1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 19 /* Maximum number of zones to report per blkdev_report_zones() call */ 20 #define BTRFS_REPORT_NR_ZONES 4096 21 /* Invalid allocation pointer value for missing devices */ 22 #define WP_MISSING_DEV ((u64)-1) 23 /* Pseudo write pointer value for conventional zone */ 24 #define WP_CONVENTIONAL ((u64)-2) 25 26 /* 27 * Location of the first zone of superblock logging zone pairs. 28 * 29 * - primary superblock: 0B (zone 0) 30 * - first copy: 512G (zone starting at that offset) 31 * - second copy: 4T (zone starting at that offset) 32 */ 33 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 34 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 35 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 36 37 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 38 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 39 40 /* Number of superblock log zones */ 41 #define BTRFS_NR_SB_LOG_ZONES 2 42 43 /* 44 * Minimum of active zones we need: 45 * 46 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 47 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 48 * - 1 zone for tree-log dedicated block group 49 * - 1 zone for relocation 50 */ 51 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 52 53 /* 54 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 55 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 56 * We do not expect the zone size to become larger than 8GiB or smaller than 57 * 4MiB in the near future. 58 */ 59 #define BTRFS_MAX_ZONE_SIZE SZ_8G 60 #define BTRFS_MIN_ZONE_SIZE SZ_4M 61 62 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 63 64 static inline bool sb_zone_is_full(const struct blk_zone *zone) 65 { 66 return (zone->cond == BLK_ZONE_COND_FULL) || 67 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 68 } 69 70 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 71 { 72 struct blk_zone *zones = data; 73 74 memcpy(&zones[idx], zone, sizeof(*zone)); 75 76 return 0; 77 } 78 79 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 80 u64 *wp_ret) 81 { 82 bool empty[BTRFS_NR_SB_LOG_ZONES]; 83 bool full[BTRFS_NR_SB_LOG_ZONES]; 84 sector_t sector; 85 int i; 86 87 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 88 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 89 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 90 full[i] = sb_zone_is_full(&zones[i]); 91 } 92 93 /* 94 * Possible states of log buffer zones 95 * 96 * Empty[0] In use[0] Full[0] 97 * Empty[1] * 0 1 98 * In use[1] x x 1 99 * Full[1] 0 0 C 100 * 101 * Log position: 102 * *: Special case, no superblock is written 103 * 0: Use write pointer of zones[0] 104 * 1: Use write pointer of zones[1] 105 * C: Compare super blocks from zones[0] and zones[1], use the latest 106 * one determined by generation 107 * x: Invalid state 108 */ 109 110 if (empty[0] && empty[1]) { 111 /* Special case to distinguish no superblock to read */ 112 *wp_ret = zones[0].start << SECTOR_SHIFT; 113 return -ENOENT; 114 } else if (full[0] && full[1]) { 115 /* Compare two super blocks */ 116 struct address_space *mapping = bdev->bd_inode->i_mapping; 117 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 118 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 119 int i; 120 121 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 122 u64 bytenr; 123 124 bytenr = ((zones[i].start + zones[i].len) 125 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE; 126 127 page[i] = read_cache_page_gfp(mapping, 128 bytenr >> PAGE_SHIFT, GFP_NOFS); 129 if (IS_ERR(page[i])) { 130 if (i == 1) 131 btrfs_release_disk_super(super[0]); 132 return PTR_ERR(page[i]); 133 } 134 super[i] = page_address(page[i]); 135 } 136 137 if (super[0]->generation > super[1]->generation) 138 sector = zones[1].start; 139 else 140 sector = zones[0].start; 141 142 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 143 btrfs_release_disk_super(super[i]); 144 } else if (!full[0] && (empty[1] || full[1])) { 145 sector = zones[0].wp; 146 } else if (full[0]) { 147 sector = zones[1].wp; 148 } else { 149 return -EUCLEAN; 150 } 151 *wp_ret = sector << SECTOR_SHIFT; 152 return 0; 153 } 154 155 /* 156 * Get the first zone number of the superblock mirror 157 */ 158 static inline u32 sb_zone_number(int shift, int mirror) 159 { 160 u64 zone; 161 162 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 163 switch (mirror) { 164 case 0: zone = 0; break; 165 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 166 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 167 } 168 169 ASSERT(zone <= U32_MAX); 170 171 return (u32)zone; 172 } 173 174 static inline sector_t zone_start_sector(u32 zone_number, 175 struct block_device *bdev) 176 { 177 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 178 } 179 180 static inline u64 zone_start_physical(u32 zone_number, 181 struct btrfs_zoned_device_info *zone_info) 182 { 183 return (u64)zone_number << zone_info->zone_size_shift; 184 } 185 186 /* 187 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 188 * device into static sized chunks and fake a conventional zone on each of 189 * them. 190 */ 191 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 192 struct blk_zone *zones, unsigned int nr_zones) 193 { 194 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 195 sector_t bdev_size = bdev_nr_sectors(device->bdev); 196 unsigned int i; 197 198 pos >>= SECTOR_SHIFT; 199 for (i = 0; i < nr_zones; i++) { 200 zones[i].start = i * zone_sectors + pos; 201 zones[i].len = zone_sectors; 202 zones[i].capacity = zone_sectors; 203 zones[i].wp = zones[i].start + zone_sectors; 204 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 205 zones[i].cond = BLK_ZONE_COND_NOT_WP; 206 207 if (zones[i].wp >= bdev_size) { 208 i++; 209 break; 210 } 211 } 212 213 return i; 214 } 215 216 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 217 struct blk_zone *zones, unsigned int *nr_zones) 218 { 219 struct btrfs_zoned_device_info *zinfo = device->zone_info; 220 u32 zno; 221 int ret; 222 223 if (!*nr_zones) 224 return 0; 225 226 if (!bdev_is_zoned(device->bdev)) { 227 ret = emulate_report_zones(device, pos, zones, *nr_zones); 228 *nr_zones = ret; 229 return 0; 230 } 231 232 /* Check cache */ 233 if (zinfo->zone_cache) { 234 unsigned int i; 235 236 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 237 zno = pos >> zinfo->zone_size_shift; 238 /* 239 * We cannot report zones beyond the zone end. So, it is OK to 240 * cap *nr_zones to at the end. 241 */ 242 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 243 244 for (i = 0; i < *nr_zones; i++) { 245 struct blk_zone *zone_info; 246 247 zone_info = &zinfo->zone_cache[zno + i]; 248 if (!zone_info->len) 249 break; 250 } 251 252 if (i == *nr_zones) { 253 /* Cache hit on all the zones */ 254 memcpy(zones, zinfo->zone_cache + zno, 255 sizeof(*zinfo->zone_cache) * *nr_zones); 256 return 0; 257 } 258 } 259 260 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 261 copy_zone_info_cb, zones); 262 if (ret < 0) { 263 btrfs_err_in_rcu(device->fs_info, 264 "zoned: failed to read zone %llu on %s (devid %llu)", 265 pos, rcu_str_deref(device->name), 266 device->devid); 267 return ret; 268 } 269 *nr_zones = ret; 270 if (!ret) 271 return -EIO; 272 273 /* Populate cache */ 274 if (zinfo->zone_cache) 275 memcpy(zinfo->zone_cache + zno, zones, 276 sizeof(*zinfo->zone_cache) * *nr_zones); 277 278 return 0; 279 } 280 281 /* The emulated zone size is determined from the size of device extent */ 282 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 283 { 284 struct btrfs_path *path; 285 struct btrfs_root *root = fs_info->dev_root; 286 struct btrfs_key key; 287 struct extent_buffer *leaf; 288 struct btrfs_dev_extent *dext; 289 int ret = 0; 290 291 key.objectid = 1; 292 key.type = BTRFS_DEV_EXTENT_KEY; 293 key.offset = 0; 294 295 path = btrfs_alloc_path(); 296 if (!path) 297 return -ENOMEM; 298 299 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 300 if (ret < 0) 301 goto out; 302 303 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 304 ret = btrfs_next_leaf(root, path); 305 if (ret < 0) 306 goto out; 307 /* No dev extents