xref: /openbmc/linux/fs/btrfs/zoned.c (revision 7a7621df)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 
19 /* Maximum number of zones to report per blkdev_report_zones() call */
20 #define BTRFS_REPORT_NR_ZONES   4096
21 /* Invalid allocation pointer value for missing devices */
22 #define WP_MISSING_DEV ((u64)-1)
23 /* Pseudo write pointer value for conventional zone */
24 #define WP_CONVENTIONAL ((u64)-2)
25 
26 /*
27  * Location of the first zone of superblock logging zone pairs.
28  *
29  * - primary superblock:    0B (zone 0)
30  * - first copy:          512G (zone starting at that offset)
31  * - second copy:           4T (zone starting at that offset)
32  */
33 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
34 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
35 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
36 
37 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39 
40 /* Number of superblock log zones */
41 #define BTRFS_NR_SB_LOG_ZONES 2
42 
43 /*
44  * Minimum of active zones we need:
45  *
46  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48  * - 1 zone for tree-log dedicated block group
49  * - 1 zone for relocation
50  */
51 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
52 
53 /*
54  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
55  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
56  * We do not expect the zone size to become larger than 8GiB or smaller than
57  * 4MiB in the near future.
58  */
59 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
60 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
61 
62 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
63 
64 static inline bool sb_zone_is_full(const struct blk_zone *zone)
65 {
66 	return (zone->cond == BLK_ZONE_COND_FULL) ||
67 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
68 }
69 
70 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
71 {
72 	struct blk_zone *zones = data;
73 
74 	memcpy(&zones[idx], zone, sizeof(*zone));
75 
76 	return 0;
77 }
78 
79 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
80 			    u64 *wp_ret)
81 {
82 	bool empty[BTRFS_NR_SB_LOG_ZONES];
83 	bool full[BTRFS_NR_SB_LOG_ZONES];
84 	sector_t sector;
85 	int i;
86 
87 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
88 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
89 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
90 		full[i] = sb_zone_is_full(&zones[i]);
91 	}
92 
93 	/*
94 	 * Possible states of log buffer zones
95 	 *
96 	 *           Empty[0]  In use[0]  Full[0]
97 	 * Empty[1]         *          0        1
98 	 * In use[1]        x          x        1
99 	 * Full[1]          0          0        C
100 	 *
101 	 * Log position:
102 	 *   *: Special case, no superblock is written
103 	 *   0: Use write pointer of zones[0]
104 	 *   1: Use write pointer of zones[1]
105 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
106 	 *      one determined by generation
107 	 *   x: Invalid state
108 	 */
109 
110 	if (empty[0] && empty[1]) {
111 		/* Special case to distinguish no superblock to read */
112 		*wp_ret = zones[0].start << SECTOR_SHIFT;
113 		return -ENOENT;
114 	} else if (full[0] && full[1]) {
115 		/* Compare two super blocks */
116 		struct address_space *mapping = bdev->bd_inode->i_mapping;
117 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
118 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
119 		int i;
120 
121 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
122 			u64 bytenr;
123 
124 			bytenr = ((zones[i].start + zones[i].len)
125 				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
126 
127 			page[i] = read_cache_page_gfp(mapping,
128 					bytenr >> PAGE_SHIFT, GFP_NOFS);
129 			if (IS_ERR(page[i])) {
130 				if (i == 1)
131 					btrfs_release_disk_super(super[0]);
132 				return PTR_ERR(page[i]);
133 			}
134 			super[i] = page_address(page[i]);
135 		}
136 
137 		if (super[0]->generation > super[1]->generation)
138 			sector = zones[1].start;
139 		else
140 			sector = zones[0].start;
141 
142 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
143 			btrfs_release_disk_super(super[i]);
144 	} else if (!full[0] && (empty[1] || full[1])) {
145 		sector = zones[0].wp;
146 	} else if (full[0]) {
147 		sector = zones[1].wp;
148 	} else {
149 		return -EUCLEAN;
150 	}
151 	*wp_ret = sector << SECTOR_SHIFT;
152 	return 0;
153 }
154 
155 /*
156  * Get the first zone number of the superblock mirror
157  */
158 static inline u32 sb_zone_number(int shift, int mirror)
159 {
160 	u64 zone;
161 
162 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
163 	switch (mirror) {
164 	case 0: zone = 0; break;
165 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
166 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
167 	}
168 
169 	ASSERT(zone <= U32_MAX);
170 
171 	return (u32)zone;
172 }
173 
174 static inline sector_t zone_start_sector(u32 zone_number,
175 					 struct block_device *bdev)
176 {
177 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
178 }
179 
180 static inline u64 zone_start_physical(u32 zone_number,
181 				      struct btrfs_zoned_device_info *zone_info)
182 {
183 	return (u64)zone_number << zone_info->zone_size_shift;
184 }
185 
186 /*
187  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
188  * device into static sized chunks and fake a conventional zone on each of
189  * them.
190  */
191 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
192 				struct blk_zone *zones, unsigned int nr_zones)
193 {
194 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
195 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
196 	unsigned int i;
197 
198 	pos >>= SECTOR_SHIFT;
199 	for (i = 0; i < nr_zones; i++) {
200 		zones[i].start = i * zone_sectors + pos;
201 		zones[i].len = zone_sectors;
202 		zones[i].capacity = zone_sectors;
203 		zones[i].wp = zones[i].start + zone_sectors;
204 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
205 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
206 
207 		if (zones[i].wp >= bdev_size) {
208 			i++;
209 			break;
210 		}
211 	}
212 
213 	return i;
214 }
215 
216 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
217 			       struct blk_zone *zones, unsigned int *nr_zones)
218 {
219 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
220 	u32 zno;
221 	int ret;
222 
223 	if (!*nr_zones)
224 		return 0;
225 
226 	if (!bdev_is_zoned(device->bdev)) {
227 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
228 		*nr_zones = ret;
229 		return 0;
230 	}
231 
232 	/* Check cache */
233 	if (zinfo->zone_cache) {
234 		unsigned int i;
235 
236 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
237 		zno = pos >> zinfo->zone_size_shift;
238 		/*
239 		 * We cannot report zones beyond the zone end. So, it is OK to
240 		 * cap *nr_zones to at the end.
241 		 */
242 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
243 
244 		for (i = 0; i < *nr_zones; i++) {
245 			struct blk_zone *zone_info;
246 
247 			zone_info = &zinfo->zone_cache[zno + i];
248 			if (!zone_info->len)
249 				break;
250 		}
251 
252 		if (i == *nr_zones) {
253 			/* Cache hit on all the zones */
254 			memcpy(zones, zinfo->zone_cache + zno,
255 			       sizeof(*zinfo->zone_cache) * *nr_zones);
256 			return 0;
257 		}
258 	}
259 
260 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
261 				  copy_zone_info_cb, zones);
262 	if (ret < 0) {
263 		btrfs_err_in_rcu(device->fs_info,
264 				 "zoned: failed to read zone %llu on %s (devid %llu)",
265 				 pos, rcu_str_deref(device->name),
266 				 device->devid);
267 		return ret;
268 	}
269 	*nr_zones = ret;
270 	if (!ret)
271 		return -EIO;
272 
273 	/* Populate cache */
274 	if (zinfo->zone_cache)
275 		memcpy(zinfo->zone_cache + zno, zones,
276 		       sizeof(*zinfo->zone_cache) * *nr_zones);
277 
278 	return 0;
279 }
280 
281 /* The emulated zone size is determined from the size of device extent */
282 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
283 {
284 	struct btrfs_path *path;
285 	struct btrfs_root *root = fs_info->dev_root;
286 	struct btrfs_key key;
287 	struct extent_buffer *leaf;
288 	struct btrfs_dev_extent *dext;
289 	int ret = 0;
290 
291 	key.objectid = 1;
292 	key.type = BTRFS_DEV_EXTENT_KEY;
293 	key.offset = 0;
294 
295 	path = btrfs_alloc_path();
296 	if (!path)
297 		return -ENOMEM;
298 
299 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
300 	if (ret < 0)
301 		goto out;
302 
303 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
304 		ret = btrfs_next_leaf(root, path);
305 		if (ret < 0)
306 			goto out;
307 		/* No dev extents at all? Not good */
308 		if (ret > 0) {
309 			ret = -EUCLEAN;
310 			goto out;
311 		}
312 	}
313 
314 	leaf = path->nodes[0];
315 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
316 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
317 	ret = 0;
318 
319 out:
320 	btrfs_free_path(path);
321 
322 	return ret;
323 }
324 
325 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
326 {
327 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
328 	struct btrfs_device *device;
329 	int ret = 0;
330 
331 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
332 	if (!btrfs_fs_incompat(fs_info, ZONED))
333 		return 0;
334 
335 	mutex_lock(&fs_devices->device_list_mutex);
336 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
337 		/* We can skip reading of zone info for missing devices */
338 		if (!device->bdev)
339 			continue;
340 
341 		ret = btrfs_get_dev_zone_info(device, true);
342 		if (ret)
343 			break;
344 	}
345 	mutex_unlock(&fs_devices->device_list_mutex);
346 
347 	return ret;
348 }
349 
350 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
351 {
352 	struct btrfs_fs_info *fs_info = device->fs_info;
353 	struct btrfs_zoned_device_info *zone_info = NULL;
354 	struct block_device *bdev = device->bdev;
355 	unsigned int max_active_zones;
356 	unsigned int nactive;
357 	sector_t nr_sectors;
358 	sector_t sector = 0;
359 	struct blk_zone *zones = NULL;
360 	unsigned int i, nreported = 0, nr_zones;
361 	sector_t zone_sectors;
362 	char *model, *emulated;
363 	int ret;
364 
365 	/*
366 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
367 	 * yet be set.
