree_deref_retry(eb)) {
1950 			slot = radix_tree_iter_retry(&iter);
1951 			continue;
1952 		}
1953 
1954 		if (eb->start < block_group->start)
1955 			continue;
1956 		if (eb->start >= end)
1957 			break;
1958 
1959 		slot = radix_tree_iter_resume(slot, &iter);
1960 		rcu_read_unlock();
1961 		wait_on_extent_buffer_writeback(eb);
1962 		rcu_read_lock();
1963 	}
1964 	rcu_read_unlock();
1965 }
1966 
1967 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1968 {
1969 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1970 	struct map_lookup *map;
1971 	const bool is_metadata = (block_group->flags &
1972 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1973 	int ret = 0;
1974 	int i;
1975 
1976 	spin_lock(&block_group->lock);
1977 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1978 		spin_unlock(&block_group->lock);
1979 		return 0;
1980 	}
1981 
1982 	/* Check if we have unwritten allocated space */
1983 	if (is_metadata &&
1984 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1985 		spin_unlock(&block_group->lock);
1986 		return -EAGAIN;
1987 	}
1988 
1989 	/*
1990 	 * If we are sure that the block group is full (= no more room left for
1991 	 * new allocation) and the IO for the last usable block is completed, we
1992 	 * don't need to wait for the other IOs. This holds because we ensure
1993 	 * the sequential IO submissions using the ZONE_APPEND command for data
1994 	 * and block_group->meta_write_pointer for metadata.
1995 	 */
1996 	if (!fully_written) {
1997 		spin_unlock(&block_group->lock);
1998 
1999 		ret = btrfs_inc_block_group_ro(block_group, false);
2000 		if (ret)
2001 			return ret;
2002 
2003 		/* Ensure all writes in this block group finish */
2004 		btrfs_wait_block_group_reservations(block_group);
2005 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2006 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2007 					 block_group->length);
2008 		/* Wait for extent buffers to be written. */
2009 		if (is_metadata)
2010 			wait_eb_writebacks(block_group);
2011 
2012 		spin_lock(&block_group->lock);
2013 
2014 		/*
2015 		 * Bail out if someone already deactivated the block group, or
2016 		 * allocated space is left in the block group.
2017 		 */
2018 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2019 			      &block_group->runtime_flags)) {
2020 			spin_unlock(&block_group->lock);
2021 			btrfs_dec_block_group_ro(block_group);
2022 			return 0;
2023 		}
2024 
2025 		if (block_group->reserved) {
2026 			spin_unlock(&block_group->lock);
2027 			btrfs_dec_block_group_ro(block_group);
2028 			return -EAGAIN;
2029 		}
2030 	}
2031 
2032 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2033 	block_group->alloc_offset = block_group->zone_capacity;
2034 	block_group->free_space_ctl->free_space = 0;
2035 	btrfs_clear_treelog_bg(block_group);
2036 	btrfs_clear_data_reloc_bg(block_group);
2037 	spin_unlock(&block_group->lock);
2038 
2039 	map = block_group->physical_map;
2040 	for (i = 0; i < map->num_stripes; i++) {
2041 		struct btrfs_device *device = map->stripes[i].dev;
2042 		const u64 physical = map->stripes[i].physical;
2043 
2044 		if (device->zone_info->max_active_zones == 0)
2045 			continue;
2046 
2047 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2048 				       physical >> SECTOR_SHIFT,
2049 				       device->zone_info->zone_size >> SECTOR_SHIFT,
2050 				       GFP_NOFS);
2051 
2052 		if (ret)
2053 			return ret;
2054 
2055 		btrfs_dev_clear_active_zone(device, physical);
2056 	}
2057 
2058 	if (!fully_written)
2059 		btrfs_dec_block_group_ro(block_group);
2060 
2061 	spin_lock(&fs_info->zone_active_bgs_lock);
2062 	ASSERT(!list_empty(&block_group->active_bg_list));
2063 	list_del_init(&block_group->active_bg_list);
2064 	spin_unlock(&fs_info->zone_active_bgs_lock);
2065 
2066 	/* For active_bg_list */
2067 	btrfs_put_block_group(block_group);
2068 
2069 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2070 