at all? Not good */ 308 if (ret > 0) { 309 ret = -EUCLEAN; 310 goto out; 311 } 312 } 313 314 leaf = path->nodes[0]; 315 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 316 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 317 ret = 0; 318 319 out: 320 btrfs_free_path(path); 321 322 return ret; 323 } 324 325 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 326 { 327 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 328 struct btrfs_device *device; 329 int ret = 0; 330 331 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 332 if (!btrfs_fs_incompat(fs_info, ZONED)) 333 return 0; 334 335 mutex_lock(&fs_devices->device_list_mutex); 336 list_for_each_entry(device, &fs_devices->devices, dev_list) { 337 /* We can skip reading of zone info for missing devices */ 338 if (!device->bdev) 339 continue; 340 341 ret = btrfs_get_dev_zone_info(device, true); 342 if (ret) 343 break; 344 } 345 mutex_unlock(&fs_devices->device_list_mutex); 346 347 return ret; 348 } 349 350 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 351 { 352 struct btrfs_fs_info *fs_info = device->fs_info; 353 struct btrfs_zoned_device_info *zone_info = NULL; 354 struct block_device *bdev = device->bdev; 355 unsigned int max_active_zones; 356 unsigned int nactive; 357 sector_t nr_sectors; 358 sector_t sector = 0; 359 struct blk_zone *zones = NULL; 360 unsigned int i, nreported = 0, nr_zones; 361 sector_t zone_sectors; 362 char *model, *emulated; 363 int ret; 364 365 /* 366 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 367 * yet be set. 368 */ 369 if (!btrfs_fs_incompat(fs_info, ZONED)) 370 return 0; 371 372 if (device->zone_info) 373 return 0; 374 375 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 376 if (!zone_info) 377 return -ENOMEM; 378 379 device->zone_info = zone_info; 380 381 if (!bdev_is_zoned(bdev)) { 382 if (!fs_info->zone_size) { 383 ret = calculate_emulated_zone_size(fs_info); 384 if (ret) 385 goto out; 386 } 387 388 ASSERT(fs_info->zone_size); 389 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 390 } else { 391 zone_sectors = bdev_zone_sectors(bdev); 392 } 393 394 /* Check if it's power of 2 (see is_power_of_2) */ 395 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0); 396 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 397 398 /* We reject devices with a zone size larger than 8GB */ 399 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 400 btrfs_err_in_rcu(fs_info, 401 "zoned: %s: zone size %llu larger than supported maximum %llu", 402 rcu_str_deref(device->name), 403 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 404 ret = -EINVAL; 405 goto out; 406 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 407 btrfs_err_in_rcu(fs_info, 408 "zoned: %s: zone size %llu smaller than supported minimum %u", 409 rcu_str_deref(device->name), 410 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 411 ret = -EINVAL; 412 goto out; 413 } 414 415 nr_sectors = bdev_nr_sectors(bdev); 416 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 417 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 418 /* 419 * We limit max_zone_append_size also by max_segments * 420 * PAGE_SIZE. Technically, we can have multiple pages per segment. But, 421 * since btrfs adds the pages one by one to a bio, and btrfs cannot 422 * increase the metadata reservation even if it increases the number of 423 * extents, it is safe to stick with the limit. 424 * 425 * With the zoned emulation, we can have non-zoned device on the zoned 426 * mode. In this case, we don't have a valid max zone append size. So, 427 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size. 428 */ 429 if (bdev_is_zoned(bdev)) { 430 zone_info->max_zone_append_size = min_t(u64, 431 (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT, 432 (u64)bdev_max_segments(bdev) << PAGE_SHIFT); 433 } else { 434 zone_info->max_zone_append_size = 435 (u64)bdev_max_segments(bdev) << PAGE_SHIFT; 436 } 437 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 438 zone_info->nr_zones++; 439 440 max_active_zones = bdev_max_active_zones(bdev); 441 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 442 btrfs_err_in_rcu(fs_info, 443 "zoned: %s: max active zones %u is too small, need at least %u active zones", 444 rcu_str_deref(device->name), max_active_zones, 445 BTRFS_MIN_ACTIVE_ZONES); 446 ret = -EINVAL; 447 goto out; 448 } 449 zone_info->max_active_zones = max_active_zones; 450 451 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 452 if (!zone_info->seq_zones) { 453 ret = -ENOMEM; 454 goto out; 455 } 456 457 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 458 if (!zone_info->empty_zones) { 459 ret = -ENOMEM; 460 goto out; 461 } 462 463 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 464 if (!zone_info->active_zones) { 465 ret = -ENOMEM; 466 goto out; 467 } 468 469 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 470 if (!zones) { 471 ret = -ENOMEM; 472 goto out; 473 } 474 475 /* 476 * Enable zone cache only for a zoned device. On a non-zoned device, we 477 * fill the zone info with emulated CONVENTIONAL zones, so no need to 478 * use the cache. 479 */ 480 if (populate_cache && bdev_is_zoned(device->bdev)) { 481 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) * 482 zone_info->nr_zones); 483 if (!zone_info->zone_cache) { 484 btrfs_err_in_rcu(device->fs_info, 485 "zoned: failed to allocate zone cache for %s", 486 rcu_str_deref(device->name)); 487 ret = -ENOMEM; 488 goto out; 489 } 490 } 491 492 /* Get zones type */ 493 nactive = 0; 494 while (sector < nr_sectors) { 495 nr_zones = BTRFS_REPORT_NR_ZONES; 496 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 497 &nr_zones); 498 if (ret) 499 goto out; 500 501 for (i = 0; i < nr_zones; i++) { 502 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 503 __set_bit(nreported, zone_info->seq_zones); 504 switch (zones[i].cond) { 505 case BLK_ZONE_COND_EMPTY: 506 __set_bit(nreported, zone_info->empty_zones); 507 break; 508 case BLK_ZONE_COND_IMP_OPEN: 509 case BLK_ZONE_COND_EXP_OPEN: 510 case BLK_ZONE_COND_CLOSED: 511 __set_bit(nreported, zone_info->active_zones); 512 nactive++; 513 break; 514 } 515 nreported++; 516 } 517 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 518 } 519 520 if (nreported != zone_info->nr_zones) { 521 btrfs_err_in_rcu(device->fs_info, 522 "inconsistent number of zones on %s (%u/%u)", 523 rcu_str_deref(device->name), nreported, 524 zone_info->nr_zones); 525 ret = -EIO; 526 goto out; 527 } 528 529 if (max_active_zones) { 530 if (nactive > max_active_zones) { 531 btrfs_err_in_rcu(device->fs_info, 532 "zoned: %u active zones on %s exceeds max_active_zones %u", 533 nactive, rcu_str_deref(device->name), 534 max_active_zones); 535 ret = -EIO; 536 goto out; 537 } 538 atomic_set(&zone_info->active_zones_left, 539 max_active_zones - nactive); 540 } 541 542 /* Validate superblock log */ 543 nr_zones = BTRFS_NR_SB_LOG_ZONES; 544 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 545 u32 sb_zone; 546 u64 sb_wp; 547 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 548 549 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 550 if (sb_zone + 1 >= zone_info->nr_zones) 551 continue; 552 553 ret = btrfs_get_dev_zones(device, 554 zone_start_physical(sb_zone, zone_info), 555 &zone_info->sb_zones[sb_pos], 556 &nr_zones); 557 if (ret) 558 goto out; 559 560 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 561 btrfs_err_in_rcu(device->fs_info, 562 "zoned: failed to read super block log zone info at devid %llu zone %u", 563 device->devid, sb_zone); 564 ret = -EUCLEAN; 565 goto out; 566 } 567 568 /* 569 * If zones[0] is conventional, always use the beginning of the 570 * zone to record superblock. No need to validate in that case. 571 */ 572 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 573 BLK_ZONE_TYPE_CONVENTIONAL) 574 continue; 575 576 ret = sb_write_pointer(device->bdev, 577 &zone_info->sb_zones[sb_pos], &sb_wp); 578 if (ret != -ENOENT && ret) { 579 btrfs_err_in_rcu(device->fs_info, 580 "zoned: super block log zone corrupted devid %llu zone %u", 581 device->devid, sb_zone); 582 ret = -EUCLEAN; 583 goto out; 584 } 