368 	 */
369 	if (!btrfs_fs_incompat(fs_info, ZONED))
370 		return 0;
371 
372 	if (device->zone_info)
373 		return 0;
374 
375 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
376 	if (!zone_info)
377 		return -ENOMEM;
378 
379 	device->zone_info = zone_info;
380 
381 	if (!bdev_is_zoned(bdev)) {
382 		if (!fs_info->zone_size) {
383 			ret = calculate_emulated_zone_size(fs_info);
384 			if (ret)
385 				goto out;
386 		}
387 
388 		ASSERT(fs_info->zone_size);
389 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
390 	} else {
391 		zone_sectors = bdev_zone_sectors(bdev);
392 	}
393 
394 	/* Check if it's power of 2 (see is_power_of_2) */
395 	ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
396 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
397 
398 	/* We reject devices with a zone size larger than 8GB */
399 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
400 		btrfs_err_in_rcu(fs_info,
401 		"zoned: %s: zone size %llu larger than supported maximum %llu",
402 				 rcu_str_deref(device->name),
403 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
404 		ret = -EINVAL;
405 		goto out;
406 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
407 		btrfs_err_in_rcu(fs_info,
408 		"zoned: %s: zone size %llu smaller than supported minimum %u",
409 				 rcu_str_deref(device->name),
410 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
411 		ret = -EINVAL;
412 		goto out;
413 	}
414 
415 	nr_sectors = bdev_nr_sectors(bdev);
416 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
417 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
418 	/*
419 	 * We limit max_zone_append_size also by max_segments *
420 	 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
421 	 * since btrfs adds the pages one by one to a bio, and btrfs cannot
422 	 * increase the metadata reservation even if it increases the number of
423 	 * extents, it is safe to stick with the limit.
424 	 */
425 	zone_info->max_zone_append_size =
426 		min_t(u64, (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
427 		      (u64)bdev_max_segments(bdev) << PAGE_SHIFT);
428 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
429 		zone_info->nr_zones++;
430 
431 	max_active_zones = bdev_max_active_zones(bdev);
432 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
433 		btrfs_err_in_rcu(fs_info,
434 "zoned: %s: max active zones %u is too small, need at least %u active zones",
435 				 rcu_str_deref(device->name), max_active_zones,
436 				 BTRFS_MIN_ACTIVE_ZONES);
437 		ret = -EINVAL;
438 		goto out;
439 	}
440 	zone_info->max_active_zones = max_active_zones;
441 
442 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
443 	if (!zone_info->seq_zones) {
444 		ret = -ENOMEM;
445 		goto out;
446 	}
447 
448 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
449 	if (!zone_info->empty_zones) {
450 		ret = -ENOMEM;
451 		goto out;
452 	}
453 
454 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
455 	if (!zone_info->active_zones) {
456 		ret = -ENOMEM;
457 		goto out;
458 	}
459 
460 	zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
461 	if (!zones) {
462 		ret = -ENOMEM;
463 		goto out;
464 	}
465 
466 	/*
467 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
468 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
469 	 * use the cache.
470 	 */
471 	if (populate_cache && bdev_is_zoned(device->bdev)) {
472 		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
473 						zone_info->nr_zones);
474 		if (!zone_info->zone_cache) {
475 			btrfs_err_in_rcu(device->fs_info,
476 				"zoned: failed to allocate zone cache for %s",
477 				rcu_str_deref(device->name));
478 			ret = -ENOMEM;
479 			goto out;
480 		}
481 	}
482 
483 	/* Get zones type */
484 	nactive = 0;
485 	while (sector < nr_sectors) {
486 		nr_zones = BTRFS_REPORT_NR_ZONES;
487 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
488 					  &nr_zones);
489 		if (ret)
490 			goto out;
491 
492 		for (i = 0; i < nr_zones; i++) {
493 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
494 				__set_bit(nreported, zone_info->seq_zones);
495 			switch (zones[i].cond) {
496 			case BLK_ZONE_COND_EMPTY:
497 				__set_bit(nreported, zone_info->empty_zones);
498 				break;
499 			case BLK_ZONE_COND_IMP_OPEN:
500 			case BLK_ZONE_COND_EXP_OPEN:
501 			case BLK_ZONE_COND_CLOSED:
502 				__set_bit(nreported, zone_info->active_zones);
503 				nactive++;
504 				break;
505 			}
506 			nreported++;
507 		}
508 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
509 	}
510 
511 	if (nreported != zone_info->nr_zones) {
512 		btrfs_err_in_rcu(device->fs_info,
513 				 "inconsistent number of zones on %s (%u/%u)",
514 				 rcu_str_deref(device->name), nreported,
515 				 zone_info->nr_zones);
516 		ret = -EIO;
517 		goto out;
518 	}
519 
520 	if (max_active_zones) {
521 		if (nactive > max_active_zones) {
522 			btrfs_err_in_rcu(device->fs_info,
523 			"zoned: %u active zones on %s exceeds max_active_zones %u",
524 					 nactive, rcu_str_deref(device->name),
525 					 max_active_zones);
526 			ret = -EIO;
527 			goto out;
528 		}
529 		atomic_set(&zone_info->active_zones_left,
530 			   max_active_zones - nactive);
531 	}
532 
533 	/* Validate superblock log */
534 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
535 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536 		u32 sb_zone;
537 		u64 sb_wp;
538 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539 
540 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541 		if (sb_zone + 1 >= zone_info->nr_zones)
542 			continue;
543 
544 		ret = btrfs_get_dev_zones(device,
545 					  zone_start_physical(sb_zone, zone_info),
546 					  &zone_info->sb_zones[sb_pos],
547 					  &nr_zones);
548 		if (ret)
549 			goto out;
550 
551 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552 			btrfs_err_in_rcu(device->fs_info,
553 	"zoned: failed to read super block log zone info at devid %llu zone %u",
554 					 device->devid, sb_zone);
555 			ret = -EUCLEAN;
556 			goto out;
557 		}
558 
559 		/*
560 		 * If zones[0] is conventional, always use the beginning of the
561 		 * zone to record superblock. No need to validate in that case.