2071 	return 0;
2072 }
2073 
2074 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2075 {
2076 	if (!btrfs_is_zoned(block_group->fs_info))
2077 		return 0;
2078 
2079 	return do_zone_finish(block_group, false);
2080 }
2081 
2082 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2083 {
2084 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2085 	struct btrfs_device *device;
2086 	bool ret = false;
2087 
2088 	if (!btrfs_is_zoned(fs_info))
2089 		return true;
2090 
2091 	/* Check if there is a device with active zones left */
2092 	mutex_lock(&fs_info->chunk_mutex);
2093 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2094 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2095 
2096 		if (!device->bdev)
2097 			continue;
2098 
2099 		if (!zinfo->max_active_zones ||
2100 		    atomic_read(&zinfo->active_zones_left)) {
2101 			ret = true;
2102 			break;
2103 		}
2104 	}
2105 	mutex_unlock(&fs_info->chunk_mutex);
2106 
2107 	if (!ret)
2108 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2109 
2110 	return ret;
2111 }
2112 
2113 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2114 {
2115 	struct btrfs_block_group *block_group;
2116 	u64 min_alloc_bytes;
2117 
2118 	if (!btrfs_is_zoned(fs_info))
2119 		return;
2120 
2121 	block_group = btrfs_lookup_block_group(fs_info, logical);
2122 	ASSERT(block_group);
2123 
2124 	/* No MIXED_BG on zoned btrfs. */
2125 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2126 		min_alloc_bytes = fs_info->sectorsize;
2127 	else
2128 		min_alloc_bytes = fs_info->nodesize;
2129 
2130 	/* Bail out if we can allocate more data from this block group. */
2131 	if (logical + length + min_alloc_bytes <=
2132 	    block_group->start + block_group->zone_capacity)
2133 		goto out;
2134 
2135 	do_zone_finish(block_group, true);
2136 
2137 out:
2138 	btrfs_put_block_group(block_group);
2139 }
2140 
2141 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2142 {
2143 	struct btrfs_block_group *bg =
2144 		container_of(work, struct btrfs_block_group, zone_finish_work);
2145 
2146 	wait_on_extent_buffer_writeback(bg->last_eb);
2147 	free_extent_buffer(bg->last_eb);
2148 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2149 	btrfs_put_block_group(bg);
2150 }
2151 
2152 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2153 				   struct extent_buffer *eb)
2154 {
2155 	if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2156 		return;
2157 
2158 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2159 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2160 			  bg->start);
2161 		return;
2162 	}
2163 
2164 	/* For the work */
2165 	btrfs_get_block_group(bg);
2166 	atomic_inc(&eb->refs);
2167 	bg->last_eb = eb;
2168 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2169 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2170 }
2171 
2172 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2173 {
2174 	struct btrfs_fs_info *fs_info = bg->fs_info;
2175 
2176 	spin_lock(&fs_info->relocation_bg_lock);
2177 	if (fs_info->data_reloc_bg == bg->start)
2178 		fs_info->data_reloc_bg = 0;
2179 	spin_unlock(&fs_info->relocation_bg_lock);
2180 }
2181 
2182 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2183 {
2184 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2185 	struct btrfs_device *device;
2186 
2187 	if (!btrfs_is_zoned(fs_info))
2188 		return;
2189 
2190 	mutex_lock(&fs_devices->device_list_mutex);
2191 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2192 		if (device->zone_info) {
2193 			vfree(device->zone_info->zone_cache);
2194 			device->zone_info->zone_cache = NULL;
2195 		}
2196 	}
2197 	mutex_unlock(&fs_devices->device_list_mutex);
2198 }
2199 
2200 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2201 {
2202 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2203 	struct btrfs_device *device;
2204 	u64 used = 0;
2205 	u64 total = 0;
2206 	u64 factor;
2207 
2208 	ASSERT(btrfs_is_zoned(fs_info));
2209 