585 } 586 587 588 kfree(zones); 589 590 switch (bdev_zoned_model(bdev)) { 591 case BLK_ZONED_HM: 592 model = "host-managed zoned"; 593 emulated = ""; 594 break; 595 case BLK_ZONED_HA: 596 model = "host-aware zoned"; 597 emulated = ""; 598 break; 599 case BLK_ZONED_NONE: 600 model = "regular"; 601 emulated = "emulated "; 602 break; 603 default: 604 /* Just in case */ 605 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 606 bdev_zoned_model(bdev), 607 rcu_str_deref(device->name)); 608 ret = -EOPNOTSUPP; 609 goto out_free_zone_info; 610 } 611 612 btrfs_info_in_rcu(fs_info, 613 "%s block device %s, %u %szones of %llu bytes", 614 model, rcu_str_deref(device->name), zone_info->nr_zones, 615 emulated, zone_info->zone_size); 616 617 return 0; 618 619 out: 620 kfree(zones); 621 out_free_zone_info: 622 btrfs_destroy_dev_zone_info(device); 623 624 return ret; 625 } 626 627 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 628 { 629 struct btrfs_zoned_device_info *zone_info = device->zone_info; 630 631 if (!zone_info) 632 return; 633 634 bitmap_free(zone_info->active_zones); 635 bitmap_free(zone_info->seq_zones); 636 bitmap_free(zone_info->empty_zones); 637 vfree(zone_info->zone_cache); 638 kfree(zone_info); 639 device->zone_info = NULL; 640 } 641 642 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 643 { 644 struct btrfs_zoned_device_info *zone_info; 645 646 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 647 if (!zone_info) 648 return NULL; 649 650 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 651 if (!zone_info->seq_zones) 652 goto out; 653 654 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 655 zone_info->nr_zones); 656 657 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 658 if (!zone_info->empty_zones) 659 goto out; 660 661 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 662 zone_info->nr_zones); 663 664 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 665 if (!zone_info->active_zones) 666 goto out; 667 668 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 669 zone_info->nr_zones); 670 zone_info->zone_cache = NULL; 671 672 return zone_info; 673 674 out: 675 bitmap_free(zone_info->seq_zones); 676 bitmap_free(zone_info->empty_zones); 677 bitmap_free(zone_info->active_zones); 678 kfree(zone_info); 679 return NULL; 680 } 681 682 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 683 struct blk_zone *zone) 684 { 685 unsigned int nr_zones = 1; 686 int ret; 687 688 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 689 if (ret != 0 || !nr_zones) 690 return ret ? ret : -EIO; 691 692 return 0; 693 } 694 695 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 696 { 697 struct btrfs_device *device; 698 699 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 700 if (device->bdev && 701 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) { 702 btrfs_err(fs_info, 703 "zoned: mode not enabled but zoned device found: %pg", 704 device->bdev); 705 return -EINVAL; 706 } 707 } 708 709 return 0; 710 } 711 712 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 713 { 714 struct btrfs_device *device; 715 u64 zone_size = 0; 716 u64 max_zone_append_size = 0; 717 int ret; 718 719 /* 720 * Host-Managed devices can't be used without the ZONED flag. With the 721 * ZONED all devices can be used, using zone emulation if required. 722 */ 723 if (!btrfs_fs_incompat(fs_info, ZONED)) 724 return btrfs_check_for_zoned_device(fs_info); 725 726 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 727 struct btrfs_zoned_device_info *zone_info = device->zone_info; 728 729 if (!device->bdev) 730 continue; 731 732 if (!zone_size) { 733 zone_size = zone_info->zone_size; 734 } else if (zone_info->zone_size != zone_size) { 735 btrfs_err(fs_info, 736 "zoned: unequal block device zone sizes: have %llu found %llu", 737 zone_info->zone_size, zone_size); 738 return -EINVAL; 739 } 740 if (!max_zone_append_size || 741 (zone_info->max_zone_append_size && 742 zone_info->max_zone_append_size < max_zone_append_size)) 743 max_zone_append_size = zone_info->max_zone_append_size; 744 } 745 746 /* 747 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 748 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 749 * check the alignment here. 750 */ 751 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 752 btrfs_err(fs_info, 753 "zoned: zone size %llu not aligned to stripe %u", 754 zone_size, BTRFS_STRIPE_LEN); 755 return -EINVAL; 756 } 757 758 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 759 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 760 return -EINVAL; 761 } 762 763 fs_info->zone_size = zone_size; 764 fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size, 765 fs_info->sectorsize); 766 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 767 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 768 fs_info->max_extent_size = fs_info->max_zone_append_size; 769 770 /* 771 * Check mount options here, because we might change fs_info->zoned 772 * from fs_info->zone_size. 773 */ 774 ret = btrfs_check_mountopts_zoned(fs_info); 775 if (ret) 776 return ret; 777 778 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 779 return 0; 780 } 781 782 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 783 { 784 if (!btrfs_is_zoned(info)) 785 return 0; 786 787 /* 788 * Space cache writing is not COWed. Disable that to avoid write errors 789 * in sequential zones. 790 */ 791 if (btrfs_test_opt(info, SPACE_CACHE)) { 792 btrfs_err(info, "zoned: space cache v1 is not supported"); 793 return -EINVAL; 794 } 795 796 if (btrfs_test_opt(info, NODATACOW)) { 797 btrfs_err(info, "zoned: NODATACOW not supported"); 798 return -EINVAL; 799 } 800 801 return 0; 802 } 803 804 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 805 int rw, u64 *bytenr_ret) 806 { 807 u64 wp; 808 int ret; 809 810 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 811 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 812 return 0; 813 } 814 815 ret = sb_write_pointer(bdev, zones, &wp); 816 if (ret != -ENOENT && ret < 0) 817 return ret; 818 819 if (rw == WRITE) { 820 struct blk_zone *reset = NULL; 821 822 if (wp == zones[0].start << SECTOR_SHIFT) 823 reset = &zones[0]; 824 else if (wp == zones[1].start << SECTOR_SHIFT) 825 reset = &zones[1]; 826 827 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 828 ASSERT(sb_zone_is_full(reset)); 829 830 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 831 reset->start, reset->len, 832 GFP_NOFS); 833 if (ret) 834 return ret; 835 836 reset->cond = BLK_ZONE_COND_EMPTY; 837 reset->wp = reset->start; 838 } 839 } else if (ret != -ENOENT) { 840 /* 841 * For READ, we want the previous one. Move write pointer to 842 * the end of a zone, if it is at the head of a zone. 843 */ 844 u64 zone_end = 0; 845 846 if (wp == zones[0].start << SECTOR_SHIFT) 847 zone_end = zones[1].start + zones[1].capacity; 848 else if (wp == zones[1].start << SECTOR_SHIFT) 849 zone_end = zones[0].start + zones[0].capacity; 850 if (zone_end) 851 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 852 BTRFS_SUPER_INFO_SIZE); 853 854 wp -= BTRFS_SUPER_INFO_SIZE; 855 } 856 857 *bytenr_ret = wp; 858 return 0; 859 860 } 861 862 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 863 u64 *bytenr_ret) 864 { 865 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 866 sector_t zone_sectors; 867 u32 sb_zone; 868 int ret; 869 u8 zone_sectors_shift; 870 sector_t nr_sectors; 871 u32 nr_zones; 872 873 if (!bdev_is_zoned(bdev)) { 874 *bytenr_ret = btrfs_sb_offset(mirror); 875 return 0; 876 } 877 878 ASSERT(rw == READ || rw == WRITE); 879 880 zone_sectors = bdev_zone_sectors(bdev); 881 if (!is_power_of_2(zone_sectors)) 882 return -EINVAL; 883 zone_sectors_shift = ilog2(zone_sectors); 884 nr_sectors = bdev_nr_sectors(bdev); 885 nr_zones = nr_sectors >> zone_sectors_shift; 886 887 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 888 if (sb_zone + 1 >= nr_zones) 889 return -ENOENT; 890 891 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 892 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 893 zones); 894 if (ret < 0) 895 return ret; 896 if (ret != BTRFS_NR_SB_LOG_ZONES) 897 return -EIO; 898 899 return sb_log_location(bdev, zones, rw, bytenr_ret); 900 } 901 902 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 903 u64 *bytenr_ret) 904 { 905 struct btrfs_zoned_device_info *zinfo = device->zone_info; 906 u32 zone_num; 907 908 /* 909 * For a zoned filesystem on a non-zoned block device, use the same 910 * super block locations as regular filesystem. Doing so, the super 911 * block can always be retrieved and the zoned flag of the volume 912 * detected from the super block information. 