562 		 */
563 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564 		    BLK_ZONE_TYPE_CONVENTIONAL)
565 			continue;
566 
567 		ret = sb_write_pointer(device->bdev,
568 				       &zone_info->sb_zones[sb_pos], &sb_wp);
569 		if (ret != -ENOENT && ret) {
570 			btrfs_err_in_rcu(device->fs_info,
571 			"zoned: super block log zone corrupted devid %llu zone %u",
572 					 device->devid, sb_zone);
573 			ret = -EUCLEAN;
574 			goto out;
575 		}
576 	}
577 
578 
579 	kfree(zones);
580 
581 	switch (bdev_zoned_model(bdev)) {
582 	case BLK_ZONED_HM:
583 		model = "host-managed zoned";
584 		emulated = "";
585 		break;
586 	case BLK_ZONED_HA:
587 		model = "host-aware zoned";
588 		emulated = "";
589 		break;
590 	case BLK_ZONED_NONE:
591 		model = "regular";
592 		emulated = "emulated ";
593 		break;
594 	default:
595 		/* Just in case */
596 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597 				 bdev_zoned_model(bdev),
598 				 rcu_str_deref(device->name));
599 		ret = -EOPNOTSUPP;
600 		goto out_free_zone_info;
601 	}
602 
603 	btrfs_info_in_rcu(fs_info,
604 		"%s block device %s, %u %szones of %llu bytes",
605 		model, rcu_str_deref(device->name), zone_info->nr_zones,
606 		emulated, zone_info->zone_size);
607 
608 	return 0;
609 
610 out:
611 	kfree(zones);
612 out_free_zone_info:
613 	btrfs_destroy_dev_zone_info(device);
614 
615 	return ret;
616 }
617 
618 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619 {
620 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
621 
622 	if (!zone_info)
623 		return;
624 
625 	bitmap_free(zone_info->active_zones);
626 	bitmap_free(zone_info->seq_zones);
627 	bitmap_free(zone_info->empty_zones);
628 	vfree(zone_info->zone_cache);
629 	kfree(zone_info);
630 	device->zone_info = NULL;
631 }
632 
633 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
634 		       struct blk_zone *zone)
635 {
636 	unsigned int nr_zones = 1;
637 	int ret;
638 
639 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
640 	if (ret != 0 || !nr_zones)
641 		return ret ? ret : -EIO;
642 
643 	return 0;
644 }
645 
646 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
647 {
648 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
649 	struct btrfs_device *device;
650 	u64 zoned_devices = 0;
651 	u64 nr_devices = 0;
652 	u64 zone_size = 0;
653 	u64 max_zone_append_size = 0;
654 	const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
655 	int ret = 0;
656 
657 	/* Count zoned devices */
658 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
659 		enum blk_zoned_model model;
660 
661 		if (!device->bdev)
662 			continue;
663 
664 		model = bdev_zoned_model(device->bdev);
665 		/*
666 		 * A Host-Managed zoned device must be used as a zoned device.
667 		 * A Host-Aware zoned device and a non-zoned devices can be
668 		 * treated as a zoned device, if ZONED flag is enabled in the
669 		 * superblock.
670 		 */
671 		if (model == BLK_ZONED_HM ||
672 		    (model == BLK_ZONED_HA && incompat_zoned) ||
673 		    (model == BLK_ZONED_NONE && incompat_zoned)) {
674 			struct btrfs_zoned_device_info *zone_info;
675 
676 			zone_info = device->zone_info;
677 			zoned_devices++;
678 			if (!zone_size) {
679 				zone_size = zone_info->zone_size;
680 			} else if (zone_info->zone_size != zone_size) {
681 				btrfs_err(fs_info,
682 		"zoned: unequal block device zone sizes: have %llu found %llu",
683 					  device->zone_info->zone_size,
684 					  zone_size);
685 				ret = -EINVAL;
686 				goto out;
687 			}
688 			if (!max_zone_append_size ||
689 			    (zone_info->max_zone_append_size &&
690 			     zone_info->max_zone_append_size < max_zone_append_size))
691 				max_zone_append_size =
692 					zone_info->max_zone_append_size;
693 		}
694 		nr_devices++;
695 	}
696 
697 	if (!zoned_devices && !incompat_zoned)
698 		goto out;
699 
700 	if (!zoned_devices && incompat_zoned) {
701 		/* No zoned block device found on ZONED filesystem */
702 		btrfs_err(fs_info,
703 			  "zoned: no zoned devices found on a zoned filesystem");
704 		ret = -EINVAL;
705 		goto out;
706 	}
707 
708 	if (zoned_devices && !incompat_zoned) {
709 		btrfs_err(fs_info,
710 			  "zoned: mode not enabled but zoned device found");
711 		ret = -EINVAL;
712 		goto out;
713 	}
714 
715 	if (zoned_devices != nr_devices) {
716 		btrfs_err(fs_info,
717 			  "zoned: cannot mix zoned and regular devices");
718 		ret = -EINVAL;
719 		goto out;
720 	}
721 
722 	/*
723 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
724 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
725 	 * check the alignment here.
726 	 */
727 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
728 		btrfs_err(fs_info,
729 			  "zoned: zone size %llu not aligned to stripe %u",
730 			  zone_size, BTRFS_STRIPE_LEN);
731 		ret = -EINVAL;
732 		goto out;
733 	}
734 
735 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
736 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
737 		ret = -EINVAL;
738 		goto out;
739 	}
740 
741 	fs_info->zone_size = zone_size;
742 	fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
743 						   fs_info->sectorsize);
744 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
745 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
746 		fs_info->max_extent_size = fs_info->max_zone_append_size;
747 
748 	/*
749 	 * Check mount options here, because we might change fs_info->zoned
750 	 * from fs_info->zone_size.
751 	 */
752 	ret = btrfs_check_mountopts_zoned(fs_info);
753 	if (ret)
754 		goto out;
755 
756 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
757 out:
758 	return ret;
759 }
760 
761 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
762 {
763 	if (!btrfs_is_zoned(info))
764 		return 0;
765 
766 	/*
767 	 * Space cache writing is not COWed. Disable that to avoid write errors
768 	 * in sequential zones.
769 	 */
770 	if (btrfs_test_opt(info, SPACE_CACHE)) {
771 		btrfs_err(info, "zoned: space cache v1 is not supported");
772 		return -EINVAL;
773 	}
774 
775 	if (btrfs_test_opt(info, NODATACOW)) {
776 		btrfs_err(info, "zoned: NODATACOW not supported");
777 		return -EINVAL;
778 	}
779 
780 	return 0;
781 }
782 
783 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
784 			   int rw, u64 *bytenr_ret)
785 {
786 	u64 wp;
787 	int ret;
788 
789 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
790 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
791 		return 0;
792 	}
793 
794 	ret = sb_write_pointer(bdev, zones, &wp);
795 	if (ret != -ENOENT && ret < 0)
796 		return ret;
797 
798 	if (rw == WRITE) {
799 		struct blk_zone *reset = NULL;
800 
801 		if (wp == zones[0].start << SECTOR_SHIFT)
802 			reset = &zones[0];
803 		else if (wp == zones[1].start << SECTOR_SHIFT)
804 			reset = &zones[1];
805 
806 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
807 			ASSERT(sb_zone_is_full(reset));
808 
809 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
810 					       reset->start, reset->len,
811 					       GFP_NOFS);
812 			if (ret)
813 				return ret;
814 
815 			reset->cond = BLK_ZONE_COND_EMPTY;
816 			reset->wp = reset->start;
817 		}
818 	} else if (ret != -ENOENT) {
819 		/*
820 		 * For READ, we want the previous one. Move write pointer to
821 		 * the end of a zone, if it is at the head of a zone.
822 		 */
823 		u64 zone_end = 0;
824 
825 		if (wp == zones[0].start << SECTOR_SHIFT)
826 			zone_end = zones[1].start + zones[1].capacity;
827 		else if (wp == zones[1].start << SECTOR_SHIFT)
828 			zone_end = zones[0].start + zones[0].capacity;
829 		if (zone_end)
830 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
831 					BTRFS_SUPER_INFO_SIZE);
832 
833 		wp -= BTRFS_SUPER_INFO_SIZE;
834 	}
835 
836 	*bytenr_ret = wp;
837 	return 0;
838 
839 }
840 
841 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
842 			       u64 *bytenr_ret)
843 {
844 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
845 	sector_t zone_sectors;
846 	u32 sb_zone;
847 	int ret;
848 	u8 zone_sectors_shift;
849 	sector_t nr_sectors;
850 	u32 nr_zones;
851 
852 	if (!bdev_is_zoned(bdev)) {
853 		*bytenr_ret = btrfs_sb_offset(mirror);
854 		return 0;
855 	}
856 
857 	ASSERT(rw == READ || rw == WRITE);
858 
859 	zone_sectors = bdev_zone_sectors(bdev);
860 	if (!is_power_of_2(zone_sectors))
861 		return -EINVAL;
862 	zone_sectors_shift = ilog2(zone_sectors);
863 	nr_sectors = bdev_nr_sectors(bdev);
864 	nr_zones = nr_sectors >> zone_sectors_shift;
865 
866 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
867 	if (sb_zone + 1 >= nr_zones)
868 		return -ENOENT;
869 
870 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
871 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
872 				  zones);
873 	if (ret < 0)
874 		return ret;
875 	if (ret != BTRFS_NR_SB_LOG_ZONES)
876 		return -EIO;
877 
878 	return sb_log_location(bdev, zones, rw, bytenr_ret);
879 }
880 
881 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
882 			  u64 *bytenr_ret)
883 {
884 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
885 	u32 zone_num;
886 
887 	/*
888 	 * For a zoned filesystem on a non-zoned block device, use the same
889 	 * super block locations as regular filesystem. Doing so, the super
890 	 * block can always be retrieved and the zoned flag of the volume
891 	 * detected from the super block information.