2210 	if (fs_info->bg_reclaim_threshold == 0)
2211 		return false;
2212 
2213 	mutex_lock(&fs_devices->device_list_mutex);
2214 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2215 		if (!device->bdev)
2216 			continue;
2217 
2218 		total += device->disk_total_bytes;
2219 		used += device->bytes_used;
2220 	}
2221 	mutex_unlock(&fs_devices->device_list_mutex);
2222 
2223 	factor = div64_u64(used * 100, total);
2224 	return factor >= fs_info->bg_reclaim_threshold;
2225 }
2226 
2227 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2228 				       u64 length)
2229 {
2230 	struct btrfs_block_group *block_group;
2231 
2232 	if (!btrfs_is_zoned(fs_info))
2233 		return;
2234 
2235 	block_group = btrfs_lookup_block_group(fs_info, logical);
2236 	/* It should be called on a previous data relocation block group. */
2237 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2238 
2239 	spin_lock(&block_group->lock);
2240 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2241 		goto out;
2242 
2243 	/* All relocation extents are written. */
2244 	if (block_group->start + block_group->alloc_offset == logical + length) {
2245 		/* Now, release this block group for further allocations. */
2246 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2247 			  &block_group->runtime_flags);
2248 	}
2249 
2250 out:
2251 	spin_unlock(&block_group->lock);
2252 	btrfs_put_block_group(block_group);
2253 }
2254 
2255 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2256 {
2257 	struct btrfs_block_group *block_group;
2258 	struct btrfs_block_group *min_bg = NULL;
2259 	u64 min_avail = U64_MAX;
2260 	int ret;
2261 
2262 	spin_lock(&fs_info->zone_active_bgs_lock);
2263 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2264 			    active_bg_list) {
2265 		u64 avail;
2266 
2267 		spin_lock(&block_group->lock);
2268 		if (block_group->reserved ||
2269 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2270 			spin_unlock(&block_group->lock);
2271 			continue;
2272 		}
2273 
2274 		avail = block_group->zone_capacity - block_group->alloc_offset;
2275 		if (min_avail > avail) {
2276 			if (min_bg)
2277 				btrfs_put_block_group(min_bg);
2278 			min_bg = block_group;
2279 			min_avail = avail;
2280 			btrfs_get_block_group(min_bg);
2281 		}
2282 		spin_unlock(&block_group->lock);
2283 	}
2284 	spin_unlock(&fs_info->zone_active_bgs_lock);
2285 
2286 	if (!min_bg)
2287 		return 0;
2288 
2289 	ret = btrfs_zone_finish(min_bg);
2290 	btrfs_put_block_group(min_bg);
2291 
2292 	return ret < 0 ? ret : 1;
2293 }
2294 
2295 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2296 				struct btrfs_space_info *space_info,
2297 				bool do_finish)
2298 {
2299 	struct btrfs_block_group *bg;
2300 	int index;
2301 
2302 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2303 		return 0;
2304 
2305 	/* No more block groups to activate */
2306 	if (space_info->active_total_bytes == space_info->total_bytes)
2307 		return 0;
2308 
2309 	for (;;) {
2310 		int ret;
2311 		bool need_finish = false;
2312 
2313 		down_read(&space_info->groups_sem);
2314 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2315 			list_for_each_entry(bg, &space_info->block_groups[index],
2316 					    list) {
2317 				if (!spin_trylock(&bg->lock))
2318 					continue;
2319 				if (btrfs_zoned_bg_is_full(bg) ||
2320 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2321 					     &bg->runtime_flags)) {
2322 					spin_unlock(&bg->lock);
2323 					continue;
2324 				}
2325 				spin_unlock(&bg->lock);
2326 
2327 				if (btrfs_zone_activate(bg)) {
2328 					up_read(&space_info->groups_sem);
2329 					return 1;
2330 				}
2331 
2332 				need_finish = true;
2333 			}
2334 		}
2335 		up_read(&space_info->groups_sem);
2336 
2337 		if (!do_finish || !need_finish)
2338 			break;
2339 
2340 		ret = btrfs_zone_finish_one_bg(fs_info);
2341 		if (ret == 0)
2342 			break;
2343 		if (ret < 0)
2344 			return ret;
2345 	}
2346 
2347 	return 0;
2348 }
2349