913 */ 914 if (!bdev_is_zoned(device->bdev)) { 915 *bytenr_ret = btrfs_sb_offset(mirror); 916 return 0; 917 } 918 919 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 920 if (zone_num + 1 >= zinfo->nr_zones) 921 return -ENOENT; 922 923 return sb_log_location(device->bdev, 924 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 925 rw, bytenr_ret); 926 } 927 928 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 929 int mirror) 930 { 931 u32 zone_num; 932 933 if (!zinfo) 934 return false; 935 936 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 937 if (zone_num + 1 >= zinfo->nr_zones) 938 return false; 939 940 if (!test_bit(zone_num, zinfo->seq_zones)) 941 return false; 942 943 return true; 944 } 945 946 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 947 { 948 struct btrfs_zoned_device_info *zinfo = device->zone_info; 949 struct blk_zone *zone; 950 int i; 951 952 if (!is_sb_log_zone(zinfo, mirror)) 953 return 0; 954 955 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 956 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 957 /* Advance the next zone */ 958 if (zone->cond == BLK_ZONE_COND_FULL) { 959 zone++; 960 continue; 961 } 962 963 if (zone->cond == BLK_ZONE_COND_EMPTY) 964 zone->cond = BLK_ZONE_COND_IMP_OPEN; 965 966 zone->wp += SUPER_INFO_SECTORS; 967 968 if (sb_zone_is_full(zone)) { 969 /* 970 * No room left to write new superblock. Since 971 * superblock is written with REQ_SYNC, it is safe to 972 * finish the zone now. 973 * 974 * If the write pointer is exactly at the capacity, 975 * explicit ZONE_FINISH is not necessary. 976 */ 977 if (zone->wp != zone->start + zone->capacity) { 978 int ret; 979 980 ret = blkdev_zone_mgmt(device->bdev, 981 REQ_OP_ZONE_FINISH, zone->start, 982 zone->len, GFP_NOFS); 983 if (ret) 984 return ret; 985 } 986 987 zone->wp = zone->start + zone->len; 988 zone->cond = BLK_ZONE_COND_FULL; 989 } 990 return 0; 991 } 992 993 /* All the zones are FULL. Should not reach here. */ 994 ASSERT(0); 995 return -EIO; 996 } 997 998 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 999 { 1000 sector_t zone_sectors; 1001 sector_t nr_sectors; 1002 u8 zone_sectors_shift; 1003 u32 sb_zone; 1004 u32 nr_zones; 1005 1006 zone_sectors = bdev_zone_sectors(bdev); 1007 zone_sectors_shift = ilog2(zone_sectors); 1008 nr_sectors = bdev_nr_sectors(bdev); 1009 nr_zones = nr_sectors >> zone_sectors_shift; 1010 1011 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1012 if (sb_zone + 1 >= nr_zones) 1013 return -ENOENT; 1014 1015 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1016 zone_start_sector(sb_zone, bdev), 1017 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 1018 } 1019 1020 /** 1021 * btrfs_find_allocatable_zones - find allocatable zones within a given region 1022 * 1023 * @device: the device to allocate a region on 1024 * @hole_start: the position of the hole to allocate the region 1025 * @num_bytes: size of wanted region 1026 * @hole_end: the end of the hole 1027 * @return: position of allocatable zones 1028 * 1029 * Allocatable region should not contain any superblock locations. 1030 */ 1031 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1032 u64 hole_end, u64 num_bytes) 1033 { 1034 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1035 const u8 shift = zinfo->zone_size_shift; 1036 u64 nzones = num_bytes >> shift; 1037 u64 pos = hole_start; 1038 u64 begin, end; 1039 bool have_sb; 1040 int i; 1041 1042 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1043 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1044 1045 while (pos < hole_end) { 1046 begin = pos >> shift; 1047 end = begin + nzones; 1048 1049 if (end > zinfo->nr_zones) 1050 return hole_end; 1051 1052 /* Check if zones in the region are all empty */ 1053 if (btrfs_dev_is_sequential(device, pos) && 1054 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { 1055 pos += zinfo->zone_size; 1056 continue; 1057 } 1058 1059 have_sb = false; 1060 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1061 u32 sb_zone; 1062 u64 sb_pos; 1063 1064 sb_zone = sb_zone_number(shift, i); 1065 if (!(end <= sb_zone || 1066 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1067 have_sb = true; 1068 pos = zone_start_physical( 1069 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1070 break; 1071 } 1072 1073 /* We also need to exclude regular superblock positions */ 1074 sb_pos = btrfs_sb_offset(i); 1075 if (!(pos + num_bytes <= sb_pos || 1076 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1077 have_sb = true; 1078 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1079 zinfo->zone_size); 1080 break; 1081 } 1082 } 1083 if (!have_sb) 1084 break; 1085 } 1086 1087 return pos; 1088 } 1089 1090 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1091 { 1092 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1093 unsigned int zno = (pos >> zone_info->zone_size_shift); 1094 1095 /* We can use any number of zones */ 1096 if (zone_info->max_active_zones == 0) 1097 return true; 1098 1099 if (!test_bit(zno, zone_info->active_zones)) { 1100 /* Active zone left? */ 1101 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1102 return false; 1103 if (test_and_set_bit(zno, zone_info->active_zones)) { 1104 /* Someone already set the bit */ 1105 atomic_inc(&zone_info->active_zones_left); 1106 } 1107 } 1108 1109 return true; 1110 } 1111 1112 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1113 { 1114 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1115 unsigned int zno = (pos >> zone_info->zone_size_shift); 1116 1117 /* We can use any number of zones */ 1118 if (zone_info->max_active_zones == 0) 1119 return; 1120 1121 if (test_and_clear_bit(zno, zone_info->active_zones)) 1122 atomic_inc(&zone_info->active_zones_left); 1123 } 1124 1125 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1126 u64 length, u64 *bytes) 1127 { 1128 int ret; 1129 1130 *bytes = 0; 1131 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1132 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1133 GFP_NOFS); 1134 if (ret) 1135 return ret; 1136 1137 *bytes = length; 1138 while (length) { 1139 btrfs_dev_set_zone_empty(device, physical); 1140 btrfs_dev_clear_active_zone(device, physical); 1141 physical += device->zone_info->zone_size; 1142 length -= device->zone_info->zone_size; 1143 } 1144 1145 return 0; 1146 } 1147 1148 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1149 { 1150 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1151 const u8 shift = zinfo->zone_size_shift; 1152 unsigned long begin = start >> shift; 1153 unsigned long end = (start + size) >> shift; 1154 u64 pos; 1155 int ret; 1156 1157 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1158 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1159 1160 if (end > zinfo->nr_zones) 1161 return -ERANGE; 1162 1163 /* All the zones are conventional */ 1164 if (find_next_bit(zinfo->seq_zones, begin, end) == end) 1165 return 0; 1166 1167 /* All the zones are sequential and empty */ 1168 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end && 1169 find_next_zero_bit(zinfo->empty_zones, begin, end) == end) 1170 return 0; 1171 1172 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1173 u64 reset_bytes; 1174 1175 if (!btrfs_dev_is_sequential(device, pos) || 1176 btrfs_dev_is_empty_zone(device, pos)) 1177 continue; 1178 1179 /* Free regions should be empty */ 1180 btrfs_warn_in_rcu( 1181 device->fs_info, 1182 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1183 rcu_str_deref(device->name), device->devid, pos >> shift); 1184 WARN_ON_ONCE(1); 1185 1186 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1187 &reset_bytes); 1188 if (ret) 1189 return ret; 1190 } 1191 1192 return 0; 1193 } 1194 1195 /* 1196 * Calculate an allocation pointer from the extent allocation information 1197 * for a block group consist of conventional zones. It is pointed to the 1198 * end of the highest addressed extent in the block group as an allocation 1199 * offset. 