892 	 */
893 	if (!bdev_is_zoned(device->bdev)) {
894 		*bytenr_ret = btrfs_sb_offset(mirror);
895 		return 0;
896 	}
897 
898 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
899 	if (zone_num + 1 >= zinfo->nr_zones)
900 		return -ENOENT;
901 
902 	return sb_log_location(device->bdev,
903 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
904 			       rw, bytenr_ret);
905 }
906 
907 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
908 				  int mirror)
909 {
910 	u32 zone_num;
911 
912 	if (!zinfo)
913 		return false;
914 
915 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
916 	if (zone_num + 1 >= zinfo->nr_zones)
917 		return false;
918 
919 	if (!test_bit(zone_num, zinfo->seq_zones))
920 		return false;
921 
922 	return true;
923 }
924 
925 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
926 {
927 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
928 	struct blk_zone *zone;
929 	int i;
930 
931 	if (!is_sb_log_zone(zinfo, mirror))
932 		return 0;
933 
934 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
935 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
936 		/* Advance the next zone */
937 		if (zone->cond == BLK_ZONE_COND_FULL) {
938 			zone++;
939 			continue;
940 		}
941 
942 		if (zone->cond == BLK_ZONE_COND_EMPTY)
943 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
944 
945 		zone->wp += SUPER_INFO_SECTORS;
946 
947 		if (sb_zone_is_full(zone)) {
948 			/*
949 			 * No room left to write new superblock. Since
950 			 * superblock is written with REQ_SYNC, it is safe to
951 			 * finish the zone now.
952 			 *
953 			 * If the write pointer is exactly at the capacity,
954 			 * explicit ZONE_FINISH is not necessary.
955 			 */
956 			if (zone->wp != zone->start + zone->capacity) {
957 				int ret;
958 
959 				ret = blkdev_zone_mgmt(device->bdev,
960 						REQ_OP_ZONE_FINISH, zone->start,
961 						zone->len, GFP_NOFS);
962 				if (ret)
963 					return ret;
964 			}
965 
966 			zone->wp = zone->start + zone->len;
967 			zone->cond = BLK_ZONE_COND_FULL;
968 		}
969 		return 0;
970 	}
971 
972 	/* All the zones are FULL. Should not reach here. */
973 	ASSERT(0);
974 	return -EIO;
975 }
976 
977 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
978 {
979 	sector_t zone_sectors;
980 	sector_t nr_sectors;
981 	u8 zone_sectors_shift;
982 	u32 sb_zone;
983 	u32 nr_zones;
984 
985 	zone_sectors = bdev_zone_sectors(bdev);
986 	zone_sectors_shift = ilog2(zone_sectors);
987 	nr_sectors = bdev_nr_sectors(bdev);
988 	nr_zones = nr_sectors >> zone_sectors_shift;
989 
990 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
991 	if (sb_zone + 1 >= nr_zones)
992 		return -ENOENT;
993 
994 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
995 				zone_start_sector(sb_zone, bdev),
996 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
997 }
998 
999 /**
1000  * btrfs_find_allocatable_zones - find allocatable zones within a given region
1001  *
1002  * @device:	the device to allocate a region on
1003  * @hole_start: the position of the hole to allocate the region
1004  * @num_bytes:	size of wanted region
1005  * @hole_end:	the end of the hole
1006  * @return:	position of allocatable zones
1007  *
1008  * Allocatable region should not contain any superblock locations.
1009  */
1010 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1011 				 u64 hole_end, u64 num_bytes)
1012 {
1013 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1014 	const u8 shift = zinfo->zone_size_shift;
1015 	u64 nzones = num_bytes >> shift;
1016 	u64 pos = hole_start;
1017 	u64 begin, end;
1018 	bool have_sb;
1019 	int i;
1020 
1021 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1022 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1023 
1024 	while (pos < hole_end) {
1025 		begin = pos >> shift;
1026 		end = begin + nzones;
1027 
1028 		if (end > zinfo->nr_zones)
1029 			return hole_end;
1030 
1031 		/* Check if zones in the region are all empty */
1032 		if (btrfs_dev_is_sequential(device, pos) &&
1033 		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1034 			pos += zinfo->zone_size;
1035 			continue;
1036 		}
1037 
1038 		have_sb = false;
1039 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1040 			u32 sb_zone;
1041 			u64 sb_pos;
1042 
1043 			sb_zone = sb_zone_number(shift, i);
1044 			if (!(end <= sb_zone ||
1045 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1046 				have_sb = true;
1047 				pos = zone_start_physical(
1048 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1049 				break;
1050 			}
1051 
1052 			/* We also need to exclude regular superblock positions */
1053 			sb_pos = btrfs_sb_offset(i);
1054 			if (!(pos + num_bytes <= sb_pos ||
1055 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1056 				have_sb = true;
1057 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1058 					    zinfo->zone_size);
1059 				break;
1060 			}
1061 		}
1062 		if (!have_sb)
1063 			break;
1064 	}
1065 
1066 	return pos;
1067 }
1068 
1069 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1070 {
1071 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1072 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1073 
1074 	/* We can use any number of zones */
1075 	if (zone_info->max_active_zones == 0)
1076 		return true;
1077 
1078 	if (!test_bit(zno, zone_info->active_zones)) {
1079 		/* Active zone left? */
1080 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1081 			return false;
1082 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1083 			/* Someone already set the bit */
1084 			atomic_inc(&zone_info->active_zones_left);
1085 		}
1086 	}
1087 
1088 	return true;
1089 }
1090 
1091 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1092 {
1093 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1094 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1095 
1096 	/* We can use any number of zones */
1097 	if (zone_info->max_active_zones == 0)
1098 		return;
1099 
1100 	if (test_and_clear_bit(zno, zone_info->active_zones))
1101 		atomic_inc(&zone_info->active_zones_left);
1102 }
1103 
1104 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1105 			    u64 length, u64 *bytes)
1106 {
1107 	int ret;
1108 
1109 	*bytes = 0;
1110 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1111 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1112 			       GFP_NOFS);
1113 	if (ret)
1114 		return ret;
1115 
1116 	*bytes = length;
1117 	while (length) {
1118 		btrfs_dev_set_zone_empty(device, physical);
1119 		btrfs_dev_clear_active_zone(device, physical);
1120 		physical += device->zone_info->zone_size;
1121 		length -= device->zone_info->zone_size;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1128 {
1129 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1130 	const u8 shift = zinfo->zone_size_shift;
1131 	unsigned long begin = start >> shift;
1132 	unsigned long end = (start + size) >> shift;
1133 	u64 pos;
1134 	int ret;
1135 
1136 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1137 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1138 
1139 	if (end > zinfo->nr_zones)
1140 		return -ERANGE;
1141 
1142 	/* All the zones are conventional */
1143 	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1144 		return 0;
1145 
1146 	/* All the zones are sequential and empty */
1147 	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1148 	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1149 		return 0;
1150 
1151 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1152 		u64 reset_bytes;
1153 
1154 		if (!btrfs_dev_is_sequential(device, pos) ||
1155 		    btrfs_dev_is_empty_zone(device, pos))
1156 			continue;
1157 
1158 		/* Free regions should be empty */
1159 		btrfs_warn_in_rcu(
1160 			device->fs_info,
1161 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1162 			rcu_str_deref(device->name), device->devid, pos >> shift);
1163 		WARN_ON_ONCE(1);
1164 
1165 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1166 					      &reset_bytes);
1167 		if (ret)
1168 			return ret;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 /*
1175  * Calculate an allocation pointer from the extent allocation information
1176  * for a block group consist of conventional zones. It is pointed to the
1177  * end of the highest addressed extent in the block group as an allocation
1178  * offset.