1200 */ 1201 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1202 u64 *offset_ret, bool new) 1203 { 1204 struct btrfs_fs_info *fs_info = cache->fs_info; 1205 struct btrfs_root *root; 1206 struct btrfs_path *path; 1207 struct btrfs_key key; 1208 struct btrfs_key found_key; 1209 int ret; 1210 u64 length; 1211 1212 /* 1213 * Avoid tree lookups for a new block group, there's no use for it. 1214 * It must always be 0. 1215 * 1216 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1217 * For new a block group, this function is called from 1218 * btrfs_make_block_group() which is already taking the chunk mutex. 1219 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1220 * buffer locks to avoid deadlock. 1221 */ 1222 if (new) { 1223 *offset_ret = 0; 1224 return 0; 1225 } 1226 1227 path = btrfs_alloc_path(); 1228 if (!path) 1229 return -ENOMEM; 1230 1231 key.objectid = cache->start + cache->length; 1232 key.type = 0; 1233 key.offset = 0; 1234 1235 root = btrfs_extent_root(fs_info, key.objectid); 1236 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1237 /* We should not find the exact match */ 1238 if (!ret) 1239 ret = -EUCLEAN; 1240 if (ret < 0) 1241 goto out; 1242 1243 ret = btrfs_previous_extent_item(root, path, cache->start); 1244 if (ret) { 1245 if (ret == 1) { 1246 ret = 0; 1247 *offset_ret = 0; 1248 } 1249 goto out; 1250 } 1251 1252 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1253 1254 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1255 length = found_key.offset; 1256 else 1257 length = fs_info->nodesize; 1258 1259 if (!(found_key.objectid >= cache->start && 1260 found_key.objectid + length <= cache->start + cache->length)) { 1261 ret = -EUCLEAN; 1262 goto out; 1263 } 1264 *offset_ret = found_key.objectid + length - cache->start; 1265 ret = 0; 1266 1267 out: 1268 btrfs_free_path(path); 1269 return ret; 1270 } 1271 1272 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1273 { 1274 struct btrfs_fs_info *fs_info = cache->fs_info; 1275 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1276 struct extent_map *em; 1277 struct map_lookup *map; 1278 struct btrfs_device *device; 1279 u64 logical = cache->start; 1280 u64 length = cache->length; 1281 int ret; 1282 int i; 1283 unsigned int nofs_flag; 1284 u64 *alloc_offsets = NULL; 1285 u64 *caps = NULL; 1286 u64 *physical = NULL; 1287 unsigned long *active = NULL; 1288 u64 last_alloc = 0; 1289 u32 num_sequential = 0, num_conventional = 0; 1290 1291 if (!btrfs_is_zoned(fs_info)) 1292 return 0; 1293 1294 /* Sanity check */ 1295 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1296 btrfs_err(fs_info, 1297 "zoned: block group %llu len %llu unaligned to zone size %llu", 1298 logical, length, fs_info->zone_size); 1299 return -EIO; 1300 } 1301 1302 /* Get the chunk mapping */ 1303 read_lock(&em_tree->lock); 1304 em = lookup_extent_mapping(em_tree, logical, length); 1305 read_unlock(&em_tree->lock); 1306 1307 if (!em) 1308 return -EINVAL; 1309 1310 map = em->map_lookup; 1311 1312 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS); 1313 if (!cache->physical_map) { 1314 ret = -ENOMEM; 1315 goto out; 1316 } 1317 1318 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1319 if (!alloc_offsets) { 1320 ret = -ENOMEM; 1321 goto out; 1322 } 1323 1324 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS); 1325 if (!caps) { 1326 ret = -ENOMEM; 1327 goto out; 1328 } 1329 1330 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS); 1331 if (!physical) { 1332 ret = -ENOMEM; 1333 goto out; 1334 } 1335 1336 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1337 if (!active) { 1338 ret = -ENOMEM; 1339 goto out; 1340 } 1341 1342 for (i = 0; i < map->num_stripes; i++) { 1343 bool is_sequential; 1344 struct blk_zone zone; 1345 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1346 int dev_replace_is_ongoing = 0; 1347 1348 device = map->stripes[i].dev; 1349 physical[i] = map->stripes[i].physical; 1350 1351 if (device->bdev == NULL) { 1352 alloc_offsets[i] = WP_MISSING_DEV; 1353 continue; 1354 } 1355 1356 is_sequential = btrfs_dev_is_sequential(device, physical[i]); 1357 if (is_sequential) 1358 num_sequential++; 1359 else 1360 num_conventional++; 1361 1362 /* 1363 * Consider a zone as active if we can allow any number of 1364 * active zones. 1365 */ 1366 if (!device->zone_info->max_active_zones) 1367 __set_bit(i, active); 1368 1369 if (!is_sequential) { 1370 alloc_offsets[i] = WP_CONVENTIONAL; 1371 continue; 1372 } 1373 1374 /* 1375 * This zone will be used for allocation, so mark this zone 1376 * non-empty. 1377 */ 1378 btrfs_dev_clear_zone_empty(device, physical[i]); 1379 1380 down_read(&dev_replace->rwsem); 1381 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1382 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1383 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]); 1384 up_read(&dev_replace->rwsem); 1385 1386 /* 1387 * The group is mapped to a sequential zone. Get the zone write 1388 * pointer to determine the allocation offset within the zone. 1389 */ 1390 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size)); 1391 nofs_flag = memalloc_nofs_save(); 1392 ret = btrfs_get_dev_zone(device, physical[i], &zone); 1393 memalloc_nofs_restore(nofs_flag); 1394 if (ret == -EIO || ret == -EOPNOTSUPP) { 1395 ret = 0; 1396 alloc_offsets[i] = WP_MISSING_DEV; 1397 continue; 1398 } else if (ret) { 1399 goto out; 1400 } 1401 1402 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1403 btrfs_err_in_rcu(fs_info, 1404 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1405 zone.start << SECTOR_SHIFT, 1406 rcu_str_deref(device->name), device->devid); 1407 ret = -EIO; 1408 goto out; 1409 } 1410 1411 caps[i] = (zone.capacity << SECTOR_SHIFT); 1412 1413 switch (zone.cond) { 1414 case BLK_ZONE_COND_OFFLINE: 1415 case BLK_ZONE_COND_READONLY: 1416 btrfs_err(fs_info, 1417 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1418 physical[i] >> device->zone_info->zone_size_shift, 1419 rcu_str_deref(device->name), device->devid); 1420 alloc_offsets[i] = WP_MISSING_DEV; 1421 break; 1422 case BLK_ZONE_COND_EMPTY: 1423 alloc_offsets[i] = 0; 1424 break; 1425 case BLK_ZONE_COND_FULL: 1426 alloc_offsets[i] = caps[i]; 1427 break; 1428 default: 1429 /* Partially used zone */ 1430 alloc_offsets[i] = 1431 ((zone.wp - zone.start) << SECTOR_SHIFT); 1432 __set_bit(i, active); 1433 break; 1434 } 1435 } 1436 1437 if (num_sequential > 0) 1438 cache->seq_zone = true; 1439 1440 if (num_conventional > 0) { 1441 /* Zone capacity is always zone size in emulation */ 1442 cache->zone_capacity = cache->length; 1443 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1444 if (ret) { 1445 btrfs_err(fs_info, 1446 "zoned: failed to determine allocation offset of bg %llu", 1447 cache->start); 1448 goto out; 1449 } else if (map->num_stripes == num_conventional) { 1450 cache->alloc_offset = last_alloc; 1451 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1452 goto out; 1453 } 1454 } 1455 1456 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1457 case 0: /* single */ 1458 if (alloc_offsets[0] == WP_MISSING_DEV) { 1459 btrfs_err(fs_info, 1460 "zoned: cannot recover write pointer for zone %llu", 1461 physical[0]); 1462 ret = -EIO; 1463 goto out; 1464 } 1465 cache->alloc_offset = alloc_offsets[0]; 1466 cache->zone_capacity = caps[0]; 1467 if (test_bit(0, active)) 1468 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1469 break; 1470 case BTRFS_BLOCK_GROUP_DUP: 1471 if (map->type & BTRFS_BLOCK_GROUP_DATA) { 1472 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg"); 1473 ret = -EINVAL; 1474 goto out; 1475 } 1476 if (alloc_offsets[0] == WP_MISSING_DEV) { 1477 btrfs_err(fs_info, 1478 "zoned: cannot recover write pointer for zone %llu", 1479 physical[0]); 1480 ret = -EIO; 1481 