1179  */
1180 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1181 				   u64 *offset_ret)
1182 {
1183 	struct btrfs_fs_info *fs_info = cache->fs_info;
1184 	struct btrfs_root *root;
1185 	struct btrfs_path *path;
1186 	struct btrfs_key key;
1187 	struct btrfs_key found_key;
1188 	int ret;
1189 	u64 length;
1190 
1191 	path = btrfs_alloc_path();
1192 	if (!path)
1193 		return -ENOMEM;
1194 
1195 	key.objectid = cache->start + cache->length;
1196 	key.type = 0;
1197 	key.offset = 0;
1198 
1199 	root = btrfs_extent_root(fs_info, key.objectid);
1200 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1201 	/* We should not find the exact match */
1202 	if (!ret)
1203 		ret = -EUCLEAN;
1204 	if (ret < 0)
1205 		goto out;
1206 
1207 	ret = btrfs_previous_extent_item(root, path, cache->start);
1208 	if (ret) {
1209 		if (ret == 1) {
1210 			ret = 0;
1211 			*offset_ret = 0;
1212 		}
1213 		goto out;
1214 	}
1215 
1216 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1217 
1218 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1219 		length = found_key.offset;
1220 	else
1221 		length = fs_info->nodesize;
1222 
1223 	if (!(found_key.objectid >= cache->start &&
1224 	       found_key.objectid + length <= cache->start + cache->length)) {
1225 		ret = -EUCLEAN;
1226 		goto out;
1227 	}
1228 	*offset_ret = found_key.objectid + length - cache->start;
1229 	ret = 0;
1230 
1231 out:
1232 	btrfs_free_path(path);
1233 	return ret;
1234 }
1235 
1236 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1237 {
1238 	struct btrfs_fs_info *fs_info = cache->fs_info;
1239 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1240 	struct extent_map *em;
1241 	struct map_lookup *map;
1242 	struct btrfs_device *device;
1243 	u64 logical = cache->start;
1244 	u64 length = cache->length;
1245 	int ret;
1246 	int i;
1247 	unsigned int nofs_flag;
1248 	u64 *alloc_offsets = NULL;
1249 	u64 *caps = NULL;
1250 	u64 *physical = NULL;
1251 	unsigned long *active = NULL;
1252 	u64 last_alloc = 0;
1253 	u32 num_sequential = 0, num_conventional = 0;
1254 
1255 	if (!btrfs_is_zoned(fs_info))
1256 		return 0;
1257 
1258 	/* Sanity check */
1259 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1260 		btrfs_err(fs_info,
1261 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1262 			  logical, length, fs_info->zone_size);
1263 		return -EIO;
1264 	}
1265 
1266 	/* Get the chunk mapping */
1267 	read_lock(&em_tree->lock);
1268 	em = lookup_extent_mapping(em_tree, logical, length);
1269 	read_unlock(&em_tree->lock);
1270 
1271 	if (!em)
1272 		return -EINVAL;
1273 
1274 	map = em->map_lookup;
1275 
1276 	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1277 	if (!cache->physical_map) {
1278 		ret = -ENOMEM;
1279 		goto out;
1280 	}
1281 
1282 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1283 	if (!alloc_offsets) {
1284 		ret = -ENOMEM;
1285 		goto out;
1286 	}
1287 
1288 	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1289 	if (!caps) {
1290 		ret = -ENOMEM;
1291 		goto out;
1292 	}
1293 
1294 	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1295 	if (!physical) {
1296 		ret = -ENOMEM;
1297 		goto out;
1298 	}
1299 
1300 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1301 	if (!active) {
1302 		ret = -ENOMEM;
1303 		goto out;
1304 	}
1305 
1306 	for (i = 0; i < map->num_stripes; i++) {
1307 		bool is_sequential;
1308 		struct blk_zone zone;
1309 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1310 		int dev_replace_is_ongoing = 0;
1311 
1312 		device = map->stripes[i].dev;
1313 		physical[i] = map->stripes[i].physical;
1314 
1315 		if (device->bdev == NULL) {
1316 			alloc_offsets[i] = WP_MISSING_DEV;
1317 			continue;
1318 		}
1319 
1320 		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1321 		if (is_sequential)
1322 			num_sequential++;
1323 		else
1324 			num_conventional++;
1325 
1326 		if (!is_sequential) {
1327 			alloc_offsets[i] = WP_CONVENTIONAL;
1328 			continue;
1329 		}
1330 
1331 		/*
1332 		 * This zone will be used for allocation, so mark this zone
1333 		 * non-empty.
1334 		 */
1335 		btrfs_dev_clear_zone_empty(device, physical[i]);
1336 
1337 		down_read(&dev_replace->rwsem);
1338 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1339 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1340 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1341 		up_read(&dev_replace->rwsem);
1342 
1343 		/*
1344 		 * The group is mapped to a sequential zone. Get the zone write
1345 		 * pointer to determine the allocation offset within the zone.
1346 		 */
1347 		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1348 		nofs_flag = memalloc_nofs_save();
1349 		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1350 		memalloc_nofs_restore(nofs_flag);
1351 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1352 			ret = 0;
1353 			alloc_offsets[i] = WP_MISSING_DEV;
1354 			continue;
1355 		} else if (ret) {
1356 			goto out;
1357 		}
1358 
1359 		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1360 			btrfs_err_in_rcu(fs_info,
1361 	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1362 				zone.start << SECTOR_SHIFT,
1363 				rcu_str_deref(device->name), device->devid);
1364 			ret = -EIO;
1365 			goto out;
1366 		}
1367 
1368 		caps[i] = (zone.capacity << SECTOR_SHIFT);
1369 
1370 		switch (zone.cond) {
1371 		case BLK_ZONE_COND_OFFLINE:
1372 		case BLK_ZONE_COND_READONLY:
1373 			btrfs_err(fs_info,
1374 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1375 				  physical[i] >> device->zone_info->zone_size_shift,
1376 				  rcu_str_deref(device->name), device->devid);
1377 			alloc_offsets[i] = WP_MISSING_DEV;
1378 			break;
1379 		case BLK_ZONE_COND_EMPTY:
1380 			alloc_offsets[i] = 0;
1381 			break;
1382 		case BLK_ZONE_COND_FULL:
1383 			alloc_offsets[i] = caps[i];
1384 			break;
1385 		default:
1386 			/* Partially used zone */
1387 			alloc_offsets[i] =
1388 					((zone.wp - zone.start) << SECTOR_SHIFT);
1389 			__set_bit(i, active);
1390 			break;
1391 		}
1392 
1393 		/*
1394 		 * Consider a zone as active if we can allow any number of
1395 		 * active zones.
1396 		 */
1397 		if (!device->zone_info->max_active_zones)
1398 			__set_bit(i, active);
1399 	}
1400 
1401 	if (num_sequential > 0)
1402 		cache->seq_zone = true;
1403 
1404 	if (num_conventional > 0) {
1405 		/*
1406 		 * Avoid calling calculate_alloc_pointer() for new BG. It
1407 		 * is no use for new BG. It must be always 0.
1408 		 *
1409 		 * Also, we have a lock chain of extent buffer lock ->
1410 		 * chunk mutex.  For new BG, this function is called from
1411 		 * btrfs_make_block_group() which is already taking the
1412 		 * chunk mutex. Thus, we cannot call
1413 		 * calculate_alloc_pointer() which takes extent buffer
1414 		 * locks to avoid deadlock.
1415 		 */
1416 
1417 		/* Zone capacity is always zone size in emulation */
1418 		cache->zone_capacity = cache->length;
1419 		if (new) {
1420 			cache->alloc_offset = 0;
1421 			goto out;
1422 		}
1423 		ret = calculate_alloc_pointer(cache, &last_alloc);
1424 		if (ret || map->num_stripes == num_conventional) {
1425 			if (!ret)
1426 				cache->alloc_offset = last_alloc;
1427 			else
1428 				btrfs_err(fs_info,
1429 			"zoned: failed to determine allocation offset of bg %llu",
1430 					  cache->start);
1431 			goto out;
1432 		}
1433 	}
1434 
1435 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1436 	case 0: /* single */
1437 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1438 			btrfs_err(fs_info,
1439 			"zoned: cannot recover write pointer for zone %llu",
1440 				physical[0]);
1441 			ret = -EIO;
1442 			goto out;
1443 		}
1444 		cache->alloc_offset = alloc_offsets[0];
1445 		cache->zone_capacity = caps[0];
1446 		cache->zone_is_active = test_bit(0, active);
1447 		break;
1448 	case BTRFS_BLOCK_GROUP_DUP:
1449 		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1450 			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1451 			ret = -EINVAL;
1452 			goto out;
1453 		}
1454 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1455 			btrfs_err(fs_info,
1456 			"zoned: cannot recover write pointer for zone %llu",
1457 				physical[0]);
1458 			ret = -EIO;
1459 			goto out;
1460 		}
1461 		if (alloc_offsets[1] == WP_MISSING_DEV) {
1462 			btrfs_err(fs_info,
1463 			"zoned: cannot recover write pointer for zone %llu",
1464 				physical[1]);
1465 			ret = -EIO;
1466 			goto out;
1467 		}
1468 		if (alloc_offsets[0] != alloc_offsets[1]) {
1469 			btrfs_err(fs_info,
1470 			"zoned: write pointer offset mismatch of zones in DUP profile");
1471 			ret = -EIO;
1472 			goto out;
1473 		}
1474 		if (test_bit(0, active) != test_bit(1, active)) {
1475 			if (!btrfs_zone_activate(cache)) {
1476 				ret = -EIO;
1477 				goto out;
1478 			}
1479 		} else {
1480 			cache->zone_is_active = test_bit(0, active);
1481 		}
1482 		cache->alloc_offset = alloc_offsets[0];
1483 		cache->zone_capacity = min(caps[0], caps[1]);
1484 		break;
1485 	case BTRFS_BLOCK_GROUP_RAID1:
1486 	case BTRFS_BLOCK_GROUP_RAID0:
1487 	case BTRFS_BLOCK_GROUP_RAID10:
1488 	case BTRFS_BLOCK_GROUP_RAID5:
1489 	case BTRFS_BLOCK_GROUP_RAID6:
1490 		/* non-single profiles are not supported yet */
1491 	default:
1492 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1493 			  btrfs_bg_type_to_raid_name(map->type));
1494 		ret = -EINVAL;
1495 		goto out;
1496 	}
1497 
1498 	if (cache->zone_is_active) {
1499 		btrfs_get_block_group(cache);
1500 		spin_lock(&fs_info->zone_active_bgs_lock);
1501 		list_add_tail(&cache->active_bg_list, &fs_info->zone_active_bgs);
1502 		spin_unlock(&fs_info->zone_active_bgs_lock);
1503 	}
1504 
1505 out:
1506 	if (cache->alloc_offset > fs_info->zone_size) {
1507 		btrfs_err(fs_info,
1508 			"zoned: invalid write pointer %llu in block group %llu",
1509 			cache->alloc_offset, cache->start);
1510 		ret = -EIO;
1511 	}
1512 
1513 	if (cache->alloc_offset > cache->zone_capacity) {
1514 		btrfs_err(fs_info,
1515 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1516 			  cache->alloc_offset, cache->zone_capacity,
1517 			  cache->start);
1518 		ret = -EIO;
1519 	}
1520 
1521 	/* An extent is allocated after the write pointer */
1522 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1523 		btrfs_err(fs_info,
1524 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1525 			  logical, last_alloc, cache->alloc_offset);
1526 		ret = -EIO;
1527 	}
1528 
1529 	if (!ret)
1530 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1531 
1532 	if (ret) {
1533 		kfree(cache->physical_map);
1534 		cache->physical_map = NULL;
1535 	}
1536 	bitmap_free(active);
1537 	kfree(physical);
1538 	kfree(caps);
1539 	kfree(alloc_offsets);
1540 	free_extent_map(em);
1541 
1542 	return ret;
1543 }
1544 
1545 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1546 {
1547 	u64 unusable, free;
1548 
1549 	if (!btrfs_is_zoned(cache->fs_info))
1550 		return;
1551 
1552 	WARN_ON(cache->bytes_super != 0);
1553 	unusable = (cache->alloc_offset - cache->used) +
1554 		   (cache->length - cache->zone_capacity);
1555 	free = cache->zone_capacity - cache->alloc_offset;
1556 
1557 	/* We only need ->free_space in ALLOC_SEQ block groups */
1558 	cache->last_byte_to_unpin = (u64)-1;
1559 	cache->cached = BTRFS_CACHE_FINISHED;
1560 	cache->free_space_ctl->free_space = free;
1561 	cache->zone_unusable = unusable;
1562 }
1563 
1564 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1565 			    struct extent_buffer *eb)
1566 {
1567 	struct btrfs_fs_info *fs_info = eb->fs_info;
1568 
1569 	if (!btrfs_is_zoned(fs_info) ||
1570 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1571 	    !list_empty(&eb->release_list))
1572 		return;
1573 
1574 	set_extent_buffer_dirty(eb);
1575 	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1576 			       eb->start + eb->len - 1, EXTENT_DIRTY);
1577 	memzero_extent_buffer(eb, 0, eb->len);
1578 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1579 
1580 	spin_lock(&trans->releasing_ebs_lock);
1581 	list_add_tail(&eb->release_list, &trans->releasing_ebs);
1582 	spin_unlock(&trans->releasing_ebs_lock);
1583 	atomic_inc(&eb->refs);
1584 }
1585 
1586 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1587 {
1588 	spin_lock(&trans->releasing_ebs_lock);
1589 	while (!list_empty(&trans->releasing_ebs)) {
1590 		struct extent_buffer *eb;
1591 
1592 		eb = list_first_entry(&trans->releasing_ebs,
1593 				      struct extent_buffer, release_list);
1594 		list_del_init(&eb->release_list);
1595 		free_extent_buffer(eb);
1596 	}
1597 	spin_unlock(&trans->releasing_ebs_lock);
1598 }
1599 
1600 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1601 {
1602 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1603 	struct btrfs_block_group *cache;
1604 	bool ret = false;
1605 
1606 	if (!btrfs_is_zoned(fs_info))
1607 		return false;
1608 
1609 	if (!is_data_inode(&inode->vfs_inode))
1610 		return false;
1611 
1612 	/*
1613 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1614 	 * extent layout the relocation code has.
1615 	 * Furthermore we have set aside own block-group from which only the
1616 	 * relocation "process" can allocate and make sure only one process at a
1617 	 * time can add pages to an extent that gets relocated, so it's safe to
1618 	 * use regular REQ_OP_WRITE for this special case.
1619 	 */
1620 	if (btrfs_is_data_reloc_root(inode->root))
1621 		return false;
1622 
1623 	cache = btrfs_lookup_block_group(fs_info, start);
1624 	ASSERT(cache);
1625 	if (!cache)
1626 		return false;
1627 
1628 	ret = cache->seq_zone;
1629 	btrfs_put_block_group(cache);
1630 
1631 	return ret;
1632 }
1633 
1634 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1635 				 struct bio *bio)
1636 {
1637 	struct btrfs_ordered_extent *ordered;
1638 	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1639 
1640 	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1641 		return;
1642 
1643 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1644 	if (WARN_ON(!ordered))
1645 		return;
1646 
1647 	ordered->physical = physical;
1648 	ordered->bdev = bio->bi_bdev;
1649 
1650 	btrfs_put_ordered_extent(ordered);
1651 }
1652 
1653 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1654 {
1655 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1656 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1657 	struct extent_map_tree *em_tree;
1658 	struct extent_map *em;
1659 	struct btrfs_ordered_sum *sum;
1660 	u64 orig_logical = ordered->disk_bytenr;
1661 	u64 *logical = NULL;
1662 	int nr, stripe_len;
1663 
1664 	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1665 	ASSERT(!bdev_is_partition(ordered->bdev));
1666 	if (WARN_ON(!ordered->bdev))
1667 		return;
1668 
1669 	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1670 				     ordered->physical, &logical, &nr,
1671 				     &stripe_len)))
1672 		goto out;
1673 
1674 	WARN_ON(nr != 1);
1675 
1676 	if (orig_logical == *logical)
1677 		goto out;
1678 
1679 	ordered->disk_bytenr = *logical;
1680 
1681 	em_tree = &inode->extent_tree;
1682 	write_lock(&em_tree->lock);
1683 	em = search_extent_mapping(em_tree, ordered->file_offset,
1684 				   ordered->num_bytes);
1685 	em->block_start = *logical;
1686 	free_extent_map(em);
1687 	write_unlock(&em_tree->lock);
1688 
1689 	list_for_each_entry(sum, &ordered->list, list) {
1690 		if (*logical < orig_logical)
1691 			sum->bytenr -= orig_logical - *logical;
1692 		else
1693 			sum->bytenr += *logical - orig_logical;
1694 	}
1695 
1696 out:
1697 	kfree(logical);
1698 }
1699 
1700 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1701 				    struct extent_buffer *eb,
1702 				    struct btrfs_block_group **cache_ret)
1703 {
1704 	struct btrfs_block_group *cache;
1705 	bool ret = true;
1706 
1707 	if (!btrfs_is_zoned(fs_info))
1708 		return true;
1709 
1710 	cache = btrfs_lookup_block_group(fs_info, eb->start);
1711 	if (!cache)
1712 		return true;
1713 
1714 	if (cache->meta_write_pointer != eb->start) {
1715 		btrfs_put_block_group(cache);
1716 		cache = NULL;
1717 		ret = false;
1718 	} else {
1719 		cache->meta_write_pointer = eb->start + eb->len;
1720 	}
1721 
1722 	*cache_ret = cache;
1723 
1724 	return ret;
1725 }
1726 
1727 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1728 				     struct extent_buffer *eb)
1729 {
1730 	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1731 		return;
1732 
1733 	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1734 	cache->meta_write_pointer = eb->start;
1735 }
1736 
1737 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1738 {
1739 	if (!btrfs_dev_is_sequential(device, physical))
1740 		return -EOPNOTSUPP;
1741 
1742 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1743 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1744 }
1745 
1746 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1747 			  struct blk_zone *zone)
1748 {
1749 	struct btrfs_io_context *bioc = NULL;
1750 	u64 mapped_length = PAGE_SIZE;
1751 	unsigned int nofs_flag;
1752 	int nmirrors;
1753 	int i, ret;
1754 
1755 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1756 			       &mapped_length, &bioc);
1757 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1758 		ret = -EIO;
1759 		goto out_put_bioc;
1760 	}
1761 
1762 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1763 		ret = -EINVAL;
1764 		goto out_put_bioc;
1765 	}
1766 
1767 	nofs_flag = memalloc_nofs_save();
1768 	nmirrors = (int)bioc->num_stripes;
1769 	for (i = 0; i < nmirrors; i++) {
1770 		u64 physical = bioc->stripes[i].physical;
1771 		struct btrfs_device *dev = bioc->stripes[i].dev;
1772 
1773 		/* Missing device */
1774 		if (!dev->bdev)
1775 			continue;
1776 
1777 		ret = btrfs_get_dev_zone(dev, physical, zone);
1778 		/* Failing device */
1779 		if (ret == -EIO || ret == -EOPNOTSUPP)
1780 			continue;
1781 		break;
1782 	}
1783 	memalloc_nofs_restore(nofs_flag);
1784 out_put_bioc:
1785 	btrfs_put_bioc(bioc);
1786 	return ret;
1787 }
1788 
1789 /*
1790  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1791  * filling zeros between @physical_pos to a write pointer of dev-replace
1792  * source device.