goto out; 1482 } 1483 if (alloc_offsets[1] == WP_MISSING_DEV) { 1484 btrfs_err(fs_info, 1485 "zoned: cannot recover write pointer for zone %llu", 1486 physical[1]); 1487 ret = -EIO; 1488 goto out; 1489 } 1490 if (alloc_offsets[0] != alloc_offsets[1]) { 1491 btrfs_err(fs_info, 1492 "zoned: write pointer offset mismatch of zones in DUP profile"); 1493 ret = -EIO; 1494 goto out; 1495 } 1496 if (test_bit(0, active) != test_bit(1, active)) { 1497 if (!btrfs_zone_activate(cache)) { 1498 ret = -EIO; 1499 goto out; 1500 } 1501 } else { 1502 if (test_bit(0, active)) 1503 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1504 &cache->runtime_flags); 1505 } 1506 cache->alloc_offset = alloc_offsets[0]; 1507 cache->zone_capacity = min(caps[0], caps[1]); 1508 break; 1509 case BTRFS_BLOCK_GROUP_RAID1: 1510 case BTRFS_BLOCK_GROUP_RAID0: 1511 case BTRFS_BLOCK_GROUP_RAID10: 1512 case BTRFS_BLOCK_GROUP_RAID5: 1513 case BTRFS_BLOCK_GROUP_RAID6: 1514 /* non-single profiles are not supported yet */ 1515 default: 1516 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1517 btrfs_bg_type_to_raid_name(map->type)); 1518 ret = -EINVAL; 1519 goto out; 1520 } 1521 1522 out: 1523 if (cache->alloc_offset > fs_info->zone_size) { 1524 btrfs_err(fs_info, 1525 "zoned: invalid write pointer %llu in block group %llu", 1526 cache->alloc_offset, cache->start); 1527 ret = -EIO; 1528 } 1529 1530 if (cache->alloc_offset > cache->zone_capacity) { 1531 btrfs_err(fs_info, 1532 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1533 cache->alloc_offset, cache->zone_capacity, 1534 cache->start); 1535 ret = -EIO; 1536 } 1537 1538 /* An extent is allocated after the write pointer */ 1539 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1540 btrfs_err(fs_info, 1541 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1542 logical, last_alloc, cache->alloc_offset); 1543 ret = -EIO; 1544 } 1545 1546 if (!ret) { 1547 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1548 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1549 btrfs_get_block_group(cache); 1550 spin_lock(&fs_info->zone_active_bgs_lock); 1551 list_add_tail(&cache->active_bg_list, 1552 &fs_info->zone_active_bgs); 1553 spin_unlock(&fs_info->zone_active_bgs_lock); 1554 } 1555 } else { 1556 kfree(cache->physical_map); 1557 cache->physical_map = NULL; 1558 } 1559 bitmap_free(active); 1560 kfree(physical); 1561 kfree(caps); 1562 kfree(alloc_offsets); 1563 free_extent_map(em); 1564 1565 return ret; 1566 } 1567 1568 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1569 { 1570 u64 unusable, free; 1571 1572 if (!btrfs_is_zoned(cache->fs_info)) 1573 return; 1574 1575 WARN_ON(cache->bytes_super != 0); 1576 unusable = (cache->alloc_offset - cache->used) + 1577 (cache->length - cache->zone_capacity); 1578 free = cache->zone_capacity - cache->alloc_offset; 1579 1580 /* We only need ->free_space in ALLOC_SEQ block groups */ 1581 cache->cached = BTRFS_CACHE_FINISHED; 1582 cache->free_space_ctl->free_space = free; 1583 cache->zone_unusable = unusable; 1584 } 1585 1586 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1587 struct extent_buffer *eb) 1588 { 1589 struct btrfs_fs_info *fs_info = eb->fs_info; 1590 1591 if (!btrfs_is_zoned(fs_info) || 1592 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || 1593 !list_empty(&eb->release_list)) 1594 return; 1595 1596 set_extent_buffer_dirty(eb); 1597 set_extent_bits_nowait(&trans->dirty_pages, eb->start, 1598 eb->start + eb->len - 1, EXTENT_DIRTY); 1599 memzero_extent_buffer(eb, 0, eb->len); 1600 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1601 1602 spin_lock(&trans->releasing_ebs_lock); 1603 list_add_tail(&eb->release_list, &trans->releasing_ebs); 1604 spin_unlock(&trans->releasing_ebs_lock); 1605 atomic_inc(&eb->refs); 1606 } 1607 1608 void btrfs_free_redirty_list(struct btrfs_transaction *trans) 1609 { 1610 spin_lock(&trans->releasing_ebs_lock); 1611 while (!list_empty(&trans->releasing_ebs)) { 1612 struct extent_buffer *eb; 1613 1614 eb = list_first_entry(&trans->releasing_ebs, 1615 struct extent_buffer, release_list); 1616 list_del_init(&eb->release_list); 1617 free_extent_buffer(eb); 1618 } 1619 spin_unlock(&trans->releasing_ebs_lock); 1620 } 1621 1622 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start) 1623 { 1624 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1625 struct btrfs_block_group *cache; 1626 bool ret = false; 1627 1628 if (!btrfs_is_zoned(fs_info)) 1629 return false; 1630 1631 if (!is_data_inode(&inode->vfs_inode)) 1632 return false; 1633 1634 /* 1635 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1636 * extent layout the relocation code has. 1637 * Furthermore we have set aside own block-group from which only the 1638 * relocation "process" can allocate and make sure only one process at a 1639 * time can add pages to an extent that gets relocated, so it's safe to 1640 * use regular REQ_OP_WRITE for this special case. 1641 */ 1642 if (btrfs_is_data_reloc_root(inode->root)) 1643 return false; 1644 1645 cache = btrfs_lookup_block_group(fs_info, start); 1646 ASSERT(cache); 1647 if (!cache) 1648 return false; 1649 1650 ret = cache->seq_zone; 1651 btrfs_put_block_group(cache); 1652 1653 return ret; 1654 } 1655 1656 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset, 1657 struct bio *bio) 1658 { 1659 struct btrfs_ordered_extent *ordered; 1660 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 1661 1662 if (bio_op(bio) != REQ_OP_ZONE_APPEND) 1663 return; 1664 1665 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset); 1666 if (WARN_ON(!ordered)) 1667 return; 1668 1669 ordered->physical = physical; 1670 ordered->bdev = bio->bi_bdev; 1671 1672 btrfs_put_ordered_extent(ordered); 1673 } 1674 1675 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) 1676 { 1677 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1678 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1679 struct extent_map_tree *em_tree; 1680 struct extent_map *em; 1681 struct btrfs_ordered_sum *sum; 1682 u64 orig_logical = ordered->disk_bytenr; 1683 u64 *logical = NULL; 1684 int nr, stripe_len; 1685 1686 /* Zoned devices should not have partitions. So, we can assume it is 0 */ 1687 ASSERT(!bdev_is_partition(ordered->bdev)); 1688 if (WARN_ON(!ordered->bdev)) 1689 return; 1690 1691 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev, 1692 ordered->physical, &logical, &nr, 1693 &stripe_len))) 1694 goto out; 1695 1696 WARN_ON(nr != 1); 1697 1698 if (orig_logical == *logical) 1699 goto out; 1700 1701 ordered->disk_bytenr = *logical; 1702 1703 em_tree = &inode->extent_tree; 1704 write_lock(&em_tree->lock); 1705 em = search_extent_mapping(em_tree, ordered->file_offset, 1706 ordered->num_bytes); 1707 em->block_start = *logical; 1708 free_extent_map(em); 1709 write_unlock(&em_tree->lock); 1710 1711 list_for_each_entry(sum, &ordered->list, list) { 1712 if (*logical < orig_logical) 1713 sum->bytenr -= orig_logical - *logical; 1714 else 1715 sum->bytenr += *logical - orig_logical; 1716 } 1717 1718 out: 1719 kfree(logical); 1720 } 1721 1722 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1723 struct extent_buffer *eb, 1724 struct btrfs_block_group **cache_ret) 1725 { 1726 struct btrfs_block_group *cache; 1727 bool ret = true; 1728 1729 if (!btrfs_is_zoned(fs_info)) 1730 return true; 1731 1732 cache = btrfs_lookup_block_group(fs_info, eb->start); 1733 if (!cache) 1734 return true; 1735 1736 if (cache->meta_write_pointer != eb->start) { 1737 btrfs_put_block_group(cache); 1738 cache = NULL; 1739 ret = false; 1740 } else { 1741 cache->meta_write_pointer = eb->start + eb->len; 1742 } 1743 1744 *cache_ret = cache; 1745 1746 return ret; 1747 } 1748 1749 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1750 struct extent_buffer *eb) 1751 { 1752 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1753 return; 1754 1755 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1756 cache->meta_write_pointer = eb->start; 1757 } 1758 1759 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1760 { 1761 if (!btrfs_dev_is_sequential(device, physical)) 1762 return -EOPNOTSUPP; 1763 1764 