1793  */
1794 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1795 				    u64 physical_start, u64 physical_pos)
1796 {
1797 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1798 	struct blk_zone zone;
1799 	u64 length;
1800 	u64 wp;
1801 	int ret;
1802 
1803 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1804 		return 0;
1805 
1806 	ret = read_zone_info(fs_info, logical, &zone);
1807 	if (ret)
1808 		return ret;
1809 
1810 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1811 
1812 	if (physical_pos == wp)
1813 		return 0;
1814 
1815 	if (physical_pos > wp)
1816 		return -EUCLEAN;
1817 
1818 	length = wp - physical_pos;
1819 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1820 }
1821 
1822 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1823 					    u64 logical, u64 length)
1824 {
1825 	struct btrfs_device *device;
1826 	struct extent_map *em;
1827 	struct map_lookup *map;
1828 
1829 	em = btrfs_get_chunk_map(fs_info, logical, length);
1830 	if (IS_ERR(em))
1831 		return ERR_CAST(em);
1832 
1833 	map = em->map_lookup;
1834 	/* We only support single profile for now */
1835 	device = map->stripes[0].dev;
1836 
1837 	free_extent_map(em);
1838 
1839 	return device;
1840 }
1841 
1842 /**
1843  * Activate block group and underlying device zones
1844  *
1845  * @block_group: the block group to activate
1846  *
1847  * Return: true on success, false otherwise
1848  */
1849 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1850 {
1851 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1852 	struct btrfs_space_info *space_info = block_group->space_info;
1853 	struct map_lookup *map;
1854 	struct btrfs_device *device;
1855 	u64 physical;
1856 	bool ret;
1857 	int i;
1858 
1859 	if (!btrfs_is_zoned(block_group->fs_info))
1860 		return true;
1861 
1862 	map = block_group->physical_map;
1863 
1864 	spin_lock(&space_info->lock);
1865 	spin_lock(&block_group->lock);
1866 	if (block_group->zone_is_active) {
1867 		ret = true;
1868 		goto out_unlock;
1869 	}
1870 
1871 	/* No space left */
1872 	if (btrfs_zoned_bg_is_full(block_group)) {
1873 		ret = false;
1874 		goto out_unlock;
1875 	}
1876 
1877 	for (i = 0; i < map->num_stripes; i++) {
1878 		device = map->stripes[i].dev;
1879 		physical = map->stripes[i].physical;
1880 
1881 		if (device->zone_info->max_active_zones == 0)
1882 			continue;
1883 
1884 		if (!btrfs_dev_set_active_zone(device, physical)) {
1885 			/* Cannot activate the zone */
1886 			ret = false;
1887 			goto out_unlock;
1888 		}
1889 	}
1890 
1891 	/* Successfully activated all the zones */
1892 	block_group->zone_is_active = 1;
1893 	space_info->active_total_bytes += block_group->length;
1894 	spin_unlock(&block_group->lock);
1895 	btrfs_try_granting_tickets(fs_info, space_info);
1896 	spin_unlock(&space_info->lock);
1897 
1898 	/* For the active block group list */
1899 	btrfs_get_block_group(block_group);
1900 
1901 	spin_lock(&fs_info->zone_active_bgs_lock);
1902 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1903 	spin_unlock(&fs_info->zone_active_bgs_lock);
1904 
1905 	return true;
1906 
1907 out_unlock:
1908 	spin_unlock(&block_group->lock);
1909 	spin_unlock(&space_info->lock);
1910 	return ret;
1911 }
1912 
1913 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1914 {
1915 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1916 	struct map_lookup *map;
1917 	int ret = 0;
1918 	int i;
1919 
1920 	spin_lock(&block_group->lock);
1921 	if (!block_group->zone_is_active) {
1922 		spin_unlock(&block_group->lock);
1923 		return 0;
1924 	}
1925 
1926 	/* Check if we have unwritten allocated space */
1927 	if ((block_group->flags &
1928 	     (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) &&
1929 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1930 		spin_unlock(&block_group->lock);
1931 		return -EAGAIN;
1932 	}
1933 
1934 	/*
1935 	 * If we are sure that the block group is full (= no more room left for
1936 	 * new allocation) and the IO for the last usable block is completed, we
1937 	 * don't need to wait for the other IOs. This holds because we ensure
1938 	 * the sequential IO submissions using the ZONE_APPEND command for data
1939 	 * and block_group->meta_write_pointer for metadata.
1940 	 */
1941 	if (!fully_written) {
1942 		spin_unlock(&block_group->lock);
1943 
1944 		ret = btrfs_inc_block_group_ro(block_group, false);
1945 		if (ret)
1946 			return ret;
1947 
1948 		/* Ensure all writes in this block group finish */
1949 		btrfs_wait_block_group_reservations(block_group);
1950 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
1951 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1952 					 block_group->length);
1953 
1954 		spin_lock(&block_group->lock);
1955 
1956 		/*
1957 		 * Bail out if someone already deactivated the block group, or
1958 		 * allocated space is left in the block group.
1959 		 */
1960 		if (!block_group->zone_is_active) {
1961 			spin_unlock(&block_group->lock);
1962 			btrfs_dec_block_group_ro(block_group);
1963 			return 0;
1964 		}
1965 
1966 		if (block_group->reserved) {
1967 			spin_unlock(&block_group->lock);
1968 			btrfs_dec_block_group_ro(block_group);
1969 			return -EAGAIN;
1970 		}
1971 	}
1972 
1973 	block_group->zone_is_active = 0;
1974 	block_group->alloc_offset = block_group->zone_capacity;
1975 	block_group->free_space_ctl->free_space = 0;
1976 	btrfs_clear_treelog_bg(block_group);
1977 	btrfs_clear_data_reloc_bg(block_group);
1978 	spin_unlock(&block_group->lock);
1979 
1980 	map = block_group->physical_map;
1981 	for (i = 0; i < map->num_stripes; i++) {
1982 		struct btrfs_device *device = map->stripes[i].dev;
1983 		const u64 physical = map->stripes[i].physical;
1984 
1985 		if (device->zone_info->max_active_zones == 0)
1986 			continue;
1987 
1988 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
1989 				       physical >> SECTOR_SHIFT,
1990 				       device->zone_info->zone_size >> SECTOR_SHIFT,
1991 				       GFP_NOFS);
1992 
1993 		if (ret)
1994 			return ret;
1995 
1996 		btrfs_dev_clear_active_zone(device, physical);
1997 	}
1998 
1999 	if (!fully_written)
2000 		btrfs_dec_block_group_ro(block_group);
2001 
2002 	spin_lock(&fs_info->zone_active_bgs_lock);
2003 	ASSERT(!list_empty(&block_group->active_bg_list));
2004 	list_del_init(&block_group->active_bg_list);
2005 	spin_unlock(&fs_info->zone_active_bgs_lock);
2006 
2007 	/* For active_bg_list */
2008 	btrfs_put_block_group(block_group);
2009 
2010 	clear_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2011 	wake_up_all(&fs_info->zone_finish_wait);
2012 
2013 	return 0;
2014 }
2015 
2016 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2017 {
2018 	if (!btrfs_is_zoned(block_group->fs_info))
2019 		return 0;
2020 
2021 	return do_zone_finish(block_group, false);
2022 }
2023 
2024 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2025 {
2026 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2027 	struct btrfs_device *device;
2028 	bool ret = false;
2029 
2030 	if (!btrfs_is_zoned(fs_info))
2031 		return true;
2032 
2033 	/* Check if there is a device with active zones left */
2034 	mutex_lock(&fs_info->chunk_mutex);
2035 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2036 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2037 
2038 		if (!device->bdev)
2039 			continue;
2040 
2041 		if (!zinfo->max_active_zones ||
2042 		    atomic_read(&zinfo->active_zones_left)) {
2043 			ret = true;
2044 			break;
2045 		}
2046 	}
2047 	mutex_unlock(&fs_info->chunk_mutex);
2048 
2049 	if (!ret)
2050 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2051 
2052 	return ret;
2053 }
2054 
2055 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2056 {
2057 	struct btrfs_block_group *block_group;
2058 	u64 min_alloc_bytes;
2059 
2060 	if (!btrfs_is_zoned(fs_info))
2061 		return;
2062 
2063 	block_group = btrfs_lookup_block_group(fs_info, logical);
2064 	ASSERT(block_group);
2065 
2066 	/* No MIXED_BG on zoned btrfs. */
2067 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2068 		min_alloc_bytes = fs_info->sectorsize;
2069 	else
2070 		min_alloc_bytes = fs_info->nodesize;
2071 
2072 	/* Bail out if we can allocate more data from this block group. */
2073 	if (logical + length + min_alloc_bytes <=
2074 	    block_group->start + block_group->zone_capacity)
2075 		goto out;
2076 
2077 	do_zone_finish(block_group, true);
2078 
2079 out:
2080 	btrfs_put_block_group(block_group);
2081 }
2082 
2083 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2084 {
2085 	struct btrfs_block_group *bg =
2086 		container_of(work, struct btrfs_block_group, zone_finish_work);
2087 
2088 	wait_on_extent_buffer_writeback(bg->last_eb);
2089 	free_extent_buffer(bg->last_eb);
2090 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2091 	btrfs_put_block_group(bg);
2092 }
2093 
2094 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2095 				   struct extent_buffer *eb)
2096 {
2097 	if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2098 		return;
2099 
2100 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2101 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2102 			  bg->start);
2103 		return;
2104 	}
2105 
2106 	/* For the work */
2107 	btrfs_get_block_group(bg);
2108 	atomic_inc(&eb->refs);
2109 	bg->last_eb = eb;
2110 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2111 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2112 }
2113 
2114 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2115 {
2116 	struct btrfs_fs_info *fs_info = bg->fs_info;
2117 
2118 	spin_lock(&fs_info->relocation_bg_lock);
2119 	if (fs_info->data_reloc_bg == bg->start)
2120 		fs_info->data_reloc_bg = 0;
2121 	spin_unlock(&fs_info->relocation_bg_lock);
2122 }
2123 
2124 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2125 {
2126 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2127 	struct btrfs_device *device;
2128 
2129 	if (!btrfs_is_zoned(fs_info))
2130 		return;
2131 
2132 	mutex_lock(&fs_devices->device_list_mutex);
2133 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2134 		if (device->zone_info) {
2135 			vfree(device->zone_info->zone_cache);
2136 			device->zone_info->zone_cache = NULL;
2137 		}
2138 	}
2139 	mutex_unlock(&fs_devices->device_list_mutex);
2140 }
2141 
2142 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2143 {
2144 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2145 	struct btrfs_device *device;
2146 	u64 used = 0;
2147 	u64 total = 0;
2148 	u64 factor;
2149 
2150 	ASSERT(btrfs_is_zoned(fs_info));
2151 
2152 	if (fs_info->bg_reclaim_threshold == 0)
2153 		return false;
2154 
2155 	mutex_lock(&fs_devices->device_list_mutex);
2156 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2157 		if (!device->bdev)
2158 			continue;
2159 
2160 		total += device->disk_total_bytes;
2161 		used += device->bytes_used;
2162 	}
2163 	mutex_unlock(&fs_devices->device_list_mutex);
2164 
2165 	factor = div64_u64(used * 100, total);
2166 	return factor >= fs_info->bg_reclaim_threshold;
2167 }
2168 
2169 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2170 				       u64 length)
2171 {
2172 	struct btrfs_block_group *block_group;
2173 
2174 	if (!btrfs_is_zoned(fs_info))
2175 		return;
2176 
2177 	block_group = btrfs_lookup_block_group(fs_info, logical);
2178 	/* It should be called on a previous data relocation block group. */
2179 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2180 
2181 	spin_lock(&block_group->lock);
2182 	if (!block_group->zoned_data_reloc_ongoing)
2183 		goto out;
2184 
2185 	/* All relocation extents are written. */
2186 	if (block_group->start + block_group->alloc_offset == logical + length) {
2187 		/* Now, release this block group for further allocations. */
2188 		block_group->zoned_data_reloc_ongoing = 0;
2189 	}
2190 
2191 out:
2192 	spin_unlock(&block_group->lock);
2193 	btrfs_put_block_group(block_group);
2194 }
2195 
2196 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2197 {
2198 	struct btrfs_block_group *block_group;
2199 	struct btrfs_block_group *min_bg = NULL;
2200 	u64 min_avail = U64_MAX;
2201 	int ret;
2202 
2203 	spin_lock(&fs_info->zone_active_bgs_lock);
2204 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2205 			    active_bg_list) {
2206 		u64 avail;
2207 
2208 		spin_lock(&block_group->lock);
2209 		if (block_group->reserved ||
2210 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2211 			spin_unlock(&block_group->lock);
2212 			continue;
2213 		}
2214 
2215 		avail = block_group->zone_capacity - block_group->alloc_offset;
2216 		if (min_avail > avail) {
2217 			if (min_bg)
2218 				btrfs_put_block_group(min_bg);
2219 			min_bg = block_group;
2220 			min_avail = avail;
2221 			btrfs_get_block_group(min_bg);
2222 		}
2223 		spin_unlock(&block_group->lock);
2224 	}
2225 	spin_unlock(&fs_info->zone_active_bgs_lock);
2226 
2227 	if (!min_bg)
2228 		return 0;
2229 
2230 	ret = btrfs_zone_finish(min_bg);
2231 	btrfs_put_block_group(min_bg);
2232 
2233 	return ret < 0 ? ret : 1;
2234 }
2235 
2236 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2237 				struct btrfs_space_info *space_info,
2238 				bool do_finish)
2239 {
2240 	struct btrfs_block_group *bg;
2241 	int index;
2242 
2243 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2244 		return 0;
2245 
2246 	/* No more block groups to activate */
2247 	if (space_info->active_total_bytes == space_info->total_bytes)
2248 		return 0;
2249 
2250 	for (;;) {
2251 		int ret;
2252 		bool need_finish = false;
2253 
2254 		down_read(&space_info->groups_sem);
2255 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2256 			list_for_each_entry(bg, &space_info->block_groups[index],
2257 					    list) {
2258 				if (!spin_trylock(&bg->lock))
2259 					continue;
2260 				if (btrfs_zoned_bg_is_full(bg) || bg->zone_is_active) {
2261 					spin_unlock(&bg->lock);
2262 					continue;
2263 				}
2264 				spin_unlock(&bg->lock);
2265 
2266 				if (btrfs_zone_activate(bg)) {
2267 					up_read(&space_info->groups_sem);
2268 					return 1;
2269 				}
2270 
2271 				need_finish = true;
2272 			}
2273 		}
2274 		up_read(&space_info->groups_sem);
2275 
2276 		if (!do_finish || !need_finish)
2277 			break;
2278 
2279 		ret = btrfs_zone_finish_one_bg(fs_info);
2280 		if (ret == 0)
2281 			break;
2282 		if (ret < 0)
2283 			return ret;
2284 	}
2285 
2286 	return 0;
2287 }
2288