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1765 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1766 } 1767 1768 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1769 struct blk_zone *zone) 1770 { 1771 struct btrfs_io_context *bioc = NULL; 1772 u64 mapped_length = PAGE_SIZE; 1773 unsigned int nofs_flag; 1774 int nmirrors; 1775 int i, ret; 1776 1777 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1778 &mapped_length, &bioc); 1779 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1780 ret = -EIO; 1781 goto out_put_bioc; 1782 } 1783 1784 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1785 ret = -EINVAL; 1786 goto out_put_bioc; 1787 } 1788 1789 nofs_flag = memalloc_nofs_save(); 1790 nmirrors = (int)bioc->num_stripes; 1791 for (i = 0; i < nmirrors; i++) { 1792 u64 physical = bioc->stripes[i].physical; 1793 struct btrfs_device *dev = bioc->stripes[i].dev; 1794 1795 /* Missing device */ 1796 if (!dev->bdev) 1797 continue; 1798 1799 ret = btrfs_get_dev_zone(dev, physical, zone); 1800 /* Failing device */ 1801 if (ret == -EIO || ret == -EOPNOTSUPP) 1802 continue; 1803 break; 1804 } 1805 memalloc_nofs_restore(nofs_flag); 1806 out_put_bioc: 1807 btrfs_put_bioc(bioc); 1808 return ret; 1809 } 1810 1811 /* 1812 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1813 * filling zeros between @physical_pos to a write pointer of dev-replace 1814 * source device. 1815 */ 1816 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1817 u64 physical_start, u64 physical_pos) 1818 { 1819 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1820 struct blk_zone zone; 1821 u64 length; 1822 u64 wp; 1823 int ret; 1824 1825 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1826 return 0; 1827 1828 ret = read_zone_info(fs_info, logical, &zone); 1829 if (ret) 1830 return ret; 1831 1832 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1833 1834 if (physical_pos == wp) 1835 return 0; 1836 1837 if (physical_pos > wp) 1838 return -EUCLEAN; 1839 1840 length = wp - physical_pos; 1841 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1842 } 1843 1844 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info, 1845 u64 logical, u64 length) 1846 { 1847 struct btrfs_device *device; 1848 struct extent_map *em; 1849 struct map_lookup *map; 1850 1851 em = btrfs_get_chunk_map(fs_info, logical, length); 1852 if (IS_ERR(em)) 1853 return ERR_CAST(em); 1854 1855 map = em->map_lookup; 1856 /* We only support single profile for now */ 1857 device = map->stripes[0].dev; 1858 1859 free_extent_map(em); 1860 1861 return device; 1862 } 1863 1864 /** 1865 * Activate block group and underlying device zones 1866 * 1867 * @block_group: the block group to activate 1868 * 1869 * Return: true on success, false otherwise 1870 */ 1871 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 1872 { 1873 struct btrfs_fs_info *fs_info = block_group->fs_info; 1874 struct btrfs_space_info *space_info = block_group->space_info; 1875 struct map_lookup *map; 1876 struct btrfs_device *device; 1877 u64 physical; 1878 bool ret; 1879 int i; 1880 1881 if (!btrfs_is_zoned(block_group->fs_info)) 1882 return true; 1883 1884 map = block_group->physical_map; 1885 1886 spin_lock(&space_info->lock); 1887 spin_lock(&block_group->lock); 1888 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1889 ret = true; 1890 goto out_unlock; 1891 } 1892 1893 /* No space left */ 1894 if (btrfs_zoned_bg_is_full(block_group)) { 1895 ret = false; 1896 goto out_unlock; 1897 } 1898 1899 for (i = 0; i < map->num_stripes; i++) { 1900 device = map->stripes[i].dev; 1901 physical = map->stripes[i].physical; 1902 1903 if (device->zone_info->max_active_zones == 0) 1904 continue; 1905 1906 if (!btrfs_dev_set_active_zone(device, physical)) { 1907 /* Cannot activate the zone */ 1908 ret = false; 1909 goto out_unlock; 1910 } 1911 } 1912 1913 /* Successfully activated all the zones */ 1914 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 1915 space_info->active_total_bytes += block_group->length; 1916 spin_unlock(&block_group->lock); 1917 btrfs_try_granting_tickets(fs_info, space_info); 1918 spin_unlock(&space_info->lock); 1919 1920 /* For the active block group list */ 1921 btrfs_get_block_group(block_group); 1922 1923 spin_lock(&fs_info->zone_active_bgs_lock); 1924 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 1925 spin_unlock(&fs_info->zone_active_bgs_lock); 1926 1927 return true; 1928 1929 out_unlock: 1930 spin_unlock(&block_group->lock); 1931 spin_unlock(&space_info->lock); 1932 return ret; 1933 } 1934 1935 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 1936 { 1937 struct btrfs_fs_info *fs_info = block_group->fs_info; 1938 const u64 end = block_group->start + block_group->length; 1939 struct radix_tree_iter iter; 1940 struct extent_buffer *eb; 1941 void __rcu **slot; 1942 1943 rcu_read_lock(); 1944 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 1945 block_group->start >> fs_info->sectorsize_bits) { 1946 eb = radix_tree_deref_slot(slot); 1947 if (!eb) 1948 continue; 1949 if (radix_tree_deref_retry(eb)) { 1950 slot = radix_tree_iter_retry(&iter); 1951 continue; 1952 } 1953 1954 if (eb->start < block_group->start) 1955 continue; 1956 if (eb->start >= end) 1957 break; 1958 1959 slot = radix_tree_iter_resume(slot, &iter); 1960 rcu_read_unlock(); 1961 wait_on_extent_buffer_writeback(eb); 1962 rcu_read_lock(); 1963 } 1964 rcu_read_unlock(); 1965 } 1966 1967 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 1968 { 1969 struct btrfs_fs_info *fs_info = block_group->fs_info; 1970 struct map_lookup *map; 1971 const bool is_metadata = (block_group->flags & 1972 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 1973 int ret = 0; 1974 int i; 1975 1976 spin_lock(&block_group->lock); 1977 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1978 spin_unlock(&block_group->lock); 1979 return 0; 1980 } 1981 1982 /* Check if we have unwritten allocated space */ 1983 if (is_metadata && 1984 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 1985 spin_unlock(&block_group->lock); 1986 return -EAGAIN; 1987 } 1988 1989 /* 1990 * If we are sure that the block group is full (= no more room left for 1991 * new allocation) and the IO for the last usable block is completed, we 1992 * don't need to wait for the other IOs. This holds because we ensure 1993 * the sequential IO submissions using the ZONE_APPEND command for data 1994 * and block_group->meta_write_pointer for metadata. 1995 */ 1996 if (!fully_written) { 1997 spin_unlock(&block_group->lock); 1998 1999 ret = btrfs_inc_block_group_ro(block_group, false); 2000 if (ret) 2001 return ret; 2002 2003 /* Ensure all writes in this block group finish */ 2004 btrfs_wait_block_group_reservations(block_group); 2005 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2006 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 2007 block_group->length); 2008 /* Wait for extent buffers to be written. */ 2009 if (is_metadata) 2010 wait_eb_writebacks(block_group); 2011 2012 spin_lock(&block_group->lock); 2013 2014 /* 2015 * Bail out if someone already deactivated the block group, or 2016 * allocated space is left in the block group. 2017 */ 2018 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2019 &block_group->runtime_flags)) { 2020 spin_unlock(&block_group->lock); 2021 btrfs_dec_block_group_ro(block_group); 2022 return 0; 2023 } 2024 2025 if (block_group->reserved) { 2026 spin_unlock(&block_group->lock); 2027 btrfs_dec_block_group_ro(block_group); 2028 return -EAGAIN; 2029 } 2030 } 2031 2032 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2033 block_group->alloc_offset = block_group->zone_capacity; 2034 block_group->free_space_ctl->free_space = 0; 2035 btrfs_clear_treelog_bg(block_group); 2036 btrfs_clear_data_reloc_bg(block_group); 2037 spin_unlock(&block_group->lock); 2038 2039 map = block_group->physical_map; 2040 for (i = 0; i < map->num_stripes; i++) { 2041 struct btrfs_device *device = map->stripes[i].dev; 2042 const u64 physical = map->stripes[i].physical; 2043 2044 if (device->zone_info->max_active_zones == 0) 2045 continue; 2046 2047 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2048 physical >> SECTOR_SHIFT, 2049 device->zone_info->zone_size >> SECTOR_SHIFT, 2050 GFP_NOFS); 2051 2052 if (ret) 2053 return ret; 2054 2055 btrfs_dev_clear_active_zone(device, physical); 2056 } 2057 2058 if (!fully_written) 2059 btrfs_dec_block_group_ro(block_group); 2060 2061 spin_lock(&fs_info->zone_active_bgs_lock); 2062 ASSERT(!list_empty(&block_group->active_bg_list)); 2063 list_del_init(&block_group->active_bg_list); 2064 spin_unlock(&fs_info->zone_active_bgs_lock); 2065 2066 /* For active_bg_list */ 2067 btrfs_put_block_group(block_group); 2068 2069 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2070 2071 return 0; 2072 } 2073 2074 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2075 { 2076 if (!btrfs_is_zoned(block_group->fs_info)) 2077 return 0; 2078 2079 return do_zone_finish(block_group, false); 2080 } 2081 2082 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2083 { 2084 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2085 struct btrfs_device *device; 2086 bool ret = false; 2087 2088 if (!btrfs_is_zoned(fs_info)) 2089 return true; 2090 2091 /* Check if there is a device with active zones left */ 2092 mutex_lock(&fs_info->chunk_mutex); 2093 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2094 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2095 2096 if (!device->bdev) 2097 continue; 2098 2099 if (!zinfo->max_active_zones || 2100 atomic_read(&zinfo->active_zones_left)) { 2101 ret = true; 2102 break; 2103 } 2104 } 2105 mutex_unlock(&fs_info->chunk_mutex); 2106 2107 if (!ret) 2108 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2109 2110 return ret; 2111 } 2112 2113 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2114 { 2115 struct btrfs_block_group *block_group; 2116 u64 min_alloc_bytes; 2117 2118 if (!btrfs_is_zoned(fs_info)) 2119 return; 2120 2121 block_group = btrfs_lookup_block_group(fs_info, logical); 2122 ASSERT(block_group); 2123 2124 /* No MIXED_BG on zoned btrfs. */ 2125 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2126 min_alloc_bytes = fs_info->sectorsize; 2127 else 2128 min_alloc_bytes = fs_info->nodesize; 2129 2130 /* Bail out if we can allocate more data from this block group. */ 2131 if (logical + length + min_alloc_bytes <= 2132 block_group->start + block_group->zone_capacity) 2133 goto out; 2134 2135 do_zone_finish(block_group, true); 2136 2137 out: 2138 btrfs_put_block_group(block_group); 2139 } 2140 2141 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2142 { 2143 struct btrfs_block_group *bg = 2144 container_of(work, struct btrfs_block_group, zone_finish_work); 2145 2146 wait_on_extent_buffer_writeback(bg->last_eb); 2147 free_extent_buffer(bg->last_eb); 2148 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2149 btrfs_put_block_group(bg); 2150 } 2151 2152 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2153 struct extent_buffer *eb) 2154 { 2155 if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2156 return; 2157 2158 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2159 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2160 bg->start); 2161 return; 2162 } 2163 2164 /* For the work */ 2165 btrfs_get_block_group(bg); 2166 atomic_inc(&eb->refs); 2167 bg->last_eb = eb; 2168 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2169 queue_work(system_unbound_wq, &bg->zone_finish_work); 2170 } 2171 2172 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2173 { 2174 struct btrfs_fs_info *fs_info = bg->fs_info; 2175 2176 spin_lock(&fs_info->relocation_bg_lock); 2177 if (fs_info->data_reloc_bg == bg->start) 2178 fs_info->data_reloc_bg = 0; 2179 spin_unlock(&fs_info->relocation_bg_lock); 2180 } 2181 2182 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2183 { 2184 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2185 struct btrfs_device *device; 2186 2187 if (!btrfs_is_zoned(fs_info)) 2188 return; 2189 2190 mutex_lock(&fs_devices->device_list_mutex); 2191 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2192 if (device->zone_info) { 2193 vfree(device->zone_info->zone_cache); 2194 device->zone_info->zone_cache = NULL; 2195 } 2196 } 2197 mutex_unlock(&fs_devices->device_list_mutex); 2198 } 2199 2200 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2201 { 2202 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2203 struct btrfs_device *device; 2204 u64 used = 0; 2205 u64 total = 0; 2206 u64 factor; 2207 2208 ASSERT(btrfs_is_zoned(fs_info)); 2209 2210 if (fs_info->bg_reclaim_threshold == 0) 2211 return false; 2212 2213 mutex_lock(&fs_devices->device_list_mutex); 2214 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2215 if (!device->bdev) 2216 continue; 2217 2218 total += device->disk_total_bytes; 2219 used += device->bytes_used; 2220 } 2221 mutex_unlock(&fs_devices->device_list_mutex); 2222 2223 factor = div64_u64(used * 100, total); 2224 return factor >= fs_info->bg_reclaim_threshold; 2225 } 2226 2227 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2228 u64 length) 2229 { 2230 struct btrfs_block_group *block_group; 2231 2232 if (!btrfs_is_zoned(fs_info)) 2233 return; 2234 2235 block_group = btrfs_lookup_block_group(fs_info, logical); 2236 /* It should be called on a previous data relocation block group. */ 2237 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2238 2239 spin_lock(&block_group->lock); 2240 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2241 goto out; 2242 2243 /* All relocation extents are written. */ 2244 if (block_group->start + block_group->alloc_offset == logical + length) { 2245 /* Now, release this block group for further allocations. */ 2246 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2247 &block_group->runtime_flags); 2248 } 2249 2250 out: 2251 spin_unlock(&block_group->lock); 2252 btrfs_put_block_group(block_group); 2253 } 2254 2255 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2256 { 2257 struct btrfs_block_group *block_group; 2258 struct btrfs_block_group *min_bg = NULL; 2259 u64 min_avail = U64_MAX; 2260 int ret; 2261 2262 spin_lock(&fs_info->zone_active_bgs_lock); 2263 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2264 active_bg_list) { 2265 u64 avail; 2266 2267 spin_lock(&block_group->lock); 2268 if (block_group->reserved || 2269 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) { 2270 spin_unlock(&block_group->lock); 2271 continue; 2272 } 2273 2274 avail = block_group->zone_capacity - block_group->alloc_offset; 2275 if (min_avail > avail) { 2276 if (min_bg) 2277 btrfs_put_block_group(min_bg); 2278 min_bg = block_group; 2279 min_avail = avail; 2280 btrfs_get_block_group(min_bg); 2281 } 2282 spin_unlock(&block_group->lock); 2283 } 2284 spin_unlock(&fs_info->zone_active_bgs_lock); 2285 2286 if (!min_bg) 2287 return 0; 2288 2289 ret = btrfs_zone_finish(min_bg); 2290 btrfs_put_block_group(min_bg); 2291 2292 return ret < 0 ? ret : 1; 2293 } 2294 2295 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2296 struct btrfs_space_info *space_info, 2297 bool do_finish) 2298 { 2299 struct btrfs_block_group *bg; 2300 int index; 2301 2302 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2303 return 0; 2304 2305 /* No more block groups to activate */ 2306 if (space_info->active_total_bytes == space_info->total_bytes) 2307 return 0; 2308 2309 for (;;) { 2310 int ret; 2311 bool need_finish = false; 2312 2313 down_read(&space_info->groups_sem); 2314 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2315 list_for_each_entry(bg, &space_info->block_groups[index], 2316 list) { 2317 if (!spin_trylock(&bg->lock)) 2318 continue; 2319 if (btrfs_zoned_bg_is_full(bg) || 2320 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2321 &bg->runtime_flags)) { 2322 spin_unlock(&bg->lock); 2323 continue; 2324 } 2325 spin_unlock(&bg->lock); 2326 2327 if (btrfs_zone_activate(bg)) { 2328 up_read(&space_info->groups_sem); 2329 return 1; 2330 } 2331 2332 need_finish = true; 2333 } 2334 } 2335 up_read(&space_info->groups_sem); 2336 2337 if (!do_finish || !need_finish) 2338 break; 2339 2340 ret = btrfs_zone_finish_one_bg(fs_info); 2341 if (ret == 0) 2342 break; 2343 if (ret < 0) 2344 return ret; 2345 } 2346 2347 return 0; 2348 } 2349